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ARTICLE INFO ABSTRACT

Keywords: Emotion Recognition (ER) has gained significant attention due to its importance in advanced
Emotion recognition human-machine interaction and its widespread real-world applications. In recent years, research
SPeeq‘ . on ER systems has focused on multiple key aspects, including the development of high-quality
]:cnogfsl;tclc emotional databases, the selection of robust feature representations, and the implementation
Fusion of advanced classifiers leveraging Al-based techniques. Despite this progress in research, ER
Deep learning still faces significant challenges and gaps that must be addressed to develop accurate and
Machine learning reliable systems. To systematically assess these critical aspects, particularly those centered on
Low and high-level features Al-based techniques, we employed the PRISMA methodology. Thus, we include journal and

conference papers that provide essential insights into key parameters required for dataset
development, involving emotion modeling (categorical or dimensional), the type of speech
data (natural, acted, or elicited), the most common modalities integrated with acoustic and
linguistic data from speech and the technologies used. Similarly, following this methodology,
we identified the key representative features that serve as critical emotional information sources
in both modalities. For acoustic, this included those extracted from the time and frequency
domains, while for linguistic, earlier embeddings and the most common transformer models
were considered. In addition, Deep Learning (DL) and attention-based methods were analyzed
for both. Given the importance of effectively combining these diverse features for improving ER,
we then explore fusion techniques based on the level of abstraction. Specifically, we focus on
traditional approaches, including feature-, decision-, DL-, and attention-based fusion methods.
Next, we provide a comparative analysis to assess the performance of the approaches included
in our study. Our findings indicate that for the most commonly used datasets in the literature:
IEMOCAP and MELD, the integration of acoustic and linguistic features reached a weighted
accuracy (WA) of 85.71% and 63.80%, respectively. Finally, we discuss the main challenges
and propose future guidelines that could enhance the performance of ER systems using acoustic
and linguistic features from speech.
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1. Introduction

Emotion recognition (ER) plays a fundamental role in the understanding of cognitive processes, human behaviors, and social
dynamics faced by human beings in different facets of their lives. Nowadays, with the rise of artificial intelligence (AI), the
study of ER has received great attention from the scientific community, since these systems allow a better understanding of how
emotions are expressed, experienced, and regulated across different cultures and contexts (Cambria et al., 2017). This is also due
to their wide range of practical applications, which include developing therapies for mental health disorders, improving user
experiences in areas like virtual assistants and educational tools, enhancing human—computer interaction through more intuitive
and sympathetic technologies, and improving marketing strategies by understanding consumer emotions (Kotakowska et al., 2014).
In addition, ER systems can reveal patterns of collective behavior, offering potential benefits at the group or community level. For
instance, in education, such systems can enhance learning by adapting content and providing targeted support based on students’
emotional states. Wang et al. (2020) and Yang et al. (2018). Moreover, from the field of mental health, the identification of
how people identify and express their emotions contributes to the diagnosis of emotional disorders such as depression (Bourke
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et al., 2010), anxiety (Amstadter, 2008), and disorders of individuals with autism (Rump et al., 2009), and therefore allows for the
development of effective techniques and therapies that improve emotional regulation. Hence, research in ER systems allows a better
understanding of human nature and improves the design of technologies and interventions aimed at promoting mental health and
social well-being (Koolagudi and Rao, 2012).

ER methods based on a single modality or technique, such as self-assessment questionnaires, are often subjective and susceptible
to inaccuracies due to behavioral biases (Imani and Montazer, 2019). Furthermore, emotion is a transient state that requires
continuous monitoring for accurate recognition, a disadvantage for self-assessment questionnaires. Additionally, some methods may
assume that participants can accurately recognize and report their own emotions, which may not always be the case (Lopatovska and
Arapakis, 2011). Besides, emotions are inherently complex and multifaceted, often expressed through a combination of modalities
like speech, facial expressions, gestures, and linguistic content (Deng and Ren, 2021). Relying solely on one modality risks missing
complementary emotional signals present in other ones. For instance, acoustic features may capture tone and prosody but overlook
semantic meaning, while linguistic data may fail to reflect paralinguistic cues such as pitch or intensity (Ahmed et al., 2023).
Moreover, single-modality systems are typically more sensitive to noise or missing data; for example, background noise can degrade
the performance of audio-based systems, while poor lighting or occlusion can affect visual inputs (Salazar et al., 2021). This lack
of redundancy and context limits the robustness of unimodal approaches, making them less effective in real-world scenarios where
emotional expressions are often multimodal in nature.

To develop more robust models, the latest research focuses on training multimodal models that consider different aspects of
human behavior, including but not limited to facial expressions, body language, speech patterns, and physiological responses such
as heart rate, electromyograms, and galvanic skin responses (Ragot et al., 2018; Sebe et al., 2005; Ingale and Chaudhari, 2012;
Tarnowski et al., 2017). This approach, known as multimodal emotion recognition (MER), leverages the strengths of multiple
data modalities to achieve a more accurate and holistic understanding of emotional states (Flanagan et al., 2020). By integrating
various types of data, MER systems effectively capture the complexity and nuances of human emotions. Nowadays, these systems
employ advanced technologies based on Machine Learning (ML), DL, and attention mechanisms to provide a more comprehensive
representation of emotions (Ahmed et al., 2023).

Speech is naturally available in many real-world applications, such as virtual assistants, call center analytics, and interactive
systems, which makes it practical and widely applicable for ER. Moreover, a key advantage of speech emotion recognition (SER) is
its non-intrusive nature, unlike MER systems, which often rely on physiological sensors, cameras, or wearables, leading to higher
costs, increased storage demands, and greater computational requirements due to additional hardware. In addition, some modalities,
such as video, present higher privacy risks (Shoumy et al., 2020), making it more complex to integrate into ER models than speech.
Thus, the fusion of their acoustic and linguistic modalities could overcome these limitations.

In previous decades, the development of SER systems has progressively emphasized the integration of acoustic and linguistic
modalities (Schuller, 2018). SER systems have attracted increasing research interest due to their capacity to capture two distinct
and complementary modalities: acoustic and linguistic. These modalities represent information through different channels, providing
explicit and implicit emotional cues (Ramanarayanan et al., 2022). Linguistic information captures semantic content, while acoustic
information conveys paralinguistic features such as tone, pitch, rhythm, and intensity. Research in the neuroscience field has also
demonstrated the correlation among acoustics, linguistics, and emotions in human communication; their experimental findings
suggest that individuals use emotional words to amplify the emotional tone of their communication (Liebenthal et al., 2016). In this
review, the term speech is understood as a spoken language, from which two distinct modalities are derived: the acoustic modality,
denoting vocal characteristics (how something is said), and the linguistic modality, including the content of speech (what is said).

The rest of the paper is organized as follows: Section 2 explains the process of study selection, using the PRISMA methodology.
Section 3 discusses all the findings corresponding to the most commonly used datasets, highlighting main features such as emotion
modeling, dataset type, modalities, and technologies adopted. Section 4 contains information on the approaches implemented for
extracting low- and high-level features, including the fusion techniques applied. The benchmarking model performances are detailed
in Section 5. Section 6 presents discussion and the future directions of research. Finally, Section 7 summarizes the outcome and the
conclusion of this research.

1.1. Main contributions

Despite progress, a cohesive synthesis of recent findings, methodologies, datasets, and challenges in this interdisciplinary field
has been lacking. Our systematic review aims to bridge this gap, offering:

1. Exploration of emotion modeling theories: we present a detailed evaluation of the most used emotion modeling from speech,
covering dimensional and categorical frameworks.

2. Analysis of key aspects of SER datasets: this study examines essential factors of current speech databases, such as emotion
modeling, speech types (natural, elicited, or acted), the latest technologies used, and other relevant considerations. These
factors provide valuable information for developing SER datasets.

3. Detailed assessment of both low- and high-level features obtained from the acoustic and linguistic modalities of speech: we
provide a detailed analysis of the selection of robust features commonly employed in state-of-the-art ER techniques, focusing
on DL- and attention-based approaches.

4. Thorough evaluation of fusion techniques for SER: we explore an in-depth analysis of the fusion stage in SER, with particular
emphasis on linguistic and acoustic, especially leveraging DL- and attention-based methods.
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5. Detailed benchmark analysis of SER approaches: we summarize and compare results of the leading SER methods using
linguistic and acoustic features from the most widely used databases, according to common metrics (WA or UA).

6. Detailed selection of research articles under a systematic review approach: We selected current literature published between
2015 and 2024, sourced exclusively from peerreviewed journals, and the most recent studies presented in conferences between
2022 and 2025, following the PRISMA methodology (Page et al., 2021).

7. Critical discussion of the current state and emerging research opportunities: we discuss the existing gaps and outline the
directions and challenges for future research aimed at advancing the development of more robust and generalizable SER
systems from acoustic and linguistic features. This includes insights related to data scarcity, integration of approaches and
modalities, among others.

1.2. Related work

Currently, diverse research has been conducted to provide significant relevant insights into developing ER systems. Most of
them are mainly applied to multimodal approaches (Kalateh et al., 2024; Lian et al., 2023; Geetha et al., 2024), which as previously
established, exhibit weaknesses as they are more intrusive technologies, costly in terms of computation, hardware, and storage,
with higher privacy risks that must be addressed in the development stages. Hence, developing ER systems leveraging acoustic
and linguistic information provides benefits not only in the development stages but also in having higher usability for real-world
applications due to their advantages in implementation.

The overall purpose of this review is to determine the current challenges and limitations in developing ER systems to optimize
fusion strategies by integrating linguistic and acoustic modalities. Thus, this review seeks to answer the following main question:

What is the current state-of-the-art of SER based on its acoustic and linguistic modalities?

To answer this question, it is essential to formulate subquestions that will serve as the review’s objectives. This study specifically
examines the common SER datasets, focusing on those incorporating their acoustic and linguistic modalities. Additionally, it explores
the extraction of low and high-level features and their respective fusion techniques. Thus, the research questions will be divided
into three main groups. The first centers on dataset reviews RQI-RQ4, the second addresses the approaches to extract representative
features and fusion mechanisms based on Al techniques RQ5-RQ6, and finally, the third covers a benchmark analysis for proposed
SER models with the most used emotions and datasets RQ7-RQ8. Below, we describe the research questions:

Datasets

RQ1: What is the most commonly used emotion modeling in the SER field?

RQ2: What is the predominant type of speech in datasets used for ER?

RQ3: What further data modalities have been integrated with linguistic and acoustic modalities of speech for ER?
RQ4: What technology and devices have been used to construct datasets for SER?

Approaches

RQ5: What are the most representative low- and high-level features of linguistic and acoustic modalities for SER? And what
is the most common feature vector dimension?

RQ6: Which fusion techniques have been applied to develop SER systems from their acoustic and linguistic modalities?

Benchmark analysis
RQ7: What are the most common emotions evaluated in the literature of SER?
RQ8: What are the best performances in literature for SER from acoustic and linguistic modalities?

To highlight the main contributions of the present review in comparison to related surveys, we summarize the key distinctions
in Table 1. In particular, we contrast the eight research questions addressed in this study against those explored in previous works.

From a broad perspective, a key contribution of this paper is the identification of current limitations in the field of ER using
speech, particularly using acoustic and linguistic information. As highlighted in Table 1 and supported by existing studies, numerous
surveys focus on MER (Ahmed et al., 2023; Yang et al., 2023; Wang et al., 2022; Pepa et al., 2023; Shoumy et al., 2020; Jiang et al.,
2020). However, to the best of the authors’ knowledge, only one prior study, published in 2022, specifically addresses this area.

A common limitation of existing overviews in MER is their broad analytical approach, which does not always provide a detailed
examination of crucial aspects specific to SER from linguistic and acoustic information. The inclusion and analysis of different data
modalities vary across studies, leading to inconsistencies in the depth of evaluation for speech-based ER, as Kalateh et al. (2024),
Lian et al. (2023) and Geetha et al. (2024). Some may exclude entirely, focusing instead on physiological signals, static images, or
text-only datasets. Even in some cases, using text may imply that it originates from written sources, such as descriptions or opinions
(Du et al., 2022) rather than specific transcribed speech (linguistic), a key difference this review seeks to address. Another limitation
arises in analyzing relevant features extracted from each data modality and the corresponding fusion methods employed. Since these
reviews do not focus specifically on including studies based on acoustic and linguistic modalities from speech, they lack in-depth
insights into the challenges and optimizations required for their acquisition, feature extraction, and fusion mechanisms. Whether
or not to include different modalities directly influences the performance of the ER models. Similarly, in the benchmark analysis of
SER approaches, it is essential to establish parameter equivalence, such as the number and set of emotions, metrics, and datasets
considered. However, none of the previous studies have addressed this aspect. Consequently, the questions addressed in this review
are still not thoroughly analyzed or concluded.
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Table 1
Comparative review of prior surveys.

Paper Modalities RQl1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7 RQ8 Details

Kalateh et al. (2024) Verbal, physiological v X X X X X X X This paper reviews studies from journal
signals, facial, body publications or articles following a
gesture, and speech PRISMA methodology. The type of

speech, technology, and specific high-
and low-level features from linguistic
and acoustic information, and the
comparative analysis of performance
benchmarking are not covered.

Lian et al. (2023) Speech, text, and face X X X X X v X X This paper reviews the studies under a
non-systematic review. It focuses on
multimodal approach where further
modalities to the speech focus specially
on face images. Emotion modeling,
predominant speech type, dimension of
extracted feature vectors, and
performance benchmarking are not
covered.

Geetha et al. (2024) Text, audio, visual, and v X X X X v X v This paper presents a systematic review
physiological following PRISMA methodology focusing
on DL-based MER. The predominant
type of speech data, the technology, and
the dimension of extracted feature
vectors are not covered.

Atmaja et al. (2022) Speech and text v X v X v v X v This paper reviews the studies under a
non-systematic review in the area of
bimodal SER for studies reported in the
literature until 2021, mainly those from
INTERSPEECH 2020 conference.

