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1. Resumen

El caos supone una limitacién respecto a nuestra capacidad predictiva de los sis-
temas dinamicos no lineales, a pesar de ser sistemas completamente deterministas.
Los teoremas de limitacion de Godel y Turing también revelaron fuertes restric-
ciones respecto a nuestro conocimiento sobre cuestiones fundamentales en logica y
matemaéticas. En este trabajo analizamos las conexiones entre estos dos fenémenos,
sus similitudes y diferencias tanto histéricas como metodologicas y de contenido.
Para ello, primero exponemos una breve introduccién tanto a los trabajos de Godel
y Turing como a la teoria del caos a fin de proporcionar las herramientas necesarias
para comprender la segunda parte. Después, hacemos una pequena exploracion de
la literatura existente en la interseccion de estas disciplinas bajo diferentes enfoques.
Finalmente, discutimos las implicaciones que estos resultados tienen para la filosofia,
la ciencia y la tecnologia.

Abstract

Chaos represents a fundamental limitation on our ability to predict the behavior of
nonlinear dynamical systems, despite their fully deterministic nature. Similarly, G6-
del’s and Turing’s limitation theorems revealed profound constraints on what can be
known or proven in logic and mathematics. In this work, we explore the connections
between these two phenomena, examining their similarities and differences from his-
torical, methodological, and conceptual perspectives. To that end, we begin with
a brief introduction to Godel’s and Turing’s results, as well as to chaos theory, in
order to provide the necessary background for the discussion that follows. We then
present a small survey of the existing literature at the intersection of these fields,
considering a variety of approaches. Finally, we reflect on the broader implications
of these findings for philosophy, science, and technology.
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3. Introduccién

Los limites del conocimiento humano suponen uno de los problemas mas antiguos
en filosofia. En el s. XX, diferentes revoluciones en el campo de las matemaéticas y de
la fisica trajeron consigo avances no solo en el conocimiento cientifico, sino también
en los limites de dicho conocimiento. En concreto, en este trabajo se van a estudiar
la teoria del caos y los teoremas de limitacion introducidos por Godel y Turing.

Tanto la teoria del caos como los teoremas de limitacion en logica han protagonizado
un papel curioso en la historia de la ciencia reciente. A pesar de que la ciencia trata
de iluminarnos con su conocimiento, estas teorias senalan las sombras que dicho co-
nocimiento proyecta. Quiza sea precisamente ese papel antagonista el que ha hecho
que estos conceptos tan abstractos hayan gozado de cierta popularidad no solamente
entre los especialistas, sino también entre el gran publico.

La teorfa del caos se ha colado en el acervo colectivo con imégenes tan iconicas como
la mariposa que provoca tornados a distancia. Las historias del caos han llegado a
ocupar las listas de best sellers (Gleick, 1987) y sus ideas se han colado en peliculas
taquilleras'. En el caso de la logica, los profundos logros de figuras como Goédel o
Turing también han sido popularizados en textos de divulgacion e incluso en c6-
mics (Doxiadis, 1992; Doxiadis & Papadimitriou, 2009). Sus cautivadoras ideas y
sus fascinantes vidas también han sido llevadas a la gran pantalla?, convirtiendo a
sus protagonistas en iconos del pensamiento moderno.

No obstante, la notoriedad de estas teorias no implica en absoluto la comprension
de las mismas. De hecho, debido a la incesante especializacion, muchos de los inves-
tigadores de la teoria del caos podrian decir poco acerca de los resultados de Godel
y Turing, y probablemente lo mismo ocurriria con los lo6gicos a quienes se les pidiera
entrar en detalles acerca del caos determinista. El que escribe estas lineas puede
atestiguar desde la experiencia que, ni en un méster dedicado al caos se hablé de los
resultados de Godel o Turing, ni en el desarrollo de otro méaster dedicado a logica y
filosofia se mencionoé el caos determinista. Esto no deja de ser sorprendente ya que,
como se explicara a continuaciéon, ambas éreas del conocimiento comparten mucho
méas que espacio en las carteleras. En este trabajo exploraremos precisamente los
diferentes tipos de incertidumbre que suponen, sus relaciones y diferencias.

Es justo admitir que hoy en dia han divergido tanto sus caminos que resulta dificil
identificar las similitudes entre estos dos mundos. Los teoremas de limitacion se sue-
len adscribir a la esfera de las matematicas y del razonamiento puramente abstracto.

'Peliculas como “Jurassic Park” (1993) o “The butterfly effect” (2004) hacen fuertes referencias a
conceptos propios del caos como la sensibilidad a las condiciones iniciales.

2Algunos ejemplos de peliculas que han popularizado el legado de Godel y Turing son “Godel
Incomplete” (2004), “Breaking the Code” (1996) o “The Imitation Game” (2014).



De hecho, a menudo son reconocidos como algunas de las teorias méas elevadas que
ha concebido la mente humana. La teoria del caos, sin embargo, suele presentarse
a través de sus aplicaciones précticas en fisica, tales como la cinematica de apara-
tos mecanicos o la prediccion del tiempo meteorologico. Es maés, el caos impregna
también ambitos atin mas alejados del razonamiento abstracto y centrados en su
aplicacion, como la economia o la medicina, y a menudo se pone gran énfasis en su
multidisciplinariedad.

Aunque el caos y la logica parezcan estar hoy dia separados por distancias abismales,
también es posible reconocer numerosas conexiones. Desde el punto de vista histo-
rico, nombres como Cantor, Von Neumann o Turing aparecen a menudo en ambos
contextos. Desde un punto de vista conceptual, los teoremas se deducen aplican-
do normas sin ambigiiedades, del mismo modo que una trayectoria en un sistema
dindmico se calcula a través de reglas deterministas. Esto implica una diferencia
fundamental con respecto a la mecanica cuantica o la fisica estadistica, por ejem-
plo, en las que existe una imperfeccion del conocimiento a priori. Ademas, tanto en
caos como en el estudio de los teoremas de limitacién, se repiten sin cesar palabras
clave como complejidad e incertidumbre. Existe, pues, un interés comun por temas
semejantes y a menudo se emplean enfoques similares. Uno de nuestros objetivos
fundamentales sera analizar estas relaciones y su alcance.

El presente trabajo puede dividirse en dos partes. En la primera parte, se realiza
una breve introduccion a los teoremas de limitacion de Godel y Turing por un lado,
y a la teoria del caos por otro. La idea es proporcionar al lector una base con la que
poder abordar después el analisis comparativo. Dichas paginas podrian considerarse
unos apuntes para estudiantes de master, de tal modo que tanto un fil6sofo como un
fisico o un mateméatico pudieran seguirlos sin demasiada dificultad. Asi, cada seccion
comienza con un brevisimo contexto historico, que sirve para encuadrar la relevan-
cia de las respectivas teorias y para dejar entrever las conexiones existentes entre
los diferentes autores y sus ideas. Después, se definen los conceptos fundamentales
utilizando un tono accesible mas que técnico, aunque tratando de mantener el rigor
en todo momento. La idea es que el trabajo sea autocontenido en su esencia, aunque
por supuesto se ofrezcan referencias que sirvan como ampliaciéon. Se incluyen ejem-
plos sencillos y representativos y se emplean imagenes para ilustrarlos. Este estilo
puede resultar sorprendente en algunos contextos, pero como vehiculo pedagogico
resulta sumamente ttil.

En la segunda parte del presente trabajo, se comparan los teoremas de limitaciéon
de Godel y Turing con conceptos provenientes de la dindmica no lineal y la teoria
del caos. Si bien existen conexiones muy ricas entre la incertidumbre que comporta
cada una de las teorias y las conexiones entre sus objetos de estudio son numerosas,
este vinculo no puede resumirse en una tesis sencilla. A dia de hoy, carecemos de
una teoria global que sintetice estas relaciones y en la que podamos focalizar nuestro



analisis. Por ello, esta comparativa se aborda desde diferentes angulos y perspectivas,
tratando de incluir una muestra de trabajos de investigaciéon extensa aunque no
exhaustiva, ya que seria imposible en el espacio propio de un trabajo fin de master.
De esta manera, se sacrifica algo de profundidad por una mayor amplitud, aunque
ciertos temas que puedan resultar especialmente interesantes por diferentes motivos
si se tratan con mas detalle. En definitiva, el principal objetivo de este trabajo es
ofrecer un panorama més o menos general sobre las investigaciones en la intersecciéon
entre los teoremas de limitacion y la teoria del caos. Creo firmemente que esta
frontera se trata de un terreno fértil y sumamente hermoso, aunque inusualmente
poco transitado en comparacion con otros senderos en las lindes entre fisica, filosofia
y matematicas.



4. Godel

4.1. Contexto histérico y relevancia

La geometria euclidea fue durante siglos uno de los mayores paradigmas de teoria
matematica, hasta que en el s. XIX la irrupciéon de geometrias no euclideas puso en
cuestion la propia nociéon de teoria y la fundamentacion misma de las matematicas.
David Hilbert, probablemente el mateméatico mas influyente del s. XX, se propu-
so hacer frente a esta crisis mediante el llamado programa de Hilbert. Su objetivo
consistia en axiomatizar las matematicas y probar la solidez de sus cimientos, lo
cual podia reducirse en ultimo término a probar que la aritmética era una teoria
sin contradicciones en la que es posible demostrar la veracidad o no de cualquier
proposicion.

Kurt Godel (1906-1978) naci6 y crecio en el seno del Imperio Austrohtingaro, desa-
rrollando el trabajo que nos ocupa durante su periodo en Viena. La actual capital
austriaca era un verdadero caldo de cultivo filosofico y cientifico durante el primer
tercio del s. XX. Los fisicos Ernst Mach y Ludwig Boltzmann fueron los primeros
catedraticos de filosofia de la ciencia en la Universidad de Viena. Anos después, el
Circulo de Viena congregaba a algunos de los més grandes pensadores de su época.
El propio Godel estaba en estrecho contacto con el circulo y, aunque consideraba
a sus integrantes como pensadores algo toscos (Sigmund, 2023), esa atmosfera le
permitié conocer de primera mano las ideas de filésofos y cientificos de renombre,
tales como Ludwig Wittgenstein, Karl Popper, Albert Einstein, Carl Menger o John
von Neumann®. El interés de Gédel en la metalogica y la fundamentacion de las
matemaéticas le llevo a demostrar el llamado teorema de completitud de Godel du-
rante el desarrollo de su tesis doctoral. El teorema de completitud establece que,
en logica de primer orden, toda féormula que es verdadera es también demostrable.
Sin embargo, Godel pasaria a la historia por los llamados teoremas de incompleti-
tud, que supusieron un golpe fatidico para el programa formalista de Hilbert y una
tremenda conmociéon en la comunidad matemaética. Hasta ese momento, la mayoria
de los matematicos daban por hecho que todas las “verdades mateméaticas” debian
poder demostrarse a partir de ciertos axiomas y reglas de inferencia. No obstante,
como veremos a continuacion, los trabajos de Godel pusieron de manifiesto que esa
asuncion implicita no solo no estaba justificada, sino que era falsa.

