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We present AutoFlow, a Raspberry Pi-based acoustic platform that uses machine learning to autonomously
detect and record voiding events. Uroflowmetry, a noninvasive diagnostic test for urinary tract function.
Current uroflowmetry tests are not suitable for continuous health monitoring in a nonclinical environment
because they are often distressing, costly, and burdensome for the public. To address these limitations, we
developed a low-cost platform easily integrated into daily home routines. Using an acoustic dataset of home
bathroom sounds, we trained and evaluated five machine learning models. The Gradient Boost model on a

Raspberry Pi Zero 2 W achieved 95.63% accuracy and 0.15-second inference time. AutoFlow aims to enhance
personalized healthcare at home and in areas with limited specialist access.

1. Introduction

One of the problems frequently associated with ageing is that re-
lated to the urinary system. Voiding dysfunction is highly prevalent and
has a major impact on the quality of life of many people (more than
60% of men over 60 years of age) [1]. Lower Urinary Track Symptoms
(LUTS) are those that affect the filling and emptying of the bladder and
post-voiding. They lead to a significant decrease in personal quality of
life and considerable expenditure in healthcare resources. Considering
that the prevalence of voiding pathologies increases with age and that
the global population is ageing, it is expected that the number of males
who will need medical treatment for LUTS will increase significantly in
the next 20 years.

Uroflowmetry is an important screening test that can aid in the
diagnosis, prognostication and follow-up of urological diseases. This
test tracks how fast urine flows, how much urine flows out, and how
long it takes. Current uroflowmetry tests are not suitable for continuous
health monitoring in a nonclinical environment because they are often
distressing, costly, and burdensome for the public. It is carried out on
an outpatient basis at specified procedure areas and involves having the
person urinating into an uroflowmeter. This process is unnatural and
requires “on-demand” voiding, often with either low or very high blad-
der filling. This leads to significant test-to-test variability because the
situational stress of the patient can affect the flow rate, corresponding
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to non-representative results [2]. Therefore, it has been recommended
that the uroflowmetry test should be performed more than once, which
requires time-consuming and costly repeated clinic visits. Obtaining
uroflowmetry data in the home setting has the potential for increased
data on voiding patterns to inform clinical decision-making [3].

This is the reason why the demand for smaller, more versatile
devices has grown and led to the emergence of dedicated portable
uroflowmeter. Nevertheless, these devices have not been fully adopted
into routine practise, because they are costly and difficult to operate.
Therefore, the envisioned platform for uroflowmetry targeted by this
work should be cost-effective, easily transportable, and capable of
conducting consistent tests without reliance on specialized equipment.

Recent studies have demonstrated the feasibility of using a mobile
device (a smartphone [4] or a smartwatch [5]) in a home environment,
to characterize the urinary flow patterns by capturing the sound gen-
erated when the urine stream hits the water in a toilet bowl. This test
is known as sound uroflowmetry. The scarce literature data describing
attempts to analyze sound associated with urine flow in urology has
shown that sound uroflowmetry can be a viable alternative to standard
uroflowmetries applying machine learning based algorithms and visual
comparison, respectively [6]. However, these mobile devices need an
active user interaction (users need to interact with an app), and their
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1. User enters the toilet

Fig. 1. Use case of the proposed platform. 1. The user wearing a BLE beacon enters the toilet. 2 The RPi detects the user presence with the BLE receiver. 3. When the users starts
voiding the event is detected by the ML model running on the RPi and the recording starts.

battery needs to be recharged often, especially in the case of com-
mercial smartwatches. Furthermore, according to [7], the adoption of
mobile health (mHealth) apps in personal health care is still limited.

Overall, to detect and record voiding events automatically (with-
out user intervention), both the smartphone and smartwatch pose
important challenges:

» They need an active user interaction, requiring users to press the
record button. This could create a barrier between children and
the elderly. Also, this could limit data collection at night, when
it is highly likely that users will forget to operate any device.
They could create a certain user rejection due to the inconve-
nience of wearing or carrying the device while urinating (spe-
cially the smartphone).

The smartphone has additional challenges such as being placed at
a fixed height during recording to obtain consistent results.

+ Both of them require sufficient battery power to record the event.

2. Related work

Detecting and recording voiding events automatically at home using
mass market devices is a must if we want that sound uroflowmetries to
support urology pathology diagnosis.

