Schizophrenia Research 287 (2026) 82-90

FI. SEVIER

Schizophrenia Research

journal homepage: www.elsevier.com/locate/schres

SCHIZOPHRENIA
SEARCH

Contents lists available at ScienceDirect RES

L))

Check for

Effects of disease duration and antipsychotics on brain age in schizophrenia &

a,b,*

Alejandro Roig-Herrero
Rodrigo de Luis-Garcia”, Vicente Molina

a,e
2 Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
Y Imaging Processing Laboratory, University of Valladolid, Valladolid, Spain

¢ Castilla-Leon Neuroscience Institute, University of Salamanca, Salamanca, Spain

d Neurology Service, Clinical Hospital of Valladolid, Valladolid, Spain

€ Psychiatry Service, Clinical Hospital of Valladolid, Valladolid, Spain

, Luis M. San-José-Revuelta "¢, Rafael Navarro-Gonzalez "¢,

ARTICLE INFO ABSTRACT

Keywords: Accelerated brain aging has been consistently reported in patients with schizophrenia. Over the past decade,
brainAGE score these findings have been replicated using the Brain Age paradigm, which applies machine learning techniques to
Schizophrenia

estimate brain age from neuroimaging data. This approach yields a single index, the Brain Age Gap, defined as
the difference between predicted and chronological age. Nevertheless, both the progressive nature of this phe-
nomenon and the potential role of antipsychotic medication remain unclear.

To investigate its progression, we compared the Brain Age Gap between individuals experiencing a first
episode of psychosis and healthy controls using ANCOVA, adjusting for age, sex, body mass index, and estimated
total intracranial volume. To enhance the robustness of our findings, we employed two distinct models: a
transformer-inspired model based on harmonized volumetric brain features extracted with FastSurfer, and a
previously trained deep learning model. To assess the potential effect of medication, we further compared bipolar
patients who received antipsychotic treatment with those who did not. Mann-Whitney U test consistently showed
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Machine learning

that medicated bipolar patients did not exhibit a significantly larger Brain Age Gap.
Both models converge on the conclusion that accelerated brain aging is unlikely to be explained by antipsy-
chotic medication alone. Longitudinal studies are therefore required to clarify the temporal dynamics of brain

aging in schizophrenia.

1. Introduction

Patients with schizophrenia consistently exhibit structural brain al-
terations, including diminished grey matter in the frontal and temporal
lobes as well as in the hippocampus, as along with an enlargement of the
third ventricle (Brugger and Howes, 2017; Haijma et al., 2013; Shepherd
et al., 2012). In this context, it has been proposed that patients with
schizophrenia experience accelerated aging or exhibit alterations that
closely resemble those associated with early aging. This phenomenon
has been substantiated through biomarkers such as oxidative stress,
retinal degeneration, gene expression or synaptic function (Nguyen
et al., 2018; Seeman, 2022; Shivakumar et al., 2014). This apparent
accelerated aging is also observed in the brain (Blose et al., 2023;
Chiapponi et al., 2013) and has been linked to cognitive decline in mood

disorders (Ho et al., 2024).

Among various methodologies, the brain age paradigm (Franke
et al., 2010) has emerged as a promising approach for providing an age-
adjusted measure of structural brain health, which is especially relevant
for investigating the intersection of aging and schizophrenia-related
changes. This paradigm has been utilized in schizophrenia and other
psychiatric and non-psychiatric conditions to examine the link between
aging and disease (Ballester et al., 2022; Lieslehto et al., 2021). In this
approach, a machine learning model is trained on neuroimaging data
from healthy individuals to predict their chronological age. The devia-
tion between an individual’s actual age and the predicted age—referred
to as the “Brain Age Gap”, “Brain Age Gap Estimate”, or “brain-predicted
age difference” (brain-PAD)—serves as an indicator of structural brain
health. Studies have shown the brain age paradigm to be sensitive to a