4.2. Definiciones previas

Los niimeros naturales se encuentran en los cimientos de las matemaéticas y apuntalar
una teoria que los estudie era objetivo central del programa de Hilbert. Aunque
existen diferentes formulaciones de la aritmética, suele tomarse la aritmética de

3Von Neumann de hecho estuvo a punto de adelantarse a Godel en la publicacién de sus teoremas
de incompletitud.



Peano como referencia.
Los axiomas de la aritmética de Peano pueden resumirse informalmente de la si-
guiente forma:

1. El 0 es un ntimero natural.

2. Ningtin ndmero tiene al 0 como sucesor y si dos ntmeros tienen el mismo
sucesor significa que son iguales.

3. Principio de inducciéon: si una férmula es cierta para 0, y la validez de dicha
formula para un ntmero cualquiera implica la validez para su sucesor, entonces
la férmula es valida para todos los naturales.

El deseo de Hilbert puede resumirse en demostrar que la aritmética era una teoria
sin contradicciones y suficientemente fuerte como para derivar todas las verdades
matemaéticas mediante métodos finitos.

Definicion 1 Consistencia: se dice que una teoria es consistente cuando no es po-
sible demostrar una formula y su negacion en dicha teoria.

Como veremos a continuacion, la consistencia de la aritmética de Peano esté estre-
chamente ligada con su completitud.

Definicion 2 Completitud: una teoria es completa si, para cualquier formula cerra-
da?, o bien ella o su negacion son teoremas de dicha teoria.

4.3. Teoremas de incompletitud de Godel

Hoy en dia, podemos enunciar el primer teorema de incompletitud de Godel de la
siguiente forma:

Teorema 1 (Primer teorema de incompletitud de Gdédel) Si la aritmética de Peano
es consistente, entonces no puede ser completa; es decir, existen formulas verdaderas
en su lenguagje que no pueden ser demostradas dentro de ella.

Teniendo en cuenta el papel fundacional de la aritmética, otra manera de enunciar
el primer teorema de Godel que pone de relieve sus profundas implicaciones para
las matematicas es la siguiente:

Teorema 2 (Primer teorema de incompletitud de Gadel, version alternativa) Nun-
ca se podrd encontrar un sistema axiomdtico que sea capaz de demostrar todas las
verdades matemdticas y ninguna falsedad.

4Una formula cerrada es aquella cuyo valor es fijo y esta determinado.



La prueba del primer teorema de Gédel puede dividirse en tres partes. En la primera
se define la llamada numeraciéon de Godel, que asigna a cada férmula de la teoria
un codigo numérico. En la segunda parte se construye una férmula que permite
verificar si un namero de Godel es prueba (se demuestra a partir de los axiomas y
las reglas de inferencia) de otro nimero de Godel. En el ultimo paso se genera una
proposiciéon con una autorreferencia al estilo de la paradoja del mentiroso, diciendo
“esta proposicion no se puede probar”. Al analizar las consecuencias de esta propo-
sicién se llega a la conclusion de que o bien la aritmética de Peano es incompleta o
bien es inconsistente. Explicaciones mas detalladas de la prueba de Godel y las téc-
nicas que en ella se utilizan pueden consultarse en (Boolos et al., 2002; Smith, 2013).

El segundo teorema de incompletitud de Godel esta estrechamente relacionado con
el primero, reforzando y ampliando el alcance de sus consecuencias.

Teorema 3 (Segundo teorema de incompletitud de Godel) Si una teoria consistente
contiene la aritmética de Peano, entonces no es posible demostrar su consistencia
dentro de la propia teoria.

Para demostrar este teorema, se puede definir una féormula C'ons tal que exprese la
consistencia de una teoria T que incluya la aritmética de Peano (o cualquier otra
aritmética recursiva). Godel demostré que Cons(T) — G es un teorema de dicha
teorfa. Por lo tanto, Cons(T) no puede ser un teorema, ya que si lo fuera, se dedu-
ciria que G es demostrable, en contradiccion con el enunciado del primer teorema
de incompletitud.

Aunque es imposible demostrar la consistencia dentro de la propia teoria, en prin-
cipio, seria posible mostrar su inconsistencia. Para ello, bastaria con deducir de sus
axiomas alguna contradiccién. No obstante, hasta la fecha no se ha producido tal
evento, y es el sentir de la mayoria de los logicos y matematicos que nunca se pro-
ducira. En cualquier caso, dicho deseo es imposible de sustentar logicamente tal y
como acabamos de ver que demostré Godel.



5. Turing

5.1. Antecedentes histéricos y relevancia

El programa de Hilbert planteaba cuestiones respecto a la fundamentacion de las
matemaéticas relacionadas con la consistencia, completitud y decidibilidad. Como
hemos visto, los teoremas de Godel demostraron fuertes limitaciones en cuanto a las
dos primeras, pero ain quedaba la cuestion de la decibilidad: jexiste algin método
mecénico capaz de decidir si una proposicién de logica de primer orden® es verdade-
ra o falsa? Alan Turing (1912-1954), junto con su director de tesis Alonzo Church,
abordo el problema de la decibilidad introduciendo técnicas y conceptos que senta-
rian las bases tedricas de toda la computacion. Es més, durante la II Guerra Mundial
Turing trabajé con unas maquinas electromecanicas que pueden considerarse antece-
sores de los computadores a fin de descifrar los codigos nazis de la Maquina Enigma.
También son conocidos sus trabajos pioneros en biologia tedrica que introdujeron
conceptos fundamentales de las modernas ciencias de la complejidad, estrechamente
relacionadas con la teoria del caos. Los modelos de reaccion-difusion y los llamados
patrones de Turing permiten entender la morfogénesis a través de mecanismos de
ruptura de la simetria y autoorganizacion.

5.2. Conceptos relacionados

Uno de los grandes logros de Turing fue el de definir en términos matematicos
precisos la nociéon abstracta de “método mecanico” presente en la pregunta original de
Hilbert acerca de la decibilidad. Previamente el matemaético estadounidense Alonzo
Church habia realizado una definiciéon equivalente mediante las funciones recursivas
y el célculo lambda, pero fue el propio Church el primero en reconocer el valor del
trabajo de Turing y acunar el término maquina de Turing para referirse a los sistemas
de computacion definidos por el inglés. Hoy en dia se consideran las méaquinas de
Turing como el origen teodrico de la computacion. Igual que con Godel, aqui daremos
una descripcién moderna (sin cenirnos a los trabajos originales de Turing) que nos
permita comprender su funcionamiento sin entrar en demasiados detalles técnicos.

Para una exposiciéon méas completa, se recomienda consultar (Davis, 2013; Sipser,
2012).

Definicion 3 Mdquina de Turing: Se trata de un modelo de computacion determi-
nista (sin ambigiiedades) compuesto por los siguientes elementos: una cinta infinita
dividida en celdas que pueden contener un simbolo cada una escogido entre un alfa-
beto finito, un cabezal que se desplaza por la cinta y puede leer y escribir simbolos
en ella, y una lista finita de instrucciones que determina las acciones que debe rea-
lizar el cabezal segun su estado actual. La Fig. 1a proporciona una representacion
esquemdtica.

5La aritmética de Peano es un ejemplo de sistema expresado en légica de primer orden.



Sistema Autémata Autémata Méquina

combinacional finito con pila de Turing

(a) (b)

Figura 1: (a) Representacion de una maquina de Turing. La cinta infinita tiene en cada cel-
da uno de los dos simbolos (0,1) disponibles. El cabezal esta representado por una
circunferencia con una flecha que indica su posicién sobre la cinta. El cabezal pue-
de moverse a izquierda y derecha, leer y escribir contenido en la cinta. Ademas, la
méaquina de Turing se encuentra en el estado interno ¢; y tiene unas reglas de tran-
sicion 0 que determinan completamente las acciones que debe realizar en cada paso.
(b) Jerarquia de autématas deterministas segin su capacidad computacional. Esta
jerarquia se puede relacionar con la jerarquia de lenguajes de Chomsky.

Asi pues, podemos caracterizar una méaquina de Turing mediante los siguientes da-

tos®:

1. El contenido de la cinta.
2. La posicion (celda) del cabezal de lectura.

El estado interno actual ¢; de la maquina.

=W

La funcioén de transicion 9, que indica los movimientos de la maquina en funcion
de los datos anteriores.

Toda la informaciéon de una méaquina de Turing en un instante dado puede codificar-
se como un numero natural M. La posicion del cabezal puede definirse con respecto
a la posicion inicial, indicando cuantas celdas a la izquierda o a la derecha de la
celda original se ha movido. El estado interno actual ¢; serd uno de una lista finita.
Ademés, la funcion de transicion § esté definida sobre un conjunto finito de estados
y simbolos, por lo que también es finita. Finalmente, para cualquier tiempo finito,
solo un nimero finito de posiciones de la cinta es relevante.

Otro de los grandes avances de Turing fue darse cuenta de que las maquinas de Turing
pueden combinarse de forma modular, tal y como un sistema operativo combina
diferentes programas. En particular, una maquina de Turing puede recibir como
entrada la descripcion de otra méquina de Turing y asi simularla, lo que da origen
al concepto de méquina de Turing universal.

Definicion 4 Mdquina de Turing Universal: Es una mdquina de Turing capaz de
simular cualquier otra mdquina de Turing al recibir como entrada la descripcion de
dicha mdquina y su respectiva cinta.

SEsta formulacién se conoce como descripcién instantanea y es la manera més comtn de definir
una méaquina de Turing particular.
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Teorema 4 Teorema de existencia de mdquinas de Turing universales: Dada una
mdquina de Turing cualquiera M, que puede describirse mediante un nimero M, y
dada una cinta de entrada i, existe una mdquina de Turing universal U tal que U
es capaz de simular el comportamiento de M cuando se le proporciona la entrada i.
En otras palabras: U(<M,i>) = M(i).

