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A B S T R A C T

Accelerated brain aging has been consistently reported in patients with schizophrenia. Over the past decade, 
these findings have been replicated using the Brain Age paradigm, which applies machine learning techniques to 
estimate brain age from neuroimaging data. This approach yields a single index, the Brain Age Gap, defined as 
the difference between predicted and chronological age. Nevertheless, both the progressive nature of this phe
nomenon and the potential role of antipsychotic medication remain unclear.

To investigate its progression, we compared the Brain Age Gap between individuals experiencing a first 
episode of psychosis and healthy controls using ANCOVA, adjusting for age, sex, body mass index, and estimated 
total intracranial volume. To enhance the robustness of our findings, we employed two distinct models: a 
transformer-inspired model based on harmonized volumetric brain features extracted with FastSurfer, and a 
previously trained deep learning model. To assess the potential effect of medication, we further compared bipolar 
patients who received antipsychotic treatment with those who did not. Mann-Whitney U test consistently showed 
that medicated bipolar patients did not exhibit a significantly larger Brain Age Gap.

Both models converge on the conclusion that accelerated brain aging is unlikely to be explained by antipsy
chotic medication alone. Longitudinal studies are therefore required to clarify the temporal dynamics of brain 
aging in schizophrenia.

1. Introduction

Patients with schizophrenia consistently exhibit structural brain al
terations, including diminished grey matter in the frontal and temporal 
lobes as well as in the hippocampus, as along with an enlargement of the 
third ventricle (Brugger and Howes, 2017; Haijma et al., 2013; Shepherd 
et al., 2012). In this context, it has been proposed that patients with 
schizophrenia experience accelerated aging or exhibit alterations that 
closely resemble those associated with early aging. This phenomenon 
has been substantiated through biomarkers such as oxidative stress, 
retinal degeneration, gene expression or synaptic function (Nguyen 
et al., 2018; Seeman, 2022; Shivakumar et al., 2014). This apparent 
accelerated aging is also observed in the brain (Blose et al., 2023; 
Chiapponi et al., 2013) and has been linked to cognitive decline in mood 

disorders (Ho et al., 2024).
Among various methodologies, the brain age paradigm (Franke 

et al., 2010) has emerged as a promising approach for providing an age- 
adjusted measure of structural brain health, which is especially relevant 
for investigating the intersection of aging and schizophrenia-related 
changes. This paradigm has been utilized in schizophrenia and other 
psychiatric and non-psychiatric conditions to examine the link between 
aging and disease (Ballester et al., 2022; Lieslehto et al., 2021). In this 
approach, a machine learning model is trained on neuroimaging data 
from healthy individuals to predict their chronological age. The devia
tion between an individual’s actual age and the predicted age—referred 
to as the “Brain Age Gap”, “Brain Age Gap Estimate”, or “brain-predicted 
age difference” (brain-PAD)—serves as an indicator of structural brain 
health. Studies have shown the brain age paradigm to be sensitive to a 

Abbreviations: MRI, Magnetic Resonance Imaging; BMI, Body Mass Index; FE, First Episodes; eTIV, estimated Total Intracranial Volume; MAE, mean absolute 
error.
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wide range of neurological, psychiatric, and metabolic disorders, often 
revealing a positive Brain Age Gap in conditions like Alzheimer’s dis
ease, migraine, depression, and obesity (Beheshti et al., 2020; Han et al., 
2021; Navarro-González et al., 2023; Ronan et al., 2016). Conversely, 
social and lifestyle factors such as higher levels of education, regular 
physical exercise, playing musical instruments, or engaging in medita
tion have been associated with a negative Brain Age Gap, suggesting 
potential protective effects (Luders et al., 2016; Rogenmoser et al., 2018; 
Steffener et al., 2016).

