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Extended Abstract & Introduction

The increasing demand for privacy in digital communications and data access has led to the
development of protocols that protect users from third-party surveillance. While numerous
protocols have been proposed to ensure secure communication between users and servers, a
critical limitation remains: in most cases, the server itself is fully aware of the data being
accessed by the user. This exposure poses significant privacy risks, particularly when the data
being accessed is sensitive or when the server is not fully trusted.

To address this limitation, Private Information Retrieval (PIR) protocols have been devel-
oped. These cryptographic protocols allow a user to retrieve an entry from a database without
revealing to the database server which entry was retrieved [20]. PIR has numerous applications
in privacy-preserving technologies, including private search engines, anonymous communica-
tion systems, and more recently, privacy-preserving queries in machine learning and artificial
intelligence systems such as ChatGPT [62], which are based on large language models.

The design and analysis of PIR protocols generally follow two principal approaches, depend-
ing on the storage configuration of the data: single-server or multi-server settings. In the
multi-server setting, the database is distributed across several servers, and privacy can be en-
sured using information-theoretic techniques, which guarantee privacy even against adversaries
with unlimited computational power. In contrast, the single-server case cannot achieve such
guarantees unless the entire database is downloaded, which is highly inefficient. Therefore,
single-server PIR protocols rely on computational assumptions for privacy.

Data storage models and their role in PIR

In multi-server environments, Data Storage Systems (DSS) play a key role in ensuring data
availability, fault tolerance, and security. Data can be either replicated—meaning exact copies
are stored on multiple servers—or encoded using error-correcting codes. Replicated storage im-
proves access speed and reliability, as any single server failure can be mitigated by retrieving
data from another server. Encoded storage, on the other hand, distributes pieces of encoded in-
formation across servers, which enhances fault tolerance and storage efficiency. In such schemes,
the original data can be reconstructed even in the presence of data loss or corruption.

The design of PIR protocols in multi-server settings often assumes collusion among a subset
of servers. If up to t servers are allowed to collude, the protocol must guarantee that even
the combined knowledge of those t servers reveals nothing about the user’s query. This leads
to the notion of t-private PIR protocols, which are constructed using tools from coding theory.
Specifically, the privacy and efficiency of these protocols depend on the parameters of linear
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codes and their componentwise (Schur) products.
A key result by Shah et al. [56] demonstrated that PIR privacy can be achieved if the user

downloads just one bit more than the size of the requested file. However, this method requires a
large number of servers. Additionally, when servers may fail or refuse to respond, PIR protocols
must account for communication between servers. In such cases, the assumption of possible
collusion becomes even more realistic and pressing.

Coding theory and PIRs

A major focus of recent research has been on designing PIR schemes using coding theory. Linear
codes—and in particular, their Schur products—are central to constructing PIR schemes that are
both efficient and secure. The Schur product of two codes is formed by taking the componentwise
product of their codewords, and it plays a critical role in determining the privacy and rate of
PIR protocols.

Several types of codes have been studied in this context, including Generalized Reed–Solomon
(GRS) codes, Reed–Muller (RM) codes, and cyclic codes. GRS codes are particularly useful in
multi-server PIR settings with collusion [24], where the rate of the scheme depends on the
minimum distance of the Schur product between the storage and retrieval codes.

However, using GRS or other Maximum Distance Separable (MDS) codes requires working
over large finite fields, which may hinder practical implementations. To address this, recent
work has explored PIR protocols based on codes over binary fields, which are more suitable
for implementation. For instance, [23] proposed a binary PIR scheme using Reed–Muller codes,
which benefit from a transitive automorphism group—a desirable property for PIR schemes with
good privacy-rate trade-offs.

Single-server PIRs and computational privacy

In the single-server setting, information-theoretic privacy is unattainable unless the entire da-
tabase is retrieved. As a result, computational PIR protocols have been developed, relying on
assumptions such as the hardness of factoring large integers [41], or the use of fully homomorphic
encryption (FHE) [48, 32]. However, many of these schemes suffer from high computational cost
or communication overhead, particularly for large databases. Moreover, cryptographic protocols
based on number-theoretic assumptions are believed to be vulnerable to quantum attacks [57].

Recent efforts in this area have also explored code-based computational PIR protocols. One
notable construction by Holzbaur, Hollanti, and Wachter-Zeh [37] proposed a code-based PIR
protocol with low complexity. However, this protocol was later shown to be insecure under a
polynomial-time linear algebra attack [10].

To overcome these vulnerabilities, this thesis proposes a novel single-server PIR scheme
based on codes over rings, designed to resist linear algebra attacks. This new construction
modifies and strengthens the earlier approach by incorporating cyclic inner codes over Zm and
matrix-product outer codes over R = Zm[x]/⟨xn − 1⟩, providing both efficiency and resistance
to known attacks (See Chapter 3 and [9]).
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Componentwise product and evaluation codes

Beyond PIR, the Schur product of linear codes has emerged as a powerful concept in both
classical and quantum coding theory [52]. Various families of evaluation codes, such as cyclic,
Reed–Muller, hyperbolic, and toric codes, have been studied in this context. Evaluation codes
are constructed by evaluating polynomials over finite point sets, and their algebraic structure
makes them suitable for PIR and quantum error correction.

This thesis focuses on the study of monomial–Cartesian codes and their Schur products.
These codes are particularly relevant for the construction of CSS–T quantum codes, which are
capable of fault-tolerantly implementing non-Clifford gates like the T-gate. We generalize previ-
ous results and prove that J-affine variety codes—a general class of evaluation codes—support
efficient componentwise multiplication and subfield-subcodes (See Chapter 4 and [7]). More-
over, we also consider Cartesian codes and their Schur products in the context of secure multi-
party computation protocols. In secure multi-party computation, the subfield subcode of the
component-wise square of an evaluation code and its dual code must be taken into account. Con-
trolling the various parameters from a single code can be quite challenging. We will present some
strategies for addressing these parameters while constructing codes from well-known families of
Cartesian product codes.

Thesis organization

The thesis is organized as follows:

• Chapter 1 provides some basic notions and references on coding theory and related
introductory topics in PIR schemes and quantum codes.

• Chapter 2 focuses on multi-server PIR protocols using binary cyclic codes. We con-
struct PIR schemes with improved privacy guarantees by carefully selecting storage and
retrieval codes with optimal or near-optimal parameters, comparing our schemes with
known Reed–Muller-based constructions.

• Chapter 3 presents our single-server PIR protocol, designed to resist linear algebra at-
tacks. The scheme utilizes codes over rings, offering computational privacy and low com-
plexity.

• Chapter 4 investigates the Schur product of monomial–Cartesian codes. We explore
applications to both CSS–T quantum codes, multi-server PIR, and secure Multi-Party
Computation protocols, including constructions with better rate-privacy trade-offs than
known schemes.

Results and contributions

Private Information Retrieval Schemes Using Cyclic Codes, Chapter 2

We address the construction of t-private information retrieval (PIR) schemes in distributed
storage systems with colluding servers. Building upon prior work that utilized Reed-Muller
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codes, the authors explore the use of binary cyclic codes due to their transitive automorphism
groups and efficient encoding and decoding properties.

Key Contributions

• Cyclic Codes for PIR: We show that cyclic codes can be effectively employed in
PIR schemes, providing a broader set of parameters and potentially outperforming Reed-
Muller-based constructions in certain scenarios.

• Enhanced Parameter Flexibility: By leveraging the structure of cyclic codes, the
proposed schemes offer greater flexibility in choosing code parameters, which can lead to
improved PIR rates and privacy guarantees.

Single Server PIR Protocols With Codes Over Rings, Chapter 3

This part introduces a novel single-server PIR protocol based on coding theory over rings,
aiming to provide computational security against linear algebra attacks, a known vulnerability
in previous code-based PIR schemes.

Key Contributions

• Use of Codes Over Rings: The protocol employs two types of codes over different rings:
an inner non-free linear code used to distinguish elements added to the query matrix, and
an outer code for generating the query matrix.

• Resistance to Linear Algebra Attacks: By utilizing non-free modules over rings, the
scheme mitigates the effectiveness of rank-based attacks that exploit linear dependencies
in the query structure.

• Modular Arithmetic Implementation: The protocol’s operations are confined to mod-
ular arithmetic, enhancing computational efficiency and simplifying implementation, es-
pecially when the base ring is Zm.

• Trade-off Between Rate and Security: While the scheme may exhibit a lower PIR
rate compared to some existing protocols, it offers enhanced security features, making it
a viable option when privacy is paramount.

The Schur Product of Evaluation Codes and Its Application to CSS-T Quan-
tum Codes and Private Information Retrieval, Chapter 4

In this last chapter, we study the componentwise (Schur) product of monomial-Cartesian codes
by exploiting its correspondence with the Minkowski sum of their defining exponent sets. They
show that J-affine variety codes are well-suited for such products, generalizing earlier results for
cyclic, Reed-Muller, hyperbolic, and toric codes.
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Key Contributions

• Schur Product and Minkowski Sum Correspondence: We establish a connection
between the Schur product of evaluation codes and the Minkowski sum of their defining
exponent sets, enabling a deeper understanding of the structural properties of these codes.

• Construction of CSS-T Quantum Codes: Utilizing the established correspondence,
CSS-T quantum codes are constructed from weighted Reed-Muller codes and binary subfield-
subcodes of J-affine variety codes, leading to codes with better parameters than previously
known.

• PIR Schemes for Multiple Colluding Servers: We present Private Information Re-
trieval constructions for multiple colluding servers based on hyperbolic codes and subfield-
subcodes of J-affine variety codes, demonstrating that they outperform existing PIR
schemes in terms of efficiency and privacy guarantees.

• Secure Multi-Party Computation: Finally, some approaches are presented to address
the parameter constraints through constructions based on well-known families of Cartesian
product codes.
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Resumen Extendido e Introducción

La creciente demanda de privacidad en las comunicaciones digitales y el acceso a datos ha
impulsado el desarrollo de protocolos que protegen a los usuarios frente a la vigilancia de terceros.
Si bien existen numerosos protocolos que garantizan una comunicación segura entre el usuario y
el servidor, persiste una limitación crítica: en la mayoría de los casos, el propio servidor conoce
exactamente qué datos están siendo accedidos por el usuario. Esta exposición representa un
riesgo significativo, especialmente cuando se accede a información sensible o cuando el servidor
no es completamente confiable.

Para abordar este problema, se han desarrollado los Protocolos Privados de Recuperación
de Información (PIR, por sus siglas en inglés). Estos protocolos criptográficos permiten a un
usuario recuperar una entrada de una base de datos sin revelar al servidor cuál fue la entrada
consultada [20]. El PIR tiene numerosas aplicaciones en tecnologías orientadas a la privacidad,
incluyendo motores de búsqueda privados, sistemas de comunicación anónimos y, más reciente-
mente, consultas privadas a sistemas de inteligencia artificial como ChatGPT [62], basados en
modelos de lenguaje de gran escala.

El diseño y análisis de protocolos PIR generalmente sigue dos enfoques principales, depen-
diendo de la configuración de almacenamiento de los datos: entornos con un único servidor o
con múltiples servidores. En el caso de múltiples servidores, la base de datos está distribuida
entre varios servidores, y la privacidad puede asegurarse utilizando técnicas de teoría de la in-
formación, que garantizan privacidad incluso frente a adversarios con capacidad de cómputo
ilimitada. En cambio, en el caso de un único servidor, no es posible alcanzar este nivel de pri-
vacidad sin descargar toda la base de datos, lo cual es ineficiente. Por ello, los protocolos PIR
de un solo servidor se basan en suposiciones computacionales para preservar la privacidad.

Modelos de almacenamiento de datos y su papel en PIR

En entornos de múltiples servidores, los Sistemas de Almacenamiento de Datos (DSS, por sus
siglas en inglés) desempeñan un papel fundamental para garantizar la disponibilidad, tolerancia
a fallos y seguridad de los datos. La información puede almacenarse de manera replicada —es
decir, copias exactas en varios servidores— o codificada. El almacenamiento replicado mejora
la velocidad de acceso y la confiabilidad, ya que si un servidor falla, otro puede proporcionar
los datos. El almacenamiento codificado, por otro lado, distribuye fragmentos codificados de la
información entre varios servidores, lo cual mejora la eficiencia y la tolerancia a errores.

El diseño de protocolos PIR en este contexto muchas veces asume la posibilidad de colusión o
acuerdo entre algunos servidores. Si hasta t servidores pueden acordar compartir su información
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referente a la petición del usuario, el protocolo debe garantizar que incluso el conocimiento
combinado de esos t servidores no revele nada sobre la consulta del usuario. Esto da lugar a los
denominados protocolos PIR t-privados, cuya construcción depende de herramientas de la teoría
de códigos. En particular, la privacidad y eficiencia de estos protocolos están determinadas por
los parámetros de códigos lineales y sus productos componente a componente (también conocidos
como productos de Schur).

Un resultado fundamental de Shah et al. [56] muestra que es posible garantizar privacidad si
el usuario descarga solo un bit más que el tamaño del archivo deseado. No obstante, este enfoque
requiere muchos servidores. Además, ante posibles fallos o inactividad de algunos servidores, los
protocolos PIR deben permitir cierto grado de comunicación entre servidores. Por tanto, resulta
natural considerar que los servidores puedan coludirse compartiendo la información recibida del
usuario.

Teoría de códigos y PIR

Un enfoque moderno en el diseño de esquemas PIR se basa en el uso de teoría de códigos. Los
códigos lineales, y en particular el producto de Schur de dos códigos, son fundamentales para
construir esquemas PIR que sean eficientes y seguros. El producto de Schur entre dos códigos se
define como el producto componente a componente de sus palabras código, y tiene un rol clave
en la determinación de la privacidad y la tasa del protocolo.

Diversos tipos de códigos han sido estudiados con este propósito, como los códigos Gen-
eralizados de Reed–Solomon (GRS), los códigos de Reed–Muller (RM) y los códigos cíclicos.
Los códigos GRS son particularmente útiles en escenarios con múltiples servidores que pueden
coludirse [24], donde la tasa del esquema está relacionada con la distancia mínima del producto
de Schur entre el código de almacenamiento y el de recuperación.

No obstante, el uso de códigos GRS u otros códigos MDS (Máxima Distancia Separable)
requiere operar sobre cuerpos finitos grandes, lo cual dificulta la implementación práctica. Para
solucionar esto, investigaciones recientes han explorado esquemas PIR sobre campos binarios,
más apropiados para aplicaciones prácticas. Por ejemplo, [23] propuso un esquema binario
basado en códigos de Reed–Muller, los cuales poseen un grupo de automorfismos transitivo, una
propiedad deseable para esquemas PIR con buenas relaciones entre tasa y privacidad.

PIR con servidor único y privacidad computacional

En el caso de servidor único, la privacidad informacionalmente teórica no es alcanzable a menos
que se descargue toda la base de datos. Por ello, se han desarrollado protocolos PIR computa-
cionales, basados en supuestos como la dificultad de factorizar enteros grandes [41], o en el
uso de cifrado homomórfico completo (FHE) [48, 32]. Sin embargo, muchos de estos esquemas
presentan altos costos computacionales o de comunicación, especialmente para bases de datos
grandes. Además, los protocolos criptográficos basados en suposiciones aritméticas clásicas son
vulnerables a ataques cuánticos [57].

En años recientes, también se ha explorado la posibilidad de construir protocolos PIR com-
putacionales usando códigos correctores de errores. Un ejemplo notable es el protocolo presen-
tado por Holzbaur, Hollanti y Wachter-Zeh [37], que es eficiente y de baja complejidad. Sin

8



embargo, este protocolo fue atacado con éxito mediante un ataque lineal de álgebra matricial en
tiempo polinomial [10].

Para superar estas vulnerabilidades, en esta tesis se propone un nuevo protocolo PIR de
servidor único, basado en códigos sobre anillos, diseñado para resistir dichos ataques. La nueva
construcción modifica y fortalece el enfoque anterior mediante el uso de un código cíclico interno
sobre Zm y un código producto de matrices externo sobre R = Zm[x]/⟨xn − 1⟩. Este esquema
proporciona eficiencia computacional y privacidad computacional frente a ataques conocidos
(Ver Capítulo 3 y [9]).

Producto Schur de códigos de evaluación

Más allá del PIR, el producto de Schur entre códigos lineales se ha consolidado como una her-
ramienta poderosa tanto en la teoría clásica de códigos como en la teoría cuántica de cor-
rección de errores [52]. Diversas familias de códigos de evaluación, como los códigos cíclicos,
Reed–Muller, hiperbólicos y tóricos, han sido estudiadas bajo esta perspectiva. Los códigos de
evaluación se construyen evaluando polinomios sobre conjuntos finitos de puntos, y su estructura
algebraica los hace adecuados para aplicaciones en PIR y codificación cuántica.

Esta tesis estudia los códigos monomiales–Cartesianos y sus productos de Schur, con apli-
caciones tanto en PIR como en códigos cuánticos del tipo CSS–T. En particular, se demuestra
que los códigos de variedades J-afines, una clase general de códigos de evaluación, permiten
multiplicaciones eficientes y compatibilidad con subcódigos en subcuerpos. (Ver Capítulo 4 y
[7]). El último apartado de la tesis es relativo a los códigos cartesianos y sus productos de
Schur en aplicación a los protocolos de computación multiparte. En este caso, dado un código
de evaluación, los códigos que provienen de él sobre subcuerpos, su cuadrado de Schur y el dual
del código deben ser tenidos en cuenta. El control de todos esos parámetros para un código
dado puede presentar dificultades de optimización, por lo que se presentan algunas estrategias
para mejorarlos basándose en algunas familias bien conocidas obtenidas a partir de códigos
cartesianos.

Estructura de la tesis

La tesis se organiza de la siguiente manera:

• Capítulo 1 ofrece algunas nociones básicas y referencias sobre teoría de códigos, así como
temas introductorios relacionados con los esquemas PIR y los códigos cuánticos.

• Capítulo 2 se centra en los protocolos PIR con múltiples servidores utilizando códigos
cíclicos binarios. Construimos esquemas PIR con garantías de privacidad mejoradas, se-
leccionando cuidadosamente códigos de almacenamiento y recuperación con parámetros
óptimos o casi óptimos, y comparamos nuestros esquemas con construcciones conocidas
basadas en códigos de Reed–Muller.

• Capítulo 3 presenta nuestro protocolo PIR para un solo servidor, diseñado para resistir
ataques de álgebra lineal. El esquema utiliza códigos sobre anillos y proporciona privacidad
computacional y baja complejidad.
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• Capítulo 4 estudia el producto de Schur de códigos monomiales–cartesianos. Exploramos
aplicaciones tanto a códigos cuánticos CSS–T como a esquemas PIR con múltiples servi-
dores y a protocolos de computación multiparte, incluyendo construcciones con mejores
relaciones tasa–privacidad que los esquemas conocidos.

Resultados y contribuciones

Esquemas PIR usando Códigos Cíclicos, Capítulo 2

Este capítulo aborda la construcción de esquemas de Recuperación de Información Privada (t-
PIR) en sistemas de almacenamiento distribuido con servidores coludidos. Basándose en trabajos
previos que utilizaban códigos de Reed-Muller, exploramos el uso de códigos cíclicos binarios
debido a sus grupos de automorfismos transitivos y a sus propiedades de codificación/decodifi-
cación eficientes.

Contribuciones principales

• Códigos cíclicos para PIR: Se demuestra que los códigos cíclicos pueden emplearse
eficazmente en esquemas PIR, proporcionando un conjunto más amplio de parámetros y
potencialmente superando a las construcciones basadas en Reed-Muller en ciertos escenar-
ios.

• Mayor flexibilidad en los parámetros: Aprovechando la estructura de los códigos
cíclicos, los esquemas propuestos ofrecen mayor libertad en la elección de parámetros, lo
cual puede derivar en mejores tasas de PIR y garantías de privacidad mejoradas.

Protocolos PIR con un único servidor basados en códigos sobre Anillos, Capí-
tulo 3

En esta parte se introduce un nuevo protocolo PIR de servidor único basado en teoría de códigos
sobre anillos, con el objetivo de proporcionar seguridad computacional frente a ataques de
álgebra lineal, una vulnerabilidad conocida en esquemas PIR basados en códigos.

Contribuciones principales

• Uso de códigos sobre anillos: El protocolo emplea dos tipos de códigos sobre distintos
anillos: un código lineal interno no libre que permite distinguir los elementos añadidos a
la matriz de consulta, y un código externo que genera dicha matriz.

• Resistencia a ataques de álgebra lineal: Utilizando módulos no libres sobre anillos, el
esquema mitiga la efectividad de ataques basados en el rango que explotan dependencias
lineales en la estructura de la matriz de consulta.

• Implementación mediante aritmética modular: Las operaciones del protocolo se
limitan a la aritmética modular, lo cual mejora la eficiencia computacional y simplifica la
implementación, especialmente cuando el anillo base es Zm.

10



• Equilibrio entre tasa y seguridad: Aunque el esquema puede presentar una tasa PIR
inferior a la de algunos protocolos existentes, ofrece mejores características de seguridad,
lo que lo convierte en una opción viable cuando la privacidad es prioritaria.

El Producto de Schur de Códigos de Evaluación y su Aplicación a Códigos
Cuánticos CSS-T y Recuperación de Información Privada, Capítulo 4

Aquí se estudia el producto componente a componente (producto de Schur) de códigos monomiales-
Cartesianos, aprovechando su correspondencia con la suma de Minkowski de sus conjuntos de
exponentes definitorios. Se muestra que los códigos de variedad J-afin son adecuados para tales
productos, generalizando resultados anteriores sobre códigos cíclicos, Reed-Muller, hiperbólicos
y toricos.

Contribuciones principales

• Correspondencia entre el producto de Schur y la suma de Minkowski: Se es-
tablece una conexión entre el producto de Schur de códigos de evaluación y la suma de
Minkowski de sus exponentes definitorios, lo que permite una comprensión más profunda
de sus propiedades estructurales.

• Construcción de códigos cuánticos CSS-T: Aprovechando esta correspondencia, los
autores construyen códigos cuánticos CSS-T a partir de códigos de Reed-Muller pondera-
dos y de subcódigos de subcampos binarios de códigos de variedad J-afin, obteniendo así
códigos con mejores parámetros que los conocidos previamente.

• Esquemas PIR para múltiples servidores coludidos: Se presentan construcciones
de esquemas PIR para múltiples servidores coludidos basadas en códigos hiperbólicos y
subcódigos de subcampos de códigos de variedad J-afin, mostrando que superan a los
esquemas existentes en términos de eficiencia y garantías de privacidad.

• Protocolos para computación segura multiparte: Para finalizar, se presentan algu-
nas aproximaciones concretas al diseño de protocolos seguros de computación multiparte
que permiten controlar los parámetros del protocolo de forma efectiva a través del uso de
familias conocidas de códigos cartesianos.
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Chapter 1

Preliminaries

1.1 Coding theory

This section provides an overview of fundamental definitions related to linear codes, which play
a central role in the construction of PIR schemes. The material covered is biased due to our
interest; for a full treatment of linear codes, see, for example [38].

Let q be a prime power. We denote by Fq the finite field with q elements. A linear code C is
a k-dimensional subspace of Fn

q . We will denote G as a generator matrix of code C. A codeword
is a vector in the code space that can be expressed as a linear combination of the rows of G. In
other words, every codeword lies within the row span of G and the code C has qk codewords.
An information set of the linear code C is a set of k coordinates such that the elements in C
restricted to that set are all the elements in Fk

q . More precisely, I ⊆ [n] := {1, . . . , n}, with
|I| = k, is an information set of C if the k × k submatrix of G, whose columns are indexed by
I, is a full rank matrix. If the set I = {1, 2, . . . , k}, representing the first k positions, then G
is said to be in standard form: G = [Idk|Ak×n−k], where Idk is the k × k identity matrix, and
Ak×(n−k) is the parity part of G.

Linear codes play a crucial role in ensuring the correct message is transmitted. By encoding
messages, one can correct the errors when data is sent through a noisy channel. The encoding
of a message m ∈ Fk

q is performed as follows:

Enc : Fk
q → Fn

q ,

m 7→mG = c.

The k symbols in c represent the information symbols, and the remaining n−k symbols represent
the check symbols that enable data recovery even if it has errors.

The Hamming weight of a codeword c ∈ C is the number of entries that are different from
zero, denoted by wH(c). The Hamming distance between two codewords c, c′ ∈ C is the number
of entries at which the corresponding entries are different, and it is given by

dH(c, c′) =| {i : ci ̸= c′i} | .

The Hamming distance between two vectors corresponds to the Hamming weight of their dif-
ference, i.e., wtH(c − c′) = dH(c, c′). The minimum distance of the code C is defined as the
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Chapter 1. Preliminaries

smallest Hamming distance between all distinct codewords in C , denoted as d :

d := min{dH(c, c′) : c ̸= c′}.

We denote the parameters of the code C by [n, k, d]q.
A (n− k)× n matrix H, of which the elements are in Fq, is a parity check matrix of a code

C if it satisfies Hc⊥ = 0 for all c ∈ C. The dual code C⊥ consists of all vectors in Fn
q that are

orthogonal to every codeword in the code C. In other words, a vector d ∈ Fn
q belongs to C⊥ if

and only if it satisfies d · c = 0 for all c ∈ C. Notice that the parity check matrix of code C is a
generator matrix of C⊥.

Definition 1 (Singleton Bound [45]). The Singleton bound indicates that for any [n, k, d] linear
code over Fq, the minimum distance satisfies d ≤ n−k+1. A linear code that meets this bound
with equality, that is, d = n− k + 1, is called a maximum distance separable (MDS) code.

One of the aims of this thesis is to investigate the component-wise product of several code
families and its applications in cryptography and CSS-T codes. The component-wise product,
also known as the Schur product or star product, is defined as follows.

Definition 2. Given two linear codes C and D of length n over Fq, we define their componentwise
product (or Shur product) C⋆D as the linear code in Fn

q spanned by the set {c⋆d | c ∈ C, d ∈ D},
where ⋆ denotes the component-wise product c ⋆ d = (c1d1, . . . , cndn). We will denote C⋆2 =
C ⋆ C.

Definition 3 (Punctured Code). Let C be an [n, k] linear code over Fq. The punctured code of
C at coordinate i denoted C•(i), is obtained by deleting the ith coordinate from all codewords
of C and a generator matrix of C•(i) is formed by removing the ith column from a generator
matrix of C.
More generally, puncturing can be performed on a set of coordinates {i1, . . . , it} with t < n, by
removing the corresponding positions from every codeword in C. The resulting code, denoted
C•(i1, . . . , it), is again a linear code over Fq with parameters [n− t, k•, d•] where k• ≥ k− t and
d• ≥ d− t.

Example 4. Consider a binary [5, 3, 2] linear code C with the generator matrix G given by:

G =

1 0 0 1 0
0 1 0 1 0
0 0 1 0 1

 .

By puncturing the coordinates {1, 2} of the code C, we obtain the punctured code C•(1, 2)
which has parameters [3, 2, 1] and the following generator matrix:

G• =

[
1 0 1
0 1 0

]
.

Definition 5 (Shortened Code). Let C be an [n, k] linear code over Fq and let {i1, . . . , it} ⊆
{1, . . . , n} be a set of coordinate positions. To construct the shortened code of C, we first
consider the set of codewords in C that are zero at all positions indexed by {i1, . . . , it}. Then,
we remove these coordinates from each of the selected codewords.

The resulting code, denoted C•(i1, . . . , it), is called the shortened code of C with respect to
{i1, . . . , it}, and it has length n• = n− t.
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Example 6. Consider again the [5, 3, 2] binary linear code C in Example 4. We now construct
a shortened code C•(1, 2) which has parameters [3, 1, 2] and the following generator matrix:

G• =
[
1 0 1

]
.

Shortened and punctured codes are closely related, as illustrated by the following identity:

Theorem 7. Let C be an [n, k, d] linear code over Fq, and let {i1, . . . , it} ⊆ {1, . . . , n} be a set
of coordinates. Then the following equality holds:

(C⊥)•(i1, . . . , it) = (C•(i1, . . . , it))
⊥ and (C⊥)•(i1, . . . , it) = (C•(i1, . . . , it))

⊥.

Example 8. In light of Theorem 7, if we consider Examples 4 and 6, we observe that

(C⊥)•(1, 2) = (C•(1, 2))
⊥ and (C⊥)•(1, 2) = (C•(1, 2))⊥,

Let C ⊆ Fn
q be a linear code of length n. Let Sn denote the symmetric group on the set

{1, 2, . . . , n}. The group Sn acts on C by permuting the coordinate positions of codewords.
More precisely, for a permutation π ∈ Sn, the action is defined as

π(c) =
(
cπ(1), cπ(2), . . . , cπ(n)

)
.

A permutation π ∈ Sn is said to preserve the code C if π(C) = C, which means that it maps
each codeword to another codeword in C. The set of all such permutations forms a subgroup of
Sn, commonly referred to as the permutation automorphism group of the code, and is denoted
by

Aut(C) = {π ∈ Sn | π(C) = C}.

This group is usually referred to as the automorphism group of the code, since it consists of all
coordinate permutations that preserve the code structure.

Theorem 9 ([38, Theorem 1.6.4]). Let C be a linear code over Fq. Then Aut(C) = Aut(C⊥).

Definition 10. A code C is called transitive if its automorphism group acts transitively on all
of its codewords.

Theorem 11 ([38, Theorem 1.6.6(i)]). Let C be an [n, k, d] linear code over Fq. If the per-
mutation automorphism group Aut(C) is transitive. Then, for any coordinate position i, j ∈
{1, . . . , n}, the punctured code C•(i) is permutation equivalent to the punctured code C•(j).

1.1.1 Reed-Muller Codes

The binary rth order Reed-Muller code, denoted by RM(r,m), is defined as

RM(r,m) = {ev(f) | f ∈ F2[x1, ..., xm], deg(f) ≤ r} , (1.1)

where ev(f) is the evaluation of f at all points in Fm
2 in a given order.

Remark 12. RM(r,m) is a linear code of length n = 2m, dimension k =
∑r

i=0

(
m
i

)
, and

minimum distance 2m−r [45].
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• The code RM(0,m) is a repetition code that is generated by the all-one vector.

• The code RM(m,m) contains all possible binary vectors of length 2m, which means that
it spans the entire space Fn

2 .

• It is well known fact that

RM(r1,m) ⋆ RM(r2,m) = RM(r1 + r2,m),

where r1 + r2 ≤ m.

Definition 13. The shortened code at the position given by the evaluation at the point 0 of a
binary Reed-Muller code is denoted by the linear [2m − 1, k− 1, 2m−r] code C•. The punctured
code at the position evaluating at 0 of a binary Reed-Muller code is denoted by the linear
[2m − 1, k, 2m−r − 1] code C•.

Note that it is easy to check that Reed-Muller codes RM(r,m) ⊆ Fm
q , are transitive codes

for all m and all r ≤ m.

1.1.2 Cyclic Codes

In this section, we will be concerned with basic cyclic code definitions and computing the star
product of two cyclic codes.

Definition 14. A [n, k] linear code C is said to be a cyclic code if for any codeword (c0, c1, . . . , cn−1) ∈
C, its cyclic shift is also codeword in C, that is (cn−1, c0, . . . , cn−2) ∈ C.