La existencia de maquinas de Turing universales no es trivial, pero podemos entender
céHmo podrian construirse pensando en una maquina de Turing de tres cintas. Asi, la
primera cinta se usaria para almacenar la maquina de Turing de entrada, sus datos
y la salida; la segunda cinta se emplearia como area de trabajo para manipular los
datos; y la tercera cinta contendria una representacion del estado de la méquina
simulada. Finalmente, es facil demostrar que una maquina de Turing de tres cintas
puede ser simulada por una méaquina de una sola cinta, ya que tanto la cardinalidad
de una cinta como la de tres cintas es la del infinito numerable.

Tesis 1 Tesis de Church-Turing: toda funcion que puede ser calculada mediante un
algoritmo (es decir, un procedimiento efectivo y finito que produce un resultado bien
definido para cualquier entrada) puede ser calculada por una mdquina de Turing.

La tesis de Church-Turing se trata de una afirmacion aceptada de manera practi-
camente universal, aunque no es algo demostrable. No obstante, en principio si se
podria mostrar su falsedad si se descubriera un algoritmo que no se pudiera im-
plementar mediante una méquina de Turing. Su valor radica en que establece la
equivalencia entre funcién computable y maquina de Turing.

Ademaés de las méaquinas de Turing existen otros autématas (modelos de compu-
tacion deterministas) con diferente capacidad computacional, aunque las méaquinas
de Turing ocupan el lugar mas alto en la jerarquia, tal y como se puede ver en
el esquema de la Fig. 1b. Por tanto, los otros autématas pueden verse como casos
particulares de maquinas de Turing en los que se han restringido sus capacidades.
También existen ciertas variaciones de las maquinas de Turing tales como las ma-
quinas de Turing no deterministas o las multicinta, pero su capacidad de computo
es equivalente a las de las maquinas de Turing.

5.3. El problema de decision (Entscheidungsproblem)

Como hemos visto, Hilbert perseguia la fundamentacion de las mateméticas, lo que,
siguiendo el sueno leibniziano de realizar una méquina para el buen razonamiento,
le llevd a plantear la siguiente cuestion en 1928: ;Existe un algoritmo que tome
un lenguaje formal y cualquier enunciado logico en ese lenguaje, y que devuelva
“Verdadero” o “Falso”, dependiendo del valor de verdad del enunciado? Tal y como
mostramos en la seccién anterior, el trabajo de Turing proporcion6é una definiciéon
precisa del término algoritmo, lo que le permiti6é reducir el problema de decision al
problema de la parada: ;jExiste una maquina de Turing que, usando como entrada
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otro programa, sea capaz de decidir si ese programa se parara (es decir, terminara
su ejecucion) o continuard ejecutandose indefinidamente?

Teorema 5 Teorema de indecidibilidad de Turing: No existe una mdquina de Tu-
ring capaz de resolver el problema de la parada.

La demostracion del teorema se realiza por reducciéon al absurdo y utiliza argu-
mentos y técnicas similares a los del primer teorema de incompletitud de Godel.
En particular, se utiliza la autorreferencia al estilo de la paradoja del mentiroso y
la diagonalizacion. Aunque se refieren a ambitos distintos, las semejanzas entre los
resultados de Turing y los teoremas de incompletitud de Gédel son notables. Un
avance conceptual clave de Turing consiste en identificar un procedimiento mecani-
co con un proceso determinista, pero sin que necesariamente sepamos si ha de parar
0 no.
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6. Caos

6.1. Antecedentes histéricos y relevancia

Varios afluentes contribuyeron a generar el concepto de caos (Sanjuan, 2016). His-
toricamente, el origen del caos se establece normalmente en los trabajos de Henri
Poincaré sobre el problema de los tres cuerpos. A finales del s. XIX, el rey de Norue-
ga y Suecia Oscar II, celebré un concurso cientifico en el que se planteaba la cuestion
de la estabilidad del sistema solar. Poincaré particip6é y gané dicho concurso, aunque
tras su proclamaciéon como ganador se dio cuenta de un fallo en su trabajo y decidio
cambiarlo por completo. Irénicamente, ese error dio comienzo a la llamada teoria

del caos”.

La linea iniciada por Poincaré quedé practicamente dormitando mientras se sucedian
los nacimientos de la cuantica y la relatividad. De este modo los siguientes grandes
hitos del caos no aparecerian hasta la segunda mitad del s. XX. Primero fue el teo-
rema KAM, que debe su nombre a Kolmogorov, Arnold y Moser y constituye uno
de los pilares fundamentales del caos hamiltoniano®. En 1963, un famoso articulo
del matemético y meteorélogo Edward Lorenz puso de manifiesto la sensibilidad a
las condiciones iniciales de un modelo atmosférico muy simplificado, dando a luz al
iconico efecto mariposa (Lorenz, 1963). Cuatro anos después, Stephen Smale descri-
bi6 mediante un sencillo mecanismo topoldgico la manera en que se engendraba la
complejidad del caos. En 1975, Li y Yorke escribieron un influyente trabajo titulado
“Period three implies chaos” con el que bautizaron el fenomeno (Li & Yorke, 1975).
El desarrollo de los ordenadores modernos y la geometria fractal de Benoit Mandel-
brot impulsaron la disciplina.

Desde entonces, el caos y su metodologia se han estudiado no solamente en el con-
texto de la fisica y las matematicas, sino también en biologia, medicina, economia y
una gran variedad de ramas del conocimiento. La llamada ciencia de la complejidad,
que propone un cambio de paradigma respecto al reduccionismo imperante en fisica
y otros &mbitos cientificos, esta estrechamente ligada al surgimiento del caos. Algu-
nos filésofos afirman que el caos supuso una revolucién cientifica a la altura de la
cuantica o la relatividad general, aunque se trata de un tema controvertido (Leiber,
1998).

6.2. Sistemas dinamicos y su comportamiento

El caos determinista aparece al estudiar los llamados sistemas dindamicos no lineales.

"El término teoria del caos no se refiere a una teoria axioméatica como la cuantica o la relatividad
general, si no que es més bien una amalgama de conceptos, técnicas y resultados matematicos
relacionados entre si.

8Los sistemas hamiltonianos son de gran importancia en fisica clasica y cuéantica, ya que aquellos
problemas en que se conserva la energia suelen modelizarse usando el formalismo hamiltoniano.
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Figura 2: Representacion de tres sistemas dindmicos paradigmaéaticos. (a) Automata celular
(tiempo y espacio discretos) siguiendo la llamada regla 90 de Wolfram (Wolfram,
2002), que produce una estructural fractal tipo tridngulo de Sierpinski. (b) El billar
de Sinai, en el que una particula (en rojo) rebota en una caja con un disco duro,
puede modelizarse mediante un mapa (tiempo discreto y espacio continuo). (c) El
péndulo magnético oscila hasta detenerse en uno de los tres imanes en funciéon de la
posicién inicial desde la que se suelta, lo cual determina sus tres cuencas de atrac-
cion fractales (amarilla, verde y morada). Puede modelizarse mediante ecuaciones
diferenciales ordinarias, lo que le convierte en un ejemplo de sistema dindmico con
tiempo continuo y espacio continuo.

(b) (©)

Definiciéon 5 Sistema dindmico: consiste en un espacio de fases o de estados abs-
tracto, cuyas coordenadas describen el estado del sistema para cualquier instante, y
una regla que especifica el futuro inmediato de todas las variables de estado conocidos
sus valores presentes.

Si la regla de evolucion es determinista hablamos de sistemas dindmicos determinis-
tas (en este trabajo nos referiremos a ellos simplemente como sistemas dindmicos).

Definiciéon 6 Sistema dindmico no lineal: se dice que un sistema dindmico es no
lineal cuando los efectos que provocan los cambios en las variables no son proporcio-

nales a dichos cambios, y por tanto no cumplen con el principio de superposicion®.

Aunque las condiciones precisas bajo las cuales aparece caos no se conocen (y no se
pueden conocer de antemano, como explicaremos mas adelante), hay ciertas condi-
ciones necesarias para su existencia. La no linealidad es una de ellas y es por eso
que se denomina dindmica no lineal a la disciplina encargada del estudio del caos

9Por ejemplo, para una férmula lineal como y = 3z, dos pares de niimeros que la cumplen como
1 = 1l,y1 = 3y x2 = 2,y; = 6 pueden sumarse para generar un nuevo par de valores que
satisfagan la formula x3 = 1 + 22 = 3,y3 = y1 + y2 = 9. Esto no sucede en el caso no lineal,

como por ejemplo y = 22.
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determinista.

Existen muchos tipos de sistemas dinédmicos, aqui nos limitamos a presentar los méas
relevantes para la discusion posterior. En el siguiente cuadro aparece una clasificacion
de los sistemas dinamicos en funciéon del tipo de tiempo y espacio de estados que
utilizan.

Tiempo / Espacio | Discreto (Alfabeto numerable) Continuo (R™)
Dinamica simbdlica Mapas
Discreto (N) (e.g. automatas celulares, (e.g. mapa logistico,
desplazamiento de Bernoulli) mapa estandar)
Poco habitual en Flujos
Continuo (R) sistemas deterministas (e.g. atractor de Lorenz,
(sistemas hibridos) péndulo magnético)

Cuadro 1: Clasificacion de sistemas dindmicos segin tipo de tiempo y tipo de espacio de
estados.

En la Fig. 2 pueden encontrarse representaciones esquematicas de un autémata ce-
lular, un billar que puede ser representado por un mapa, y un péndulo magnético
que puede modelizarse utilizando ecuaciones diferenciales ordinarias.

A continuacién se ofrece una clasificacion general de los diferentes tipos de compor-
tamientos acotados que puede mostrar un sistema dinamico.

Definicion 7 Equilibrio: cuando las variables que describen un sistema dindmico
no varian en el tiempo, decimos que se encuentra en equilibrio.

Definicion 8 Movimiento periddico: cuando las variables que describen un sistema
dindmico se repiten de forma reqular al cabo de un tiempo finito, decimos que el
movimiento es pertodico.

Definicion 9 Caos: comportamiento aperiodico y acotado de las variables de estado
de un sistema dindmico determinista.

La Fig. 3 muestra series temporales de los distintos comportamientos dinamicos para
el mapa logistico. Este sistema dindmico paradigmatico se define como

Tpr1 =1 xp(1 — ) (1)

donde n € N es la variable temporal, € R es la variable dindmica o de estado y el
parametro r € R produce diferentes dinamicas al tomar diferentes valores.