This review Linguistic and acoustic v v v v v v v v This review presents the current key
from speech findings for SER from peer-

reviewed journal articles, and studies
presented at high-impact conferences
related to the field. Then, they were
systematically selected and analyzed
following the PRISMA methodology,
with a specialized focus on acoustic and
linguistic modalities extracted from the
speech

In contrast to Atmaja et al. (2022), which provides an overview primarily evaluating studies presented at the INTERSPEECH 2021
conference, this paper offers an updated review of the state of the art published at INTERSPEECH and other related conferences, as
well as focusing on results from journal-published articles. Additionally, we classify the proposed methods into DL- and attention-
based approaches, enabling a clearer understanding of how these technologies are evolving within the field. While the previous
work primarily examines data fusion technologies rather than acquisition methods or database construction, this review provides
valuable insights that can benefit both academia and industry by keeping them informed about the latest advancements in this
rapidly developing domain.

2. Method
2.1. Study selection

In this section, the process of study selection is described. To identify relevant studies concerning the research questions, this
review was completed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Page
et al., 2021). The systematic review flowchart is depicted in Fig. 1. It includes four main steps: identification, screening, eligibility,
and inclusion. The development of each step will be explained in detail in the following subsections.

2.1.1. Identification

The relevant studies were obtained from four scientific digital libraries: WoS, IEEE, ACM, and Scopus. To identify potential
studies and evaluate the evolution of SER from acoustic and linguistic modalities in recent years, we limited the time window
from January 1st, 2015, to April 2024. SER can be done using many different synonyms, thus, the search strategy was conducted
by selecting relevant keywords for the review scope and their related words. The keywords were categorized by recognition task,
Al-based technique, application field, data modality, and modal approach (detailed in Table A.11). The search filtered studies whose
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Identification 4 Screening h 4 Elegibility A\ 7 Inclusion N
Identified from databases
TEEE: 5! Records screened Eralinilaiiigg Records screened Eatlie Records
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WoS: 171 removal Abstrz;ct' 45 abstract N diE s in review
Scopus: 250 n=305 : n=>54 & n=49
n=3578 ) \
S S y AN . . 4

Fig. 1. Flowchart of systematic review based on PRISMA.

Table 2
Inclusion and exclusion Criteria.
Criteria
Inclusion Exclusion
Complete records Unavailable records
Studies published in journals and selected Studies not written in English, reviews, editorials or opinion
conferences papers
Focus on recognition/monitoring of a Does not focus on recognition/monitoring of a mood/emotion
mood/emotion
It is based on bimodal/multimodal approach and It is not based on bimodal/multimodal approach and does
includes acoustic and linguistic modalities from not include acoustic and linguistic modalities
speech
Define a method of dataset acquisition or reference Does not include dataset acquisition or reference it.

the dataset

Studies that describe the evaluation metric(s) and Does not use an Al-based approach
Al-based method(s) used

keywords of categories, such as application field, data modality, and approach, were found in the title. All other technical terms
were expanded to abstract or title. Hence, the search strategy employed is as follows: Title-Abstract (Task related keywords) AND
Title-Abstract (Al-based techniques related keywords) AND Title (Application field related keywords) AND Title (Data modality related
keywords) AND Title (Approach related keywords) AND (1 January 2015: April 2024)

Following the same methodology, to evaluate the most recent advances in the field, we conducted an additional search for studies
presented at conferences related to speech and Al, from January 1st, 2022, to June 2025. These conferences include: Interspeech;
the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP); the ACM International Conference on
Multimedia (MM); the Multimodal Interfaces and Machine Learning for Multimodal Interaction (ICMI-MLMI) conference; and the
IEEE Spoken Language Technology (SLT).

2.1.2. Screening
The screening process was carried out by applying an initial filter designed to eliminate duplicate records. A total of 274 studies
were found to be repeated across four databases, leaving 305 unique records remaining.

2.1.3. Eligibility

The review aimed to identify original research focused on developing or evaluating methods that could fuse the features extracted
mainly from linguistic and acoustic modalities of speech, specifically within the AI field. Consequently, we outline the inclusion and
exclusion criteria for screening records in Table 2. Thus, in this phase, the studies were excluded according to the criteria based
on title or abstract. This step resulted in the elimination of 206 papers because of the title, leaving 99 for further review. Then,
the abstracts were screened to ensure alignment with the eligibility criteria; in total, 45 were extracted, resulting in 54 remaining
articles to be read completely.

2.1.4. Inclusion
In this stage, we performed a complete reading of the 54 remaining documents for a full-text assessment. After reviewing, 49
studies were selected for inclusion in this review. Fig. 2 shows the number of articles included per publication year.

3. Datasets

With the study selection process completed, we will discuss the main characteristics of the most commonly used datasets for ER
in literature, especially but not limited to linguistic and acoustic modalities from speech.

There are different MER datasets, however, Table 3 lists only the datasets used by the studies that met the inclusion criteria.
They are arranged according to their frequency of use in the selected studies (highest to lowest). It can be noted that the most
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Fig. 2. Number of studies included per publication year.
Table 3
Review of ER datasets.
Dataset Language Year Size Dataset usage
IEMOCAP (Busso et al., 2008) English 2007 12 h 46.99%
MELD (Poria et al., 2018) English 2018 30 h 26.51%
CMU-MOSEI (Zadeh et al., 2018) English 2018 65 h 8.43%
CMU-MOSI (Zadeh et al., 2016) English 2016 2-3h 2.41%
RAVDESS (Livingstone and Russo, 2018) English 2018 3-4h 2.41%
Emolnt-MD (Singh et al., 2023) English 2022 534 h 1.20%
CREMA-D (Cao et al., 2014) English 2014 5h 1.20%
SAVEE (Haq and Jackson, 2010) English 2011 <lh 1.20%
MSP-Podcast (Lotfian and Busso, 2019) English 2019 27 h 1.20%
EmoReact (Nojavanasghari et al., 2016) English 2016 2h 1.20%
ElderReact (Ma et al., 2019) English 2019 2-3 h 1.20%
LSSED (Fan et al., 2021) English 2021 200 h 1.20%
Spanish MEACorpus (Pan et al., 2024) Spanish 2023 13 h 1.20%
EmoDB (Burkhardt et al., 2005) German 2005 <lh 1.20%
MTED (Zhao et al., 2024b) Chinese 2024 9h 1.20%
Korean Emotional Speech Dataset (Byun et al., 2021) Korean 2021 8-12 h 1.20%

popular datasets for SER are: the Interactive Emotional Dyadic Motion Capture (IEMOCAP) (Busso et al., 2008) and Multimodal
EmotionLines Dataset (MELD) (Poria et al., 2018). These datasets are used in 39 (46.99%) and 22 (26.51%) of the studies in this
review, respectively (some studies use more than one dataset to test their recognition models).

All datasets were published between 2005 and 2024, suggesting that ER is a relatively new field and has received research
attention in recent years. Furthermore, considering there are around 6000 speaking languages worldwide, it is evident that corpora
incorporating both acoustic and linguistic data modalities encompass only a limited number of languages, with English being the
most widely represented. In this review, 75% of the corpora use English speech data, as opposed to Spanish (Pan et al., 2024),
German (Burkhardt et al., 2005), Chinese (Zhao et al., 2024b) and Korean (Byun et al., 2021), which are used only once for
a specific dataset. Hence, it has been and continues to be one of the biggest challenges that industry and academia face when
developing ER systems. This concern is one of the main reasons why efforts are being made to develop systems using relatively
small-size datasets (Latif et al., 2019).

It is also evident from the data reported in Table 3, that 11 out of 16 corpora (68%) have a speech duration ranging from 1 h to
13 h. Longer datasets such as MELD (Poria et al., 2018) or CMU-MOSEI (Zadeh et al., 2018) have speech lengths of 30 h and 65 h,
respectively. The datasets with the longest speech duration are Emolnt-MD (Singh et al., 2023) and LSSED (Fan et al., 2021) which
include 534 h and 200 h of data, respectively. Notably, creating large-scale datasets for ER is generally limited since this process is
time-consuming and requires expert human knowledge for proper data labeling (Latif et al., 2021).

3.1. Emotion modeling

Datasets are fundamental components to ensure the suitable performance of ER systems. A common factor among the datasets
used in the literature is that labels are annotated based on specific emotional models. Hence, focusing on the first subquestion of
this review RQI: What is the most commonly used emotion modeling in the SER field? We will discuss emotion modeling commonly
used in literature, more specifically, two primary theories remain in use, leading to the classification of emotional databases based
on either categorical or dimensional models. They are explained in the following subsections.
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3.1.1. Categorical modeling

This modeling has been commonly adopted as a basic model in ER tasks for its simplicity and intuitive nature (Cambria et al.,
2017). The categorical model refers to dividing emotions into discrete categories, thus, ER systems in this modeling must solve
classification tasks to assign one or more discrete emotions to input information. Even though this modeling does not present a
consensus on categorizing basic emotions, Paul Ekman’s six basic emotions model is most commonly accepted. In this modeling,
Ekman proposes categorizing six basic universal emotions: Anger, Disgust, Fear, Happiness, Sadness, and Surprise (Ekman and
Friesen, 1971).

Table 4 describes the emotion modeling used by datasets introduced in Table 3 for ER, the most predominant labeling model
for representing emotions from speech data is categorical annotation, which is supported by the fact that ten datasets (62.5%) use
only this modeling. Five works (31.25%) use both categorical and dimensional modeling. The most common emotion categories
include Happiness, Sadness, and Anger; Fear and surprise labels are the least represented. MELD (Poria et al., 2018), The Ryerson
Audio-Visual Database of Emotional Speech and Song (RAVDESS) (Livingstone and Russo, 2018), Surrey Audio-Visual Expressed
Emotion (SAVEE) (Haq and Jackson, 2010), and MSP-Podcast (Lotfian and Busso, 2019) contain Ekman’s categorization, and a
neutral class. The work presented in Singh et al. (2023) adopts the categorization of 32 emotions. This dataset was constructed
considering nine different movie genres: drama, action, fantasy, comedy, horror, crime, romance, thriller, and science fiction. They
categorized the labels into a set of 32 distinct emotions, aiming to capture a wide range of emotions across various movie genres
that reflect real-life scenarios. In addition to the basic emotions typically included in the datasets, there are corpora with categorical
annotations including Calm (Livingstone and Russo, 2018), Boredom (Burkhardt et al., 2005), Excited and Confused (Zhao et al.,
2024b) as well.

3.1.2. Dimensional modeling

Dimensional modeling theories consider emotions according to a continuous structure; thus, each emotion state is represented
as a multi-dimensional vector, where for each dimension, there is a continuous value within a given range, the extremes of the
range indicating two polarities (Deng and Ren, 2021). One of the most widely recognized dimensional models is the Pleasure-
Arousal-Dominance (PAD) Emotional State Model, which establishes that three nearly orthogonal dimensions provide a sufficiently
comprehensive description of emotional states (Mehrabian, 1996). The IEMOCAP and MSP-Podcast corpus, which use both types
of modeling, includes continuous emotional content as variants of this model, hence, an utterance can be represented in a three-
dimensional space in terms of Valence, Activation (or Arousal), and Dominance (Busso et al., 2008). Another widely used dimensional
approach is Russell’s circumplex model, where emotion states are represented by a continuous value on an Arousal vs. Valence
dimensional plane. The Valence extends from negative to positive range with a neutral state between the polarities. Arousal is
set from low to high values with a neutral state in between (Russell, 1980). The EmoReact (Nojavanasghari et al., 2016) and
ElderReact (Ma et al., 2019) corpus are based on this modeling, representing emotional information in a one-dimensional space in
terms of Valence. Other works such as CMU-MOSEI (Zadeh et al., 2018) and CMU-MOSI (Zadeh et al., 2016) consider emotion states
in a single dimension as either strongly positive (labeled as +3), positive (+2), weakly positive (+1), neutral (0), weakly negative
(1), negative (—2), or strongly negative (—3). As shown, constructing high-quality dimensional datasets is more challenging than
categorical annotation, resulting in fewer available corpora. In this review, only six studies (37.5%) use dimensional labeling and
five of them also include discrete annotations. Having annotations based on the two approaches allows a mapping between the two
annotation strategies, and the use of additional information could improve the performance of the ER systems.

3.2. Emotional speech data

As stated above, an adequate corpus design is crucial for developing ER systems with optimal performance. One of the main
criteria for preparing a corpus is the scope, which refers to the different types of variations of a dataset, such as the number of
speakers, speaker gender, language, kind of emotions, among others (Swain et al., 2018). Some of these variations covered by the
datasets in this review have been included in Table 5. In this subsection particularly, we want to focus on answering the second
subquestion RQ2: What is the predominant type of speech in datasets used for ER? Consequently, the type of database for SER can
be categorized into three groups: Natural, Acted (Simulated), or Elicited (Induced) (Ververidis and Kotropoulos, 2006), they are
described below.

3.2.1. Natural

A natural corpus includes spontaneous speech in real-world situations, such as: call center conversations, discussions between
patients and doctors, educational environments, family, or couple conversations, among others. These emotions, also known as
underlying emotions, are mildly expressed and difficult to identify. The labeling process is highly subjective and typically relies on
the judgment of experts. In addition, datasets that include this type of speech cover a limited emotional range (El Ayadi et al.,
2011).

As shown in Table 5, seven (43.75%) of corpora encompass natural speech. Four are taken from YouTube opinion videos, this can
be observed in CMU-MOSEI (Zadeh et al., 2018), which contains 23453 monologue videos from YouTube segments with 1000 distinct
speakers and 250 topics. The most frequent topics include reviews (16.2%), debate (2.9%), and consulting (1.8%). They also limit
their videos where the speaker’s attention is directed at the camera, excluding videos that involve moving, such as those mounted
on bicycles or videos recorded while walking. A similar case is presented in CMU-MOSI (Zadeh et al., 2016), where the authors
also include YouTube monologue videos collected from 89 different speakers. The authors remark that to achieve a fine-grained
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Table 4
Emotion modeling used in the literature.
Dataset Model Emotions
C D No. Ekman’s basic emotions N Other

Ang Disg Fear Hap Sad Sur

IEMOCAP v v 9 v v v v v v v Frustration, excitement
D: valence, activation, and
dominance.

