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1. Resumen

El caos supone una limitación respecto a nuestra capacidad predictiva de los sis-
temas dinámicos no lineales, a pesar de ser sistemas completamente deterministas.
Los teoremas de limitación de Gödel y Turing también revelaron fuertes restric-
ciones respecto a nuestro conocimiento sobre cuestiones fundamentales en lógica y
matemáticas. En este trabajo analizamos las conexiones entre estos dos fenómenos,
sus similitudes y diferencias tanto históricas como metodológicas y de contenido.
Para ello, primero exponemos una breve introducción tanto a los trabajos de Gödel
y Turing como a la teoría del caos a fin de proporcionar las herramientas necesarias
para comprender la segunda parte. Después, hacemos una pequeña exploración de
la literatura existente en la intersección de estas disciplinas bajo diferentes enfoques.
Finalmente, discutimos las implicaciones que estos resultados tienen para la filosofía,
la ciencia y la tecnología.

Abstract

Chaos represents a fundamental limitation on our ability to predict the behavior of
nonlinear dynamical systems, despite their fully deterministic nature. Similarly, Gö-
del’s and Turing’s limitation theorems revealed profound constraints on what can be
known or proven in logic and mathematics. In this work, we explore the connections
between these two phenomena, examining their similarities and differences from his-
torical, methodological, and conceptual perspectives. To that end, we begin with
a brief introduction to Gödel’s and Turing’s results, as well as to chaos theory, in
order to provide the necessary background for the discussion that follows. We then
present a small survey of the existing literature at the intersection of these fields,
considering a variety of approaches. Finally, we reflect on the broader implications
of these findings for philosophy, science, and technology.

1



2. Palabras clave

- Incompletitud
- Indecibilidad
- Dinámica no lineal
- Fractal
- Gödel
- Turing
- Mandelbrot
- Yorke
- Complejidad
- Computación
- Determinismo
- Lógica matemática
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3. Introducción

Los límites del conocimiento humano suponen uno de los problemas más antiguos
en filosofía. En el s. XX, diferentes revoluciones en el campo de las matemáticas y de
la física trajeron consigo avances no solo en el conocimiento científico, sino también
en los límites de dicho conocimiento. En concreto, en este trabajo se van a estudiar
la teoría del caos y los teoremas de limitación introducidos por Gödel y Turing.

Tanto la teoría del caos como los teoremas de limitación en lógica han protagonizado
un papel curioso en la historia de la ciencia reciente. A pesar de que la ciencia trata
de iluminarnos con su conocimiento, estas teorías señalan las sombras que dicho co-
nocimiento proyecta. Quizá sea precisamente ese papel antagonista el que ha hecho
que estos conceptos tan abstractos hayan gozado de cierta popularidad no solamente
entre los especialistas, sino también entre el gran público.

La teoría del caos se ha colado en el acervo colectivo con imágenes tan icónicas como
la mariposa que provoca tornados a distancia. Las historias del caos han llegado a
ocupar las listas de best sellers (Gleick, 1987) y sus ideas se han colado en películas
taquilleras1. En el caso de la lógica, los profundos logros de figuras como Gödel o
Turing también han sido popularizados en textos de divulgación e incluso en có-
mics (Doxiadis, 1992; Doxiadis & Papadimitriou, 2009). Sus cautivadoras ideas y
sus fascinantes vidas también han sido llevadas a la gran pantalla2, convirtiendo a
sus protagonistas en íconos del pensamiento moderno.

No obstante, la notoriedad de estas teorías no implica en absoluto la comprensión
de las mismas. De hecho, debido a la incesante especialización, muchos de los inves-
tigadores de la teoría del caos podrían decir poco acerca de los resultados de Gödel
y Turing, y probablemente lo mismo ocurriría con los lógicos a quienes se les pidiera
entrar en detalles acerca del caos determinista. El que escribe estas líneas puede
atestiguar desde la experiencia que, ni en un máster dedicado al caos se habló de los
resultados de Gödel o Turing, ni en el desarrollo de otro máster dedicado a lógica y
filosofía se mencionó el caos determinista. Esto no deja de ser sorprendente ya que,
como se explicará a continuación, ambas áreas del conocimiento comparten mucho
más que espacio en las carteleras. En este trabajo exploraremos precisamente los
diferentes tipos de incertidumbre que suponen, sus relaciones y diferencias.

Es justo admitir que hoy en día han divergido tanto sus caminos que resulta difícil
identificar las similitudes entre estos dos mundos. Los teoremas de limitación se sue-
len adscribir a la esfera de las matemáticas y del razonamiento puramente abstracto.

1Películas como “Jurassic Park” (1993) o “The butterfly effect” (2004) hacen fuertes referencias a
conceptos propios del caos como la sensibilidad a las condiciones iniciales.

2Algunos ejemplos de películas que han popularizado el legado de Gödel y Turing son “Gödel
Incomplete” (2004), “Breaking the Code” (1996) o “The Imitation Game” (2014).
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De hecho, a menudo son reconocidos como algunas de las teorías más elevadas que
ha concebido la mente humana. La teoría del caos, sin embargo, suele presentarse
a través de sus aplicaciones prácticas en física, tales como la cinemática de apara-
tos mecánicos o la predicción del tiempo meteorológico. Es más, el caos impregna
también ámbitos aún más alejados del razonamiento abstracto y centrados en su
aplicación, como la economía o la medicina, y a menudo se pone gran énfasis en su
multidisciplinariedad.

Aunque el caos y la lógica parezcan estar hoy día separados por distancias abismales,
también es posible reconocer numerosas conexiones. Desde el punto de vista histó-
rico, nombres como Cantor, Von Neumann o Turing aparecen a menudo en ambos
contextos. Desde un punto de vista conceptual, los teoremas se deducen aplican-
do normas sin ambigüedades, del mismo modo que una trayectoria en un sistema
dinámico se calcula a través de reglas deterministas. Esto implica una diferencia
fundamental con respecto a la mecánica cuántica o la física estadística, por ejem-
plo, en las que existe una imperfección del conocimiento a priori. Además, tanto en
caos como en el estudio de los teoremas de limitación, se repiten sin cesar palabras
clave como complejidad e incertidumbre. Existe, pues, un interés común por temas
semejantes y a menudo se emplean enfoques similares. Uno de nuestros objetivos
fundamentales será analizar estas relaciones y su alcance.

El presente trabajo puede dividirse en dos partes. En la primera parte, se realiza
una breve introducción a los teoremas de limitación de Gödel y Turing por un lado,
y a la teoría del caos por otro. La idea es proporcionar al lector una base con la que
poder abordar después el análisis comparativo. Dichas páginas podrían considerarse
unos apuntes para estudiantes de máster, de tal modo que tanto un filósofo como un
físico o un matemático pudieran seguirlos sin demasiada dificultad. Así, cada sección
comienza con un brevísimo contexto histórico, que sirve para encuadrar la relevan-
cia de las respectivas teorías y para dejar entrever las conexiones existentes entre
los diferentes autores y sus ideas. Después, se definen los conceptos fundamentales
utilizando un tono accesible más que técnico, aunque tratando de mantener el rigor
en todo momento. La idea es que el trabajo sea autocontenido en su esencia, aunque
por supuesto se ofrezcan referencias que sirvan como ampliación. Se incluyen ejem-
plos sencillos y representativos y se emplean imágenes para ilustrarlos. Este estilo
puede resultar sorprendente en algunos contextos, pero como vehículo pedagógico
resulta sumamente útil.

En la segunda parte del presente trabajo, se comparan los teoremas de limitación
de Gödel y Turing con conceptos provenientes de la dinámica no lineal y la teoría
del caos. Si bien existen conexiones muy ricas entre la incertidumbre que comporta
cada una de las teorías y las conexiones entre sus objetos de estudio son numerosas,
este vínculo no puede resumirse en una tesis sencilla. A día de hoy, carecemos de
una teoría global que sintetice estas relaciones y en la que podamos focalizar nuestro
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análisis. Por ello, esta comparativa se aborda desde diferentes ángulos y perspectivas,
tratando de incluir una muestra de trabajos de investigación extensa aunque no
exhaustiva, ya que sería imposible en el espacio propio de un trabajo fin de máster.
De esta manera, se sacrifica algo de profundidad por una mayor amplitud, aunque
ciertos temas que puedan resultar especialmente interesantes por diferentes motivos
sí se tratan con más detalle. En definitiva, el principal objetivo de este trabajo es
ofrecer un panorama más o menos general sobre las investigaciones en la intersección
entre los teoremas de limitación y la teoría del caos. Creo firmemente que esta
frontera se trata de un terreno fértil y sumamente hermoso, aunque inusualmente
poco transitado en comparación con otros senderos en las lindes entre física, filosofía
y matemáticas.
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4. Gödel

4.1. Contexto histórico y relevancia

La geometría euclídea fue durante siglos uno de los mayores paradigmas de teoría
matemática, hasta que en el s. XIX la irrupción de geometrías no euclídeas puso en
cuestión la propia noción de teoría y la fundamentación misma de las matemáticas.
David Hilbert, probablemente el matemático más influyente del s. XX, se propu-
so hacer frente a esta crisis mediante el llamado programa de Hilbert. Su objetivo
consistía en axiomatizar las matemáticas y probar la solidez de sus cimientos, lo
cual podía reducirse en último término a probar que la aritmética era una teoría
sin contradicciones en la que es posible demostrar la veracidad o no de cualquier
proposición.

Kurt Gödel (1906-1978) nació y creció en el seno del Imperio Austrohúngaro, desa-
rrollando el trabajo que nos ocupa durante su período en Viena. La actual capital
austriaca era un verdadero caldo de cultivo filosófico y científico durante el primer
tercio del s. XX. Los físicos Ernst Mach y Ludwig Boltzmann fueron los primeros
catedráticos de filosofía de la ciencia en la Universidad de Viena. Años después, el
Círculo de Viena congregaba a algunos de los más grandes pensadores de su época.
El propio Gödel estaba en estrecho contacto con el círculo y, aunque consideraba
a sus integrantes como pensadores algo toscos (Sigmund, 2023), esa atmósfera le
permitió conocer de primera mano las ideas de filósofos y científicos de renombre,
tales como Ludwig Wittgenstein, Karl Popper, Albert Einstein, Carl Menger o John
von Neumann3. El interés de Gödel en la metalógica y la fundamentación de las
matemáticas le llevó a demostrar el llamado teorema de completitud de Gödel du-
rante el desarrollo de su tesis doctoral. El teorema de completitud establece que,
en lógica de primer orden, toda fórmula que es verdadera es también demostrable.
Sin embargo, Gödel pasaría a la historia por los llamados teoremas de incompleti-
tud, que supusieron un golpe fatídico para el programa formalista de Hilbert y una
tremenda conmoción en la comunidad matemática. Hasta ese momento, la mayoría
de los matemáticos daban por hecho que todas las “verdades matemáticas” debían
poder demostrarse a partir de ciertos axiomas y reglas de inferencia. No obstante,
como veremos a continuación, los trabajos de Gödel pusieron de manifiesto que esa
asunción implícita no solo no estaba justificada, sino que era falsa.