La definicion anterior de caos no es tnica, y de hecho la definicién precisa de caos es
un tema escurridizo y controvertido (Brown & Chua, 1996; Hunt & Ott, 2015). El

15



Equilibrio Periodicidad Caos

0 20 40 0 20 40 0 20 40
n n n

Figura 3: Series temporales del mapa logistico de la Ec. 1 mostrando diferentes tipos de dina-
mica para una misma condicién inicial xq y diferentes valores del parametro r. Para
r = 1,5 la trayectoria tiende al equilibrio, para r = 3,3 la trayectoria realiza una
orbita de periodo dos, y para r = 4 la trayectoria se vuelve cadtica.

caos se manifiesta de formas diversas, tiene muchas facetas (Sander & Yorke, 2015).
Una de ellas es la sensibilidad a las condiciones iniciales, que se manifiesta cuando en
un sistema dinamico hay trayectorias cercanas que divergen a un ritmo exponencial
o més rapido. Se puede cuantificar mediante los llamados exponentes de Lyapunov,
de tal modo que un exponente de Lyapunov positivo indica caos. Otra de las facetas
mas reconocibles del caos, no completamente independiente de la sensibilidad a las
condiciones iniciales, es la aparicion de estructuras fractales.

6.3. Caos y fractales

Si las geometrias no euclidianas supusieron una revolucién matemaética por poner
en cuestion la naturaleza del espacio, los fractales cambiaron la concepcién de los
entes que pueblan dicho espacio. En lugar de considerar objetos suaves como esferas
o triangulos, los fractales son objetos rugosos, con complejidad a diferentes escalas.
Igual que con el caos, la definicién de fractal no es tinica. Benoit Mandelbrot, quien
acunoé el término fractal por significar roto, define los fractales como objetos que
tienen una dimension topoldgica estrictamente menor que su dimension de Haus-
dorff (Mandelbrot, 1982). La dimension topologica se refiere al concepto habitual
de dimension, que es el nimero minimo de coordenadas para definir un punto en
un objeto geométrico (1 para una curva, 2 para una superficie, etc.). La dimension
de Hausdorff generaliza la nociéon de dimension topologica, dando una medida de
como llena el espacio un determinado objeto geométrico, y no tiene por qué to-
mar un valor entero. Asi, por ejemplo, la dimensién fractal del llamado conjunto de
Cantor!® es d = log(2)/log(3) ~ 0,631, lo cual indica que llena més el espacio que
un punto pero menos que una recta. A menudo, los fractales poseen propiedades
sorprendentes, que parecen ir en contra de nuestra intuiciéon. En el caso del con-

10Una construccién sencilla del conjunto de Cantor es la siguiente. Cojamos el intervalo cerrado
[0,1] ¥ quitemos el tercio central (1/3,2/3), quedandonos con los dos intervalos restantes. En
la siguiente iteracion, quitaremos el tercio central de cada uno de estos intervalos, obteniendo
cuatro intervalos de longitud 1/9 cada uno. Llevando este proceso hasta el infinito obtenemos
el llamado conjunto de Cantor, tal y como se muestra en la Fig. 4a.
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junto de Cantor, llama la atencién que posee la cardinalidad del continuo, aunque
se trata de un conjunto de puntos disconexo. Precisamente para estudiar la car-
dinalidad, el genial mateméatico aleman ide6 la llamada diagonalizacion de Cantor
que, a pesar de aplicarse a un ambito diferente, comparte importantes similitudes
con los procesos de diagonalizacion que se utilizan en las pruebas de Gédel y Turing.

Para entender la relacion de los fractales con el caos, es conveniente pensar en un
ejemplo sencillo, como el péndulo magnético de la Fig. 2c. En este sistema, un pén-
dulo oscila erraticamente hasta detenerse en uno de tres imanes colocados sobre la
plataforma. Si se busca predecir el comportamiento del sistema, es necesario cal-
cular el conjunto de condiciones iniciales que conducen a un determinado atractor,
i.e., uno de los tres imanes. Estos conjuntos coloreados en amarillo, verde y azul en
la Fig. 2¢ se denominan cuencas de atraccion, y las fronteras que los separan son
curvas fractales. Puesto que las curvas fractales llenan el espacio més que una recta
o una curva suave, dada una incertidumbre inicial en la posiciéon del péndulo, es méas
dificil determinar el atractor final del sistema. En concreto, dado un cierto error en
la determinacion de las condiciones iniciales ¢, la fraccion de condiciones iniciales
impredecibles en el espacio de estados viene dada por f ~ ¢* donde o = D —d es el
exponente de incertidumbre que resulta de la diferencia entre la dimensiéon topolo-
gica del espacio de estados D y la dimension de Hausdorff d de la frontera (Grebogi
et al., 1983). En casos donde la frontera es suave, se tiene que aw = 1, lo que implica
que el nimero de condiciones impredecibles disminuye proporcionalmente al reducir
. Sin embargo, si la frontera es fractal se tiene que a < 1, por lo que al reducir ¢, la
fraccion de condiciones iniciales que es impredecible no se reduce proporcionalmente.
En casos extremos se puede tener o = 0, lo que significa que independientemente
del valor de ¢, la fraccién de condiciones iniciales impredecibles permanece cons-
tante (Alexander et al., 1992). En resumen, podemos ver que las fronteras fractales
hacen que el sistema sea en cierto modo impredecible (Daza et al., 2024). Esto es
una manifestacion del caos (en concreto de caos transitorio), pero existen muchos
otros aspectos del caos que estan directamente relacionados con los fractales.

Una conexion fundamental entre el caos y los fractales es la herradura de Smale, que
puede considerarse la estructura topologica que sustenta el caos. En su buisqueda de
la esencia de la dindmica cadtica, Smale ide6 una construccion sencilla que recoge la
accion de los sistemas cadticos sobre el espacio de estados, tal y como se ilustra en la
Fig. 4b. En la herradura de Smale, el espacio de estados se estira y después se pliega
de forma similar a como un panadero realiza la masa para hojaldre. Si pensamos
en un par de condiciones iniciales muy préximas, como un grano de sal y otro de
pimienta dispuestos en la masa del panadero, podemos ver que, debido al proceso de
estirado y doblado, al cabo de unas pocas iteraciones siguen caminos completamente
diferentes. A pesar de encontrarse dentro de la misma regién del espacio de esta-
dos, es decir, en la misma masa del panadero, y de haber empezado muy préximas,
las trayectorias del grano de sal y el grano de pimienta divergen rapidamente en
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Figura 4: (a) Esquema de la construccion iterativa (de arriba hacia abajo) del conjunto de
Cantor, un ejemplo paradigmatico de objeto fractal. En cada paso se retira el tercio
central de un segmento, siendo el conjunto de Cantor el limite en el infinito. Imagen
adaptada de (Wikipedia contributors, 2024). (b) De izquierda a derecha, las tres
primeras iteraciones de la herradura de Smale. El espacio de estados inicial esta
representado por un cuadrado, que tras estirarse y doblarse queda en forma de
herradura. Al aplicarse sucesivamente la misma operaciéon se termina obteniendo
una estructura hojaldrada tipo Cantor. La herradura de Smale recoge las operaciones
bésicas del caos y sirve para entender el fenémeno de sensibilidad a las condiciones
iniciales en sistemas acotados.

cuanto caen en capas distintas. Esto es posible gracias a la complejidad del espacio
de fases fractal, es decir, a los infinitos vericuetos de la herradura de Smale o a las
infinitas capas que conforman el hojaldre del panadero. El mecanismo de la herra-
dura de Smale, propio de la dinamica caotica, puede leerse como una manifestacion
geométrica de la autorreferencia y la recursividad. Aunque en dominios distintos,
esta estructura recuerda a la paradoja del mentiroso, cuyas raices conceptuales se
reflejan en los teoremas de Gddel y Turing.
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7. Comparativa teoremas limitaciéon y caos

7.1. Un diccionario interdisciplinar

Hasta el presente apartado, en este trabajo se ha hablado de logica y fundamentacion
matemaética por un lado, y de caos por otro. Aunque una lectura atenta revela ciertas
similitudes, tanto historicas como conceptuales y metodologicas, la posible conexiéon
entre estas areas no resulta en absoluto evidente. De hecho, es claro que existen
diferencias importantes entre la incertidumbre asociada al caos y la incertidumbre
asociada a la indecibilidad. En el caos se introduce una incertidumbre externa, ya
sea de indole numérica o experimental, y luego se estudia la sensibilidad del sistema
dindmico a dicha incertidumbre. Si la incertidumbre crece suficientemente deprisa
(exponente de Lyapunov positivo), podemos decir que existe caos. Sin embargo, la
indecibilidad del problema de la parada, por ejemplo, no contiene ningun tipo de
incertidumbre externa. En un sistema determinista y sin ningin tipo de incerti-
dumbre interna, surge una pregunta que es imposible de contestar con certeza en
general. Asi pues, y dando por sentado que se tratan de obstéculos al conocimiento
de naturaleza diferente, cabe preguntarse si existe alguna conexién entre ambos mun-
dos. En lo que sigue, intentaremos establecer y analizar algunas de dichas relaciones.

Como punto de partida para esta sinergia tomaremos los trabajos de John L. Casti,
cientifico y divulgador del Instituto de Santa Fe (uno de los centros pioneros y mas
prestigiosos en ciencias de la complejidad) y del Instituto Técnico de Viena (parecie-
ra que se cierra el circulo). Casti organiz6 unos talleres interdisciplinares celebrados
a finales de los anos ochenta en una estacion cientifica de la Real Academia Sueca de
Ciencias en Abisko, més al norte del circulo polar, cerca de las fronteras noruega y
finlandesa, donde se trataban temas situados en “las fronteras entre diferentes disci-
plinas” (Chaitin, 2002). A estas reuniones acudian pensadores de renombre, lideres
en sus respectivas areas del conocimiento. Asi, en la lista de nombres ilustres, los
investigadores del caos reconocerian rapidamente a Otto Rossler, cuyo apellido se
utiliza hoy dia para referirse a uno de los sistemas caéticos més paradigmaticos. Por
otro lado, los estudiosos de Gddel y Turing probablemente identificarian a Gregory
Chaitin, quien puede ser considerado el sucesor de ambos por sus célebres resultados
en el ambito de la légica-matematica y la computacion. Fruto de estas interaccio-
nes, Casti edité un libro en el que se recopilan algunas de las ideas discutidas en
Abisko (Casti, 2018), y en el que el propio Casti afirma lo siguiente:

“En particular, mis argumentos aqui estan dirigidos a mostrar que existen algunas
conexiones muy interesantes entre la nocion de un atractor extrano, el fundamento
sobre el cual se sostiene la revolucion del caos, y las ideas de Gadel, Turing y, mds
recientemente, Chaitin, relacionadas con la verdad y la demostracion. Mi afirma-
cion bdsica es que existe una cadena de conexion directa que vincula la existencia de
atractores extranos, los resultados de Chaitin sobre la complejidad algoritmica y el
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Teorema de la Incompletitud de Gadel, y que un logico o cientifico de la computacion
lo suficientemente perspicaz podria haber terminado siendo el padre del caos, al igual
que el meteordlogo Edward Lorenz.”