Abbreviations: MRI, Magnetic Resonance Imaging; BMI, Body Mass Index; FE, First Episodes; eTIV, estimated Total Intracranial Volume; MAE, mean absolute

error.
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wide range of neurological, psychiatric, and metabolic disorders, often
revealing a positive Brain Age Gap in conditions like Alzheimer’s dis-
ease, migraine, depression, and obesity (Beheshti et al., 2020; Han et al.,
2021; Navarro-Gonzalez et al., 2023; Ronan et al., 2016). Conversely,
social and lifestyle factors such as higher levels of education, regular
physical exercise, playing musical instruments, or engaging in medita-
tion have been associated with a negative Brain Age Gap, suggesting
potential protective effects (Luders et al., 2016; Rogenmoser et al., 2018;
Steffener et al., 2016).

In schizophrenia, the Brain Age Gap, derived from T1-weighted brain
MRI, has consistently been shown to be larger than in healthy in-
dividuals (Constantinides et al., 2023; Kim et al., 2023; Koutsouleris
et al., 2014; Nenadic et al., 2017; Schnack et al., 2016; Zhu et al., 2023).
Common age-related alterations are illustrated in Fig. 1. However,
findings regarding First Episodes (FE) are mixed. Some studies report a
significantly higher Brain Age Gap (Hajek et al., 2019; Kim et al., 2023;
Mcwhinney et al., 2021), while others find no significant differences
(Salisbury et al., 2024).

An interesting result found when analyzing both grey matter
(Schnack et al., 2016) and white matter (Wang et al., 2021) is that age
mediates the presence of significantly larger Brain Age Gap in schizo-
phrenia patients. In these studies, a larger Brain Age Gap was not found
in young patients (Wang et al., 2021). In patients, the Brain Age appears
to accelerate around the time of the onset, and its cumulative effect leads
to a maximal Brain Age Gap for schizophrenia patients around 5 years
later before stabilizing (Schnack et al., 2016). This pattern may help
explain why a larger Brain Age Gap is not consistently found in FE.

A related but distinct consideration is the effect of antipsychotic
medication and patients’ lifestyle on the Brain Age Gap. Progressive
brain alterations in schizophrenia are also a consequence of antipsy-
chotic medication (Moncrieff and Leo, 2010; Yang et al., 2021), its
secondary effects and/or the lifestyle that some patients have, mainly
sedentarism and drug abuse (Zipursky et al., 2013). Along these lines,
(Mcwhinney et al., 2021) performed a longitudinal study where Brain
Age Gap was calculated for first episodes of psychosis at baseline and
follow-up. They found that Body Mass Index (BMI) predicted the ac-
celeration rate of Brain Age between scans for both patients and con-
trols. Besides, at follow-up, medication predicted Brain Age Gap once
the effect of BMI was controlled. However, the authors propose that
medication may not be the cause of a higher Brain Age Gap.

In this article, we aim to sequentially address these issues. First, we
aim to replicate the findings in the literature regarding a larger Brain
Age Gap in schizophrenia patients. Second, we will try to elucidate
whether this Brain Age Gap is present at the beginning of the disease, or
whether it depends on its duration. Finally, we will address the possible
effect of antipsychotic medication on this Brain Age Gap. The sequence

(A)

Schizophrenia Research 287 (2026) 82-90

of the research and the statistical methods used can be seen in Fig. 2 and
in the supplementary material. These issues will be elaborated in the
methods section.