Theorem 15 ([42]). A linear code C is a cyclic code if and only if C is isomorphic, as a
Fq-linear spaces, to an ideal in the ring Rn = Fq[x]/⟨xn − 1⟩.

If the ring Rn is a semisimple algebra over Fq, we will require non-repeated roots for the
polynomial xn−1 and hence there will be a 1-1 correspondence between its factors and its roots.
From now on we will require that gcd(n, q) = 1, which ensures semisimplicity.

Definition 16. Let C be a cyclic code in Rn. We call g(x) a generator polynomial of C if
C = ⟨g(x)⟩. Clearly, g(x) must be a divisor of xn − 1 in Fq[x].

Definition 17. A set J ⊆ {0, . . . , n− 1} is said to be the defining set of C = ⟨g(x)⟩ if

J = { j ∈ Z/nZ | g(αj) = 0 }.

A set I is called the generating set of C = ⟨g(x)⟩ if

I = { j ∈ Z/nZ | g(αj) ̸= 0 },

where α is a primitive element of Fq.

Remark 18. Let g(x) be a generator polynomial of cyclic code C then g(x) =
∏

j∈J(x − αj)
and

g(x) =
xn − 1∏

i∈I(x− αi)
.

Furthermore, one has that dim(C) = n− |J | = |I|.
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Remark 19. Assume that J is the defining set of the code C, then the generator polynomial
of C⊥ is h(x) =

∏
i∈−I(x−αi), where −I is the set of additive inverses in Z/nZ of the elements

in I.

Definition 20. The cyclotomic coset containing s, denoted by Us, is defined to be the set

{s, sq, . . . , sqi} (mod n)

where i is the smallest integer such that qi ≡ 1 (mod n).

We have the following result about the star product of cyclic codes.

Theorem 21. Let I1 and I2 be the generating sets of the cyclic codes C and D, respectively.
The star product of C ⋆ D is generated by

gC⋆D =
xn − 1∏

j∈I1+I2
(x− αj)

, (1.2)

where + denotes the Minkowski sum on sets, that is,

I1 + I2 := {i1 + i2 | i1 ∈ I1, i2 ∈ I2}.

Proof. We will follow a similar way to [17, Theorem III.3], which proves this result for C ⋆ C.
It is well known from [6] that a cyclic code can be defined as follows, consider K the extension
field of Fq such that xn − 1 splits in linear factors in K[x]. For a set M ⊆ {1, . . . , n − 1} let
B(M) be the K-vector space

B(M) =

{
(f(α0), f(α1), . . . , f(αn−1)) | f =

∑
i∈M

fix
i ∈ K[x]

}
.

For a cyclic code C with defining set I, as a byproduct of Delsarte’s theorem, one has that C is
equal to the subfield subcode B(−I)|Fn

q
= B(−I) ∩ Fn

q (see [17, Lemma 5]). Now note that the
vector space obtained by the extension of scalars of C, denoted by K⊗C, is a K-cyclic code with
the same dimension as B(−I) (given by |I|) and, henceforth (K ⊗ C) = B(−I). Note that the
extension by scalars commutes with the star product (see [52, Lemma 2.23]) thus it is clear that
C⋆D = (K⊗(C⋆D))|Fn

q
= (K⊗C⋆K⊗D)|Fn

q
= (B(−(I1)) ⋆ B(−(I2))) |Fn

q
= B(−(I1+I2))|Fn

q
.

Proposition 22 (BCH Bound). Let J be a defining set of a cyclic code C with minimum
distance d. If J contains δ − 1 consecutive elements {i, . . . , i + δ − 2} ⊆ J , where i, δ ∈ Z/nZ,
then d ≥ δ.

Example 23. Set q = 2, n = 31. Let IC be a generating set and let JC be a defining set of the
code C. The first cyclotomic cosets (modulo 31) are:

U0 = {0}, U1 = {1, 2, 4, 8, 16}, U3 = {3, 6, 12, 17, 24}, U5 = {5, 9, 10, 18, 20}.

Consider C the cyclic code with defining set JC = U0 ∪ U1 ∪ U3. One has that JC contains
{0, 1, 2, 3, 4}, thus the BCH bound of C is equal to 6. The dimension of C is equal to k = |IC | =
31 − 11 = 20. Therefore, the parameters of this code are [31, 20,≥ 6]. The Minkowski sum of
JC and JC is given by:

JC + JC = U0 ∪ U1 ∪ U3 ∪ U5.

Thus, one can determine that the parameters of C ⋆ C are [31, 15,≥ 8].
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Note that even though a RM code C is not cyclic, C• and C• are cyclic codes [65]. Cyclic
codes are invariant under the action of the n-cycle σ = (1 2 . . . n), it follows that σ ∈ Aut(C),
and therefore the group Aut(C) is transitive. That is, for any i, j ∈ {1, 2, . . . , n}, there exists a
permutation in Aut(C) mapping i to j.

1.1.3 Quasicyclic Codes

A linear code C ⊆ Fn
q of length n = n0ℓ is called quasi-cyclic of the index ℓ if shifting a codeword

by ℓ positions is again a codeword in C. The code C can be represented by generator matrices
formed of ℓ circulant blocks, each of size n0 × n0, where each circulant block is a matrix whose
rows are cyclic shifts of its first row, such that

c0 c1 · · · cn0−1

cn0−1 c0 · · · cn0−2
...

...
. . .

...
c1 c2 · · · c0

 .

Example 24. Consider the following generator matrix of a binary [10, 5] quasi-cyclic code with
ℓ = 2:

G =
[
C1,1 C1,2

]
=


1 0 0 1 1 0 0 1 1 1
1 1 0 0 1 1 0 0 1 1
1 1 1 0 0 1 1 0 0 1
0 1 1 1 0 1 1 1 0 0
0 0 1 1 1 0 1 1 1 0


where C1,1 , C1,2 are circulant matrices. This matrix consists of two circulant submatrices of
size 5× 5.

Note that quasi-cyclic codes can be seen as a generalization of cyclic codes; in particular,
when ℓ = 1, it is a cyclic code.

1.1.4 Matrix Product Codes

Let C1, . . . , Cs ⊂ Fn
q be linear codes of length n and dimension ki, and let M be an s× ℓ matrix

with entries in Fq. The matrix-product code C = [C1, .., Cs]M is defined as the set of all products
[c1, .., cs]M where ci ∈ Ci for i ∈ {1, .., s}. Note that the code C has length nℓ, and if the matrix
M has dimension s, then C has dimension k1 + · · ·+ ks.

For instance, the well-known Plotkin construction for two codes of the same length C1, C2,
(u | u+ v), is given by the matrix

M =

[
1 1
0 1

]
as the matrix product code [C1, C2]M . Consider C1 being a [n, k1, d1] code and C2 an [n, k2, d2]
code. Applying the (u | u + v) construction yields a new code of length 2n, dimension k1k2,
and minimum distance min{2d1, d2}. This construction also provides a recursive method for
building binary Reed–Muller codes.
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1.1.5 Berman Codes

The rth order Berman code, denoted by Bn(r,m), is a binary linear codes of length nm, where
n ≥ 2, m ≥ 1, and 0 ≤ r ≤ m. Each codeword in Bn(r,m) is constructed by concatenating n
vectors from Bn(r − 1,m− 1), such that their coordinate-wise sum belongs to Bn(r,m− 1):

Bn(r,m) =

{
(v0 | v1 | · · · | vn−1) : vℓ ∈ Bn(r − 1,m− 1) for all ℓ,

n−1∑
ℓ=0

vℓ ∈ Bn(r,m− 1)

}
.

When r = m, the code consists of the zero vector in Fnm

2 . The dimension of Bn(r,m) is given
by

dim(Bn(r,m)) =

m∑
w=r+1

(
m

w

)
(n− 1)w,

and its minimum distance is 2r+1. The dual code, denoted DBn(r,m), has dimension

dim(DBn(r,m)) =
r∑

w=0

(
m

w

)
(n− 1)w,

and minimum distance nm−r. The recursive definition of DBn(r,m) is given by

DBn(r,m) = {(u0 + u | u1 + u | · · · | un−2 + u | u) : uℓ ∈ DBn(r − 1,m− 1), u ∈ DBn(r,m− 1)} .

When r = m, the code is the full space Fnm

2 ; when r = 0, it is a repetition code. The au-
tomorphism groups of the Berman code and Dual Berman code are transitive [49]. Note that
Reed-Muller codes are a special case of Berman code when n = 2.

1.1.6 (Affine variety) Monomial Cartesian codes and J-affine variety codes

Let Fq be the finite field with q elements, a power of the prime p. For j = 1, . . . ,m, let
Zj ⊆ Fq, with zj = #Zj ≥ 2. We consider the set Z = Z1 × · · · × Zm ⊆ Fm

q . Consider
now Ej = {0, 1, . . . , zj − 1}, for j = 1, . . . ,m, and E = E1 × · · · × Em ⊆ Fm

q . Note that
n = #Z = #E =

∏m
j=1 zj . For any e = (e1, . . . , em) ∈ E, set Xe = Xe1

1 · · ·Xem
m .

Let I be the ideal of Fq[X1, . . . , Xm] generated by the polynomials Qj(Xj) =
∏

β∈Zj
(Xj−β),

for j = 1, . . . ,m. Note that the field equations Xq
j −Xj ∈ I, for all j = 1, . . . ,m. We consider

the quotient ring R := Fq[X1, . . . , Xm]/I, then any class of polynomials a unique representative
of the form

f(X1, . . . , Xm) =
∑
e∈E

feX
e =

∑
(e1,...,em)∈E

fe1,...,emX
e1
1 · · ·X

em
m ,

with fe1,...,em ∈ Fq. Abusing notation, we will refer to f as a polynomial in R. Let the zero
locus of the ideal I be equal to Z = {P 1, . . . ,P n}, with the points of Z ordered in a specific
way. Consider the linear evaluation map given by

evZ : R −→ Fn
q , evZ(f) = (f(P i))i=1,...,n .

It is well-defined and bijective. For ∆ ⊆ E, the (Affine variety) Monomial Cartesian code
(MCC ) C∆,Z is the image of {f ∈ R | supp(f) ⊆ ∆} under the evaluation map evZ , that is,

C∆,Z := Span{evZ(Xe) | e ∈ ∆} ⊆ Fn
q .

19



Chapter 1. Preliminaries

Since the evaluation map is injective, the dimension of C∆,Z is equal to the cardinality of ∆.
The minimum distance of C∆,Z , d(C∆,Z), can be estimated mainly in two different ways.

The first way is by the foot-print bound [30], which follows from considering a Gröbner basis of
the ideal I [21]:

d(C∆,Z) ≥ δFB(C∆,Z) = min

{
m∏
i=1

(zj − ej) : e ∈ ∆

}
. (1.3)

The second one is considering the multiplicative nature of the minimum distance of monomial
Cartesian codes [58, 43]. Let ∆ ⊆ ∆1 × · · · ×∆m, then

d(C∆,Z) ≥
m∏
i=1

d(Ci), (1.4)

where Ci = C∆i,Zi is a uni-variate evaluation code. Hyperbolic codes [31], and in general
monomial-decreasing Cartesian codes (see definition 32), are optimal for the foot-print bound
[28]. For the multiplicative bound, are optimal codes coming from ∆ sets that are a Cartesian
product (∆ = ∆1 × · · · ×∆m) [44]. We introduce now these families of codes.

Consider s ≥ 0 and let ∆ = {e ∈ {0, . . . , q− 1}m : e1 + · · ·+ em ≤ s} and Z = Fm
q , then the

code C∆,Z is a Reed-Muller code and it is denoted by RMq(s,m). The minimum distance of a
Reed-Muller code is equal to (q − b)qm−1−a, where s = a(q − 1) + b, with 0 ≤ b ≤ q − 1 [29].
Let s, s1, . . . , sm > 0 and ∆ = {e ∈ {0, . . . , q − 1}m : s1e1 + . . .+ smem ≤ s}. Then, the code
C∆,Z is a weighted Reed-Muller, with S = (s1, . . . , sm), and we denote it by WRMq(s,m,S).
If s1 = . . . = sm = 1, then the WRMq(s,m,S) is a Reed-Muller code, RMq(⌊s⌋,m). Finally,
let s ≥ 0 and set ∆ = {e ∈ {0, . . . , q − 1}m : (q − e1) · · · (q − em) ≥ s} and Z = Fm

q , then the
code C∆,Z is known as a hyperbolic code [31]. The foot-print bound is sharp for these families
of codes. Actually, one has that the footprint bound is sharp if and only if all the elements
(β1, . . . , . . . , βm) with 0 ≤ βi ≤ αi belong to ∆, where δFB(C∆,Z) =

∏m
i=1(q − αi) [28], these

codes are known as monomial-decreasing Cartesian codes.
We denote C⋆2 = C ⋆ C. The Minkowski sum of two sets A,B ⊂ Nm is equal to

A+B = {a+ b = (a1 + b1, . . . , am + bm) | a ∈ A, b ∈ B}.

There is a strong connection between the componentwise product of evaluation codes and the
Minkowski sum. Indeed, in one direction one has that evZ(f1)⋆evZ(f2) = evZ(f1f2), if f1f2 ∈ E.
However, on the other side if f1f2 /∈ E, then we have to reduce this polynomial by the ideal
I and this reduction is not explicit, in general. Actually, for e /∈ E, the evaluation evZ(X

e)
is equivalent to evZ(h) where Xe ≡ h mod I and the supp(h) ⊂ E. Nevertheless, we do not
know the supp(h) for the reduced polynomial of Xe modulo I, in general.

However, the product of polynomials can sometimes be explicitly reduced by I, that is,
we may reduce the Mikowski sum of ∆1 + ∆2 in E, as can be found in the literature for the
componentwise product of evaluation codes. For instance, this is the case when Z = (F∗

q)
m,

E = {0, . . . , q − 2}, and the codes are called toric codes [47, 34]. In this later case of codes,
the ideal I is generated by Xq−1

j − 1, for j = 1, . . . ,m. Hence, for e ∈ Nm we have that
evZ(X

e) = evZ(X
e), where e = (e1 mod q − 1, . . . , em mod q − 1) and the reduction modulo

q − 1 is taken in {0, . . . , q − 2}. That is, e ∈ Zm
q−1 = {0, . . . , q − 2}m. Therefore, if we define

A = {a | a ∈ A} ⊆ E, for A ⊂ Nm, then C∆1,(F∗
q)

m ⋆ C∆2,(F∗
q)

m is equal to C∆1+∆2,(F∗
q)

m , where

∆1 +∆2 ⊂ E.
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Another known case is Z = E = Fm
q . For instance, for Reed-Muller and Hyperbolic codes

[28]. Now the reduction is a bit more involved but still explicit. The ideal I is generated by the
field equations Xq

j −Xj , for j = 1, . . . ,m. Hence, for e ∈ Nm we have that evZ(Xe) = evZ(X
e),

where e = (e1 mod q − 1, . . . , em mod q − 1) and the reduction modulo q − 1 is taken in
{1, . . . , q − 1} if ei > 0 and it is not reduced otherwise. For instance, 0 mod q − 1 = 0, q − 1
mod q − 1 = q − 1, and q mod q − 1 = 1. Thus, e ∈ {{0} ∪ Zq−1}m = {{0} ∪ {1, . . . , q − 1}}m.
If we define now A = {a | a ∈ A} ⊆ E, for A ⊂ N. And we have that C∆1,Fm

q
⋆ C∆2,Fm

q
is equal

to C∆1+∆2,Fm
q

, where ∆1 +∆2 ⊂ E.

1.1.7 J-Affine variety codes

In this section, we aim to consider (Affine variety) Monomial Cartesian codes where one can
find an explicit reduction of ∆1+∆2 in E. That is, we extend the previous two cases considered
in the literature [34, 28]. We propose to consider J-affine variety codes, and their subfield
subcodes, that have been successfully used to obtain quantum codes [27, 25], and LCD codes
[26], with excellent parameters. This family of codes considers sets Z with a cyclic structure
that is well posed for considering subfield subcodes, and that, moreover, they can also be useful
for computing their componentwise product. The results concerning the componentwise product
in this section are new.

Let us introduce J-affine variety codes. Fix m integers Nj > 1 such that Nj − 1 divides
q − 1 for j = 1, . . . ,m. Consider a subset J ⊆ {1, . . . ,m} and the ideal IJ in R generated by
the binomials X

Nj

j − Xj when j ̸∈ J and by X
Nj−1
j − 1 otherwise. We have that Zj is the

zero locus of the corresponding binomial, and we have hence defined the set Z. Note that the
j-th coordinate, for j ∈ J , of the points in ZJ is different from zero, and the length is given
by nJ =

∏
j /∈J Nj

∏
j∈J(Nj − 1). Moreover, denote Tj = Nj − 2 when j ∈ J and Tj = Nj − 1

otherwise, then define
EJ = {0, 1, . . . , T1} × · · · × {0, 1, . . . , Tm},

which agrees with the definition of the set E at the beginning of this section. Then, from
this definition of Z (and E) we have a particular class of (Affine variety) Monomial Cartesian
codes known as J-affine variety codes. In particular, for Nj = q, we recover the two previous
situations for J = {1, . . . ,m} (toric case), and J = ∅ (Z = Fm

q case). We will consider a simpler
notation for J-affine codes that ease the reading and strengths the dependence on the set J :
the quotient ring will be denoted by RJ = R, the evaluation map will be denoted by evJ = evZ
and the J-affine variety code given by ∆ ⊂ E is the Fq-vector subspace CJ

∆ of FnJ
q generated

by evJ(X
a), a ∈ ∆. The dual code can be computed using the following result [27].

Proposition 25. Let J ⊆ {1, 2, . . . ,m}, consider a, b ∈ HJ and let Xa and Xb be two mono-
mials representing elements in RJ . Then, evJ(Xa) · evJ(Xb) is different from 0 if, and only if,
the following two conditions are satisfied.

• For every j ∈ J , it holds that aj + bj ≡ 0 mod (Nj − 1), (i.e., aj = Nj − 1 − bj when
aj + bj > 0 or aj = bj = 0).

• For every j /∈ J , it holds that

– either aj + bj > 0 and aj + bj ≡ 0 mod (Nj − 1), (i.e., aj = Nj − 1 − bj if 0 <
aj , bj < Nj − 1 or (aj , bj) ∈ {(0, Nj − 1), (Nj − 1, 0), (Nj − 1, Nj − 1)} otherwise),
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– or aj = bj = 0 and p ̸ | Nj.

If we set E′ := E{1,2,...,m} and pick ∆ ⊆ E∅. Let us define ∆⊥ as

EJ \ {(N1 − 1− a1, N2 − 1− a2, . . . , Nm − 1− am) | a ∈ ∆},

if ∆ ⊆ E′. When ∆ ̸⊆ E′ define ∆⊥ as

EJ \
{
{(N1 − 1− a1, N2 − 1− a2, . . . , Nm − 1− am)|a ∈ ∆ ∩ E′} ∪ {a′|a ∈ ∆,a /∈ E′}

}
,

where we set a′j = Nj − 1− aj if aj ̸= Nj − 1 and a′j equals either Nj − 1 or 0 otherwise.
Next, we state the result about the dual code and self-orthogonality of a J-affine code that

follows from the previous result.

Proposition 26. With notations as above, let ∆ be a subset of EJ . Then
(
CJ
∆

)⊥
= CJ

∆⊥

whenever ∆ ⊆ E′. Otherwise, it holds that
(
CJ
∆

)⊥ ⊆ CJ
∆⊥.

For ∆1,∆2 ⊆ EJ , we will consider their Mikowski sum ∆1 + ∆2 ⊂ Nm and then reduce
it EJ in the following way. For a ∈ Nm we define a = (a1, . . . , am) ∈ EJ , where, if j ∈ J ,
aj = aj mod Nj − 1, that is aj ∈ {0, . . . , Nj − 2} = {0, 1, . . . , Tj} . Otherwise, if j /∈ J , then
aj is equal to 0 if aj = 0, and it is equal to aj mod NJ − 1, where the reduction modulo
Nj − 1 is taken in {1, . . . NJ − 1}, i.e. aj ∈ {0, 1, . . . , Nj − 1} = {0, 1, . . . , Tj}. Furthermore,
evZ(X

a) = evZ(X
a), since we evaluate classes of polynomials modulo the ideal IJ inR generated

by the binomials X
Nj

j − Xj when j ̸∈ J and by X
Nj−1
j − 1 otherwise. Thus, for A ⊂ Nm, we

define A = {a | a ∈ A} ⊂ EJ . Thus, the componentwise product of J-affine variety codes is
given by the following result.

Theorem 27. Let Nj > 1 such that Nj − 1 divides q − 1 for j = 1, . . . ,m and J ⊆ {1, . . . ,m}.
Let ∆1,∆2 ⊆ EJ . Then, the componentwise product of CJ

∆1
and CJ

∆2
is given by

CJ
∆1

⋆ CJ
∆2

= CJ
∆1+∆2

.

Proof. The result follows from the previous disccusion and the fact that evZ(f1) ⋆ evZ(f2) =
evZ(f1f2) and that evZ(f) = evZ(f mod I).

Notice how this extends the computations in [34, 28] (for Nj = q for all j).

1.1.8 Subfield subcodes of J-Affine codes

Given a linear code C of lenght n over Fq and Fq′ ⊆ Fq, the subfield-subcode over Fq′ is S(C) =
C ∩ Fn

q′ , i.e., the set of codewords in C with all the coordinates over the subfield Fq′ .
We are going to consider subfield subcodes of J-Affine codes. A subset I of the Cartesian

product EJ is called a cyclotomic set with respect to p if p · x ∈ I for every element x =
(x1, . . . , xm) ∈ I, where we define p · x = (px1, . . . , pxm). A cyclotomic set I is said to be
minimal (with respect to p) if it consists exactly of all elements expressible as pi · x for some
fixed element x ∈ I and some nonnegative integer i. In the case of one variable, they are usually
called cyclotomic cosets.
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Within each minimal cyclotomic set I, we select a representative element a = (a1, . . . , am)
consisting of nonnegative integers as follows: first, a1 is chosen as the minimum first coordi-
nate among all nonnegative representatives of elements in I; next, a2 is the minimum second
coordinate among those elements having first coordinate equal to a1; and similarly, we define
coordinates a3, . . . , am. We denote by Ia the cyclotomic set with representative a, and by A
the set of representatives of all minimal cyclotomic sets. Thus, the set of minimal cyclotomic
sets is given by {Ia}a∈A. In addition, we denote its cardinality by ia = card(Ia).

The subfield-subcode associated to a given J-affine variety code CJ
∆ over the finite field

Fq′ = Fpr is defined as:
CJ,σ
∆ = S(CJ

∆) = CJ
∆ ∩ FnJ

pr .

Consider now the following maps: tr : Fq → Fp, tr(x) = x+xp+ · · ·+xp
r−1 ; tr : FnJ

q → FnJ
p

given componentwise by tr(x), and T : RJ → RJ defined by T (f) = f + fp + · · ·+ fpr−1 .
The dimension of CJ,σ

∆ is given in [26, Theorem 11]. Note that, when computing the dimen-
sion, only those cyclotomic sets that are complete will contribute, that is, when a cyclotomic
coset Ia ⊆ ∆. The minimum distance of CJ,σ

∆ is lower bounded by the minimum distance of CJ
∆.

Theorem 28. Let ∆ be a subset of HJ and set ξa a primitive element of the field Fpia . Then,
a basis of the vector space CJ,σ

∆ is given by the images under the map evJ of the set of classes
in RJ ⋃

a∈A|Ia⊆∆

{Ta(ξsaXa)|0 ≤ s ≤ ia − 1} ,

and the dimension of CJ,σ
∆ is given by the cardinality of ∆σ := ∪a∈A|Ia⊆∆Ia

Computing the componentwise product of subfield subcodes can be tricky, as the next remark
shows.

Remark 29. Let q = 4, α a primitive element (α3 = 1), and subfield-subcodes over F2. Let C1

and C2 the linear codes generated by (1, α, 0), and (0, α2, 1), respectively. One can easily check
that S(C1) = S(C2) = {(0, 0, 0)}, but S(C1 ⋆ C2) is generated by (1, 1, 1).

However, the componentwise product of the subfield subcodes of J-affine variety codes can
be explicitely computed if we consider their defining set to be a union of complete cyclotomic
cosets.

Lemma 30. Let Nj > 1 such that Nj − 1 divides q − 1, for j = 1, . . . ,m, and J ⊆ {1, . . . ,m}.
Let ∆1,∆2 ⊆ EJ be a union of complete cyclotomic cosets. Then, the componentwise product of
CJ,σ
∆ and CJ,σ

∆2
is given by

S(CJ
∆1

⋆ CJ
∆2

) = CJ,σ
∆1

⋆ CJ,σ
∆2

= CJ,σ

∆1+∆2
.

Proof. By Theorem 27, it follows that S(CJ
∆1

⋆ CJ
∆2

) = S(CJ
∆1+∆2

) = CJ,σ

∆1+∆2
.

On the other hand, under the asumption that ∆1 and ∆2 are complete cyclotomic cosets,
reasoning as before Theorem 27, one hast that S(CJ

∆1
)⋆S(CJ

∆2
) = CJ,σ

∆1
⋆CJ,σ

∆2
is equal to CJ,σ

∆1+∆2
,

and the result holds.
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The next example shows that it is not possible, even though one works with a union of
complete cyclotomic cosets, since the equality S(C1 ⋆ C2)

⊥ = S(C1)
⊥ ⋆ S(C2)

⊥ does not hold,
in general.

Remark 31. Let N1 = 16 and J = {1}. Consider ∆1 = {1, 2, 4, 8} and ∆2 = {0}, both a union
of complete cyclotomic cosets. One has that

∆⊥
1 = {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12}, and ∆⊥

2 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}.

Then the codes CJ
∆1

and CJ
∆2

have length 15 and are defined over F16. We consider subfield
subcodes over F2. Moreover, notice that ∆1 +∆2 = ∆1.

Then, S(CJ
1 ⋆ CJ

2 )
⊥ = S(CJ

1 )
⊥, but S(CJ

∆1
)⊥ ⋆ S(CJ

∆2
)⊥ is equal to S(CJ

∆), with ∆ =

∆⊥
1 +∆⊥

2 = {0, 1, . . . , 14}. Thus we have that

S(CJ
∆1

⋆ CJ
∆2

)⊥ ̸= S(CJ
∆1

)⊥ ⋆ S(CJ
∆2

)⊥.

1.1.9 Transitivity

In [14], a new family of monomial-Cartesian codes, known as decreasing monomial-Cartesian
codes, was introduced. These codes are defined by evaluating monomials in a manner analogous
to the construction of Reed–Solomon and Reed–Muller codes. However, they impose additional
conditions on the functions to be evaluated, specifically in terms of divisibility.

Definition 32 (Decreasing monomial-Cartesian code). A decreasing monomial set is a set of
monomials M ⊆ R such that, if m ∈ M and m′ divides m, then m′ ∈ M. The code C∆,Z

is called a decreasing monomial-Cartesian code if the set of monomials {xa | a ∈ ∆} forms a
decreasing monomial set.

In [14, Theorem 3.9], the minimum distance and dimension of a decreasing monomial-
Cartesian code are computed using a minimal generating set of M. Additionally, in [14, The-
orem 3.3], it is shown that the dual of a decreasing monomial-Cartesian code is equivalent to
another decreasing monomial-Cartesian code. The following lemma shows that a decreasing
monomial-Cartesian code is transitive.

Lemma 33. Let C∆,Z be a decreasing monomial-Cartesian code, where Z is an additive subgroup
of Fn

q . Then C∆,Z is transitive.

Proof. Recall that each coordinate i ∈ {1, . . . , n} can be identified with a point Pi ∈ Z. Without
loss of generality, we assume that a codeword (cP1 , . . . , cPn) is obtained by evaluating a monomial
f(x) = xa (a general codeword is simply a linear combination of such evaluations). Given two
distinct points Pi,Pj ∈ Z, we aim to show that there exists a permutation π : Z → Z such that
π(Pi) = Pj and that the permuted codeword (cπ(P1), . . . , cπ(Pn)) still lies in C∆,Z .

Consider the map π(z) = z−Pi+Pj . Clearly, π(Pi) = Pj , and π defines a permutation on
Z since Z is an additive subgroup. Now, define the polynomial

g(x) =

n∏
s=1

(
xs −Pis +Pjs

)as .
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Since the monomial set defining the code is decreasing, g(x) is a linear combination of monomials
in ∆, as each such monomial divides f(x) = xa. Therefore, the permuted codeword satisfies

(cπ(P1), . . . , cπ(Pn)) = (f ◦ π(P1), . . . , f ◦ π(Pn)) = (g(P1), . . . , g(Pn)) ∈ C∆,Z .

In the context of J-affine codes, being a decreasing monomial-Cartesian code follows from
considering consecutive cyclotomic sets and it is widely used (see, for example, [27, 25]). That
is, ∆ai = Ia0 ∪ Ia1 ∪ · · · ∪ Iai .

Lemma 34. Let CJ
∆ be a J-affine code defined by a union of consecutive cyclotomic sets ∆ =

∆ai = Ia0 ∪ Ia1 ∪ · · · ∪ Iai . Then ∆ is a decreasing monomial set and CJ
∆ is transitive.

Proof. The proof follows similar reasoning to the previous lemma, taking into account that

g(x) =
n∏

s=1

(
xs −Pis +Pjs

)as·qk =
n∏

s=1

(
xs −Pis +Pjs

)as ,

since the exponents are taken modulo the size of the field.

Lemma 35. Let C∆1,Z and C∆2,Z be two transitive monomial-Cartesian codes. Then the com-
ponentwise (or star) product code C∆1,Z ⋆ C∆2,Z is also transitive.

Proof. This follows directly from the fact, noted in Section 1.1.6, that the ⋆-product code cor-
responds to the evaluation code defined by the sum of the monomial sets ∆1 +∆2.

Remark 36. Note that a code and its dual share the same automorphism group, see for ex-
ample [38]. Therefore, if a code is transitive, so it is its dual. This observation, together with
the preceding lemmas, allows us to consider decreasing monomial-Cartesian codes, hyperbolic
codes, and their duals for the construction of PIR schemes in coding theory framework of [23]
that provide the parameters in Theorem 65.

1.2 Private Information Retrieval

A PIR scheme consists of three stages: Data Storage, File Request, and Response Process. For
the multiple-server case, files are uploaded to a distributed storage system (DSS) during the
data storage process. In the File Request, users select the file they want to retrieve, called the
desired file, and based on that, they choose queries that are sent to the servers. In the final
Response Process, servers ‘operate’ the files with the queries generating a matrix of responses
that are sent back to the user. It should be noted that the servers do not have any information
about the file the user requested.
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Figure 1.1: Private Information Retrieval Schemes

1.2.1 Data Storage Process

In the case where files are stored on multiple servers, a distributed storage system (DSS) can
split the data across those servers. In order to upload the files into the servers, files are encoded
by a k-dimensional storage code C ⊆ Fn

q with parameters [n, k, d].
Assume that there are r-files, each file has ρ-rows, k-columns, and the elements of the files

are in Fq. Since the number of files is r, the total file can be understood as rρ × k matrix
represented by A, and each file is denoted by ai, where i ∈ {1, . . . , r}. Concerning encoding,
we multiply the matrix A, which covers all files, by GC the generator matrix of the linear code
C and we obtain the matrix B := A · GC . Since A is a ρr × k matrix, B has ρr rows and n
columns.