In schizophrenia, the Brain Age Gap, derived from T1-weighted brain 
MRI, has consistently been shown to be larger than in healthy in
dividuals (Constantinides et al., 2023; Kim et al., 2023; Koutsouleris 
et al., 2014; Nenadić et al., 2017; Schnack et al., 2016; Zhu et al., 2023). 
Common age-related alterations are illustrated in Fig. 1. However, 
findings regarding First Episodes (FE) are mixed. Some studies report a 
significantly higher Brain Age Gap (Hajek et al., 2019; Kim et al., 2023; 
Mcwhinney et al., 2021), while others find no significant differences 
(Salisbury et al., 2024).

An interesting result found when analyzing both grey matter 
(Schnack et al., 2016) and white matter (Wang et al., 2021) is that age 
mediates the presence of significantly larger Brain Age Gap in schizo
phrenia patients. In these studies, a larger Brain Age Gap was not found 
in young patients (Wang et al., 2021). In patients, the Brain Age appears 
to accelerate around the time of the onset, and its cumulative effect leads 
to a maximal Brain Age Gap for schizophrenia patients around 5 years 
later before stabilizing (Schnack et al., 2016). This pattern may help 
explain why a larger Brain Age Gap is not consistently found in FE.

A related but distinct consideration is the effect of antipsychotic 
medication and patients’ lifestyle on the Brain Age Gap. Progressive 
brain alterations in schizophrenia are also a consequence of antipsy
chotic medication (Moncrieff and Leo, 2010; Yang et al., 2021), its 
secondary effects and/or the lifestyle that some patients have, mainly 
sedentarism and drug abuse (Zipursky et al., 2013). Along these lines, 
(Mcwhinney et al., 2021) performed a longitudinal study where Brain 
Age Gap was calculated for first episodes of psychosis at baseline and 
follow-up. They found that Body Mass Index (BMI) predicted the ac
celeration rate of Brain Age between scans for both patients and con
trols. Besides, at follow-up, medication predicted Brain Age Gap once 
the effect of BMI was controlled. However, the authors propose that 
medication may not be the cause of a higher Brain Age Gap.

In this article, we aim to sequentially address these issues. First, we 
aim to replicate the findings in the literature regarding a larger Brain 
Age Gap in schizophrenia patients. Second, we will try to elucidate 
whether this Brain Age Gap is present at the beginning of the disease, or 
whether it depends on its duration. Finally, we will address the possible 
effect of antipsychotic medication on this Brain Age Gap. The sequence 

of the research and the statistical methods used can be seen in Fig. 2 and 
in the supplementary material. These issues will be elaborated in the 
methods section.

2. Materials and methods

2.1. Brain age model

To create and evaluate our Brain Age model, we compiled a dataset 
(hereinafter referred to as the Model Creation Dataset) consisting of 
structural T1w MRI scans from 4065 healthy subjects, drawn from our 
own database as well as from publicly available studies and repositories. 
These include: the Dallas Lifespan Brain Study (DLBS) (Park et al., 
2024); the Consortium for Reliability and Reproducibility dataset 
(CoRR) (Zuo et al., 2014); the Neurocognitive aging data release (Neu
roCog) (Spreng et al., 2022); The OASIS-1 dataset (Marcus et al., 2007); 
the Southwest University Adult Lifespan Dataset (SALD) (Wei et al., 
2018); the Information eXtraction from Images dataset (IXI) (Biomedical 
Image Analysis Group, 2023); the CamCAN repository (available at htt 
p://www.mrc-cbu.cam.ac.uk/datasets/camcan/) (Shafto et al., 2014; 
Taylor et al., 2017), the Age Risk dataset (Tisdall and Mata, 2023), the 
NIMH intramural healthy volunteer dataset (Nugent et al., 2024), the 
MR_ART dataset (Pardoe and Martin, 2021) and the Nathan Kline 
Institute (NKI) Rockland Sample. Individuals who had neurological or 
psychological diagnoses or cognitive impairments were removed from 
the OASIS, NKI and CoRR datasets. Subjects under 18 and above 65 were 
also removed to maintain the same age range as our patients and con
trols sample. The 3839 images from public databases were used for 
training and validation, while the 226 images from our database were 
used as the test set. Supplementary material presents the age and sex 
distribution of the datasets included in the “Model Creation Dataset”.

