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Abstract- Background and objective. The aim of this study was to assess the utility of
bispectrum-based oximetry approaches as a complementary tool to traditional
techniques in the screening of pediatric sleep apnea-hypopnea syndrome (SAHS).
Methods: 298 blood oxygen saturation (SpO:) signals from children ranging 0-13 years
of age were recorded during overnight polysomnography (PSG). These recordings were
divided into three severity groups according to the PSG-derived apnea hypopnea index
(AHI): AHI<S events per hour (e/h), 5S<AHI<10 e/h, AHI>10 e/h. For each pediatric
subject, anthropometric variables, 3% oxygen desaturation index (ODI3) and spectral
features from power spectral density (PSD) and bispectrum were obtained. Then, the
fast correlation-based filter (FCBF) was applied to select a subset of relevant features
that may be complementary, excluding those that are redundant. The selected features
fed a multiclass multi-layer perceptron (MLP) neural network to build a model to
estimate the SAHS severity degrees. Results: An optimum subset with features from all
the proposed methodological approaches was obtained: variables from bispectrum, as
well as PSD, ODI3, Age, and Sex. In the 3-class classification task, the MLP model
trained with these features achieved an accuracy of 76.0% and a Cohen’s kappa of 0.56
in an independent test set. Additionally, high accuracies were reached using the AHI
cutoffs for diagnosis of moderate (AHI=5 e/h) and severe (AHI=10 e/h) SAHS: 81.3%
and 85.3%, respectively. These results outperformed the diagnostic ability of a MLP
model built without using bispectral features. Conclusions: Our results suggest that
bispectrum provides additional information to anthropometric variables, ODI3 and PSD
regarding characterization of changes in the SpO. signal caused by respiratory events.
Thus, oximetry bispectrum can be a useful tool to provide complementary information

for screening of moderate-to-severe pediatric SAHS.
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1. INTRODUCTION

Childhood sleep apnea-hypopnea syndrome (SAHS) is a breathing disorder
characterized by recurrent episodes of complete cessation (apnea) and/or significant
reduction (hypopnea) of airflow during sleep due to the presence of increased upper
airway collapsibility [1]. According to the American Academy of Pediatrics (AAP),
SAHS has a prevalence in the range of 1% to 5% and it may impose many adverse
effects on the health and development of infants and young children, such as
neurocognitive deficits, cardio-metabolic dysfunction, and somatic growth stunting [1].

The gold standard test for pediatric SAHS diagnosis is overnight
polysomnography (PSG). PSG requires the patient to spend the night in a specialized
sleep laboratory while recording a wide range of biomedical signals [2,3]. Thus, PSG is
costly and complex due to the necessary expensive equipment and intensive labor of
medical personnel. It is also especially intrusive for children, due to the use of multiple
sensors, and shows limited availability in most places around the world [4,5].

These drawbacks, together with the relatively high prevalence of the disease, have
led the scientific community to explore the use of simplified screening tests [4]. The
guidelines of the AAP recommend performing alternative tests when PSG is not
available while requiring more conclusive evidences about the efficacy of these tests
[1]. Thus, a commonly used approach has been the assessment of a reduced set of
cardiorespiratory recordings. Cardiorespiratory signals contain essential information
about the alterations produced by apneic events in the electrocardiogram (ECG) [6],
pulse rate variability (PRV) [7,8], airflow (AF) [9], photopletysmography [10],
oximetry [7,9,11-19], and acoustic pulmonary sounds [20,21]. Among these

approaches, nocturnal oximetry is the alternative most frequently advocated. In the
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nocturnal oximetry, pulse rate and blood oxygen saturation (SpO.) signals are recorded
with a pulse oximeter probe, typically placed on the earlobe, finger, or toe [22].
Moreover, SpO2 signals can be recorded in an unsupervised way at the patient’s home
due to the development of commercial portable pulse oximeters [4,7]. Previous studies
have shown the utility of the SpO- signal to assist in the SAHS diagnosis in both adults
[23,24] and children [7,9,11-19]. In this study, we aim at gaining further insights into
the diagnostic ability of the SpO> signal in the screening of pediatric SAHS.