Example 37. Assume that there are two files, a1,a2, given by

a1 =

[
a11,1 a11,2
a12,1 a12,2

]
, a2 =

[
a21,1 a21,2
a22,1 a22,2

]
,

where each file consists of ρ = 2 rows and k = 2 columns and A=

[
a1

a2

]
.

Let C ⊆ F3
2 be a storage code with parameters [3, 2, 2]2. The files are then encoded with the

generator matrix G of C, multiplying each row of ai with G. For example

a1
1,· ·G =

[
a11,1 a11,2

] [1 0 1
0 1 1

]
=
[
a11,1 a11,2 a11,3

]
,
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where a11,3 = a11,1 + a11,2 and a1
1,· represents the first row of the first file. Each column of the

encoded file is stored on a different server in the following form:

Server 1 Server Server 3
a11,1 a11,2 a11,1 + a11,2
a12,1 a12,2 a12,1 + a12,2
a21,1 a21,2 a21,1 + a21,2
a22,1 a22,2 a22,1 + a22,2

1.2.2 Request and Response Process

Assume that the user wishes to retrieve the file ad. Then the user chooses a random query
Qi and sends this query to the servers. Each server computes the inner product of Qi

j and
Bj , where j is the server index, i.e, jth-server computes ⟨Qi

j , Bj⟩. Then, the servers send the
response vectors back to the user. This communication process is repeated m times, once for
each iteration γ ∈ [m]. In the final round, all parts of the file are completed. The parts of the
file from several servers are gathered to get the whole file.

Example 38.

Consider that the storage code C is a
repetition code with parameters [3, 1, 3]2.
Three files, a1, a2, a3 ∈ F2 , are stored on
the n = 3 servers. Each file has ρ = 1 rows
and k = 1 columns. Since the storage code
is a repetition code, each server stores the
same information. Assume that the user
wants to obtain the first file, a1. In order
to retrieve the first file, the user generates
query vectors consisting of
q1 = (0, 1, 1), q2 = (1, 1, 0), q3 = (0, 0, 1).
The servers return a response

rj =
3∑

i=1
qj,i·ai for j ∈ {1, 2, 3}, which gives

r1 = a2 + a3, r2 = a1 + a2 and r3 = a3.
The user can recover the desired file, a1,
by adding all responses.

Figure 1.2: Example Private Information
Retrieval Schemes

Let us now define two key concepts: the rate and privacy of a PIR scheme, which measures
the efficiency of the PIR scheme.
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• PIR Rate: During the retrieval process, the user downloads both the symbols needed
to reconstruct the desired file and additional redundant information to preserve privacy.
This provides that the server cannot determine the desired file. Therefore, the PIR rate
is defined as the ratio of the information obtained during the process to the downloaded
information.

• Privacy: In the query generation process, the user selects the query vectors uniformly at
random. A t-PIR scheme guarantees that the identity of the requested file remains hidden
against any set of up to t colluding servers. Even if these servers share the queries they
receive, they cannot determine any information about the file index. More precisely, for
every subset T ⊂ [n] of size t, the scheme ensures that the queries observed by the servers
in T do not reveal any information about the desired file index. Formally, this can be
expressed as

I
(
{qdi : i ∈ T}; d

)
= 0,

where I(· ; ·) denotes the mutual information, which measures the amount of information
one random variable provides about another.

1.3 CSS Construction of Quantum Codes Over Finite Fields

The Calderbank–Shor–Steane (CSS) construction of Quantum Codes from binary linear codes
[12, 61] can be generalized to arbitrary finite fields Fq, where q is a prime power, see [3, 40].
In this section, we give a glance of how quantum stabilizer codes can be obtained from pairs
of classical linear codes over Fq satisfying certain orthogonality conditions with respect to the
Euclidean or Hermitian inner product, for a detailed account see [64, 50, 55]. This general
framework allows the construction of quantum codes over qudits, extending the binary case to
broader settings relevant in quantum information theory. The CSS construction over Fq requires
that C⊥

2 ⊆ C1 with respect to a chosen inner product. Two common choices are:

• The Euclidean inner product, defined as

⟨u,v⟩ =
n∑

i=1

uivi ∈ Fq,

for u,v ∈ Fn
q , typically used when q is a prime or odd power of a prime.

• The Hermitian inner product, for q = p2m, defined as

⟨u,v⟩H =

n∑
i=1

uiv
pm

i ∈ Fq,

commonly used in constructions involving Fq2 .

The construction follows from this result.
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Theorem 39 (Quantum Stabilizer Codes from Classical Linear Codes). Let C1, C2 ⊆ Fn
q be

two linear codes such that C2 ⊆ C1. Given such a pair (C1, C2), there is a CSS code encodes
k = dimC1 − dimC2 qudits into n and can correct all errors affecting fewer than ⌊(d − 1)/2⌋
positions, where

d = min
{
wt(C1 \ C2),wt(C

⊥
2 \ C⊥

1 )
}
.

Let us outline the explicit construction:

1. Choose linear codes C1, C2 ⊆ Fn
q such that C2 ⊆ C1 and C⊥

2 ⊆ C1 with respect to the
chosen inner product (i.e., C1 is self-orthogonal with respect to C⊥

2 ).

2. The stabilizer S of the quantum code is generated by the parity-check matrix of C1 for
X-type operators and the parity-check matrix of C2 for Z-type operators.

3. The logical code space Q is defined as the joint +1 eigenspace of all stabilizer generators.
Basis states of Q are superpositions of coset representatives of C2 in C1, that is, for u ∈ C1:

|u+ C2⟩ :=
1√
|C2|

∑
v∈C2

|u+ v⟩.

This produces a quantum stabilizer code with parameters [[n, k = dimC1 − dimC2, d]]q,
often written as [[n, k, d]]q.

The field size q affects both the choice of classical codes and the resulting quantum code
parameters:

• Over F2, common constructions include Reed-Muller, BCH, and cyclic codes.

• For larger q, one can use generalized Reed–Solomon (GRS) codes, AG codes, or J-affine
variety codes, ensuring the required orthogonality conditions are met.

• If C1 = C and C2 = C⊥, the resulting CSS code is said to be self-dual. In that case, k = 0
and the code is used to detect but not transmit logical information.

Example 40. CSS Codes from Reed–Solomon Codes over Fq

Let C1 = GRSk(α,v), and C2 = GRSk′(α,v) with k′ < k and α,v ∈ Fn
q satisfying orthogo-

nality conditions:
GRSk(α,v)⊥ = GRSn−k(α,v−1 ⋆ g),

for a suitable weight vector g, where ⋆ denotes componentwise multiplication. Then the inclusion
C⊥
2 ⊆ C1 can be verified algebraically, ensuring the CSS conditions.

1.4 Secure Multi-Party Computation

Multi-Party Computation (MPC) is a cryptographic protocol that allows multiple parties to
collaboratively compute a function over their private inputs while ensuring that none of the
participants learns anything about the others’ data except what can be inferred from the output.
The primary goal of MPC is to preserve the privacy of each participant’s input throughout the
computation process while still guaranteeing the correctness of the final result.

The key Stages of MPC are as follows:
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• Input Sharing: Each participant splits their private input into several shares using a
suitable secret sharing scheme, such as Shamir’s Secret Sharing or additive secret sharing.
Then, the shares are distributed among the other participants. This step ensures that no
single party can reconstruct private input of another participant from the shares they
receive.

• Computation Phase: The participants jointly perform computations on the distributed
shares. The computations are structured so that each party only accesses partial informa-
tion, and, ideally, no participant can deduce the original inputs of the others.

• Output Reconstruction: Once the computations are complete, the participants combine
their outputs to reconstruct the final output. This reconstruction is done in such a way
that no private input is revealed to any party beyond what is necessary for obtaining the
correct result.

MPC protocols rely on several cryptographic techniques, among which secret sharing, ho-
momorphic encryption, and oblivious transfer are key components. In particular, secret sharing
methods—especially Shamir’s scheme—are fundamental and have strong ties to algebraic cod-
ing theory. This branch of mathematics offers tools for encoding and decoding data with error
correction, which is directly relevant for building robust and secure computations.

Polynomial-based secret sharing, inspired by Reed–Solomon codes, is widely used; these
codes work by evaluating polynomials over finite fields, as explained in [22] and other related
works. Within MPC, such techniques allow the secure distribution of a secret among several
participants, ensuring that the secret can only be reconstructed when a minimum number of
shares are combined. This threshold mechanism resembles how certain error-correcting codes
can recover lost or corrupted data.

More recently, developments like packed and replicated secret sharing have emerged, drawing
on ideas from multidimensional coding theory to improve efficiency. Additionally, verifiable
secret sharing has become important in MPC scenarios where participants need guarantees
about the correctness of their shares. This enhancement is particularly desirable, especially in
adversarial settings, as discussed in [18] and the references therein.
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Private Information Retrieval Schemes for
Several Servers Based on Cyclic Codes

In this chapter, we propose using cyclic codes to construct PIR schemes in the same fashion as
[23]. Cyclic codes have a transitive automorphism group and can also be defined over binary
(or small) finite fields. Moreover, the star product of two cyclic codes is a cyclic code whose
parameters can be computed [17]. Namely, the star product of two cyclic codes is determined
by the sum of their generating sets. We can compute its dimension and estimate its minimum
distance by considering cyclotomic cosets.

We aim to optimize the number of servers that can collude without disclosing information
about the identity of the data retrieved to the server. In order to show the advantages of cyclic
codes for PIR schemes, we first provide pairs of cyclic codes C and D, the storage code and
retrieval code, such that the parameters of C, D, D⊥, C ⋆ D and (C ⋆ D)⊥ are -at the same
time- optimal or the best known. As we will recall in Section 2.1, their parameters determine
the performance of the PIR scheme defined by C and D. Since a punctured RM code is a cyclic
code, we may obtain PIR schemes using punctured RM codes by using cyclic codes. Moreover,
we show that we obtain a larger constellation of possible parameters of binary PIR schemes by
using cyclic codes. The construction of PIR schemes and the computations of their parameters
follow from a detailed analysis of cyclotomic cosets. Next, we focus on the privacy and the rate
of a PIR scheme since the upload cost in a PIR scheme can be neglected [4]. More concretely, in
the case that the storage code C has dimension 2, we obtain binary PIR schemes that greatly
outperform the ones obtained using RM codes; more concretely, they protect against a more
significant number of colluding servers. Finally, we compare our schemes with shortened RM
codes and show that, in this case, the PIR schemes using cyclic codes outperform them as well,
namely, they offer more privacy for a fixed rate.

2.1 The Scheme

Let C ⊆ Fn
q be a k-dimensional linear code with generator matrix G that we will call the storage

code, and D ⊆ Fn
q be another linear code that we will call retrieval code. The database in the

server consists of r files, where each file is considered as a matrix ai ∈ Fρ×k
q . The elements

in the database are encoded by the linear code C, i.e., bi = aiG, where i ∈ {1, · · · , r}. The
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encoded data is distributed among the n servers. Each column of the encoded file bi is stored
in a different server, that is, entry biℓ,j is stored on the jth server where ℓ ∈ {1, · · · , ρ}. Given
a matrix A, we write Ai,· to denote the ith row with all columns and write A·,j to denote jth

column with all rows.
To retrieve file ad, the user constructs the queries qi = wi + ui ∈ Fρ×n

q for i ∈ {1, · · · , r},
as follows.

• The rows of the matrix wi are chosen uniformly at random from codewords at the retrieval
code D,

• Let d be the index of the file that the user wants to access. The matrix ui ∈ Fρ×n
q is all

zero matrix if i ̸= d, and ud is a matrix whose rows are not in the retrieval code D and
has dC⋆D − 1 non-zero entries, where dC⋆D is the minimum distance of the Schur product
of C and D. Each of these entries is used to recover one symbol from the desired file, and
they are distributed in separate columns for different file parts, so no column is used more
than once. Thus,

ui =

{
ud if i = d,

0 otherwise.

To fully recover the desired file ad, the query generalization process is repeated m times.
In each iteration γ ∈ {1, . . . ,m}, the user selects a new set of dC⋆D−1 columns, which are
not used in previous rounds. For each selected coordinate j ∈ {1, . . . , n}, the user assigns
it to a row index ρj ∈ {1, . . . , ρ} such that:

– j ∈ Iρj , where Iρj is an information set of C used to decode row ρj , and

– the pair (j, ρj) has not been used before.

The process above allows us to construct a query matrix Q is given by

Q =


q1

q2

...
qr

 =



w1 + u1

w2 + u2

...
wd + ud

...
wr + ur


, qi =

 qi1,1 qi1,2 . . . qi1,n
...

...
. . .

...
qiρ,1 qiρ,2 . . . qiρ,n

 , (2.1)

where each qi is a matrix in Fρ×n
q .

In the communication part of the scheme, each server j ∈ {1, . . . , n}, receives from the user
the j-th column of Q, denoted qi·,j , for all i, and computes the answers

rj =
r∑

i=1

⟨qi·,j , bi·,j⟩ =
ρ∑

ℓ=1

r∑
i=1

wi
ℓ,j · biℓ,j +

ρ∑
ℓ=1

udℓ,j · bdℓ,j ,

where ⟨, ⟩ denotes the inner product, and send it back to the user.
Let r = (r1, r2, . . . , rn) ∈ Fn

q denote the vector of responses received by the user from the
servers for each iteration γ ∈ {1, . . . ,m}. One can see the response vector r as an element in
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C ⋆D+C ⋆u. Therefore, the user can extract the desired file from r by applying the projection
given by

proj : Fn
q −→ Fdim(C⋆D)⊥

q

r 7−→ r ·H⊤
C⋆D,

where HC⋆D is a parity check matrix of C⋆D. Since the support of u is chosen, the corresponding
positions of the desired file can be recovered. After running this process m times, the user is
able to fully recover the desired file.

In each iteration, only dC⋆D − 1 coordinates are accessed. The set of coordinates queried
in each round is disjoint from those used in previous rounds, so there is no repeated access to
the same information. To guarantee decodability, the symbols retrieved in each iteration lie in
information sets of the storage code C. The following lemma ensures the number of required
disjoint information sets.

Lemma 41 ([23, Lemma 1]). Let C be a linear code with parameters [n, k, d]. Then C contains
at least ⌈ dk⌉ disjoint information sets.

Therefore, the rate of the scheme is (dC⋆D − 1)/n. The privacy of the scheme is based on
the fact that all rows of the matrix wi are chosen uniformly at random from the retrieval code
D. If t = dD⊥ − 1, then the requested file cannot be determined if t servers communicate with
each other. As a result, we have the following theorem, as stated in [23].

Theorem 42 ( [23, Theorem 2]). Let C ⊆ Fn be an [n, k, d] linear storage code and let D ⊆ Fn

be any linear code. Then there exists a private information retrieval scheme with a PIR rate
dC⋆D−1

n , which resists a dD⊥ − 1 collusion attack.

So far, we have explained a general PIR scheme from [23, Theorem 2], where the construction
is based on information sets and carefully selected support positions for the error matrix.

As discussed earlier, this approach guarantees correctness if the code has enough disjoint
information sets. However, choosing such support sets becomes problematic. To address this,
the following theorem also proposes an alternative method based on the automorphism group
of the code.

Theorem 43 ( [23, Theorem 4]). If the automorphism groups of C and C ⋆D are transitive on
the set {1, . . . , n}, then there exists a PIR scheme with rate dim(C⋆D)⊥

n that resists a (dD⊥ − 1)–
collusion attack. That is, the privacy is t = dD⊥ − 1.

According to Theorem 43, instead of selecting new information sets in each iteration, the
scheme constructs them by applying automorphisms to a single information set of size dim(C ⋆
D)⊥. It is the key idea for an improved scheme presented in [23]. The automorphism group
ensures that the query positions are distributed uniformly across servers while satisfying the
decoding requirements since the code is transitive. It also gives a better PIR rate. Theorem 43
is the key to finding the number of colluding servers and the system’s PIR rate.

2.2 PIR Schemes from Cyclic Codes

Now, we focus on cyclic codes towards obtaining PIR schemes over small fields and compute
the code parameters with cyclotomic cosets, as described in Section 1. First, we will analyze
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the codes obtained from computer search, their cyclotomic cosets, PIR rates, and the number
of colluding servers.

The formulation of the number of colluding servers and the PIR rate is given in Theorem 43.
This theorem is valid for PIR schemes arising from cyclic codes since the automorphism group
of a cyclic code is also transitive (see Section 1). Table 2.1 gives some cyclic codes, the rate
of the corresponding PIR scheme arising from them, and the maximum number of servers that
may collude, that is, the privacy parameter t.

C D D⊥ C ∗D (C ∗D)⊥ Privacy Rate
[127, 8, 63] [127, 29, 43] [127, 98, 10] [127, 113, 5] [127, 14, 56] 9 14/127

[127, 8, 63] [127, 42, 32] [127, 85, 13] [127, 112, 6] [127, 15, 55] 12 15/127

[127, 15, 55] [127, 15, 55] [127, 112, 6] [127, 106, 7] [127, 21, 48] 5 21/127

[127, 15, 55] [127, 21, 48] [127, 106, 7] [127, 112, 6] [127, 15, 55] 6 15/127

[127, 21, 48] [127, 21, 48] [127, 106, 7] [127, 112, 6] [127, 15, 55] 6 15/127

Table 2.1: Computer search experiments

For instance, the first row in Table 2.1 considers C as a storage code with parameters
[127, 8, 63] and D as a retrieval code with parameters [127, 29, 43]. Applying Theorem 43, we
can conclude that this scheme is secure against 9-colluding servers since d(D⊥) = 10 and that
the PIR’s rate is dim(C⋆D)⊥

n = 14
127 .

We have obtained the codes in Table 2.1 by computer search, their generating set can be
found in Table 2.2. For instance, Consider the codes in the first row, the generating set of the
code C consists of the union of the cyclotomic cosets U1 and U31, and the one of D consists of
U0, U5, U23, U27, U31. As mentioned before, the generating set of star products of cyclic codes
are given by the Minkowski sum of their generating sets. Hence, the generating set of C ⋆ D
consists of all cyclotomic cosets except U13 and U47.

From now on, for sake of brevity, we will denote as U{s1,...,st} the union of the t cyclotomic
cosets given by U{s1,...,st}=

⋃t
j=1 Usi .

C D

U{0,31} U{0,5,23,27,31}
U{0,11} U{1,3,11,23,43,55}
U{0,5,43} U{0,23,43}
U{0,23,63} U{19,31,55}
U{1,10,29} U{7,31,55}

Table 2.2: Cyclotomic cosets used for codes in Table 2.1.

Table 2.3 classifies the codes in Table 2.1 according to the best-known linear codes in the
database [33], which gives lower and upper bounds on the parameters of linear codes. As it is
shown in the following table, their parameters are the best known or optimal.
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C D D⊥ C ⋆ D (C ⋆ D)⊥

optimal best− known best− known optimal optimal

optimal best− known best− known optimal best− known

best− known best− known optimal best− known best− known

best− known best− known best− known optimal best− known

best− known best− known best− known optimal best− known

Table 2.3: Classification of codes in Table 2.1

2.2.1 Comparison with Punctured and Shortened RM Codes

We will show now why cyclic codes may provide better performance than RM codes. Since punc-
tured and shortened RM codes, denoted as C• and C•, are cyclic codes as discussed in Section
1.1.2, we will compare the PIR rate and privacy given by a cyclic code with the corresponding
punctured and shortened RM codes.

First, let us focus on the comparison with punctured RM codes. For length 127 and 255,
we fixed as storage code a [127, 8, 63], [255, 9, 172] cyclic code and collected the star product
of some codes in Table 2.4 and Table 2.6, respectively. We remark that in Table 2.4 the BCH
bound of the retrieval codes (D) equal to their minimum distance.

C D D⊥ C ∗D (C ∗D)⊥ Privacy Rate
[127, 8, 63] [127, 8, 63] [127, 119, 4] [127, 29, 31] [127, 98, 7] 3 98/127

[127,8,63] [127,22,47] [127,105,8] [127,64,15] [127,63,16] 7 63/127
[127, 8, 63] [127, 29, 31] [127, 98, 8] [127, 64, 15] [127, 63, 16] 7 63/127

[127,8,63] [127,50,27] [127,77,16] [127,99,7] [127,28,32] 15 28/127
[127,8,63] [127,57,23] [127,70,16] [127,99,7] [127,28,32] 15 28/127
[127, 8, 63] [127, 64, 15] [127, 63, 16] [127, 99, 7] [127, 28, 32] 15 28/127

[127,8,63] [127,85,13] [127,42,32] [127,120,3] [127,7,64] 31 7/127
[127,8,63] [127,92,11] [127,35,32] [127,120,3] [127,7,64] 31 7/127
[127, 8, 63] [127, 99, 7] [127, 28, 32] [127, 120, 3] [127, 7, 64] 31 7/127

Table 2.4: Comparison with punctured RM codes (Shadow rows)
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C D

U{0,1} U{0,1}
U{0,1,5,9}
U{0,1,5,9,3}
U{0,1,5,9,3,11,19,21}
U{0,1,5,9,3,11,19,21,7}
U{0,1,5,9,3,11,19,21,7,13}
U{0,1,5,9,3,11,19,21,7,13,23,27,43}
U{0,1,5,9,3,11,19,21,7,13,23,27,43,29}
U{0,1,5,9,3,11,19,21,7,13,23,27,29,43,15}

Table 2.5: Cyclotomic cosets used for codes in Table 2.4.

C D D⊥ C ∗D (C ∗D)⊥

P
ri

va
cy

R
at

e

[255, 9, 127] [255, 9, 127] [255, 246, 4] [255, 37, 63] [255, 218, 8] 3 218
255

[255,9,127] [255,25,≥ 63] [255,230,≥ 8] [255,93] [255,162] ≥ 7 162
255

[255,9,127] [255,33,≥ 63] [255,222,≥ 8] [255,93] [255,162] ≥ 7 162
255

[255, 9, 127] [255, 37, 63] [255, 218, 8] [255, 93, 31] [255, 162, 16] 7 162
255

[255,9,127] [255,77,≥ 31] [255,178,≥ 16] [255,161] [255,94] ≥ 15 94
255

[255,9,127] [255,85,≥ 31] [255,170,≥ 16] [255,163] [255,92] ≥ 15 92
255

[255, 9, 127] [255, 93, 31] [255, 162, 16] [255, 163, 15] [255, 92, 32] 15 92
255

[255,9,127] [255,133,≥ 15] [255,122,≥ 32] [255,219] [255,36] ≥ 31 36
255

[255,9,127] [255,141,≥ 15] [255,114,≥ 32] [255,219] [25536] ≥ 31 36
255

[255,9,127] [255,149,≥ 15] [255,106,≥ 32] [255,219] [255,36] ≥ 31 36
255

[255,9,127] [255,153,≥ 15] [255,102,≥ 32] [255,219] [25536] ≥ 31 36
255

[255,9,127] [255,161,≥ 15] [255,94,≥ 32] [255,219] [255,36] ≥ 31 36
255

[255, 9, 127] [255, 163, 15] [255, 92, 32] [255, 219, 7] [255, 36, 64] 31 36
255

[255,9,127] [255,211,≥ 7] [255,44,≥ 64] [255,247] [255,8] ≥ 63 8
255

[255, 9, 127] [255, 219, 7] [255, 36, 64] [255, 247, 3] [255, 8, 128] 63 8
255

Table 2.6: Comparison with punctured RM codes (Shadow rows)

Unbold rows in Table 2.4 and Table 2.6 display the parameters of those codes obtained by
the star product of two cyclic codes, equivalent to the punctured RM codes. Bold rows are
obtained by the star product of a cyclic code and the fixed code C. Consequently, when the
rate and the storage codes are fixed, cyclic codes provide the same parameters as punctured RM
ones except D with parameters [255, 77, 31] which gives a better rate than RM codes. However,
for a fixed-length n, the dimension of RM codes overgrow, thus for a fixed C ⋆D, there are not
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C D

U{0,1} U{0,1}
U{0,1,3,5}
U{0,1,3,5,9}
U{0,1,3,5,9,17}
U{0,1,3,5,9,17,7,11,13,19,25}
U{0,1,3,5,9,17,7,11,13,19,21,25}
U{0,1,3,5,9,17,7,11,13,19,21,25,37}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,53}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,45,53}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,45,51,53}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,43,45,51,53}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,43,45,51,53,85}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,43,45,51,53,85,31,47,55,59,61,87}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,43,45,51,53,85,31,47,55,59,61,87,91}

Table 2.7: Cyclotomic cosets used for codes in Table 2.6.

many values that the dimensions of the code C and D may take. Hence, the first advantage of
using cyclic codes in the PIR scheme is to easily provide a larger constellation of parameters.

As an illustration of this fact, in the fourth and fifth rows of Table 2.4, the dimension of D
can be 50 or 57 other than 64, or the dimension of D can be 85 or 92, different than 99. Thus,
we have different options for the same rate and privacy. The following remark will show the
method we used for obtaining the codes in Table 2.4 and Table 2.6.

Remark 44. The r-th order punctured generalized RM code is the cyclic code length n = qm−1
with generator polynomial

g(x) :=
∏
i∈I

(x− αi), where I = {i : wq(i) ≤ (q − 1)c}, (2.2)

for some c ∈ Z+ and wq(i) is the number of non-zeros in the q-ary expression of i. Now using
Equation (2.2), we have created the unbolded row in Table 2.4 and Table 2.6. Namely, if we
add or remove some cyclotomic classes to the punctured RM code’s generating sets, we can get
another cyclic code, which provides the same rate and privacy. While making these additions
and removals of cosets, we use Remark 19 to decide the heuristics of which cyclotomic cosets
we select. Note that the minimum distance of the code D⊥ provides the privacy of the scheme,
so we wish d(D⊥)− 1 being as big as possible. For this purpose, we set −I to be a large set of
consecutive elements.

For instance, the third row in Table 2.4, the generating set of C is comprised of U0 and U1,
and D is comprised of U0, U1, U3, U5, U9. The generating set of code D in the second row
consists of U0, U1, U5, U9 by removing U3. We have removed U3, because U3 does not change
the BCH bound of the code. Moreover, in the fourth row in Table 2.6, the generating set of D
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is comprised of U0, U1, U17, U9, U5, U3. Removing U17 is not affecting the BCH bound of the
code and, thus we obtain the parameter in the third row.

We also achieved a second advantage, more privacy, by reducing the dimension of the storage
code C, which is not equivalent to punctured Reed-Muller codes. We remark that the upload
cost in the PIR scheme can be neglected [4], thus we focus on the value d(D⊥) − 1, which
provides privacy, and on dim(C ⋆ D)⊥/n, which gives the PIR rate. Therefore, we can reduce
the dimension of the code C.

Example 45. Consider the punctured RM codes CRM and DRM with parameters [63, 7, 31] and
[63, 42, 7], respectively. One has that the product code CRM ⋆ DRM has parameters [63, 57, 3].
The PIR scheme given using CRM and DRM protects against dD⊥−1 = 15 collusions. Consider
now the cyclic code C with parameters [63, 2, 42], where the generating set of C is equal to
U21, and the cyclic code D with parameters [63, 51, 3]. One has that C ⋆ D = CRM ⋆ DRM . In
this case dD⊥ − 1 = 19. Therefore, our cyclic code proposal protects against a more significant
number of colluding servers for the same rate.

Remark 46. Note that for length 63, there are two good cyclic codes in terms of the PIR
parameters, one has dimension 2 (see Example 45) and the second one, D with parameters
[63, 40, 7], provides the same rate and privacy of a RM code. In the case of length 31, there
are no binary cyclic codes that improve the rate or privacy of a RM code other than the ones
equivalent to them. This is why we consider binary cyclic codes of length greater than or equal
to 127.

C D D⊥ (C ⋆ D)⊥ Privacy Rate
[255, 2, 170] [255, 192] [255, 63,20+45] [255,19] 64 19/255

[255, 2, 170] [255, 195] [255, 60,15+51] [255,8] 65 8/255

[255, 2, 170] [255, 198] [255, 57,15+53] [255,8] 67 8/255

[255, 2, 170] [255, 200] [255, 55,29+41] [255,11] 69 11/255

[255, 2, 170] [255, 201] [255, 54,40+32] [255,9] 71 9/255

[255, 2, 170] [255, 202] [255, 53,28+44] [255,8] 71 8/255

[255, 2, 170] [255, 204] [255, 51,14+60] [255,11] 73 11/255

Table 2.8: Reducing the dimension of the storage

Table 4.8 contains more examples where, by using cyclic codes, the dimension of the storage
code has been reduced. In this table, the minimum distance of D⊥, which is related to the
privacy, was first evaluated by the BCH bound and then its real value was computed using the
powerful minimum distance algorithm in [35] (for instance, by 20 + 15 we mean that the BCH
bound is equal to 20 and the real minimum distance is equal to 35). The table displays the
privacy (number of colluding servers) and rate of the PIR scheme obtained using a code C with
length 255 and dimension 2. Note that the PIR scheme obtained using the Punctured RM codes
CRM and D⊥

RM with parameters [255, 9, 127] and [255, 36, 64], respectively, protects against a
maximum of 63 colluding servers. Moreover, the PIR rate of this scheme is equal to 8/255. In
Table 2.8, the code pairs in all rows protect against more than 63 collusions. The cyclotomic
cosets used for constructing the codes in Table 2.8 are given in Table 2.9.

38



Chapter 2. PIR Schemes for Several Servers

C D

U85 V \ (U{0,1,11,13,17,21,25,61,85,87})

V \ (U{1,13,25,27,29,31,45,119})

V \ (U{0,1,7,13,25,31,39,45})

V \ (U{0,1,13,17,25,29,31,63,85})

V \ (U{39,55,61,63,85,87,119,127})

V \ (U{0,1,9,13,25,31,111,119})

V \ (U{0,1,11,13,29,47,85,111})

Table 2.9: Cyclotomic cosets used for codes in Table 2.8, where V is the set of all cyclotomic
cosets for q = 2, modulo n = 255.

In Table 2.10, shortened RM codes at the evaluation of 0 and cyclic codes with length 127
are analyzed. Again, we specify bold rows for star product of cyclic codes and unbold rows for
star product of shortened RM codes. The storage code C with parameters [127, 7, 64], equivalent
to a shortened RM, is fixed. The only difference with respect to Table 2.4 is that we do not
include the cyclotomic coset U0 in the generating set of C.

