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Sound-based uroflowmetry (SU) offers a non-invasive alternative to traditional uroflowmetry (UF) 
for evaluating lower urinary tract dysfunctions, enabling home-based testing and reducing the need 
for clinic visits. This study compares SU and UF in estimating urine flow rate and voided volume in 50 
male volunteers (aged 18–60), with UF results from a Minze uroflowmeter as the reference standard. 
Audio signals recorded during voiding were segmented and machine learning algorithms (gradient 
boosting, random forest, and support vector machine) estimated flow parameters from three devices: 
Ultramic384k, Mi A1 smartphone, and Oppo smartwatch. The mean absolute error for flow rate 
estimation were 2.6, 2.5 and 2.9 ml/s, with R2 values of 84%, 83%, and 79%, respectively. Analysis 
of the Ultramic384k’s frequency range showed that the 0–8 kHz band contained 83% of significant 
components, suggesting higher sampling frequencies are unnecessary. A 1000 ms segment size was 
optimal for balancing computational efficiency and accuracy. Lin’s concordance coefficients for urine 
flow and voided volume using the smartwatch (0–8 kHz, 1000 ms) were 0.9 and 0.85, respectively, 
demonstrating that SU is a reliable, cost-effective alternative to UF for estimating key uroflowmetry 
parameters, with added patient convenience.
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The rapid development of information and communication technologies is transforming healthcare systems, 
becoming remote and more proactive. This evolution brings benefits to both patients, by facilitating their access 
to medical services, and healthcare providers, who can obtain updated information and resources more quickly 
and efficiently. As a result, the quality of healthcare improves and associated costs decrease. Lower urinary tract 
symptoms (LUTS) are a problem affecting over 1900 million people worldwide1, leading to a decreased quality 
of life and significant healthcare resource expenditure2. The most widely used test to detect possible LUTS issues 
is UF3. UF is a non-invasive test based on estimating urine flow as a function of time, voided volume (VV), and 
the duration of the voiding process. This test is carried out in a clinic, where the patient must urinate into a 
uroflowmeter device. However, the accuracy of UF can be limited by various factors, such as an insufficient VV 
(which should be > 150 ml)4 or the situational stress experienced by the patient due to the unnatural voiding 
environment. This process is often performed on demand, frequently with a low or very high bladder filling, 
rather than urinating when the patient feels physiologically ready5. Additionally, flow rates vary significantly 
throughout the day6, and a single test may not be representative of a patient’s regular daily voiding patterns. 
This leads to non-reproducible flow measurements7, resulting in biased contributions from this test toward 
diagnosis8. Therefore, multiple tests are recommended, leading to numerous prolonged and costly visits for both 
the clinic and the patient1. To solve the challenges associated with UF, SU emerges to enable monitoring the void 
in a natural and comfortable environment for the patient, such as at home. This test seeks to estimate the flow 
patterns from the sound generated by urine hitting the water surface in the toilet bowl. Previous studies have 
shown a good correlation between the sound-derived flow parameters and those generated by UF8,9. To collect 
the audio signal for the SU tests, various hardware devices have been used in the literature. Smartphones are the 
most commonly used devices for performing SU tests due to their great versatility10–12. Other works have used 
professional microphones13 and smartwatches14,15 for the same purpose.

Recent studies have confirmed the potential of SU in estimating flow parameters, with strong correlations 
between SU and UF tests. In8, a moderate correlation with conventional uroflowmetry was reported, with a 
Pearson’s correlation coefficient of 0.38, 0.57, and 0.68 for maximum flow rate (Qmax), average flow rate (Qave), 
and VV, respectively. In10, the authors reported strong correlations between Qmax, Qave, and VV of 0.88, 0.91, 
and 0.95 among men, and 0.78, 0.93, and 0.96 among women, respectively, for flow curve patterns obtained with 
their SU method and those obtained with a conventional UF device. However, the methods used to estimate flow 
parameters were not fully described and cannot be replicated. In16, the estimation of sound flow parameters was 
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analysed. However, the methodology requires one to know the VV to obtain accurate estimates,which seems not 
feasible if we want to perform these tests at home. Finally, an analysis of the correlation of voiding characteristics 
was performed in12 using deep learning on SU audio recordings. As an evaluation metric, the Lin concordance 
coefficient was used instead of the Pearson correlation coefficient applied in10. Although Lin’s concordance 
coefficients were 0.77, 0.85, and 0.84 for Qmax, Qave, and VV respectively, lower than the corresponding 
Pearson coefficients obtained in10, the authors argue that Lin’s concordance coefficient is more appropriate as an 
evaluation metric since it describes the degree of agreement between two measurements rather than the linear 
relationship given by Pearson.