4.2. Definiciones previas

Los números naturales se encuentran en los cimientos de las matemáticas y apuntalar
una teoría que los estudie era objetivo central del programa de Hilbert. Aunque
existen diferentes formulaciones de la aritmética, suele tomarse la aritmética de

3Von Neumann de hecho estuvo a punto de adelantarse a Gödel en la publicación de sus teoremas
de incompletitud.
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Peano como referencia.
Los axiomas de la aritmética de Peano pueden resumirse informalmente de la si-
guiente forma:

1. El 0 es un número natural.

2. Ningún número tiene al 0 como sucesor y si dos números tienen el mismo
sucesor significa que son iguales.

3. Principio de inducción: si una fórmula es cierta para 0, y la validez de dicha
fórmula para un número cualquiera implica la validez para su sucesor, entonces
la fórmula es válida para todos los naturales.

El deseo de Hilbert puede resumirse en demostrar que la aritmética era una teoría
sin contradicciones y suficientemente fuerte como para derivar todas las verdades
matemáticas mediante métodos finitos.

Definición 1 Consistencia: se dice que una teoría es consistente cuando no es po-
sible demostrar una fórmula y su negación en dicha teoría.

Como veremos a continuación, la consistencia de la aritmética de Peano está estre-
chamente ligada con su completitud.

Definición 2 Completitud: una teoría es completa si, para cualquier fórmula cerra-
da4, o bien ella o su negación son teoremas de dicha teoría.

4.3. Teoremas de incompletitud de Gödel

Hoy en día, podemos enunciar el primer teorema de incompletitud de Gödel de la
siguiente forma:

Teorema 1 (Primer teorema de incompletitud de Gödel) Si la aritmética de Peano
es consistente, entonces no puede ser completa; es decir, existen fórmulas verdaderas
en su lenguaje que no pueden ser demostradas dentro de ella.

Teniendo en cuenta el papel fundacional de la aritmética, otra manera de enunciar
el primer teorema de Gödel que pone de relieve sus profundas implicaciones para
las matemáticas es la siguiente:

Teorema 2 (Primer teorema de incompletitud de Gödel, versión alternativa) Nun-
ca se podrá encontrar un sistema axiomático que sea capaz de demostrar todas las
verdades matemáticas y ninguna falsedad.

4Una fórmula cerrada es aquella cuyo valor es fijo y está determinado.
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La prueba del primer teorema de Gödel puede dividirse en tres partes. En la primera
se define la llamada numeración de Gödel, que asigna a cada fórmula de la teoría
un código numérico. En la segunda parte se construye una fórmula que permite
verificar si un número de Gödel es prueba (se demuestra a partir de los axiomas y
las reglas de inferencia) de otro número de Gödel. En el último paso se genera una
proposición con una autorreferencia al estilo de la paradoja del mentiroso, diciendo
“esta proposición no se puede probar”. Al analizar las consecuencias de esta propo-
sición se llega a la conclusión de que o bien la aritmética de Peano es incompleta o
bien es inconsistente. Explicaciones más detalladas de la prueba de Gödel y las téc-
nicas que en ella se utilizan pueden consultarse en (Boolos et al., 2002; Smith, 2013).

El segundo teorema de incompletitud de Gödel está estrechamente relacionado con
el primero, reforzando y ampliando el alcance de sus consecuencias.

Teorema 3 (Segundo teorema de incompletitud de Gödel) Si una teoría consistente
contiene la aritmética de Peano, entonces no es posible demostrar su consistencia
dentro de la propia teoría.

Para demostrar este teorema, se puede definir una fórmula Cons tal que exprese la
consistencia de una teoría T que incluya la aritmética de Peano (o cualquier otra
aritmética recursiva). Gödel demostró que Cons(T ) → G es un teorema de dicha
teoría. Por lo tanto, Cons(T ) no puede ser un teorema, ya que si lo fuera, se dedu-
ciría que G es demostrable, en contradicción con el enunciado del primer teorema
de incompletitud.

Aunque es imposible demostrar la consistencia dentro de la propia teoría, en prin-
cipio, sería posible mostrar su inconsistencia. Para ello, bastaría con deducir de sus
axiomas alguna contradicción. No obstante, hasta la fecha no se ha producido tal
evento, y es el sentir de la mayoría de los lógicos y matemáticos que nunca se pro-
ducirá. En cualquier caso, dicho deseo es imposible de sustentar lógicamente tal y
como acabamos de ver que demostró Gödel.
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5. Turing

5.1. Antecedentes históricos y relevancia

El programa de Hilbert planteaba cuestiones respecto a la fundamentación de las
matemáticas relacionadas con la consistencia, completitud y decidibilidad. Como
hemos visto, los teoremas de Gödel demostraron fuertes limitaciones en cuanto a las
dos primeras, pero aún quedaba la cuestión de la decibilidad: ¿existe algún método
mecánico capaz de decidir si una proposición de lógica de primer orden5 es verdade-
ra o falsa? Alan Turing (1912-1954), junto con su director de tesis Alonzo Church,
abordó el problema de la decibilidad introduciendo técnicas y conceptos que senta-
rían las bases teóricas de toda la computación. Es más, durante la II Guerra Mundial
Turing trabajó con unas máquinas electromecánicas que pueden considerarse antece-
sores de los computadores a fin de descifrar los códigos nazis de la Máquina Enigma.
También son conocidos sus trabajos pioneros en biología teórica que introdujeron
conceptos fundamentales de las modernas ciencias de la complejidad, estrechamente
relacionadas con la teoría del caos. Los modelos de reacción-difusión y los llamados
patrones de Turing permiten entender la morfogénesis a través de mecanismos de
ruptura de la simetría y autoorganización.

5.2. Conceptos relacionados

Uno de los grandes logros de Turing fue el de definir en términos matemáticos
precisos la noción abstracta de “método mecánico” presente en la pregunta original de
Hilbert acerca de la decibilidad. Previamente el matemático estadounidense Alonzo
Church había realizado una definición equivalente mediante las funciones recursivas
y el cálculo lambda, pero fue el propio Church el primero en reconocer el valor del
trabajo de Turing y acuñar el término máquina de Turing para referirse a los sistemas
de computación definidos por el inglés. Hoy en día se consideran las máquinas de
Turing como el origen teórico de la computación. Igual que con Gödel, aquí daremos
una descripción moderna (sin ceñirnos a los trabajos originales de Turing) que nos
permita comprender su funcionamiento sin entrar en demasiados detalles técnicos.
Para una exposición más completa, se recomienda consultar (Davis, 2013; Sipser,
2012).

Definición 3 Máquina de Turing: Se trata de un modelo de computación determi-
nista (sin ambigüedades) compuesto por los siguientes elementos: una cinta infinita
dividida en celdas que pueden contener un símbolo cada una escogido entre un alfa-
beto finito, un cabezal que se desplaza por la cinta y puede leer y escribir símbolos
en ella, y una lista finita de instrucciones que determina las acciones que debe rea-
lizar el cabezal según su estado actual. La Fig. 1a proporciona una representación
esquemática.

5La aritmética de Peano es un ejemplo de sistema expresado en lógica de primer orden.
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Figura 1: (a) Representación de una máquina de Turing. La cinta infinita tiene en cada cel-
da uno de los dos símbolos (0,1) disponibles. El cabezal está representado por una
circunferencia con una flecha que indica su posición sobre la cinta. El cabezal pue-
de moverse a izquierda y derecha, leer y escribir contenido en la cinta. Además, la
máquina de Turing se encuentra en el estado interno qi y tiene unas reglas de tran-
sición δ que determinan completamente las acciones que debe realizar en cada paso.
(b) Jerarquía de autómatas deterministas según su capacidad computacional. Esta
jerarquía se puede relacionar con la jerarquía de lenguajes de Chomsky.

Así pues, podemos caracterizar una máquina de Turing mediante los siguientes da-
tos6:

1. El contenido de la cinta.

2. La posición (celda) del cabezal de lectura.

3. El estado interno actual qi de la máquina.

4. La función de transición δ, que indica los movimientos de la máquina en función
de los datos anteriores.

Toda la información de una máquina de Turing en un instante dado puede codificar-
se como un número natural M . La posición del cabezal puede definirse con respecto
a la posición inicial, indicando cuántas celdas a la izquierda o a la derecha de la
celda original se ha movido. El estado interno actual qi será uno de una lista finita.
Además, la función de transición δ está definida sobre un conjunto finito de estados
y símbolos, por lo que también es finita. Finalmente, para cualquier tiempo finito,
solo un número finito de posiciones de la cinta es relevante.

Otro de los grandes avances de Turing fue darse cuenta de que las máquinas de Turing
pueden combinarse de forma modular, tal y como un sistema operativo combina
diferentes programas. En particular, una máquina de Turing puede recibir como
entrada la descripción de otra máquina de Turing y así simularla, lo que da origen
al concepto de máquina de Turing universal.

Definición 4 Máquina de Turing Universal: Es una máquina de Turing capaz de
simular cualquier otra máquina de Turing al recibir como entrada la descripción de
dicha máquina y su respectiva cinta.

6Esta formulación se conoce como descripción instantánea y es la manera más común de definir
una máquina de Turing particular.
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Teorema 4 Teorema de existencia de máquinas de Turing universales: Dada una
máquina de Turing cualquiera M, que puede describirse mediante un número M , y
dada una cinta de entrada i, existe una máquina de Turing universal U tal que U
es capaz de simular el comportamiento de M cuando se le proporciona la entrada i.
En otras palabras: U(<M, i>) = M(i).