Different techniques have been reported to automatically analyze biomedical
signals in the context of SAHS. Several studies have assessed the performance of
frequency domain features, which reflects the duration and periodicity of respiratory
events in children [6-10,18-21]. Power Spectral Density (PSD) is the most common
spectral analysis technique in these studies [6-9,18-21]. However, the information
present in the PSD cannot characterize phase relationships and deviations from
gaussianity in a signal [25]. By contrast, bispectrum is a frequency domain technique
defined as the spectral representation of the third order statistic that contains
information about the phase of the Fourier transform of a time series. It can detect
deviations from linearity, stationarity, and gaussianity in the signal, such as those
produced in physiological recordings by respiratory events [25].

Based on the aforementioned considerations, we hypothesized that bispectrum
analytic could provide additional information about respiratory events, thus being a
complementary tool to ODI3, anthropometric variables, and PSD parameters. Therefore,
the aim of this study was to evaluate the complementarity of bispectrum to traditional
approaches in the screening of pediatric SAHS using SpO; recordings.

We conducted our study in three phases: feature extraction, feature selection, and

feature classification. First, anthropometric variables, ODI3 [26], and spectral features



from PSD and bispectrum were obtained. Then, the fast correlation-based filter (FCBF)
method [27] was applied to select a smaller subset of relevant and non-redundant
features. Finally, a multi-layer perceptron (MLP) neural network [23] was applied to
this optimum subset for multiclass (3-class) classification in order to estimate the SAHS

severity degrees according to the apnea-hypopnea index (AHI) from standard PSG.

2. SUBJECTS AND SIGNALS UNDER STUDY

The dataset was composed of 298 children (166 boys and 132 girls) ranging 0-13
years of age. All children were consecutively and prospectively referred to the Pediatric
Sleep Unit at the University of Chicago Medicine Comer Children’s Hospital (Chicago,
IL, USA) due to clinical symptoms and physical examination findings leading to the
clinical suspicion of SAHS. In all participants, an informed consent was obtained as a
prerequisite to be included in the study. The Ethical Committee of the University of

Chicago Medicine Comer Children’s Hospital approved the protocol.

Sleep was monitored using a digital polysomnography system (Polysmith; Nihon
Kohden America Inc., CA, USA). SpO> recordings were acquired during overnight PSG
at a sampling rate of 25 Hz. They were exported and processed offline. Artifacts were
discarded from oximetric recordings by removing SpO> values below 50% and sudden

changes between consecutive SpO> sampling intervals >4%/second [28].

Sleep and cardiorespiratory events were scored and quantified by specialized
technologists who were unaware of the study purpose, and AHI was estimated
according to the American Academy of Sleep Medicine guidelines. In this regard, there
i1s no consensus about the AHI cutoff used to determine SAHS in infants [1-3,29,30].
However, a wide range of studies typically classify children showing 5<AHI<10 e/h as

moderate SAHS and children with AHI >10 e/h as severe SAHS [2,3,29,30]. Hence, we
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have classified the subjects under study into the three groups defined by these

commonly used thresholds (AHI<S e/h, 5<AHI<10 e/h, and AHI>10 e/h).

The dataset was randomly divided into three sets: feature optimization set (25%),
training set (50%), and test set (25%). The first set (feature optimization set) was
employed to optimize the feature extraction stage and obtain an optimum subset of
features with FCBF. A bootstrap procedure was applied to select the optimum features
in order to select a generalizer optimum subset of features [31]. The second set (training
set) was used to select the optimal design parameters of the MLP classifier as well as
train the MLP model. Ten-fold cross validation was used to emulate a different dataset
when optimizing the MLP design parameters [32]. Finally, the third set (test set) was
employed to assess the diagnostic performance of our proposal in an independent
dataset (unknown data). Table 1 shows clinical and demographic data of the population
under study. No statistically significant differences (p-value < 0.05) were found in the

Age and Body Mass Index (BMI) between the three groups.

PLEASE, DISPLAY TABLE 1 AROUND HERE

3. METHODS

3.1. Feature Extraction

Four clinical and signal processing approaches were applied to each subject:
anthropometric, ODI3, and PSD and bispectrum, which lead to an initial feature set

composed of 22 features.