The main objective of this research is to evaluate and estimate urine flow from SU tests using state-of-the-art 
machine learning (ML) regression algorithms. The comparative evaluation study considers different frequency 
bands in the range (0–96 kHz) and recording devices such as a Dodotronic Ultramic384, an Oppo smartwatch, 
and a Xiaomi Mi A1 smartphone. Furthermore, we used a professional Minze uroflowmeter17 which allows us 
to obtain the actual flow for each time instant of the recorded audio signal. The Minze uroflowmeter, which 
serves as the ground truth, is factory calibrated and was purchased in November 2022. This device is a certified 
medical instrument that is compliant with the ISO 13485:2016 standard, ensuring highly accurate flow rate 
measurements. The data collected from this flowmeter was utilized to train the ML model.

The paper is organised as follows: “Related work” section briefly reviews the state of the art in audio feature 
extraction and flow prediction from SU audios using ML; “Patients and methods” section presents the materials 
and methods proposed in this research, describing the study design and the population, the characteristics of the 
datasets, and the procedures and theoretical foundations followed in the analysis of flow prediction in SU tests 
using different recording devices; “Results” section shows the results obtained from the proposed methodology; 
and finally, “Conclusions” section provides some concluding remarks.

Related work
Feature extraction in audio signals
There are multiple techniques in the literature to extract features from audio signals to be used in artificial 
intelligence models. Feature extraction techniques span several domains. The features of the temporal, frequency, 
cepstral, wavelet, and time-frequency domains have been explored for different types of audio signals, including 
speech, music, and environmental sounds18,19. The integration of modern ML algorithms with audio signal 
processing techniques has led to significant advances in audio classification tasks18. Studies have investigated the 
performance of different deep learning models using various audio features, such as the Mel Spectrogram and 
mel-frequency cepstral coefficients (MFCCs), both independently and in combination with ensembles20. The 
choice of features depends on both the dataset and the model, and feature combinations are generally restricted 
to those that perform well individually19.

In our research, we used the N linear-binned FFT of the audio signal to be analyzed, where N is an integer. 
The audio signal is processed using the Fast Fourier Transform (FFT) which is organised into a specific number 
of linearly distributed segments (or “bins”). Compared to other audio feature extraction techniques, such as 
cepstral analysis or MFCCs, N linear-binned FFT can be more intuitive and straightforward in its implementation. 
Furthermore, when combined with traditional ML regression methods, it offers a robust and efficient solution 
to extract and use audio features in our flow estimation analysis in SU tests with different recording devices.

ML algorithms in SU
To estimate the voiding flow from SU tests, many algorithms have been implemented in the literature. Finding 
the optimal model and selecting the most suitable features from various audio segments can be a complex 
process. The proposed methods range from traditional signal processing techniques to more recent approaches 
utilizing deep learning. In11, ML was used with k-nearest neighbours and gradient boosting, and the model 
was trained using the MFCCs. In12, a deep neural network (DNN) with three hidden layers was used, taking 
spectral centroids, chroma vectors, and mel-frequency cepstral coefficients (MFCCs) as input features21,22. In23, 
an long short-term memory (LSTM) model was used for a time series prediction, with loudness representing the 
magnitude of the urinary sound and roughness representing the signal change pattern as inputs.

Patients and methods
Study design and population
We recruited 50 male volunteers without urological comorbidities, between the ages of 18 and 60, who agreed to 
participate in the study. The average height of the participants was found to be 175 cm, with a standard deviation 
of 4 cm. All participants provided their informed consent in writing for the use of conventional and acoustic 
uroflowmetry data. This study was approved by the Valladolid East Health Area Medicine Research Ethics 
Committee on 27 July 2023 with reference PI-GR-23-3275 (minutes number 16/2023). The Ethics Committee 
mentioned above complies with the GCP standards (CPMP/ICH/135/95).