CMU-MOSEI v v 6 v v v v v v - D: Sentiment on a Likert scale

from strongly
negative to strongly positive
[-3,3]

MSP-Podcast v v 9 v v v v v v v C: Contempt and other
D: Valence, arousal and
dominance on a seven-point
Likert scale

ElderReact v v 6 v v 4 v v v - D: Valence

EmoReact v v 16 v v v v v v 4 C: Curiosity, uncertainty,
excitement, attentiveness,
exploration, confusion, anxiety,
embarrassment and frustration

D: Valence

MELD v - 7 v v v v v v v -

RAVDESS v - 8 v v v v v v v Calm

Emolnt-MD v - 32 v v - v v v v Grateful, afraid, lonely,
impressed, hopeful, furious,
confident, disappointed, jealous,
nostalgic, apprehensive, trusting,
worried, anticipating, excited,
caring, proud, anxious, terrified,
ashamed, content, faithful,
embarrassed, guilty, sentimental

CREMA-D v - 6 v v v v v - v -

SAVEE v - 7 v v v v v v v -

LSSED v - 11 v v v 4 v v v Disappointment, boredom,
excitement and other

Spanish MEACorpus v - 6 v v v v v - v -

EmoDB v - 7 v v v 4 v - v Boredom

MTED v - 6 - - - v v v v Excited, confused

Korean Emotional v - 4 v - - v v - v -

Speech Dataset

CMU-MOSI - v - - - - - - - - D: Sentiment on a Likert scale

from strongly
negative to strongly positive
[-3,3]

C: Categorical, D: Dimensional, Ang: Anger, Disg: Disgust, Hap: Happiness, Sad: Sadness, Sur: Surprise, N: Neutral.

sentiment analysis, it is necessary to conduct a subjectivity segmentation at the opinion level. In Pan et al. (2024), the authors
selected videos from diverse Spanish-language YouTube channels, where the users express opinions in different contexts that could
evoke basic emotions, including political channels to express disgust, sports channels to identify anger, and entertainment channels
to capture joy. In this case, some of them were recorded in outdoor environments subjected to unwanted noise conditions, as well
as recordings that have been previously processed and edited in recording studios. In Nojavanasghari et al. (2016), authors present
a multimodal emotion dataset that contains 1102 videos of children between the ages of four and fourteen years old; these videos
were downloaded from the YouTube React channel and contain children reacting to subjects that include food, technology, YouTube
videos, and gaming devices. Authors in Lotfian and Busso (2019) introduce a corpus of 2317 utterances of existing spontaneous
recordings obtained from audio-sharing websites (podcasts). The data contains natural conversations between many different people
on various topics, such as political debates, movie reviews, or sports discussions.

3.2.2. Elicited

Elicited or induced datasets gather data simulating artificial emotional situations; it is generally expected that participants
involved are unaware of the problem so that the process is as natural as possible. Usually, different contextual situations are
presented through emotional conversations to elicit different emotions. Unlike acted data corpus, elicited datasets are closer to
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Table 5
Modalities and technology employed by datasets.
Dataset Source Type Data modalities Technology Speakers
N S VvV SL O Mic Vid Unk No. Description

IEMOCAP Recordings of - v v v 7/ v v - 10 Actors (5 F, 5 M)
improvisations or scripted
scenarios

MELD Dialogues from TV series - - v /7 - - - v - Actors

CMU-MOSEI Opinion videos from v - v v /- - - v 1000 YouTube users (430 F, 570
YouTube M)

CMU-MOSI Opinion videos from v - v v / - - - v 89 YouTube users (41 F, 48
YouTube M)

RAVDESS Recordings of predefined - v v/ - - v v - 24 Actors (12 F, 12 M)
statements

Emolnt-MD Movies of different genres - v /v 7/ - - - v - Actors

CREMA-D Recordings of predefined - v v/ - - v - 91 Actors (43 F, 48 M)
statements

SAVEE Recordings of predefined - v /- - v v - 4 Actors (4 M)
statements

MSP-Podcast Podcast recordings v v - - - - - v 83 Speakers from podcasts

EmoReact Videos from YouTube v - v - - - - v 63 Children (32 F, 31 M)
REACT channel

ElderReact Videos from YouTube - - v/ - - - - v 46 Elderly people (26F, 20M)
REACT channel

LSSED Video sessions in an - v - - - - - v 820 Youtube users (485 F, 335
indoor lab environment M)

Spanish MEACorpus  Opinion videos from v v - v - - - v - YouTube users
YouTube

EmoDB Recordings of predefined - v - - - v - - 10 Professional speakers (5 F,
statements 5M)

MTED Classroom videos v v /7 - - - v 235 Teachers

Korean Emotional Recordings of Korean - v - - - - - v 4 Actors (2 F, 2 M)

Speech Dataset

predefined statements

N: Natural, E: Elicited, A: Acted; S: Speech, V: Video, SL: Speech linguistic, O: Other; Mic: Microphone, Vid: Video Camera, Unk: Unknown; F: Female, M: Male.

natural ones. As can be seen in Table 5, three datasets (18.75%) include this type of emotional speech data. In Busso et al.
(2008), the authors employed two approaches for eliciting emotions from the actors. First, subjects memorized and practiced scripts
selected and supervised by a theater professional to ensure the portrayal of target emotions. In the second approach, participants
improvised emotional expressions based on hypothetical scenarios involving common experiences such as loss or separation. Unlike
the structured nature of scripted sessions, this method captures more authentic responses, offering a broader understanding of
emotional expression in both controlled and spontaneous contexts.

Alternatively, authors in Fan et al. (2021) introduce a Large-Scale Speech English dataset (LSSED) for ER, which contains data
collected from 820 subjects induced by random questions as their utterances are associated with an emotional label. Speech data
was processed from videos recorded in sessions in an indoor lab environment. On the other hand, in Ma et al. (2019), authors
propose a multimodal dataset of 1323 video clips with human annotations of six discrete emotions. Videos were collected from the
YouTube REACT channel in which elders react to different emotion elicitation stimuli, covering a wide range of topics including
video games, social events, and online challenges.

3.2.3. Acted

Simulated or acted (also known as full blown emotions) refers to data collected with professional and experienced artists. When
collecting these datasets, experts are usually asked to express neutral sentences on different emotions (El Ayadi et al., 2011).
Specifically, this method is used in the data collection process of RAVDESS (Livingstone and Russo, 2018), CREMA-D (Cao et al.,
2014), SAVEE (Haq and Jackson, 2010), EmoDB (Burkhardt et al., 2005), and Korean Emotional Speech Dataset (Byun et al., 2021),
where the source corresponds to the recordings of predefined statements. Other studies including this type of speech use already
existing audiovisual material such as TV series, MELD (Poria et al., 2018), or movies from various genres, EmoInt-MD (Singh et al.,
2023). This is a convenient method since the efforts in dataset collection no longer involve the definition and implementation of the
recording stage. Therefore, most datasets involve this type of speech since they are an easier and more reliable method for collecting
expressive speech. This tendency is noticeable in the datasets included in this review since 43.75% of the corpora cover this type of
speech. This type of data collected involves covering a wider range of emotions, incorporating greater intensity and expressiveness,
and involving most aspects relevant to emotions’ expression (Koolagudi and Rao, 2012).

3.3. Data modalities

In this section, we will address the question RQ3: What further data modalities have been integrated with linguistic and acoustic
modalities of speech for ER? As previously stated, this review essentially focuses on exploring SER systems involving their extracted
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linguistic and acoustic modalities. The modalities included by the datasets are listed in Table 5. In the following sections, we will
discuss the main factors encompassing the datasets depending on modalities.

3.3.1. Speech

Speech refers to spoken human language, considered the primary mode of communication among people. It includes not just
the spoken words (what is said) but also the nuances in tone, pitch, speed, and rhythm (how it is said). Therefore, emotional
expressions from speech can be conveyed through explicit (linguistic) and implicit (acoustic/paralinguistic) messages. Usually,
acoustic information of speech provides a wide range of indicators that reliably reflect the speaker’s emotional state in contrast
to linguistic content, where language-dependent factors such as variability in word choice for expressing emotions make their
generalization across languages a more challenging task (Latif et al., 2021). There is widely available speech data from numerous
sources, including webcasts, conversations, music, meetings, voice messages, lectures, television, and radio.

As outlined in Table 5, four datasets covered in this review include speech as unimodal data source, known as EmoDB (Burkhardt
et al., 2005; Lotfian and Busso, 2019; Fan et al., 2021), and the Korean Emotional Speech Dataset (Byun et al., 2021). The rest of
the corpora (75%) provide other modalities, the most common being video, besides speech. EmoDB is a German database of acted
emotional speech that contains 535 utterances with an average of 3 s. The utterances were generated with ten sentences interpreted
in target emotions (neutral, anger, fear, joy, sadness, disgust, and boredom) by ten actors (5 female and 5 male), the sentences were
previously defined from everyday sentences to prioritize the naturalness of the speech. Hence, this database has been adopted to
analyze prosodic and articulatory features in SER. The Korean Emotional Speech Dataset includes utterances using Korean scripts
from dramas and movies recorded by four professional actors (2 female and 2 male). The dataset contains 4000-5000 audio files
with around 3-10 s each categorized into four emotions: anger, happiness, neutrality, and sadness.

Speech acoustic modality

Due to the scope of this review, studies whose methods for ER involve only the acoustic modality of speech (how it is said)
have not been considered. However, it is important to note that the acoustic modality can be extracted from any dataset containing
speech or video, which applies to all the datasets included in this review. Notably, existing literature includes studies for MER in
which the acoustic modality is shared through its representation in low- and high-level features, aiming to comply with ethical and
privacy regulations (Miranda Calero et al., 2024).

Speech linguistic modality

Linguistic modality from speech refers to the written or spoken language that conveys explicit information through words and
sentences (what is said). It includes not only the content of the communication but also contextual elements like syntax, semantics,
and word choice, which contribute to the meaning (Deng and Ren, 2021). It should be noted that, unlike text emotion recognition
(TER), which is based only on written text, the linguistic modality from speech is often paired with its respective acoustic modality
for SER (Atmaja et al., 2022). Studies have also established that linguistic SER provides an efficient approach to interpreting
emotional dialogue, enhancing the accuracy and intelligence of human-computer interactions (Suero Montero and Suhonen, 2014).
Furthermore, studies have found that exploration in data integration can contribute significantly to high-quality emotional datasets
and thus to better accuracy for ER (Abdullah et al., 2021). From the datasets included in this review, all corpora that contain Speech
do not necessarily include its linguistic modality or transcriptions. Some studies incorporate manual or automatic techniques, such
as Automatic Speech Recognition (ASR), to extract this information from speech. These corpora will be evaluated in the following
section.

3.3.2. Acoustic and linguistic from speech

Training SER systems using linguistic and acoustic modalities requires preprocessing phases to extract the linguistic modality
when datasets do not directly provide it. Generally, this phase is completed manually to ensure greater accuracy, although ASR
methods, such as speech-to-text, are also commonly employed due to the time-consuming nature of manual transcription. As depicted
in Table 5, seven out of sixteen datasets, including speech data, provide the corresponding linguistic modality. The authors of CMU-
MOSEI and CMU-MOSI provide this data obtained through manual transcriptions made by experts. In EmoInt-MD, the authors offer
subtitles and transcripts from movies. In IEMOCAP, the authors used the Ubiqus service. Modern systems such as ASR methods are
also used in the conformation of the different datasets; in MTED where the teachers’ speeches were transcribed with Baidu’s auto
speech transcription API and Spanish MEACorpus whose transcriptions are developed using Whisper (Radford et al., 2023), together
with some manual ones to confirm the quality of the transcriptions. It is important to highlight that, to develop SER systems that
are accurate, fast, and easily applicable to real-life scenarios based on their two primary modalities (as will be discussed in the
following section), recent studies have proposed methods aimed at enhancing performance by reducing the word error rate (WER)
of ASR systems. Despite these advancements, while the use of automatic tools to obtain the transcriptions of speech data is fast
and cost-effective, manual transcription remains the gold standard for applications where precision and clarity are essential; they
can handle language changes, speaker identification, and errors in real-time, improving the overall quality and reliability of the
transcription. In addition, manual transcription of speech can, in some cases, include some specifications on pause fillers (such as
“um”, “uh”, etc.), stress indicators, and speech pauses (Zadeh et al., 2016). These phonetic parameters provide relevant information
for the monitoring of emotional changes in people (Lin et al., 2020).
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3.3.3. Speech and other modalities

The video modality is the most frequent in ER datasets that include speech. In this review, eleven of the corpora (68.75%) include
this data source. This data refers to visual information captured through images or video sequences, including facial expressions,
body language, gestures, and environmental context. This modality provides rich, non-verbal cues essential for interpreting human
behavior, emotions, and interactions, allowing a more holistic understanding of communication in MER systems.

As indicated in Table 5, usually in natural and some acted datasets, videos include monologues that focus on gestures and
facial expressions. This is a critical design consideration. While a single-speaker emotional corpus may suffice for emotional
speech synthesis, ER demands a more diverse dataset with multiple speakers and expressive styles to accurately capture and
interpret emotional variability (Koolagudi and Rao, 2012). A significant disadvantage of using this modality lies in the complexity
and resources required for accurate analysis, which can be costly and slow down real-time applications (Shoumy et al., 2020).
Additionally, video data introduces higher privacy concerns, as visual information can reveal sensitive personal details. These
challenges make video data harder to integrate compared to more streamlined modalities, such as speech, which require less
processing and often yield consistent emotional insights.