3.1.1. Anthropometric variables

Age, sex and BMI were acquired for each child since the prevalence of childhood

SAHS has been associated with these factors in previous studies [1].

7



3.1.2. Oxygen desaturation index

In order to obtain information about the number of desaturations produced by
respiratory events, ODI3 was computed for each SpO; recording [2]. The definition of a
desaturation event employed for computing ODI3 is based in the study developed by
Taha et al. [26]. In this study, a desaturation event occurs when SpO; value decreases at
least by 3% with respect to the preceding baseline levels, at a rate between 0.1% and
4% per second, and the SpO> value subsequently returns to the baseline level or
increases by at least 3% with respect to the preceding minimum value. The total

duration of the event must be between 10 and 60 seconds.
3.1.3. Power Spectral Density (PSD)

PSD was estimated for each SpO: recording to explore differences in the spectral
information of SpO> signals associated to the duration and recurrence of apneic events.
Welch’s method was used to estimate PSDs [33], using a Hamming window of 5
minutes (7500 samples) with 50% overlap and a discrete Fourier transform (DFT) of 214
points.

According to previous research in the context of childhood SAHS diagnosis [9], a
frequency band of interest was determined as the frequency region of the PSD where
there were statistically significant differences (p-value under 0.05) between severity
groups (AHI<S e/h, 5<AHI<10 e/h, and AHI>10 e/h) in the feature optimization set. P-
value was computed between the PSD amplitudes for each pair of severity groups at
each frequency using the non-parametric Mann-Whitney U test. Accordingly, our band
of interest was 0.018-0.050 Hz. In this band, higher PSD amplitude is obtained as the
severity of SAHS increases.

The following parameters of the PSD were computed in the band of interest:

e First to fourth-order statistical moments (M1/-M4f) of the PSD amplitudes.
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The mean (M1f), variance (M2f), skewness (M3f) and kurtosis (MA4f)
quantify the central tendency, dispersion, asymmetry and peakedness of
the power spectrum, respectively.

Relative power (Pr). Pr is defined as the ratio between the power (area
enclosed under the PSD) in the band of interest and the total signal power.
Maximum amplitude (MA4) and minimum amplitude (mA) of the PSD.
Spectral entropy (SE), is a irregularity measure which quantifies the
flatness of the PSD [34].

Mobility (Mb). It is a Hjorth descriptor, which measures the concentration
of the signal power. It is defined as the squared root of the ratio between

the variance (M2f) and the signal power [35].

3.1.4. Bispectrum

High order spectra (HOS) are representations in the frequency domain of high

order cumulants of a random process [25]. PSD is the Fourier transform of the second-

order cumulant, while bispectrum and trispectrum are the spectral representations of the

third- and fourth-order cumulant, respectively [25]. Bispectrum can be described as a

spectral decomposition of the skewness of a signal over frequency. In contrast to

conventional PSD, bispectrum contains additional information about the phase

relationships and deviations from gaussianity, linearity, and stationarity of a signal [25].

Let be x(n) a deterministic and zero-mean signal, the bispectrum is expressed in

terms of the Fourier transform of the signal X(f) [25]:
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where fi and f> are the frequency indices. Due to the symmetry conditions of the
bispectrum, it is sufficient to evaluate the bispectrum in the triangular region (€2) that
satisfies f> >0, /2 >f1, fi + f> < f/2, where f; is the sampling frequency of the signal [25].
In this study, bispectrum was estimated with a non-parametric approach using a
Hamming window of 5 minutes with 50% overlap and a DFT of 2!* points. Figure 1
shows the averaged magnitude of the bispectrum for the three severity groups. Notice
that higher amplitude in the bispectrum is observed at frequencies below 0.03 Hz, as the

SAHS severity increases.