C D D⊥ C ∗D (C ∗D)⊥

P
ri

va
cy

R
at

e

[127, 7, 64] [127, 7, 64] [127, 120, 3] [127, 28, 32] [127, 99, 7] 2 99
127

[127,7,64] [127,22,47] [127,105,8] [127,63,16] [127,64,15] 7 64
127

[127, 7, 64] [127, 28, 32] [127, 99, 7] [127, 63, 16] [127, 64, 15] 6 64
127

[127,7,64] [127,50,23] [127,77,16] [127,98,8] [127,29,31] 15 29
127

[127,7,64] [127,57,23] [127,70,16] [127,98,8] [127,29,31] 15 29
127

[127, 7, 64] [127, 63, 16] [127, 64, 15] [127, 98, 8] [127, 29, 31] 14 29
127

[127,7,64] [127,85,13] [127,42,32] [127,119,4] [127,8,63] 31 8
127

[127,7,64] [127,92,11] [127,35,32] [127,119,4] [127,8,63] 31 8
127

[127, 7, 64] [127, 98, 8] [127, 29, 31] [127, 119, 4] [127, 8, 63] 30 8
127

Table 2.10: Comparison with shortened RM codes (Shadow rows)

One has that the PIR schemes using cyclic codes protect against one more colluding server
than shortened RM codes, as it can be seen at Table 2.10. Moreover, in this way we may increase
the constellation of possible parameters. For instance, for a case rate equal to 29/127, the PIR
scheme coming from a cyclic code protects against 15-collusion, but the one from a shortened
RM code protects against 14-collusion. The cyclotomic cosets used for constructing the codes
in Table 2.10 are given in Table 2.11.
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C D

U{1} U{1}
U{0,1,5,9}
U{1,5,9,3}
U{0,1,5,9,3,11,19,21}
U{0,1,5,9,3,11,19,21,7}
U{1,5,9,3,11,19,21,7,13}
U{0,1,5,9,3,11,19,21,7,13,23,27,43}
U{0,1,5,9,3,11,19,21,7,13,23,27,43,29}
U{1,5,9,3,11,19,21,7,13,23,27,29,43,15}

Table 2.11: Cyclotomic cosets used for codes in Table 2.10.
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Chapter 3

Private Information Retrieval Schemes for
Single-Server Systems Based on Codes over

Rings

This chapter provides a single server PIR protocol based on coding theory over rings which
is resistant to the attack in [10] based on detecting a rank difference in the query matrix by
deleting rows. Our protocol can be understood as a modification of the protocol in [37] and it
will be based on codes over finite rings. We take advantage of the fact that some of the involved
codes are non-free as ring modules, which makes linear algebra attacks non-feasible. Non-free
codes are linear codes that cannot be generated by a basis consisting of linearly independent
codewords. In other words, for a non-free code, its codewords cannot be expressed uniquely as
linear combinations of a set of basis codewords. This lack of a basis with linearly independent
codewords complicates the encoding and decoding procedures compared to free codes (free codes
is the case for codes over fields). However, the lack of a simple basis representation will be an
advantage for us since simple linear algebra can not be used to describe them without some side
information. For further information on these codes, we refer to [5] and the references therein.

We will require two finite rings R ⊂ R, such that R can be seen as a R-submodule. We will
define in R an R-linear code called inner code and we will also establish a R-linear code as the
outer code. All the transmitted information and the computations needed will be made with R
as the alphabet whereas the information of the codes will be used in the query generation and
response processing, both by the user.

We propose to consider R = Zm, the set of integers modulo a composite number m, and

R = Zm[x]/⟨xn − 1⟩,

with gcd(n,m) = 1. As inner code, we will use a Zm-cyclic code that can be seen as a Chinese
remainder construction of its prime components (depending on the prime factorization of m)
and the outer code will be a matrix-product code with constituents in R that turns out to be
a quasi-cyclic code when it is seen as a code over Zm. Note that the condition gcd(n,m) = 1
is usually known as the semisimplicity condition and it ensures that the factorization of xn − 1
in Zm does not have multiple roots and that we can control the factorization just in terms of
the cyclotomic cosets. In the language of coding theory, this means that there is a one-to-one
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correspondence between a given cyclic code and its defining set as the disjoint union of several
cyclotomic cosets.

3.1 Basic Single Server PIR Scheme

Before detailing the protocols in 3.1.1 and introducing our proposed protocol, we first give the
following basic code base single server PIR scheme, which is illustrated in 3.1 and explained in
[1].

The server has t files denoted as dbi ∈ Fq. For i ∈ {1, . . . , t}. Let ai ∈ Fk
q be randomly chosen

vectors, encoded by the generator matrix, G, of the code C, such that Enc(ai) = aiG = wi.
Suppose the user aims to retrieve the file d. The user selects random vectors ui ∈ Fn

q that
are zero in the positions corresponding to the information set I of the code C. To retrieve the
desired file, the user selects a column position j ∈ {1, · · · , n} \ I such that uij = 0 for all i ̸= d,
this means that the uij has a nonzero entry only in the row corresponding to the desired file.
The queries are then formed as qi = wi +ui. The query matrix Q consists of rows qi given by:

Q =


q1

...
qd

...
qt

 =


w1
1 · · · w1

j · · · w1
n

...
wd
1 · · · wd

j + udj · · · wd
n

...
wt
1 · · · wt

j · · · wt
n

 .

The user sends Q to the server. After receiving the query, the server computes

r =
t∑

i=1

dbiqi

and returns the response r to the user. To extract the desired file, the user first focuses on the
response values at the positions of the information set. Since the error vector ui is zero in these
positions, the response restricted to I can be expressed as:

rI =

(
t∑

i=1

dbi · ai
)

I

·GI

where GI is the submatrix of the generator matrix G, consisting of the columns indexed by I.
The user multiply rI by G−1

I and get:

rIG
−1
I =

(
t∑

i=1

dbi · ai
)

I

.

Re-encoding this using the generator matrix G, we obtain:

(rIG
−1
I )G =

t∑
i=1

dbi ·wi.
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Subtract this term from the original response:

r− rIG
−1
I G =

t∑
i=1

dbi · ui.

Since ui is a zero vector except at the selected column position j corresponding to the desired
file, the remaining terms reduce to dbd · udj . Therefore, the user can successfully recover the
desired file dbd.

Server User

db1, db2, . . . , dbt Query Generation
Choose random vector ai ∈ Fk

q ,
Q←− Compute qi = Enc(ai) + ui,

Response
Compute r =

∑t
i=1 q

i · dbi r−→ Decoding & File Retrieval
Calculate: r− rIG

−1
I G

Table 3.1: Single-Server PIR Process

The rows of matrix W correspond to wi, while the rows of matrix U correspond to ui in
Figure 3.1.

W + U

j

d

Figure 3.1: Query matrix in the protocol 3.1. White places means entries equal to 0.

The query matrix is constructed as Q = W +U, the column span satisfies:

columnspan(Q) = columnspan(W +U).

An adversary can analyze the column span of Q and identify differences among the columns,
particularly by detecting a unit vector, (0, 0, . . . , 1, 0, . . . , 0)⊤, within the column space. This
occurs because only udj ̸= 0 while all other uij = 0 for i ̸= d . Therefore, the adversary can
determine the index of the requested file in polynomial time, and the scheme does not ensure
privacy.
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3.1.1 HHWZ PIR Protocol

In the single server HHWZ PIR protocol [37], the setup is the following. There are t files stored
on the server, mi for i ∈ {1, . . . , t}. For simplicity, we consider here that the files are a vector
of length L with entries in Fq.

Let s > 0 be an integer and let {b1,b2, . . . ,bs} be a basis of Fqs as a vector space over Fq.
Let us consider V = ⟨b1, . . . ,bv⟩Fq and V c = ⟨bv+1, . . . ,bs⟩Fq , two linear subspaces. The user
selects a random [n, k]qs code C ⊆ Fn

qs , and let W be a matrix of size t×n over Fqs whose rows
are selected uniformly at random from codewords in C. For an information set I, of the code
C, the user selects a matrix E of size t × n and entries in the subspace V , such that a column
in E is the all-zero vector if its index is in I. Finally, the user chooses a t× n matrix U whose
elements Ui,j are in V c and Ui,j is a non-zero element when i points to the desired file and
j ∈ I; and the entries Ui,j are zero elsewhere. The query matrix is given by Q = W + E+U,
which the user sends to the server. The server computes r =

∑t
i=1mi · qi where qi represents

rows of the query matrix and then sends the response r to the user.
Based on the previous fixed information set I, the user can eliminate the codewords of C

from the response matrix:
r− rIG

−1
I G =

∑
j∈I

mi · ij ,

where ij is the j-th coordinate vector in Fn
qs . Consider the projection over the subspace V given

by

proj : Fqs −→ Fqs

s∑
i=1

xi · bi 7−→
v∑

i=1

xi · bi.

Then, the desired file can be recovered by applying the projection of Fqs over V c for the jth

coordinate.

proj(
t∑

i=1

mi · eji ) = md · edj ,

where ed is the dth row of the matrix E. As the user knows edj , the desired file can be recovered.
It was shown in [10] an attack based on removing a row from the query matrix and checking

whether the resulting matrix has a lower rank than the original matrix. In this way, the server
may determine the desired file with a high probability. Our protocol avoids this attack.

3.1.2 Single Server PIR protocol Over Rings

In this section, we describe our PIR protocol. We will consider two rings R ⊂ R such that R
is an R-module, and two ring-linear codes, namely a code over R that will play a similar role
as the code C in HHWZ PIR protocol and a R-code in R as an R-submodule. We will call the
code over R the outer code and the R-subcode of R the inner code.

From now on we will fix the following notation: a vector (respectively a matrix) with entries
in R will be denoted with round brackets, ( ). Note that, since R is an R-submodule if we fix an
R-generating set of R any element r ∈ R can be expressed as a row vector in Rn, where n is the
number of generators of R as R-module, we will denote that expansion with square brackets,
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[ ]. In the same fashion, this can be done componentwise to vectors and matrices with entries
in R and we will also use square brackets for that row-wise expansion of the entries of matrices
and vectors.

More concretely, throughout this chapter, we will fix the ring R, i.e. the alphabet for the
query generation process, to be R = R[x]/⟨xn − 1⟩. The alphabet for the projection will be
R = Zm, the set of integers modulo m for a fixed m ∈ Z. Moreover, we will take CIN to be an
ideal in R, that is, a Zm cyclic code of length n. As usual, one can describe cyclic codes in R
using the Chinese remainder theorem (CRT), that is, if m = Πℓ

i=1p
ei
i is the prime decomposition

of m, then

Φ :
Zm[x]

⟨xn − 1⟩
−→

ℓ⊕
i=1

Zp
ei
i
[x]

⟨xn − 1⟩
n−1∑
j=0

cjx
j 7−→ (

n−1∑
j=0

cj(modpe11 )xj , . . . ,

n−1∑
j=0

cj(modpeℓℓ )xj),

is a module isomorphism. Moreover, if we let C1, C2, . . . , Cs be cyclic codes in Zp
ei
i
[x]/⟨xn− 1⟩,

for i ∈ {1, . . . , s}, then the set CRT(C1, . . . , Cs) = {Φ−1(v1, v2, . . . , vs) | vi ∈ Ci} is a Zm-cyclic
code of length n. That is, it corresponds to an ideal in R = Zm[x]/⟨xn−1⟩. From [5, Remark 2],
we have that CRT(C1, . . . , Cs) is a non-free Zm-module if and only if there is at least a pair
i, j ∈ {1, 2, . . . , s}, with i ̸= j, such that rankpeii

(Ci) ̸= rank
p
ej
j
(Cj), where rankpeii

denotes the
rank as Zp

ei
i

-module.
The inner code in our system CIN will be a non-free cyclic code over Zm of length n that will

be used for encoding. Besides the code being non-free there is a matrix that can play the role of
a parity check matrix (see [51]) that can be used as a distinguisher of whether an element in R
is in CIN or in R\CIN. In the case that CIN is an LCD code there is a projection in the alphabet
as in the HHWZ PIR protocol [37]. Therefore, in our example, CIN will then be a non-free LCD,
that type codes has been characterized in [5].

As an outer code COUT, we will consider a linear code of length s over R. Note that, since R
is chosen to be a cyclic ambient space, the set [COUT] = {[v] | (v) ∈ COUT} is a quasi-cyclic code
over Zm of length ns. A linear code C of length ns over the ring R is said to be a quasi-cyclic
code of index s if it is invariant under the cyclic shift of codewords by s positions and s is the
smallest number with this property. We will define the outer code through its expansion, [COUT]
over Zm, using a matrix-product code.

Let C̃1, C̃2, . . . , C̃s ⊂ R, where C̃i is a cyclic code over Zm for i ∈ {1, . . . , s}. Let [COUT]
be the matrix-product code [COUT] = [C̃1, C̃2, . . . , C̃s]M , where M is an s × s matrix over Zm.
Hence, the outer code COUT is a R submodule in Rs that is a s-generator quasi-cyclic code. We
will denote by GOUT the generator matrix over R.

For technical reasons in the recovery stage and the security analysis, we will require that our
codes fulfill the following technical conditions:

• The constituent codes are nested: C̃1 ⊇ C̃2 ⊇ · · · ⊇ C̃s.

• For i ∈ {1, . . . , s}, C̃i ∩ CIN ̸= {0}, and C̃i ∩ (C⊥
IN \ CIN) ̸= {0}.

• ei > 1, for all i = 1, . . . , ℓ.
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• The projections of the codes C̃1, C̃2, . . . , C̃s over Zp
ei
i

are non-Hensel lifts (see Remark 52
for a definition), for i = 1, . . . , ℓ.

Remark 47. Note that other possibilities for inner and outer codes may be chosen. That is,
CIN ⊂ R, and COUT being a code with alphabet R, can be achieved in many other situations.
For example, the broader class of codes over affine algebras with a finite commutative chain
coefficient ring in [46], that includes uni-(multivariate) codes (cyclic, negacyclic, constacyclic,
polycyclic, abelian . . . ), quasi-cyclic, quasi-abelian, and many other can be used in this protocol.

3.1.2.1 Data Storage Process

We assume that the data alphabet in the server is Zm′ ⊂ Zm where m′ = Πℓ
i=1pi. The server

will contain t files stored as an L× r matrix of elements in Zm′ denoted as DBi = [Di
jℓ] where

i ∈ {1, . . . , t}, j ∈ {1, . . . , L}, ℓ ∈ {1, . . . , r} and all files are stored concatenated in the matrix
DB = [DB1 ∥DB2 ∥ · · · ∥DBt], where the number of columns r of each file is lower than or
equal to s, the number of generators of COUT, i.e. r ≤ s. Throughout the chapter, DBd will
denote the desired file that the user wants to retrieve.

DB1 DB2 DB3 · · · · · · DBt

{ r { r

{

L

3.1.2.2 Query Generation

First, the user sets up the codes. The inner code CIN ⊂ R = Zm[x]/⟨xn−1⟩ is a cyclic Zm-linear
code of length n. The user also chooses COUT as an s-generator quasi-cyclic code in Rs arising
from a matrix product code [C̃1, C̃2, . . . , C̃s]M , such that C̃1, C̃2, . . . , C̃s ⊂ R, where each C̃i is a
cyclic code over Zm for i ∈ {1, . . . , s} with the technical conditions stated above (see Algorithm
1 ) We will denote by GOUT a generator matrix of COUT as an R-linear code.

The query generation begins with the user randomly selecting s · t · r elements aikj in the
m′R. The user arranges these elements as t matrices ai of size r× s, where the rows consists of
s-uples in Rs

ai =


ai11 ai12 . . . ai1s
ai21 ai22 . . . ai2s
...

...
...

air1 air2 . . . airs

 ,

where i ∈ {1, . . . , t}, k ∈ {1, . . . , r}, and j ∈ {1, . . . , s}. Then the user encodes ai as

wi = ai ·GOUT,

i.e. the rows in wi are codewords of COUT. Note that, in this encoding, all the multiplications
are carried out in the ring R.

Now the user selects t matrices ei of size r × s, for i ∈ {1, . . . , t}, where each entry eikj ∈
nf(CIN), for each i ∈ {1, . . . , t}, k ∈ {1, . . . , r} and j ∈ {1, . . . , s}, where nf(C) denotes the non-
free part of the code C. Moreover, the user randomly selects a column position γ ∈ {1, .., s−r+1}
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and constructs t matrices ui of size r × s, for i ∈ {1, . . . , t}, with all zero entries but

ud1+λ,γ+λ ∈ nf(C̃s ∩ (C⊥
IN \ CIN)), for all λ = 0, . . . , r − 1. (3.1)

We recall that d is the index of the file the user wants to retrieve from the server. Thus, ui has
zeros in all positions except in those entries belonging to the desired file. Let δi = (wi + ei + ui),
for i ∈ {1, . . . , t}, and ∆ and A the matrices with entries in m′R with r · t rows given by

∆ =



δ1

δ2

...
δd

...
δt


=



w1 + e1 + u1

w2 + e2 + u2

...
wd + ed + ud

...
wt + et + ut


=



w1 + e1

w2 + e2

...
wd + ed + ud

...
wt + et


, A =



a1

a2

...
ad

...
at


. (3.2)

The user generates the query matrix Q with entries in Zm by expanding in the ring Zm the
concatenation (A ∥∆), that is Q = [A ∥∆]. For a fixed i ∈ {1, . . . , t}, we will denote by [qi],
the submatrix of the query matrix whose rows are given by the rows (i − 1)r + 1, . . . , ir in Q,
that is [qi] = [ai ∥ δi]. This procedure has been summarized in Algorithm 2.

3.1.2.3 Response

Note that in the database, for a fixed i ∈ {1, . . . , t}, the ith file, is an r × L matrix with entries
in Zm that we denote by DBi. Then the response is just the matrix multiplication over Zm

given by
R = DB ·Q, where DB = [DB1 ∥DB2 ∥ · · · ∥DBt]. (3.3)

Note that, since Zm ⊂ R, the response matrix R that the server computes is just the Zm

expansion of the matrix
t∑

i=1

DBi · [ai ∥ δi] =
t∑

i=1

[DBi · ai ∥DBi · [wi + ei + ui]] = [R1 ∥R2], (3.4)

which is a matrix with entries in R, but the server does not know such decomposition since the
ring R is kept secret.

3.1.2.4 Recovering Stage

We will use a recovering method that resembles the technique used in [37] but without infor-
mation sets. The user can get the matrix (R1 ∥ R2) in Equation (3.4) from the matrix R in
Equation (3.3) since the user knows the ring R and henceforth n. Thus, the user can compute

R2−(R1 ·GOUT) =
t∑

i=1

(DBi ·wi+DBi ·(ei+ui)−DBi ·wi) =
t∑

i=1

(DBi ·ei)+(DBi ·ui). (3.5)

Let us denote by Γs(C) = [C, . . . , C]Ids the matrix product code of a cyclic code C ⊂ R, where
Ids is the s × s the identity matrix and let us denote by HΓr(C⊥

IN) a parity check matrix of the
code Γ(CIN) over Zm.
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Then the user computes

[R2 − (R1 ·GOUT)]H
⊤
Γr(C⊥

IN)
=

t∑
i=1

[DBi · ei +DBi · ui]H⊤
Γr(C⊥

IN)

=
t∑

i=1

[DBi · eiH⊤
Γr(C⊥

IN)
]︸ ︷︷ ︸

= 0 since eikj∈CIN

+ [DBi · uiH⊤
Γr(C⊥

IN)
]︸ ︷︷ ︸

= 0, when t̸=d

= [DBd · udH⊤
Γr(C⊥

IN)
] = M.

Note that the inner code provides us with a projection-like map in R (see Section 3.1.1). Now,
in order to retrieve the desired file the user must solve the following system of equations in Zm.

M =

m1

. . .
mr

 =

D
d
11 · · · Dd

1r
...

...
Dd

L1 · · · Dd
Lr

 ·

ud1,γH

⊤
IN

ud2,γ+1H
⊤
IN

. . .
udr,γ+r−1H

⊤
IN

 (3.6)

We have that this system of equations over Zm can be seen as several systems of linear
equations, each one can be expressed as

mi =

D
d
1i
...

Dd
Li

udi,γH⊤
IN, for i ∈ {1, · · · , r}.

Note that mi is a codeword in the code udi,γ(C
⊥
IN), hence, once we fix a generator matrix for the

code C⊥
IN given by HIN, there is a unique expression for mi in terms of the rows of the matrix

udi,γHIN since the database elements are in Zm′ , which is the desired solution of the system. For
constructing the matrix HIN we use the standard-like generator matrix for codes over that type
of rings [51] to build it via the inverse of the CRT. The recovering stage above has been outlined
as pseudocode in Algorithm 3

Remark 48 ( The finite field case). Note that, if we consider CIN as a Fq-code in Fq[x]/⟨f(x)⟩,
with f a primitive polynomial (i.e. an Fq subspace of Fdeg(f)

q ), and COUT as a code with alphabet
Fqs = Fq[x]/⟨f(x)⟩, both codes operate within finite fields. However, the arithmetic ceases to
be modular if q is not a prime. Note that this is nothing else than choosing the generators of
CIN as the basis of V in HHWZ PIR protocol in Section 3.1.1. All the processes will follow as
above and this will provide a PIR protocol with a database whose elements belong to the field
Fq. In this case, the query matrix will be larger than the one in HHWZ PIR protocol but it
will not be safe against the rank difference attack in [10] as we will show in Section 3.1.2.5.3.
The primary distinction between the two protocols lies in the utilization of a generating set A,
which eliminates the necessity for information sets. Consequently, the information contained in
u can be distributed across the entire query matrix Q, as shown in Figure 3.2.
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Figure 3.2: Query matrix in the original HHWZ PIR protocol vs. the modified one. White
places means entries equal to 0

Example 49 (Toy example). For simplicity we will take m′ = m = 3·5, thus R = Z15. Note that
the value m does not fulfill the technical conditions for security and that we are considering that
m′ = m, which is not allowed in our protocol. The aim is to illustrate the protocol with a toy
example and simple computations. Consider the 3-file in database DB = [DB1,DB2,DB3] =
[1, 2, 1] ∈ Z3

15, and DB1 is the desired file, i.e. d = 1.

• Setup. Let C1 be a cyclic code in Z3[x]/⟨x13−1⟩ and C2 be a cyclic code in Z5[x]/⟨x13−1⟩
with generator polynomial g1(x) = x7 + x5 + x4 + 2x3 + 2x2 + 2 and g2(x) = x9 + 2x8 +
4x7 + 3x5 + 2x4 + x2 + 3x+ 4, respectively. One can check that CIN = CRT (C1, C2) is a
cyclic code in R = Z15[x]/⟨x13 − 1⟩ with generator polynomial gIN = 6x9 + 12x8 + 4x7 +
13x5 + 7x4 + 5x3 + 2x2 + 3x+ 14.

Let C̃1 be a cyclic code in R with generator polynomial g̃1 = 10x7+5x5+6x4+x3+14x2+
x+ 11 and let C̃2 be a cyclic code with generator polynomial g̃2 = 10x7 + 11x5 + 13x3 +
2x2 + 10x + 14. We have that C̃2 ⊆ C̃1. Finally, we select the 2-generator quasi-cyclic
code COUT = [C̃1, C̃2] ( 1 1

0 1 ) with generator matrix over R given by

GOUT =

(
10x7 + 5x5 + 6x4 + x3 + 14x2 + x+ 11, 10x7 + 5x5 + 6x4 + x3 + 14x2 + x+ 11

0 10x7 + 11x5 + 13x3 + 2x2 + 10x+ 14

)
.

• Query generation. Now, consider random polynomials that provide the user the entries
of A in R = Z15[x]/⟨x13 − 1⟩, the elements ei1j(x) ∈ CIN for i ∈ {1, 2, 3}, j ∈ {1, 2}, and
u111(x) in C̃2 ∩ (C⊥

IN \ CIN) given by
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a111(x) = 5x12 + 11x11 + 10x10 + 13x9 + 7x8 + x7 + 3x6 + 14x5 + 14x4 + 7x2+
6x+ 4

a112(x) = 8x12 + 8x11 + 12x10 + 13x9 + 11x8 + 11x7 + 6x6 + x5 + 2x4 + 6x3+
5x2 + 9x+ 3

a211(x) = 5x12 + 13x11 + 4x9 + 2x8 + 14x7 + 12x6 + 10x5 + 6x3 + 5x2 + 12x
a212(x) = 10x12 + 4x11 + 4x9 + 14x8 + 8x7 + 6x5 + 7x4 + 12x3 + 11x2 + 6x+ 9
a311(x) = 5x12 + 3x11 + 4x10 + 10x9 + 4x8 + 9x7 + 14x6 + 12x5 + 8x4 + 9x3+

6x2 + 6x
a312(x) = 9x12 + 14x11 + x10 + 4x9 + x8 + 13x7 + 8x6 + 3x5 + 13x4 + 11x3+

2x2 + 14x+ 10

e111(x) = 11x12 + 9x11 + 14x10 + x9 + 14x8 + 12x7 + 12x6 + 6x5 + 12x4 + 11x3+
7x2 + 2x+ 9

e112(x) = 6x12 + 14x11 + 10x10 + 13x9 + 3x8 + 7x7 + 5x6 + 3x5 + 2x4 + 2x3+
10x2 + 6x+ 9

e211(x) = 7x12 + 6x11 + 9x10 + 4x9 + 13x8 + 3x7 + 10x6 + 2x5 + 2x4 + 11x3+
x2 + 9x+ 13

e212(x) = 5x12 + 3x11 + 13x10 + 4x9 + 9x8 + 6x7 + 12x6 + 13x5 + 14x4 + 6x3+
6x2 + 12x+ 2

e311(x) = 6x12 + 14x11 + 4x10 + 2x9 + x8 + x7 + 7x6 + 14x5 + 14x4 + 11x3+
13x2 + 5x+ 13

e312(x) = 10x12 + 5x11 + 6x10 + 3x9 + 11x8 + 9x7 + 13x6 + 12x4 + x3 + 14x2+
7x+ 14

u111(x) = 13x12 + 14x11 + x10 + 3x9 + 2x8 + 2x7 + 7x6 + 7x5 + 13x4 + 6x3+
4x2 + 3x

Then the user can compute ∆ given by

δ111(x) = 10x12 + 9x11 + 10x10 + 5x9 + 9x8 + 13x7 + 9x6 + 9x5 + 12x4 + 12x3+
11x2 + 6x+ 5

δ112(x) = 13x12 + 7x11 + 14x10 + 13x9 + 6x8 + 3x7 + 5x6 + 13x5 + 7x4 + x3+
12x2 + 11x

δ211(x) = 6x12 + 6x11 + 12x10 + 8x9 + 2x8 + 10x7 + 13x6 + 13x5 + 10x4 + 10x3+
6x2 + 9x+ 9

δ212(x) = 9x12 + 4x11 + 14x10 + 2x9 + 4x8 + 4x7 + 6x6 + 4x5 + x3+
3x2 + 7x+ 11

δ311(x) = 4x12 + 9x11 + 12x10 + 8x9 + 10x8 + 14x7 + 5x6 + 7x5 + 11x4 + 3x2+
8x+ 14

δ312(x) = 6x12 + 10x11 + 7x10 + 8x9 + 11x7 + 11x6 + 13x5 + 11x4 + 6x3 + 5x+ 2

and the query matrix Q is the result of expanding in Z15 the entries in (A ∥∆)
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

4, 6, 7, 0, 14, 14, 3, 1, 7, 13, 10, 11, 5, 3, 9, 5, 6, 2, 1, 6, 11, 11, 13, 12, 8, 8, 5, 6, 11, 12, 12, 9,
9, 13, 9, 5, 10, 9, 10, 0, 11, 12, 1, 7, 13, 5, 3, 6, 13, 14, 7, 13

0, 12, 5, 6, 0, 10, 12, 14, 2, 4, 0, 13, 5, 9, 6, 11, 12, 7, 6, 0, 8, 14, 4, 0, 4, 10, 9, 9, 6, 10, 10, 13,
13, 10, 2, 8, 12, 6, 6, 11, 7, 3, 1, 0, 4, 6, 4, 4, 2, 14, 4, 9

0, 6, 6, 9, 8, 12, 14, 9, 4, 10, 4, 3, 5, 10, 14, 2, 11, 13, 3, 8, 13, 1, 4, 1, 14, 9, 14, 8, 3, 0, 11, 7,
5, 14, 10, 8, 12, 9, 4, 2, 5, 0, 6, 11, 13, 11, 11, 0, 8, 7, 10, 6

 .

• Server response. The server computes R = DB ·Q, which is equal to[
4, 6, 8, 6, 7, 1, 11, 8, 0, 1, 14, 10, 5, 1, 5, 14, 11, 14, 1, 14, 10, 10, 10, 13, 0, 7, 7,

2, 11, 2, 13, 12, 10, 2, 8, 14, 1, 0, 11, 9, 0, 3, 9, 3, 4, 13, 7, 14, 10, 4, 10, 7

]
.

• Recovering stage. Once received R, the user can extract the submatrices R1 = (r11,1, r
1
1,2)

and R2 = (r21,1, r
2
1,2) with elements in R = Z15[x]/⟨x13−1⟩ given by the following elements

R1 r11,1 = 5x12 + 10x11 + 14x10 + x9 + 8x7 + 11x6 + x5 + 7x4 + 6x3 + 8x2 + 6x+ 4

r11,2 = 7x12 + 13x10 + 10x9 + 10x8 + 10x7 + 14x6 + x5 + 14x4 + 11x3 + 14x2 + 5x+ 1

R2 r21,1 = 11x12 + x10 + 14x9 + 8x8 + 2x7 + 10x6 + 12x5 + 13x4 + 2x3 + 11x2 + 2x+ 7

r21,2 = 7x12 + 10x11 + 4x10 + 10x9 + 14x8 + 7x7 + 13x6 + 4x5 + 3x4 + 9x3 + 3x2 + 9

and compute R2 − (R1 ·GOUT), which is a 1× 2 matrix whose elements are

14x12 + 4x11 + 7x10 + 14x9 + 13x8 + 6x7 + x6 + x5 + 13x4 + 5x3 + 11x2 + 13x+ 3
11x12 + 10x11 + 12x10 + 9x9 + 2x8 + 13x7 + 12x6 + 14x5 + 12x4 + 6x2 + 7x+ 12

The user has selected δ = 1 as a column position and the files have one column, hence the
user does not need the second position. Thus, the user multiplies each entry of the matrix
(written as a vector in Z13

15) by H⊤
IN, the parity check matrix of the code CIN, given by

H⊤
IN =



1 0 0 0 0 0 0 1 0 2 11 2 0
0 1 0 0 0 0 0 0 1 0 2 11 2
0 0 1 0 0 0 0 1 0 0 2 4 2
0 0 0 1 0 0 0 1 1 14 2 4 10
0 0 0 0 1 0 0 2 1 8 0 6 13
0 0 0 0 0 1 0 2 2 5 0 4 6
0 0 0 0 0 0 1 0 2 11 2 0 1
0 0 0 0 0 0 0 3 0 3 9 6 6
0 0 0 0 0 0 0 0 3 9 0 9 3



T

.

Therefore, the user computes

[3, 13, 11, 5, 13, 1, 1, 6, 13, 14, 7, 4, 14] ·H⊤
IN = [2, 7, 0, 0, 11, 14, 14, 6, 3]
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Since the user knows DB1 ·U · H⊤
IN and U · H⊤

IN, the user can solve the two systems of
equations, originally over Z15, that arise when solving the system of equations (DB1 ·
U ·H⊤

IN) = x · (U ·H⊤
IN) over Z3 and Z5, respectively. Then the user lifts both solutions

to a single solution in Z15 via the Chinese remainder theorem, obtaining the desired file
x = DB1 = 1.

3.1.2.5 Analysis

The hardness of a brute force attack will rely on the capacity of the server to guess the inner
code, thus it depends on the knowledge of n as well, which is not a public parameter, and on
the fact that there is a big enough number of possible cyclotomic cosets that define different
cyclic codes in R = Zm[x]/⟨xn − 1⟩. The protocol we propose can resist the rank difference
attack known for single-server PIR protocols based on codes whereas our rate information is
worse than the one in [37]. To enhance security against the rank difference attack, we somewhat
compromise the rate in the PIR protocol. Furthermore, as stated before, all the computations
will be made as modular operations (modulo m) and therefore they are less computationally
intense than other protocols that require large field extensions. Moreover, the server only has
to perform a modular multiplication of matrices.