2. Materials and methods
2.1. Brain age model

To create and evaluate our Brain Age model, we compiled a dataset
(hereinafter referred to as the Model Creation Dataset) consisting of
structural T1w MRI scans from 4065 healthy subjects, drawn from our
own database as well as from publicly available studies and repositories.
These include: the Dallas Lifespan Brain Study (DLBS) (Park et al.,
2024); the Consortium for Reliability and Reproducibility dataset
(CoRR) (Zuo et al., 2014); the Neurocognitive aging data release (Neu-
roCog) (Spreng et al., 2022); The OASIS-1 dataset (Marcus et al., 2007);
the Southwest University Adult Lifespan Dataset (SALD) (Wei et al.,
2018); the Information eXtraction from Images dataset (IXI) (Biomedical
Image Analysis Group, 2023); the CamCAN repository (available at htt
p://www.mrc-cbu.cam.ac.uk/datasets/camcan/) (Shafto et al., 2014;
Taylor et al., 2017), the Age Risk dataset (Tisdall and Mata, 2023), the
NIMH intramural healthy volunteer dataset (Nugent et al., 2024), the
MR_ART dataset (Pardoe and Martin, 2021) and the Nathan Kline
Institute (NKI) Rockland Sample. Individuals who had neurological or
psychological diagnoses or cognitive impairments were removed from
the OASIS, NKI and CoRR datasets. Subjects under 18 and above 65 were
also removed to maintain the same age range as our patients and con-
trols sample. The 3839 images from public databases were used for
training and validation, while the 226 images from our database were
used as the test set. Supplementary material presents the age and sex
distribution of the datasets included in the “Model Creation Dataset”.

From the T1w images, we used FastSurfer (Henschel et al., 2020) to
extract a total of 1479 features based on the Desikan-Killiany atlas
(Desikan et al., 2006; Klein and Tourville, 2012), from which 175
volumetric features were selected for model input. Volumetric features
were prioritized due to their established influence on Brain Age Gap in
schizophrenia (Ballester et al., 2023), greater robustness compared to
intensity-based features and easier interpretability. We have applied
ComBat-GAM to remove scanner effects while preserving biological
variation related to age, sex, and eTIV; age was modeled as a smooth
term, whereas sex and eTIV were modeled linearly (Pomponio et al.,
2020). See Supplementary materials for a deatiled description.
(Pomponio et al., 2020).

We selected a transformer-based regressor model, originally devel-
oped by Vaswani et al. (Vaswani et al., 2017) and here adapted to our
specific scenario. Due to its powerful attention mechanism, transformer-

(B)

Fig. 1. Sagittal and coronal MRI of: (A) 42 years old healthy subject, and (B) 44 years old schizophrenia patient. A generalized loss of grey matter can be seen in the
central and frontal cortex of the patient. The patient has a 6.6 Brain Age Gap, while the control subject has a -2.6 Brain Age Gap.
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Fig. 2. Graphical summary of the samples and analyses of this research.

based architectures enhance the ability to capture long-distance re-
lationships within the input data. The original architecture includes an
encoder-decoder framework originally designed for natural language
processing. However, for this regression task we have employed only the
encoder to model the relationships within the data, and the encoder’s
output was then fed into a regression model.

We implemented the model in PyTorch (Paszke et al., 2019) using
the Anaconda 2.4.1 environment. The model implements a TabTrans-
former encoder tailored for tabular regression over 175 numerical fea-
tures. Each feature is first mapped independently into a 32-dimensional
token via a small feed-forward block (Linear(1 — 32) + ReLU + Dropout
(0.1)), yielding 175 tokens of size 32. These tokens are then processed by
two stacked encoder modules: each layer performs multi-head self-
attention over the 175 token sequence, followed by a two-stage feed-
forward network with residual connections, layer normalization, and
dropout to stabilize and regularize training. After the encoder, the
output tokens are concatenated into a single 5600-dimensional vector
(175 x 32) and fed through a final Linear regression head to predict the
continuous target (e.g., age). The model was optimized with Adam and
the MSELoss function and trained for 500 epochs. In order to measure
and report the performance of the Brain Age model, we used the mean
absolute error (MAE) and the Pearson’s correlation coefficient (r).
Metrics will be also presented separately for males and females to ensure
the model does not exhibit sex bias. To enhance the robustness of our
findings we replicated the statistical analyses with the brain age derived
from Pyment model (Leonardsen et al., 2022). The Pyment model is an
open-source deep learning model which uses the entire MRI image as
input. Since the two models are based on fundamentally different ap-
proaches their predictions are likely driven by distinct sets of features or
patterns. Therefore, any convergence in their results would provide
stronger and more robust evidence for the observed effects.