PLEASE, DISPLAY FIGURE 1 AROUND HERE

The following bispectral features were extracted in the region Q to quantify the

differences in the bispectrum between groups [36,37]:
e Mean amplitude of the bispectrum (MB1). This parameter is intended to
differentiate between signals with similar PSD but different bispectrum

[37]:

MBI:z S B(f,. /). )

hifreQ
where L is the number of points in region Q.

e Sum of logarithmic amplitudes of the bispectrum (H1), sum of logarithmic
amplitudes of elements in the diagonal of the bispectrum (/2), and first-
order spectral moment of amplitudes of elements in the diagonal of the
bispectrum (H3) [36]. These parameters are related to the moments of the
bispectrum [36]:
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where Quiqgonar 1S the diagonal of the bispectrum.
Normalized bispectral entropy (BE1) and normalized bispectral squared
entropy (BE2), which quantify regularity in the amplitude of the

bispectrum [37]:
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Phase entropy (PE), which measures regularity in the phase of the
bispectrum [37]:
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where ¢ is the phase angle of the bispectrum, /nd(-) is the indicator
function, whose value is 1 if ¢ is within the range of histogram bins w,,
and N is the number of bins of the histogram, being calculated according
to Doane’s rule [38].

Mean (meanPa) and variance (varPa) of the bispectrum invariant (P(a)).
These features identify a chaotic process with third-order time correlations
or phase coupling between spectral components [37]. P(a) is the phase of

the integrated bispectrum along a radial with slope a [37]:

Pla)= arctan( j%} (13)

where [(a) and Ii(a) are the real and imaginary part of /(a):

Ko
1(a)="[B(f,.af,)df, =1,(a)+ j I,(a), (14)
£i=0"
for 0<a<l.
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3.2. Feature selection: Fast Correlation-Based Filter (FCBF)

After the feature extraction stage, FCBF is applied to select a subset of relevant
and non-redundant features [27]. FCBF has previously shown its utility in the context of
adult SAHS diagnosis [39]. It is based on symmetrical uncertainty (SU), which is a
normalization of the information gain (/G) between two variables [27]. First, features
are ranked from the most relevant ones (highest SU with the AHI). Then, the features
considered redundant with respect to features that are more relevant were discarded.
Thus, an optimum subset with the most relevant and non-redundant features is obtained
[27].

In order to compose an optimum feature subset independent of a particular
dataset, 1000 bootstrap replicates were built from our feature optimization set so that
the FCBF method was applied to each bootstrapping subset [31,40]. An optimum subset

composed of the variables that appear at least in 500 runs was selected.
3.3. Feature classification: Multi-layer Perceptron (MLP) neural network

Artificial neural network are mathematical models inspired in the human brain
[41]. MLP are probably the most widely used neural network and it has already proven
its usefulness in the context of adult SAHS diagnosis with SpO; recordings [23]. Its
architecture consists on several interconnected layers (input, hidden, and output layers)
composed of simple units called perceptrons. Each unit is characterized by an activation
function and adaptive weights representing connections with units from the subsequent
layer.

Since our problem is a 3-class classification task, the output layer has three output
neurons, each one representing the posterior probability of belonging to each group. In
addition, a configuration with a single hidden layer has been implemented, which may

provide universal approximation to any function [41]. Weights of the network are
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randomly initialized. Then, they are optimized using the scaled conjugate gradient with
weight-decay regularization. It is used to minimize the cross-entropy error function and
achieve good generalization, as recommended for classification tasks [41].

The Netlab toolbox was used to implement our MLP classifier [42]. A very
complex MLP model leads to overfitting, whereas a very simple model leads to under-
fitting. Thus, the design parameters of the MLP (the number of units in the hidden layer
(Nm) and the regularization parameter («)) were optimized by means of 10-fold cross-
validation using the training set. Then, the MLP model was built using the whole

training set with the optimum design parameters.

3.4. Statistical Analysis and Diagnostic Performance

The Mann Whitney U test and the Kruskal Wallis test were used to assess
statistical differences (p-value <0.05) between groups. The Bonferroni correction was
applied to deal with multiple comparisons. Diagnostic ability of the MLP network was
assessed by means of sensitivity (Se, percentage of SAHS positive patients correctly
classified), specificity (Sp, percentage of SAHS negative children correctly classified),
positive predictive value (PPV, proportion of subjects classified as positive that are true
positives), negative predictive value (NPV, proportion of subjects classified as negative
that are true negatives), positive likelihood ratio (LR+, likelihood ratio for subjects
classified as positive), negative likelihood ratio (LR-, likelihood ratio for subjects
classified as negative), accuracy (Acc, percentage of subjects correctly classified), and

Cohen’s kappa index (kappa) [43].