3.1.2.5.1 PIR Rate

We recall that the database is an L× tr matrix whose elements are in Zm′ . The entries of the
query matrix are elements in the polynomial ring R, but they are sent to the server as elements
in R since R is an algebra over R, therefore the size of the matrix Q is tr×2ns and its elements
are in Zm, thus the upload cost is

H(Q) = 2 · t · r · n · s log(m).

On the other hand, the desired file has L rows and r columns. Therefore, the size of the
desired file is Lr log(m′). The server computes the matrix product of the database and the query
matrix, and hence the download cost is

H(R) = 2 · L · n · s log(m).

The PIR rate is the ratio of the desired file size over the sum of the download and upload costs,
in the protocol we propose is given by

Lr log(m′)

2 · t · r · n · s log(m) + 2 · L · n · s log(m)
=

L · r
t · r + L

(
log(m′)

2 · n · s log(m)

)
. (3.7)

As usual, we assume that the size of the files is much larger than the number of files, L ≫ tr,
hence the PIR rate of the protocol is approximately equal to

PIR rate ≈ r

2 · n · s
· log(m

′)

log(m)
. (3.8)

Remark 50. A recent proposal [63] presented a modification of single-server PIR scheme in
[37]. Although their rate outperforms ours, they execute multiplications in large finite fields. In
contrast, our protocol employs simpler computations using modular arithmetic, which satisfies
lower computational complexity compared to protocols requiring a large field extension.
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m n s r k Rate S

36 91 5 4 377 1
455 ≥ (228)6

36 91 5 5 377 1
364 ≥ (228)6

36 91 6 6 435 1
364 ≥ (228)7

36 91 10 10 607 1
364 ≥ (228)11

216 91 5 5 377 1
546 ≥ (228)6

Table 3.2: Rate and work factor based on parameter selection. The column labeled ’Rate’ shows
rates corresponding to the respective parameters, while in the ’S’ column, the inverse probability
is displayed as the work factor.

3.1.2.5.2 Computational cost

The cost is dominated by the multiplication of matrices DB and Q, both of them with entries
in the ring R = Zm, that is, the product is performed with modular arithmetic. In the HHWZ
PIR protocol [37], they perform that multiplication in large finite fields as degree-s polynomials
(where s is the degree of the extension of the chosen field over the base field). Thus, their
multiplication complexity can be expressed as log(q) · s log(q). That is, they consider this
multiplication as the product over Fq

√
s in [37]. If we fix the number of rows L and the number

of files, there are δn of such field multiplications. In our protocol, the usual multiplication in
Zm is performed 2rns times. When δ in [37] equals our defined value r, which corresponds to
the number of columns in the files, and the code length is the same, we perform 2s times more
multiplications than [37]. However, the multiplications in our protocol are simpler since we use
modular arithmetic and [37] uses field arithmetic.

During the data recovery process, the procedures employed involve solving linear systems
of equations and utilizing the Chinese remainder theorem (CRT). Thus, the complexity of the
required operations to recover the desired file is the complexity of solving linear equations and
performing CRT.
3.1.2.5.3 Security Analysis

The subspace attack in [37, Section V.A] could be also applied as a submodule attack in our case,
but it has at least the same complexity as in [37], thus if we chose the same security parameter
on the size of the module, such attack is still unfeasible. In [10], the authors showed that the
HHWZ PIR protocol is not private, since the server can recover in polynomial time the index of
the desired file with high probability. The central concept of the attack is that by eliminating
rows from the query matrix that correspond to the desired file, it yields a large decrease in the
dimension over the vector space spanned by the rows of this punctured matrix. The dimension
loss only shows a low (almost negligible) probability when the rows unrelated to the requested
file are deleted. Thus, the attack method relies on comparing the ranks of the query matrix
after deleting different rows. Therefore, it is essential to construct the query matrix in such a
way that deleting a row does not reveal information about the desired data. We will show that
this is the case in our protocol.

Theorem 51. Let COUT be a linear code in Rs, and CIN ⊆ R an R-linear code. Let ∆ be chosen
as in Section 3.1.2 and ∆ = W + E +U the decomposition in Equation (3.2). Then we have
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that
rowspan([∆]) ⊆ COUT + Γs(CIN), (3.9)

where rowspan is taken in R and Γs(CIN) = [CIN, . . . , CIN]Ids.

Proof. Let [W], [E] and [U] be the matrices over R containing the expansion of each element in
R to a tuple in R of the matrices W, E and U in Equation (3.2). Note that the entries of [E]
are random elements in CIN. From our technical conditions, we have that C̃j∩(C⊥

IN\CIN) ̸= {0},
for j ∈ {1, . . . , s}, and the entries of [U] are elements in C̃s∩(C⊥

IN \CIN). Hence, the components
of ∆ = W +E+U fulfill

rowspan([W]) ⊆ COUT,

rowspan([E]) ⊆ Γs(CIN),

rowspan([U]) ⊆ COUT ∩ Γs(C
⊥
IN).

Thus we have

rowspan([∆]) = rowspan([W +E+U]) ⊆ COUT + Γs(CIN).

Remark 52 (Choosing the base ring and the projection codes). Let Q be the query matrix
in our protocol, note that it is a matrix with entries in Zm. If we know the factorization of
m = Πℓ

i=1p
ei
i , we can consider the matrices Qp

ei
i

, for i = 1, . . . , ℓ, given by reducing each entry
of Q modulo Zp

ei
i

. For i = 1, . . . , ℓ, we can consider Qp
ei
i

as a generator matrix of a code over
Zp

ei
i

and Q can be considered as a generator matrix of a code over Zm which is the CRT code
of the previous projection components. Suppose that one can apply linear algebra techniques
in at least one of the projection codes, that is, there is a projection i0 ∈ {1, . . . , ℓ} such that
Q

p
ei0
i0

= [A
p
ei0
i0

| ∆
p
ei0
i0

] generates a free code over Z
p
ei0
i0

. In this case, the attack in [10] can be

applied successfully. That is, in that case, the positions given by A
p
ei0
i0

can be seen as a subset of

the information set of the projection code and, provided that the attacker has enough rows, the
attack in [10] may show a rank difference when one removes the rows with non-zero components
in U. Note that this is the case when ei0 = 1, since Z

p
ei0
i0

is a field and then the projection code

is free.
If ei > 1, for each i = 1, . . . , ℓ, then Zp

ei
i

is a chain ring with maximal ideal ⟨pi⟩ and nilpotence
index ei. Furthermore, a cyclic code over a chain ring is free if and only if it is a Hensel lift, i.e.
it is generated by a monic polynomial in Zp

ei
i
[x]/⟨xn−1⟩ (see [51, Proposition 4.11]). Therefore,

we must consider non-free projection codes for our protocol that we will call non-Hensel lifts.
They are provided by choosing the entries of Ap

ei
i

in piZp
ei
i

, for each i = 1, . . . , ℓ, and cyclic
codes whose generator set in standard form (see [51] for a definition) involves at least one monic
polynomial multiplied by a non-zero power of p. Thus, we are ensured that the cyclic part is
non-free by [51, Theorem 4.5].

Corollary 53. There is no R-rank difference in the sub-matrix of Q that we obtain when
removing a row of the original matrix if the projection codes are non-Hensel lifts. Therefore, the
attack strategy relying on rank difference in [10] does not apply to our proposed protocol.
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Proof. The result follows from Theorem 51 and Remark 52.

As pointed out in the introduction, single-server PIR protocols cannot be information-
theoretical secure, thus there is always some information leakage that an attacker could use
to infer which the index of the file the user wants to retrieve. In our protocol, the inner code,
CIN, and the codes C̃i, for i = 1, . . . , s, are kept as secret information. The query matrix Q
is public information, meaning the attacker knows [∆] the Zm-expansion of ∆. Therefore, the
attacker may obtain some information on the constituent cyclic codes by considering their pos-
sible defining f -cyclotomic cosets where f is a factor of the length of [∆]. However, it is still
difficult for an attacker to find the inner and outer codes using brute force attacks. Indeed, since
they are non-free codes, their generator matrix has linearly dependent vectors. Hence, there is
no information set for these codes. Thus, straight linear algebra operations can not be applied
to find these codes.

Remark 54. The cyclotomic coset containing θ ∈ Zn, denoted by Uθ, is the set {θ, θq, . . . , θqi}
(mod n) where i is the smallest integer such that qi ≡ 1 (mod n). It is well known that the
number of irreducible factors of xn − 1 over Fq is equal to the number of cyclotomic cosets of
q modulo n and each of those factors is called a cyclotomic polynomial. They are Φn(x) =∏

d|n(x
d − 1)µ(

n
d
), where where µ is the Möbius function.

Let (q, n) = 1 and let φ(n) be the Euler phi function. One has that Φn(x) can be factorized
into φ(n)/m distinct monic irreducible polynomials of degree m over Fq, where m is the least
positive integer such that qm ≡ 1 ( mod n) and m is called the order of q modulo n and it is

denoted as ordd(q). Therefore, the number of cyclotomic cosets is T =
∑

d|n
φ(d)

ordd(q)
.

When generating the protocol, we can assume that the user selects xn − 1 with a number
of irreducible factors big enough. In this way, protection against brute force attacks can be
provided.
From Theorem 51, one has that rowspan([∆]) ⊆ COUT + Γs(CIN). Even though COUT + Γs(CIN)
is known, it is hard to get COUT and CIN. First, the attacker must use the Chinese remainder
theorem to decompose the code COUT+Γs(CIN) into a direct sum of ideals over Zp

ei
i
[x]/⟨xn− 1⟩.

Then the attacker must compute the number of cyclotomic cosets in order to find the number of
cyclic codes for each decomposition. For instance, if T is the number of cyclotomic cosets, then
there are 2T divisors of xn−1, equal to the number of cyclic codes of length n. As we mentioned,
the attacker could get some cyclotomic polynomials from rowspan([∆]). Suppose we define T̃
as the number of cyclotomic polynomials that an attacker cannot obtain without a brute force
attack and that there exists at least 2T̃ cyclic codes of length n. In that case, the probability of

recovering the code is given by Pr ≤ 1

2T̃
. Note that we are bounding the total number of cyclic

codes by the number of cyclotomic classes since the generating set in standard form of a cyclic
code of length n over Zps is of the form {f0, pf1, . . . , ps−1fs−1}, where fs−1| . . . |f1|f0|xn − 1
and they are monic polynomials (see [51, Definition 4.1]). In other words, the probability of
finding the code is inversely proportional to the number of cyclotomic polynomials the attacker
cannot obtain. Therefore, that probability exponentially decreases as T̃ increases. For example,
considering the data presented in Table 3.2, wherein the inner code length n = 91 over the
ring Z4, the number of cyclic codes is at least 210, and over Z9, the number of cyclic codes is
at least 218. For a specific choice of component s = 10, the probability that an attacker could
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successfully guess the outer codes is determined by Pr ≤ (2−28)10 and the probability of guessing
the inner codes is determined by Pr ≤ 2−28. Therefore, the probability of guessing all codes is
Pr ≤ (2−28)11. This probability is notably low, underscoring the resilience of the system against
brute force attacks.

After presenting a toy example to illustrate the protocol (see Example 49), we now turn to
a more general and realistic construction.

Example 55 (Real example). For simplicity we will take m′ = 3 · 5, thus R = Z15. Note that
the value m does not fulfill the technical conditions for security and that we are considering that
m′ = m, which is not allowed in our protocol. The aim is to illustrate the protocol with a toy
example and simple computations. Consider the 3-file in database DB = [DB1,DB2,DB3] =
[1, 2, 1] ∈ Z3

15, and DB1 is the desired file, i.e. d = 1.

• Set up. Let C1 be a cyclic code in Z9[x]/⟨x13−1⟩ and C2 be a cyclic code in Z25[x]/⟨x13−1⟩
with generator polynomial g1(x) = x7 + 3x6 + 7x5 + 4x4 + 5x3 + 8x2 + 6x + 2 and
g2(x) = x9+12x8+14x7+20x6+18x5+12x4+20x3+21x2+13x+19, respectively. One
can check that CIN = CRT (C1, C2) is a cyclic code in R = Z225[x]/⟨x13−1⟩ with generator
polynomial gIN = 126x9+162x8+64x7+120x6+43x5+112x4+95x3+71x2+213x+119.
Let C̃1 be a cyclic code in R with generator polynomial g̃1 = 126x12 + 126x11 + 126x10 +
x9 + 206x8 + 16x7 + 86x6 + 36x5 + x4 + 136x3 + 36x2 + 141x+ 56 and let C̃2 be a cyclic
code with generator polynomial g̃2 = x12 + x11 + x10 + 76x9 + 106x8 + 166x7 + 61x6 +
136x5 + 76x4 + 211x3 + 136x2 + 91x+ 106. We have that C̃2 ⊆ C̃1. Finally, we select the
2-generator quasi-cyclic code COUT = [C̃1, C̃2] ( 1 1

0 1 ) with generator matrix over R given by

GOUT11 = 126x12 + 126x11 + 126x10 + x9 + 206x8 + 16x7 + 86x6 + 36x5 + x4 + 136x3

+36x2 + 141x+ 56
GOUT12 = 126x12 + 126x11 + 126x10 + x9 + 206x8 + 16x7 + 86x6 + 36x5 + x4 + 136x3

+36x2 + 141x+ 56
GOUT21 = 0
GOUT22 = x12 + x11 + x10 + 76x9 + 106x8 + 166x7 + 61x6 + 136x5 + 76x4 + 211x3

+136x2 + 91x+ 106

• Query generation. Now, consider random polynomials that provide the user the entries
of A in m′R, the elements e1kj(x) ∈ nf(CIN) for k, j ∈ {1, 2}, and u111(x) in nf(C̃2 ∩ (C⊥

IN \
CIN)) given by
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a111(x) = 30x12 + 75x11 + 30x10 + 135x9 + 165x8 + 60x7 + 90x6 + 105x5 + 135x4

+150x3 + 90x2 + 120x+ 15
a112(x) = 165x12 + 75x10 + 90x9 + 150x8 + 165x7 + 105x6 + 165x5 + 150x4

+105x3 + 180x2 + 195
a121(x) = 105x12 + 75x11 + 75x10 + 105x9 + 150x8 + 15x7 + 60x6 + 15x5 + 30x4

+105x3 + 15x2 + 15x
a122(x) = 180x12 + 165x11 + 90x10 + 90x9 + 120x8 + 30x7 + 150x6 + 165x5 + 165x4

+105x3 + 30x+ 195
a131(x) = 120x12 + 195x10 + 210x9 + 105x8 + 45x7 + 150x6 + 45x5 + 120x3

+210x2 + 30x+ 75
a132(x) = 135x12 + 150x11 + 180x10 + 120x9 + 165x7 + 120x6 + 165x5 + 120x4

+210x3 + 210x2 + 120x

e111(x) = 210x12 + 60x11 + 210x10 + 60x9 + 195x8 + 210x7 + 15x6 + 165x5 + 120x3

+90x2 + 75x+ 165
e112(x) = 15x12 + 165x11 + 210x10 + 180x9 + 165x7 + 210x6 + 45x5 + 135x4 + 195x3

+75x2 + 135x+ 45
e121(x) = 210x12 + 195x11 + 90x10 + 195x9 + 60x7 + 150x6 + 75x5 + 45x4 + 150x3

+90x2 + 90
e122(x) = 60x12 + 30x11 + 180x10 + 165x9 + 75x8 + 15x7 + 165x5 + 15x4 + 150x2 + 45
e131(x) = 195x12 + 45x11 + 210x10 + 30x9 + 75x8 + 60x7 + 105x6 + 90x5 + 30x4 + 210x3

+135x2 + 15x+ 150
e132(x) = 165x11 + 90x10 + 60x9 + 210x8 + 120x7 + 150x6 + 60x5 + 90x4 + 135x3 + 195x2

+120x+ 180

u111(x) = 45x12 + 45x11 + 15x10 + 15x9 + 195x8 + 30x7 + 210x6 + 210x5 + 165x4 + 120x2

+120x+ 150

Then the user can compute ∆ given by

δ111(x) = 105x12 + 180x11 + 75x10 + 150x9 + 15x8 + 90x7 + 75x6 + 15x4 + 195x3 + 60x2

+45x+ 165
δ112(x) = 60x12 + 210x11 + 30x10 + 45x8 + 210x7 + 30x6 + 90x5 + 180x4 + 15x3 + 120x2

+180x+ 90
δ121(x) = 75x12 + 210x11 + 30x10 + 60x9 + 90x8 + 90x6 + 90x5 + 210x4 + 90x3 + 30x2

+90x+ 105
δ122(x) = 60x12 + 180x11 + 30x10 + 165x9 + 75x8 + 90x7 + 75x6 + 90x5 + 90x4 + 75x3

+195
δ131(x) = 150x11 + 15x10 + 60x9 + 105x8 + 15x7 + 210x6 + 45x5 + 135x4 + 15x3 + 90x2

+195x+ 180
δ132(x) = 150x12 + 165x11 + 15x10 + 210x9 + 135x8 + 195x7 + 150x6 + 135x5 + 90x4 + 60x3

+45x2 + 195x+ 105
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and the query matrix Q is the result of expanding in Z15 the entries in (A ∥∆)



15, 120, 90, 150, 135, 105, 90, 60, 165, 135, 30, 75, 30, 195, 0, 180, 105, 150, 165, 105, 165, 150,
90, 75, 0, 165, 165, 45, 60, 195, 15, 0, 75, 90, 15, 150, 75, 180, 105, 90, 180, 120, 15, 180, 90,
30, 210, 45, 0, 30, 210, 60

0, 15, 15, 105, 30, 15, 60, 15, 150, 105, 75, 75, 105, 195, 30, 0, 105, 165, 165, 150, 30, 120, 90, 90,
165, 180, 105, 90, 3090, 210, 90, 90, 0, 90, 60, 30, 210, 75, 195, 0, 0, 75, 90, 90, 75,
90, 75, 165, 30, 180, 60

75, 30, 210, 120, 0, 45, 150, 45, 105, 210, 195, 0, 120, 0, 120, 210, 210, 120, 165, 120, 165, 0, 120,
180, 150, 135, 180, 195, 90, 15, 135, 45, 210, 15, 105, 60, 15, 150, 0, 105, 195, 45, 60, 90,
135, 150, 195, 135, 210, 15, 165, 150


.

• Server response. The server computes R = DB ·Q, which is equal to 90, 180, 105, 30, 195, 180, 135, 135, 120, 105, 150, 0, 135, 135, 180, 165, 75, 150, 210, 75, 165,
165, 165, 210, 30, 210, 105, 195, 210, 165, 120, 0, 15, 105, 75, 105, 150, 75, 30, 135, 150, 165,
0, 0, 180, 105, 135, 105, 90, 105, 60, 105

 .

• Recovering stage. Once received R, the user can extract the submatrices R1 = (r11,1, r
1
1,2)

and R2 = (r21,1, r
2
1,2) with elements inR = Z225[x]/⟨x13−1⟩ given by the following elements

R1 r11,1 = 135x12 + 150x10 + 105x9 + 120x8 + 135x7 + 135x6 + 180x5 + 195x4 + 30x3

+105x2 + 180x+ 90
r11,2 = 210x12 + 30x11 + 210x10 + 165x9 + 165x8 + 165x7 + 75x6 + 210x5 + 150x4

+75x3 + 165x2 + 180x+ 135

R2 r21,1 = 30x12 + 75x11 + 150x10 + 105x9 + 75x8 + 105x7 + 15x6 + 120x4 + 165x3

+210x2 + 195x+ 105
r21,2 = 105x12 + 60x11 + 105x10 + 90x9 + 105x8 + 135x7 + 105x6 + 180x5 + 165x2

+150x+ 135

and compute R2 − (R1 ·GOUT), which is a 1× 2 matrix whose elements are

195x12 + 90x11 + 165x10 + 45x9 + 15x8 + 195x7 + 180x6 + 165x5 + 60x4 + 180x3 + 75x2

+210x+ 195,
135x12 + 165x11 + 210x10 + 120x9 + 135x8 + 90x7 + 135x6 + 210x5 + 30x4 + 105x3 + 120x2

+30x+ 90

The user has selected δ = 1 as a column position and the files have one column, hence the
user does not need the second position. Thus, the user multiplies each entry of the matrix
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(written as a vector in Z13
225) by H⊤

IN, the parity check matrix of the code CIN, given by

H⊤
IN =



1 0 0 0 2 11 4 18 26 15 202 37 57
0 1 0 0 0 5 11 25 42 98 9 73 82
0 0 1 0 1 13 7 20 8 192 169 5 124
0 0 0 1 1 2 0 22 12 155 167 141 41
0 0 0 0 3 0 6 24 42 54 66 45 153
0 0 0 0 0 15 0 30 30 75 0 60 90
0 0 0 0 0 0 15 0 30 165 30 0 15
0 0 0 0 0 0 0 45 0 45 135 90 90
0 0 0 0 0 0 0 0 45 135 0 135 45



T

.

Therefore, the user computes

[195, 210, 75, 180, 60, 165, 180, 195, 15, 45, 165, 90, 195] ·H⊤
IN = [75, 75, 90, 180, 0, 0, 0, 0, 0]

Since the user knows DB1 ·U · H⊤
IN and U · H⊤

IN, the user can solve the two systems of
equations, originally over Z225, that arise when solving the system of equations (DB1 ·
U ·H⊤

IN) = x · (U ·H⊤
IN) over Z3 and Z5, respectively. Then the user lifts both solutions

to a single solution in Z15 via the Chinese remainder theorem, obtaining the desired file
x = DB1 = 1.

Algorithm 1 Setup
Server Setup:

for i ∈ {1, . . . , t}, j ∈ {1, . . . , L}, ℓ ∈ {1, . . . , r} do
DB = [DB1 ∥DB2 ∥ · · · ∥DBt], where DBi = [Di

jℓ] ∈ Zm′

end for

User Setup:
for i ∈ {1, . . . , s} do

Select non-Hensel lift codes C̃i ⊆ R with C̃i ∩ CIN ̸= {0}, and C̃i ∩ (C⊥
IN \ CIN) ̸= {0}

end for
The user generates an outer code [COUT] = [C̃1, C̃2, . . . , C̃s]M , where M is an s×s matrix over
Z′
m
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Algorithm 2 Query Generation
Query Generation:
for i ∈ {1, . . . , t}, k ∈ {1, . . . , r}, j ∈ {1, . . . , s} do

Select randomly r × s matrices ai, where aikj ∈ m′R
Encode ai as wi = ai ·GOUT, where GOUT is the generator matrix of COUT

Select randomly r × s matrices ei, where eikj ∈ nf(CIN)
Select column position γ ∈ {1, .., s− r + 1}
for λ ∈ {0, .., r − 1} do

Select r × s matrices ui with all entries zero except

ud1+λ,γ+λ ∈ nf(C̃s ∩ (C⊥
IN \ CIN))

end for
Create r × s matrices δi = (wi + ei + ui)
Create ∆ = [δ1 ∥ δ1 ∥ · · · ∥ δt]⊤ and A = [a1 ∥ a1 ∥ · · · ∥ at]⊤
Generate query matrix Q = [A ∥∆]

end for

Algorithm 3 Response and Recovering
Response:
Compute R = DB ·Q = [DBA ∥DB∆] = [R1 ∥R2]

Recovering Stage:
for i ∈ {1, . . . , r}, do

M = [R2 − (R1 · GOUT)]H
⊤
Γr(C⊥

IN)
, where HΓr(C⊥

IN) is a parity check matrix of Γr(CIN) =

[CIN, . . . , CIN]Ids
Solve the linear system of equations

M = diag[m1, . . . ,mr], where mi = [Dd
1i, . . . , D

d
Li]

⊤udi,γH
⊤
IN

end for
return DBd
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Chapter 4

The Schur product of evaluation codes and its
applications

The intersection of algebraic coding theory with quantum information science and data privacy
has led to the emergence of powerful techniques with broad applicability. One such technique is
the Schur product—also known as the componentwise or Hadamard product—of linear codes,
which has become increasingly relevant in the construction of quantum error-correcting codes
and the design of private information retrieval (PIR) schemes.

This chapter presents a detailed study of the Schur product in the context of evaluation codes,
particularly those arising from J-affine variety codes. This general framework encompasses
various well-known families of codes, including Reed-Muller, toric, and hyperbolic codes. The
main theoretical contribution lies in characterizing the Schur product of these evaluation codes
via the Minkowski sum of the underlying sets of monomial exponents. This algebraic-geometric
interpretation not only generalizes previous results but also facilitates the derivation of structural
properties useful in both quantum and classical applications.

One of the primary applications explored here is the construction of CSS-T quantum codes, a
family of Calderbank-Shor-Steane codes tailored to tolerate certain types of noise and beneficial
in quantum fault-tolerant protocols. By exploiting the structure of weighted Reed-Muller codes
and subfield-subcodes of J-affine variety codes, we can derive new families of quantum codes
with parameters that improve upon those in the existing literature, particularly in the binary
case. These constructions are grounded in a rigorous analysis of the duals and Schur powers of
the evaluation codes involved, ensuring both robustness and efficiency.

Another significant application discussed in this chapter relates to PIR schemes, which are
protocols that have already been introduced in previous chapters. Here, we propose new PIR
schemes based on hyperbolic codes and subfield-subcodes of J-affine variety codes, demonstrat-
ing that these constructions achieve better download rates and stronger privacy guarantees than
previously known methods.

Secure Multi-Party computation (MPC) protocols represent another important application
of Schur products of linear codes. The central idea is to identify a high-dimensional linear code
C such that both its dual code C⊥ and its square (i.e., Schur product) code C⋆2 have high
minimum distance. These parameters are essential for ensuring both privacy and correctness in
secure MPC protocols based on coding theory.

In summary, this chapter contributes both theoretical insights and practical tools for the use
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of Schur products in the construction of advanced coding schemes by extending classical results
to a more general algebraic framework.

4.1 CSS-T codes

We follow the convention of using [[n, k, d]] to denote a quantum code encoding k qubits (known
as logical qubits) into n physical qubits and that can correct less than d erasures. We consider
the CSS construction named after their co-discoverers Robert Calderbank, Peter Shor, and
Andrew Steane. [13, 60].

Theorem 56 (CSS construction). Let C1, C2 ⊂ Fn
2 be linear codes with dimension k1, k2, re-

spectively, and such that C2 ⊂ C1. Then, there is an [[n, k1 − k2, d]] quantum code with

d = min
{
wt (C1 \ C2) ,wt

(
C⊥
2 \ C⊥

1

)}
,

where wt denotes the minimum Hamming weight.

CSS-T codes are a class of CSS codes that may implement the T gate transversally, which is
a crucial step for achieving fault-tolerant quantum computation. They may reduce the overhead
associated with magic state distillation, a common technique used to implement non-Clifford
gates in fault-tolerant quantum circuits. CSS-T codes were introduced in [53, 54] and they were
algebraically characterized in terms of the Schur product of the pair of binary classical linear
codes that define them in [16], note that this definition specifically requires binary codes. More
concretely, they are defined from a pair of binary linear codes (C1, C2), called a CSS-T pair,
such that

C2 ⊂ C1 ∩ (C⋆2
1 )⊥.

Moreover, we have that for a CSS-T pair (C1, C2) then min{wt(C1),wt(C
⊥
2 )} = wt(C⊥

2 ), and
the parameters of the corresponding CSS-T code are ([16, Corollary 2.5])

[[n, k1 − k2,≥ wt(C⊥
2 )]].

4.1.1 CSS-T codes from Weighted Reed-Muller codes

CSS-T codes arising from Reed-Muller codes were considered in [2] and from cyclic codes in [16].
It was shown that the parameters of CSS-T codes coming from cyclic codes may outperform those
coming from Reed-Muller codes. In this work, we show that we can define CSS-T codes from
weighted Reed-Muller codes and that their parameters can improve the parameters in [2, 16].
Specifically, we will consider that C1 is a weighted Reed-Muller code and C2 is a Reed-Muller
code (a Reed-Muller code being a weighted Reed-Muller code with trivial weights).

Initially, we require a lemma concerning the inclusion or nesting of Weighted Reed-Muller
codes within Reed-Muller codes from [59].

Lemma 57. One has that

RM(vmin(s),m) ⊆WRM(s,m,S) ⊆ RM(vmax(s),m),

where vmin(s) = max{v | s ≥
m∑

i=m−v+1
si}, vmax(s) = max{v | s ≥

v∑
i=1

si}.
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We can now state the main result of this section.

Theorem 58. For m ≥ 2, let C1 be binary weighted Reed-Muller C1 = WRM(s,m,S) and

C2 be the binary Reed-Muller code C2 = RM(r,m), with r ≤ max{v | s ≥
m∑

i=m−v+1
si}. Then

(C1, C2) is a CSS-T pair if a+ r < m, where a = max{j | 2s ≥
j∑

i=1

si}.

The parameters of the associated CSS-T quantum code are [[2m, k1 − k2, 2
r+1]], where k1 =

dim(C1), and k2 = dim(C2) =
∑s

i=0

(
m
i

)
,

Proof. From lemma 57, it follows that C2 ⊂ C1 because r ≤ max{v | s ≥
m∑

i=m−v+1
si}.

Note that in general, the Schur square of a weighted Reed-Muller code is not a weighted
Reed-Muller code. However, we have the inclusion

WRM(s,m,S)⋆2 ⊆WRM(2s,m,S).

Combining this fact with Lemma 57, we can ensure that

WRM(s,m,S)⋆2 ⊆ RM(a,m). (4.1)

The condition C2 ⊂ (C⋆2
1 )⊥ translates to the inclusion

RM(r,m) ⊆ (WRM(s,m,S)⋆2)⊥,

which in turn is equivalent to

WRM(s,m,S)⋆2 ⊆ RM(r,m)⊥ = RM(m− r − 1,m).

Furthermore, by combining the previous equation with equation (4.1), we have that C2 ⊂
(C⋆2

1 )⊥ if

RM(a,m) ⊆ RM(m− r − 1,m),

which holds if a ≤ m−r−1. The parameters follow from [16, Corollary 2.5]. This completes
the proof.