En el mismo texto, Casti llega a afirmar que la dinamica, la logica, la computacion
y la complejidad son diferentes caras de la misma moneda, e incluso sostiene que,
en cierto modo, el teorema de Godel se deriva de la existencia de atractores cao-
ticos (Casti, 2018). Para apoyar su argumentacion, Casti ofrece la siguiente tabla
conectando los conceptos propios del estudio de sistemas formales con el estudio de
sistemas dinadmicos:

Sistema formal Sistema dinamico
Alfabeto de simbolos Espacio de estados
Cadena de simbolos Estado

Gramatica Ligadura

Axiomas Condicién inicial
Reglas de inferencia Campo vectorial
Secuencia de demostracion Trayectoria
Teorema Atractor

Cuadro 2: Comparacion entre un sistema formal y un sistema dinamico, extraida de (Casti,
2018) (traduccion propia).

Aunque no lo desarrolla explicitamente, en base a su texto cabe formular la analogia
que traza Casti como sigue. De la misma manera que un sistema dindmico toma co-
mo entrada un conjunto de ntiimeros (condiciones iniciales), un sistema formal toma
como entrada un conjunto de axiomas. Este estado inicial evoluciona segun las reglas
del sistema dinamico, o segtn las reglas de inferencia del sistema formal. El proceso
finaliza al llegar a un atractor en el caso de los sistemas dinamicos y al llegar a un
teorema en el caso de los sistemas formales. En su trabajo, Casti llega a afirmar que
los teoremas de un sistema formal, el output de una maquina de Turing universal
y el atractor de un sistema dindmico son completamente equivalentes y es posible
“traducir fielmente entre cualquiera de ellos” (Casti, 2018).

No obstante, y a pesar del entusiasmo expresado por Casti en su texto divulgativo,
estas identificaciones distan de ser triviales y es preciso ir con cuidado al moverse
de un lado a otro de las fronteras interdisciplinares. Por ejemplo, tal y como vimos
en el Cuadro 1, el espacio de estados o de fases de muchos sistemas dinamicos tiene
la cardinalidad del continuo. De este modo, tanto las condiciones iniciales como los
atractores de un sistema dinamico no pueden en general ser expresados utilizando la
numeracion de Godel. Es mas, los atractores cadticos, al ser fractales, estdn compues-
tos por un infinito no numerable de puntos, como se ha mencionado con el ejemplo
del conjunto de Cantor en la Sec. 6.2. Otro aspecto criticable de este paralelismo es
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que en los sistemas dindmicos en realidad no se alcanzan nunca los atractores. En
rigor, las trayectorias de los sistemas dindmicos se acercan tanto como se quiera a
sus atractores, pero sin llegar nunca a alcanzarlos. Si se eligieran unas condiciones
iniciales pertenecientes a un atractor, el sistema permaneceria en dicho atractor, de
la misma manera que si el péndulo magnético empieza encima de uno de los imanes
no se mueve a ningun sitio. Aunque puede haber atractores mas complicados que
un punto fijo, como atractores periédicos o cadticos, en cierto modo un sistema di-
namico que se encuentra en un atractor no evoluciona, ya que se encuentra todo el
rato en el mismo atractor. Sin embargo, los teoremas juegan un papel diferente en
los sistemas formales. A través de las reglas de inferencia si que llegamos a alcanzar
dichos teoremas, no nos acercamos asintoticamente a ellos. Ademas, los teoremas
pueden ser utilizados como puntos de partida para posteriores deducciones aplican-
do las reglas de inferencia, a diferencia de lo que ocurre con los atractores, en los que
la dindmica no evoluciona hacia nuevos atractores. Quiza esto tltimo pueda estar
relacionado con que las leyes que hacen evolucionar al sistema dinamico son siem-
pre las mismas, mientras que las reglas de inferencia que aplicamos para pasar de
un teorema a otro son en general distintas y el orden en que se aplican también varia.

A pesar de las imprecisiones del texto de Casti, es indudable que contiene intuiciones
y preguntas interesantes que merece la pena explorar mas a fondo. En las siguientes
secciones abordaremos algunas de ellas apoyandonos en la literatura existente.

7.2. Indecibilidad e incompletitud en sistemas dinamicos

Para empezar a explorar las conexiones entre caos y teoremas de limitacion, po-
demos plantearnos si existen preguntas indecidibles en los sistemas dinamicos. Los
trabajos de Cristopher Moore (Moore, 1990, 1991), investigador a caballo entre la
fisica y la computacion y afiliado al instituto de Santa Fe, demuestran que en efecto
es posible construir sistemas dinamicos con propiedades indecidibles. En concreto,
Moore propone un sistema dindmico que puede interpretarse como un billar clésico
en el que una particula rebota, parecido al descrito en la Fig. 2b, y demuestra que no
hay algoritmos que puedan calcular sus cuencas de atraccion, ni tampoco el conjunto
de orbitas periddicas, ni decidir si la dinamica asintotica es cadtica, ni ninguna otra
caracteristica de interés. Aunque es perfectamente posible calcular las trayectorias a
tiempos finitos, es imposible saber lo que ocurrira asintéticamente (a tiempo infini-
to) con la dindmica de los sistemas de Moore. Esto es anélogo a lo que ocurre con el
problema de la parada: tenemos capacidad para calcular cada paso que realiza una
méquina de Turing, pero no existe un algoritmo que nos permita decidir si dicho
programa parara asintéticamente o no. En cierto sentido, esto supone un grado ma-
yor de incertidumbre que el propio caos, puesto que como el mismo Moore expone,
puede pensarse en la computacién de un punto de una cuenca de atracciéon como la
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demostraciéon de un teorema arbitrario'!. No obstante, también conviene remarcar
que la indecibilidad hace referencia a una incertidumbre asintética, mientras que el
caos hace referencia a un tipo de incertidumbre que afecta en cada instante a la
evolucion del sistema. De hecho, la sensibilidad a las perturbaciones de los sistemas
puramente cadticos es mayor que la de los sistemas que mezclan caos y periodicidad
como el de Moore. Es decir, para tiempos cortos, los sistemas de Moore pueden
considerarse més predecibles que los sistemas puramente cadticos.

Poco después de los trabajos de Moore, dos logicos matematicos colaboradores de
Chaitin, Newton C.A. Da Costa y Francisco A. Doria, exploraron la cuestion mas
bésica atn de si existe un método general para comprobar que un sistema dina-
mico presenta caos. Puede resultar impactante descubrir que la respuesta que dan
da Costa y Doria es negativa (Da Costa & Doria, 1991b). Para ser mas precisos,
demuestran que no existe un algoritmo general para probar que un sistema hamil-
toniano sea integrable por cuadraturas, ni que un flujo tenga herradura de Smale, o
que sea ergodico, o que sea un flujo de Bernoulli, aunque afirman que la indecibili-
dad del caos es independiente del método de caracterizacion escogido (Chaitin et al.,
2012). Da Costa y Doria van incluso un paso mas alla y demuestran lo que llaman
el teorema de Godel en mecénica clasica (Da Costa & Doria, 1991b). Es decir, no
solamente demuestran que el caos es indecidible, sino que también demuestran que,
asumiendo que la aritmética de Peano es consistente, entonces existen sistemas que
son cadticos pero que tal cosa no puede demostrarse.

Conviene recordar que estos resultados no significan que sea imposible demostrar que
un sistema dindmico sea cadtico, de igual modo que la indecibilidad que aparece en
el problema de la parada no significa que sea imposible demostrar que un algoritmo
se detiene al cabo de un ntimero finito de pasos. De hecho, existen pruebas rigurosas
de la existencia de caos en diferentes sistemas dindmicos como el billar de Sinai
que mostrabamos en la Fig. 2b. No obstante, lo que no existe ni existird jamas, es
un método general para separar los sistemas caodticos de los que no lo son. Como
apunta Moore (Moore, 1990), estos resultados pueden interpretarse a la luz del
teorema de Rice, que grosso modo dice que cualquier propiedad seméntica no trivial'?
es indecidible. De hecho, el teorema de Rice se ha aplicado en diversos sistemas
dindmicos como los autématas celulares (Guillon & Richard, 2010; Kari, 1994).

7.3. Caos para computar

Los resultados expuestos en la seccion anterior apuntan a que es posible estudiar los
sistemas dindmicos empleando herramientas y resultados propios de la computacion.

HMoore en su articulo de 1990 habla de la demostracion del altimo teorema de Fermat, que fue
demostrado pocos anos después.

12Una propiedad seméantica es aquella que pregunta sobre el comportamiento del programa, a
diferencia de una propiedad sintactica que se refiere a cuestiones como ;posee algin bucle el
programa? Que sea no trivial significa que no es siempre verdadera o siempre falsa.
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Al considerar los sistemas dindmicos como sistemas de computacion, podemos ana-
lizar el papel que juega el caos en la capacidad de computaciéon de dichos sistemas.
Cuesta imaginar que un sistema lineal, como un oscilador armoénico, pueda utilizar-
se para computar o que pueda tener propiedades indecidibles, pero tampoco resulta
evidente como el caos puede contribuir a aumentar la capacidad computacional de
un sistema. Un posible camino para relacionar la capacidad computacional con la
dindmica consiste en buscar los requisitos minimos que ha de tener un sistema di-
namico para realizar ciertas tareas de computacion. Este anélisis también permite
realizar una conexiéon inmediata con respecto a los teoremas de limitacion, ya que
los limites propios de algunos sistemas de computacion apareceran inevitablemente
en aquellos sistemas dindmicos que los emulen.

Hoy en dia, todo tipo de aplicaciones emplean sistemas dinamicos no lineales como
sistemas de computacion. De hecho, la revolucion de la inteligencia artificial se ci-
mienta sobre redes de sistemas dinamicos no lineales acoplados. Estas redes son a su
vez sistemas dindmicos de muy alta dimension y fuertemente no lineales, y poseen
unas capacidades computacionales extraordinarias. No obstante, otras redes maés
sencillas, como un conjunto de mapas logisticos acoplados (como los de la Ec. 1),
también son capaces de llevar a cabo tareas de computacion tales como reproducir
puertas logicas, almacenar ntimeros e incluso realizar operaciones aritméticas (Sinha
& Ditto, 1998). Para conseguir transformar estos sistemas dinamicos en sistemas de
computacion, a menudo se utiliza la apariciéon de 6rbitas periddicas para diferentes
valores de los parametros, cosa que no serfa posible conseguir con un sistema aleato-
rio. Asi, la no linealidad y el determinismo son requisitos fundamentales para estos
esquemas de computacion (Prusha & Lindner, 1999).