Procedures
The test consisted of urinating in a Minze uroflowmeter basin, while three different microphones recorded the 
sound. The Minze uroflowmeter basin, made of plastic, had been prefilled with 400 ml of water at the bottom of 
the container to ensure that the sound generated by the urination was against the water, simulating the conditions 
of a real toilet bowl. The Minze uroflowmeter has a resolution of 1 ml/s, with an accuracy of ± 2.5 ml/s for flow 
and ± 30 ml for VV17. The sampling rate is 10 Hz and records the flow curve, VV, Qmax, Qave, time to maximum 
flow and voiding time. Figure 1 shows an example of the data provided by Minze software during a test.
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All participants were given instructions immediately before the test, asking them to aim at the toilet water as 
accurately as possible. After completing the test, they were asked if they had been able to meet this requirement, 
and all affirmative responses were subsequently validated by reviewing the audio recordings. Finally, recordings 
containing background noise, or those where there was uncertainty regarding time intervals in which urine may 
have hit the walls of the basin, were excluded from the analysis.

The entire voiding process on the Minze uroflowmeter was recorded using three sound recording devices:

•	 Ultramic384 (UM): a high-quality microphone (FG23629 microphone sensor from Knowles), used in stud-
ies to record void events SU14 with a sampling rate (SR) of 384 kHz, allowing the study of a wide frequency 
spectrum. For our tests, we used a SR of 192 kHz, because tests showed that there was no information above 
the 96 kHz band. This device is not intuitive to use as it requires additional hardware components to operate. 
Besides, it is not as versatile compared to smartwatches and smartphones (the device has no other use beyond 
audio recording).

•	 Mi A1 smartphone (Phone): it integrates a medium-quality microphone (SPU0410LR5H-QB microphone 
sensor from Knowles), with a SR of 44.1 kHz, and it has also been used in similar studies. This device is intu-
itive to use, although not as versatile during urination as a smartwatch24.

•	 Oppo smartwatch (Watch): it integrates a medium-quality microphone (chipset details not publicly disclosed), 
validated for use in SU applications14, with a SR of 44.1 kHz. It is the most intuitive and versatile recording 
device for the urination process.During the test, the Watch and the UM were placed opposite the user at a 
height of 80 cm above the basin water level, that is the average height of a toilet cistern. The test participants 
must wear the smartwatch on the wrist, pointing its microphone to the basin during the recording. Figure 2 
shows the laboratory environment set up in the bathroom where the tests were performed. The bathroom had 
dimensions of 404 cm (length) × 175 cm (width) × 271 cm (height), with ceramic tiles covering the floor and 
walls, and a plasterboard ceiling.

Dataset description
For each performed test, we obtained three audio files in WAV format, corresponding to each of the recording 
devices. For each test, the corresponding uroflowmetry curve provided by Minze software, containing the flow 
information for each time unit (100 ms resolution), was matched to these audio files.

After excluding the test that presented the issues mentioned in “Patients and methods” section, we obtained 
a total of 47 valid tests. For each test, we obtained the corresponding flow values with a frequency of 10 Hz for 
further analysis.

Correlation between SU signal envelopes and Minze measurements
To study the sound signals’ waveform and compare it with the flow graphs provided by Minze software, we 
obtained the sound envelope from each one of the recorded audios following the methodology proposed by14. 
We then evaluated the linear relationship between the flow envelope given by Minze software and the sound 
signal envelope of the three recording devices. We used the Pearson correlation coefficient to analyze the 47 audio 
signals recorded by each of the devices. We selected Pearson’s correlation coefficient because we are interested 
in the linear relationship rather than the level of similarity. Figure 3 shows the result of evaluating the envelope 
correlation using a box plot. It can be seen that the interquartile range (IQR) for the three devices is very close 
to the median and mean and is it relatively narrow. This suggests that the correlations are consistently high and 
that there is little variability in the correlation between the waveform provided by Minze and the envelope of the 
sound signal for each device, supporting the idea of estimating flow from sound in SU tests. Figure 4 shows a 
random selection of eight tests in which a very high correlation is demonstrated, further supporting the idea of 
estimating flow from sound using SU tests.

Fig. 1.  Example of data recorded by the Minze uroflowmeter software during a test.