According to the results, another data modality that provides valuable content when determining emotions corresponds to
motion, which refers to the dynamic aspects of human movement, including gestures, body language, and facial expressions that
occur over time (Kleinsmith and Bianchi-Berthouze, 2012). It is captured by sensors other than video cameras, such as inertial
measurement units. This modality captures the physical actions and changes in posture that convey important non-verbal information
about a person’s emotional state, intent, or focus. From the datasets in this review, only IEMOCAP (Busso et al., 2008) includes
motion data, where actors used markers on the face, head, and hands, providing detailed information about their facial expressions
and hand movements during recording scenarios.

3.4. Technology

The fourth research question is addressed in this section RQ4: What technology and devices have been used to construct datasets
for SER? The aim is to provide an analysis of the tools and technologies employed for data collection to support SER. Recent
advancements in data collection have increasingly involved the use of pre-existing sources such as YouTube videos, television series,
movies, and podcasts. Thus, in these cases, the information on the technological tools used is unknown. In IEMOCAP (Busso et al.,
2008), the audio was recorded using high-quality shotgun microphones (Schoeps CMIT 5U) directed at each participant in the
dialogue, and the sample rate was set to 48 kHz. For video data, a semi-frontal view of participants was recorded with high-resolution
digital cameras (Sony DCR-TRV340). For motion, to capture facial expression information, fifty-three markers were attached to the
face and a headband with two markers on it to identify the head rotation. The hands’ movements are estimated with the information
provided by wristbands with two markers and an extra marker on each hand. The trajectories of the markers were recorded using
a VICON motion capture system with eight cameras placed one meter from the subject with markers, with a sample rate of 120
frames per second.

In RAVDESS (Livingstone and Russo, 2018), a multimodal database that includes video, speech, and video-and-speech formats
where 24 professional actors vocalize lexically matched statements. The registers were done in a professional recording studio using
a Sony Handycam HDR-SR11 with a resolution of 1920 x 1080 pixels at 30 fps. Speech data was captured by a Rode NTK vacuum
tube condenser microphone, fitted with a Stedman prosc-reen XL pop filter, placed 20 cm from the actor at a sampling rate of
48 kHz, 16 bit. CREMA-D (Cao et al., 2014) includes audio-only, visual-only, or audio-visual data from 91 actors and actresses of
various ages and ethnicities. Video data was recorded using a Panasonic AG-HPX170 at a resolution of 960 x 720. The speech was
recorded with a far-field directional microphone at 48 kHz.

SAVEE (Haq and Jackson, 2010) includes 480 utterances of audio, visual, and audio-visual modalities. 2D frontal color video and
Beyerdynamic microphone signals were collected in a 3dMD dynamic face capture system with a sample rate of 44.1 kHz for audio
and 60 fps for video. In EmoDB (Burkhardt et al., 2005), a Sennheiser MKH 40P 48 microphone and a Tascam DA-P1 portable DAT
recorder were used to achieve high-quality recordings with a sampling frequency of 48 kHz. In addition, electro-glotto-grams were
recorded using the portable laryngograph. In the acquisition of audio data, microphones with sampling rates of at least 44.1 kHz
are generally used, with 48 kHz and 16 bits being the most commonly used. The distance between the speaker and the microphone
is in the range of 20 to 30 cm, provided that individuals are free to use body language (Busso et al., 2008; Burkhardt et al., 2005).

4. Approaches

In this section, we will discuss the methods and techniques used by the included studies to recognize emotions. This review
will emphasize acoustic and linguistic modalities from speech with others (when they are used). An ER system primarily involves
extracting features from each modality and integrating information from multiple modalities using fusion methods, as shown in Fig.
3 (Deng and Ren, 2021; Imani and Montazer, 2019).
4.1. Feature representation

The feature extraction in SER systems aims to identify patterns that effectively distinguish between various emotions. Focusing on
the fifth research question RQ5:What are the most representative low- and high-level features of linguistic and acoustic modalities for SER?

And what is the most common feature vector dimension? In SER, feature engineering and developing DL models for classification are
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Fig. 3. Emotion recognition system based on acoustic and linguistic modalities from speech.

generally handled as independent tasks (Atmaja et al., 2022). On the one hand, the process of manually transforming speech signals
into meaningful information and a manageable set of attributes based on domain expertise is known as feature engineering, this
method is often considered labor-intensive and time-consuming (Latif et al., 2021). The features obtained by this method are also
known as hand-crafted features. On the other hand, representation learning involves generating representations by automatically
transforming input data, typically within DL approaches, to produce abstract and functional representations for DL tasks. In
this review, we categorized these feature extraction processes into two groups: low- and high-level for feature engineering and
representation learning tasks, respectively. Depending on the feature type and approach, some methods may or may not include the
two processes. In the following sections, we will discuss the features most commonly used by studies for SER using acoustic and
linguistic information.

4.1.1. Acoustic feature representation

The acoustic features from speech typically fall into one of the following categories: frequency-domain, time-domain, hybrid, or
deep features (Hashem et al., 2023). As mentioned in this review, deep ones will be considered high-level features. To determine
which are the most frequent, the low-level features were divided into time-domain and frequency-domain.

Low-level features

Typically, features derived from speech signals are referred to as acoustic features (in this review, we distinguish this term from
the acoustic modality, i.e. how it is said). Several studies have explored the relationship between acoustic features and emotional
states (Scherer, 2005).

The frame period for speech analysis typically ranges from 30 to 100 ms, during which suprasegmental features, such as
rhythm, melody, and expressiveness are captured. These elements are characterized by attributes including duration, intensity,
intonation, and sound units. Prosodic features, which encompass pitch, energy, duration, and their respective derivatives (Rao
and Yegnanarayana, 2006), play a crucial role in conveying speech dynamics. Therefore, in this study, prosodic features also will
be incorporated into the time-domain features. These features perform well by differentiating between emotions associated with
differing levels of arousal, such as happiness and sadness. However, they are less effective in differentiating emotions that share
similar arousal levels, such as anger and happiness, which are more strongly correlated to valence (Fahad et al., 2021). As shown
in Table 6, 20 (40.81%) of the studies include time-domain features, among the most common are zero crossing rate, energy, and
pitch frequency.

Spectral features are related to frequency domain analysis, which usually reflects vocal tract characteristics, where emotion-
specific information is present (Koolagudi and Rao, 2012). Due to the frame duration (about 10-30 ms), spectral features are
sometimes called segmental features. In literature, Mel-frequency cepstral coefficients (MFCCs) have been widely known as the
principal set of features for ER (Furui, 1986). The process of extracting MFCCs involves four key steps. First, perform a Fourier
transform to analyze the signal frequency content. Second, the power spectrum is mapped onto the Mel scale. Third, applying
a logarithmic transformation to Mel-scaled frequencies, and finally, utilizing a discrete cosine transform (DCT) or an alternative
suitable transformation to obtain a compact representation of the features (sometimes, this step is omitted because of loss of
information and destruction of spatial relations) (Latif et al., 2021). As shown in Table 6, from the 19 studies using frequency-domain
features, 14 use MFCCs where the speech signal represents the short-term power spectrum.

Often, in some studies (20.49%), both time- and frequency-domain features are used together as hybrid features. Several studies
use this approach to extract representative information. Among the most commonly used are the well-known Minimalist feature sets
like GeMAPs and eGeMAPs, which contain 62-D and 88-D time and frequency-domain features, respectively (Eyben et al., 2015).
As reported in several studies, spectral and temporal features are also extracted using the Munich open-source Media Interpretation
by Large feature-space Extraction (openSMILE), a toolkit that allows feature extraction for signal processing and ML applications.

Concerning the feature vector dimension, where mentioned, most of them range from less than 100-D, with 34-D being the most
common. In two specific studies, despite the approach being the same, the dimension is different between datasets. As in Huddar
et al. (2021), a 73-D vector is obtained for MOSI and IEMOCAP and 384-D for MOSEI In Ma et al. (2024), the vector dimensions
are longer; the IEMOCAP speech data are represented by a 1582-D feature vector, while a 300-D representation is used for MELD.
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Table 6

Low and high-level features for SER from acoustic and linguistic modalities.

Article Low-level features High-level features Fusion technique

Acoustic features Linguistic features Acoustic features Linguistic features F D DL A Technique
TD FD Features TF WE Features ML DL A Approach DL A Approach

Byun et al. (2021) X X 43-D (13 MFCCs, 11 X 256-D X LSTM and softmax X LSTM and X Average from
spectral-domain, 12 Tacotron’s function. softmax probability
chroma, 7 harmonic encoder function.
features)

Cai et al. (2019) 34-D (zero crossing 300-D GloVe CNN-BiLSTM- Bi-LSTM. X DNN and
rate, energy, entropy of embedding Attention (CBLA) softmax layer
energy, spectral and dense layer.
centroid, spectral
spread, spectral entropy,
spectral flux, spectral
roll-off, MFCCs, 12-D
chroma vector, and
standard deviation of
chroma vector)

Chauhan et al. (2024) MFCC - CNNs and head BERT X FC and softmax

pooling attention. layer.

Singh et al. (2023) Tonal low-level 200-D GloVe - Bi-LSTM. X X Fusion of
descriptors embedding modalities,

contextual
transformer, and
softmax layer

Ma et al. (2024) 1582-D for IEMOCAP - Intra- and 1024-D X X Hierarchical
and 300-D for MELD inter-modal RoBERTa gated fusion

transformers large model, (unimodal- and
intra- and multimodal-level
inter-modal gated fusions,
transformers FC and softmax
layer)

Ho et al. (2020) 12 MFCC, 13-delta and - Batch normalization 768-D BERT X X Multi-Level
13-acceleration and a gated model, batch Multi-Head
coefficients recurrent unit normalization fusion attention,

module (GRU) layer and global average
GRU pooling, FC,
dropout, and
softmax

Hosseini et al. (2024) 34-D (energy, zero 300-D CNN and Bi- Bi-LSTM X X Concatenation,
crossing rate, energy Word2Vec LSTM-Attention DNN, and
entropy, spectral center, embedding softmax layer
spectral expansion, (sequence
spectral entropy, length of 500)
spectral flux, spectral
start, and MFCC)

Huddar et al. (2021) 73-D for MOSI, 73-D Word2Vec for RNN and RNN and X X Biomdal and
for IEMOCAP, and MOSI and weighted-pooling weighted- trimodal fusion,
384-D for MOSEI IEMOCAP, attention pooling then softmax

and GloVe attention layer.

embedding for

MOSEI

Liu et al. (2022a) Not listed Word CNN and BiLSTM X Cross-attention

embedding BiLSTM with
gate-control
mechanism, and
transformer
encoder.

Liu et al. (2022b) Zero-crossing-rate, root 300-D Self-attention MCNN Self-attention X X Multi-scale
mean square frame Word2Vec (two embedding layers, be-LSTM fusion: FF by
energy, pitch frequency, embedding an attention layer, three (BLS-TM concatenation
harmonics to noise convolutional layers, layer, an DLF by
ratio, MFCC and three pooling attention Dempster-Shafer

layers) layer and a

dense layer)

(continued on next page)
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Table 6 (continued).

Article Low-level features High-level features Fusion technique
Acoustic features Linguistic features Acoustic features Linguistic features F D DL Technique
TD FD Features TF WE Features ML DL Approach DL A Approach
Braunschweiler et al. X log-Mel filterbank - X CNNRNNATT X BERT X Concatenation
(2022) features encoder (CNN, and softmax
RNN, FC, attention) layer
Pan et al. (2024) X MFCC - X X SVM, CNN, LSTM and X BETO, X Late Fusion (LF
Wav2Vec 2.0 (F-W2V, ALBETO, concat, LF
J-W2V, W2VB) dBETO, mean),
BERTIN, Multi-head
MarlA, XLM cross-attention
(Fusion+attn.)
and Ensemble
Learning (EL
mean, EL max)
Ai et al. (2024) - - X Bidirectional gated X X RoBERTa Cross-attention
recurrent unit (Bi-GRU) and Bi-GRU
TD: Time-domain, FD: Frequency-domain, TF: TFIDF, WE: Word Embedding, ML:
Machine learning, DL: Deep learning, A: Attention, F: Feature-level, D:
Decision-level, n-D: n-Dimensional feature vector.
Article Low-level features High-level features Fusion Technique
Acoustic features Linguistic features Acoustic features Linguistic features F D DL A Technique
TD FD Features TF WE Features ML DL A Approach DL A Approach
Wang et al. (2023a) X X 199-D (MFCC, X 1890-D X X Linear layer and X X Linear layer X X MF: Cross-
chroma, pitch, TFIDF Self-Transformer and Self- Transformer
zero-crossing rate, encoder Transformer encoder FF:
spectral, and their encoder Self-Transformer
mean, standard encoder
deviation, minimum,
and maximum.)
Wen et al. (2023) - - X VGGish X BERT -
Xie et al. (2021) X X Spectogram and - X 512-D WaveRNN X GPT X EmbraceNet and
waverform Crossmodality
Transformer
Fusion
Zhang et al. (2024) X Not listed - - X RoBERTa X Three
modality-specific
graphs and
Dual-Stream
Propagation
(intra- and
inter-modal)
Zhang et al. (2022) X 34-D (13 MFCC, 8 - X Two-layer X 768-D BERT X X Multi-head
spectrum features Transformer’s and two-layer attention and
such as encoder Transformer’s BiLSTM
zero-crossing rate, encoder
and 13 spectral
features)
Zhang et al. (2023c) X 40-D MFCCs - X X Bi-LSTM and local X 768-D BERT X X Global
intra-attention and local Inter-modal
intra-attention attention, two
network cross-modal
feature and FC
Zhang et al. (2023a) X - - X Variable-length X GPT-2 X X Adaptative
feature extraction tokenizer interactive
(VQ-Wav2Vec and 1024-D attention and
Wav-RoBERTa) features using softmax layer
RoBERTa
Zhang et al. (2023b) X Not listed - - X RoBERTa X Intra and
inter-modal
features,

followed by
dynamic fusion

(continued on next page)
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Table 6 (continued).