Analyzing the state of the art, it is observed that there are no
works or commercial products that records void events, in a natural
environment using a conventional toilet (impact sound of urination
on water and not plastic), where the recording device captures audio
signals in a transparent way for the user and using a low-cost device. To
overcome these limitations, we have developed Auto-Flow, a proof-of-
concept acoustic Raspberry Pi (RPi) based platform that runs a machine
learning (ML) algorithm to automatically detect and record voiding
events at home that can be easily incorporated into a normal daily
routine requiring no human intervention. Furthermore, our platform
can also enable the collection of events at nighttime, because users
typically forget to activate any device while voiding at nighttime. This
work presents two main contributions:

+ ML model to detect voiding events: we predict the sound label
in an audio clip and automatically collect the sound of voiding
events.

» Autoflow platform: RPi-based architecture that detects the user
closeness to the toilet with Bluetooth Low Energy (BLE) and
run inference with the proposed ML model, engaging in edge
computing by conducting model inference directly on the device.

2.1. Artificial intelligence for sound-based activity recognition

Sound-based activity recognition has gained significant traction
with advancements in artificial intelligence and machine learning.
These technologies enable the automatic classification and analysis of
sound signals, facilitating various applications from human activity

monitoring to machinery operation tracking.

The work in [8] developed an artificial neural network model to
classify patterns of sound signals, enabling the recognition of human
activities in indoor environments. This research highlights the potential
of Al in interpreting acoustic data for activity recognition with high
accuracy

A different work [9] explored sound-based crowd activity recogni-
tion using neural networks. Their research demonstrated that activities
performed by humans could be recognized by the sounds emitted
during these activities. This approach provides valuable insights into
managing and understanding crowd dynamics through sound analysis

Another significant area of research is the detection of anomalous
sound events using machine learning techniques [10]. This includes the
use of hierarchical recurrent neural networks (RNNs) to enhance audio
surveillance and the application of generative adversarial networks
(GANS:s) for anomaly detection in industrial settings. These approaches
have shown effectiveness in identifying abnormal audio patterns,

3. Automatic collection of voiding events

This section presents the hardware and software platform developed
for automatic void event detection and collection. All the code has
been open-sourced, and currently available on [11]. Fig. 1 presents an
overview of the complete platform.

3.1. Hardware platform

The designed firmware is fully RPi compatible. For continuous
acoustic energy monitoring, we use the low power stereo codec ReS-
peaker 2-Mics Pi HAT [12]. It is a dual-microphone expansion board
for the RPi specifically designed for artificial intelligence and voice
applications. The decision to use the Raspberry Pi platform in our
prototype was based mostly on its widespread availability, making it an
ideal choice for cost-sensitive research and development projects. Also,
the RPi offers sufficient computational power to handle real-time ML
inference. Additionally RPI has been used in similar IoT applications
with successful results [13]. We set the sample rate to have a value of
fs = 16 kHz, as a compromise between bandwidth, performance, and
processing latency. We selected this value because similar performance
was obtained at higher sampling rates, at the cost of increasing the
processing latency. The RPi and the microphone are placed inside a
plastic case to prevent moisture and dust to get in the boards.

To detect the presence of the person in the bathroom and the
closeness to the toilet, we use a BLE beacon module that incorporates
an accelerometer sensor. The user needs to wear this device all the
time during the duration of the study. We selected the EMBC22 de-
vice because it is low energy and does not require maintenance from
the user. According to the beacon datasheet [14], the typical current
consumption in beaconing and active mode (always transmitting) is
15 pA. If we assume a CR2032 battery with a 210mAh capacity, the
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battery will last around 583 days, that is, more than 1.5 years. The RPi
is equipped with a BLE receiver to detect the BLE signals, allowing for
proximity detection without requiring a constant connection between
the beacon and the RPi. The beacon has been configured to start
advertisement when movement is detected, and continue advertising
BLE packets for 60 s. After that period, it waits for a new movement
event to trigger advertisement again. Finally, it is important to note
that the user does not need to interact with the ble beacon.

3.2. Firmware

The system, once powered, is continuously working. Once the de-
vice is powered, it automatically attempts to connect to the Internet
using WiFi protected setup. If the connection is established, an LED will
turn on. If the connection does not succeed or there is no WiFi network
available, the platform works in offline mode. In the offline mode, the
recorded audio signals are stored in the internal memory of the device,
ready to be sent when an Internet connection is reestablished. Next, the
program can be divided into four sequential parts.