From the T1w images, we used FastSurfer (Henschel et al., 2020) to 
extract a total of 1479 features based on the Desikan-Killiany atlas 
(Desikan et al., 2006; Klein and Tourville, 2012), from which 175 
volumetric features were selected for model input. Volumetric features 
were prioritized due to their established influence on Brain Age Gap in 
schizophrenia (Ballester et al., 2023), greater robustness compared to 
intensity-based features and easier interpretability. We have applied 
ComBat-GAM to remove scanner effects while preserving biological 
variation related to age, sex, and eTIV; age was modeled as a smooth 
term, whereas sex and eTIV were modeled linearly (Pomponio et al., 
2020). See Supplementary materials for a deatiled description. 
(Pomponio et al., 2020).

We selected a transformer-based regressor model, originally devel
oped by Vaswani et al. (Vaswani et al., 2017) and here adapted to our 
specific scenario. Due to its powerful attention mechanism, transformer- 

Fig. 1. Sagittal and coronal MRI of: (A) 42 years old healthy subject, and (B) 44 years old schizophrenia patient. A generalized loss of grey matter can be seen in the 
central and frontal cortex of the patient. The patient has a 6.6 Brain Age Gap, while the control subject has a -2.6 Brain Age Gap.
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based architectures enhance the ability to capture long-distance re
lationships within the input data. The original architecture includes an 
encoder-decoder framework originally designed for natural language 
processing. However, for this regression task we have employed only the 
encoder to model the relationships within the data, and the encoder’s 
output was then fed into a regression model.

We implemented the model in PyTorch (Paszke et al., 2019) using 
the Anaconda 2.4.1 environment. The model implements a TabTrans
former encoder tailored for tabular regression over 175 numerical fea
tures. Each feature is first mapped independently into a 32-dimensional 
token via a small feed-forward block (Linear(1 → 32) + ReLU + Dropout 
(0.1)), yielding 175 tokens of size 32. These tokens are then processed by 
two stacked encoder modules: each layer performs multi-head self- 
attention over the 175 token sequence, followed by a two-stage feed- 
forward network with residual connections, layer normalization, and 
dropout to stabilize and regularize training. After the encoder, the 
output tokens are concatenated into a single 5600-dimensional vector 
(175 × 32) and fed through a final Linear regression head to predict the 
continuous target (e.g., age). The model was optimized with Adam and 
the MSELoss function and trained for 500 epochs. In order to measure 
and report the performance of the Brain Age model, we used the mean 
absolute error (MAE) and the Pearson’s correlation coefficient (r). 
Metrics will be also presented separately for males and females to ensure 
the model does not exhibit sex bias. To enhance the robustness of our 
findings we replicated the statistical analyses with the brain age derived 
from Pyment model (Leonardsen et al., 2022). The Pyment model is an 
open-source deep learning model which uses the entire MRI image as 
input. Since the two models are based on fundamentally different ap
proaches their predictions are likely driven by distinct sets of features or 
patterns. Therefore, any convergence in their results would provide 
stronger and more robust evidence for the observed effects.

2.2. Participants

A total of 87 schizophrenia patients, 39 bipolar disorder patients and 
80 controls were included in this study. This dataset will be hereinafter 
referred to as the Application Dataset. A summary of controls and 
schizophrenia patients can be seen in Table 1, while a summary of bi
polar patients is described in Table 2. A detailed description of all 

Fig. 2. Graphical summary of the samples and analyses of this research.

Table 1 
Demographic and clinical characteristics of controls and schizophrenia patients. 
These subjects were included in (controls and patients), analysis 2 (controls and 
first episodes) and analysis 3 (chronic patients).