Article Low-level features High-level features Fusion Technique
Acoustic features Linguistic features Acoustic features Linguistic features F D DL Technique
TD FD Features TF WE Features ML DL Approach A Approach
Zhao et al. (2024b) X X Time-domain, - X Prosody encoder X 768-D BERT x X Concatenation and
frequency-domain, (1D-convolution Bi-GRU layer
energy-domain, and block, attentive
perception-domain pooling, and fully
connected)
Lian et al. (2021) X X 88-D (extended X 300-D Multi-Head X Single- X ATS-Fusion, FC and
Geneva Minimalistic word-level Attention, modal and Softmax
Acoustic Parameter lexical Single-Modal and cross-modal
Set (eGeMAPS), features Cross-Modal transformers
energy, MFCC, and transformers
pitch)
Kim and Kang (2022) - - Wav2vec 2.0 X BERT Cross-attention and
self-attention
Lin and Wang (2023) - - Wav2vec 2.0 X Automatic X X Concatenation, FC
ASR error and Softmax
adaptation
and BERT
Yao and Shi (2024) X Opensmile - - X ASR and X X BiGRU-based
RoBERTa Intramodal and
Speaker-centric
Cross-modal Fusions
Li et al. (2023) X OpenSmile - . X Robert-large Contribution-aware
Fusion Mechanism
(CFM) and Context
Refusion Mechanism
(CRM)
Van et al. (2025) - - X FC network X Transformer ConxGNN:Inception
encoder Graph Module
(IGM) and the
Hypergraph Module
(HM).
Cai et al. (2024) - - X CNN X ASR and X Audio-Text Fusion,
Encoder, RoBERTa FC, and Mutual
WavLM, Information Neural
and Estimation
HuBERT
using LoRA
fine-tuning
Gao et al. (2024) - - HuBERT X ASR and Self-attention for
BERT intra-modal and
cross-attention for
inter-modal
interactions
Ghosh et al. (2022) - - Wav2vec 2.0 X RoBERTa Crossmodal Encoder:
head cross-modal
attention, residual
connections, and
feedforward layers
Zhao et al. (2025) - - X Multi-Layer Bi-GRUs Graph-based
Perceptrons multi-frequency
(MLPs) propagation and
context filtering
Huang et al. (2024) - - X Wav2Vec2.0 X RoBERTa Multiple
encoder and encoder and Transformer
Bi-GRU Bi-GRU encoders and
Softmax
Luo et al. (2023) X X MFCCs, pitch, and - Pre-trained OpenL3 X RoBERTa Self- and cross-

others by
OpenSmile

attention to capture
inter- and
intra-modal
interactions

(continued on next page)
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Table 6 (continued).

Article Low-level features High-level features Fusion Technique
Acoustic features Linguistic features Acoustic features Linguistic features F D DL Technique
TD FD Features TF WE Features ML DL A Approach DL A Approach
Wei et al. (2023) - - X Wav2vec 2.0 X RoBERTa Joint attention
weight learning.
Kim and Cho (2023) X Spectrogram and - X X CNN, BiLSTM X GPT-2 and Crossmodal
MFCCs encoder and RoBERTa Transformer
Wav2Vec2.0
Kyung et al. (2024) - - X Latent embedding X X ASR and latent Crossmodal
embedding from transformer
pre-trained LLM
Priyasad et al. (2023) - - X Wav2vec 2.0 X BERT Memory fusion
Wang et al. (2023b) - - X HuBERT X MPNet Modality interaction
transformer (MIT)
Rasendrasoa et al. (2022) x X COVAREP and - - X RoBERTa Multi-head attention
OpenSmile mechanism
Zou et al. (2023) X OpenSmile - - X RoBERTa Prompt transformer
with hybrid
contrastive learning
Anand et al. (2023) - - X Tokenization X Tokenization Fusion network by
and position and position minimizing the
Embedding Embedding Kullback- Leibler
divergence
Chen et al. (2022b) - - X Wav2vec 2.0 X RoBERTa Key-sparse attention
Li et al. (2022) X MFCCs - X X Bi-LSTM, Wav2vec X X Wav2vec, CTC X X Concatenation,
decoder and concatenation with
Bi-LSTM co-attention, and
hierarchical
co-attention
Zhang and Li (2023) X Spectograms - X Dilated CNN, X RoBERTa Multi-head
Leaky -ReLU co-attention
and skip
connection
residual block
Zhao et al. (2023) - - X WavLM X BERT Sliding window
attention (Sliwa)
Zhao et al. (2024a) - - X WavLM X BERT Sliding Adaptative
Window attention
Li et al. (2024) - - X Wav2vec 2.0, X ASR X X Early, late,
HuBERT error-robust cross-attention,
WavLM, framework and tensor, non-local
Whisper, and RoBERTa gate-based

their variations

(NL-gate), modality-
invariant and
-specific  fusion
(MISA)

TD: Time-domain, FD: Frequency-domain, TF: TFIDF, WE: Word Embedding, ML: Machine learning, DL: Deep learning, A: Attention, F: Feature-level, D: Decision-level, n-D: n-Dimensional feature vector, O: Other.
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High-level features

Regarding high-level features, representation learning is a more efficient automated process that requires minimal human
expertise in the domain while achieving superior performance compared to hand-engineered features. Furthermore, this process
demonstrates greater generalization capability across various tasks (Latif et al., 2021). In addition, research in SER has demonstrated
that no single discriminative feature universally provides an accurate representation of emotions across diverse datasets (Jahangir
et al., 2021). Hence, in recent years, there has been growing interest in using DL techniques to automatically extract speech features
from large datasets, enabling models to learn intrinsic patterns and enhance classification performance.

In this review, these methods have been categorized into three main groups. The first corresponds to classical ML methods. From
the included studies, only one (2%) uses a method based on SVM. The authors report that the SVM-based method performs worse
than other DL- and attention-based methods (Pan et al., 2024).

The second category corresponds to DL-based techniques. For ER, these features are typically extracted using convolutional
neural networks (CNNs) to capture spatial patterns and recurrent neural networks (RNNs) to model temporal dependencies within
sequential data. Studies have also evaluated the performance of neural network architectures, such as fully connected (FC) networks
(Van et al., 2025) and multilayer perceptrons (MLPs) (Zhao et al., 2025). Another widely used approach is the long-short-term
memory network (LSTM) whose units are based on a cell and three gates (input, output, forget) that learn temporal information,
while the gates regulate the flow of information. A simpler and faster version of the LSTM architecture, gated recurrent unit (GRU),
has also been evaluated. Moreover, in recent years, the use of the improved version of LSTM, Bi-LSTM, has also acquired great
relevance, where sequence processing is performed in both directions, forward and backward. Some combinations of DL methods
such as CNN-BiLSTM are also used to integrate both spatial and temporal features. From Table 6 it can be seen that there are
ten studies that are purely DL-based techniques, such as WaveRNN (Xie et al., 2021) LSTM (Byun et al., 2021), GRU (Ho et al.,
2020), CNN-BiLSTM (Liu et al., 2022a), and Bi-GRU (Ai et al., 2024). Moreover, in Wen et al. (2023), the performance of the VGGish
architecture has been evaluated. This architecture was developed by Google based on the VGGNet architecture for image recognition.
In this case, it was specifically adapted for feature extraction of speech using convolutional layers (Hershey et al., 2017). Among
these feature representations, only (Xie et al., 2021) reports the feature vector dimension corresponding to 512-D. This dimension
corresponds to the default output of the WaveRNN model used Kalchbrenner et al. (2018).

It is noticed that in recent years attention-based methods (also known as Transformers) have been used in different applications,
where the main idea is to pay attention to the crucial data features, assigning them a higher weight than the rest. In this way,
these approaches learn temporal correlations from sequential data and enable them to capture broader temporal contexts with
reduced computational complexity (Vaswani et al., 2017). Thus, the third category corresponds to attention-based approaches. In
this category, fifteen studies utilizing exclusively attention mechanisms were included. Of these 15 studies, 11 employ the Wav2Vec
architecture (or its 2.0 version), indicating the high relevance and effectiveness of high-level feature representations for SER. This
architecture, designed by Facebook, combines CNN and self-attention to learn the contextual representation of speech (Baevski
et al., 2020). Additionally, architectures such as HuBERT (Hsu et al., 2021), WavLM (Chen et al., 2022a), and Whisper (Radford
et al., 2023) have also been evaluated to capture contextual and semantic information at this stage of SER. HuBERT and WavLM
employ self-supervised learning to extract rich speech representations, while Whisper, developed by OpenAl, is a multitask model
capable of transcription and translation, offering robust feature representations even in noisy conditions. Their ability to model long-
range dependencies and context-sensitive cues makes them particularly well-suited for capturing the dynamic nature of emotional
expression in speech.

Besides, in this review, fifteen studies employ hybrid techniques, where more than one approach is combined to allow the models
to learn more complex patterns of essential features. These include the use of DL architectures such as RNN, CNN, LSTM, and Bi-LSTM
with different attention-based techniques. The most widely used corresponds to the Bi-LSTM with attention mechanism (Cai et al.,
2019; Hosseini et al., 2024).

4.1.2. Linguistic feature representation

With the aim of machines understanding the text provided at the input, it must be transformed or mapped into a numerical
representation. In text processing, these procedures are considered methods for feature extraction. The most common techniques
involve the statistical method Term frequency-inverse document frequency (TFIDF), in which words are represented based on
their frequency in a document relative to a collection of documents. It quantifies the information these terms carry in a given
document, obtaining a high-dimensional representation where each word is independent without capturing contextual or semantic
relationships (Nandwani and Verma, 2021). The increasing availability of large-scale data has facilitated the development of word
embeddings generated by DL networks based on distributional semantics (Deng and Ren, 2021). Through this method, word
embeddings capture semantic relationships by positioning similar words closer together in vector space, often learning latent, low-
dimensional representations from the language structure (Souma et al., 2019). Examples of word embeddings in the literature include
Word2Vec (Mikolov, 2013) developed by Google, GloVe introduced by researchers at Stanford University (Pennington et al., 2014),
and FastText developed by Facebook (Joulin et al., 2016).

Low-level features

In this review, low-level features extracted from the text will be defined as those obtained by TFIDF or earlier word embedding,
(i.e. models that represent a word by a single vector). As shown in Table 6, only 16% of the studies include low-level features, most
obtained from GloVe (Cai et al., 2019; Singh et al., 2023; Huddar et al., 2021) and Word2Vec embeddings (Hosseini et al., 2024;
Liu et al., 2022b; Huddar et al., 2021). In most cases, feature vector dimensions range from 200-D to 300-D, with 300-D being the
most prevalent. A single approach employs the features extracted using the TFIDF method (Wang et al., 2023a).
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In current literature, emotional word embeddings have been developed, showing significant contributions in tasks such as
emotion classification and emotion intensity prediction. In Xu et al. (2018), Emo2Vec is proposed to encode emotional semantics into
vectors. A sentiment-specific word embedding (SSWE) and domain-sensitive and sentiment-aware embedding models are introduced
in Tang et al. (2014) and Shi et al. (2018), respectively, the emotional information integration into word embeddings resulting in
improved performance for ER. Although these guidelines could have greater relevance to the ER task, possibly leading to better
performance. They have not yet been explored in ER, this opens a gap to be studied in the future.

High-level features

The main limitation of earlier word embedding models is known as meaning conflation, where each word, regardless of whether it
has one meaning (monosemous) or multiple meanings (polysemous), is represented by a single vector ignoring the role of contextual
information (Deng and Ren, 2021). With the successful application of transfer learning, pre-trained language models produce
contextualized word embeddings with general knowledge; they could be adapted for a wide range of downstream tasks (Deng
and Ren, 2021). These models have achieved state-of-the-art performance on several NLP tasks, which can be easily transferred to
ER tasks. Thus, the high-level features were divided into two categories: extracted by DL or by attention-based models.

As shown in Table 6, approaches relying on DL-based features represent a smaller proportion, used for only 16% of the studies
reviewed. The most frequent architectures are LSTM and Bi-LSTM networks. On the other hand, it is evident that current approaches
emphasize the extraction of high-level features from the linguistic modality through contextualized embeddings generated by
transformer-based models. These include the best-known Generative Pre-trained Transformer (GPT) proposed by OpenAI (Radford,
2018), the Bidirectional Encoder Representations for Transformers (BERT) (Devlin, 2018), and its Robustly Optimized version
Approach (RoBERTa) (Liu et al., 2019). Among the approaches analyzed, 65.3% incorporate this feature extraction process, with
RoBERTa as the most frequently used, appearing in 18 of the approaches.

In the same way, studies have explored the integration of linguistic modality obtained from ASR systems with attention-based
methods. This combination leverages the textual modality derived from transcribed speech to capture representative emotional
features (Yao and Shi, 2024; Cai et al., 2024; Gao et al., 2024; Kyung et al., 2024). Furthermore, some approaches emphasize the
importance of reducing speech recognition errors prior to linguistic feature extraction, as improvements in ASR accuracy directly
enhance the quality of the input to attention-based models, thereby leading to more reliable and robust ER performance (Lin and
Wang, 2023; Li et al., 2024).

Hybrid methods have also been developed to improve performance of ER. The most common involve techniques such as RNN,
LSTM, and BiLSTM with attention-based methods or well-known transformers. Furthermore, it is also shown that the representation
vectors of high-level features range in values of 768-D and 1024-D. This is one of the main differences compared to acoustic
modality, where it is common to find smaller dimension representation vectors. This difference in dimensionality potentially presents
a challenge that must be addressed when modalities are fused to construct robust ER systems.