1. User presence detection with a BLE beacon: When the RPi is
powered, it scans for BLE packets for five seconds, then pauses
for one second to save power. During broadcast message de-
coding, the program gets the received signal strength indicator
(RSSI). With a constant broadcasting power value of 6.2 dB, RSSI
helps approximate user proximity to the RPi using a threshold,
thy,. If the user’s beacon address is found and RS ST > thy,,, the
program starts inference to detect void or no-void sound.

2. Real-time sound classification: The model inference runs every
second, using the last five seconds of buffered audio. This process
continues for up to 90 s. If a void event is detected, 60 s of audio
is recorded and saved as a WAV file for offline uroflowmetry
analysis. If no void sound is detected in 90 s, the process stops,
and the program returns to BLE scanning. Timing values can be
adjusted per user.

3. Void audio transmission to the web server: If the RPi is online,
detected and recorded void audio is sent to the web server and
deleted from the device. If offline, audio is stored locally and
uploaded once the connection is restored.

4. Sound-based uroflowmetry: The final step involves extracting
the void signal envelope from the audio to determine shape and
timing parameters, following the method in [5].

3.3. REST APi

The web server has been developed as a RESTful APi with the frame-
work Flask. This framework was selected because it is very flexible
and lightweight. The database has been built using MongoDB. The web
server is running on an external PC machine. The source code and some
screenshots are available in our repository [11].

4. Materials and methods

4.1. Dataset description

In order to classify audio events into void or no-void, we have
developed a novel dataset with a total of 1420 audio signals, that is
comprised of two classes: void (class 1) and no-void (class 0). Class
1 audios represents the 51.4% of the complete dataset, while class
0 audios represents the remaining 48.6%. Each audio event is a 10-
second-long audio clip. Next, we detail how we built the dataset for
each class.
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Table 1
Audio clips of the class 0 dataset.

Audio class label Source # samples
Silence This work [11] 102
Pump (liquid) Audioset 48
Sink (filling/washing) Audioset 48
Squish Audioset 36
Splash, splatter Audioset 36
Toilet Flush Audioset 74
ECS50
Fill (with liquid) Audioset 32
Pour Audioset 71
ECS50

Slosh Audioset 31
Drip Audioset 30
Stir Audioset 25
Spray Audioset 24
Water tap Audioset 23
Boiling Audioset 16
Bathtub Audioset 15
water drops ESC-50 40
brushing teeth ESC-50 40

+ Class 1: it consists of 730 10-second-long voiding events audio
recordings collected with the Urosound App and the Oppo smart-
watch. All these audios have been collected from hospital and
clinic patients as an extension of the study presented in [5].
The experimental procedures conform to the provisions of the
Declaration of Helsinki (as revised in Edinburgh 2000). We split
each original audio signal in 10-second-long audio clips with
no overlap. This split value was selected to be consistent with
Audioset [15] data (see below), used in this work for Class 0 data.
We remove the first and last second of the recording to avoid
discontinuities. We listened to all the clips to ensure that they
correspond to audio events.

Class 0: it consists of 690 audio events that typically occur in
a traditional home toilet but which are not voiding events. To
create this class dataset, we collected audios from two different
open-source dataset, presented next. Table 1 shows the audios
categories selected for each dataset.

1. Audioset [15]: it consists of an expanding ontology of 632
audio event classes and a collection of 2084320 human-
labeled 10-second sound clips drawn from YouTube videos.
We selected the audio clips with the labels presented in
Table 1.

2. ESC-50 [16]: it is a labeled collection of 2000 five-second
long environmental audio recordings. Clips in this dataset
were manually extracted from public field recordings gath-
ered by the Freesound.org project. The dataset consists of
50 classes, with 40 samples per class. We selected the audio
clips with the labels presented in Table 1.

3. Silence events: we collected 102 five-second long silence
audio recordings with the Oppo smartwatch, in different
toilet environments.

4.2. Sound classification model

In this section we develop a supervised learning model to automati-
cally detect a voiding event from acoustic energy. We build a model
for real time classification of incoming audio clips into two classes:
void or no-void. Our model must meet three main requirements: (1)run
inference in real time, (2)run on a low power device with constrained
computation capabilities, and (3)be sensitive to low number of false
negatives to minimize the probability of missing the collection of a
voiding event The use of a low-power device with constrained compu-
tational capabilities is primarily aimed at reducing power consumption
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Fig. 2. t-SNE evaluation on the dataset MFCC features.

and hardware cost. Additionally, performing inference directly on the
device eliminates the latencies associated with server communication.