Controls Patients First 
Episodes

Chronic 
Schizophrenia

Sample size 80 87 36 51

Age, years
31.58 
(11.93)

35.24 
(11.04)*

29.47 
(9.48) 39.31 (10.29)

Sex, M/F 44/36 49/38 19/17 30/21

Body Mass Index
24.19 
(4.1)

25.5 (5.4)
22.91 
(3.5)

27.32 (5.8)

Estimated total 
intracranial 
volume, liters

1.57 
(1.50)

1.54 
(1.71)

1.55 
(1.80) 1.53 (1.65)

Illness duration, 
months –

80.74 
(118.40)

11.34 
(18.35) 133.54 (134.43)

Diagnoses S/FE – 51/36 – –

CPZ equivalents –
390 
(249.03)

326 
(200.49)

435.14 (271.12)

* Significant difference with p-value <0.05.

Table 2 
Demographic and clinical characteristics of the bipolar patients for analysis 4.

Bipolar with 
Antipsychotics

Bipolar without 
Antipsychotics

Test 
statistic

p 
value

Sample size 24 15 – –
Age, years 39.29 (11.72) 47.49 (11.48) t = 1.02 0.31

Sex, M/F 13/11 8/7 χ2 =

0.03
0.98

Body Mass Index 30 (6) 27.24(5.5) t = 1.7 0.09
Estimated total 

intracranial 
volume, liters

1.56 (1.30) 1.50 (1.59) t = 0.56 0.58

Illness duration, 
months

179.09 (117.72) 231.36 (140.11) – –

CPZ equivalents 291.67 (144.66) – – –
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patients’ psychopharmacological prescriptions can be found in the 
Supplementary Material.

Exclusion criteria were: (a) intelligence quotient below 70, (b) pre
sent or past substance dependence (excluding caffeine and nicotine), (c) 
head trauma with loss of consciousness, (d) neurological or mental 
diagnosis other than schizophrenia, and (e) any other treatment 
affecting the central nervous system. All participants provided written 
informed consent after receiving comprehensive written information. 
The local ethics committee approved the study. This work complies with 
the ethical standards of the Helsinki Declaration of 1975, as revised in 
2008.

2.3. MRI acquisition

For the Application Dataset, high-resolution 3D T1-weighted MRI data 
were acquired using a Philips Achieva 3 T MRI unit (Philips Healthcare, 
Best, The Netherlands) with a 32-channel head. For the anatomical T1- 
weighted images, acquisition parameters were: Turbo Field Echo (TFE) 
sequence, repetition time (TR) = 8.1 ms, echo time (TE) = 3.7 ms, flip 
angle = 8◦, 256 × 256 matrix size, 1 × 1 × 1 mm3 spatial resolution and 
160 slices covering the whole brain. Following the image acquisition, 
image segmentation and feature extraction were performed as described 
for the Model Creation Dataset.

2.4. Statistical analysis

Brain Age models, as other regression models, usually suffer from 
regression to the mean, a tendency to overestimate the predicted age for 
younger individuals and underestimate the predicted age for older in
dividuals. Thus, predicted age in our model was corrected using the 
procedure proposed by (Cole et al., 2018). The Pyment model has no 
built-in regression to the mean correction and original training data is 
needed to perform (Cole et al., 2018) correction. Therefore, predicted 
age for the Pyment model was not corrected. For both cases age has been 
included as covariable into the analysis to remove further age bias of the 
models. These analyses were:

Analysis 1, schizophrenia vs controls: In order to replicate the find
ings in the literature of a larger Brain Age Gap in schizophrenia patients, 
we used ANCOVA with Brain Age Gap as dependent variable, disease 
condition as grouping variable and age, sex, BMI and eTIV as 
covariables.

Analysis 2, FE vs controls: In order to compare healthy controls 
against FE, we used an ANCOVA with the same covariables as in Anal
ysis 1.