Example 59. Consider the binary weighted Reed-Muller code C1 = WRM(5, 7, (1, 2, 2, 2, 2, 2, 2))
with the set ∆ = {(i1, i2, i3, i4, i5, i6, i7) : i1 + 2i2 + 2i3 + 2i4 + 2i5 + 2i6 + 2i7 ≤ 5}, which
has parameters [128, 44, 16], and the binary Reed-Muller code C2 = RM(1, 7) with parameters
[128, 8, 64]. We have that k((C⋆2

1 )⊥) = 11 and C2 ⊂ C1 ∩ (C⋆2
1 )⊥, as established by the previous

result. Thus, (C1, C2) is a CSS-T pair whose associated CSS-T code has parameters [[128, 36, 4]].
This construction allows us to generate further examples, listed in Table 4.1. These examples
outperform the CSS-T codes presented in [2, 16], as shown in table 4.3.
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C2 C1 C⋆2
1 (C⋆2

1 )⊥ C⊥
2 CSS-T

[128,8,64] [128,44,16] [128,117,4] [128,11,32] [128,120,4] [[128,36,4]]
RM(1, 7) WRM(5, 7, (1, 2, 2, 2, 2, 2, 2))

[256,37,64] [256,58,32] [256,198,8] [256,58] [256,219,8] [[256,21,8]]
RM(2, 8) WRM(5, 8, (1, 2, 2, 2, 2, 2, 2, 2))

[512,10,128] [512,186] [512,494] [512,18] [512,502,4] [[512,176,4]]
RM(1, 9) WRM(7, 9, (1, 2, 2, 2, 2, 2, 2, 2, 2))

[1024,56,128] [1024,260] [1024,932] [1024,92] [1024,968,8] [[1024,204,8]]
RM(2, 10) WRM(7, 10, (1, 2, 2, 2, 2, 2, 2, 2, 2, 2))

Table 4.1: Parameters of CSS-T codes from Weighted Reed-Muller Codes C1 and Reed-Muller
Codes C2

4.1.2 CSS-T codes from subfield subcodes of J-affine codes

Moreover, we can extend the previous result to J-affine codes, thereby increasing the range
of possible parameters, particularly the length. This extension allows us to explore a broader
constellation of codes, offering wider flexibility in code design.

Theorem 60. Let q be a power of 2 and the sets ∆1,∆2 ⊆ E′ ⊂ EJ be a union of complete
cyclotomic cosets. The pair of binary codes (CJ,σ

∆1
, CJ,σ

∆2
) is a CSS-T pair if and only if

1. ∆2 ⊆ ∆1, and

2. ∆1 +∆1 ⊆ ∆⊥
2

The parameters of the associated CSS-T quantum code are∏
j /∈J

Nj

∏
j∈J

(Nj − 1),#∆1 −#∆2,≥ wt((CJ,σ
∆2

)⊥) = wt(CJ,σ

∆⊥
2
)

 .

Proof. By Proposition 26,
(
CJ,σ
∆i

)⊥
= CJ,σ

∆⊥
i

, for i = 1, 2, because ∆1,∆2 ⊆ E′ ⊂ EJ and they are

a union of complete cyclotomic cosets. Hence, ∆2 ⊆ ∆1 if and only if CJ,σ
∆2
⊆ CJ,σ

∆1
. Moreover,

since ∆1 +∆1 ⊆ ∆⊥
2 , then (CJ,σ

∆1
)⋆2 ⊆ (CJ,σ

∆2
)⊥ which is equivalent to CJ,σ

∆2
⊆ ((CJ,σ

∆1
)⋆2)⊥. The

parameters follow from [16, Corollary 2.5] and the result holds.

The previous result is neat; however, the hypothesis ∆1,∆2 ⊆ E′ is impractical. The
following one allows us to consider ∆1,∆2 ⊆ EJ , that is, without the restriction ∆1,∆2 ⊆ E′.
Thus it is more flexible. However, in this case, one must be careful when computing the dual
codes, as equality no longer holds by Proposition 26, but rather only a containment.

Theorem 61. Let q be a power of 2 and the sets ∆1,∆2 ⊂ EJ be a union of complete cyclotomic
cosets. The pair of binary codes (CJ,σ

∆1
, CJ,σ

∆2
) is a CSS-T pair if

1. ∆2 ⊆ ∆1, and

2. For all a ∈ ∆1 +∆1 +∆2 there exists j ∈ {1, . . . ,m} such that,

• aj ̸= 0, if j ∈ J ,
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• aj ̸= Nj − 1, if j /∈ J .

The parameters of the associated CSS-T quantum code are∏
j /∈J

Nj

∏
j∈J

(Nj − 1),#∆1 −#∆2,≥ wt((CJ,σ
∆2

)⊥)

 .

Proof. Since ∆2 ⊂ ∆1, it follows that CJ,σ
∆2
⊂ CJ,σ

∆1
.

By Proposition 26,
(
CJ,σ
∆i

)⊥
⊆ CJ,σ

∆⊥
i

, for i = 1, 2, because ∆1,∆2 ⊆ E′ ⊂ EJ and they are
unions of complete cyclotomic cosets.

Observe that 1 = (1 . . . , 1) = evZ(x
0
1 · · ·x0m), so b = 0 in Proposition 25, we may conclude

applying it that 1 = (1 . . . , 1) ∈
(
CJ
∆

)⊥ if and only if for all a ∈ ∆ there exists j ∈ {1, . . . ,m}
such that ,

• aj ̸= 0, if j ∈ J ,

• aj ̸= Nj − 1, if j /∈ J . Notice that case aj = 0 is excluded because p = 2 | NJ .

Furthermore, observe that CJ,σ
∆2
⊆ ((CJ,σ

∆1
)⋆2)⊥ if and only if 1 ∈ (CJ,σ

∆1
⋆ CJ,σ

∆1
⋆ CJ,σ

∆2
)⊥ =

(CJ,σ

∆1+∆1+∆2
)⊥. This is supported by the previous claim and the hypothesis of the result. The

parameters follow from [16, Corollary 2.5], and the result holds.

Based on the previous results, we propose now a concrete construction of subfield subcodes
of J-Affine variety codes that yield excellent families of CSS-T quantum codes. First, we will
consider a one-variable subfield subcode of a J-affine variety code, then we will extend it to an
m-variable J-affine variety code

Let C1 = CJ,σ
∆1 and C2 = CJ,σ

∆2 a pair of one-variable subfield subcodes with N1 − 1 | 2r − 1
and J = ∅ (we evaluate at zero). Assume that (C1, C2) is a CSS-T pair whose associated CSS-T
code has parameters [[N1,#∆1 −#∆2, d]].

We will consider now the extension to m variables. Let (Ni − 1) | 2r − 1, for i = 2, . . .m,
and 1 ≤ m1 ≤ m. Let J = {m1 + 1, 3, . . . ,m}, that is, we evaluate at the zeros of

∏m1
j=1(x

Nj

j −
xj)
∏m

j=m1+1(x
Nj−1
j − 1). Set ∆1 to be

∆1 = ∆1×{0, 1, . . . , N2−1}×· · ·×{0, 1, . . . , Nm1−1}×{0, 1, . . . , Nm1+1−2}×· · ·×{0, 1, . . . , Nm−2}.

Let C ⊆ Fn
qr , with n =

∏
j /∈J

Nj
∏
j∈J

(Nj − 1), be a hyperbolic code with designed minimum

distance d and let ∆H such that CJ
∆H

= C⊥. Now define ∆2 to be the ∪a∈∆H
Ia, i.e., for each

element in ∆H we append to ∆2 the whole cyclotomic coset Ia. Thus, ∆2 is a union of complete
cyclotomic cosets.

Let Ci = CJ,σ
∆i

, for i = 1, 2. Since ∆2 ⊂ ∆1 then ∆2 ⊂ ∆1 and therefore C2 ⊆ C1. Moreover,
since by construction N1 − 1 /∈ ∆1 +∆1 +∆2, it follows that there is no a ∈ ∆1 +∆1 +∆2

whose first coordinate, a1, is equal to N1 − 1. Thus, from Theorem 61 we have that (C1, C2) is
a CSS-T pair whose associated quantum CSS-T codes has parameters given by the next result.
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Corollary 62. Let q = 2r amd (Ni − 1) | 2r − 1, for i = 2, . . .m. Let J = {m1 + 1, 3, . . . ,m}
where 1 ≤ m1 ≤ m. Consider the construction of ∆1 and ∆2 designed before, then there exist a
CSS-T codes with parametersm1∏

j=1

Nj

m∏
j=m1+1

(Nj − 1),#∆1 −#∆2, d

 .

We consider now several examples of the construction given in Corollary 62. The notation
is as before. All the cyclotomic sets used to define the codes in Examples 63 and 64, and Table
4.3 are given explicitly in Table 4.2.

Example 63. We consider Corollary 62 in the case of three variables with J = ∅, i.e., m =
m1 = 3. Let N1 = 16, N2 = 4, and N3 = 2. Then, the length of the CSS-T code is n =
N1 ·N2 ·N3 = 128.

Let ∆1 = ∆2 = I0 ∪ I1 = {0, 1, 2, 4, 8}. Since ∆2 contains three consecutive integers, the
BCH bound implies that

d
(
(CJ,σ

∆2 )
⊥
)
≥ 4.

As described above, we define

∆1 = ∆1 × {0, 1, 2, 3} × {0, 1},

and
∆2 = I(0,0,0) ∪ I(1,0,0) ∪ I(0,1,0) ∪ I(0,0,1).

Note that ∆2 ⊂ ∆1, #∆1 = 5 · 4 · 2 = 40, and #∆2 = 1 + 4 + 2 + 1 = 8.
To estimate the minimum distance of (CJ,σ

∆2
)⊥, we observe that it is a subcode of a hyperbolic

code with minimum distance 4, and hence

d
(
(CJ,σ

∆2
)⊥
)
≥ 4.

Therefore, there exists a CSS-T code with parameters

[[128, 40− 8 = 32, d ≥ 4]].

Example 64. We consider now Corollary 62 in the case of two variables, with J = {2}. Hence,
m = 2 and m1 = 1. Let N1 = 64 and N2 = 4. Then, the length of the CSS-T code is
n = N1(N2 − 1) = 192.

Let ∆1 = I0 ∪ I1 ∪ I3 ∪ I5 ∪ I7 ∪ I9, and ∆2 = I0 ∪ I1 = {0, 1, 2, 4, 8}. Again, by the BCH
bound

d
(
(CJ,σ

∆2 )
⊥
)
≥ 4.

Now, let
∆2 = I(0,0) ∪ I(1,0) ∪ I(0,1),

which has cardinality #∆2 = 9. Since the dual code (CJ,σ
∆2

)⊥ is a subcode of the corresponding
hyperbolic code of disctance 4, it follows that

d((CJ,σ
∆2

)⊥) = 4.
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Finally, let
∆1 = ∆1 × {0, 1, 2},

with cardinality #∆1 = 66.
Therefore, there exists a CSS-T code with parameters

[[192, 66− 9 = 57, d ≥ 4]].

In Table 4.2, we list the selections of ∆1 and ∆2 for other values of N2. For instance,
replacing N2−1 = 3 with N2−1 = 7 yields a quantum code with parameters [[448, 141, 4]], and
replacing it with N2 − 1 = 9 yields one with parameters [[576, 183, 4]].

∆2 ∆1 CSS-T

I(0,0,0) ∪ I(1,0,0) ∪ I(0,1,0) ∪ I(0,0,1) {0, 1, 2, 4, 8} × {0, 1, 2, 3} × {0, 1} [[128, 32, 4]]

I(0,0) ∪ I(1,0) ∪ I(0,1) {0, 1, 2, 4, 8, 16, 32, 3, 6, 12, 24, 48, 33, 5, 10, 20, 40, 17, 34, 9, 18, 36} × {0, 1, 2} [[192, 57, 4]]

I(0,0) ∪ I(0,1) ∪ I(0,1) ∪ I(1,1) ∪ I(3,0) ∪ I(5,0) {0, 1, 2, 4, 8, 3, 6, 12, 24, 48, 96, 65, 5, 10, 20, 40, 80, 33, 66, 9, 18, 36, 72, 17, 34, 68} × {0, 1} [[256, 28, 8]]

I(0,0) ∪ I(1,0) ∪ I(0,1) {0, 1, 2, 4, 8, 16, 32, 3, 6, 12, 24, 48, 33, 5, 10, 20, 40, 17, 34, 9, 18, 36} × {0, 1, 2, 3, 4, 5, 6} [[448, 141, 4]]

I(0,0,0,0) ∪ I(0,0,0,1) ∪ I(0,0,1,0) ∪ I(0,1,0,0) ∪ I(1,0,0,0) {0, 1, 2, 4, 8, 16, 32, 3, 6, 12, 24, 48, 33, 5, 10, 20, 40, 17, 34, 9, 18, 36} × {0, 1} × {0, 1} × {0, 1} [[512, 166, 4]]

I(0,0) ∪ I(1,0) ∪ I(0,1) {0, 1, 2, 4, 8, 16, 32, 3, 6, 12, 24, 48, 33, 5, 10, 20, 40, 17, 34, 9, 18, 36} × {0, 1, 2, 3, 4, 5, 6, 7, 8} [[576, 183, 4]]

I(0,0) ∪ I(0,1) ∪ I(1,0) ∪ I(1,1) ∪ I(3,0) {0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 3, 6, 12, 24, 48, 96, 192, 384, 257, 5, 10, 20, 40, 80, 160,
320, 129, 258, 7, 14, 28, 56, 112, 224, 448, 385, 259, 9, 18, 36, 72, 144, 288, 65, 130, 260,
11, 22, 44, 88, 176, 352, 193, 386, 261, 13, 26, 52, 104, 208, 416, 321, 131, 262, 17, 34,

68, 136, 272, 33, 66, 132, 264, 19, 38, 76, 152, 304, 97, 194, 388, 265, 21, 42, 84, 168, 336, [[1024, 231, 6]]
161, 322, 133, 266, 25, 50, 100, 200, 400, 289, 67, 134, 268, 35, 70, 140, 280, 49, 98, 196,
392, 273, 37, 74, 148, 296, 81, 162, 324, 137, 274, 41, 82, 164, 328, 145, 290, 69, 138, 276,

73, 146, 292} × {0, 1}

I(0,0) ∪ I(0,1) ∪ I(1,0) ∪ I(1,1) ∪ I(3,0) ∪ I(5,0) {0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 3, 6, 12, 24, 48, 96, 192, 384, 257, 5, 10, 20, 40, 80, 160,
320, 129, 258, 7, 14, 28, 56, 112, 224, 448, 385, 259, 9, 18, 36, 72, 144, 288, 65, 130, 260,
11, 22, 44, 88, 176, 352, 193, 386, 261, 13, 26, 52, 104, 208, 416, 321, 131, 262, 17, 34,

68, 136, 272, 33, 66, 132, 264, 19, 38, 76, 152, 304, 97, 194, 388, 265, 21, 42, 84, 168, 336, [[1024, 222, 8]]
161, 322, 133, 266, 25, 50, 100, 200, 400, 289, 67, 134, 268, 35, 70, 140, 280, 49, 98, 196,
392, 273, 37, 74, 148, 296, 81, 162, 324, 137274, 41, 82, 164, 328, 145, 290, 69, 138, 276,

73, 146, 292} × {0, 1}

Table 4.2: Cyclotomic cosets used in Examples 63 and 64, and Table 4.3.

To conclude this section, Table 4.3 compares our codes with those in [2, 16]. The length
and minimum distance of the codes in each row coincide, while our codes have larger dimension.
Note also that the CSS-T codes from the J-affine variety construction outperform those from
the WRM construction; however, for length 128 the WRM CSS-T code surpasses the J-affine
one. A heuristic procedure to increase the dimension of a CSS-T code without reducing its
minimum distance was proposed in [16, Corollary 3.9]. The resulting codes are labeled “Improved
Reed–Muller” and “Improved Extended Cyclic” in Table 4.3. We have not applied this heuristic,
so there remains potential to enhance our parameters using [16, Corollary 3.9].

n Reed-Muller Improved Reed-Muller Extended Cyclic Improved Extended Cyclic WRM J-Affine
128 [[128, 21, 4]] [[128, 26, 4]] [[128, 28, 4]] [[128,36,4]] [[128,32,4]]

256 [[256, 20, 8]] [[256, 22, 8]] [[256,21,8]] [[256,28,8]]

512 [[512, 120, 4]] [[512, 133, 4]] [[512, 147, 4]] [[512, 148, 4]] [[512,176,4]] [[512,166,4]]

1024 [[1024, 210, 6]] [[1024, 217, 6]] [[1024,231,6]]

1024 [[1024, 120, 8]] [[1024, 125, 8]] [[1024, 190, 8]] [[1024, 192, 8]] [[1024,204,8]] [[1024,222,8]]

Table 4.3: Parameters of the CSS-T codes in [2, 16], and the codes given in this section.
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4.2 Private Information Retrieval

A Private Information Retrieval (PIR) scheme is a cryptographic protocol that enables a user
to retrieve an item from a database without revealing to the database owner which item is
being accessed. When the data is stored across multiple servers, that is, in a distributed storage
system, no individual server can determine the specific item requested by the user. In this latter
case, one proposed approach for constructing PIR schemes involves encoding the data using a
storage linear code C ⊂ Fn

q , and employing a retrieval linear code D ⊂ Fn
q for the data retrieval

process [23].
If any set of t servers cannot obtain any information about the requested item, the PIR

scheme is said to resist a t-collusion attack, or equivalently, to provide privacy level t. The
following result characterizes the security and efficiency of a PIR scheme under collusion attacks,
where some servers may share their data in an attempt to infer the user’s request based on such
a pair C,D of linear codes. Note that a linear code is said to be transitive if its automorphism
group acts transitively on the set of coordinates. That is, for any pair of coordinate positions
i, j ∈ {1, . . . , n}, there exists a permutation π of the coordinate positions such that π(i) = j and
π is an automorphism of the code C. We will denote the automorphism group of C by Aut(C).

Theorem 65 ([23]). If Aut(C) and Aut(C ⋆ D) act transitively on the set of coordinates
{1, . . . , n}, then there exists a PIR scheme with rate

R =
dim(C ⋆ D)⊥

n

such that it resists a (d(D⊥)− 1)–collusion attack.

Reed–Muller codes [23] and cyclic codes [8] have been successfully proposed to address the
properties outlined in the theorem above and to construct PIR schemes. We will show that PIR
schemes based on hyperbolic codes may outperform those constructed from Reed–Muller codes
over non-binary fields. Moreover, we will consider J-variety codes and their subfield subcodes
to construct PIR schemes with excellent parameters.

Since transitivity is required property for the PIR schemes constructions (as noted in the
introduction 1), we focus now on new families of codes that satisfy this condition.

4.2.1 PIR from hyperbolic codes

We begin by addressing the case in which the storage code C is a Reed–Muller code and the
retrieval code D is taken to be the dual of a hyperbolic code. We compare this with the classical
setting where both C and D are Reed–Muller codes, as in [23]. Specifically, in our comparison,
the storage code C is fixed as a Reed–Muller code in both scenarios, while the retrieval code D is
either a Reed–Muller code (as in [23]) or the dual of a hyperbolic code with the same minimum
distance.

It is important to note that the dimension of a hyperbolic code is greater than or equal
to that of a Reed–Muller code with the same minimum distance. Furthermore, since the dual
of a Reed–Muller code is again a Reed–Muller code, it follows that the dual of a hyperbolic
code has dimension less than or equal to that of a Reed–Muller code with the same minimum
distance. This implies that both retrieval codes offer the same level of privacy, resisting a t-
collusion attack with t = d(D⊥)− 1, as both codes have the same minimum distance. However,
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if dim(Hypq(s,m)) > dim(RMq(s,m)), the PIR scheme achieves a better rate when D is the
dual of a hyperbolic code, since the dimension of (C ⋆ D)⊥ is smaller in this case.

We illustrate the aforementioned behavior over the finite field with 7 elements using two and
three variables. In Table 4.4 and Table 4.5, we fix the storage code C as the Reed–Muller codes
RM(1, 2)7 and RM(1, 3)7, respectively. For the retrieval code D, the shaded rows correspond to
the case where D is a Reed–Muller code, while the bold rows correspond to the case where D
is the dual of a hyperbolic code, both with the same minimum distance. We observe that the
duals of hyperbolic codes consistently yield better rates than their Reed–Muller counterparts.

s C D D⊥ C ⋆ D (C ⋆ D)⊥ Privacy RPIR

3 [49, 3, 42]7 [49, 10, 28]7 [49, 39, 5]7 [49, 15, 21]7 [49, 34, 6]7 4 34/49

5 [49,3,42]7 [49,8,28]7 [49,41,5]7 [49,14,21]7 [49,35,6]7 4 35/49
4 [49, 3, 42]7 [49, 15, 21]7 [49, 34, 6]7 [49, 21, 14]7 [49, 28, 7]7 5 28/49

6 [49,3,42]7 [49,10,21]7 [49,39,6]7 [49,18,14]7 [49,31,7]7 5 31/49
5 [49, 3, 42]7 [49, 21, 14]7 [49, 28, 7]7 [49, 28, 7]7 [49, 21, 14]7 6 21/49

7 [49,3,42]7 [49,14,14]7 [49,35,7]7 [49,23,7]7 [49,26,12]7 6 26/49
6 [49, 3, 42]7 [49, 28, 7]7 [49, 21, 14]7 [49, 34, 6]7 [49, 15, 21]7 13 15/49

14 [49,3,42]7 [49,25,7]7 [49,24,14]7 [49,32,6]7 [49,17,20]7 13 17/49
7 [49, 3, 42]7 [49, 34, 6]7 [49, 15, 21]7 [49, 39, 5]7 [49, 10, 28]7 20 10/49

21 [49,3,42]7 [49,34,6]7 [49,15,21]7 [49,39,5]7 [49,10,28]7 20 10/49

Table 4.4: Comparison of D = RM7(s, 2) codes (shaded rows) with D = Hyp7(s, 2)
⊥ codes

(boldface rows).

4.2.2 PIR with subfield-subcodes of J-affine variety codes

We propose two constructions that provide pairs of codes with the desired properties to construct
a PIR scheme from subfield subcodes of J-affine variety codes.

4.2.2.1 Using subfield subcodes of J-Affine Variety Codes in One Variable

It is important to note that subfield subcodes of J-affine variety codes correspond to BCH codes
when the evaluation does not include zero; however, this correspondence no longer holds when
evaluation at zero is considered. Let qr denote the order of the finite field, and q the order of
the subfield considered, that is, the cyclotomic cosets are computed over Fq. Let n be a divisor
of qr − 1, and let Ia denote the cyclotomic coset associated with a modulo n. In this setting,
the code is the evaluation code at the n-th roots of unity, possibly including zero.

The subfield subcodes of one-variable J-affine codes may improve PIR schemes’ performance.
The following example presents some representative parameters that demonstrate this improve-
ment. Using the method described in Section 4.2, where C is taken as the code RM7(1, 2) and
D is chosen as the dual of a hyperbolic code, the parameters obtained by puncturing these codes
are shown in the shaded rows of Table 4.6.

It should be noted that puncturing or shortening a transitive code is a valid form of compar-
ison, as it preserves the minimum distance of the original code (see [38, Theorem 7.6.1]), and
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s C D D⊥ C ⋆ D (C ⋆ D)⊥ Privacy RPIR

2 [343, 4, 294]7 [343, 10, 245]7 [343, 333, 4]7 [343, 20]7 [343, 323]7 3 323/343

4 [343,4,294]7 [343,7,245]7 [343,336,4]7 [343,19]7 [343,324]7 3 324/343
3 [343, 4, 294]7 [343, 20, 196]7 [343, 323, 5]7 [343, 35]7 [343, 308]7 4 308/343

5 [343,4,294]7 [343,13,21]7 [343,330,5]7 [343,29]7 [343,314]7 4 314/343
4 [343, 4, 294]7 [343, 35, 147]7 [343, 308, 6]7 [343, 56]7 [343, 287]7 5 287/343

6 [343,4,294]7 [343,16,147]7 [343,327,6]7 [343,38]7 [343,305]7 5 305/343
5 [343, 4, 294]7 [343, 56, 98]7 [343, 287, 7]7 [343, 84]7 [343, 259]7 6 259/343

7 [343,4,294]7 [343,25,98]7 [343,318,7]7 [343,53]7 [343,290]7 6 290/343
6 [343, 4, 294]7 [343, 84, 49]7 [343, 259, 14]7 [343, 117]7 [343, 226]7 13 226/343

14 [343,4,294]7 [343,59,49]7 [343,284,14]7 [343,98]7 [343,245]7 13 245/343
7 [343, 4, 294]7 [343, 117, 42]7 [343, 226, 21]7 [343, 153]7 [343, 190]7 20 190/343

21 [343,4,294]7 [343,95,42]7 [343,248,21]7 [343,144]7 [343,199]7 20 199/343
8 [343, 4, 294]7 [343, 153, 35]7 [343, 190, 28]7 [343, 190]7 [343, 153]7 27 153/343

28 [343,4,294]7 [343,120,35]7 [343,223,28]7 [343,154]7 [343,169]7 27 169/343
9 [343, 4, 294]7 [343, 190, 28]7 [343, 153, 35]7 [343, 226]7 [343, 117]7 34 117/343

35 [343,4,294]7 [343,144,28]7 [343,199,35]7 [343,201]7 [343,142]7 34 142/343
10 [343, 4, 294]7 [343, 226, 21]7 [343, 117, 42]7 [343, 259]7 [343, 84]7 41 84/343

42 [343,4,294]7 [343,168,21]7 [343,175,42]7 [343,225]7 [343,118]7 41 118/343
11 [343, 4, 294]7 [343, 259, 14]7 [343, 84, 49]7 [343, 287]7 [343, 56]7 48 56/343

49 [343,4,294]7 [343,192,14]7 [343,151,49]7 [343,244]7 [343,99]7 48 99/343
12 [343, 4, 294]7 [343, 287, 7]7 [343, 56, 98]7 [343, 308]7 [343, 35]7 97 35/343

98 [343,4,294]7 [343,265,7]7 [343,78,98]7 [343,295]7 [343,48]7 97 48/343

Table 4.5: Comparison of D = RM7(s, 3) codes (shaded rows) with D = Hyp7(s, 3)
⊥ codes

(boldface rows).

results in a code of similar length to the subfield subcode being compared. Furthermore, the
transitivity of the code ensures that the result of puncturing is independent of the specific posi-
tions chosen, since all punctured versions are permutation equivalent (see [38, Theorem 1.6.6]).

Remark 66. To simplify the notation, in the remainder of the chapter, we will denote the
subfield subcode of the J-affine variety codes CJ,σ

∆C
and DJ,σ

∆D
, by just C and D, respectively. We

will also say that C and D are defined by ∆C and ∆D, respectively, and that C and D have
defining set ∆C and ∆D, respectively.

Example 67. Consider q = 7, r = 2, N1 = 48, and set J = {1}. Then RJ = Fq[x1]/⟨x481 − 1⟩.
Let ∆C = {24, 25, 31} and ∆D = {24, 25, 31, 32}. The code C is a [48, 3]7 code and D is a
[48, 4]7 code, whose dual D⊥ has parameters [48, 44, 4]7. Therefore, the star product code C ⋆D
has parameters [48, 8]7, and its dual (C ⋆ D)⊥ has parameters [48, 40]7.

Since both C and D are cyclic codes, and the automorphism group of a cyclic code is
transitive (see [38, Theorem 1.6.4]), Theorem 65 is applicable. Consequently, this PIR scheme
is secure against 3 colluding servers and achieves a PIR rate of 40

48 .
At the same privacy level, the punctured code D, which is the dual of a hyperbolic code—specifically,

D⊥ is the shortened hyperbolic code Hyp7(4, 2)—has parameters [48, 5]7 and provides a PIR
rate of 38

48 . Hence, the subfield subcode of the J-affine code achieves a better PIR rate. These
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parameters are shown in the first two rows of Table 4.6. The first row, shaded in gray, corre-
sponds to the code generated using the method described in Section 4.2, while the bold-faced
row represents the code obtained as a subfield subcode of a one-variable J-affine variety code.

In Table 4.6, except for the case corresponding to privacy level 23, all subfield subcodes
of one-variable J-affine codes either achieve the same PIR rate, or outperform those based
on hyperbolic duals for the same privacy level. Moreover, the use of cyclotomic cosets allows a
larger set of design parameters, enabling the construction of PIR schemes with increased privacy
levels and improved rates. In some cases, suitable parameter sets for comparison may not exist;
however, the obtained parameters still contribute meaningfully to get a broader set of achievable
PIR parameters configurations.

s C D D⊥ C ⋆ D (C ⋆ D)⊥ Privacy RPIR

4 [48, 3]7 [48, 5]7 [48, 43, 4]7 [48, 10]7 [48, 38]7 3 38/48

[48,3]7 [48,4]7 [48,44,4]7 [48,8]7 [48,40]7 3 40/48

5 [48, 3]7 [48, 8]7 [48, 40, 5]7 [48, 14]7 [48, 34]7 4 34/48

[48,3]7 [48,7]7 [48,41,5]7 [48,14]7 [48,34]7 4 34/48

6 [48, 3]7 [48, 10]7 [48, 38, 6]7 [48, 18]7 [48, 30]7 5 30/48

[48,3]7 [48,9]7 [48,39,6]7 [48,15]7 [48,33]7 5 33/48

8 [48, 3]7 [48, 16]7 [48, 32, 8]7 [48, 25]7 [48, 23]7 7 23/48

[48,3]7 [48,13]7 [48,35,8]7 [48,23]7 [48,25]7 7 25/48

9 [48, 3]7 [48, 18]7 [48, 30, 9]7 [48, 27]7 [48, 21]7 8 21/48

[48,3]7 [48,16]7 [48,32,9]7 [48,26]7 [48,22]7 8 21/48

12 [48, 3]7 [48, 21]7 [48, 27, 12]7 [48, 29]7 [48, 19]7 11 19/48

[48,3]7 [48,18]7 [48,30,12]7 [48,28]7 [48,19]7 11 19/48

[48,3]7 [48,20]7 [48,28,13]7 [48,29]7 [48,18]7 12 18/48

14 [48, 3]7 [48, 25]7 [48, 23, 14]7 [48, 32]7 [48, 16]7 13 16/48

[48,3]7 [48,22]7 [48,26,14]7 [48,31]7 [48,17]7 13 17/48

[48,3]7 [48,27]7 [48,21,19]7 [48,34]7 [48,14]7 18 14/48

20 [48, 3]7 [48, 32]7 [48, 16, 20]7 [48, 38]7 [48, 10]7 19 10/48

[48,3]7 [48,29]7 [48,19,20]7 [48,36]7 [48,12]7 19 12/48

21 [48, 3]7 [48, 34]7 [48, 14, 21]7 [48, 39]7 [48, 9]7 20 9/48

[48,3]7 [48,31]7 [48,17,21]7 [48,38]7 [48,10]7 20 10/48

[48,3]7 [48,33]7 [48,15,22]7 [48,40]7 [48,8]7 21 8/48

24 [48, 3]7 [48, 36]7 [48, 12, 24]7 [48, 41]7 [48, 7]7 23 7/48

[48,3]7 [48,35]7 [48,13,24]7 [48,42]7 [48,6]7 23 6/48

[48,3]7 [48,40]7 [48,8,33]7 [48,44]7 [48,4]7 32 4/48

[48,3]7 [48,42]7 [48,6,34]7 [48,45]7 [48,3]7 33 3/48

35 [48, 3]7 [48, 43]7 [48, 5, 35]7 [48, 46]7 [48, 2]7 34 2/48

[48,3]7 [48,43]7 [48,5,35]7 [48,46]7 [48,2]7 34 2/48

Table 4.6: Comparison of shortened D = Hyp7(s, 2)
⊥ code (shaded rows) with subfield subcode

of J-affine code (boldface rows)

For dealing with only one variable, we will introduce an alternative approach. Let ∆D be
defined as the union of consecutive cyclotomic cosets, specifically I0 ∪ I1 ∪ · · · ∪ Iai . We know
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∆1 ∆2

I24 ∪ I25 I24 ∪ I25 ∪ I32
I25 ∪ I32 ∪ I33 ∪ I34
I24 ∪ I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40
I24 ∪ I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18
I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18 ∪ I12 ∪ I19
I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18 ∪ I12 ∪ I19 ∪ I26
I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18 ∪ I12 ∪ I19 ∪ I26 ∪ I41
I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18 ∪ I12 ∪ I19 ∪ I26 ∪ I41 ∪ I11
I24 ∪ I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18 ∪ I12 ∪ I19 ∪ I26 ∪ I41 ∪ I11 ∪ I4 ∪ I27
I24 ∪ I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18 ∪ I12 ∪ I19 ∪ I26 ∪ I41 ∪ I11 ∪ I4 ∪ I27 ∪ I6
I24 ∪ I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18 ∪ I12 ∪ I19 ∪ I26 ∪ I41 ∪ I11 ∪ I4 ∪ I27 ∪ I6 ∪ I17
I24 ∪ I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18 ∪ I12 ∪ I19 ∪ I26 ∪ I41 ∪ I11 ∪ I4 ∪ I27 ∪ I6 ∪ I17 ∪ I10
I24 ∪ I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18 ∪ I12 ∪ I19 ∪ I26 ∪ I41 ∪ I11 ∪ I4 ∪ I27 ∪ I6 ∪ I17 ∪ I10 ∪ I13
I24 ∪ I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18 ∪ I12 ∪ I19 ∪ I26 ∪ I41 ∪ I11 ∪ I4 ∪ I27 ∪ I6 ∪ I17 ∪ I10 ∪ I13 ∪ I20 ∪ I0 ∪ I3
I24 ∪ I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18 ∪ I12 ∪ I19 ∪ I26 ∪ I41 ∪ I11 ∪ I4 ∪ I27 ∪ I6 ∪ I17 ∪ I10 ∪ I13 ∪ I20 ∪ I0 ∪ I3 ∪ I1
I24 ∪ I25 ∪ I32 ∪ I33 ∪ I34 ∪ I40 ∪ I5 ∪ I18 ∪ I12 ∪ I19 ∪ I26 ∪ I41 ∪ I11 ∪ I4 ∪ I27 ∪ I6 ∪ I17 ∪ I10 ∪ I13 ∪ I20 ∪ I0 ∪ I3 ∪ I1 ∪ I16

Table 4.7: Cyclotomic cosets used in constructing the boldface rows in Table 4.6.

that the set
{0, 1, 2, . . . , ai+1 − 1} ⊂ ∆D,

which implies that the minimum distance satisfies d(D⊥) ≥ ai+1 + 1 (BCH bound). Assume
that N is a divisor of qr − 1, and define ν = qr−1

N . We propose two possible definitions for the
set ∆C :

1. ∆C = {0, N, 2N, . . . , (ν − 1)N}. Since ∆1 is a union of cyclotomic cosets, the evaluation
at these points increases the dimension of the subfield subcode by #∆C units.