La existencia de máquinas de Turing universales no es trivial, pero podemos entender
cómo podrían construirse pensando en una máquina de Turing de tres cintas. Así, la
primera cinta se usaría para almacenar la máquina de Turing de entrada, sus datos
y la salida; la segunda cinta se emplearía como área de trabajo para manipular los
datos; y la tercera cinta contendría una representación del estado de la máquina
simulada. Finalmente, es fácil demostrar que una máquina de Turing de tres cintas
puede ser simulada por una máquina de una sola cinta, ya que tanto la cardinalidad
de una cinta como la de tres cintas es la del infinito numerable.

Tesis 1 Tesis de Church-Turing: toda función que puede ser calculada mediante un
algoritmo (es decir, un procedimiento efectivo y finito que produce un resultado bien
definido para cualquier entrada) puede ser calculada por una máquina de Turing.

La tesis de Church-Turing se trata de una afirmación aceptada de manera prácti-
camente universal, aunque no es algo demostrable. No obstante, en principio sí se
podría mostrar su falsedad si se descubriera un algoritmo que no se pudiera im-
plementar mediante una máquina de Turing. Su valor radica en que establece la
equivalencia entre función computable y máquina de Turing.

Además de las máquinas de Turing existen otros autómatas (modelos de compu-
tación deterministas) con diferente capacidad computacional, aunque las máquinas
de Turing ocupan el lugar más alto en la jerarquía, tal y como se puede ver en
el esquema de la Fig. 1b. Por tanto, los otros autómatas pueden verse como casos
particulares de máquinas de Turing en los que se han restringido sus capacidades.
También existen ciertas variaciones de las máquinas de Turing tales como las má-
quinas de Turing no deterministas o las multicinta, pero su capacidad de cómputo
es equivalente a las de las máquinas de Turing.

5.3. El problema de decisión (Entscheidungsproblem)

Como hemos visto, Hilbert perseguía la fundamentación de las matemáticas, lo que,
siguiendo el sueño leibniziano de realizar una máquina para el buen razonamiento,
le llevó a plantear la siguiente cuestión en 1928: ¿Existe un algoritmo que tome
un lenguaje formal y cualquier enunciado lógico en ese lenguaje, y que devuelva
“Verdadero” o “Falso”, dependiendo del valor de verdad del enunciado? Tal y como
mostramos en la sección anterior, el trabajo de Turing proporcionó una definición
precisa del término algoritmo, lo que le permitió reducir el problema de decisión al
problema de la parada: ¿Existe una máquina de Turing que, usando como entrada
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otro programa, sea capaz de decidir si ese programa se parará (es decir, terminará
su ejecución) o continuará ejecutándose indefinidamente?

Teorema 5 Teorema de indecidibilidad de Turing: No existe una máquina de Tu-
ring capaz de resolver el problema de la parada.

La demostración del teorema se realiza por reducción al absurdo y utiliza argu-
mentos y técnicas similares a los del primer teorema de incompletitud de Gödel.
En particular, se utiliza la autorreferencia al estilo de la paradoja del mentiroso y
la diagonalización. Aunque se refieren a ámbitos distintos, las semejanzas entre los
resultados de Turing y los teoremas de incompletitud de Gödel son notables. Un
avance conceptual clave de Turing consiste en identificar un procedimiento mecáni-
co con un proceso determinista, pero sin que necesariamente sepamos si ha de parar
o no.
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6. Caos

6.1. Antecedentes históricos y relevancia

Varios afluentes contribuyeron a generar el concepto de caos (Sanjuán, 2016). His-
tóricamente, el origen del caos se establece normalmente en los trabajos de Henri
Poincaré sobre el problema de los tres cuerpos. A finales del s. XIX, el rey de Norue-
ga y Suecia Oscar II, celebró un concurso científico en el que se planteaba la cuestión
de la estabilidad del sistema solar. Poincaré participó y ganó dicho concurso, aunque
tras su proclamación como ganador se dio cuenta de un fallo en su trabajo y decidió
cambiarlo por completo. Irónicamente, ese error dio comienzo a la llamada teoría
del caos7.

La línea iniciada por Poincaré quedó prácticamente dormitando mientras se sucedían
los nacimientos de la cuántica y la relatividad. De este modo los siguientes grandes
hitos del caos no aparecerían hasta la segunda mitad del s. XX. Primero fue el teo-
rema KAM, que debe su nombre a Kolmogorov, Arnold y Moser y constituye uno
de los pilares fundamentales del caos hamiltoniano8. En 1963, un famoso artículo
del matemático y meteorólogo Edward Lorenz puso de manifiesto la sensibilidad a
las condiciones iniciales de un modelo atmosférico muy simplificado, dando a luz al
icónico efecto mariposa (Lorenz, 1963). Cuatro años después, Stephen Smale descri-
bió mediante un sencillo mecanismo topológico la manera en que se engendraba la
complejidad del caos. En 1975, Li y Yorke escribieron un influyente trabajo titulado
“Period three implies chaos” con el que bautizaron el fenómeno (Li & Yorke, 1975).
El desarrollo de los ordenadores modernos y la geometría fractal de Benoît Mandel-
brot impulsaron la disciplina.

Desde entonces, el caos y su metodología se han estudiado no solamente en el con-
texto de la física y las matemáticas, sino también en biología, medicina, economía y
una gran variedad de ramas del conocimiento. La llamada ciencia de la complejidad,
que propone un cambio de paradigma respecto al reduccionismo imperante en física
y otros ámbitos científicos, está estrechamente ligada al surgimiento del caos. Algu-
nos filósofos afirman que el caos supuso una revolución científica a la altura de la
cuántica o la relatividad general, aunque se trata de un tema controvertido (Leiber,
1998).

6.2. Sistemas dinámicos y su comportamiento

El caos determinista aparece al estudiar los llamados sistemas dinámicos no lineales.

7El término teoría del caos no se refiere a una teoría axiomática como la cuántica o la relatividad
general, si no que es más bien una amalgama de conceptos, técnicas y resultados matemáticos
relacionados entre sí.

8Los sistemas hamiltonianos son de gran importancia en física clásica y cuántica, ya que aquellos
problemas en que se conserva la energía suelen modelizarse usando el formalismo hamiltoniano.
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(a) (b) (c)

Figura 2: Representación de tres sistemas dinámicos paradigmáticos. (a) Autómata celular
(tiempo y espacio discretos) siguiendo la llamada regla 90 de Wolfram (Wolfram,
2002), que produce una estructural fractal tipo triángulo de Sierpinski. (b) El billar
de Sinai, en el que una partícula (en rojo) rebota en una caja con un disco duro,
puede modelizarse mediante un mapa (tiempo discreto y espacio continuo). (c) El
péndulo magnético oscila hasta detenerse en uno de los tres imanes en función de la
posición inicial desde la que se suelta, lo cual determina sus tres cuencas de atrac-
ción fractales (amarilla, verde y morada). Puede modelizarse mediante ecuaciones
diferenciales ordinarias, lo que le convierte en un ejemplo de sistema dinámico con
tiempo continuo y espacio continuo.

Definición 5 Sistema dinámico: consiste en un espacio de fases o de estados abs-
tracto, cuyas coordenadas describen el estado del sistema para cualquier instante, y
una regla que especifica el futuro inmediato de todas las variables de estado conocidos
sus valores presentes.

Si la regla de evolución es determinista hablamos de sistemas dinámicos determinis-
tas (en este trabajo nos referiremos a ellos simplemente como sistemas dinámicos).

Definición 6 Sistema dinámico no lineal: se dice que un sistema dinámico es no
lineal cuando los efectos que provocan los cambios en las variables no son proporcio-
nales a dichos cambios, y por tanto no cumplen con el principio de superposición9.

Aunque las condiciones precisas bajo las cuales aparece caos no se conocen (y no se
pueden conocer de antemano, como explicaremos más adelante), hay ciertas condi-
ciones necesarias para su existencia. La no linealidad es una de ellas y es por eso
que se denomina dinámica no lineal a la disciplina encargada del estudio del caos

9Por ejemplo, para una fórmula lineal como y = 3x, dos pares de números que la cumplen como
x1 = 1, y1 = 3 y x2 = 2, y1 = 6 pueden sumarse para generar un nuevo par de valores que
satisfagan la fórmula x3 = x1 + x2 = 3, y3 = y1 + y2 = 9. Esto no sucede en el caso no lineal,
como por ejemplo y = x2.
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determinista.

Existen muchos tipos de sistemas dinámicos, aquí nos limitamos a presentar los más
relevantes para la discusión posterior. En el siguiente cuadro aparece una clasificación
de los sistemas dinámicos en función del tipo de tiempo y espacio de estados que
utilizan.

Tiempo / Espacio Discreto (Alfabeto numerable) Continuo (Rn)

Discreto (N)
Dinámica simbólica

(e.g. autómatas celulares,
desplazamiento de Bernoulli)

Mapas
(e.g. mapa logístico,

mapa estándar)

Continuo (R)
Poco habitual en

sistemas deterministas
(sistemas híbridos)

Flujos
(e.g. atractor de Lorenz,

péndulo magnético)

Cuadro 1: Clasificación de sistemas dinámicos según tipo de tiempo y tipo de espacio de
estados.

En la Fig. 2 pueden encontrarse representaciones esquemáticas de un autómata ce-
lular, un billar que puede ser representado por un mapa, y un péndulo magnético
que puede modelizarse utilizando ecuaciones diferenciales ordinarias.

A continuación se ofrece una clasificación general de los diferentes tipos de compor-
tamientos acotados que puede mostrar un sistema dinámico.

Definición 7 Equilibrio: cuando las variables que describen un sistema dinámico
no varían en el tiempo, decimos que se encuentra en equilibrio.

Definición 8 Movimiento periódico: cuando las variables que describen un sistema
dinámico se repiten de forma regular al cabo de un tiempo finito, decimos que el
movimiento es periódico.

Definición 9 Caos: comportamiento aperiódico y acotado de las variables de estado
de un sistema dinámico determinista.

La Fig. 3 muestra series temporales de los distintos comportamientos dinámicos para
el mapa logístico. Este sistema dinámico paradigmático se define como

xn+1 = r · xn(1− xn) (1)

donde n ∈ N es la variable temporal, x ∈ R es la variable dinámica o de estado y el
parámetro r ∈ R produce diferentes dinámicas al tomar diferentes valores.