To the best of our knowledge, there is no previous work on devel-
oping a ML model for automatic voiding event detection at home using
sound as the input features and requiring no user intervention.

4.2.1. Machine learning model

Firstly, considering the size of our dataset (a total of 1420 audio
samples) and the requirement to run inference in an embedded device,
we explore traditional lightweight ML models for the classification task.
For each audio clip we extract an array of 40 features, that correspond
to 40 Mel-frequency cepstral coefficients (MFCCs) values averaged over
the duration of the clip. While originally developed for speech-related
tasks, MFCCs have proven highly effective for activity classification in
non-speech domains, such as environmental sounds, machinery diag-
nostics, and biological signals. [17,18]. MFCCs are widely used audio
features for training machine learning models due to their ability to
effectively represent the spectral and temporal characteristics of audio
signals. The MFCCs features were selected due to the compressed
representation of the signal [19].

The pipeline is shown in Fig. 3 for a 10-seconds-long audio clip.
To compute the MFCCs, we used the Python library librosa (function
librosa.feature.mfcc) This library computes the coefficients as:

k—KO.S ~7r>, )

where ¢, is the nth MFCC coefficient, k is the number of Mel frequency
bands, S, is Mel-scaled power spectrogram of the signal, and » is the
index of the MFCC coefficient (e.g.,n=0,1,..., N—1). We used N = 40,
K =128, and an FFT window length of 2048 samples, with 512 samples
between successive frames. We tested different numbers of MFCCs, and
N = 40 coefficients resulted in the best model accuracy results. This
value was selected empirically.

Before building the model, we apply the T-distributed Stochastic
Neighbor Embedding (t-SNE) technique to visualize our
high-dimensional data in a 2D space. The input of the t-SNE model
are the 40 MFCCs features calculated as explained above. Results are
shown in Fig. 2. We can appreciate that the two classes (1-void and 0
no-void) are clearly distinct. It is then expected that we can find an ML
model to perform automatic classification with high accuracy.

In order to select the best model that meets the requirements
presented before, we have built four different ML models to compare
the performance of the classification task.

K
c, = Z log(S) cos (n .
k=1

+ Logistic regression (LR): One main advantage of this model is that
it is considerably lightweight.

+ Support Vector Machine (SVM): this model uses a subset of train-
ing points in the decision function (called support vectors), which
makes the model memory efficient. For the kernel functions,
we selected a Radial Basis Function (RBF) kernel since it is the
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most widely used kernel due to its similarity to the Gaussian
distribution.

Random Forest (RF): this model fits a number of decision tree
classifiers on various sub-samples of the dataset and uses av-
eraging to improve the predictive accuracy and control over-
fitting. One main advantage of this model is that they are robust
classifiers and they decrease the importance of features already
duplicated by other features. We build a Random Forest classifier
with 1000 estimators.

Gradient Boost Classifier (GBC): It is an additive ensemble of a
base model whose error is corrected in successive iterations (or
stages) by the addition of Regression Trees which correct the error
of the previous stage. One main advantage of this type of model is
that it allows for the optimization of arbitrary differentiable loss
functions.

4.3. DL model: transfer learning

Previous works have shown the use of Transfer learning (TL) to
build robust, domain specific models. In this work we leverage the
pre-trained YAMNet model [20] to classify audio clips as either void-
ing (1) or non-voiding (0) events. YAMNet is a convolutional neural
network that utilizes the depthwise-separable convolution architecture
of MobileNetV1l [21]. The model accepts data in the form of the
log-mel-spectogram of 16 kHz single channel audio with a duration
of 0.96s. The model converts these audio spectogram patches into a
1024-dimensional embedding. In the original YAMNet model, these
embedding are passed to a single logistic layer to derive the 521-class
output scores. In this work, the 521-class fully connected output layer
is replaced by a fully connected 512 neuron layer with ReLu activation
followed by another dense layer with 2 output neurons. The output of
the model classifies audio events as either voiding (1) or non-voiding
(0) events. We train on the loss using an Adam optimizer for 200 epochs
with early stopping. The model is fed 0.96 clips of audio data, each of
which corresponds to a voiding or non-voiding event.

5. Results and discussion

This section evaluates the performance of the models presented
before, both the four ML models and the DL model.

5.1. Models performance evaluation

To evaluate the performance of the five classification models pre-
sented in the previous section, we use stratified k-fold validation to
ensure that each fold of dataset has the same proportion of observations
with a given label. The value k = 5 is used. For each model, we measure
the following metrics: classification accuracy, False Positive Rate (FPR),
and False Negative Rate (FNR).