2.2. Participants

A total of 87 schizophrenia patients, 39 bipolar disorder patients and
80 controls were included in this study. This dataset will be hereinafter
referred to as the Application Dataset. A summary of controls and
schizophrenia patients can be seen in Table 1, while a summary of bi-
polar patients is described in Table 2. A detailed description of all
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Table 1

Demographic and clinical characteristics of controls and schizophrenia patients.
These subjects were included in (controls and patients), analysis 2 (controls and
first episodes) and analysis 3 (chronic patients).

Controls Patients First Chronic
Episodes Schizophrenia
Sample size 80 87 36 51
31.58 35.24 29.47
Age, years (11.93) (11.04)" (9.48) 39.31 (10.29)
Sex, M/F 44/36 49/38 19/17 30/21
24.19 2291
Body Mass Index @1 25.5 (5.4) 3.5) 27.32 (5.8)
A Ao
. (1.50) (1.71) (1.80) ) .
volume, liters
Illness duration 80.74 11.34
) — 133. 134.
months (118.40) (18.35) 33.54 (134.43)
Diagnoses S/FE - 51/36 - -
390 326
PZ ival - .14 (271.12
CPZ equivalents (249.03) (200.49) 435.14 (27 )

" Significant difference with p-value <0.05.

Table 2
Demographic and clinical characteristics of the bipolar patients for analysis 4.
Bipolar with Bipolar without Test P
Antipsychotics Antipsychotics statistic value
Sample size 24 15 - -
Age, years 39.29 (11.72) 47.49 (11.48) t=1.02 0.31
2
2=
Sex, M/F 13/11 8/7 0.03 0.98
Body Mass Index 30 (6) 27.24(5.5) t=17 0.09
Estimated total
intracranial 1.56 (1.30) 1.50 (1.59) t=0.56 0.58

volume, liters
Illness duration,
months
CPZ equivalents

179.09 (117.72) 231.36 (140.11) - -

291.67 (144.66) - - -
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patients’ psychopharmacological prescriptions can be found in the
Supplementary Material.

Exclusion criteria were: (a) intelligence quotient below 70, (b) pre-
sent or past substance dependence (excluding caffeine and nicotine), (c)
head trauma with loss of consciousness, (d) neurological or mental
diagnosis other than schizophrenia, and (e) any other treatment
affecting the central nervous system. All participants provided written
informed consent after receiving comprehensive written information.
The local ethics committee approved the study. This work complies with
the ethical standards of the Helsinki Declaration of 1975, as revised in
2008.

2.3. MRI acquisition

For the Application Dataset, high-resolution 3D T1-weighted MRI data
were acquired using a Philips Achieva 3 T MRI unit (Philips Healthcare,
Best, The Netherlands) with a 32-channel head. For the anatomical T1-
weighted images, acquisition parameters were: Turbo Field Echo (TFE)
sequence, repetition time (TR) = 8.1 ms, echo time (TE) = 3.7 ms, flip
angle = 8°, 256 x 256 matrix size, 1 x 1 x 1 mm3 spatial resolution and
160 slices covering the whole brain. Following the image acquisition,
image segmentation and feature extraction were performed as described
for the Model Creation Dataset.

2.4. Statistical analysis

Brain Age models, as other regression models, usually suffer from
regression to the mean, a tendency to overestimate the predicted age for
younger individuals and underestimate the predicted age for older in-
dividuals. Thus, predicted age in our model was corrected using the
procedure proposed by (Cole et al., 2018). The Pyment model has no
built-in regression to the mean correction and original training data is
needed to perform (Cole et al., 2018) correction. Therefore, predicted
age for the Pyment model was not corrected. For both cases age has been
included as covariable into the analysis to remove further age bias of the
models. These analyses were:

Analysis 1, schizophrenia vs controls: In order to replicate the find-
ings in the literature of a larger Brain Age Gap in schizophrenia patients,
we used ANCOVA with Brain Age Gap as dependent variable, disease
condition as grouping variable and age, sex, BMI and eTIV as
covariables.