La definición anterior de caos no es única, y de hecho la definición precisa de caos es
un tema escurridizo y controvertido (Brown & Chua, 1996; Hunt & Ott, 2015). El

15



x x x

0

0,2

0,4

0,6

0,8

1

0 20 40

n

0

0,2

0,4

0,6

0,8

1

0 20 40

n

0

0,2

0,4

0,6

0,8

1

0 20 40

n

Equilibrio Periodicidad Caos

Figura 3: Series temporales del mapa logístico de la Ec. 1 mostrando diferentes tipos de diná-
mica para una misma condición inicial x0 y diferentes valores del parámetro r. Para
r = 1,5 la trayectoria tiende al equilibrio, para r = 3,3 la trayectoria realiza una
órbita de periodo dos, y para r = 4 la trayectoria se vuelve caótica.

caos se manifiesta de formas diversas, tiene muchas facetas (Sander & Yorke, 2015).
Una de ellas es la sensibilidad a las condiciones iniciales, que se manifiesta cuando en
un sistema dinámico hay trayectorias cercanas que divergen a un ritmo exponencial
o más rápido. Se puede cuantificar mediante los llamados exponentes de Lyapunov,
de tal modo que un exponente de Lyapunov positivo indica caos. Otra de las facetas
más reconocibles del caos, no completamente independiente de la sensibilidad a las
condiciones iniciales, es la aparición de estructuras fractales.

6.3. Caos y fractales

Si las geometrías no euclidianas supusieron una revolución matemática por poner
en cuestión la naturaleza del espacio, los fractales cambiaron la concepción de los
entes que pueblan dicho espacio. En lugar de considerar objetos suaves como esferas
o triángulos, los fractales son objetos rugosos, con complejidad a diferentes escalas.
Igual que con el caos, la definición de fractal no es única. Benoît Mandelbrot, quien
acuñó el término fractal por significar roto, define los fractales como objetos que
tienen una dimensión topológica estrictamente menor que su dimensión de Haus-
dorff (Mandelbrot, 1982). La dimensión topológica se refiere al concepto habitual
de dimensión, que es el número mínimo de coordenadas para definir un punto en
un objeto geométrico (1 para una curva, 2 para una superficie, etc.). La dimensión
de Hausdorff generaliza la noción de dimensión topológica, dando una medida de
cómo llena el espacio un determinado objeto geométrico, y no tiene por qué to-
mar un valor entero. Así, por ejemplo, la dimensión fractal del llamado conjunto de
Cantor10 es d = log(2)/ log(3) ≈ 0,631, lo cual indica que llena más el espacio que
un punto pero menos que una recta. A menudo, los fractales poseen propiedades
sorprendentes, que parecen ir en contra de nuestra intuición. En el caso del con-

10Una construcción sencilla del conjunto de Cantor es la siguiente. Cojamos el intervalo cerrado
[0, 1] y quitemos el tercio central (1/3, 2/3), quedándonos con los dos intervalos restantes. En
la siguiente iteración, quitaremos el tercio central de cada uno de estos intervalos, obteniendo
cuatro intervalos de longitud 1/9 cada uno. Llevando este proceso hasta el infinito obtenemos
el llamado conjunto de Cantor, tal y como se muestra en la Fig. 4a.
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junto de Cantor, llama la atención que posee la cardinalidad del continuo, aunque
se trata de un conjunto de puntos disconexo. Precisamente para estudiar la car-
dinalidad, el genial matemático alemán ideó la llamada diagonalización de Cantor
que, a pesar de aplicarse a un ámbito diferente, comparte importantes similitudes
con los procesos de diagonalización que se utilizan en las pruebas de Gödel y Turing.

Para entender la relación de los fractales con el caos, es conveniente pensar en un
ejemplo sencillo, como el péndulo magnético de la Fig. 2c. En este sistema, un pén-
dulo oscila erráticamente hasta detenerse en uno de tres imanes colocados sobre la
plataforma. Si se busca predecir el comportamiento del sistema, es necesario cal-
cular el conjunto de condiciones iniciales que conducen a un determinado atractor,
i.e., uno de los tres imanes. Estos conjuntos coloreados en amarillo, verde y azul en
la Fig. 2c se denominan cuencas de atracción, y las fronteras que los separan son
curvas fractales. Puesto que las curvas fractales llenan el espacio más que una recta
o una curva suave, dada una incertidumbre inicial en la posición del péndulo, es más
difícil determinar el atractor final del sistema. En concreto, dado un cierto error en
la determinación de las condiciones iniciales ε, la fracción de condiciones iniciales
impredecibles en el espacio de estados viene dada por f ∼ εα, donde α = D−d es el
exponente de incertidumbre que resulta de la diferencia entre la dimensión topoló-
gica del espacio de estados D y la dimensión de Hausdorff d de la frontera (Grebogi
et al., 1983). En casos donde la frontera es suave, se tiene que α = 1, lo que implica
que el número de condiciones impredecibles disminuye proporcionalmente al reducir
ε. Sin embargo, si la frontera es fractal se tiene que α < 1, por lo que al reducir ε, la
fracción de condiciones iniciales que es impredecible no se reduce proporcionalmente.
En casos extremos se puede tener α = 0, lo que significa que independientemente
del valor de ε, la fracción de condiciones iniciales impredecibles permanece cons-
tante (Alexander et al., 1992). En resumen, podemos ver que las fronteras fractales
hacen que el sistema sea en cierto modo impredecible (Daza et al., 2024). Esto es
una manifestación del caos (en concreto de caos transitorio), pero existen muchos
otros aspectos del caos que están directamente relacionados con los fractales.

Una conexión fundamental entre el caos y los fractales es la herradura de Smale, que
puede considerarse la estructura topológica que sustenta el caos. En su búsqueda de
la esencia de la dinámica caótica, Smale ideó una construcción sencilla que recoge la
acción de los sistemas caóticos sobre el espacio de estados, tal y como se ilustra en la
Fig. 4b. En la herradura de Smale, el espacio de estados se estira y después se pliega
de forma similar a como un panadero realiza la masa para hojaldre. Si pensamos
en un par de condiciones iniciales muy próximas, como un grano de sal y otro de
pimienta dispuestos en la masa del panadero, podemos ver que, debido al proceso de
estirado y doblado, al cabo de unas pocas iteraciones siguen caminos completamente
diferentes. A pesar de encontrarse dentro de la misma región del espacio de esta-
dos, es decir, en la misma masa del panadero, y de haber empezado muy próximas,
las trayectorias del grano de sal y el grano de pimienta divergen rápidamente en
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(a) (b)

Figura 4: (a) Esquema de la construcción iterativa (de arriba hacia abajo) del conjunto de
Cantor, un ejemplo paradigmático de objeto fractal. En cada paso se retira el tercio
central de un segmento, siendo el conjunto de Cantor el límite en el infinito. Imagen
adaptada de (Wikipedia contributors, 2024). (b) De izquierda a derecha, las tres
primeras iteraciones de la herradura de Smale. El espacio de estados inicial está
representado por un cuadrado, que tras estirarse y doblarse queda en forma de
herradura. Al aplicarse sucesivamente la misma operación se termina obteniendo
una estructura hojaldrada tipo Cantor. La herradura de Smale recoge las operaciones
básicas del caos y sirve para entender el fenómeno de sensibilidad a las condiciones
iniciales en sistemas acotados.

cuanto caen en capas distintas. Esto es posible gracias a la complejidad del espacio
de fases fractal, es decir, a los infinitos vericuetos de la herradura de Smale o a las
infinitas capas que conforman el hojaldre del panadero. El mecanismo de la herra-
dura de Smale, propio de la dinámica caótica, puede leerse como una manifestación
geométrica de la autorreferencia y la recursividad. Aunque en dominios distintos,
esta estructura recuerda a la paradoja del mentiroso, cuyas raíces conceptuales se
reflejan en los teoremas de Gödel y Turing.
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7. Comparativa teoremas limitación y caos

7.1. Un diccionario interdisciplinar

Hasta el presente apartado, en este trabajo se ha hablado de lógica y fundamentación
matemática por un lado, y de caos por otro. Aunque una lectura atenta revela ciertas
similitudes, tanto históricas como conceptuales y metodológicas, la posible conexión
entre estas áreas no resulta en absoluto evidente. De hecho, es claro que existen
diferencias importantes entre la incertidumbre asociada al caos y la incertidumbre
asociada a la indecibilidad. En el caos se introduce una incertidumbre externa, ya
sea de índole numérica o experimental, y luego se estudia la sensibilidad del sistema
dinámico a dicha incertidumbre. Si la incertidumbre crece suficientemente deprisa
(exponente de Lyapunov positivo), podemos decir que existe caos. Sin embargo, la
indecibilidad del problema de la parada, por ejemplo, no contiene ningún tipo de
incertidumbre externa. En un sistema determinista y sin ningún tipo de incerti-
dumbre interna, surge una pregunta que es imposible de contestar con certeza en
general. Así pues, y dando por sentado que se tratan de obstáculos al conocimiento
de naturaleza diferente, cabe preguntarse si existe alguna conexión entre ambos mun-
dos. En lo que sigue, intentaremos establecer y analizar algunas de dichas relaciones.

Como punto de partida para esta sinergia tomaremos los trabajos de John L. Casti,
científico y divulgador del Instituto de Santa Fe (uno de los centros pioneros y más
prestigiosos en ciencias de la complejidad) y del Instituto Técnico de Viena (parecie-
ra que se cierra el círculo). Casti organizó unos talleres interdisciplinares celebrados
a finales de los años ochenta en una estación científica de la Real Academia Sueca de
Ciencias en Abisko, más al norte del círculo polar, cerca de las fronteras noruega y
finlandesa, donde se trataban temas situados en “las fronteras entre diferentes disci-
plinas” (Chaitin, 2002). A estas reuniones acudían pensadores de renombre, líderes
en sus respectivas áreas del conocimiento. Así, en la lista de nombres ilustres, los
investigadores del caos reconocerían rápidamente a Otto Rössler, cuyo apellido se
utiliza hoy día para referirse a uno de los sistemas caóticos más paradigmáticos. Por
otro lado, los estudiosos de Gödel y Turing probablemente identificarían a Gregory
Chaitin, quien puede ser considerado el sucesor de ambos por sus célebres resultados
en el ámbito de la lógica-matemática y la computación. Fruto de estas interaccio-
nes, Casti editó un libro en el que se recopilan algunas de las ideas discutidas en
Abisko (Casti, 2018), y en el que el propio Casti afirma lo siguiente:

“En particular, mis argumentos aquí están dirigidos a mostrar que existen algunas
conexiones muy interesantes entre la noción de un atractor extraño, el fundamento
sobre el cual se sostiene la revolución del caos, y las ideas de Gödel, Turing y, más
recientemente, Chaitin, relacionadas con la verdad y la demostración. Mi afirma-
ción básica es que existe una cadena de conexión directa que vincula la existencia de
atractores extraños, los resultados de Chaitin sobre la complejidad algorítmica y el
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Teorema de la Incompletitud de Gödel, y que un lógico o científico de la computación
lo suficientemente perspicaz podría haber terminado siendo el padre del caos, al igual
que el meteorólogo Edward Lorenz.”