También es un hecho ampliamente conocido que algunos autématas celulares, como
el juego de la vida (Grey, 2016; Rendell, 2002) o las famosas reglas 110, 124, 137 y
193 de Wolfram (Chua et al., 2004; Cook et al., 2004), tienen un poder de compu-
tacion equivalente al de las maquinas de Turing universales, y por tanto son capaces
de simularse a si mismos, tal y como se ilustra en la Fig. 5a. Sin embargo, y a pesar
de la innegable utilidad de los autématas celulares, existen algunos problemas cuan-
do se trata de relacionar los tipos de dinamicas existentes en los autéomatas celulares
con los tipos de dindamicas descritos en la Sec. 6.2. El propio Casti establecié una
relacion entre autoématas celulares y flujos (Casti, 2018) que ha sido criticada por
otros autores (Prokopenko et al., 2019). Estas conexiones entre autématas celulares
y dindmica cadtica llevaron a algunos investigadores a apuntar que la computacion
universal era propia del llamado eje del caos, una situacion cercana al caos pero que
no es tal. No obstante, este punto también ha sido criticado y existen trabajos que
demuestran que la dindmica cadtica (no solamente la dinamica en el eje del caos)
puede dar lugar a computacion universal (Prokopenko et al., 2019). Ademas, desde
el punto de vista de los sistemas dinamicos, los autématas celulares son sistemas
peculiares y su conexion con la fisica no es tan evidente como la que puedan te-
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ner otros sistemas dinamicos como los flujos o los mapas. Por ello, quiza resulte
més interesante averiguar que algunos sistemas dinamicos sencillos y de baja dimen-
sion, como flujos tridimensionales o mapas bidimensionales, son también capaces de
computacion universal (Branicky, 1995).

Una de las lecciones fundamentales de la teoria del caos es que sistemas sencillos
en su formulacion (e.g. el mapa logistico) pueden dar lugar a dindmicas muy com-
plejas. Esta idea parece encontrar su equivalente en términos de computacion, ya
que sistemas dindmicos sencillos son capaces de actuar como méaquinas de Turing
universales. En concreto, es posible demostrar que mapas 2D y flujos 3D pueden em-
plearse como méquinas de Turing universales (Bournez & Campagnolo, 2008). En
cierto modo, estos sistemas dinamicos son en realidad mas potentes que una maqui-
na de Turing, en cuanto a que tienen un estado de espacios continuo. No obstante,
se suele discretizar reinterpretando el valor de las variables dinamicas, de modo que
por ejemplo si superan cierto umbral se traducen por 1 y de lo contrario se traducen
por 0. En realidad, esta manera de proceder se parece mucho a céomo se simulan
estos sistemas numéricamente debido a la capacidad finita de los ordenadores en la
préactica. Utilizando esta interpretacion, los sistemas dindmicos se pueden construir
de tal modo que el comportamiento dindmico de sus variables emule puertas logicas
y asi construir cualquier maquina de Turing. Finalmente la evolucion del sistema
coincidiré con las iteraciones de dicha maquina de Turing.

Siguiendo esta linea de razonamiento reduccionista, cabe preguntarse hasta qué pun-
to es posible simplificar la dindmica y seguir obteniendo sistemas de computacion
Turing completos (equivalentes a maquinas de Turing universales). En ese sentido,
es interesante observar que la dindmica simbolica de los sistemas cao6ticos, como la
descrita por el desplazamiento de Bernoulli, puede demostrarse equivalente a las
méquinas de estado finito, una versiéon menos potente computacionalmente de las
méquinas de Turing, tal y como se muestra en el diagrama de la Fig. 1b. Por un
lado, la dindamica simboélica supone una simplificacién con respecto a la dinamica
del sistema caotico original. Al discretizar el espacio de fases, las distancias entre las
trayectorias dejan de ser relevantes, de tal modo que solamente importa la topologia.
Esta metodologia fue empleada por autores como Smale y Sinai para probar riguro-
samente propiedades de los sistemas caodticos. Por otro lado, una maquina de estado
finito puede entenderse como una méaquina de Turing con restricciones, en concreto
que su cabezal solo pueda moverse en una direccion y que solamente pueda realizar
la operacion de leer la cinta (pero no puede escribir sobre ella). Resulta curioso que
estas limitaciones aparentemente tan diferentes puedan estar relacionadas.
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7.4. Caos en légica y computacioén

En las secciones precedentes hemos explorado los sistemas dinamicos desde el punto
de vista de los sistemas formales y la computacion, prestando especial atenciéon a los
temas relacionados con la indecibilidad y la incompletitud. Ahora es el turno de in-
tercambiar los papeles y estudiar la logica y los sistemas de computacion utilizando
las herramientas propias de la dinamica no lineal y, en particular, los efectos del caos.

Algunos de los trabajos mas sugerentes en este sentido son los llevados a cabo por
Kunihiko Kaneko y sus colaboradores (Saito & Kaneko, 1998, 2001). Kaneko explora
la idea de considerar una méaquina de Turing como un sistema dinamico, para tratar
de estudiar la geometria de la indecibilidad mediante cuencas de atraccion. En efec-
to, la indecibilidad que vimos en la Sec. 5.3 surge de preguntarse si un determinado
sistema de computacion se detendra o no en funciéon de la entrada proporcionada.
Esta dicotomia recuerda a muchas situaciones en dinamica no lineal, tales como
decidir en cuél de dos posibles atractores terminard un sistema dinamico en funcién
de sus condiciones iniciales. Tal y como vimos en la Sec. 6.2, una de las senas de
identidad del caos transitorio es la presencia de cuencas de atraccion fractales. La
sensibilidad a las condiciones iniciales se manifiesta en estos casos en la forma de
fronteras fractales que dividen los posibles destinos del sistema en el espacio de fa-
ses (Daza et al., 2024). Lo que busca Kaneko precisamente es ver si las cuencas de
atraccion del problema de la parada poseen propiedades fractales.

De entrada, hay un obstaculo inevitable con el enfoque de Kaneko respecto a las
cuencas de atracciéon. Si denominamos B a la cuenca de atraccion de los progra-
mas que se detienen en un tiempo finito, y B a los que no se detienen nunca, nos
encontramos que en principio podemos calcular los elementos que pertenecen a B,
pero no los que pertenecen a B. Esta es precisamente la esencia de la indecibilidad
del problema de la parada. No obstante, situaciones similares ocurren a menudo en
el estudio de sistemas dindmicos no lineales, en los que nunca podemos garantizar
completamente haber llegado a un atractor determinado o haber descubierto todos
los posibles atractores del sistema (Dudkowski et al., 2016). Lo que propone Kane-
ko es realizar un estudio numérico del conjunto de programas que se paran y ver
como dicho conjunto varia al aumentar el tiempo maximo que se permite correr al
programa. Kl conjunto de programas que nunca paran se supone que serd el com-
plementario del anterior, aunque en rigor solo puede estudiarse el conjunto de los
que si paran. Quizé algunos matemaéticos consideren el método poco riguroso, pero
lo cierto es que proporciona informacion notable, como veremos mas adelante.

La segunda dificultad del enfoque de Kaneko es lo que el investigador japonés de-
nomina el problema de la codificacion. En su analogia, la cinta de entrada de la
méquina de Turing vendria a ser la condicién inicial del sistema dindmico. Para
representar las cuencas de atracciéon en un plano, lo que hace es dividir la cinta en
tres partes: una celda en la que se sitta inicialmente el cabezal, y luego las par-
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tes a la izquierda y derecha de este, que Kaneko identifica respectivamente con las
coordenadas x e y del plano. En esta transformaciéon, x e y en principio podrian
ser nimeros naturales, pero Kaneko los identifica con ntimeros reales. En cualquier
caso, nuevamente la situaciéon es muy parecida a la que se da al realizar compu-
taciones numeéricas en la préactica, en las que los ntimeros reales son sustituidos por
aproximaciones que puedan almacenarse en los ordenadores. Es decir, en teoria, x
e y podrian ser niimeros naturales, pero el proceso de computacion de las cuencas
de atraccion que describe Kaneko es completamente analogo en la practica al que se
sigue en sistemas continuos, como el péndulo magnético, debido a las limitaciones
computacionales. Una vez aceptada esta convencion, el siguiente desafio consiste en
decidir qué ntimero en concreto corresponde a una cinta concreta. Por ejemplo, si
tenemos un alfabeto con dos simbolos para la cinta de la méquina de Turing, po-
driamos asumir que el contenido de la cinta se corresponde con un cierto niimero
real en su representacion binaria. El problema es que existen diferentes formas en las
que esta asignacion se puede hacer en la practica y conducen a resultados distintos.
Es facil ver que podriamos codificar todos los c6digos en nimeros tnicamente en
el intervalo [0,0,5] en lugar de en el intervalo [0, 1], ya que ambos tienen la misma
cardinalidad, o realizar alguna otra asignaciéon no uniforme. Esto tiene importantes
consecuencias, ya que esta eleccion puede modificar el valor de la dimensién fractal
de las cuencas de atraccion.

A priori, la arbitrariedad introducida por la codificaciéon es problematica porque
Kaneko justamente lo que busca es medir la dimensiéon del conjunto de parada de
una maquina de Turing. Sin embargo, lo que ocurre es justo lo contrario: indepen-
dientemente de la codificacion elegida!3, el conjunto de parada para una maquina
de Turing universal es tal que llena el espacio, como puede apreciarse en la Fig. 5b.
De hecho, Kaneko sugiere que este hecho puede tomarse como definitorio para el
conjunto de parada, ya que, por ejemplo, no ocurre asi con las cuencas de atrac-
cion de los sistemas caoticos, cuya dimension cambia segun la codificacion. Si nos
paramos a analizar este resultado, casi resulta obvio, pues de lo contrario existirian
codificaciones que nos permitirian mejorar nuestra capacidad predictiva (reducir la
dimension de la frontera del conjunto de parada) con respecto a un problema indeci-
dible. No obstante, desde el punto de vista de los sistemas dinamicos, esta propiedad
no resulta trivial. Kaneko aplica su misma metodologia a un sistema que exhibe las
denominadas cuencas agujereadas (Alexander et al., 1992), cuya frontera llena todo
el espacio de un modo que recuerda a lo visto con el problema de la parada. Sin em-
bargo, en este caso, el resultado es que la dimension de estas cuencas si que cambia
al modificar la codificacion.