Analysis 2, FE vs controls: In order to compare healthy controls
against FE, we used an ANCOVA with the same covariables as in Anal-
ysis 1.

Analysis 3, predictors of Brain Age Gap: In order to assess the impact
of duration and medication on the Brain Age Gap we used a multivariate
regression analysis with Brain Age Gap as dependent variable. Age, sex,
BMI, eTIV, disease duration, chlorpromazine equivalents and interac-
tion between duration and medication were included as covariates. For
this analysis, only chronic patients were employed. As we are lacking
complete follow-up records of medication use, we included three proxy
variables of cumulative exposure in a multiple regression model: (1)
current antipsychotic dosage (chlorpromazine equivalents), (2) the
interaction between dosage and illness duration, and (3) BMI, given its
link to weight gain as a side effect.

Analyses 1, 2 and 3 are based on linear models, and therefore their
assumptions need to be fulfilled (Leppink, 2018). All assumptions are
met except for the homoscedasticity of the variance for analyses 1 and 3.
Therefore, we resorted to the Halbert-White (White, 1980) method,
since it is not sensitive to heteroscedasticity. Analysis 1 assumption of
normality of the residuals was not met. A visual examination of the Q-Q
plot proved that it was due to an outlier among the schizophrenia pa-
tients. Normality of residuals was assessed after excluding this outlier
from the analysis. Besides, results were virtually the same with or
without this outlier, with only negligible changes in the coefficients. All
the information on statistical assumptions can be found in the
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Supplementary Material. The results presented in the manuscript, based
on our transformer model, exclude this outlier.

Analysis 4, effects of current antipsychotic treatment in bipolar dis-
order: In order to further assess the influence of medication on the Brain
Age Gap we compared bipolar patients with and without current anti-
psychotic treatment. The sample size limited the statistical analysis that
could be applied, besides, the residuals of the linear model showed a
non-normal behavior (Shapiro-Wilk’s p-value = 0.05). Therefore, a
Mann-Whitney’s U test was be used for this comparison.

Variables were normalized before all analyses which were imple-
mented using Statsmodels (Seabold and Perktold, 2010). The dataset
containing the main data supporting the present results is available
(Mendeley Data doi: 10.17632/nz2wnz3vhk.1). The script containing
the main analyses are available on https://github.com/alerohe/brai
n_age_schizophrenia.

3. Results

We first assessed the accuracy of our Brain Age model. On the test set
of the Model Creation Dataset, our model obtained MAE: 6.41 Pearson’s r:
0.76. The performance metrics by sexes were. MAE = 5.30, Pearson r =
0.80 for males, and MAE = 7.20, r = 0.83 for females. Performance was
also good on healthy controls of the Application Dataset (MAE = 5.42
and a r = 0.83). After the correction of the regression towards the mean
issue we obtained MAE = 5.47 and a r = 0.83. Pyment model’s perfor-
mance was superior in the Application Dataset’s controls (MAE = 3.91, r
= 0.93). Graphical results can be seen in Fig. 3.

Analysis 1, schizophrenia vs controls: a) Transformer-based model:
The ANCOVA'’s size effect was moderate-large, with Cohen’s f2 = 0.29.
Brain Age Gap was significantly higher in patients, z = 4.70, p-value =
0.000004. The Brain Age gap mean difference between patients and
controls is 5.8 years. eTIV also significantly influenced the Brain Age
Gap with z = —2.49 p-value = 0.01.b) Pyment model: The ANCOVA’s
size effect was large, with Cohen’s f2 = 0.43. Brain Age Gap was
significantly higher in patients, z = 4.36, p-value = 0.00001. The Brain
Age gap mean difference between patients and controls is 5.92 years.
Age also significantly influenced the Brain Age Gap with z = —6,3 p-
value = 0.0000000002.