En el mismo texto, Casti llega a afirmar que la dinámica, la lógica, la computación
y la complejidad son diferentes caras de la misma moneda, e incluso sostiene que,
en cierto modo, el teorema de Gödel se deriva de la existencia de atractores caó-
ticos (Casti, 2018). Para apoyar su argumentación, Casti ofrece la siguiente tabla
conectando los conceptos propios del estudio de sistemas formales con el estudio de
sistemas dinámicos:

Sistema formal Sistema dinámico
Alfabeto de símbolos Espacio de estados
Cadena de símbolos Estado
Gramática Ligadura
Axiomas Condición inicial
Reglas de inferencia Campo vectorial
Secuencia de demostración Trayectoria
Teorema Atractor

Cuadro 2: Comparación entre un sistema formal y un sistema dinámico, extraída de (Casti,
2018) (traducción propia).

Aunque no lo desarrolla explícitamente, en base a su texto cabe formular la analogía
que traza Casti como sigue. De la misma manera que un sistema dinámico toma co-
mo entrada un conjunto de números (condiciones iniciales), un sistema formal toma
como entrada un conjunto de axiomas. Este estado inicial evoluciona según las reglas
del sistema dinámico, o según las reglas de inferencia del sistema formal. El proceso
finaliza al llegar a un atractor en el caso de los sistemas dinámicos y al llegar a un
teorema en el caso de los sistemas formales. En su trabajo, Casti llega a afirmar que
los teoremas de un sistema formal, el output de una máquina de Turing universal
y el atractor de un sistema dinámico son completamente equivalentes y es posible
“traducir fielmente entre cualquiera de ellos” (Casti, 2018).

No obstante, y a pesar del entusiasmo expresado por Casti en su texto divulgativo,
estas identificaciones distan de ser triviales y es preciso ir con cuidado al moverse
de un lado a otro de las fronteras interdisciplinares. Por ejemplo, tal y como vimos
en el Cuadro 1, el espacio de estados o de fases de muchos sistemas dinámicos tiene
la cardinalidad del continuo. De este modo, tanto las condiciones iniciales como los
atractores de un sistema dinámico no pueden en general ser expresados utilizando la
numeración de Gödel. Es más, los atractores caóticos, al ser fractales, están compues-
tos por un infinito no numerable de puntos, como se ha mencionado con el ejemplo
del conjunto de Cantor en la Sec. 6.2. Otro aspecto criticable de este paralelismo es
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que en los sistemas dinámicos en realidad no se alcanzan nunca los atractores. En
rigor, las trayectorias de los sistemas dinámicos se acercan tanto como se quiera a
sus atractores, pero sin llegar nunca a alcanzarlos. Si se eligieran unas condiciones
iniciales pertenecientes a un atractor, el sistema permanecería en dicho atractor, de
la misma manera que si el péndulo magnético empieza encima de uno de los imanes
no se mueve a ningún sitio. Aunque puede haber atractores más complicados que
un punto fijo, como atractores periódicos o caóticos, en cierto modo un sistema di-
námico que se encuentra en un atractor no evoluciona, ya que se encuentra todo el
rato en el mismo atractor. Sin embargo, los teoremas juegan un papel diferente en
los sistemas formales. A través de las reglas de inferencia sí que llegamos a alcanzar
dichos teoremas, no nos acercamos asintóticamente a ellos. Además, los teoremas
pueden ser utilizados como puntos de partida para posteriores deducciones aplican-
do las reglas de inferencia, a diferencia de lo que ocurre con los atractores, en los que
la dinámica no evoluciona hacia nuevos atractores. Quizá esto último pueda estar
relacionado con que las leyes que hacen evolucionar al sistema dinámico son siem-
pre las mismas, mientras que las reglas de inferencia que aplicamos para pasar de
un teorema a otro son en general distintas y el orden en que se aplican también varía.

A pesar de las imprecisiones del texto de Casti, es indudable que contiene intuiciones
y preguntas interesantes que merece la pena explorar más a fondo. En las siguientes
secciones abordaremos algunas de ellas apoyándonos en la literatura existente.

7.2. Indecibilidad e incompletitud en sistemas dinámicos

Para empezar a explorar las conexiones entre caos y teoremas de limitación, po-
demos plantearnos si existen preguntas indecidibles en los sistemas dinámicos. Los
trabajos de Cristopher Moore (Moore, 1990, 1991), investigador a caballo entre la
física y la computación y afiliado al instituto de Santa Fe, demuestran que en efecto
es posible construir sistemas dinámicos con propiedades indecidibles. En concreto,
Moore propone un sistema dinámico que puede interpretarse como un billar clásico
en el que una partícula rebota, parecido al descrito en la Fig. 2b, y demuestra que no
hay algoritmos que puedan calcular sus cuencas de atracción, ni tampoco el conjunto
de órbitas periódicas, ni decidir si la dinámica asintótica es caótica, ni ninguna otra
característica de interés. Aunque es perfectamente posible calcular las trayectorias a
tiempos finitos, es imposible saber lo que ocurrirá asintóticamente (a tiempo infini-
to) con la dinámica de los sistemas de Moore. Esto es análogo a lo que ocurre con el
problema de la parada: tenemos capacidad para calcular cada paso que realiza una
máquina de Turing, pero no existe un algoritmo que nos permita decidir si dicho
programa parará asintóticamente o no. En cierto sentido, esto supone un grado ma-
yor de incertidumbre que el propio caos, puesto que como el mismo Moore expone,
puede pensarse en la computación de un punto de una cuenca de atracción como la
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demostración de un teorema arbitrario11. No obstante, también conviene remarcar
que la indecibilidad hace referencia a una incertidumbre asintótica, mientras que el
caos hace referencia a un tipo de incertidumbre que afecta en cada instante a la
evolución del sistema. De hecho, la sensibilidad a las perturbaciones de los sistemas
puramente caóticos es mayor que la de los sistemas que mezclan caos y periodicidad
como el de Moore. Es decir, para tiempos cortos, los sistemas de Moore pueden
considerarse más predecibles que los sistemas puramente caóticos.

Poco después de los trabajos de Moore, dos lógicos matemáticos colaboradores de
Chaitin, Newton C.A. Da Costa y Francisco A. Doria, exploraron la cuestión más
básica aún de si existe un método general para comprobar que un sistema diná-
mico presenta caos. Puede resultar impactante descubrir que la respuesta que dan
da Costa y Doria es negativa (Da Costa & Doria, 1991b). Para ser más precisos,
demuestran que no existe un algoritmo general para probar que un sistema hamil-
toniano sea integrable por cuadraturas, ni que un flujo tenga herradura de Smale, o
que sea ergódico, o que sea un flujo de Bernoulli, aunque afirman que la indecibili-
dad del caos es independiente del método de caracterización escogido (Chaitin et al.,
2012). Da Costa y Doria van incluso un paso más allá y demuestran lo que llaman
el teorema de Gödel en mecánica clásica (Da Costa & Doria, 1991b). Es decir, no
solamente demuestran que el caos es indecidible, sino que también demuestran que,
asumiendo que la aritmética de Peano es consistente, entonces existen sistemas que
son caóticos pero que tal cosa no puede demostrarse.

Conviene recordar que estos resultados no significan que sea imposible demostrar que
un sistema dinámico sea caótico, de igual modo que la indecibilidad que aparece en
el problema de la parada no significa que sea imposible demostrar que un algoritmo
se detiene al cabo de un número finito de pasos. De hecho, existen pruebas rigurosas
de la existencia de caos en diferentes sistemas dinámicos como el billar de Sinai
que mostrábamos en la Fig. 2b. No obstante, lo que no existe ni existirá jamás, es
un método general para separar los sistemas caóticos de los que no lo son. Como
apunta Moore (Moore, 1990), estos resultados pueden interpretarse a la luz del
teorema de Rice, que grosso modo dice que cualquier propiedad semántica no trivial12

es indecidible. De hecho, el teorema de Rice se ha aplicado en diversos sistemas
dinámicos como los autómatas celulares (Guillon & Richard, 2010; Kari, 1994).

7.3. Caos para computar

Los resultados expuestos en la sección anterior apuntan a que es posible estudiar los
sistemas dinámicos empleando herramientas y resultados propios de la computación.
11Moore en su artículo de 1990 habla de la demostración del último teorema de Fermat, que fue

demostrado pocos años después.
12Una propiedad semántica es aquella que pregunta sobre el comportamiento del programa, a

diferencia de una propiedad sintáctica que se refiere a cuestiones como ¿posee algún bucle el
programa? Que sea no trivial significa que no es siempre verdadera o siempre falsa.
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Al considerar los sistemas dinámicos como sistemas de computación, podemos ana-
lizar el papel que juega el caos en la capacidad de computación de dichos sistemas.
Cuesta imaginar que un sistema lineal, como un oscilador armónico, pueda utilizar-
se para computar o que pueda tener propiedades indecidibles, pero tampoco resulta
evidente cómo el caos puede contribuir a aumentar la capacidad computacional de
un sistema. Un posible camino para relacionar la capacidad computacional con la
dinámica consiste en buscar los requisitos mínimos que ha de tener un sistema di-
námico para realizar ciertas tareas de computación. Este análisis también permite
realizar una conexión inmediata con respecto a los teoremas de limitación, ya que
los límites propios de algunos sistemas de computación aparecerán inevitablemente
en aquellos sistemas dinámicos que los emulen.

Hoy en día, todo tipo de aplicaciones emplean sistemas dinámicos no lineales como
sistemas de computación. De hecho, la revolución de la inteligencia artificial se ci-
mienta sobre redes de sistemas dinámicos no lineales acoplados. Estas redes son a su
vez sistemas dinámicos de muy alta dimensión y fuertemente no lineales, y poseen
unas capacidades computacionales extraordinarias. No obstante, otras redes más
sencillas, como un conjunto de mapas logísticos acoplados (como los de la Ec. 1),
también son capaces de llevar a cabo tareas de computación tales como reproducir
puertas lógicas, almacenar números e incluso realizar operaciones aritméticas (Sinha
& Ditto, 1998). Para conseguir transformar estos sistemas dinámicos en sistemas de
computación, a menudo se utiliza la aparición de órbitas periódicas para diferentes
valores de los parámetros, cosa que no sería posible conseguir con un sistema aleato-
rio. Así, la no linealidad y el determinismo son requisitos fundamentales para estos
esquemas de computación (Prusha & Lindner, 1999).