The FPR provides information about what proportion of the class
1 got incorrectly classified, that is, no-void events classified as void
events. The FNR provides information of what proportion of the class
0 got incorrectly classified, that is, void events classified as no-void
events. It is important to note that regarding the end application of
our model, it is desired to have a relatively low number of FNR, so
that we decrease the probability of missing the recording of a voiding
event. Results of the evaluation data are shown in Table 2. Results show
that the GBC model provides the highest classification accuracy while
providing a low FNR, with a value of 1.23%. The SVC model provides
the lowest FNR, but the classification accuracy is significantly lower
than the rest of the models.

The superior performance of the MFCC-GBC combination in our
study compared to the DL model can be attributed to the feature
engineering we used. MFCCs are well-established features in audio
signal processing, particularly for tasks involving human or machine
sound recognition. These features are designed to capture perceptually
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Fig. 3. Feature extraction pipeline for a 10-second-long audio clip for training the ML models.
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Table 2
Models evaluation on the test data with stratified k-fold validation, k = 5.
LR SvC RF GBC DL
Accuracy 90.49% 88.80% 92.39% 95.63% 92.04%
FPR 15.51% 22.61% 14.35% 7.68% 1.39%
FNR 3.84% 0.41% 1.23% 1.23% 16.88%

relevant information, effectively reducing the dimensionality of the
data while preserving critical auditory characteristics. This inherent
optimization aligns well with the task at hand. The CBG model performs
well with high-quality input features and avoids some of the pitfalls of
deep learning models, such as sensitivity to hyperparameter tuning and
extensive computational requirements.

Next we present the receiver operating characteristic curve (ROC)
along with the area under the curve (AUC) for the GBC and RF model,
the two best performing models regarding the results of Table 2. The
ROC curve evaluates their performance by plotting the TPR against the
FPR at various threshold levels. The ROC metric was chosen as it is
scale-invariant. Results are shown in Fig. 4. The two figures illustrate
the ROC curve represented as a thick blue line for the Gradient Boosting
Classifier (Fig. 4a) and the Random Forest classifier (Fig. 4b) across the
5-fold cross-validation setup. Regarding the GBC, the mean Area Under
the Curve (AUC) of 0.98 + 0.02, indicating excellent classification
performance. The shaded region around the mean ROC curve represents
the +1 standard deviation, showing the robustness of the model across
different folds. All individual folds achieved AUCs between 0.95 and
1.00, highlighting minimal performance variability. Similarly, the ROC
curves for each of the five folds are displayed, with the model achieving
high AUC scores. The mean ROC curve is also represented by a thick
blue line, with a slightly higher mean AUC of 0.99 + 0.01. The shaded
area shows a tighter standard deviation compared to GBC, indicating
even greater consistency in model performance across folds. Individual
folds achieved AUCs close to 1.00, suggesting the Random Forest
classifier slightly outperformed the Gradient Boosting Classifier in this
classification task. Both models achieved near-perfect AUC scores, with
a value close to 1, which means that they have a high measure of
separability: prediction of void (or 1) audio clips as void, and no-void
audio clips (or 0) as no-void.

5.2. Timing evaluation

This section compares the five different classification models in
terms of the inference time, for three different embedded systems. The
main hardware characteristics of the embedded systems evaluated are
shown in Table 3. All devices are running RPi OS, but they all have
different hardware characteristics. The RPi 4 B presents the highest
computational power, but it also has the highest footprint and cost.
The RPi Zero W is the cheapest one, but it does not support the 64-
bits operating system. The RPi Zero 2 W presents the same size as
the RPi Zero W, but with more computation power. Thus, the RPi
Zero 2 W presents a good compromise between cost, footprint, and
computational power.

Table 3
Comparison of three different RPi models.
Model Zero W Zero 2 W 4B
Rpi OS 32 bits 64 bits 64 bits
Architecture ARM ARM ARM
v6 Cortex-A53 Cortex-A72
Processor 1 GHz 1 GHz 1.5 GHz
RAM 512 MB 512 MB 4 GB
Footprint(mm) 65 x 30.5 65.6 x 30 85.6 x 56.5
Cost 10.44 € 18.90 € 74,10 €
Table 4

Timing evaluation of extracting the 40 MFCC features for a 10-seconds-long
audio sample with the different embedded hardware platforms.