Analysis 3, predictors of Brain Age Gap: In order to assess the impact 
of duration and medication on the Brain Age Gap we used a multivariate 
regression analysis with Brain Age Gap as dependent variable. Age, sex, 
BMI, eTIV, disease duration, chlorpromazine equivalents and interac
tion between duration and medication were included as covariates. For 
this analysis, only chronic patients were employed. As we are lacking 
complete follow-up records of medication use, we included three proxy 
variables of cumulative exposure in a multiple regression model: (1) 
current antipsychotic dosage (chlorpromazine equivalents), (2) the 
interaction between dosage and illness duration, and (3) BMI, given its 
link to weight gain as a side effect.

Analyses 1, 2 and 3 are based on linear models, and therefore their 
assumptions need to be fulfilled (Leppink, 2018). All assumptions are 
met except for the homoscedasticity of the variance for analyses 1 and 3. 
Therefore, we resorted to the Halbert-White (White, 1980) method, 
since it is not sensitive to heteroscedasticity. Analysis 1 assumption of 
normality of the residuals was not met. A visual examination of the Q-Q 
plot proved that it was due to an outlier among the schizophrenia pa
tients. Normality of residuals was assessed after excluding this outlier 
from the analysis. Besides, results were virtually the same with or 
without this outlier, with only negligible changes in the coefficients. All 
the information on statistical assumptions can be found in the 

Supplementary Material. The results presented in the manuscript, based 
on our transformer model, exclude this outlier.

Analysis 4, effects of current antipsychotic treatment in bipolar dis
order: In order to further assess the influence of medication on the Brain 
Age Gap we compared bipolar patients with and without current anti
psychotic treatment. The sample size limited the statistical analysis that 
could be applied, besides, the residuals of the linear model showed a 
non-normal behavior (Shapiro-Wilk’s p-value = 0.05). Therefore, a 
Mann-Whitney’s U test was be used for this comparison.

Variables were normalized before all analyses which were imple
mented using Statsmodels (Seabold and Perktold, 2010). The dataset 
containing the main data supporting the present results is available 
(Mendeley Data doi: 10.17632/nz2wnz3vhk.1). The script containing 
the main analyses are available on https://github.com/alerohe/brai 
n_age_schizophrenia.

3. Results

We first assessed the accuracy of our Brain Age model. On the test set 
of the Model Creation Dataset, our model obtained MAE: 6.41 Pearson’s r: 
0.76. The performance metrics by sexes were. MAE = 5.30, Pearson r =
0.80 for males, and MAE = 7.20, r = 0.83 for females. Performance was 
also good on healthy controls of the Application Dataset (MAE = 5.42 
and a r = 0.83). After the correction of the regression towards the mean 
issue we obtained MAE = 5.47 and a r = 0.83. Pyment model’s perfor
mance was superior in the Application Dataset’s controls (MAE = 3.91, r 
= 0.93). Graphical results can be seen in Fig. 3.

Analysis 1, schizophrenia vs controls: a) Transformer-based model: 
The ANCOVA’s size effect was moderate-large, with Cohen’s f2 = 0.29. 
Brain Age Gap was significantly higher in patients, z = 4.70, p-value =
0.000004. The Brain Age gap mean difference between patients and 
controls is 5.8 years. eTIV also significantly influenced the Brain Age 
Gap with z = − 2.49 p-value = 0.01.b) Pyment model: The ANCOVA’s 
size effect was large, with Cohen’s f2 = 0.43. Brain Age Gap was 
significantly higher in patients, z = 4.36, p-value = 0.00001. The Brain 
Age gap mean difference between patients and controls is 5.92 years. 
Age also significantly influenced the Brain Age Gap with z = − 6,3 p- 
value = 0.0000000002.