También es un hecho ampliamente conocido que algunos autómatas celulares, como
el juego de la vida (Grey, 2016; Rendell, 2002) o las famosas reglas 110, 124, 137 y
193 de Wolfram (Chua et al., 2004; Cook et al., 2004), tienen un poder de compu-
tación equivalente al de las máquinas de Turing universales, y por tanto son capaces
de simularse a sí mismos, tal y como se ilustra en la Fig. 5a. Sin embargo, y a pesar
de la innegable utilidad de los autómatas celulares, existen algunos problemas cuan-
do se trata de relacionar los tipos de dinámicas existentes en los autómatas celulares
con los tipos de dinámicas descritos en la Sec. 6.2. El propio Casti estableció una
relación entre autómatas celulares y flujos (Casti, 2018) que ha sido criticada por
otros autores (Prokopenko et al., 2019). Estas conexiones entre autómatas celulares
y dinámica caótica llevaron a algunos investigadores a apuntar que la computación
universal era propia del llamado eje del caos, una situación cercana al caos pero que
no es tal. No obstante, este punto también ha sido criticado y existen trabajos que
demuestran que la dinámica caótica (no solamente la dinámica en el eje del caos)
puede dar lugar a computación universal (Prokopenko et al., 2019). Además, desde
el punto de vista de los sistemas dinámicos, los autómatas celulares son sistemas
peculiares y su conexión con la física no es tan evidente como la que puedan te-
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ner otros sistemas dinámicos como los flujos o los mapas. Por ello, quizá resulte
más interesante averiguar que algunos sistemas dinámicos sencillos y de baja dimen-
sión, como flujos tridimensionales o mapas bidimensionales, son también capaces de
computación universal (Branicky, 1995).

Una de las lecciones fundamentales de la teoría del caos es que sistemas sencillos
en su formulación (e.g. el mapa logístico) pueden dar lugar a dinámicas muy com-
plejas. Esta idea parece encontrar su equivalente en términos de computación, ya
que sistemas dinámicos sencillos son capaces de actuar como máquinas de Turing
universales. En concreto, es posible demostrar que mapas 2D y flujos 3D pueden em-
plearse como máquinas de Turing universales (Bournez & Campagnolo, 2008). En
cierto modo, estos sistemas dinámicos son en realidad más potentes que una máqui-
na de Turing, en cuanto a que tienen un estado de espacios continuo. No obstante,
se suele discretizar reinterpretando el valor de las variables dinámicas, de modo que
por ejemplo si superan cierto umbral se traducen por 1 y de lo contrario se traducen
por 0. En realidad, esta manera de proceder se parece mucho a cómo se simulan
estos sistemas numéricamente debido a la capacidad finita de los ordenadores en la
práctica. Utilizando esta interpretación, los sistemas dinámicos se pueden construir
de tal modo que el comportamiento dinámico de sus variables emule puertas lógicas
y así construir cualquier máquina de Turing. Finalmente la evolución del sistema
coincidirá con las iteraciones de dicha máquina de Turing.

Siguiendo esta línea de razonamiento reduccionista, cabe preguntarse hasta qué pun-
to es posible simplificar la dinámica y seguir obteniendo sistemas de computación
Turing completos (equivalentes a máquinas de Turing universales). En ese sentido,
es interesante observar que la dinámica simbólica de los sistemas caóticos, como la
descrita por el desplazamiento de Bernoulli, puede demostrarse equivalente a las
máquinas de estado finito, una versión menos potente computacionalmente de las
máquinas de Turing, tal y como se muestra en el diagrama de la Fig. 1b. Por un
lado, la dinámica simbólica supone una simplificación con respecto a la dinámica
del sistema caótico original. Al discretizar el espacio de fases, las distancias entre las
trayectorias dejan de ser relevantes, de tal modo que solamente importa la topología.
Esta metodología fue empleada por autores como Smale y Sinai para probar riguro-
samente propiedades de los sistemas caóticos. Por otro lado, una máquina de estado
finito puede entenderse como una máquina de Turing con restricciones, en concreto
que su cabezal solo pueda moverse en una dirección y que solamente pueda realizar
la operación de leer la cinta (pero no puede escribir sobre ella). Resulta curioso que
estas limitaciones aparentemente tan diferentes puedan estar relacionadas.
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7.4. Caos en lógica y computación

En las secciones precedentes hemos explorado los sistemas dinámicos desde el punto
de vista de los sistemas formales y la computación, prestando especial atención a los
temas relacionados con la indecibilidad y la incompletitud. Ahora es el turno de in-
tercambiar los papeles y estudiar la lógica y los sistemas de computación utilizando
las herramientas propias de la dinámica no lineal y, en particular, los efectos del caos.

Algunos de los trabajos más sugerentes en este sentido son los llevados a cabo por
Kunihiko Kaneko y sus colaboradores (Saito & Kaneko, 1998, 2001). Kaneko explora
la idea de considerar una máquina de Turing como un sistema dinámico, para tratar
de estudiar la geometría de la indecibilidad mediante cuencas de atracción. En efec-
to, la indecibilidad que vimos en la Sec. 5.3 surge de preguntarse si un determinado
sistema de computación se detendrá o no en función de la entrada proporcionada.
Esta dicotomía recuerda a muchas situaciones en dinámica no lineal, tales como
decidir en cuál de dos posibles atractores terminará un sistema dinámico en función
de sus condiciones iniciales. Tal y como vimos en la Sec. 6.2, una de las señas de
identidad del caos transitorio es la presencia de cuencas de atracción fractales. La
sensibilidad a las condiciones iniciales se manifiesta en estos casos en la forma de
fronteras fractales que dividen los posibles destinos del sistema en el espacio de fa-
ses (Daza et al., 2024). Lo que busca Kaneko precisamente es ver si las cuencas de
atracción del problema de la parada poseen propiedades fractales.

De entrada, hay un obstáculo inevitable con el enfoque de Kaneko respecto a las
cuencas de atracción. Si denominamos B a la cuenca de atracción de los progra-
mas que se detienen en un tiempo finito, y B̂ a los que no se detienen nunca, nos
encontramos que en principio podemos calcular los elementos que pertenecen a B,
pero no los que pertenecen a B̂. Esta es precisamente la esencia de la indecibilidad
del problema de la parada. No obstante, situaciones similares ocurren a menudo en
el estudio de sistemas dinámicos no lineales, en los que nunca podemos garantizar
completamente haber llegado a un atractor determinado o haber descubierto todos
los posibles atractores del sistema (Dudkowski et al., 2016). Lo que propone Kane-
ko es realizar un estudio numérico del conjunto de programas que se paran y ver
cómo dicho conjunto varía al aumentar el tiempo máximo que se permite correr al
programa. El conjunto de programas que nunca paran se supone que será el com-
plementario del anterior, aunque en rigor solo puede estudiarse el conjunto de los
que sí paran. Quizá algunos matemáticos consideren el método poco riguroso, pero
lo cierto es que proporciona información notable, como veremos más adelante.

La segunda dificultad del enfoque de Kaneko es lo que el investigador japonés de-
nomina el problema de la codificación. En su analogía, la cinta de entrada de la
máquina de Turing vendría a ser la condición inicial del sistema dinámico. Para
representar las cuencas de atracción en un plano, lo que hace es dividir la cinta en
tres partes: una celda en la que se sitúa inicialmente el cabezal, y luego las par-
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tes a la izquierda y derecha de este, que Kaneko identifica respectivamente con las
coordenadas x e y del plano. En esta transformación, x e y en principio podrían
ser números naturales, pero Kaneko los identifica con números reales. En cualquier
caso, nuevamente la situación es muy parecida a la que se da al realizar compu-
taciones numéricas en la práctica, en las que los números reales son sustituidos por
aproximaciones que puedan almacenarse en los ordenadores. Es decir, en teoría, x
e y podrían ser números naturales, pero el proceso de computación de las cuencas
de atracción que describe Kaneko es completamente análogo en la práctica al que se
sigue en sistemas continuos, como el péndulo magnético, debido a las limitaciones
computacionales. Una vez aceptada esta convención, el siguiente desafío consiste en
decidir qué número en concreto corresponde a una cinta concreta. Por ejemplo, si
tenemos un alfabeto con dos símbolos para la cinta de la máquina de Turing, po-
dríamos asumir que el contenido de la cinta se corresponde con un cierto número
real en su representación binaria. El problema es que existen diferentes formas en las
que esta asignación se puede hacer en la práctica y conducen a resultados distintos.
Es fácil ver que podríamos codificar todos los códigos en números únicamente en
el intervalo [0, 0,5] en lugar de en el intervalo [0, 1], ya que ambos tienen la misma
cardinalidad, o realizar alguna otra asignación no uniforme. Esto tiene importantes
consecuencias, ya que esta elección puede modificar el valor de la dimensión fractal
de las cuencas de atracción.

A priori, la arbitrariedad introducida por la codificación es problemática porque
Kaneko justamente lo que busca es medir la dimensión del conjunto de parada de
una máquina de Turing. Sin embargo, lo que ocurre es justo lo contrario: indepen-
dientemente de la codificación elegida13, el conjunto de parada para una máquina
de Turing universal es tal que llena el espacio, como puede apreciarse en la Fig. 5b.
De hecho, Kaneko sugiere que este hecho puede tomarse como definitorio para el
conjunto de parada, ya que, por ejemplo, no ocurre así con las cuencas de atrac-
ción de los sistemas caóticos, cuya dimensión cambia según la codificación. Si nos
paramos a analizar este resultado, casi resulta obvio, pues de lo contrario existirían
codificaciones que nos permitirían mejorar nuestra capacidad predictiva (reducir la
dimensión de la frontera del conjunto de parada) con respecto a un problema indeci-
dible. No obstante, desde el punto de vista de los sistemas dinámicos, esta propiedad
no resulta trivial. Kaneko aplica su misma metodología a un sistema que exhibe las
denominadas cuencas agujereadas (Alexander et al., 1992), cuya frontera llena todo
el espacio de un modo que recuerda a lo visto con el problema de la parada. Sin em-
bargo, en este caso, el resultado es que la dimensión de estas cuencas sí que cambia
al modificar la codificación.