 

Scientific Reports |          (2025) 15:643 3| https://doi.org/10.1038/s41598-024-84978-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


General research diagram
Figure 5 shows a graphical diagram of the proposed methodology for analyzing SU audios to predict the voiding 
flow rate. Our input data are the SU audio signals in WAV format recorded with the three devices (see “Patients 
and methods” section). Each audio is associated with its corresponding flow data point provided by the Minze 
software. To analyse the audio signals, the first step was to synchronize all the signals with the data given by 
Minze. The audio signals were then split into 100-ms segments and each segment was labelled with the flow 
value provided by the Minze software. We selected a segment size of 100 ms because the Minze software provides 
flow data points sampled at 10 Hz. As a result of the audio segmentation, we obtained 13,060 100-millisecond-
long segments of SU labelled with their corresponding flow value.

To estimate the flow from sound, we used traditional ML regression algorithms. The input features for 
training the algorithms were frequency domain features. We utilized the N linear-binned fast fourier transform 
(FFT), where the frequency range is divided into N equally spaced intervals. For each interval, we sum the 
absolute values of the amplitudes of the components present in each interval, obtaining a vector with N values 
that characterize each audio segment. Linear-binned FFT is a widely used technique to extract the most relevant 
features of the frequency spectrum of an audio signal and has demonstrated effectiveness for audio analysis. For 
our experiments, we selected N = 20, a value chosen based on experimentation with various values of N.

Fig. 3.  Results of evaluating Pearson’s correlation for the three devices to compare the envelop extraction.

 

Fig. 2.  Laboratory data collection scenario showing the Minze uroflowmeter with a water volume of 400 ml in 
the basin and the three recording devices: UM, Phone, and Watch, along with their respective heights.
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The performance of the regression models was evaluated using tenfold cross-validation. In this process, the 
dataset is divided into 10 subsets; in each iteration, one subset is used as the test set, while the other nine are used 
for training. The model’s performance is assessed on the test set for each fold, and the final results are reported 
as the average error across all tenfolds. This ensures that all data is used for both training and testing, but never 
simultaneously, providing an unbiased estimate of the model’s predictive capability.

To predict the flow rate of the labelled audio segments, we performed an analysis using three ML regression 
algorithms, with the aim to evaluate which one performs best in the flow prediction task. Below are the details 
of the algorithms used:

•	 Random forest regressor (RF): is widely used in various fields such as healthcare, where the prediction of con-
tinuous values is essential. It is a versatile and powerful algorithm known for its effectiveness in a variety of 
regression tasks.

•	 Support vector regressor (SVR): is suitable for tasks where capturing non-linear relationships is essential, and 
it can be a powerful tool in various regression applications, including time-series analysis.

•	 Gradient boosting regressor (GBR): is widely used in practice for tasks such as time-series forecasting and 
various regression applications where accurate predictions are essential.

Fig. 5.  Diagram showing the pipeline of the proposed methodology, consisting of 4 main steps: data 
extraction, audios segmentation, feature extraction, and finally model training and validation.

 

Fig. 4.  Comparison of Minze flow data with the sound envelope of the signal given by UM, Watch, and Phone, 
for a selection of eight randomly selected signals.
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Figure 6 shows the evaluation results of different regression algorithms in terms of their MAE for each one of 
the recording devices, with a segment duration of 100 ms. The MAE is defined as the average of the absolute 
differences between the predicted and true flow values, computed across all labeled audio segments, regardless of 
the flow magnitude. To train our ML algorithms, we used tenfold cross-validation due to its multiple advantages 
in terms of model performance evaluation. We used a value of N = 13,060, which corresponds to the number of 
labelled 100-ms audio segments. It can be observed that, in general, the three algorithms show similar results, 
with RF performing slightly better.

For our remaining analysis, we used RF because it presents a compromise between accuracy and 
implementation complexity.

Feature selection
The first step to train our regression model is to select the best procedure for characterizing each audio sample 
in the dataset. First, we performed an analysis across the entire frequency band recorded by the professional 
UM microphone (0–96 kHz) to identify which frequency components have the most influence on the flow 
prediction. For this purpose, we extracted 1000 linear-binned FFT samples for each 100-ms audio segment. As 
a result, we obtained a vector with 1000 values that characterize each audio segment. We trained a supervised 
RF algorithm using the 1000 linear-binned FFT samples for each labelled audio segment with the corresponding 
flow label provided by Minze. Subsequently, from the trained RF model, we obtained a Gini impurity-based 
metric25 to measure the quality of our split criteria. This metric allows us to quantify the weighted impurity of 
each feature in the tree, indicating its relative importance in the model. Furthermore, the Gini impurity metric 
provides us with an effective way to interpret the model and understand which frequencies are most influential 
in the predictions.