Analysis 2, FE vs controls comparison: a) Transformer-based model: 
The ANCOVA’s size effect was moderate, Cohen’s f2 = 0.17. Brain Age 
Gap was significantly different between FE patients and controls, z =
3.076, p-value = 0.002. The Brain Age gap mean difference between FE 
patients and controls is 4.34 years. eTIV also significantly influenced the 
Brain Age Gap with z = − 2.493 p-value = 0.013; b) Pyment model: The 
ANCOVA’s size effect was large, with Cohen’s f2 = 0.63. Brain Age Gap 
was significantly higher in patients, z = 3.95, p-value = 0.00007. The 
Brain Age gap mean difference between FE patients and controls is 9.93 
years. Age also significantly influenced the Brain Age Gap with z =
− 3,90 p-value = 0.0001.

Analysis 3, predictors of Brain Age Gap: a) Transformer-based model: 
As seen in Table 3, none of the predictors were significantly associated 
with the Brain Age Gap. Coefficients of chlorpromazine equivalents and 
duration were low, indicating no meaningful relationship. b) Pyment 
model: Age was the only significant regressor. Coefficients of chlor
promazine equivalents and duration were low, indicating no meaningful 
relationship, while its interaction showed a small positive correlation 
with the Brain Age Gap (Table 4).

Analysis 4, effects of current antipsychotics in bipolar disorder: a) 
Transformer-based model: The Mann-Whitney’s U test effect size was 
small, r = 0.06. The U-stat was 185 with a p-value of 0.89. Bipolar pa
tients under antipsychotic treatment showed a similar Brain Age Gap, 
with a mean difference of approximately 0.3 years; b) Pyment model: 
The Mann-Whitney’s U test effect size was small, r = 0.12. The U-stat 
was 206 with a p-value of 0.46. Bipolar patients did not show any sig
nificant difference, regardless of antipsychotic medication. The mean 
difference of approximately 6 years. Note that Mann Whitneys’ U test is 
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not a mean-based statistic, therefore, although the mean differences are 
similar for both models’ prediction, the group comparisons may yield 
different results. Boxplots for controls, all schizophrenia patients, FE and 
bipolar patients can be seen in Fig. 4.

4. Discussion

Our first analysis confirmed the presence of a larger Brain Age Gap in 
schizophrenia patients compared to healthy controls. As noted in the 
introduction, this result is consistent with previous findings. Contrary to 
prior reports, BMI did not emerge as a significant covariate in the 
ANCOVA, contributing to an increased Brain Age Gap in both groups 
(Chin Fatt et al., 2021). For the Pyment model the results also showed 
higher Brain Age Gap in patients while age was a significant covariate. 
The lack of regression to the mean correction is likely responsible for the 
consistent age effect observed across analyses.

Our second analysis investigated whether an increased Brain Age 
Gap is already present at the onset of the illness. Our model and Pyment 
found larger Brain Age Gap in FE patients. Previous literature report 
both a larger Brain Age Gap (Hajek et al., 2019; Kim et al., 2023; 
Mcwhinney et al., 2021; Yi-Bin et al., 2022) and no difference compared 
to controls (Salisbury et al., 2024). There could be several factors 
contributing to this inconsistency in the literature. According to a recent 
meta-analysis, when present, differences between FE and controls are 
smaller than those observed in chronic patients (Blake et al., 2023). In 
addition to the wide variety of machine learning models and input 
features, these smaller differences may be more sensitive to methodo
logical variations than the comparisons between chronic patients and 
healthy controls.

Regarding FE patients, it is also important to highlight that previous 
longitudinal research has shown that the Brain Age Gap emerges after 
disease onset and tends to increase during the first five years following 
illness onset (Schnack et al., 2016). Interestingly, however, disease 
duration did not predict the Brain Age Gap in chronic schizophrenia 
patients (analysis 3), which could suggest a nonlinear relationship 

Fig. 3. Perfect correlation lines and regression lines between predicted age and chronological age for: (A) test set of the Model Creation Dataset, and (B) Application 
dataset’s controls with regression towards the mean correction.