Además de la dimensión fractal del conjunto de parada, Kaneko investiga los llama-
dos tiempos de escape, es decir, el número de pasos de las trayectorias antes de poder

13Hay que puntualizar que Kaneko exige una serie de propiedades razonables a las codificaciones
a considerar.
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ser clasificadas como pertenecientes a una cuenca o, en este caso, pertenecientes al
conjunto de parada de la máquina de Turing universal. Curiosamente, la distribución
de estos tiempos sigue una tendencia tipo ley de potencias, parecida a la que ocurre
en el caos hamiltoniano y diferente de la que ocurre en el caos disipativo14, donde la
tendencia es exponencial. La explicación de esta tendencia en el caso del caos hamil-
toniano está relacionada con su espacio de estados mixto, en el que existe una gran
zona caótica salpicada por regiones periódicas (islas KAM). Algo parecido ocurre
en los sistemas dinámicos con propiedades indecidibles propuestos por Moore que
mencionábamos antes (Moore, 1990), en los que las condiciones iniciales no divergen
a un ritmo exponencial constante. Como explica Moore, esto puede interpretarse co-
mo que sus sistemas no están regidos por una ley de escalas como pueda ser el caso
de sistemas con un espacio de estados completamente caótico. Esto apunta a que la
indecibilidad en sistemas dinámicos no es consecuencia únicamente de la capacidad
de estos de presentar caos. Más bien, pareciera que la indecibilidad necesitara de
la coexistencia de diferentes tipos de comportamientos dinámicos, como por ejem-
plo que el sistema pueda alternar entre caos y periodicidad. En cualquier caso, este
escenario mixto requiere que el sistema dinámico sea no lineal. Por otro lado, este
razonamiento refuerza la hipótesis anteriormente mencionada de que resulta poco
probable que un sistema dinámico lineal posea propiedades indecidibles, ya que la
alternancia de comportamientos dinámicos resulta imposible en dichos sistemas.

Tras la propuesta de Kaneko y compañía de considerar las máquinas de Turing co-
mo sistemas dinámicos, es posible ir más allá y considerar la propia lógica como un
sistema dinámico. Para ello, volvemos a recurrir a la paradoja del mentiroso. A ojos
de un investigador en dinámica no lineal, la paradoja del mentiroso y su alternancia
entre dos posibles estados de verdad recuerda a un movimiento periódico. La lógica
clásica pone fin a este vaivén clasificando la paradoja como contradicción, pero las
lógicas no clásicas ofrecen posibilidades mucho más ricas. Por ejemplo, utilizando
lógica temporal es fácil capturar este comportamiento oscilatorio en los términos
sugeridos anteriormente. Una vez abierta esta puerta, podemos preguntarnos si es
posible encontrar el equivalente de las trayectorias caóticas en lógica.

Una opción natural para introducir el caos en lógica es utilizar la lógica difusa, tal y
como hicieron Patrick Grim y Gary R. Mar (Grim, 1993; Grim et al., 1998; Mar &
Grim, 1991). La paradoja del mentiroso alterna de forma binaria entre los estados
absolutos de certidumbre de la lógica clásica: verdadero y falso. Sin embargo, en
la lógica difusa existe todo un continuo de estados de certidumbre, que podríamos
identificar con el intervalo [0, 1], donde 0 sería completamente falso y 1 completa-
mente verdadero, y los números intermedios pueden interpretarse como algo cierto,
bastante cierto, muy falso, etc. Grim y Mar estudian diferentes versiones de la para-
doja del mentiroso, como el mentiroso modesto “Esta proposición es un poco falsa”

14En el caos disipativo no se conserva la energía, a diferencia de lo que suele ocurrir en el caos
hamiltoniano.
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Figura 5: (a) El juego de la vida, famoso autómata celular ideado por Conway, puede emplear-
se como máquina de Turing universal y simularse a sí mismo usando metapíxeles
(píxeles hechos de conjuntos de píxeles) (Grey, 2016; Prokopenko et al., 2019). (b)
Representación del conjunto de parada de una máquina de Turing universal en la
que se observa que llena el espacio, adaptado de (Saito & Kaneko, 2001). (c) Sen-
sibilidad a las condiciones iniciales al estudiar la certidumbre de oraciones del tipo
“Esta proposición es tan verdadera como falsa” empleando lógica difusa, adaptado
de (Grim, 1993).

o el mentiroso enfático “Esta proposición es muy falsa” y analizan su dinámica, es
decir, analizan su grado de veracidad o certidumbre bajo diferentes supuestos. Grim
demuestra que el mentiroso modesto produce oscilaciones decrecientes en el grado
de certidumbre que acaban en un punto fijo, mientras que el mentiroso enfático
conduce a oscilaciones crecientes hasta llegar a la amplitud total de 1 (alternancia
entre verdad y falsedad absolutas). Por otro lado, la oración “Esta proposición es
cierta”, tiene el problema en lógica difusa de que su valor de certidumbre es arbi-
trario. Modificaciones como “Esta proposición es muy cierta” o “Esta proposición es
poco cierta” conducen a puntos fijos de verdad y falsedad respectivamente. Pero lo
realmente interesante de este enfoque, es que construcciones del tipo “Esta propo-
sición es tan cierta como falsa”15 o “El valor de verdad de esta proposición es muy
diferente del de su negación”16, pueden presentar órbitas caóticas en los estados de
certidumbre. De hecho, este tipo de proposiciones presentan sensibilidad a las condi-
ciones iniciales, en el sentido de que pequeñas diferencias en el grado de certidumbre
inicial conducen a trayectorias cuya certidumbre diverge rápidamente, tal y como se
muestra en la Fig. 5c. También es posible construir sistemas de varias proposiciones
que se referencien entre sí, igual que se construyen mapas de varias dimensiones, y
así reconstruir prácticamente cualquier sistema dinámico en términos semánticos.

Mar y Grim, haciendo uso de lo que ellos denominan semántica dinámica encuen-
tran estructuras fractales por doquier. Por ejemplo, demuestran que el triángulo de
Sierpinski, objeto fractal paradigmático representado en la Fig. 2a, aparece al estu-
diar las tautologías de las tablas de verdad de ciertas conectivas (Grim et al., 1998).

15Según Grim esta se corresponde con la aplicación tienda de campaña, una modificación del mapa
logístico.

16Según Grim esta proposición se corresponde con el mapa logístico descrito por la Ec. 1.
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Es más, de forma independiente a los resultados que ya hemos comentado de Doria
y da Costa (Da Costa & Doria, 1991b), Mar y Grim proponen una demostración
alternativa de la indecibilidad del caos. En su marco de lógica difusa, introducen la
oración “Esta proposición tiene un valor semántico caótico o es tan verdadera como
se estima que es falsa”. En base a esta oración, construyen una prueba por contra-
dicción en la que demuestran la imposibilidad de la existencia de un algoritmo que
permita distinguir las proposiciones caóticas de las que no lo son. Bien es cierto que,
para aceptar esta demostración, hay que asumir el marco teórico de lógica difusa
que ellos proponen, pero en cualquier caso su resultado apoya la idea de que el caos
es en sí mismo una propiedad indecidible.

7.5. Implicaciones para la filosofía, la ciencia y la tecnología

En las secciones anteriores hemos visto algunas interconexiones entre el caos, la ló-
gica y la teoría de la computación. Quizá, sin embargo, hemos pasado por alto el
factor común más evidente entre estas teorías, a saber, la reacción que producen en
la mayoría de las personas y que no es otra que preguntar acerca de la utilidad de
estas teorías abstractas. Si estas ideas por separado producen a menudo este efecto,
cabe esperar que se produzca incluso con mayor intensidad al considerar su intersec-
ción. En este apartado, discutiremos algunas de las implicaciones de los resultados
anteriores para la filosofía, la ciencia y la tecnología.

Empecemos por el plano filosófico. La aparición de caos en la semántica, como la
propuesta por Mar y Grim (Grim et al., 1998), puede parecer un tanto artificial. Sin
embargo, en ciertos ámbitos como la economía, la sociología o algunos problemas de
la biología, resulta razonable atribuir grados de certidumbre relativos a ciertas infor-
maciones. Además, es natural establecer redes relacionales entre diferentes agentes,
ya que la veracidad de cierta afirmación puede depender en gran medida de la ve-
racidad de otra, y así sucesivamente. La aparición de caos en modelos sencillos de
teoría de juegos (Grim et al., 1998) es inquietante cuando consideramos la lógica
difusa, ya que lleva a cuestionarse la validez de los razonamientos llevados a cabo en
escenarios donde la lógica difusa parece adecuada (Medel-Ramírez et al., 2023). En
ámbitos donde la información es a menudo parcial, como en sociología o en econo-
mía, quizá algunos planteamientos acierten de vez en cuando por puro azar debido a
la acción del caos. Si bien es cierto que no todos los sistemas son caóticos, la realidad
es que el caos es la norma y no la excepción dentro de la dinámica no lineal. Pro-
bablemente sería conveniente adoptar en estas disciplinas algunos enfoques propios
de la dinámica no lineal e introducir nociones relacionadas con la incertidumbre y el
caos. Tal y como afirman Mar y Grim, vivir sin ignorancia está más allá de nuestras
posibilidades; lo mejor que podemos hacer es tratar de manejar nuestra inevitable
ignorancia con cierto éxito (Grim et al., 1998).

Otra cuestión filosófico-científica que se ve afectada por los resultados aquí descritos

29



es la del determinismo. El demonio de Laplace apuntaba a que, si las ecuaciones de
la mecánica clásica eran correctas, la predicción solamente se encontraba limitada
por cuestiones “prácticas”. Por un lado, por la dificultad de determinar con suficiente
precisión las condiciones iniciales y, por otro lado, por las complicaciones a la hora de
realizar todos los cálculos correspondientes. Ambos escollos, sin embargo, parecieran
abordables a través de esfuerzos técnicos. Como hemos visto, el caos demuestra que
en muchos casos el más mínimo error numérico o experimental puede conducir a
predicciones divergentes. No obstante, en ausencia de dichos errores y con poder de
computación ilimitado, las predicciones en teoría deberían seguir siendo exactas. Sin
embargo, los resultados introducidos en las secciones anteriores muestran la apari-
ción de una incertidumbre insalvable en sistemas dinámicos debido a la presencia de
indecibilidad. Es decir, incluso con perfecto conocimiento de las condiciones iniciales
y con todo el poder computacional concebible, existen cuestiones fundamentales que
son irresolubles en mecánica clásica. Este resultado contrasta con la tesis expresada
por el célebre físico-matemático Roger Penrose de que no hay nada incomputable
en física clásica (Penrose, 1989), tal y como se encargan de apuntar Doria y Da
Costa (Da Costa & Doria, 1991a).