4. RESULTS

4.1. Feature optimization and selection

A total of 22 features were obtained for each subject: 3 anthropometric variables,
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ODI3, 9 parameters from PSD, and 9 bispectral features. Table 2 displays the values of
these features for each SAHS severity group in the feature optimization set (median
[interquartile range]), along with their corresponding p-values. ODI3, 6 out of 9 features
from PSD (M1f, M2f, MA, mA, SE, and Mb) and 4 out of 9 features from bispectrum
(MB1, H1, H2, and H3) showed statistical significant differences (p-value <0.05). These

features showed higher values as the severity of SAHS increased.

PLEASE, DISPLAY TABLE 2 AROUND HERE

In order to assess the complementarity of bispectrum with respect to the other
methodological approaches, two different feature sets were composed. The first one
(setnobis) consisting of all but bispectrum features and the second one (setvis) consisting
of all extracted features. FCBF was applied to each bootstrap replication generated with
these feature sets (setnobis and setvis) using only the feature optimization group. In both
cases, an optimum subset composed of the features selected at least 500 times was
obtained. The optimum subset derived when applying FCBF to setobis (Subsetnobis) was
composed of 3 anthropometric features (4ge, Sex, and BMI), ODI3, and 5 features from
the PSD (M1f, M2f, MA, Pr, and Mb). Regarding the optimum subset obtained when
applying FCBF to setyis (subsetyis), it was composed of 2 anthropometric features (Age
and Sex), ODI3, 5 features from the PSD (M1f, M2f, MA, Pr, and Mb), and 2 bispectral
features (MB1 and meanPa). Notice that two bispectral features were selected: one

amplitude bispectral feature (MB1) and one phase bispectral feature (meanPa).
4.2. Model optimization and training

Two MLP networks fed with these optimum subsets of features obtained with

FCBF (MLPnobis: subsetaobis; MLPyis: subsetyis) were designed and trained using the
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training set. Ny was varied from 2 up to 50, while a was varied from 0 up to 5. Kappa
was obtained through ten-fold cross validation for each Ny-o pair, and the optimum
values for Ny and a were obtained as those for which kappa was higher. Due to the
dependence of the network to the initial random values of the weights, kappa was
computed and averaged for a total of 10 runs for each Np-a pair. Finally, user-
dependent network parameters Ny = 3 and a = 1 were chosen using subsetnobis and Ny =
4 and o = 2 were chosen using subsetyis, since those pairs reached the highest kappa.
The entire training set was used to train the corresponding MLP models in both cases

(MLPnles al’ld MLPb]s).
4.3. Diagnostic performance assessment

Table 3 shows the confusion matrices of the MLP models (MLPuobis and MLPyis)
in the test group. These matrices show the class estimated by our MLP classifiers for
each subject versus the actual SAHS severity group of the subjects in the test set. The
overall accuracies (sum of the main diagonal elements) of these models in the test set
were 69.3% (MLPuobis) and 76.0% (MLPy;s), whereas the 3-class kappa values were 0.45
(MLPhrobis) and 0.56 (MLPyis). Table 4 shows the diagnostic ability of these models for
AHI cutoffs = 5 and 10 e/h.

Notice that the results obtained with the model MLPy;s outperformed MLPyobis in

terms of Se, Sp, PPV, NPV, LR, LR-, Acc, and kappa for both cutoffs.

PLEASE, DISPLAY TABLE 3 AROUND HERE

PLEASE, DISPLAY TABLE 4 AROUND HERE
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5. DISCUSSION

This study assessed the usefulness of bispectrum to provide additional information
from SpO; recordings in the screening of pediatric SAHS. The results obtained with our
proposed approach suggest that the information provided by bispectrum is relevant and
complementary.