Table 3 
Summary of the regression model used in Analysis 3 based on age predictions 
from our transformer-based model.

Predictor Beta Coefficient Standard Error z p value

Intercept 0.63 0.37 1.73 0.08
Chlorpromazine 

equivalents
− 0.01 0.24 − 0.07 0.94

Duration 0.12 0.33 0.7 0.83
Chlorpromazine 

Equivalents x Duration
− 0.05 0.26 − 0.21 0.83

Age 0.28 0.24 − 1.18 0.23
Sex − 0.37 0.41 − 0.90 0.37
eTIV − 0.39 0.23 − 1.68 0.09
BMI 0.23 0.21 1.13 0.25

Standard errors are heteroscedasticity-consistent (HC3). Model fit: R2 = 0.23, F 
(7, 37) = 1.67, p = 0.15.

Table 4 
Summary of the regression model employed in Analysis 3 using Pyment’s age 
prediction.

Predictor Beta Coefficient Standard Error z p value

Intercept 0.58 0.39 1.45 0.15
Chlorpromazine 

Equivalents
− 0.04 0.28 − 0.15 0.88

Duration − 0.05 0.33 − 0.17 0.86
Chlorpromazine 

Equivalents x Duration 0.18 0.51 0.37 0.71

Age − 1.12 0.76 − 2,98 0.003
Sex − 0.47 0.55 − 0.86 0.40
eTIV − 0.04 0.26 − 0.15 0.88
BMI 0.21 0.15 1.47 0.14

Standard errors are heteroscedasticity-consistent (HC3). Model fit: R2 = 0.47, F 
(7, 38) = 5.38, p = 0.0002.

Fig. 4. Boxplots for: (A) controls, all schizophrenia patients and FE, and (B) bipolar disorder patients.
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between Brain Age Gap and disease duration, as also suggested by 
(Schnack et al., 2016).

To investigate this nonlinear relationship, we have replicated the 
analyses allowing a nonlinear fitting of the covariables and regressors. 
The main results are roughly equal to the linear analyses, although a 
significant nonlinear relationship between BMI and Brain Age Gap was 
found when introduced as a covariable for group comparisons (analyses 
1 and 2). A full description of these results is provided in the supple
mentary material.

Although not included in the methodology of the present study, it is 
of great importance to address the heterogeneity of schizophrenia 
(Tandon et al., 2024). Previous work has shown that schizophrenia 
patients exhibit greater variability in the volumes of the temporal cor
tex, thalamus, putamen, and third ventricle compared to controls 
(Brugger and Howes, 2017). According to our results, this is also true for 
the brain age framework. The whiskers of the boxplots in Fig. 4 are 
broader for patients, especially in the Pyment model. When focused on 
structural brain characteristics, recent work on international datasets 
has identified two separate clusters within schizophrenia (Jiang et al., 
2023, 2024a), and different epicenters of disease origin (Jiang et al., 
2024b). One subgroup has an early generalized cortical deficit, espe
cially in the Broca’s Area, while the other subgroup has an early 
subcortical deficit. Similarly, when the clustering variables comprise the 
cognitive domain, one of the subgroups also presents a larger structural 
atrophy in subcortical regions (Fernández-Linsenbarth et al., 2021). 
Therefore, subtypes of schizophrenia present distinct patterns of struc
tural brain atrophy, primarily at the beginning of the disease. These 
anatomical subtypes may influence the Brain Age Gap and help explain 
some of the inconsistencies observed in FE previous literature. Brain age 
research in schizophrenia subtyping remains scarce (Haas et al., 2022) 
and further research is needed to draw conclusions.

Additionally, it is possible that some of these divergent patterns 
reflect not only pathological changes, but also compensatory mecha
nisms (Palaniyappan, 2023). Recent work has proposed that certain 
structural alterations in schizophrenia—such as region-specific cortical 
thickening or shifts in network centrality—may represent adaptive re
sponses to the illness, rather than direct markers of damage (Guo et al., 
2016; Palaniyappan et al., 2019). Recognizing this possibility could help 
explain some of the variability in Brain Age estimates across patients.