Analysis 2, FE vs controls comparison: a) Transformer-based model:
The ANCOVA'’s size effect was moderate, Cohen’s f2> = 0.17. Brain Age
Gap was significantly different between FE patients and controls, z =
3.076, p-value = 0.002. The Brain Age gap mean difference between FE
patients and controls is 4.34 years. eTIV also significantly influenced the
Brain Age Gap with z = —2.493 p-value = 0.013; b) Pyment model: The
ANCOVA'’s size effect was large, with Cohen’s f2 = 0.63. Brain Age Gap
was significantly higher in patients, z = 3.95, p-value = 0.00007. The
Brain Age gap mean difference between FE patients and controls is 9.93
years. Age also significantly influenced the Brain Age Gap with z =
—3,90 p-value = 0.0001.

Analysis 3, predictors of Brain Age Gap: a) Transformer-based model:
As seen in Table 3, none of the predictors were significantly associated
with the Brain Age Gap. Coefficients of chlorpromazine equivalents and
duration were low, indicating no meaningful relationship. b) Pyment
model: Age was the only significant regressor. Coefficients of chlor-
promazine equivalents and duration were low, indicating no meaningful
relationship, while its interaction showed a small positive correlation
with the Brain Age Gap (Table 4).

Analysis 4, effects of current antipsychotics in bipolar disorder: a)
Transformer-based model: The Mann-Whitney’s U test effect size was
small, r = 0.06. The U-stat was 185 with a p-value of 0.89. Bipolar pa-
tients under antipsychotic treatment showed a similar Brain Age Gap,
with a mean difference of approximately 0.3 years; b) Pyment model:
The Mann-Whitney’s U test effect size was small, r = 0.12. The U-stat
was 206 with a p-value of 0.46. Bipolar patients did not show any sig-
nificant difference, regardless of antipsychotic medication. The mean
difference of approximately 6 years. Note that Mann Whitneys’ U test is
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Fig. 3. Perfect correlation lines and regression lines between predicted age and chronological age for: (A) test set of the Model Creation Dataset, and (B) Application

dataset’s controls with regression towards the mean correction.

Table 3
Summary of the regression model used in Analysis 3 based on age predictions
from our transformer-based model.

Predictor Beta Coefficient ~ Standard Error  z p value

Intercept 0.63 0.37 1.73 0.08

Chlorpromazine ~0.01 0.24 007 094
equivalents

Duration 0.12 0.33 0.7 0.83

Chlorpromazine =~ ~0.05 0.26 —021 083
Equivalents x Duration

Age 0.28 0.24 -1.18 0.23

Sex —-0.37 0.41 —0.90 0.37

eTIV —0.39 0.23 —1.68 0.09

BMI 0.23 0.21 1.13 0.25

Standard errors are heteroscedasticity-consistent (HC3). Model fit: R? = 0.23, F
(7,37) =1.67,p = 0.15.

Table 4
Summary of the regression model employed in Analysis 3 using Pyment’s age
prediction.

Predictor Beta Coefficient ~ Standard Error  z p value

Intercept 0.58 0.39 1.45 0.15

Chlorpromazine ~0.04 0.28 ~015 088
Equivalents

Duration —0.05 0.33 -0.17 0.86

Chlorpromazine 0.18 0.51 037 071
Equivalents x Duration

Age -1.12 0.76 —2,98 0.003

Sex —0.47 0.55 —0.86 0.40

eTIV —0.04 0.26 —0.15 0.88

BMI 0.21 0.15 1.47 0.14

Standard errors are heteroscedasticity-consistent (HC3). Model fit: R%= 0.47,F
(7, 38) = 5.38, p = 0.0002.
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not a mean-based statistic, therefore, although the mean differences are
similar for both models’ prediction, the group comparisons may yield
different results. Boxplots for controls, all schizophrenia patients, FE and
bipolar patients can be seen in Fig. 4.