Our findings showed that significantly higher values in 4 out of 9 features from
bispectrum (MB1, H1, H2, and H3) are present in the subjects with the most severe
degrees of SAHS. The statistical differences between groups of these bispectral features
are consistent with the higher values of the bispectrum observed in Fig 1. MLPyis, which
was fed with optimum features from all signal processing approaches, outperformed the
neural network without information from bispectrum (MLPnobis). Regarding the
optimum feature subset, FCBF automatically selected Age, Sex (anthropometric); ODI3
(oximetric index); M1f, M2f, MA, Pr, Mb (PSD), MB1 and meanPa (bispectrum).
Moreover, the results obtained in this stage suggest that information from bispectrum-
based variables is complementary to that obtained from conventional approaches.

In the test set, the proposed 3-class neural network (MLPy;s) achieved an overall
Acc of 76%, as well as kappa=0.56, with 81.3% Acc and 85.3% Acc for the common
cutoffs AHI=5 e/h and AHI=10 e/h, respectively. It is remarkable to say that, with our
MLP model (MLPyis), a high positive predictive value (95.5%) is obtained for an AHI
cutoff of 5 e/h, whereas a high negative predictive value (86.7%) is obtained for an AHI
cutoff of 10 e/h. These cutoffs (5 and 10 e/h) were not arbitrary selected. They are
commonly employed in clinical settings to define the boundary for moderate
(5<AHI<10 e/h) and severe (AHI>10 e/h) SAHS [2,3,29,30]. For patients with an
AHI>5 e/h, treatment with adenotonsillectomy is recommended [2]. Furthermore,

children with an AHI>10 e/h have an increased risk for cardiac strain and overnight
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observation is recommended after treatment. In this sense, continuous positive airway
pressure (CPAP) is recommended in these cases when other treatment strategies such as
surgery have failed [2].

To the best of our knowledege, this is the first study in the context of pediatric
SAHS using bispectrum. Two parameters from bispectrum, MB1 and meanPa, were
involved in the optimum feature subset obtained with FCBF. These features contain
information about the amplitude (MB1) and the phase (meanPa) of the bispectrum.
Thus, the changes in the amplitude and phase of the bispectrum of oximetric recordings
detected by MB1 and meanPa can provide additional information about oximetry
recordings to assist in pediatric SAHS screening.

Table 5 shows the performance of previous research focused on the use of SpO»
recordings in the screening of pediatric SAHS [7,9,11-19]. ODI has been used for this
task [11,12]. Kirk et al. [11] reached 67% Se, 60% Sp, and 64% Acc (AHI>5) using
ODI3. Tsai et al. [12] reported 79.0% Acc for AHI>1 (77.7% Se and 88.9% Sp), 85.1%
Acc for AHI>5 (83.8% Se and 86.5% Sp), and 87.1% Acc for AHI>10 (89.1% Se and
86.0% Sp) using 4% ODI (ODI4) in a multiclass task. Nevertheless, in this study, ODI4
cutoff values for each severity group were optimized and validated using the same
population [12].

Clusters of desaturations have been also assessed [13—15]. Brouillette et al. [13]
achieved 42.9% Se, 97.8% Sp, and 64.8% Acc (AHI>1), whereas Velasco et al. [14]
reached 86.6% Se, 98.9% Sp, and 93.4% Acc (AHI>1). However, the latter study only
included patients with adenotonsillar hypertrophy, which limits its generalization [14].
Moreover, Van Eyck et al. [15] achieved moderate Acc results when validating the
methodologies proposed by Brouillette et al. [13] (58% Se, 88% Sp, and 78% Acc) and

Velasco et al. [14] (57% Se, 73.0% Sp, and 68% Acc) in a sample of obese patients
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using AHI>2 e/h as cutoff. Van Eyck et al. [15] also assessed ODI3 reaching low
diagnostic ability (66% Se, 69% Sp, and 68% Acc). However, these studies only assess
the presence of SAHS in children without taking into account of its severity.