RPi Zero W RPi Zero 2 W RPi 4
feature 0.836 0.122 0.055
extraction (sec)
Table 5
Machine Learning models size.
Device LR SVM RF GBC DL
Model size (KB) 2 92 319 73 2891

First we evaluate the time required for each model to extract the
features that will be used to run inference. Results are shown in Table 4.
These results show that the RPi Zero 2 W is more than 6 times faster
than then RPi Zero, and only about 2 times slower than the RPi 4.

Next we evaluate and compare the inference time for the different
models given an audio clip of 10 s long. The inference time is measured
as the time needed by the program to extract the features and to
return the classification result (0 or 1) for a 10-second-long audio
clip collected with the microphone. Results are shown in Fig. 5. In
all considered baselines, the model is uploaded just once and kept in
memory. The DL model was only executed on the RPi 4 device since it
needs a DRAM memory (main program memory) capacity higher than
512MB, which is not available on the other two RPi models.

Results show that for a particular embedded device, the ML model
takes the longest time to run inference, while the LR model results
in the shortest time. These results have a linear relationship with the
model size shown in Table 5: lighter models have a lower inference
time. Analyzing the traditional ML models, the RF is the slowest,
followed by the GBC. Comparing the three different embedded devices,
Fig. 5 shows that the RPi Zero W (gray color) is considerable slower
than the other two devices for any given model.

5.3. Discussion

This work presented a new strategy that can facilitate the collection
of sound flowmetries at home: provide the user with an embedded
device that is capable of automatically detecting and recording their
void events, with no user intervention. This approach aims to solve
the problems related to current mobile app-based systems and those
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Fig. 5. Comparison of the inference time given a 10-seconds-audio clip, on three
different embedded devices, for each classification model. x axis label shows time in
seconds.

associated with standard flowmeters. Also, it can enable the collection
of events at nighttime, since users typically forget to activate any device
while voiding at nighttime. To the best of our knowledge, there is no
previous work that solves this problem.

In the realm of classification algorithms, there is currently no ex-
isting model designed to predict void events based on audio signals.
One widely utilized algorithm, Yamnet [20], adept at classifying au-
dio events into 521 categories, lacks a specific class for void events
among its 512 labels. When Yamnet is employed for inference using
void events as input, the model frequently misclassified the sound as
“Water”, “Drip”, “Liquid”, or “Splatter”. Notably, a comparable output
is observed when Yamnet is applied to infer other toilet-related sounds
such as hand-washing, flushing, and showering. Given these limitations,
it becomes evident that there is a necessity to develop a new model
tailored to void event classification and to curate an appropriate dataset
for this purpose.

To automatize the detection and collection of voiding events, the
use of traditional machine learning algorithms is justified since they
achieve a high level of accuracy, as in such cases, the additional
complexity of more advanced algorithms may not provide significant
additional benefits. With the aim of facilitating replicability, we made
public our GitHub repository where the collected data set is publicly
available.

To extract the features from the audio data, we obtained the MFCCs.
MFCCs were chosen as features due to their dimensionality reduction
capabilities, noise robustness, statistical properties, and historical suc-
cess in sound classification models. Results show that the GBC model
provides the highest classification accuracy while providing a low FNR,
with a value of 1.23%. The SVC model provides the lowest FNR, but the

classification accuracy is significantly lower than the rest of the models.
The GBC and RF model, the two best performing models, show an AUC
value close to 1, meaning that they have a high measure of separability.

6. Conclusion

This work presented Auto-Flow, a proof-of-concept acoustic RPi-
based platform that runs a novel ML classification model to automat-
ically detect and record voiding events. This platform aims to address
the problems associated with most current in-clinic uroflowmetry tests,
where users experiment in an unnatural situation when they are re-
quired to void “on-demand”. We have developed a low-cost platform
that automatically detects and records voiding events at home that can
be easily incorporated into a normal daily routine requiring minimal
or even no human intervention. Results show that the GBC classifier,
using 40 MFCC coefficients as input features, obtained from the audio
clips, obtains a 95.63% classification accuracy to distinguish between
void and no-void acoustic events. Future work will look at extracting
the flow rate once the void event has been detected and recorded.

Overall, this work demonstrates the potential for the use of a low-
cost embedded device in the assessment of voiding dysfunction, to
deliver more personalized and effective health care at home with less
waste of time and resources, in particular in rural or less developed
areas where access to a urology specialist is more difficult.
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