4.2. Fusion techniques

Once the relevant features of data modalities are extracted, fusion methods to build ER systems are needed, either in a discrete
or continuous approach. In this way, in this section, we aim to answer our sixth research question RQ6: Which fusion techniques have
been applied to develop SER systems from their acoustic and linguistic modalities?.

As the literature states, how to fuse different data modalities is a challenging task; depending on the approach taken, it can be
determined at which level of abstraction to combine the modalities, as well as which procedure must be used to integrate them (Yang
et al., 2021). There are different fusion techniques; particularly in this review, they have been mainly categorized based on the level
or method into the traditional techniques: decision or late-fusion, feature-fusion, DL, or attention-based. As shown in Table 6, it is
worth highlighting that several studies evaluate various types of fusion strategies, including hybrid approaches that combine early
or late fusion levels using DL or attention-based mechanisms. Additionally, some methods rely exclusively on a single type of fusion.
It will be discussed in the following sections.

4.2.1. Decision-level fusion

In decision-level fusion or late fusion, each decision corresponds to the results obtained by the methods that process each
modality independently. Subsequently, a fused vector is formed with these decisions, which will be further analyzed to obtain
a final decision on the respective recognition task (Kaya et al., 2017; Zhalehpour et al., 2016). Thus, this approach aims to leverage
the strengths of each modality’s model to produce a more accurate and robust overall decision or prediction. In ML, this term is
also known as ensemble learning. This method has certain advantages over other techniques, as it allows each modality to find the
optimal classifier for the task (Liu et al., 2021). Additionally, at this level, the modality representations do not present dimensional
differences. Also, scalability is considered in terms of the number of modalities used. Nevertheless, it has the limitation of not
leveraging the correlations between modalities. In this review, at this level of abstraction, this technique has been the least utilized
compared to the others, with only five studies (10.20%) employing it. Among these, the most commonly applied methods include:
concatenation (Braunschweiler et al., 2022) and averaging (Byun et al., 2021).

4.2.2. Feature-level fusion
At this level of abstraction, also known as early fusion, the representative features are previously extracted by different

identification techniques for each unimodal source, then they are combined into a high-dimensional vector (latent representation)
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to be processed by a given model (Shoumy et al., 2020). Thus, this technique combines features from acoustic modality (e.g., pitch,
volume), and linguistic modality (e.g., word embeddings) with attributes either visual or drawn from other modalities, to create a
comprehensive feature set that captures the complementary information from each modality.

This method presents an advantage in retrieving information on the correlations between the different modalities, and
additionally, it is possible to obtain a better performance when merging additional data than unimodal ones. However, when shaping
the feature representation into a high-dimensional vector, it is necessary in some cases to use selection or transformation techniques
to minimize the extracted features. In the same way, another relevant problem with this technique is to determine the appropriate
dimensions of the extracted feature vectors (Ahmed et al., 2023). This problem is fairly notorious in the studies of SER from acoustic
and linguistic modalities, as previously stated.

Table 6 shows that recent approaches have applied techniques for feature-level fusion such as intra- and inter-modal, where
the aim is to leverage the quality of single-modality representations and to capture richer context by modeling relationships across
modalities, respectively (Zhang et al., 2024, 2023b), in some cases bimodal or trimodal (Huddar et al., 2021). Some studies also
employ the concatenation of high-level representations from each modality as a feature-level fusion technique (Hosseini et al., 2024;
Liu et al., 2022b; Zhao et al., 2024b). According to results in this review, this fusion technique is commonly employed in a hybrid
manner, with DL- or attention-based methods.

4.2.3. Deep learning fusion

As the interest in employing DL- and attention-based techniques in the extraction of meaningful features has increased, it is
worth noting the use of these techniques in modality fusion as well, with 67.34% of studies using these approaches. This may
be attributed to DL-based fusion offers significant advantages by enabling automatic learning of complex, non-linear relationships
between modalities, reducing the need for manual feature engineering. These models can adaptively weight and combine multimodal
information, leading to more robust and generalizable emotion representations (Ahmed et al., 2023).

In ER (especially from acoustic and linguistic modalities), a common factor in this type of technique is to use fully connected (FC),
dense or deep layers, with a softmax output layer that generates the probabilities of belonging to the emotion classes evaluated (Cai
et al., 2019; Chauhan et al., 2024; Ma et al., 2024; Hosseini et al., 2024; Lian et al., 2021). Multimodal approaches in this category
have also evaluated Dempster Shafer’s theory (DST) for the determination of emotions (Liu et al., 2022b). Similarly, advanced RNN
algorithms such as Bi-LSTM (Zhang et al., 2022) and Bi-GRU (Zhao et al., 2024b) have been employed.

Nevertheless, models based on DL fusion present notable limitations for real-time or resource-constrained applications due to
their high computational demands. Furthermore, their black-box nature poses challenges to interpretability, making it difficult to
understand the specific contribution of each modality to the final predictions.

4.2.4. Attention-based fusion

Attention-based fusion further enhances the fusion process by dynamically focusing on the most relevant features or modalities.
By assigning learned importance weights, attention mechanisms help the model selectively integrate information, making them
particularly effective in handling modality specific noise and varying levels of informativeness across inputs (Vaswani et al., 2017;
Ahmed et al., 2023). This method is one of the most evaluated for MER, as can be seen in Table 6, where 29 approaches include
this mechanism.

Cross-attention which plays a crucial role in capturing relevant relationships between modalities (inter-modal), represents the
predominant approach; in this review, 15 out of 33 studies classified in this category used this method (Liu et al., 2022a; Pan et al.,
2024; Ai et al., 2024; Kim and Kang, 2022). Similarly, studies also introduce its combination with the use of self-attention as a
mechanism for extracting intra-modal features (Ma et al., 2024; Wang et al., 2023a; Luo et al., 2023; Gao et al., 2024; Zhang et al.,
2023c).

Furthermore, some studies evaluated techniques based on multi-head attention, where the model captures relationships by
processing multiple attention distributions in parallel, focusing on emotional cues within or across modalities (Zhang et al., 2022;
Lian et al., 2021; Rasendrasoa et al., 2022). On the other hand, diverse approaches used multi-level attention, which operates across
various layers of feature abstraction facilitating a hierarchical understanding of emotional content (Ho et al., 2020).

However, one of the main limitations of using this type of fusion lies in the need for careful extraction and preparation of
features for each data modality. This is particularly important because such approaches typically assume that all modalities are
temporally aligned and equally informative, an assumption that may not hold in real-world scenarios, especially when additional
modalities such as motion or video are involved. Additionally, the dimensionality of feature representations for each modality
plays a crucial role when employing mechanisms such as cross-attention. These techniques typically require feature vectors to have
matching dimensions, which introduces an additional constraint. This requirement can further complicate efforts to address modality
imbalance, as it may require artificial adjustments that do not reflect the true informativeness of each modality.

Hybrid approaches are also widely used, where combinations of fusion methods are studied depending on the technique employed
(usually at feature level). The most common is to employ DL techniques combined with attention techniques to improve the models’
performance. Typically, as mentioned above, it is also common to combine fully connected or dense networks and softmax layers
with diverse attention techniques (Singh et al., 2023; Ma et al., 2024; Ho et al., 2020).
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5. Benchmark analysis

This stage presents a challenge, as the results depend on variables such as the proposed approach, the data modalities, the
datasets, the emotion modeling, and the number of emotions employed, as well as the evaluation metrics selected to assess the
performance of the models. Thus, to make the results comparable, the metrics obtained have been organized by the datasets used.
The results of the best performances included in this review are shown in Tables 7-10 for the three most used datasets IEMOCAP,
MELD, MSU-MOSEI, and datasets that are evaluated only once. Each table shows the results grouped by evaluation metrics for each
dataset, number and emotion classes, and data modalities used. Note that if a method uses several datasets to evaluate performance,
it will be presented in the respective tables. Furthermore, depending on the metrics and approaches reported by the studies, in Tables
7-10, the metrics achieved for the independent modalities of speech acoustic or linguistic are consigned in columns (A) and (L),
respectively. As well as the fusion of both in (A+L) and for the cases where more modalities are used, we detailed in (A+L+0O), and
the modality is described in the ‘Other’ column. Additionally, the Tables also report, whether the linguistic modality was derived
from ASR systems, alongside the highest reported performance metrics (when this information is provided by the authors). These
studies have been organized from the highest to the lowest scores achieved (where comparable) and the scores correspond to results
in the test phases.

Considering that one of the main problems presented by the datasets is the class imbalance among the reported emotions. The
most reported metrics in ER correspond to weighted accuracy (WA) and unweighted accuracy (UA) (Braunschweiler et al., 2022;
Chauhan et al., 2024). WA calculates a weighted contribution for each class, where the weight is proportional to the number of
samples belonging to that class in the dataset. In contrast, UA assigns equal importance to each class, regardless of the number of
samples representing that class in the dataset.

5.1. Evaluated emotions

In this section, we will discuss our seventh research question RQ7: What are the most common emotions evaluated in the literature
of SER?

As seen in Tables 7-10, most studies evaluate their approaches for four frequent emotions: Neutral, Happy, Sad, and Angry. This
makes it somewhat easier to compare performances. However, many factors need to be considered for a fair comparative analysis.

For the IEMOCAP dataset (Table 7), most studies assess model performance using the four most frequent emotions, with the
emotion ‘Happy’ often considered as ‘Excited’. However, in certain studies, these classes are evaluated independently. In contrast,
studies that use the MELD dataset (Table 8) typically report results for the recognition of seven emotions: Neutral, Sad, Surprise,
Fear, Angry, Joy, and Disgust. Regarding the CMU-MOSEI dataset (Table 9), reported results are generally based on the four most
frequent emotions, with three studies employing a dimensional approach to ER (Liu et al., 2022a). Similarly, recent research trends
have proposed evaluating the presence of multiple co-occurring emotions in speech over the analyzed utterances (Anand et al.,
2023). This method was tested using multi-label emotions from the CMU-MOSEI, EmoReact, and ElderReact datasets.

On the other hand, as shown in Tables 7-10, it can be observed that current literature employs the categorical model for ER.
One of the main reasons for this tendency (previously discussed in the manuscript) is the limited availability of datasets that support
dimensional modeling. The dimensional approach presents greater challenges in terms of annotation, as it requires human labelers
to make continuous or scaled judgments, which are more cognitively demanding. In contrast, the categorical model offers greater
simplicity and interpretability, providing discrete and intuitively understandable labels (e.g., anger or sadness), which are often more
straightforward and precise than interpreting complex combinations of e.g. valence and arousal values. According to results, the
evaluation of dimensional modeling, typically involves reporting metrics such as binary accuracy for positive or negative classes,
seven-class accuracy for the sentiment integer score from —3 to 3, or Mean Absolute Error (MAE) since it involves a regression
problem (Zhang et al., 2023a).

Finally, for studies using unique datasets, the emotions most commonly considered correspond to the four most frequent ones,
with the exception of Singh et al. (2023), which evaluates a broader range of 32 emotions included in the proposed dataset.

5.2. Performances

In this section, based on the results presented in Tables 7-10, we focus on addressing the final research question RQ8: What
are the best performances in literature for SER from acoustic and linguistic modalities? The following subsections provide a detailed
description of the results for each case.

5.2.1. IEMOCAP

Table 7 reports the results achieved by the different articles using the IEMOCAP dataset. The number indicated in the first
column shows the studies that are directly comparable in a block. We can see that among comparable studies, the maximum scores
of 85.50%, 85.71%, and 82.67% are reported for the metrics UA, WA, and F1, respectively. These approaches mainly employ
the bimodal fusion of acoustic and linguistic modalities of speech in classifying the four typical emotions (Neutral, Angry, Sad,
Happy/Excited). A common feature, when making use of this dataset, is that authors consider the ‘Excited’ class as ‘Happy’.

In particular, the one achieving the best performance proposes an architecture named CNNRNNATTBERT. In this model, the
acoustic modality is processed using log-Mel filterbank features, which are fed through CNN layers to capture spatial patterns,
followed by Bi-LSTM layers for temporal modeling. This is further refined by fully connected layers with batch normalization and
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Table 7
Results and performance of studies with IEMOCAP dataset.
Article Emotions Metric Scores (%) Other
A L A+L A+L+O
1 Braunschweiler et al. (2022) 4 UA 76.40 83.80 85.50 - -
2 Cai et al. (2024) 4 UA 72.39 60.94 80.18 - -
3 Zhao et al. (2024a) 4 UA - - 79.20 - -
4 Zhao et al. (2023) 4 UA - - 78.50 - -
5 Zhang and Li (2023) 4 UA 60.30 69.10 77.80 - -
6 Gao et al. (2024) 4 UA 77.25 67.13 77.64 - -
7 Priyasad et al. (2023) 4 UA - - 77.30 - -
8 Lin and Wang (2023) 4 UA 72.00 69.5 77.20 - -
9 Kyung et al. (2024) 4 UA 68.21 66.88 (ASR) 77.16 (ASR) - -
10 Ho et al. (2020) 4 UA 66.19 56.5 76.98 - -
11 Lin and Wang (2023) 4 UA 72.00 65.50 (ASR) 76.90 (ASR) - -
12 Li et al. (2024) 4 UA - - 76.66 (ASR) - -
13 Wang et al. (2023b) 4 UA - - 76.40 - -
14 Kim and Cho (2023) 4 UA 77.70 74.90 76.30 - -
15 Chen et al. (2022b) 4 UA - - 75.30 - -
16 Liu et al. (2022b) 4 UA - - 75.05 - -
17 Cai et al. (2019) 4 UA - - 71.25 - -
18 Hosseini et al. (2024) 4 UA - - 69.8 - -
1 Chauhan et al. (2024) 4 WA 76.41 - 85.71 - -
2 Ghosh et al. (2022) 4 WA 73.90 69.20 81.20 - -
3 Cai et al. (2019) 4 WA - - 70.4 - -
4 Li et al. (2022) 4 WA - - 63.40 (ASR) - -
1 Kim and Kang (2022) 4 F1 - - 82.67 - -
2 Zhang et al. (2023a) 4 F1 - - 79.2 - -
3 Zhao et al. (2024b) 4 F1 - - 78.8 - -
4 Zhang et al. (2023c) 4 F1 56.06 68.96 73.06 - -
1 Huang et al. (2024) 6 WA 58.64 71.73 72.82 74.20 Video
2 Wei et al. (2023) 6 WA 66.39 63.28 71.60 - -
3 Yao and Shi (2024) 6 WA - - 71.21 - -
4 Lian et al. (2021) 6 WA - - 67.5 - -
5 Li et al. (2023) 6 WA 38.62 65.46 65.89 71.75 Video
6 Ai et al. (2024) 6 WA 61.4 63.2 65.8 - -
1 Zhao et al. (2025) 6 WA - - - 72.10 Video
2 Zhang et al. (2024) 6 WA - - - 71.11 Video
3 Van et al. (2025) 6 WA - - - 68.64 Video
4 Rasendrasoa et al. (2022) 6 WA - - - 65.70 Video
1 Zhang et al. (2022) 4 WA 63.6 66.0 - 75.6 Motion
2 Wen et al. (2023) 4 WA - - - 71.84 Image
1 Hosseini et al. (2024) 4 UA - - - 82.9 Video
1 Ma et al. (2024) 6 UA - - - 73.95 Video
2 Zou et al. (2023) 6 UA 46.58 68.92 70.09 72.83 Video
1 Wang et al. (2023a) 7 WA - - 72.31 - -

4: Neutral, Angry, Sad, Happy/Excited.
6: Neutral, Angry, Sad, Happy, Excited, Frustrated.
7: Neutral, Angry, Sad, Happy, Excited, Frustrated, Surprise.

an attention mechanism. The linguistic modality is encoded using a pretrained BERT model, where the output representation is
extracted using the CLS pooled method. The outputs from both encoders are concatenated and passed through a softmax layer for
final emotion classification. Additionally, the study compares model performance using manual transcriptions versus those generated
by the Google ASR system, showing that the use of hand transcriptions yields superior results.