2. ∆C = I0 ∪ IN . This is also a union of cyclotomic cosets and contributes to the dimension
of the subfield subcode in the same manner as in the previous case.

Note that in some cases, both definitions coincide. Based on their definitions, we have that

#(∆C +∆D) ≤ #∆C ·#∆D.

Therefore, the dimension of the dual code satisfies the following inequality.

dim((C ⋆ D)⊥) ≥ n−#∆C ·#∆D.

We summarize these ideas in the following result.

Lemma 68. With the construction given above. There exists a PIR scheme with a storage code
C of length n and dimension v , privacy level ai+1, and rate

n−#∆C ·#∆D

n
.

Example 69. Consider the parameters q = 2, r = 8, n = 255, and N = 85, which means ν = 3.
We define the sets ∆D = I0 ∪ I1 = {0, 1, 2, 4, 8, 18, 32, 64, 128} and ∆C = {0, 85, 170}.

Consequently, D is a [255, 9]2 code, while its dual code D⊥ has parameters [255, 246,≥ 4]2.
The code C has parameters [255, 3]2. Therefore, the code C ⋆ D has parameters [255, 27]2, and
its dual (C ⋆ D)⊥ has parameters [255, 288]2.
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This framework provides a PIR scheme of length 255, with a privacy level of 3, and a rate
of 228

255 . This rate is better than the one presented in Table 6 of [8] for the same privacy level,
despite having a lower storage rate. Therefore, our approach improves the constellation of
possible parameters.

Table 4.8 presents several code parameters following this method. We note that in Table
4.8, the BCH bound for the retrieval codes (D) is sharp and matches their minimum distance.
Moreover, by evaluating at zero, we also obtain a PIR scheme of length 256, privacy level 3, and
rate 229

256 .

C D D⊥ C ⋆ D (C ⋆ D)⊥ Privacy RPIR

[255, 3, 85]2 [255, 9]2 [255, 246, 4]2 [255, 27]2 [255, 246]2 3 228/255

[255, 3, 85]2 [255, 17]2 [255, 238, 6]2 [255, 51]2 [255, 204]2 5 204/255

[255, 3, 85]2 [255, 25]2 [255, 230, 8]2 [255, 75]2 [255, 180]2 7 180/255

[255, 3, 85]2 [255, 33]2 [255, 222, 10]2 [255, 99]2 [255, 156]2 9 156/255

[255, 3, 85]2 [255, 49]2 [255, 206, 14]2 [255, 123]2 [255, 132]2 13 132/255

[255, 3, 85]2 [255, 57]2 [255, 198, 16]2 [255, 147]2 [255, 108]2 15 108/255

[255, 3, 85]2 [255, 65]2 [255, 190, 18]2 [255, 171]2 [255, 84]2 17 84/255

[255, 3, 85]2 [255, 69]2 [255, 186, 20]2 [255, 183]2 [255, 72]2 19 72/255

Table 4.8: Subfield subcodes of one-variable J-affine codes of length 255 (Example 69).

∆C ∆D

{0, 85, 170} I0 ∪ I1
I0 ∪ I1 ∪ I3
I0 ∪ I1 ∪ I3 ∪ I5
I0 ∪ I1 ∪ I3 ∪ I5 ∪ I7
I0 ∪ I1 ∪ I3 ∪ I5 ∪ I7 ∪ I9 ∪ I11
I0 ∪ I1 ∪ I3 ∪ I5 ∪ I7 ∪ I9 ∪ I11 ∪ I13
I0 ∪ I1 ∪ I3 ∪ I5 ∪ I7 ∪ I9 ∪ I11 ∪ I13 ∪ I15
I0 ∪ I1 ∪ I3 ∪ I5 ∪ I7 ∪ I9 ∪ I11 ∪ I13 ∪ I15 ∪ I17

Table 4.9: Cyclotomic cosets used for codes in Table 4.8.

Lemma 70. If q = 2 and r is even then 3 | qr − 1, therefore there exist a PIR scheme with
qr − 1 servers, privacy 3, and rate

qr − 1− (3(r + 1))

qr − 1
.

4.2.2.2 Using Hyperbolic Codes

Consider the dual of a hyperbolic code, D′ = Hypq(s,m)⊥, with defining set ∆D′ . For each
point P ∈ ∆D′ , we associate the corresponding cyclotomic coset IP . We then define the new
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set ∆D =
⋃

P∈∆D′ IP . Let D denote the linear code with defining set ∆D. It is straightforward
that d(D⊥) ≥ s.

Example 71. Consider the case of two variables with m = 2 and q = 2, i.e. q3 = 8. We
evaluate at all points with nonzero coordinates, i.e., A1 = A2 = {1, α, . . . , αq−2}, thus n = 49.

Let D′ be an affine variety code defined by the set ∆D′ = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2)}.
To ensure that the defining set includes complete cyclotomic cosets, we consider the code D
with defining set

∆D = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2)} ∪ {(4, 0), (0, 4)}.

Clearly, we have d(D⊥) ≥ 4.
Now, define C as the code with defining set ∆C = {(0, 0), (1, 0), (2, 0), (4, 0)}. Then

C ⋆ D ={(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (0, 1), (0, 2), (0, 4), (1, 1), (2, 1), (4, 1),
(1, 2), (2, 2), (4, 2), (1, 4), (2, 4), (4, 4)}.

Therefore, the dimension of (C ⋆ D)⊥ is 30.

We now present a specific scenario where the parameters can be explicitly computed, pro-
viding PIR schemes with favorable parameters. Consider affine variety codes in two variables.
Let N1 − 1 | qr − 1 and N2 − 1 | q − 1. This choice of N2 ensures that the points of the form
(0, a) form minimal cyclotomic cosets, facilitating a selection of the set ∆1 that minimizes the
number of elements in the star product C ⋆ D.

As in the previous setting, consider the hyperbolic code Hypq(s, 2)
⊥ with defining set ∆D =⋃

P∈∆D′ IP , and define D as the linear code with this set. It is clear that d(D⊥) ≥ s. Next,
define C as the linear code with defining set

∆C = {(0, 0), (0, 1), (0, 2), . . . , (0, a)}.

Note that ∆C contains a + 1 elements, and since the maximum size is q, we have a ≤ q − 1.
Therefore

dim(C ⋆ D) ≤ (a+ 1) · dim(D),

and this fact motivates the goal of minimizing this dimension.
Let A = {a0 = 0 < a1 = 1 < a2 < · · · < aν} denote the ordered set of minimal representa-

tives of the cyclotomic cosets.

Theorem 72. Under the assumptions and notation above, consider 0, a1, a2 ∈ A, and define
the sets:

∆C = I(0,0) ∪ I(0,1) ∪ I(0,2) = {(0, 0), (0, 1), (0, 2)},

∆D = I(0,0) ∪ I(0,1) ∪ I(0,2) ∪ I(a1,0) ∪ I(a2,0).

Then, the codes C and D defined by ∆C and ∆D respectively provide a PIR scheme of length
nJ , privacy level 3, and rate at least nJ−(3·2r+5)

nJ
.
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Proof. From the footprint bound, we find that d(D⊥) = 4, giving a privacy level 3.
The set ∆D contains two cyclotomic cosets I(a1,0) and I(a2,0), each of size at most r, and

three singleton cosets, implying #∆D ≤ 2r + 3, and hence dim(D) ≤ 2r + 3.
To compute dim(C ⋆D), we must consider 3 · (2r) products between ∆C and the nontrivial

cosets in ∆D, plus the Minkowski sum ∆C + ∆C , which includes at most 5 elements if q > 4.
Therefore, #(C ⋆ D) ≤ 6r + 5, and hence dim((C ⋆ D)⊥) ≥ nJ − (6r + 5).

Example 73. Let F72 be the ambient field and r = 1, that is the subfield is F7. Take N1 = 49,
N2 = 7, and J = ∅, so nJ = 343. Then, by Theorem 72, we obtain a PIR scheme with length
343, privacy level 3, and rate 326

343 . Specifically, the code C has parameters [343, 3]7, and the dual
of D has parameters [343, 236, 4]7.

Compared to the first two rows in Table 4.5, this setup improves the PIR rate. The corre-
sponding rates are 323

343 and 324
343 , respectively, for the same privacy level t = 3, though our scheme

has a lower storage code rate Rs =
3

343 versus 4
343 in Table 4.5.

Proposition 74. Let C and D be subfield subcodes of J-affine variety codes of lengths N1 and
N2, with J = ∅. Assume q = 2, qr = 2r, N1 = 2r, and N2 = 2. Consider PIR schemes where
C is defined by ∆C = I(0,0), yielding a repetition code [2r+1, 1], i.e., a replicated database. We
compare these schemes with those based on Reed–Muller codes under the same privacy level.

(a) Let
∆D = I(0,0) ∪ I(1,0) ∪ I(0,1), ∆C = I(0,0).

Then, the star product PIR scheme has length nJ = 2r+1, privacy t = 3, and rate

nJ − (r + 2)

nJ
.

A Reed–Muller scheme with C = RM2(0, r + 1) and D = RM2(1, r + 1) gives D⊥ =
RM2(r − 1, r + 1) with the same privacy and rate.

(b) Let
∆D = {I(0,0), I(0,1), I(1,1), I(1,0), I(3,0), I(5,0)}.

Then, dim(D) ≤ 4r + 2, and d(D⊥) = 8, ensuring privacy t = 7. The rate is at least:

nJ − (4r + 2)

nJ
.

For a Reed–Muller construction with C = RM2(0, r + 1), D = RM2(2, r + 1), we also get
privacy t = 7, and

dim(D) =

(
r + 1

0

)
+

(
r + 1

1

)
+

(
r + 1

2

)
.

Our construction achieves a better PIR rate whenever(
r + 1

0

)
+

(
r + 1

1

)
+

(
r + 1

2

)
> 4r + 2, which holds for all r > 5.
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Example 75. We illustrate Proposition 74, item (b), by comparing the subfield subcode con-
struction of J-affine variety codes with the Reed–Muller-based PIR scheme under the same level
of privacy.

• For r = 7 and q = 2 (i.e. nJ = 256), the involved codes have the following parameters.

C D D⊥ (C ⋆ D)⊥

[256, 1] [256, 37] [256, 219, 8] [256, 219]

[256,1] [256,30] [256,228,8] [256,228]

Table 4.10: First row: RM-based construction; second row: subfield subcode of J-affine variety
code.

The PIR rate of the scheme based on the first row is 219
256 , while the rate of the one based

on the codes in the second row is 228
256 . This shows an improvement of the new construction

over the one based on Reed–Muller construction.

• For r = 8 and q = 2, (i.e. nJ = 512), the involved codes have the following parameters.

C D D⊥ (C ⋆ D⊥

[512, 1] [512, 46] [512, 466, 8] [512, 466]

[512,1] [512,34] [512,478,8] [512,478]

Table 4.11: First row: RM-based construction; second row: subfield subcode of J-affine variety
code.

The PIR rate of the scheme based on the first row is 466
512 ; whereas the rate of the one based

on the codes in the second row rises to 478
512 , again outperforming the construction based

on Reed Muller codes.

4.2.3 Comparison with Berman Codes

In this final section, we compare the construction based on subfield subcodes of J-affine variety
codes with a PIR scheme derived from Berman codes [39], which are defined over the binary
field. We consider the same setting as in Example 71, with the following parameters:

q = 2, m = 2, q3 = 8, nJ = 49.

Let D be the code defined by

∆D = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2)} ∪ {(4, 0), (0, 4)},

so that d(D⊥) ≥ 4, ensuring a privacy level of t = 3.
Now consider the defining set ∆C = {(0, 0)}. In this case, the dimension of (C ⋆ D)⊥ is

42. This construction results in a higher PIR rate compared to the scheme based on Berman
codes [39], in which the storage code C = DB7(0, 2) has parameters [49, 1]2, and the retrieval
code D = DB7(1, 2) has parameters [49, 13]2. Both schemes share the same storage rate Rs =
1/49 and privacy level t = 3.
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Specifically, our scheme achieves a PIR rate of 42/49, while the Berman code-based scheme
attains a PIR rate of 36/49. In the table below, the bolded rows highlight the parameters
obtained via our construction, whereas the shaded row corresponds to the scheme based on the
duals of Berman codes. For the same storage rate and privacy level, our construction offers a
superior PIR rate.

C D D⊥ C ⋆ D (C ⋆ D)⊥ RS Privacy RPIR

[49,1]2 [49,7,21]2 [49,42,4]2 [49,7]2 [49,42]2 1/49 3 42/49

[49,1]2 [49,10,20]2 [49,39,4]2 [49,10]2 [49,39]2 1/49 3 39/49

[49, 1]2 [49, 13, 16]2 [49, 36, 4]2 [49, 13]2 [49, 36]2 1/49 3 36/49

Table 4.12: Comparison of Berman codes-based scheme (shaded rows) with J-affine variety
codes-based scheme (boldface rows).

∆C ∆D

{(0, 0)} {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (4, 0), (0, 4)}
{(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (4, 0), (0, 4), (1, 1), (2, 2), (4, 4)}

Table 4.13: Cyclotomic cosets used for codes in Table 4.12.

Remark 76. In general, when selecting the storage code C = DBn(rC ,m) and the retrieval
code D = DBn(rD,m) as given in [39, Table 1], and setting m = 2 with (rC , rD) = (0, 1),
the resulting scheme has t = 3, a storage code rate of Rs = 1

n2 , and a retrieval rate of (n−1)2

n2 .
Specifically, the parameters of the involved codes are as follows:

C : [n2, 1, 49], D : [n2, 13, 7], D⊥ : [n2, 36, 4].

For comparison reasons, when choosing n = qs−1 = 2s−1, to achieve the same privacy level
and storage rate while obtaining a better retrieval rate, our scheme must satisfy the conditions

dim((C ⋆ D)⊥) = dim(D⊥) > (n− 1)2

n2 − dim(D⊥) < n2 − (n− 1)2 = 2s+1 + 3

dim(D) < 2s+1 − 3.

Since we fix t = 3, we know that ∆D′ = {(i, j)|(i + 1)(j + 1) < 4}, so #∆D′ = 5. Thus, if we
have

#
(
∪P∈∆D′ IP

)
< 2s+1 − 8,

i.e., #∆D < 2s+1− 3, then dim((C ⋆D)⊥) > (n− 1)2, which gives better retrieval rate than the
scheme described in [39].
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4.3 Applications to the Multi-Party Computation

Secure multi-party computation (MPC) allows n players to jointly compute a function while
ensuring both output correctness and input privacy, even if some players cheat. On the other
hand, secret sharing is a method of distributing a secret among a group of n participants so that
no individual has meaningful information alone, but a sufficient part of the group can recon-
struct it. Certain properties of linear codes help design secret-sharing schemes that allow secure
computations, even if up to t participants try to compromise the system. The application of
secret sharing in the context of unconditionally secure MPC protocols relies on an additional
multiplication property, allowing players to multiply two secret-shared elements by locally con-
verting their shares of the two secrets into a combined sharing of their product. Linear codes
with good square properties can be used to create multiplicative secret-sharing schemes (see
[22] for a formal definition). More specifically, if a linear code C satisfies the conditions that
the minimum distance of its squared code C⋆2 is at least t + 2, and the minimum distance of
its dual code C⊥ is also at least t + 2, then it enables the construction of a t-strongly multi-
plicative secret sharing scheme. This, in turn, is sufficient to build a multiparty computation
protocol that is information-theoretically secure against up to t corrupted players. Threfore, it
is desirable for creating secure MPC protocols based on a linear code C that the parameters of
the code fulfill the dimension of the code and the minimum distance d(C⋆2) are big enough and
min{d(C⊥), d(C⋆2)} ≥ t+ 2 to provide information-theoretical security.

Controlling such a series of parameters from a single code is not an easy task; in this section,
we will provide some strategies for tackling those parameters while constructing the codes from
some well-known families of cartesian product codes.

We will first consider subfield subcodes of cartesian Products codes given by some special
chosen cyclotomic cosets. Consider the field Fq2 ⊇ Fq. For i = 1, . . . ,m take Ni | (q + 1)
and ai = Ni(q − 1). Let si ∈ Z>0 be such that 1 ≤ si < ai

Ni
= q − 1, and define the set

Si = {0, Ni, 2Ni, . . . , siNi}. We will denote by C∆s,Z the affine variety code with a defining set

∆s = S1 × · · · × Sm (4.2)

Lemma 77. Let (α1 ·N1, . . . , αm ·Nm) ∈ ∆s, then its cyclotomic coset has a unique point.

Proof. If we compute q · (α1N1, . . . , αmNm) mod (a1, . . . , am), then for each coordinate i =
1, . . . ,m, we have that qαiNi = αiNi(q − 1) + αiNi thus qαiNi ≡ αiNi mod Ni(q − 1). The
process for qk is similar just considering the k times multiplication.

Remark 78. Note that, if si < q − 2, then we are not considering all the multiples of Ni in
the set Si. As we have proved in Lemma 77, each point constitutes its own cyclotomic coset,
and therefore the codes C∆s,Z and S(C∆s,Z) have the same parameters. The reason for not
considering all the multiples is that in the code C⋆2

∆s,Z
the minimum distance increases as we

will show later.

Lemma 79. The code C⋆2
∆s,Z

has defining set

∆̂s = Ŝ1 × · · · × Ŝm (4.3)

where Ŝi = {0, Ni, 2Ni, . . . , 2siNi}. The biggest gap in Ŝi is max{Ni− 1, Ni(q− 1)− 2siNi− 1},
for i ∈ {1, . . . ,m}.
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Note that, by Lemma 77, the codes C⋆2
∆s,Z

and S(C⋆2
∆s,Z

) have the same parameters. Thus,
from the previous lemma, we have the following result.

Theorem 80. Consider a set ∆s defined as in Equation (4.2). Then

k(S(C∆s,Z)) =
m∏
i=1

(si + 1) and d(S(C⋆2
∆s,Z)) ≥

m1∏
i=1

di,

where di = max{Ni, Ni(q − 1)− 2siNi}.

Example 81. Let q = 19, N1 = N2 = 2 and s1 = s2 = 5. We have a code C of length n = 362

with d(S(C ⋆ C)) = 162 and k(S(C)) = 36.

Let us now consider the cartesian product of Reed-Solomon Codes. Let Fq be the finite field
with q elements. For i = 1, . . .m, choose si, ai ∈ Z≥0 such that si < ai < q−1. For i = 1, . . . ,m
consider Si = {0, 1, . . . , si − 1} and let C be the affine variety codes with defined set

∆□ = S1 × · · · × Sm. (4.4)

A particular example of this type of code is the cube code family in [15], where all the si are
equal.

Theorem 82. Let C∆□,Z the monomial cartesian code with defining set ∆□ as in Equation (4.4).
We have that :

n(C∆□,Z) =
∏

ai, k(C∆□,Z) =
∏
i=1

si, d(C⋆2
∆□,Z) ≥

∏
i=1

(ai−2si+2), d(C⊥
∆□,Z) ≥ min{si}+1.

Proof. The length and dimension are clear from the definition. Now, C⋆2
∆□,Z has defining set

T1 × · · · × Tm where Ti = {0, 1, . . . , 2si − 2}, thus a bound for the minimum distance is
∏

di,
where di = ai−2si+2. Finally, we will bound the distance of the dual code using the foot-print
bound, i.e. d(C⊥

∆□,Z) ≥ min{
∏
(bi + 1) | (b1, . . . , bm) /∈ ∆□} = min{si}+ 1.

Now we are in conditions in providing a mix construction from the previous results. For
constructing the code, in one of the variables, we will take a cyclic code (a subfield subcode of
a Reed-Solomon code), and in the remaining variables, we use Reed-Solomon codes. Consider
the field Fqr and let C∆ be the cyclic code over Fq with defining set ∆. For j = 1, . . . ,m, we
consider 2 ≤ nj ≤ q and we choose Cj to be the code with parameters [nj , nj , 1], i,e, its defining
set is Sj = {0, 1, . . . , nj − 1}. Let C be the affine variety codes with defined set

∆+ = ∆× S1 × · · · × Sm (4.5)

Theorem 83. Let C∆+,Z the monomial cartesian code where the set ∆+ is defined in Equa-
tion (4.5). Therefore we have a linear code over Fq with parameters :

• n(C∆+,Z) = n(C∆,Z)
∏m

j=1 nj,

• k(C∆+,Z) = k(C∆,Z)
∏m

j=1 nj,
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• d(C⋆2

∆+,Z) ≥ d(C⋆2

∆ ).

Proof. First of all, note that since it is a Cartesian product of complete cyclotomic cosets, thus
the defining set is also a union of complete cyclotomic cosets. Therefore, the parameters remain
the same over both fields Fq and Fqr . It is clear that the length is the product of the lengths,
and the dimension is the product of the dimensions. Let us denote ∆2 as the defining set of C⋆2

∆ ,
then the defining set of C⋆2

∆+,Z is ∆2×S1×· · ·×Sm. Hence, from Equation (1.4), one concludes
that the distance of C⋆2

∆+,Z is also the product of the distances.

Example 84. Let C∆ be the de cyclic code defined in [17] with parameters [127, 15, 55] and
d(C⋆2

∆ ) ≥ 19. Consider m = 2 with nj = q = 2, then we have a code C∆+,Z with parameters
[508, 60] and d(C⋆2

∆+) ≥ 19. This construction improves [19, Table 1] where they provide a
[510, 54] code C with d(C⋆2) ≥ 18, whereas we get better parameters from a shorter length
code.

Note that, in a more general setting, we could have m = m1 +m2, so we will consider for
m1 variables j = 1, . . . ,m1 and 2 ≤ nj ≤ q and Cj the code with parameters [nj , nj , 1] (i.e.
its defining set is Sj = {0, 1, . . . , nj − 1}); and for for j = 1, . . . ,m2 we consider 2 ≤ nj ≤ q
and Cj the code with parameters [nj , 1, nj ] (i.e. its defining set is Sj = {0}). If we denote by
∆m1+m2 = ∆m1 × ∆m2 its defining set then it is clear that C∆m1+m2

is a linear code over Fq

such that

• n(C∆m1+m2
) =

∏m
j=1 nj .

• k(C∆m1+m2
) =

∏m1
j=1 nj .

• d(C⋆2
∆m1+m2

) ≥
∏m2

j=1 nj .

In other words, we can balance k(C∆m1+m2
) and d(C⋆2

∆m1+m2
) in terms of the number component

codes we chose for ∆m1+m2 = ∆m1 ×∆m2 .
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Conclusion and Future Work

By leveraging the structure of cyclic codes, we have constructed binary Private Information
Retrieval (PIR) schemes that accommodate the presence of colluding servers, following the
general framework introduced in [23]. In particular, we present a new family of optimal binary
PIR schemes. A key advantage of our constructions over classical PIR schemes derived from
Maximum Distance Separable (MDS) codes is that our schemes operate over the binary field
F2, thereby avoiding the need for large field extensions. This simplification not only improves
computational efficiency but also enhances the practicality of implementation.

Moreover, our binary PIR schemes encompass a broader set of parameters compared to those
based on binary Reed–Muller codes. In several cases, our constructions even outperform the
latter in terms of rate and efficiency. An additional benefit of our schemes is the reduction in the
cost associated with generating query vectors. Specifically, since the dimension of the retrieval
code is smaller, the user requires less randomness to produce valid queries, leading to a more
efficient query generation process.

In a different line of work, we investigated PIR in the single-server setting by exploiting the
algebraic properties of linear codes defined over finite commutative rings. We proposed a novel
PIR protocol based on such ring-linear codes, which is specifically designed to resist the rank
difference attack described in [10]. This type of attack identifies structural vulnerabilities in the
query by observing changes in rank when certain rows of the query matrix are removed. Our
protocol may be viewed as a modification of the scheme introduced in [37], adjusted to provide
enhanced robustness against this class of attacks.

While our proposed scheme does not attain the highest retrieval rate when compared to
other rank-resistant protocols such as the one in [63], it possesses notable advantages in terms
of computational complexity. All operations are performed modulo Zm, thereby avoiding costly
arithmetic over large field extensions. This simplification leads to a significant reduction in the
server’s computational load, as only modular matrix multiplications are required.

Although the rate of our protocol is lower than that of [37], it offers greater security against
adversaries who exploit the algebraic structure of the queries. Therefore, it serves as a viable
alternative in scenarios where privacy is of greater concern than communication efficiency.

A natural direction for future work is to investigate whether the enhanced single-server PIR
framework proposed in [36], based on the approach introduced in [37] to resist rank difference
attacks in submatrices of the query, can be adapted to the ring-based setting.

Lastly, we explored the componentwise (Schur) product of monomial–Cartesian codes through
its connection to the Minkowski sum of the exponent sets defining these codes. We demonstrated
that J-affine variety codes are particularly well suited for this operation, thereby extending
known results for cyclic, Reed–Muller, hyperbolic, and toric codes. This structural insight en-
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abled us to construct CSS–T type quantum error-correcting codes from weighted Reed–Muller
codes, as well as from binary subfield-subcodes of J-affine variety codes. The resulting quantum
codes exhibit improved parameters relative to those previously available in the literature.

In addition, we proposed new PIR schemes for settings with multiple colluding servers,
based on both hyperbolic codes and subfield-subcodes of J-affine variety codes. These new
constructions demonstrate superior performance when compared with existing schemes, further
highlighting the utility of our approach in both classical and quantum coding contexts.

We also comment on potential extensions to secure multi-party computation (MPC), which
enables multiple parties to jointly compute a function while preserving both input privacy and
output correctness. Multiplicative secret-sharing schemes based on linear codes require a large
code dimension, a large minimum distance of the dual code, and a high minimum distance of the
code’s componentwise square [22]. As noted in Remark 31, the dual of the subfield-subcode of
the componentwise product of two J–affine variety codes does not, in general, coincide with the
componentwise product of their dual subfield-subcodes. We leave the precise conditions under
which this equality holds for future work.

All the explicit examples provided throughout the thesis were obtained using the computer
algebra system Magma, as detailed in the Appendix [11].
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Appendix: MAGMA code

In this appendix, we provide the Magma code used throughout the thesis. Each section corre-
sponds to a specific computation or construction discussed in the main chapters.

A.1 PIR for Several Servers

This Magma code constructs Private Information Retrieval Schemes for multiple servers based
on cyclic codes (Chapter 2.1). You can produce the code that gives the first row’s parameters
of Table 2.1.

1 K := GF(2); // Binary field
2 n := 127; // Code length
3

4 // Factorize the polynomial x^127 - 1 over GF(2)
5 Q<y> := PolynomialRing(K);
6 F := Factorization(y^127 - 1);
7

8 // Generate cyclic storage code C
9 C := CyclicCode (127, F[2][1]*F[3][1]*F[4][1]*F[5][1]*F[6][1]*F[7][1]*F

[8][1]*F[9][1]*F[10][1]*F[11][1]*F[12][1]*F[13][1]*F[15][1]*F
[16][1]*F[17][1]*F[18][1]*F[19][1]);

10

11 // Compute code parameters for C
12 d1 := Dimension(C);
13 Min1 := MinimumDistance(C);
14

15 // Generate cyclic retrieval code D
16 F11 := F[2][1]*F[3][1]*F[5][1]*F[6][1]*F[8][1]*F[9][1]*F[10][1]*F

[11][1]*F[12][1]*F[13][1]*F[15][1]*F[16][1]*F[17][1]*F[19][1];
17 D := CyclicCode (127, F11);
18

19 // Compute code parameters for D and its dual
20 d2 := Dimension(D);
21 dual_d2 := Dimension(Dual(D));
22 Min2 := MinimumDistance(D);
23 dual_Min2 := MinimumDistance(Dual(D));
24

25 // Get generator matrices
26 G1 := GeneratorMatrix(C);
27 G2 := GeneratorMatrix(D);
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28

29 // Construct star product (Schur product) of C and D
30 M := Matrix(GF(2), d1*d2 , n, [0: i in [1..d1*d2*n]]);
31 for i in [0..d1 -1] do
32 for k in [0..d2 -1] do
33 for j in [1..n] do
34 M[k+1+i*d2][j] := G2[k+1][j] * G1[i+1][j]; // Component -

wise multiplication
35 end for;
36 end for;
37 end for;
38

39 // Star product of C and D
40 C3 := LinearCode(M);
41 d3 := Dimension(Dual(C3)); // Dimension of dual(C \star D)
42 // Print results
43 printf "\n";
44 printf "Code␣C␣Dimension␣=␣%o,␣\n", d1;
45 printf "Code␣D␣Dual␣Dimension␣=␣%o,␣Code␣D␣Dual␣Minimum␣Weight␣=␣%o,␣\n

",
46 dual_d2 , dual_Min2;
47 printf "Code␣C␣\star␣D␣Dual␣Dimension␣=␣%o,␣\n", d3;
48 printf "\n";

A.2 PIR for Single Server

This Magma implementation corresponds to the single-server PIR scheme described in Exam-
ple 55 of Chapter 3. While the same linear codes are used, both the database and the random
values in the query matrix are chosen randomly. Consequently, , the queries and responses may
differ from those presented in the example.