Ademas de la dimension fractal del conjunto de parada, Kaneko investiga los llama-
dos tiempos de escape, es decir, el niimero de pasos de las trayectorias antes de poder

BHay que puntualizar que Kaneko exige una serie de propiedades razonables a las codificaciones
a considerar.
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ser clasificadas como pertenecientes a una cuenca o, en este caso, pertenecientes al
conjunto de parada de la maquina de Turing universal. Curiosamente, la distribuciéon
de estos tiempos sigue una tendencia tipo ley de potencias, parecida a la que ocurre
en el caos hamiltoniano y diferente de la que ocurre en el caos disipativo'*, donde la
tendencia es exponencial. La explicaciéon de esta tendencia en el caso del caos hamil-
toniano esta relacionada con su espacio de estados mixto, en el que existe una gran
zona caotica salpicada por regiones periddicas (islas KAM). Algo parecido ocurre
en los sistemas dinamicos con propiedades indecidibles propuestos por Moore que
menciondbamos antes (Moore, 1990), en los que las condiciones iniciales no divergen
a un ritmo exponencial constante. Como explica Moore, esto puede interpretarse co-
mo que sus sistemas no estan regidos por una ley de escalas como pueda ser el caso
de sistemas con un espacio de estados completamente cadtico. Esto apunta a que la
indecibilidad en sistemas dinamicos no es consecuencia tinicamente de la capacidad
de estos de presentar caos. Mas bien, pareciera que la indecibilidad necesitara de
la coexistencia de diferentes tipos de comportamientos dindmicos, como por ejem-
plo que el sistema pueda alternar entre caos y periodicidad. En cualquier caso, este
escenario mixto requiere que el sistema dindmico sea no lineal. Por otro lado, este
razonamiento refuerza la hipotesis anteriormente mencionada de que resulta poco
probable que un sistema dindmico lineal posea propiedades indecidibles, ya que la
alternancia de comportamientos dinamicos resulta imposible en dichos sistemas.

Tras la propuesta de Kaneko y compania de considerar las méaquinas de Turing co-
mo sistemas dindmicos, es posible ir mas alla y considerar la propia logica como un
sistema dindmico. Para ello, volvemos a recurrir a la paradoja del mentiroso. A ojos
de un investigador en dinamica no lineal, la paradoja del mentiroso y su alternancia
entre dos posibles estados de verdad recuerda a un movimiento periédico. La logica
clasica pone fin a este vaivén clasificando la paradoja como contradiccion, pero las
logicas no clasicas ofrecen posibilidades mucho mas ricas. Por ejemplo, utilizando
logica temporal es facil capturar este comportamiento oscilatorio en los términos
sugeridos anteriormente. Una vez abierta esta puerta, podemos preguntarnos si es
posible encontrar el equivalente de las trayectorias cadticas en logica.

Una opcién natural para introducir el caos en logica es utilizar la logica difusa, tal y
como hicieron Patrick Grim y Gary R. Mar (Grim, 1993; Grim et al., 1998; Mar &
Grim, 1991). La paradoja del mentiroso alterna de forma binaria entre los estados
absolutos de certidumbre de la logica clasica: verdadero y falso. Sin embargo, en
la l6gica difusa existe todo un continuo de estados de certidumbre, que podriamos
identificar con el intervalo [0, 1], donde 0 seria completamente falso y 1 completa-
mente verdadero, y los nimeros intermedios pueden interpretarse como algo cierto,
bastante cierto, muy falso, etc. Grim y Mar estudian diferentes versiones de la para-
doja del mentiroso, como el mentiroso modesto “Esta proposiciéon es un poco falsa”

14En el caos disipativo no se conserva la energfa, a diferencia de lo que suele ocurrir en el caos
hamiltoniano.
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Figura 5: (a) El juego de la vida, famoso autémata celular ideado por Conway, puede emplear-
se como maquina de Turing universal y simularse a si mismo usando metapixeles
(pixeles hechos de conjuntos de pixeles) (Grey, 2016; Prokopenko et al., 2019). (b)
Representacion del conjunto de parada de una maquina de Turing universal en la
que se observa que llena el espacio, adaptado de (Saito & Kaneko, 2001). (c) Sen-
sibilidad a las condiciones iniciales al estudiar la certidumbre de oraciones del tipo
“Esta proposicion es tan verdadera como falsa” empleando logica difusa, adaptado
de (Grim, 1993).

o el mentiroso enfatico “Esta proposicién es muy falsa” y analizan su dindmica, es
decir, analizan su grado de veracidad o certidumbre bajo diferentes supuestos. Grim
demuestra que el mentiroso modesto produce oscilaciones decrecientes en el grado
de certidumbre que acaban en un punto fijo, mientras que el mentiroso enfatico
conduce a oscilaciones crecientes hasta llegar a la amplitud total de 1 (alternancia
entre verdad y falsedad absolutas). Por otro lado, la oracion “Esta proposicion es
cierta”, tiene el problema en logica difusa de que su valor de certidumbre es arbi-
trario. Modificaciones como “Esta proposiciéon es muy cierta” o “Esta proposicion es
poco cierta” conducen a puntos fijos de verdad y falsedad respectivamente. Pero lo
realmente interesante de este enfoque, es que construcciones del tipo “Esta propo-
sicién es tan cierta como falsa’!® o “El valor de verdad de esta proposicién es muy
diferente del de su negacion”!®, pueden presentar érbitas caéticas en los estados de
certidumbre. De hecho, este tipo de proposiciones presentan sensibilidad a las condi-
ciones iniciales, en el sentido de que pequenas diferencias en el grado de certidumbre
inicial conducen a trayectorias cuya certidumbre diverge rapidamente, tal y como se
muestra en la Fig. 5c. También es posible construir sistemas de varias proposiciones
que se referencien entre si, igual que se construyen mapas de varias dimensiones, y
asi reconstruir practicamente cualquier sistema dindmico en términos semanticos.

Mar y Grim, haciendo uso de lo que ellos denominan seméantica dinamica encuen-
tran estructuras fractales por doquier. Por ejemplo, demuestran que el triangulo de
Sierpinski, objeto fractal paradigmético representado en la Fig. 2a, aparece al estu-
diar las tautologias de las tablas de verdad de ciertas conectivas (Grim et al., 1998).

15Segtin Grim esta se corresponde con la aplicaciéon tienda de campaiia, una modificacién del mapa
logistico.
16Segtin Grim esta proposicion se corresponde con el mapa logistico descrito por la Ec. 1.
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Es mas, de forma independiente a los resultados que ya hemos comentado de Doria
y da Costa (Da Costa & Doria, 1991b), Mar y Grim proponen una demostracion
alternativa de la indecibilidad del caos. En su marco de logica difusa, introducen la
oracion “Esta proposicion tiene un valor seméantico cadtico o es tan verdadera como
se estima que es falsa”. En base a esta oracion, construyen una prueba por contra-
diccion en la que demuestran la imposibilidad de la existencia de un algoritmo que
permita distinguir las proposiciones cadticas de las que no lo son. Bien es cierto que,
para aceptar esta demostracion, hay que asumir el marco teérico de logica difusa
que ellos proponen, pero en cualquier caso su resultado apoya la idea de que el caos
es en si mismo una propiedad indecidible.

7.5. Implicaciones para la filosofia, la ciencia y la tecnologia

En las secciones anteriores hemos visto algunas interconexiones entre el caos, la 16-
gica y la teorfa de la computacién. Quiza, sin embargo, hemos pasado por alto el
factor comun mas evidente entre estas teorias, a saber, la reaccién que producen en
la mayoria de las personas y que no es otra que preguntar acerca de la utilidad de
estas teorias abstractas. Si estas ideas por separado producen a menudo este efecto,
cabe esperar que se produzca incluso con mayor intensidad al considerar su intersec-
cion. En este apartado, discutiremos algunas de las implicaciones de los resultados
anteriores para la filosofia, la ciencia y la tecnologia.

Empecemos por el plano filosofico. La aparicion de caos en la seméantica, como la
propuesta por Mar y Grim (Grim et al., 1998), puede parecer un tanto artificial. Sin
embargo, en ciertos ambitos como la economia, la sociologia o algunos problemas de
la biologia, resulta razonable atribuir grados de certidumbre relativos a ciertas infor-
maciones. Ademaés, es natural establecer redes relacionales entre diferentes agentes,
yva que la veracidad de cierta afirmacién puede depender en gran medida de la ve-
racidad de otra, y asi sucesivamente. La apariciéon de caos en modelos sencillos de
teoria de juegos (Grim et al., 1998) es inquietante cuando consideramos la logica
difusa, ya que lleva a cuestionarse la validez de los razonamientos llevados a cabo en
escenarios donde la logica difusa parece adecuada (Medel-Ramirez et al., 2023). En
ambitos donde la informacién es a menudo parcial, como en sociologia o en econo-
mia, quizéd algunos planteamientos acierten de vez en cuando por puro azar debido a
la accion del caos. Si bien es cierto que no todos los sistemas son caoticos, la realidad
es que el caos es la norma y no la excepciéon dentro de la dindmica no lineal. Pro-
bablemente seria conveniente adoptar en estas disciplinas algunos enfoques propios
de la dindmica no lineal e introducir nociones relacionadas con la incertidumbre y el
caos. Tal y como afirman Mar y Grim, vivir sin ignorancia esta mas alla de nuestras
posibilidades; lo mejor que podemos hacer es tratar de manejar nuestra inevitable
ignorancia con cierto éxito (Grim et al., 1998).

Otra cuestion filosofico-cientifica que se ve afectada por los resultados aqui descritos
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es la del determinismo. El demonio de Laplace apuntaba a que, si las ecuaciones de
la mecanica clésica eran correctas, la prediccién solamente se encontraba limitada
por cuestiones “practicas”’. Por un lado, por la dificultad de determinar con suficiente
precision las condiciones iniciales y, por otro lado, por las complicaciones a la hora de
realizar todos los calculos correspondientes. Ambos escollos, sin embargo, parecieran
abordables a través de esfuerzos técnicos. Como hemos visto, el caos demuestra que
en muchos casos el mas minimo error numérico o experimental puede conducir a
predicciones divergentes. No obstante, en ausencia de dichos errores y con poder de
computacion ilimitado, las predicciones en teoria deberian seguir siendo exactas. Sin
embargo, los resultados introducidos en las secciones anteriores muestran la apari-
cion de una incertidumbre insalvable en sistemas dindmicos debido a la presencia de
indecibilidad. Es decir, incluso con perfecto conocimiento de las condiciones iniciales
y con todo el poder computacional concebible, existen cuestiones fundamentales que
son irresolubles en mecanica clasica. Este resultado contrasta con la tesis expresada
por el célebre fisico-matemético Roger Penrose de que no hay nada incomputable
en fisica clasica (Penrose, 1989), tal y como se encargan de apuntar Doria y Da
Costa (Da Costa & Doria, 1991a).