Figure 7 shows that the frequency components that contribute the most information to the prediction of flow 
from sound are in the lower band of the signal spectrum. The upper part of the spectrum above 8 kHz is not 
relevant for our application. For the remaining analyses, we used the (0–8 kHz) band, which contains 83% of the 
frequency components that contribute the most information to the model, and is the band in which the majority 
of commercial devices record.

Analysis of different audio segment sizes
Once we analyzed in “Patients and methods” section the frequency bands that have a higher influence on the 
model prediction results, we then performed an analysis to study the influence of the audio segment size taking 
the 0–8 kHz frequency band. The Minze uroflowmeter used has a SR of 10 Hz, so the maximum resolution we 
can achieve for the audio signals is a segment duration of 100 ms.

For each recording device, we analyzed eight different audio segment sizes: 100, 200, 500, 800, 1000, 1100, 
1200, and 1500 ms. For segments longer than 100 ms, we took the maximum flow value provided by Minze for 
the corresponding timestamp as the flow label. We selected this value because, according to urologists, the most 
valuable information in a uroflowmetry test is the maximum flow reached by the patient at any given moment. 
For this study, we used a RF model taking as input features the 20 linear-binned FFT samples for each audio 
segment.

Figure 8 shows the evaluation results in terms of MAE. Across all devices, the segment size that yielded the 
lowest MAE, indicating the best performance, was 1000 ms. The audio recordings from the Phone and UM 
showed similar and lower errors compared to those from the Watch device.

Despite the Watch exhibiting slightly higher errors than the other two devices (on average 0.37 ml/s higher 
than the phone and 0.30 ml/s higher than the UM), it was selected for further analysis. This decision was driven 

Fig. 6.  Evaluation results of the three regression algorithms for each recording device, in terms of the MAE, 
measured in ml/s. The MAE is the mean of the absolute differences between the predicted and actual flow 
values, calculated across all labeled audio segments.
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by Watch’s versatility and ease of use within the SU context, which offsets the slight increase in error. Figure 8 
showed that the error increase of the Watch compared to the other devices is not significant.

Frequency analysis
Once we have determined the audio segments size that yields the best prediction results, we then analyse the 
frequency range within the (0–96 kHz) band that also obtains the best flow estimation results. This study is 
performed using the audios recorded with the UM with a audio segment size of 1000 ms. We train a RF model 
utilising the 20 linear-binned FFT as input features.

To carry out this analysis, we considered the following points:

Fig. 8.  Analysis of the MAE for the RF prediction model, comparing different audio segment sizes (ms) and 
the three different recording devices. The MAE is the mean of the absolute differences between the predicted 
and actual flow values, calculated across all labeled audio segments.

 

Fig. 7.  Predictive power (importance) of each frequency component in the flow prediction task from SU. 
The frequency band selected in our algorithms is shown in blue, showing the highest values of importance. 
Importance is calculated using the Gini impurity metric with an RF model.
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•	 We eliminated the low-frequency noise bands (0–250 Hz) and (0–1200 Hz). These frequency ranges have 
been adopted from related works14,16, respectively.

•	 To study the flow prediction results in environments where the user privacy preservation is required, we con-
sidered the removal of three frequency bands: (0–4 kHz) and (0–8 kHz) that correspond to the conversational 
band, and (0–16 kHz) that corresponds to the human audible range.

•	 An analysis was performed within the (0–8 kHz) band because it contained the most information, as shown 
in the analysis performed in “Patients and methods” section. In addition, this frequency range is used by the 
vast majority of commercial devices. This selection represents a compromise between the performance of the 
model and the cost and availability of the microphone.

Figure 9 shows the results of evaluating the RF model for 18 different frequency bands, from 0 to 96 kHz. The 
best results were obtained for the (0–8 kHz) and (0–5 kHz) bands, demonstrating that most of the prediction 
power for the flow prediction task is found in the lower end of the spectrum. It can be observed that when the 
speech band (0–4 kHz) is removed, the error increases. However, it could be an alternative, despite being less 
accurate, for applications where preserving privacy is crucial.

Results
Flow estimation with selected parameters
The voiding flow is the variable that provides the most valuable information for urologists from a flowmetry test. 
To predict the flow using audio signals, in this section we train a new RF model using the parameter settings 
selected in the analyses performed in the previous sections.