1 s:=2; // number of component
2 t:=3; // number of file
3 L:=1; // number of row of files
4 d:=1; // desired file index
5 // Following part generates inner code: Cin is inner code
6 //1. Generate first component for Inner Code over Z_9
7 P1 <x> := PolynomialRing(IntegerRing (9));
8 n:= 13; //code length x^13-1
9 f:= CyclotomicFactors(IntegerRing (9),n); // Factors of x^13-1 over Z_9

10 C1:= CyclicCode(n, f[1]*f[2]*f[3]+3*f[2]*f[1]); // First Component for
Inner Code

11 D1:=Dual(C1); // Dual of the first Component
12 C3:= CyclicCode(n, 3*f[2]*f[1]); // non -free part of C1
13 D3:=Dual(C3); // Dual of Code C3
14 GG1:= GeneratorMatrix(C1);
15 G1:= Matrix(IntegerRing (),GG1); // Generator Matrix of C1
16 //2. Generate first component for Inner Code over Z_25
17 P2 <a> := PolynomialRing(IntegerRing (25));
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18 f2:= CyclotomicFactors(IntegerRing (25),n); // Factors of x^13-1 over
Z_25

19 C2:= CyclicCode(n, f2[1]*f2[2]*f2 [3]+5* f2[2]*f2[1]); // Second Component
for Inner Code

20 D2:=Dual(C2); // Dual Code of the second Component
21 C4:= CyclicCode(n, 5*f2[2]* f2[1]); // non -free part of C2
22 D4:=Dual(C4); // Dual of Code C4
23 GG2:= GeneratorMatrix(C2);
24 G2:= Matrix(IntegerRing (),GG2); // Generator Matrix of C2
25 Rankc1 := Rank(GeneratorMatrix(C1)); // Number of Rows of Generator

Matrix of C1
26 Rankc2 := Rank(GeneratorMatrix(C2)); // Number of Rows of Generator

Matrix of C2
27 GG3:= GeneratorMatrix(C3);
28 G3:= Matrix(IntegerRing (),GG3); // Generator Matrix of C3
29 GG4:= GeneratorMatrix(C4);
30 G4:= Matrix(IntegerRing (),GG4); // Generator Matrix of C4
31 Rankc3 := Rank(GeneratorMatrix(C3)); // Number of Rows of Generator

Matrix of C3
32 Rankc4 := Rank(GeneratorMatrix(C4)); // Number of Rows of Generator

Matrix of C4
33 // Following part Generate Inner Code Cin = (C1 ,C2)
34 M1:= ZeroMatrix(IntegerRing (225) , Rankc1* Rankc2 , 13);
35 for j in [1..13] do
36 for i in [1.. Rankc1] do
37 for k in [1.. Rankc2] do
38 M1[k+((i-1)* Rankc2)][j]:= CRT([G1[i][j],G2[k][j]] ,[9 ,25]);
39 end for;
40 end for;
41 end for;
42 Cin:= LinearCode(M1); // Cin= CRT(Nf_Cin , Cin2)
43 Din:=Dual(Cin); //Dual Code of Cin
44 Gin:= GeneratorMatrix(Cin); // Generator Matrix of Cin
45 Hin:= GeneratorMatrix(Din); // Parity Check Matrix of Cin
46 // Following part Generate Inner Code nf_Cin = (C1 ,C2)
47 M2:= ZeroMatrix(IntegerRing (225) , Rankc3* Rankc4 , 13);
48 for j in [1..13] do
49 for i in [1.. Rankc3] do
50 for k in [1.. Rankc4] do
51 M2[k+((i-1)* Rankc4)][j]:= CRT([G3[i][j],G4[k][j]] ,[9 ,25]);
52 end for;
53 end for;
54 end for;
55 nf_Cin := LinearCode(M2); //non -free part of Cin
56 nf_Din :=Dual(nf_Cin ); // Dual of nf_Cin
57 G_nf_Cin := GeneratorMatrix(nf_Cin ); // Generator Matrix of nf_Cin
58 G_nf_Din := GeneratorMatrix(nf_Din); // Parity Check Matrix of nf_Cin
59 // Following part generates outer code: s x s : 2x2 Cout= [Tilde(C_1),

Tilde(C_2)]M, M is 2x2 full rank Matrix
60 P3 <xx >:= PolynomialRing(IntegerRing (225));
61 ff:=xx^13-1;
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62 Q11 <yy >:=quo < P3|ff >;
63 QC2:= ZeroMatrix(Q11 ,1,s);
64 for j in [1..s] do
65 QC2 [1][j]:= Random(Q11);
66 end for;
67 //1. Generate Tilde(C_1)
68 t1:= f[2]*f[3]*f[4]+3*f[3]*f[2];
69 t3:= f2[3]*f2[2]*f2 [4]+5* f2[2]*f2[3];
70 v1:= Vector(IntegerRing (),Coefficients(t1));
71 v2:= ZeroMatrix(IntegerRing () ,1,13);
72 InsertBlock (~v2 ,v1 ,1,1);
73 v3:= Vector(IntegerRing (),Coefficients(t3));
74 v4:= ZeroMatrix(IntegerRing () ,1,13);
75 InsertBlock (~v4 ,v3 ,1,1);
76 r1:= RandomMatrix(IntegerRing (225) ,1,13);
77 for ii in [1..13] do
78 r1[1][ii]:=CRT([v2[1][ii],v4[1][ii]] ,[9 ,25]);
79 end for;
80 QC1:=Q11! Eltseq(r1[1]);
81 QC2 [1][1]:= QC1;
82 //2. Generate Tilde(C_2)
83 t3:= f[2]*f[3]*f[4]*f[5]+3*f[3]*f[2]*f[4];
84 t4:= f2[3]*f2[2]*f2 [4]+5* f2[2]*f2[3];
85 v5:= Vector(IntegerRing (),Coefficients(t3));
86 v6:= ZeroMatrix(IntegerRing () ,1,13);
87 InsertBlock (~v6 ,v5 ,1,1);
88 v7:= Vector(IntegerRing (),Coefficients(t4));
89 v8:= ZeroMatrix(IntegerRing () ,1,13);
90 InsertBlock (~v8 ,v7 ,1,1);
91 r2:= RandomMatrix(IntegerRing (225) ,1,13);
92 for ii in [1..13] do
93 r2[1][ii]:=CRT([v6[1][ii],v8[1][ii]] ,[9 ,25]);
94 end for;
95 QC1:=Q11! Eltseq(r2[1]);
96 QC2 [1][2]:= QC1;
97 //3. Generate Matrix Product Code Cout=(Tilde(C_1),Tilde(C_2))M over R
98 QC:= ZeroMatrix(Q11 ,s,s);
99 M:= Matrix(Q11 ,s,s,[ 1,1,0,1]);

100 for i in [1..s] do
101 for j in [1..s] do
102 QC[i][j]:=M[i][j]*QC2 [1][i]; // QC is the generator matrix of Outer

Code in R
103 end for;
104 end for;
105 // Following part generate a code which we will use for selecting

element for matrix U where elements of U in nf(Tilde(C_2)
intersection Dual(Cin)\ Cin)

106 C5:= CyclicCode(n, 3*f[3]*f[4]);
107 D5:=Dual(C5);
108 C6:= CyclicCode(n, 5*f2[3]);
109 D6:=Dual(C6);



Appendix 93

110 GG5:= GeneratorMatrix(C5);
111 G5:= Matrix(IntegerRing (),GG5);
112 GG6:= GeneratorMatrix(C6);
113 G6:= Matrix(IntegerRing (),GG6);
114 Rankc5 := Rank(GeneratorMatrix(C5));
115 Rankc6 := Rank(GeneratorMatrix(C6));
116 M3:= ZeroMatrix(IntegerRing (225) , Rankc5* Rankc6 , 13);
117 for j in [1..13] do
118 for i in [1.. Rankc5] do
119 for k in [1.. Rankc6] do
120 M3[k+((i-1)* Rankc6)][j]:= CRT([G5[i][j],G6[k][j]] ,[9 ,25]);
121 end for;
122 end for;
123 end for;
124 Cout1:= LinearCode(M3);
125 Dout1:=Dual(Cout1);
126 // Following part write the outer code Cout in Z_m which is named Cout
127 Cout_Zm := ZeroMatrix(IntegerRing (225) ,13*(s) ,13*s); // Cout_Zm is a

projection of QC in Z_m
128 for i in [1..s] do
129 for j in [1..s] do
130 v9:= Vector(IntegerRing (225) ,Coefficients(QC[i][j]));
131 v10:= ZeroMatrix(IntegerRing (225) ,1,13);
132 InsertBlock (~v10 ,v9 ,1,1);
133 M4:= ZeroMatrix(IntegerRing (225) ,13,13);
134 InsertBlock (~M4 , v10 ,1,1);
135 Y:= Vector(IntegerRing (225),M4[1]);
136 for i in [2..13] do
137 Rotate (~Y,1);
138 InsertBlock (~M4 ,Y,i,1);
139 end for;
140 InsertBlock (~Cout_Zm ,M4 ,13*(i-1)+1, 13*(j-1)+1);
141 end for;
142 end for;
143 Cout:= LinearCode(Cout_Zm); // The Outer Code Cout
144 // Database Setup
145 DB:= ZeroMatrix(Q11 ,1,L*t);
146 for i in [1..t*L] do
147 DB[1][i]:= Random(IntegerRing (15));
148 end for;
149 Database := ChangeRing(DB,Q11);
150 //Query Generation Process
151 A:= ZeroMatrix(Q11 ,L*t,s); // Random elements in R
152 a1:= ZeroMatrix(Q11 ,1,s);
153 W:= ZeroMatrix(Q11 , L*t,s); // Encoding matrix of A, W= A*QC , where QC

is a generator matrix of outer code in R
154 E:= ZeroMatrix(Q11 , L*t,s); // Random Elements in nf(Cin)
155 e:= ZeroMatrix(Q11 ,1,s);
156 e1:= ZeroMatrix(Q11 ,1,1);
157 U:= ZeroMatrix(Q11 ,L*t,s); // Random Elements in nf(Tilde(C_2)

intersection Dual(Cin)\ Cin)
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158 Delta:= ZeroMatrix(Q11 ,L*t,s); // Delta=W^i+E^i+U^i
159 // Folllowing Part select random matrix A and encode with outer code and

get W
160 for i in [1..L*t] do
161 for j in [1..s] do
162 a1[1][j]:=15* Random(Q11);
163 A[i][j]:= a1[1][j];
164 end for;
165 c:=a1*QC;
166 InsertBlock (~W,c,i,1);
167 end for;
168 // Following Part Generate matrix E which has elements in nf(Cin)
169 for i in [1..L*t] do
170 for j in [1..s] do
171 e[1][j]:= Q11 ! Eltseq(Random(nf_Cin ));
172 end for;
173 InsertBlock (~E,e,i,1);
174 end for;
175 // Following Part Generate matrix U which has elements in nf(Tilde(C_2)

intersection Dual(Cin)\ Cin)
176 for i in [0..L-1] do
177 u:= Random(Cout1);
178 U[((d-1)*L)+1+i][1+i]:= Q11 ! Eltseq(u);
179 end for;
180 //Query =[A || Delta]
181 Delta:=E+W+U;
182 // Server Response R=[R1||R2]=[ Database*A|| Database*Delta]
183 R1:= Database*A; //R1
184 R2:= Database *Delta; //R2
185 // Recovering Process
186 R1_QC:= R1*QC; // User Calculate: R1*Cout= Database*A*QC
187 Database_EU := R2- R1_QC; // User Calculate R2 -R1*Cout= Databese *(E+U)
188 // Following part Solve the system of Equations in Z_9
189 h1:= ZeroMatrix(IntegerRing (9),L,s*13); // Calculate [Databese *(E+U)]*

Dual(C1)] C1 is the first component code of Cin in Z_9
190 h2:= ZeroMatrix(IntegerRing (9) ,1,s*13); // Calculate U*Dual(C1) in Z_9

then solve equation h1 and h2 to find the desired file
191 for i in [1..1] do
192 for j in [1..s] do
193 h3:= Vector(IntegerRing (9),Coefficients(Database_EU [i][1+j-1]));
194 h4:= ZeroMatrix(IntegerRing (9) ,1,13);
195 InsertBlock (~h4 ,h3 ,1,1);
196 h5:= h4*Transpose(GeneratorMatrix(Dual(C1)));
197 InsertBlock (~h1 , h5,i,(j-1) *13+1 );
198 end for;
199 end for;
200 for j in [1..s] do
201 for i in [1..1] do
202 h6:= Vector(IntegerRing (9),Coefficients(U[((d-1)*s)+i][1+(j-1)]));
203 h7:= ZeroMatrix(IntegerRing (9) ,1,13);
204 InsertBlock (~h7 ,h6 ,1,1);
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205 h8:=h7*Transpose(GeneratorMatrix(Dual(C1)));
206 InsertBlock (~h2 , h8,i,(j-1) *13+1 );
207 end for;
208 end for;
209 s1 ,s2:= Solution(h2,h1);
210 // Following part Solve the system of Equations in Z_15
211 h9:= ZeroMatrix(IntegerRing (25),L,s*13); // Calculate [Databese *(E+U)]*

Dual(C2)] C2 is the second component code of Cin in Z_15
212 h10:= ZeroMatrix(IntegerRing (25) ,1,s*13); // Calculate U*Dual(C1) in

Z_15 then solve equation h1 and h2 to find the desired file
213 for i in [1..1] do
214 for j in [1..1] do
215 h11:= Vector(IntegerRing (25),Coefficients(Database_EU [i][1+j-1]));
216 h12:= ZeroMatrix(IntegerRing (25) ,1,13);
217 InsertBlock (~h12 ,h11 ,1,1);
218 h13:=h12* Transpose(GeneratorMatrix(Dual(C2)));
219 InsertBlock (~h9 , h13 ,i,(j-1) *13+1 );
220 end for;
221 end for;
222 for j in [1..1] do
223 for i in [1..1] do
224 h14:= Vector(IntegerRing (25),Coefficients(U[((d-1)*s)+i][1+(j-1)]));
225 h15:= ZeroMatrix(IntegerRing (25) ,1,13);
226 InsertBlock (~h15 ,h14 ,1,1);
227 h16:=h15*Transpose(GeneratorMatrix(Dual(C2)));
228 InsertBlock (~h10 , h16 ,i,(j-1) *13+1 );
229 end for;
230 end for;
231 s3 ,s4:= Solution(h10 ,h9);
232 Desired_File :=CRT([ Matrix(IntegerRing (),s1),Matrix(IntegerRing (),s3)

],[9,25]) [1][1] mod 15; // Apply CRT to solution in Z_9 and Z_15
233 Desired_File;
234 Database [1][1];

A.3 Quantum CSS-T Code Construction from WRM Code

The following Magma implementation corresponds to the construction of a quantum CSS-T
code based on weighted Reed-Muller codes, as described in Section 4.1.1. In particular, it
generates the code given in the first row of Table 4.1.

1 q := 2; // Field GF(q)
2 m := 7; // Number of variables
3 s := 5;
4 weights := [1,2,2,2,2,2,2]; // Weights
5

6 // Constructing the monomial set
7 function GenerateMonomials(q, s, m, weights)
8 B := []; // Monomial set
9 for I in CartesianProduct ([[0..q-1] : i in [1..m]]) do

10 if &+[ weights[j] * I[j] : j in [1..m]] le s then
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11 Append (~B, [I[k] : k in [1..m]]);
12 end if;
13 end for;
14 return B;
15 end function;
16

17 // Constructing the evaluation points
18 function GenerateEvaluationPoints(q, m)
19 P := []; // Set of points
20 for P_set in CartesianProduct ([[0..q-1] : i in [1..m]]) do
21 Append (~P, [P_set[j] : j in [1..m]]);
22 end for;
23 return P;
24 end function;
25

26 // Constructing the generator matrix
27 function GenerateCodeMatrix(B, P, q)
28 M := ZeroMatrix(GF(q), #B, #P);
29 for i in [1..#B] do
30 for j in [1..#P] do
31 value := &*[P[j][k]^B[i][k] : k in [1..#B[i]]];
32 M[i][j] := value;
33 end for;
34 end for;
35 return M;
36 end function;
37

38 // Generating the codes
39 B := GenerateMonomials(q, s, m, weights);
40 P := GenerateEvaluationPoints(q, m);
41 M := GenerateCodeMatrix(B, P, q);
42 C1 := LinearCode(M); //WRM(s,m,weights)
43 D1:=Dual(C1);
44 G1:= GeneratorMatrix(C1);
45 R1:= Rank(G1);
46

47 // Computing the star product
48 M1:= ZeroMatrix(GF(q), R1* R1, q^m);
49 for j in [1.. q^m] do
50 for i in [1.. R1] do
51 for k in [1.. R1] do
52 M1[k+((i-1)* R1)][j]:= G1[i][j]*G1[k][j];
53 end for;
54 end for;
55 end for;
56

57 sqC1:= LinearCode(M1); // Square of C1: C1\star C1
58 sqD1:=Dual(sqC1); // Dual(C1*C2)
59 G11:= GeneratorMatrix(sqC1); // Generator Matrix of : C1\star C1
60

61 RM1:= ReedMullerCode (1,m); // First -order binary Reed -Muller code of
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length 2^m
62

63 (RM1 meet sqD1) eq RM1; //Check the condition C2 \subseteq Dual( C1\
star C1)

64 Dimension(RM1); // Dimension of RM(1,m)
65 Dimension(C1)- Dimension(RM1); // Dimension of quantum CSS -T code
66 MinimumDistance(Dual(RM1)); // Minimum Distance of quantum CSS -T code

A.4 Quantum CSS-T Code Construction from J-Affine Code

The following Magma code is used for the construction of CSS-T codes from the subfield
subcode of a J-affine variety code, as explained in Section 4.1.2. Specifically, it produces the
code parameters corresponding to the third row of Table 4.2.

1 q := 128; // q = 2^7
2 F := GF(q); // Finite field GF(q)
3 s1 := 128;
4 s2 := 2;
5

6 // Define polynomial ring for bivariate affine variety
7 R<x, y> := PolynomialRing(F, 2);
8

9 // Define affine variety using ideals
10 I := ideal <R | x^s1 - x, y^s2 - y>;
11 V := Variety(I); // Affine variety
12

13 // Collect points for the code
14 points := {@ [p[1], p[2]] : p in V @}; // Gather affine variety points
15

16 // Function to convert Galois elements to integers
17 ToInteger := function(el , maxValue , isX)
18 if el eq 0 then
19 return 0; // Directly return 0 for zero
20 elif isX then
21 return Log(F.1, el) mod (maxValue -1); // Transformation for x (

mod s1 -1)
22 else
23 return (Log(F.1, el) mod (maxValue)); // Transformation for y (

mod s2 -1)
24 end if;
25 end function;
26

27 // Function to convert a point to integer representation
28 ConvertPoint := function(point)
29 x_val := ToInteger(point[1], s1, true);
30 y_val := ToInteger(point[2], s2, false);
31 if x_val eq 0 and point [1] ne 0 then
32 x_val := s1 -1; // Handle special case for x
33 end if;
34 if y_val eq 0 and point [2] ne 0 then
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35 y_val := s2 -1; // Handle special case for y
36 end if;
37 return [x_val , y_val ];
38 end function;
39

40 // Function to generate cyclotomic cosets
41 CyclotomicCosets := function(points)
42 cosets := [];
43 seen := [];
44 for p in points do
45 if p notin seen then
46 // Compute cyclotomic coset
47 coset := {@
48 [p[1]^(2^k), p[2]^(2^k)] : k in [0..# points -1]
49 @};
50 // Add converted coset
51 transformed_coset := {@ ConvertPoint(c) : c in coset @};
52 Append (~cosets , transformed_coset);
53 seen cat:= SetToSequence(coset);
54 end if;
55 end for;
56 return cosets;
57 end function;
58

59 // Function to compute union of cyclotomic cosets
60 UnionOfCosets := function(cosets , indices)
61 union_set := {@ @}; // Create empty set
62 for idx in indices do
63 union_set join:= cosets[idx]; // Merge specified cosets
64 end for;
65 return union_set;
66 end function;
67

68 // Compute cyclotomic cosets
69 cosets := CyclotomicCosets(points);
70

71 // Print cyclotomic cosets
72 printf "\nTwo -dimensional␣cyclotomic␣cosets␣(as␣integers):\n";
73 for idx in [1..# cosets] do
74 printf "Coset␣%o:\n", idx;
75 for p in cosets[idx] do
76 printf "%o\n", p;
77 end for;
78 end for;
79

80 // Example: Take union of Cosets
81 union_result1 := UnionOfCosets(cosets , [1,2,5,7,6,9]);
82 printf "\nUnion␣of␣Coset␣1␣and␣Coset␣2:\n";
83 for p in union_result1 do
84 printf "%o\n", p;
85 end for;
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86

87 // Find roots of polynomials in splitting fields
88 P1 <x> := PolynomialRing(GF(q));
89 F1 := x^s1 - x;
90 r, S<w> := RootsInSplittingField(F1);
91 P2 <y> := PolynomialRing(GF(q));
92 F2 := y^s2 - y;
93 r2 , S1 <v> := RootsInSplittingField(F2);
94

95 // Create evaluation points
96 P1 := [[r[i][1], r2[j][1]] : i in [1..#r], j in [1..# r2]];
97 F := union_result1;
98

99 // Construct evaluation matrix for first code
100 M1 := ZeroMatrix(GF(q), #F, #P1);
101 for i in [1..#F] do
102 for j in [1..#P1] do
103 M1[i][j] := (P1[j][1]^F[i][1]) * (P1[j][2]^F[i][2]);
104 end for;
105 end for;
106 C2 := SubfieldSubcode(LinearCode(M1)); // Create subfield subcode
107 D2 := Dual(C2); // Compute dual code
108 G2 := GeneratorMatrix(C2); // Get generator matrix
109 Rankc2 := Rank(G2); // Compute rank
110

111 // Example: Take union of more cosets
112 union_result2 := UnionOfCosets(cosets , [1,2,5,7,6,8,9,10,13,14]);
113 printf "\nUnion␣of␣Coset␣1␣and␣Coset␣2:\n";
114 for p in union_result2 do
115 printf "%o\n", p;
116 end for;
117 F1 := union_result2;
118

119 // Construct evaluation matrix for second code
120 M2 := ZeroMatrix(GF(q), #F1, #P1);
121 for i in [1..#F1] do
122 for j in [1..#P1] do
123 M2[i][j] := (P1[j][1]^ F1[i][1]) * (P1[j][2]^ F1[i][2]);
124 end for;
125 end for;
126 C1 := SubfieldSubcode(LinearCode(M2)); // Create subfield subcode
127 D1 := Dual(C1); // Compute dual code
128 G1 := GeneratorMatrix(C1); // Get generator matrix
129 Rankc1 := Rank(G1); // Compute rank
130

131 // Construct matrix for star product code (C1 \star C1)
132 M3 := ZeroMatrix(GF(2), Rankc1 * Rankc1 , #P1);
133 for j in [1..#P1] do
134 for i in [1.. Rankc1] do
135 for k in [1.. Rankc1] do
136 M3[k + ((i-1)*Rankc1)][j] := G1[i][j] * G1[k][j];
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137 end for;
138 end for;
139 end for;
140 C1sq := LinearCode(M3); // (C1 \star C1)
141 D1sq := Dual(C1sq); // Compute dual
142 G3 := GeneratorMatrix(C1sq); // Get generator matrix
143 Rankc3 := Rank(G3); // Compute rank
144

145 // Test quantum css -t code relationships
146 (C2 meet C1) eq C2;
147 (C2 meet (C1 meet D1sq)) eq C2;
148

149

150 // Compute dimension of quantum css -t code
151 Dimension(C1) - Dimension(C2);
152 // Compute minimum distance of quantum css -t code
153 MinimumDistance(D2);

A.5 PIR from Hyperbolic Codes

For the construction presented in Section 4.2.1, the corresponding Magma code is given below.
It generates a PIR scheme from hyperbolic codes and produces the code parameters shown in
the second row of Table 4.4.

1 q := 7; // Field size (GF(q))
2 s1 := 1;
3 s2 := 5;
4 k := 2;
5

6 // Function to generate a set of points based on a given condition
7 function GenerateSet(q, d, k, condition)
8 B := [];
9 a := CartesianPower ([0..q-1], k); // All k-tuples over [0..q-1]

10 for b in a do
11 if condition(b, d, q) then
12 Include (~B, b); // Include point if condition is satisfied
13 end if;
14 end for;
15 return B;
16 end function;
17

18 // Condition for hyperbolic code
19 function ConditionB1(b, d, q)
20 return &*[q - b[i] : i in [1..#b]] ge d; // Product condition
21 end function;
22

23 // Condition for dual hyperbolic code
24 function ConditionB2(b, d, q)
25 return &*[(b[i] + 1) : i in [1..#b]] lt d; // Product condition
26 end function;
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27

28 // Condition for Reed -Muller code
29 function ConditionB3(b, d, q)
30 return &+[b[i] : i in [1..#b]] le d; // Sum condition
31 end function;
32

33 // Function to generate all evaluation points in the space
34 function GeneratePoints(q, k)
35 P := [];
36 a := CartesianPower ([0..q-1], k); // All k-tuples over [0..q-1]
37 for point in a do
38 Include (~P, point); // Include all points
39 end for;
40 return P;
41 end function;
42

43 // Function to generate evaluation matrix for a code
44 function GenerateMatrix(q, B, P)
45 numRows := #B; // Number of monomials
46 numCols := #P; // Number of evaluation points
47 M := ZeroMatrix(GF(q), numRows , numCols);
48 for i in [1.. numRows] do
49 for j in [1.. numCols] do
50 product := 1;
51 for dim in [1..#B[1]] do // For each dimension
52 product *:= (P[j][dim] ^ B[i][dim]); // Evaluate

monomial
53 end for;
54 M[i][j] := product; // Store evaluation
55 end for;
56 end for;
57 return M;
58 end function;
59

60 // Function to generate star product (Schur product) of two codes
61 function GenerateStarProduct(G1 , G2, q)
62 R1 := Nrows(G1); // Rows of first matrix
63 R2 := Nrows(G2); // Rows of second matrix
64 M3 := ZeroMatrix(GF(q), R1 * R2 , Ncols(G1));
65 for j in [1.. Ncols(G1)] do
66 for i in [1..R1] do
67 for kk in [1..R2] do
68 // Compute product of corresponding entries
69 M3[kk + ((i - 1) * R2)][j] := G1[i][j] * G2[kk][j];
70 end for;
71 end for;
72 end for;
73 return M3;
74 end function;
75

76 // Function to compute footprint bound (for code parameters)
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77 function FootprintBound(B, q)
78 FB := Minimum ({&*[(q - B[i][dim]) : dim in [1..#B[1]]] : i in [1..#

B]});
79 return FB;
80 end function;
81

82 // Generate sets using different conditions
83 B := GenerateSet(q, s1 , k, ConditionB3); // Reed -Muller set
84 B2 := GenerateSet(q, s2, k, ConditionB2); // Dual hyperbolic set
85 B1 := GenerateSet(q, s2, k, ConditionB1); // Hyperbolic set
86

87 // Generate evaluation points
88 P := GeneratePoints(q, k);
89

90 // Generate evaluation matrices
91 M1 := GenerateMatrix(q, B, P); // For Reed -Muller code
92 M2 := GenerateMatrix(q, B2, P); // For dual hyperbolic code
93

94 // Construct codes
95 C1 := LinearCode(M1); // Reed -Muller code RM_q(s1 , 2)
96 C2 := LinearCode(M2); // Dual hyperbolic code Dual(Hyp_q(s2 ,2))
97

98 // Compute dual codes
99 D1 := Dual(C1);

100 D2 := Dual(C2);
101

102 // Get generator matrices
103 G1 := GeneratorMatrix(C1);
104 G2 := GeneratorMatrix(C2);
105

106 // Compute star product code
107 M3 := GenerateStarProduct(G1, G2 , q);
108 C1C2 := LinearCode(M3); // Product code C1\star C2
109 D1D2 := Dual(C1C2); // Dual of star product code
110

111 // Compute footprint bound
112 FB1 := FootprintBound(B1, q);
113

114 // Output important parameters
115 Dimension(C2);
116 Dimension(Dual(C1C2));
117 FB1;

A.6 PIR from Subfield Subcode of J-affine Code

The following Magma code, based on Section 4.2.2.1, generates the code listed in the second
row of Table 4.6 using subfield subcodes of J-affine variety codes in one variable.

1 q := 49; // Field size GF(49) = 7^2
2 // Define polynomial ring and cyclotomic polynomial
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3 P1 <x> := PolynomialRing(GF(q));
4 F1 := x^48 - 1; // Cyclotomic polynomial
5 r := Roots(F1); // Find roots
6

7 P1 := [[r[i]] : i in [1..#r]]; // Evaluation Points
8

9 // First exponent set for code C1
10 F := [24, 25, 31];
11

12 // Construct evaluation matrix for C1
13 M1 := ZeroMatrix(GF(q), #F, #P1);
14 for i in [1..#F] do
15 for j in [1..#P1] do
16 M1[i][j] := (P1[j][1][1]^F[i]); // Evaluate monomial at root
17 end for;
18 end for;
19

20 // Create code C1 and its dual
21 C1 := SubfieldSubcode(LinearCode(M1)); // Subfield Subcode of

evaluation code using exponents F
22 D1 := Dual(C1); // Dual code
23 G1 := GeneratorMatrix(C1);
24 Rankc1 := Rank(G1); // Dimension of C1
25

26 // Second exponent set for code C2
27 F2 := [24, 25, 31, 32];
28

29 // Construct evaluation matrix for C2
30 M2 := ZeroMatrix(GF(q), #F2, #P1);
31 for i in [1..#F2] do
32 for j in [1..#P1] do
33 M2[i][j] := (P1[j][1][1]^ F2[i]); // Evaluate monomials
34 end for;
35 end for;
36

37 // Create code C2 and its dual
38 C2 := SubfieldSubcode(LinearCode(M2)); // Subfield Subcode of

evaluation code using exponents F2
39 D2 := Dual(C2); // Dual code
40 G2 := GeneratorMatrix(C2);
41 Rankc2 := Rank(G2); // Dimension of C2
42

43 // Construct star product code Cin = C1 \star C2 (Schur product)
44 M3 := ZeroMatrix(GF(7), Rankc1 * Rankc2 , 48);
45 for j in [1..48] do
46 for i in [1.. Rankc1] do
47 for k in [1.. Rankc2] do
48 // Compute product of generator matrix elements
49 M3[k + ((i-1)*Rankc2)][j] := G1[i][j] * G2[k][j];
50 end for;
51 end for;
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52 end for;
53

54 // Star product code and its dual
55 Cin := LinearCode(M3); // Schur product code C1 \star C2
56 Din := Dual(Cin); // Dual of star product code
57

58 // Code analysis
59 Cin; // Star product code
60 BCHBound(D2); // Compute BCH bound for dual code D2
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