Moreover, since this dataset additionally incorporates data modalities such as video and motion (video more frequent), the scores
achieved in the classification tasks for four emotions do not show higher scores than those obtained with acoustic and linguistic
features, reaching 82.9% and 75.6% for UA and WA metrics, respectively.

5.2.2. MELD

Table 8 reports the evaluation metrics achieved by the approaches evaluating the MELD dataset. In this case, researchers generally
use the 7 emotions provided (Neutral, Sad, Surprise, Fear, Angry, Joy, Disgust). This could be one reason why the metrics evaluated
achieve lower scores compared to IEMOCAP. According to results for the two modalities, the maximum ones reach 66.28%, 65.09%,
and 64.71% for WA, UA, and F1, respectively. The authors who achieved state-of-the-art performance on this dataset proposed a
novel architecture called Cross-Modal RoBERTa (CM-RoBERTa), designed to enhance SER by integrating audio information into the
fine-tuning process of a pretrained RoBERTa model. The architecture incorporates cross- and self-attention layers to model inter-
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Table 8
Results and performance of studies with MELD dataset.
Article Emotions Metric Scores (%) Other
A L A+L A+L+O

1 Luo et al. (2023) 7 WA 43.10 63.83 66.28 - -
2 Yao and Shi (2024) 7 WA - - 66.25 - -
3 Huang et al. (2024) 7 WA 42.51 63.49 64.37 66.09 Video
4 Wei et al. (2023) 7 WA 62.97 48.14 63.92 - -
5 Ai et al. (2024) 7 WA 62.10 62.80 63.80 66.80 Video
6 Wang et al. (2023a) 7 WA - - 48.12 - -
1 Zhang et al. (2023a) 7 UA - - 65.09 - -
2 Ho et al. (2020) 7 UA 48.84 61.66 63.26 - -
3 Zou et al. (2023) 7 UA 44.12 61.89 62.84 65.86 Video
1 Zhao et al. (2024b) 7 F1 - - 64.7 - -
2 Zhang and Li (2023) 7 F1 36.7 59.80 62.2 - -
3 Zhang et al. (2023c) 7 F1 40.5 54.88 60.22 - -
1 Ma et al. (2024) 7 UA - - - 67.55 Video
1 Zhao et al. (2025) 7 WA - - - 66.68 Video
2 Rasendrasoa et al. (2022) 7 WA - - - 66.00 Video
3 Van et al. (2025) 7 WA - - - 65.69 Video
1 Xie et al. (2021) 7 F1 43.80 61.80 - 64.00 Image
1 Li et al. (2023) 5 WA 41.72 64.54 64.95 67.03 Video
1 Kim and Kang (2022) 4 F1 - 83.41 - -

4: Neutral, Happy, Sad, Angry.

5: Neutral, Happy, Sad, Angry, Surprise.

7: Neutral, Sad, Surprise, Fear, Angry, Joy, Disgust.

Table 9

Results and performance of studies with CMU-MOSEI dataset.

Article Emotions Metric Scores (%) Other
A L A+L A+L+0

1 Braunschweiler et al. (2022) 4 UA 77.40 78.40 79.00 - -
1 Kim and Kang (2022) 4 F1 - - 80.18 - -
1 Huddar et al. (2021) 6 UA - - - 81.29 Video
1 Liu et al. (2022a) Dim. UA - - 81.1 - -
1 Zhao et al. (2024a) Dim. F1 - - 84.1 - -
2 Zhao et al. (2023) Dim. F1 - - 83.8 - -
1 Anand et al. (2023) Mult. F1 73.17 84.75 85.04 89.04 Video

4: Neutral, Happy, Sad, Angry.

6: Sad, Surprise, Fear, Angry, Happy, Disgust.

Dim: Dimensional from strongly negative to strongly positive.
Mult.: Multiple co-occurring emotion states.

and intra-modality interactions, enabling adaptive learning of correlations between linguistic and acoustic features. To further refine
bimodal representation, the authors include a temporal calibration module, which preserves both local information within each
modality and global contextual information.

In this case, when using another type of data modality such as video or image, the performances show better results, concerning
the unimodal or bimodal models.

5.2.3. CMU-MOSEI

Table 9 shows the metrics achieved by the studies using the CMU-MOSEI dataset. In this case, as noted in Table 4, this dataset
has been used less frequently compared to IEMOCAP and MELD. Consequently, there are fewer studies evaluating approaches on
this dataset, which limits the possibility of conducting performance comparisons. Nevertheless, it is worth mentioning that, using
acoustic and linguistic features for the recognition of four emotions, existing works have reported scores of 79% and 80.10% for UA
and F1, respectively. Notably, the authors who proposed the CNNRNNATTBERT architecture (Braunschweiler et al., 2022) (which
achieved state-of-the-art performance on the IEMOCAP) also obtained strong performance in ER on CMU-MOSEI.Furthermore, being
a database that provides dimensional modeling, studies have also evaluated their approaches for the prediction from strongly
negative to strongly positive scale, achieving highest scores of 81.1% and 84.1% for the UA and F1 metrics, respectively. The
overall metrics achieved do not exceed those with the IEMOCAP dataset, nor are they lower than those with the MELD dataset.
Similarly, the authors in Anand et al. (2023) propose the use of the CMU-MOSEI dataset in their approach to multi-label ER, based
on existing evidence that humans are capable of experiencing multiple emotions simultaneously, as outlined in their work. They
argue that methods limited to estimating a single emotion may reduce applicability in real-world conversational contexts. Their
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Table 10
Results and performance of studies with unique datasets.
Article Dataset Emotions Metric Scores (%) Other
A L A+L A+L+0O
1 Chauhan et al. (2024) RAVDESS 4 WA 93.35 - 76.71 - -
1 Braunschweiler et al. (2022) RAVDESS 4 UA 85.9 - 75.6 - -
1 Chauhan et al. (2024) EmoDB 4 WA 93.47 - 79.52 - -
1 Chauhan et al. (2024) CREMA-D 4 WA 61.3 - 73.96 - -
1 Chen et al. (2022b) LSSED 4 WA - - 65.10 - -
1 Byun et al. (2021) Korean Emotional Speech Dataset 4 UA 94.86 68.11 95.97 - -
1 Pan et al. (2024) Spanish MEACorpus 6 F1 84.48 69.38 87.74 - -
1 Zhao et al. (2024b) MTED 6* F1 - - 81.7 - -
1 Singh et al. (2023) Emolnt-MD 32 UA - - - 69.38 Video
1 Zhang et al. (2023a) CMU-MOSI Dim UA - - 89.33 - -
1 Li et al. (2024) CMU-MOSI Dim UA - - 83.23 (ASR) - -
1 Huddar et al. (2021) CMU-MOSI Dim UA - - 79.71 - -
1 Anand et al. (2023) EmoReact Mult. F1 86.03 - - - -
1 Anand et al. (2023) ElderReact Mult. F1 85.29 - - - -
1 Li et al. (2024) MSP-Podcast - CCC - - 61.80 (ASR) - -

4: Neutral, Happy, Sad, Angry.

6: Neutral, Happy, Sad, Angry, Fear, Disgust.

6*: Neutral, Happy, Sad, Excited, Confused, Surprise.
32: described in Table 4.

Dim: Dimensional Positive and negative.

Mult: Multiple co-occurring emotion states.

approach achieved F1-scores of 85.04% and 89.04% for ER using acoustic and linguistic modalities, and with the inclusion of video
data, respectively.

5.2.4. Datsets used once

The last Table 10 lists all datasets that are used less frequently (mostly only once) by the studies included in this review.
Within this category, only the results obtained using the CMU-MOSEI dataset are directly comparable. In this context, authors
typically report performance metrics related to the prediction of positive or negative sentiment states. The methodology proposed
in Zhang et al. (2023a) achieves the highest UA, reaching 89.33%. Most studies report metrics obtained in the evaluation of model
performance for bimodal approaches involving acoustic and linguistic modalities from speech. Likewise, as in the previous cases,
the most commonly evaluated emotions correspond to the four typical categories. Additionally, it is worth noting that this category
includes datasets consisting of data in the languages: Spanish, German, Chinese, and Korean. Hence, it is important to explore ER
methods that can classify emotions in languages other than English.

6. Discussion

This section discusses existing challenges and potential opportunities of the main topics covered in this review regarding datasets,
approaches, and benchmark analysis used in SER.

6.1. Datasets

As shown in previous sections, high-quality datasets are necessary, as the quality of the trained models will depend on them.
One of the main challenges faced when creating ER datasets is to determine a uniform labeling scheme. This means that the use of
different emotion labels across datasets often results in cross-corpus emotion resources being incompatible. For this reason, the latest
research reports the results generally evaluated for the four most frequent emotions. Nevertheless, these emotion labels reduce the
data, which could provide valuable information for ER models. Hence, it is important to define benchmarks in the labeling schemes,
as well as to explore possible relationships between the data provided by the existing corpora.

On the other hand, another challenge faced by methods in ER corresponds to unbalanced databases. In ER, it is typically assumed
that the cost of misclassifying each emotion label is equal. However, in scenarios involving data imbalance, it is often desirable for
the classifier to focus more on accurately identifying minority emotion labels. The recognition accuracy for certain emotions tends
to be lower due to the limited amount of training data available. To address this, some approaches aim to adapt the classification
algorithm by, for example, altering the loss function to prioritize minority classes during the training process, this is a common
technique known as class weighting. Hence, future research should prioritize techniques aimed at addressing class imbalance among
emotional categories. Common approaches such as under-sampling and over-sampling may contribute to improved performance in
emotion classification tasks by ensuring more balanced model training.

Annotating an emotional corpus is a complex and challenging task, even for humans. While most existing emotional datasets
are manually labeled, large-scale emotional corpora remain limited. Although manual annotation can provide a certain level
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of accuracy, the process is highly time- and labor-intensive. Additionally, the subjective nature of annotators’ perceptions often
leads to inconsistencies in inter-annotator agreement. The scarcity of high-quality emotional datasets poses a significant challenge.
Addressing this low-resource issue and developing efficient methods for creating large, high-quality emotional corpora are crucial
for enhancing the performance of ER models.

As shown in Table 4, most of the available corpora are developed in English, and, to a lesser extent for other languages such
as Spanish, German, Chinese, and Korean. Hence, some research has addressed this challenge by taking advantage of emotional
information from corpora with greater resources such as English (Deng and Ren, 2021). Thus, future work should focus on
transferring emotional knowledge from English corpora to languages that are more limited in this information. Using techniques
such as cross-lingual embeddings would facilitate the capture of this relevant information across languages (Deng and Ren, 2021).

According to Anand et al. (2023), future studies should also consider labeling processes and evaluating the co-occurrence of
multiple emotions in speech simultaneously. This recommendation is supported by existing evidence indicating that humans are
capable of experiencing more than one emotion at the same time.

Future research should also explore approaches that incorporate both categorical and dimensional emotion modeling. Such efforts
could have the potential to enhance the robustness of ER systems by leveraging the complementary strengths of both frameworks.
Notably, among the datasets reviewed, only five provide annotations for both types of emotional representation, highlighting the
need for further investigation in this area.

6.2. Approaches

From Table 6, different findings can be observed, both in low-level and high-level feature extraction in acoustic and linguistic
speech, as well as modality fusion methods. In the two primary stages of ER, most studies focus on employing hybrid approaches
that are characterized by using DL- and attention-based methods. Bi-LSTM and Bi-GRU-based RNNs, when integrated with CNNs,
are widely utilized and well-suited for extracting emotional attributes in supervised learning scenarios. Nevertheless, in ER, semi-
supervised learning applications have not been explored so far. Further research is required to explore this application, enabling
effective representation learning from both labeled and unlabeled data, this also helps to reduce the time spent on the emotion
labeling process.