4. Discussion

Our first analysis confirmed the presence of a larger Brain Age Gap in
schizophrenia patients compared to healthy controls. As noted in the
introduction, this result is consistent with previous findings. Contrary to
prior reports, BMI did not emerge as a significant covariate in the
ANCOVA, contributing to an increased Brain Age Gap in both groups
(Chin Fatt et al., 2021). For the Pyment model the results also showed
higher Brain Age Gap in patients while age was a significant covariate.
The lack of regression to the mean correction is likely responsible for the
consistent age effect observed across analyses.

Our second analysis investigated whether an increased Brain Age
Gap is already present at the onset of the illness. Our model and Pyment
found larger Brain Age Gap in FE patients. Previous literature report
both a larger Brain Age Gap (Hajek et al., 2019; Kim et al., 2023;
Mcwhinney et al., 2021; Yi-Bin et al., 2022) and no difference compared
to controls (Salisbury et al., 2024). There could be several factors
contributing to this inconsistency in the literature. According to a recent
meta-analysis, when present, differences between FE and controls are
smaller than those observed in chronic patients (Blake et al., 2023). In
addition to the wide variety of machine learning models and input
features, these smaller differences may be more sensitive to methodo-
logical variations than the comparisons between chronic patients and
healthy controls.

Regarding FE patients, it is also important to highlight that previous
longitudinal research has shown that the Brain Age Gap emerges after
disease onset and tends to increase during the first five years following
illness onset (Schnack et al., 2016). Interestingly, however, disease
duration did not predict the Brain Age Gap in chronic schizophrenia
patients (analysis 3), which could suggest a nonlinear relationship

(B)

_ [
i

-104

BrainGAP con armo y correccion

Without antipsychotics With Antipsychotics

Fig. 4. Boxplots for: (A) controls, all schizophrenia patients and FE, and (B) bipolar disorder patients.
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between Brain Age Gap and disease duration, as also suggested by
(Schnack et al., 2016).

To investigate this nonlinear relationship, we have replicated the
analyses allowing a nonlinear fitting of the covariables and regressors.
The main results are roughly equal to the linear analyses, although a
significant nonlinear relationship between BMI and Brain Age Gap was
found when introduced as a covariable for group comparisons (analyses
1 and 2). A full description of these results is provided in the supple-
mentary material.

Although not included in the methodology of the present study, it is
of great importance to address the heterogeneity of schizophrenia
(Tandon et al., 2024). Previous work has shown that schizophrenia
patients exhibit greater variability in the volumes of the temporal cor-
tex, thalamus, putamen, and third ventricle compared to controls
(Brugger and Howes, 2017). According to our results, this is also true for
the brain age framework. The whiskers of the boxplots in Fig. 4 are
broader for patients, especially in the Pyment model. When focused on
structural brain characteristics, recent work on international datasets
has identified two separate clusters within schizophrenia (Jiang et al.,
2023, 2024a), and different epicenters of disease origin (Jiang et al.,
2024b). One subgroup has an early generalized cortical deficit, espe-
cially in the Broca’s Area, while the other subgroup has an early
subcortical deficit. Similarly, when the clustering variables comprise the
cognitive domain, one of the subgroups also presents a larger structural
atrophy in subcortical regions (Fernandez-Linsenbarth et al., 2021).
Therefore, subtypes of schizophrenia present distinct patterns of struc-
tural brain atrophy, primarily at the beginning of the disease. These
anatomical subtypes may influence the Brain Age Gap and help explain
some of the inconsistencies observed in FE previous literature. Brain age
research in schizophrenia subtyping remains scarce (Haas et al., 2022)
and further research is needed to draw conclusions.