Another relevant feature of analyses 1 and 2 is the significant in
fluence of eTIV on the Brain Age Gap. We conducted the same analysis 
excluding eTIV from the ANCOVA. Afterwards, sex became significant in 
all analyses. Our model’s predictions for males and females differed by 
1.9 years in the test set. Taken together, this pattern suggests that part of 
the eTIV–Brain Age Gap association may reflect sex-related differences 
in head size and model behavior, given that males have larger eTIV on 
average (Ruigrok et al., 2014). Besides, eTIV is not relevant in the 
Pyment model (see coefficients in analysis 3), which shows no sex bias. 
We consider that the inclusion of eTIV and sex as covariates validates the 
findings in our model, further supported by the similar results obtained 
using Pyment. Nonetheless, it provides evidence of the relevance of sex 
differences in the Brain Age framework.

Our third and fourth analyses aimed to clarify the potential effects of 
antipsychotic treatment on the Brain Age Gap. Antipsychotics are known 
to affect brain structure, including reductions in cortical thick
ness—particularly in the parietal lobe—and increases in basal ganglia 
volume (Emsley et al., 2023; Huhtaniska et al., 2017). However, esti
mating cumulative exposure is challenging, as treatment adherence 
rates remain below 70 % according to electronic monitoring studies 
(Yaegashi et al., 2020). To address this, we included three proxy vari
ables for cumulative exposure in a multiple regression model: (1) cur
rent antipsychotic dosage (chlorpromazine equivalents), (2) the 
interaction between dosage and illness duration, and (3) BMI, given its 
link to weight gain as a side effect. None of these variables was signifi
cantly associated with Brain Age Gap—neither in our transformer-based 
model, nor in Pyment. Independently of the model, BMI showed a 

positive but non-significant association with the Brain Age Gap. Since 
BMI has been previously associated with increased Brain Age Gap in 
healthy individuals, it is possible that the impact of antipsychotics on 
brain aging is mediated by their obesogenic effects (Mcwhinney et al., 
2021). In the post-hoc non-linear replication of this analysis, neither age 
nor any other regressors were significant.

To provide additional evidence regarding the effects of antipsychotic 
medication, we also conducted a Mann-Whitney U test comparing bi
polar patients receiving antipsychotic treatment with those not 
receiving it. The absence of a significant difference in both models 
supports the view that antipsychotics have no effect on Brain Age Gap. 
To further strengthen the evidence for the null hypothesis in this anal
ysis we have conducted a Bayesian Mann-Whitney test which yielded 
similar results, − -see Supplementary Materials. Although indirect, our 
proxies for medication use and accumulation provide compelling evi
dence supporting either a null effect or even a potentially protective role 
of antipsychotic medication in brain aging.

This study has several limitations. First, its cross-sectional design 
limits the ability to draw causal conclusions, particularly regarding age- 
related changes. A longitudinal design with a placebo-controlled group 
would be more appropriate to assess the specific effects of antipsychotic 
medication on brain aging. Second, our proxies for medication exposure 
do not capture the pharmacological differences between antipsychotics 
and may overlook variations in treatment adherence and antipsychotic 
class. Third, the sample size of bipolar patients was limited, and repli
cation in larger cohorts is necessary to validate the observed protective 
effect. Fourth, although lifestyle was partially controlled for through 
BMI, other relevant factors—such as smoking or physical activity, both 
known to influence brain aging (Bittner et al., 2021), were not included. 
Fifth, although it requires larger sample sizes, training sex-specific 
models is less biased than using a unified one. Finally, future studies 
should consider differences in treatment response, given the reported 
relation between brain age and antipsychotic response in this group (Fan 
et al., 2025).
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