En el plano científico, los resultados recopilados en este trabajo son de gran im-
portancia. En primer lugar, la presencia de indecibilidad en sistemas físicos es una
cuestión de actualidad (Perales-Eceiza et al., 2024). Cabe recordar que la indecibili-
dad es propia de los modelos que utilizamos para representar los sistemas físicos, no
de dichos sistemas en sí mismos. No obstante, la indecibilidad puede indicar la pre-
sencia de fenómenos físicos inexplorados. Algo semejante ocurre con el caos a nivel
cuántico. La mecánica cuántica se rige por ecuaciones lineales, por lo que en principio
no puede presentar caos. Sin embargo, en virtud del principio de correspondencia,
debe haber un reflejo del caos a nivel cuántico. Esto se manifiesta en multitud de
fenómenos que a veces se han reunido bajo el nombre de caología (Berry, 1987). Así
pues, tanto el caos como la indecibilidad abren nuevas vías para la exploración de
los sistemas físicos.

En cuanto a metodología científica, ambas áreas de conocimiento trajeron conse-
cuencias revolucionarias. Por ejemplo, el caos demostró que en ocasiones debemos
conformarnos con estudiar los sistemas dinámicos desde un punto de vista más cua-
litativo que cuantitativo. Muy a menudo nos vemos obligados a utilizar esquemas de
integración numérica para resolver los sistemas dinámicos no lineales. Estos méto-
dos, inevitablemente introducen un cierto error numérico, por lo que los resultados
no se corresponden con la trayectoria “real” de nuestro sistema, es decir, con la ór-
bita que inicialmente queríamos estudiar. Afortunadamente, para la mayoría de los
casos, se cumplen los llamados teoremas de sombreado (Pilyugin, 2006). Estos teore-
mas demuestran que aunque la trayectoria simulada no sea la deseada inicialmente,
existe otra trayectoria con condiciones iniciales muy próximas a las introducidas que
se aproxima a la trayectoria simulada. En definitiva, no podemos confiar en simula-
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ciones individuales en presencia de caos, pero podemos estudiar las propiedades del
sistema en su conjunto. Así, las simulaciones con ordenador son algo cotidiano en el
estudio de los sistemas no lineales y, de hecho, fue la revolución informática la que
propició el florecimiento de la teoría del caos. En cuanto a los teoremas de limita-
ción, a pesar de su importancia en el edificio de las matemáticas, no han cambiado
fundamentalmente la manera de hacer matemáticas de la mayoría. En vista de la
inevitable incertidumbre que vive en el corazón de las matemáticas, Chaitin propone
convertir a las matemáticas en una ciencia más empírica (Chaitin, 2002). Así, si al-
gunos resultados dependen de la veracidad de alguna conjetura por demostrar, cabe
seguir haciendo matemáticas suponiendo esa conjetura como hipótesis, ya que quizá
se trate de una de las verdades indemostrables con que amenazan los resultados
de Gödel y compañía. En ambos casos, vemos que la incertidumbre que introducen
el caos y los teoremas de limitación llevan a abogar por una cierta relajación con
respecto a la excesiva rigidez que a veces los científicos se autoimponen llevando al
extremo sus sistemas formales.

El estudio de estos formalismos tan abstractos también tiene consecuencias tecnoló-
gicas significativas. En muchas aplicaciones, la aleatoriedad no siempre es algo inde-
seable. Para diversas cuestiones rutinarias en ciencia y tecnología se hace necesario
generar números aleatorios. En este sentido, conviene mencionar que la definición
más extendida hoy en día con respecto a número aleatorio es referida a la compre-
sión de la información. Informalmente, podemos decir que un número aleatorio es
aquel cuya información no puede comprimirse (Chaitin, 2002; Chaitin et al., 2012).
Es decir, la manera más corta de expresar un número aleatorio es escribiendo dicho
número aleatorio. No obstante, mediante sistemas caóticos sencillos es posible gene-
rar números pseudo-aleatorios (Naik & Singh, 2024; Yu et al., 2019). Estos números
no son aleatorios en el sentido de compresión de información, ya que proceden de un
algoritmo que puede ser tan sencillo como la iteración del mapa logístico. Sin embar-
go, los números así generados poseen características prácticamente indistinguibles
de las de un número aleatorio ideal, tales como una correlación casi nula entre ellos,
o una entropía asociada que es máxima. Por tanto, podemos decir que los sistemas
no lineales comprimen gran cantidad de información: una expresión sencilla puede
dar origen a trayectorias sumamente aleatorias. Sería interesante ver si algunos de
los esquemas dinámicos que hemos mencionado aquí, como el de Moore (Moore,
1991) o el de Kaneko (Saito & Kaneko, 2001), pueden utilizarse para mejorar aún
más estos generadores pseudo-aleatorios gracias a la presencia de indecibilidad o si,
por el contrario, estos sistemas son menos eficientes a la hora de producir números
pseudo-aleatorios debido a esa mezcla de diferentes dinámicas que mencionábamos
antes.

Finalmente, en plena revolución de la inteligencia artificial (I.A.) parece obligado ha-
cer una breve mención a su relación con lo expuesto anteriormente. En cierto sentido
el paradigma de la I.A. es completamente opuesto al de la máxima compresión de la
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información. Los modelos de aprendizaje automático poseen una cantidad desorbi-
tada de parámetros que les permiten realizar predicciones realmente asombrosas. Sin
embargo, uno de los mayores inconvenientes relacionados con la I.A. precisamente
consiste en que no comprendemos bien sus mecanismos (Sanjuán, 2021). La I.A. es
una especie de caja negra que funciona de manera extraordinaria para multitud de
aplicaciones, pero que apenas nos permite profundizar en nuestro conocimiento. Es
famosa la proposición atribuida a Von Neumann de que con cuatro parámetros es
posible construir una función que pinte un elefante, y con cinco hacer que mueva
la trompa (Mayer et al., 2010). La inteligencia artificial es capaz de realizar tareas
increíbles, pero en sí misma no genera comprensión porque no comprime la informa-
ción. De hecho, la I.A. a menudo se utiliza para generar contenido que promueve la
desinformación (Aımeur et al., 2023). Los sistemas no lineales son especialmente efi-
cientes en estas tareas, ya que, de la misma forma que comprimen mucha información
en forma de sencillas ecuaciones, pueden utilizarse para generar mucha información
mediante dichas ecuaciones sencillas. Así, aunque obviamente se utiliza I.A. en el
contexto de la dinámica no lineal y de los sistemas formales de forma provechosa,
pareciera que en el sentido anterior su espíritu fuera prácticamente antagónico.
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8. Conclusiones

En este trabajo se han estudiado las conexiones entre caos y teoremas de limitación.
A pesar de parecer dos áreas disjuntas, hemos comprobado que existen multitud
de paralelismos, tanto históricos, como metodológicos y también de contenido. En
general, y permitiéndonos la autorreferencia, podemos decir que la frontera entre
caos e indecibilidad pareciera fractal por las muchas complejidades y recovecos que
presenta. A continuación se van a enumerar ciertas conclusiones a fin de aclarar
algunos puntos importantes de lo anteriormente expuesto:

1. Conviene tener claro que, si bien el caos y los teoremas de limitación suponen
incertidumbre con respecto a los sistemas en los que se aplican, esta incerti-
dumbre es de naturaleza muy diferente. El caos está relacionado con la sensi-
bilidad a las condiciones iniciales y para manifestarse normalmente se asume
alguna incertidumbre inicial, ya sea en la determinación de las condiciones ini-
ciales, el esquema de integración numérica o de otra índole. La incertidumbre
asociada a los teoremas de limitación surge incluso en ausencia de ninguna
incertidumbre práctica.

2. El caos puede aparecer en sistemas de baja dimensión y formulación sencilla,
aunque su dinámica sea complicada. Muchos de estos sistemas poseen una ca-
pacidad de computación equivalente a la de una máquina de Turing universal.
Por tanto, no es de extrañar que aparezcan multitud de cuestiones indecidibles
en su estudio.

3. El mismo caos es indecidible. De la misma manera que los matemáticos no
saben a priori si podrán demostrar un teorema, los investigadores del caos
desconocen si podrán determinar algunas de las características fundamentales
de un sistema dinámico no lineal como su dinámica asintótica. Esto puede
parecer algo negativo, pero en realidad asegura que el trabajo que desempeñan
los investigadores de ambas disciplinas no podrá ser reemplazado jamás por
un algoritmo.

4. Las herramientas del caos pueden utilizarse para estudiar sistemas de compu-
tación. Normalmente las demostraciones de las limitaciones de los sistemas
de computación se realizan por reducción al absurdo. No obstante, la diná-
mica no lineal ofrece otra perspectiva más experimental y una gran caja de
herramientas con la que investigar este tipo de sistemas.

5. Algunas lógicas no clásicas pueden presentar caos. Esto supone un punto im-
portante a la hora de realizar predicciones en aquellos contextos donde este
tipo de lógica se aplique, tales como la economía o la sociología.

6. El estudio del caos y los teoremas de limitación pudiera en ocasiones parecer un
asunto de interés puramente académico, orientado a la incertidumbre en lugar
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de a la creación de conocimiento científico. De hecho, el caos puede considerarse
como una patología propia de la mecánica clásica, que en cierto modo se diluye
en la mecánica cuántica. A su vez, la indecibilidad puede entenderse como un
problema asociado a ciertos modelos, pero dicho problema desaparece en la
realidad física. Sin embargo, el estudio de sistemas cuánticos cuya versión
clásica es caótica permitió descubrir algunos fenómenos físicos impensables
desde un punto de vista puramente cuántico. Del mismo modo, la presencia de
indecibilidad en un modelo puede indicar la existencia de nuevos fenómenos
físicos. Así pues, explorar los límites de nuestro conocimiento nos permite
acceder a nuevo conocimiento.

Todo lo anterior apoya la tesis de que la colaboración entre dinámica no lineal, lógica
y teoría de la computación puede ser tremendamente fructífera y de gran relevancia
para el futuro de la ciencia y la filosofía.
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