Additionally, it is possible that some of these divergent patterns
reflect not only pathological changes, but also compensatory mecha-
nisms (Palaniyappan, 2023). Recent work has proposed that certain
structural alterations in schizophrenia—such as region-specific cortical
thickening or shifts in network centrality—may represent adaptive re-
sponses to the illness, rather than direct markers of damage (Guo et al.,
2016; Palaniyappan et al., 2019). Recognizing this possibility could help
explain some of the variability in Brain Age estimates across patients.

Another relevant feature of analyses 1 and 2 is the significant in-
fluence of eTIV on the Brain Age Gap. We conducted the same analysis
excluding eTIV from the ANCOVA. Afterwards, sex became significant in
all analyses. Our model’s predictions for males and females differed by
1.9 years in the test set. Taken together, this pattern suggests that part of
the eTIV-Brain Age Gap association may reflect sex-related differences
in head size and model behavior, given that males have larger eTIV on
average (Ruigrok et al., 2014). Besides, eTIV is not relevant in the
Pyment model (see coefficients in analysis 3), which shows no sex bias.
We consider that the inclusion of eTIV and sex as covariates validates the
findings in our model, further supported by the similar results obtained
using Pyment. Nonetheless, it provides evidence of the relevance of sex
differences in the Brain Age framework.

Our third and fourth analyses aimed to clarify the potential effects of
antipsychotic treatment on the Brain Age Gap. Antipsychotics are known
to affect brain structure, including reductions in cortical thick-
ness—particularly in the parietal lobe—and increases in basal ganglia
volume (Emsley et al., 2023; Huhtaniska et al., 2017). However, esti-
mating cumulative exposure is challenging, as treatment adherence
rates remain below 70 % according to electronic monitoring studies
(Yaegashi et al., 2020). To address this, we included three proxy vari-
ables for cumulative exposure in a multiple regression model: (1) cur-
rent antipsychotic dosage (chlorpromazine equivalents), (2) the
interaction between dosage and illness duration, and (3) BMI, given its
link to weight gain as a side effect. None of these variables was signifi-
cantly associated with Brain Age Gap—neither in our transformer-based
model, nor in Pyment. Independently of the model, BMI showed a
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positive but non-significant association with the Brain Age Gap. Since
BMI has been previously associated with increased Brain Age Gap in
healthy individuals, it is possible that the impact of antipsychotics on
brain aging is mediated by their obesogenic effects (Mcwhinney et al.,
2021). In the post-hoc non-linear replication of this analysis, neither age
nor any other regressors were significant.

To provide additional evidence regarding the effects of antipsychotic
medication, we also conducted a Mann-Whitney U test comparing bi-
polar patients receiving antipsychotic treatment with those not
receiving it. The absence of a significant difference in both models
supports the view that antipsychotics have no effect on Brain Age Gap.
To further strengthen the evidence for the null hypothesis in this anal-
ysis we have conducted a Bayesian Mann-Whitney test which yielded
similar results, —-see Supplementary Materials. Although indirect, our
proxies for medication use and accumulation provide compelling evi-
dence supporting either a null effect or even a potentially protective role
of antipsychotic medication in brain aging.

This study has several limitations. First, its cross-sectional design
limits the ability to draw causal conclusions, particularly regarding age-
related changes. A longitudinal design with a placebo-controlled group
would be more appropriate to assess the specific effects of antipsychotic
medication on brain aging. Second, our proxies for medication exposure
do not capture the pharmacological differences between antipsychotics
and may overlook variations in treatment adherence and antipsychotic
class. Third, the sample size of bipolar patients was limited, and repli-
cation in larger cohorts is necessary to validate the observed protective
effect. Fourth, although lifestyle was partially controlled for through
BMI, other relevant factors—such as smoking or physical activity, both
known to influence brain aging (Bittner et al., 2021), were not included.
Fifth, although it requires larger sample sizes, training sex-specific
models is less biased than using a unified one. Finally, future studies
should consider differences in treatment response, given the reported
relation between brain age and antipsychotic response in this group (Fan
et al., 2025).
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