Considering that emotions depend on context-based information, unlike linguistic, where techniques such as BERT, RoBERTa,
and GPT, among others, have been widely used. In speech, future research to extract context-dependent features should be explored,
in this review some studies evaluate these techniques using Wav2Vec. Nevertheless, proposed methods to increase the knowledge
of audio patterns to leverage speech representation learning such as AudioBERT (Ok et al., 2024) and Audio DistilBERT (Yu et al.,
2021) have not yet been explored.

Similarly, as mentioned in Section 4.1.2, some embeddings specifically represent emotional information in their respective latent
space. Although, so far, these models have not been explored in depth for the representation of linguistic features. Hence, from the
perspective of a multimodal approach, studies should examine the construction of embeddings that represent emotional information
from different data modalities. Taking advantage of the correlations that may exist between these multiple information sources.

The techniques discussed in this review do not provide a definitive approach for determining the most effective fusion method
for identifying emotional states from SER modalities. Most techniques focus on employing attention-based methods. However, there
is no clear line to build a robust model with appropriate performance in ER.

As mentioned in Section 4.1.2, there is also a marked discrepancy in the dimensionality of the feature vector representation for
both acoustic and linguistic modalities. This is an issue that needs to be addressed when defining the fusion technique since if it is
based on feature level, this difficulty needs to be solved. Particularly, in low-dimensional acoustic features versus high-dimensional
linguistic embeddings (e.g. 40-D of MFCCs, to 1024-D by RoBERTa model (Pan et al., 2024; Kim and Cho, 2023)) the fusion technique
may disproportionately prioritize the modality with higher dimensionality, not necessarily because it is more informative, but due
to its greater numerical weight. This imbalance can lead to suboptimal performance, as the contributions of lower-dimensional but
potentially valuable modalities may be underrepresented.

Additionally, it is important to emphasize that the application of emerging feature fusion techniques, particularly those based
on cross-attention mechanisms, often requires equality in the dimension of input feature representations. This poses a significant
challenge when attempting to fuse low-level and high-level features across modalities. On the other hand, based on the findings of
this review, the combination of high-level features extracted from widely used pre-trained models, such as Wav2Vec, Wav2Vec2.0,
WavLM, and HuBERT for the acoustic modality, and contextual embeddings like BERT and RoBERTa for the linguistic modality,
reveals certain difficulties when the modalities differ in dimensionality (Pan et al., 2024; Zhang et al., 2023a), since their
dimensionality is highly dependent on the specific version of the model. However, it was found that studies are emerging to employ
models that allow equality in dimensionalities. A commonly adopted is 768-D, which is supported by models such as Wav2Vec BERT,
Wav-RoBERTa, Wav2Vec 2.0, HuBERT, and WavLM for acoustic features, and by RoBERTa and BERT-base for linguistic features
(Kim and Kang, 2022; Lin and Wang, 2023; Priyasad et al., 2023; Cai et al., 2024; Zhao et al., 2023). This standardization offers a
significant advantage when employing high-level representations across both modalities, as they facilitate a more straightforward
adoption of fusion techniques.

In particular, to develop more effective automatic systems that enhance the performance of SER from both modalities, while
leveraging existing ASR technologies, promising future directions should focus on evaluating transcription errors when linguistic
modality is generated. As suggested by recent studies, understanding and mitigating the impact of ASR errors is essential for
improving the reliability and robustness of ER systems in real-world applications.
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In current trends, exploring retrieval-augmented generation (RAG) models in ER also presents a promising avenue for advancing
the field (Fan et al., 2024; Zhai, 2024). RAG models combine generative capabilities with retrieval mechanisms, allowing them to
integrate external knowledge and context into the ER process (Guu et al., 2020). In MER, which involves analyzing multiple data
modalities, the ability to retrieve relevant contextual information could significantly enhance model performance. For instance, RAG
models can access domain-specific knowledge or situational cues to better interpret ambiguous emotional expressions. Moreover,
their generative nature allows them to synthesize insights across modalities, fostering a more comprehensive understanding of
complex emotional states.

Similarly, the rise of generative Al has opened new avenues for the development of approaches applied to ER, although such
applications remain limited at present. Among the studies included in this review, some authors propose the use of prompt-based
techniques during the fusion stage (Zou et al., 2023), as well as to guide a Large Language Model (LLM) to generate the most likely
transcript generated by ASR systems (Li et al., 2024). These early explorations underscore the potential of leveraging emerging
generative technologies to enhance the performance and adaptability of SER systems.

Regarding fusion techniques, it is important to note that one of the main challenges in ER lies in the imbalance of available data.
DL-based approaches can be particularly vulnerable to this issue if not properly addressed, potentially leading to biased models
and degraded performance. Therefore, it is essential that fusion strategies incorporate mechanisms to mitigate the effects of data
imbalance, ensuring fair and robust learning across all emotion classes. Future work should also focus on reducing the computational
cost associated with both DL- and attention-based fusion techniques. Although these methods have demonstrated strong performance
in SER, as evidenced by this review, they typically require substantial computational resources for both training and inference. This
high demand may limit their feasibility for real-time or resource-constrained applications, underscoring the need for more efficient
and lightweight fusion strategies.

6.3. Benchmark analysis

The most common datasets used for SER using acoustic and linguistic modalities correspond to IEMOCAP, MELD, and CMU-
MOSEI. Usually, studies model emotions using a discrete approach, such as Ekman’s six basic emotions, which fails to capture the
complexity and diversity of human emotions. In reality, emotions often exhibit interconnections and lack clear boundaries, making
it challenging to assign precise labels to emotional expressions. Additionally, emotions are inherently subjective, different emotional
responses may be evoked in individuals based on their unique experiences. Also, guidelines should be defined to determine which
emotions can be treated as similar. For example, in some cases, it is common to consider the ‘Happy’ label as ‘Excited’. In other
datasets, however, joy is considered different from happiness. As some research has already been exploring, one gap in dealing with
this issue focuses on assigning multiple emotion labels simultaneously (Deng and Ren, 2020). These factors, including ambiguous
emotional boundaries and the subjective nature of human feelings, contribute to the difficulty of ER. It is noteworthy that these
cases have not yet been considered in ER datasets.

As previously established, most studies evaluate their approaches based on the recognition of the four most frequent emotions
(Neutral, Happy, Sad, Angry). However, by relying exclusively on data from these classes, valuable information contained in the less
frequent emotions is disregarded. Achieving high accuracy on limited, controlled datasets may not translate to real-world scenarios
where emotions are more fluid and context-dependent. Therefore, it is essential to assess performance not only for the most common
emotions but also for the remaining ones, depending on the dataset used. This comprehensive evaluation may enable a more
thorough assessment of the generalization capacity of the proposed approaches in ER, improving its applicability to better align
with real-world scenarios.

Likewise, according to the information presented in Tables 7 and 8,it can be observed that adding an additional modality
(Other) to the proposed multimodal approaches generally leads to improved performance metrics compared to those obtained using
each individual modality alone (where such comparisons are available and reported). However, it is important to emphasize that,
in the case of the IEMOCAP dataset, the inclusion of an additional modality does not surpass the best results achieved by the
bimodal approaches that combine acoustic and linguistic features. For instance, in the bimodal recognition of four emotions, the
proposed approaches have achieved UA and WA scores of 85.50% (Braunschweiler et al., 2022) and 85.71% (Chauhan et al., 2024),
respectively. These results are higher than the UA score of 82.9% (Hosseini et al., 2024) (when incorporating video) and the WA
score of 75.6% (Zhang et al., 2022) (when including motion)

In contrast, for the MELD dataset, the inclusion of the video modality (Zhao et al., 2025) resulted in a higher WA of 66.68%,
compared to the 66.28% achieved by the corresponding bimodal approach (Luo et al., 2023). This highlights the importance of
carefully evaluating whether a marginal improvement (such as the 0.4% gain observed with the inclusion of an additional modality)
justifies the increased hardware requirements needed to support it. Moreover, as previously discussed, the use of modalities such
as video and motion poses greater technological challenges and limitations in terms of adaptability to real-world applications.

7. Conclusion

This review addresses the research that has been developed in recent years in SER, focusing on acoustic and linguistic modalities.
In this way, the present work will be of interest to those working in these fields, as well as a basis for those interested in starting.

The main research question that this review addresses is what is the current state-of-the-art of SER based on its acoustic and
linguistic modalities? This question was answered through 8 subquestions discussed in three main sections: datasets, approaches,
and benchmark analysis. The main insights for each subquestion are provided below.
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RQ1: What is the most commonly used emotion modeling in the SER field?

As established, the two most widely used theories in the literature are the discrete categories (Paul Ekman’s six basic emotions
most widely used) and the continuous one, where emotions are represented as a multidimensional vector (Valence and
Arousal). Most studies in SER use discrete categorization.

RQ2: What is the predominant type of speech in datasets used for ER?

The datasets most used by the studies included in ER correspond to the IEMOCAP, MELD, and CMU-MOSEI (all of them in
English), which were used by 46.99%, 26.51% and 8.43% of the studies in this review, respectively.

RQ3: What further data modalities have been integrated with linguistic and acoustic modalities of speech for ER?

Most datasets integrate video data with acoustic and linguistic modalities. However, other modalities such as motion are also
evaluated. Thus, all four modalities are provided by the IEMOCAP dataset, making it a fairly complete model for evaluating
ER models.

RQ4: What technology and devices have been used to construct datasets for SER?

In recent years, most of the datasets that have been created leverage audio-visual material from YouTube videos, series, movies,
or podcasts. Thus, the technological devices used are unknown. Nevertheless, for older datasets, devices are used that were
considered to be high-resolution technologies at the time of recording. In audio data acquisition, microphones use a common
sampling rate of 48 kHz and 16 bits and are usually positioned at a distance of 20 to 30 cm from the speaker.

RQ5: What are the most representative low- and high-level features of linguistic and acoustic modalities for SER? And what is the most
common feature vector dimension?

In terms of low-level features, the most commonly used in acoustic modality are those coming from features such as zero
crossing rate, energy, and pitch frequency; among the spectral/ cepstral features, the most frequent one corresponds to MFCCs.
Additionally, some studies use sets of features in both the time and frequency domain, known as GeMAPs and eGeMAPs. Where
the most common dimension is 34-D. As for high-level features in acoustic modality, most focus on integrating both spatial
and temporal features, hence DL-based techniques such as BiLSTM, Bi-GRU, and CNN-BiLSTM are widely used. Attention-
based methods and their combination with DL techniques such as the Bi-LSTM-Attention architecture are also being explored.
Contextual embeddings, such as the well-known Wav2Vec, stand out among the proposed approaches.

For the linguistic modality, low-level features are extracted by earlier embeddings using the well-known GloVe and Word2Vec
models with a common feature vector of 300-D. Nevertheless, it is important to highlight that recent trends indicate a shift
away from non-contextual (low-level) embedding techniques toward models that provide rich contextual information. Among
these, RoBERTa has emerged as the most widely adopted, reflecting its effectiveness in capturing linguistic features critical
for ER tasks. Models such as BERT and GPT are also evaluated. Finally, some studies present common DL techniques such as
RNN, LSTM, and BiLSTM combined with attention-based methods as well.

RQ6: Which fusion techniques have been applied to develop SER systems from their acoustic and linguistic modalities?

In terms of the methodologies employed by the studies, there is no uniform structure in which a guideline in the fusion of
modalities is determined. However, the latest advances focus on using DL-based architectures, among the most frequent, fully
connected, or dense layers, Bi-GRU and Bi-LSTM. Regarding attention-based techniques, recent studies increasingly leverage
cross-attention and self-attention mechanisms to facilitate both intra- and inter-modal fusion across modalities. Additionally,
multi-head and multi-level attention strategies are widely employed, as they enable the modeling of complex relationships
within and between modalities.

RQ7: What are the most common emotions evaluated in the literature of SER?

For the IEMOCAP dataset, most studies evaluate their approaches based on the recognition of the four most frequent emotions
(Neutral, Angry, Sad, Happy/Excited.). In contrast, for the MELD dataset, researchers typically consider the seven emotions
provided (Neutral, Sad, Surprise, Fear, Angry, Joy, Disgust).

RQ8: What are the best performances in literature for SER from acoustic and linguistic modalities?

Among comparable studies using the bimodal fusion from acoustic and linguistic modalities of speech, for the classification
of the four typical emotions provided by IEMOCAP (Neutral, Angry, Sad, Happy/Excited), the metrics reported maximum
scores of 85.50%, 85.71%, and 82.67% for the metrics UA, WA, and F1, respectively. For ER provided by MELD (Neutral, Sad,
Surprise, Fear, Angry, Joy, Disgust), the studies reach 66.28%, 65.09%, and 64.71% for WA, UA, and F1, respectively. For
both, when using another type of data modality such as video or image, the performances show better results.
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Appendix. Search strategy

See Table A.11.

Table A.11
Search strategy keywords.

Topic Related keywords

Recognition task Identification OR recognition OR classification OR regression OR clustering OR categorization
OR grouping OR measurement OR Quantification OR Evaluation OR discrimination

Al-based techniques “Deep learning” OR “Machine learning” OR “Neural Networks” OR “Deep Neural Networks”

OR “Convolutional Neural Networks” OR “Recurrent Neural Networks” OR “Supervised
learning” OR “Unsupervised learning” OR “Predictive model” OR Reinforcement Learning OR
Feature extraction OR Natural Language Processing OR Image Recognition OR “Pattern
recognition” OR “Computer vision” OR Pytorch OR Tensorflow OR ScikitLearn OR

HuggingFace.

Application field Emotions OR feelings OR sentiments OR mood OR sensation OR temperament OR temper OR
“emotional state” OR “mental state” OR “emotional condition”

Data modality Speech OR “speech patterns” OR “speech features” OR conversation OR speaking OR

communication OR audio OR “verbal expression” OR dialogue OR expression OR linguistic OR
sound OR “voice features” OR “vocal cues”.
Approach Bimodal OR Multimodal OR “Multi-modal” OR Multimodel
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