We trained a RF model using audio signals recorded from the Watch, segmented into 1000-ms segments, 
within the band of 0–8 kHz. As features, we used the 20 linear-binned FFT. To mitigate the effect of overfitting, 
we used k-fold cross-validation, as it provides a robust and reliable estimate of a model’s performance on unseen 
data. For our algorithms, we selected k = 10 to achieve a reasonable balance between bias and variance in the 
performance estimate. Figure 10 presents the results obtained with a MAE of 2.86 ml/s. We can consider that 
the error obtained by our algorithm is significantly low, since our reference device, the Minze uroflowmeter, 
according to the manual introduces a base error of ± 2.5 ml/s. To assess the correlation between the predicted and 
actual values, we applied Lin’s concordance correlation coefficient for each 1000-ms segment, yielding a value 
of 0.9. This high coefficient suggests a strong positive relationship, indicating that, as voiding flow increases, the 
model’s predictions also increase in a manner consistent with the field measurements.

Voiding volume estimation with selected parameters
Another important parameter for urologists to evaluate the urinary tract is the VV. In our dataset, we also have 
the VV associated with each of the audio recordings, obtained from the Minze uroflowmeter. To estimate the 
VV for each test, we sum the estimated flows corresponding to each audio signal from the SU tests, as obtained 
in “Results” section. We evaluated Lin’s concordance correlation coefficient between the predicted and actual 

Fig. 9.  Analysis of the RF model MAE value for different frequency bands, using the UM microphone. The 
MAE is the mean of the absolute differences between the predicted and actual flow values, calculated across all 
labeled audio segments.
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volume values and obtained a value of 0.85. Figure 11 shows the result of the comparison between the estimated 
and actual volumes provided by Minze uroflowmeter.

Conclusions
The comparative results to conduct SU tests using three different recording devices showed similar performance 
for the Watch and UM, and slightly lower performance for the Watch, for the task of estimating the flow rate. 
However, the choice of the Watch is based on its ease of use and versatility for conducting UF tests at home. 
Also, the estimation error difference across the three devices is not significant. Moreover, smartwatches, being 
wearable objects unlike the other microphones, are more suitable for these types of tests because:

•	 They are very comfortable for the user as they do not interfere with the act of voiding, can be activated au-
tomatically without requiring any action from the patient (especially useful for individuals with low digital 
skills, such as the elderly and children).

Fig. 11.  Comparison between the VV given by Minze flowmeter and the predicted volume, calculated as the 
sum of the estimated flows corresponding to each audio signal from the SU tests.

 

Fig. 10.  Comparison of the UF (orange) and SF (blue) flow curves. To obtain the SF curves, we selected the 
Watch audios, and the model selected was a RF with 20 linear-binned FFT as input features, taking segment 
sizes of 1000 ms.
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•	 Since they have a fixed position on the user’s body, they allow for sound recording from a consistent distance 
from where the sound is produced.

•	 They can be used continuously, making it possible to maintain a voiding diary that measures multiple flows at 
different times of the day and night, which could be considerably more useful and objective for determining 
any pathophysiology.

These characteristics position the Watch as a more versatile and user-friendly device for extended home 
monitoring compared to handheld alternatives such as the Watch, while providing significantly high accuracy 
to estimate the flow rate.

Contrarily, the UM microphone is not a wearable device, requires additional data collection equipment, is 
not user-friendly, is bulky, and is not widely distributed, which could limit its use in SU. Its use is only justified 
if one seeks to obtain information in frequencies above 22 kHz (ultrasound applications), which is particularly 
beneficial for applications where it is necessary to preserve privacy by eliminating the audible human band.

Limitations

•	 Environmental variability The generalization of the algorithm across different environments has not been 
evaluated. Variations in environment, as well as differences in toilet material, size, and shape, could poten-
tially affect the acoustics of urination event. To address these variations, additional data collection in diverse 
settings is necessary to refine and calibrate the algorithm for different conditions.

•	 Gender differences Our study primarily enrolled male participants due to the differences in voiding habits 
between men and women. Factors such as standing versus sitting position influence how the urine stream 
impacts the toilet bowl, thereby altering the acoustics of the urination process. As part of future work, we 
intend to collect a new dataset that includes female volunteers, aiming to enhance the model’s applicability 
across diverse patient demographics.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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