En el plano cientifico, los resultados recopilados en este trabajo son de gran im-
portancia. En primer lugar, la presencia de indecibilidad en sistemas fisicos es una
cuestion de actualidad (Perales-Eceiza et al., 2024). Cabe recordar que la indecibili-
dad es propia de los modelos que utilizamos para representar los sistemas fisicos, no
de dichos sistemas en si mismos. No obstante, la indecibilidad puede indicar la pre-
sencia de fenomenos fisicos inexplorados. Algo semejante ocurre con el caos a nivel
cuantico. La mecanica cuantica se rige por ecuaciones lineales, por lo que en principio
no puede presentar caos. Sin embargo, en virtud del principio de correspondencia,
debe haber un reflejo del caos a nivel cuantico. Esto se manifiesta en multitud de
fenomenos que a veces se han reunido bajo el nombre de caologia (Berry, 1987). Asi
pues, tanto el caos como la indecibilidad abren nuevas vias para la exploraciéon de
los sistemas fisicos.

En cuanto a metodologia cientifica, ambas areas de conocimiento trajeron conse-
cuencias revolucionarias. Por ejemplo, el caos demostrd que en ocasiones debemos
conformarnos con estudiar los sistemas dindmicos desde un punto de vista mas cua-
litativo que cuantitativo. Muy a menudo nos vemos obligados a utilizar esquemas de
integracion numérica para resolver los sistemas dinamicos no lineales. Estos méto-
dos, inevitablemente introducen un cierto error numérico, por lo que los resultados
no se corresponden con la trayectoria “real” de nuestro sistema, es decir, con la 6r-
bita que inicialmente queriamos estudiar. Afortunadamente, para la mayoria de los
casos, se cumplen los llamados teoremas de sombreado (Pilyugin, 2006). Estos teore-
mas demuestran que aunque la trayectoria simulada no sea la deseada inicialmente,
existe otra trayectoria con condiciones iniciales muy préximas a las introducidas que
se aproxima a la trayectoria simulada. En definitiva, no podemos confiar en simula-
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ciones individuales en presencia de caos, pero podemos estudiar las propiedades del
sistema en su conjunto. Asi, las simulaciones con ordenador son algo cotidiano en el
estudio de los sistemas no lineales y, de hecho, fue la revoluciéon informatica la que
propici6 el florecimiento de la teorfa del caos. En cuanto a los teoremas de limita-
cion, a pesar de su importancia en el edificio de las mateméticas, no han cambiado
fundamentalmente la manera de hacer matematicas de la mayoria. En vista de la
inevitable incertidumbre que vive en el corazéon de las matemaéticas, Chaitin propone
convertir a las matematicas en una ciencia mas empirica (Chaitin, 2002). Asi, si al-
gunos resultados dependen de la veracidad de alguna conjetura por demostrar, cabe
seguir haciendo matemaéticas suponiendo esa conjetura como hipétesis, ya que quiza
se trate de una de las verdades indemostrables con que amenazan los resultados
de Godel y compania. En ambos casos, vemos que la incertidumbre que introducen
el caos y los teoremas de limitaciéon llevan a abogar por una cierta relajacién con
respecto a la excesiva rigidez que a veces los cientificos se autoimponen llevando al
extremo sus sistemas formales.

El estudio de estos formalismos tan abstractos también tiene consecuencias tecnolo-
gicas significativas. En muchas aplicaciones, la aleatoriedad no siempre es algo inde-
seable. Para diversas cuestiones rutinarias en ciencia y tecnologia se hace necesario
generar nimeros aleatorios. En este sentido, conviene mencionar que la definicion
mas extendida hoy en dia con respecto a ntumero aleatorio es referida a la compre-
sién de la informaciéon. Informalmente, podemos decir que un ntmero aleatorio es
aquel cuya informaciéon no puede comprimirse (Chaitin, 2002; Chaitin et al., 2012).
Es decir, la manera mas corta de expresar un niimero aleatorio es escribiendo dicho
ntmero aleatorio. No obstante, mediante sistemas caoticos sencillos es posible gene-
rar numeros pseudo-aleatorios (Naik & Singh, 2024; Yu et al., 2019). Estos ntumeros
no son aleatorios en el sentido de compresion de informacion, ya que proceden de un
algoritmo que puede ser tan sencillo como la iteracion del mapa logistico. Sin embar-
go, los ntimeros asi generados poseen caracteristicas practicamente indistinguibles
de las de un ntimero aleatorio ideal, tales como una correlacién casi nula entre ellos,
o una entropia asociada que es maxima. Por tanto, podemos decir que los sistemas
no lineales comprimen gran cantidad de informaciéon: una expresion sencilla puede
dar origen a trayectorias sumamente aleatorias. Seria interesante ver si algunos de
los esquemas dindmicos que hemos mencionado aqui, como el de Moore (Moore,
1991) o el de Kaneko (Saito & Kaneko, 2001), pueden utilizarse para mejorar atin
més estos generadores pseudo-aleatorios gracias a la presencia de indecibilidad o si,
por el contrario, estos sistemas son menos eficientes a la hora de producir nimeros
pseudo-aleatorios debido a esa mezcla de diferentes dinamicas que mencionabamos
antes.

Finalmente, en plena revolucion de la inteligencia artificial (I.A.) parece obligado ha-

cer una breve mencién a su relaciéon con lo expuesto anteriormente. En cierto sentido
el paradigma de la I.A. es completamente opuesto al de la méxima compresion de la
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informacion. Los modelos de aprendizaje automatico poseen una cantidad desorbi-
tada de pardmetros que les permiten realizar predicciones realmente asombrosas. Sin
embargo, uno de los mayores inconvenientes relacionados con la I.A. precisamente
consiste en que no comprendemos bien sus mecanismos (Sanjuan, 2021). La L.A. es
una especie de caja negra que funciona de manera extraordinaria para multitud de
aplicaciones, pero que apenas nos permite profundizar en nuestro conocimiento. Es
famosa la proposicion atribuida a Von Neumann de que con cuatro pardmetros es
posible construir una funcién que pinte un elefante, y con cinco hacer que mueva
la trompa (Mayer et al., 2010). La inteligencia artificial es capaz de realizar tareas
increibles, pero en si misma no genera comprension porque no comprime la informa-
cion. De hecho, la I.A. a menudo se utiliza para generar contenido que promueve la
desinformacion (Aimeur et al., 2023). Los sistemas no lineales son especialmente efi-
cientes en estas tareas, ya que, de la misma forma que comprimen mucha informaciéon
en forma de sencillas ecuaciones, pueden utilizarse para generar mucha informaciéon
mediante dichas ecuaciones sencillas. Asi, aunque obviamente se utiliza I.A. en el
contexto de la dindmica no lineal y de los sistemas formales de forma provechosa,
pareciera que en el sentido anterior su espiritu fuera practicamente antagonico.
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8. Conclusiones

En este trabajo se han estudiado las conexiones entre caos y teoremas de limitacion.
A pesar de parecer dos areas disjuntas, hemos comprobado que existen multitud
de paralelismos, tanto histéricos, como metodologicos y también de contenido. En
general, y permitiéndonos la autorreferencia, podemos decir que la frontera entre
caos e indecibilidad pareciera fractal por las muchas complejidades y recovecos que
presenta. A continuacién se van a enumerar ciertas conclusiones a fin de aclarar
algunos puntos importantes de lo anteriormente expuesto:

1. Conviene tener claro que, si bien el caos y los teoremas de limitacion suponen
incertidumbre con respecto a los sistemas en los que se aplican, esta incerti-
dumbre es de naturaleza muy diferente. El caos esta relacionado con la sensi-
bilidad a las condiciones iniciales y para manifestarse normalmente se asume
alguna incertidumbre inicial, ya sea en la determinacién de las condiciones ini-
ciales, el esquema de integracion numérica o de otra indole. La incertidumbre
asociada a los teoremas de limitacion surge incluso en ausencia de ninguna
incertidumbre practica.

2. El caos puede aparecer en sistemas de baja dimension y formulacion sencilla,
aunque su dinamica sea complicada. Muchos de estos sistemas poseen una ca-
pacidad de computacion equivalente a la de una maquina de Turing universal.
Por tanto, no es de extranar que aparezcan multitud de cuestiones indecidibles
en su estudio.

3. El mismo caos es indecidible. De la misma manera que los matemaéticos no
saben a priori si podran demostrar un teorema, los investigadores del caos
desconocen si podran determinar algunas de las caracteristicas fundamentales
de un sistema dindmico no lineal como su dinamica asintética. Esto puede
parecer algo negativo, pero en realidad asegura que el trabajo que desempenan
los investigadores de ambas disciplinas no podra ser reemplazado jaméas por
un algoritmo.

4. Las herramientas del caos pueden utilizarse para estudiar sistemas de compu-
tacion. Normalmente las demostraciones de las limitaciones de los sistemas
de computaciéon se realizan por reduccion al absurdo. No obstante, la diné-
mica no lineal ofrece otra perspectiva mas experimental y una gran caja de
herramientas con la que investigar este tipo de sistemas.

5. Algunas légicas no clasicas pueden presentar caos. Esto supone un punto im-
portante a la hora de realizar predicciones en aquellos contextos donde este
tipo de logica se aplique, tales como la economia o la sociologia.

6. El estudio del caos y los teoremas de limitaciéon pudiera en ocasiones parecer un
asunto de interés puramente académico, orientado a la incertidumbre en lugar
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de a la creacién de conocimiento cientifico. De hecho, el caos puede considerarse
como una patologia propia de la mecanica clasica, que en cierto modo se diluye
en la mecanica cuantica. A su vez, la indecibilidad puede entenderse como un
problema asociado a ciertos modelos, pero dicho problema desaparece en la
realidad fisica. Sin embargo, el estudio de sistemas cuénticos cuya version
clasica es caodtica permiti6 descubrir algunos fenémenos fisicos impensables
desde un punto de vista puramente cuantico. Del mismo modo, la presencia de
indecibilidad en un modelo puede indicar la existencia de nuevos fenémenos
fisicos. Asi pues, explorar los limites de nuestro conocimiento nos permite
acceder a nuevo conocimiento.

Todo lo anterior apoya la tesis de que la colaboraciéon entre dindmica no lineal, 16gica

y teorfa de la computacion puede ser tremendamente fructifera y de gran relevancia
para el futuro de la ciencia y la filosofia.
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