Common symptoms and clinical history have been also involved in pediatric
SAHS screening tools [16,17]. Chang et al. [16] used ODI3 and common symptoms to
assess both a discriminative score and a logistic regression (LR) classifier [16]. The LR
model achieved 76.6% Acc, whereas the discriminative score reached 60% Se, 86% Sp,
and 72% Acc (AHI>5). Recently, Villa et al. [17] developed a multiclass algorithm
using both clinical history and the McGill oximetry score, which was defined by Nixon
et al. [4]. This paper reported 57.4% Acc in the multiclass classification task (AHI<1
e/h, 1<AHI<5 e/h, and AHI>5 e/h). From their confusion matrix, diagnostic
performance metrics were computed: 85.8% Acc for AHI>1 (91.6% Se and 40.6% Sp),
69.4% Acc for AHI>5 (40.6% Se and 97.9% Sp), and overall kappa=0.30.

Previous studies assessed the joint use of parameters from SpO: and other
cardiorespiratory signals [7,9,18]. Cohen & de Chazal [18] applied linear discriminant
analysis (LDA) to automatic features computed from SpO; and ECG recordings. This
model achieved 58.1% Se, 67.0% Sp, and 66.7% Acc (AHI>5). Gutiérrez-Tobal et al.
[9] assessed a LR model built with ODI3 from SpO; and PSD features from AF,
achieving average 85.9% Se, 87.4% Sp, and 86.3% Acc (AHI>3) using a bootstrap
validation approach. Garde et al. [7] built a LDA model using features from PRV and
SpO- recordings. This model was validated using 4-fold cross validation and achieved
88.4% Se, 83.6% Sp, and 85.0% Acc (AHI>5). In contrast to these studies, our methods
reached high diagnostic ability by the exclusive use of single-channel SpO, as the only
signal involved.

Finally, Alvarez et al. [19] assessed oximetry-based LR models for different AHI
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cutoffs (1, 3, and 5 e/h), reaching 85.5% Acc (89.6% Se and 71.5% Sp), 83.4% Acc
(82.9% Se and 84.4% Sp), and 82.8% Acc (82.2% Se and 83.6% Sp), respectively.
They used bootstrapping to validate results from a small sample size (50 children).
While they focused on low severity AHI cutoffs, our current proposed methodology

reached high diagnostic performance in the detection of moderate-to-severe pediatric

SAHS (AHI > 5, 10 e/h) in an independent test set from a large database (298 children).

PLEASE, DISPLAY TABLE 5 AROUND HERE

Although we present compelling evidence on the usefulness of our method, some
limitations have to be taken into account. First, there were less subjects showing an AHI
in the ranges 5S<AHI<10 and AHI>10 e/h in the cohort. This is one possible reason for
the slight tendency of the MLP classifier to underestimate for lower SAHS severity
groups. A larger sample size, balancing the proportion of subjects among classes, would
likely minimize this effect. Another limitation concerns the only detection of moderate
(5<AHI<10 e/h) to severe (AHI>10 e/h) patients, while avoiding the evaluation of the
presence of SAHS in subjects with AHI<S5 e/h. However, while moderate to severe
subjects are treated regardless the presence of co-morbidities, this group only requires
treatment if neurocognitive or developmental deficits are concurrently present, and this
latter feature cannot be evaluated by the AHI or any other PSG-derived variable [44].
Furthermore, since our methodology aims at simplifying the detection of pediatric
SAHS, it would be also useful to validate this proposal using oximetry recordings
obtained in unsupervised children at home. Finally, the only use of MLP for
classification is another limitation of our study. In this sense, the application of more
advanced machine learning algorithms for classification, such as ensemble learning

classifiers, could be potentially useful to enhance our methodology.
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In summary, a high diagnostic performance was achieved with a multiclass MLP
model built with bispectral features, together with anthropometric variables, ODI3, and
PSD parameters, in an independent set using a large database of oximetry recordings.
Thus, bispectrum contains additional and complementary information to the other
methodological approaches when aiming to further characterize desaturation events in
the context of SAHS screening in children. Furthermore, this model outperformed
previous results obtained by state-of-the-art studies. Therefore, bispectrum could be
potentially used as a complementary tool in the analysis of oximetry recordings to help

in the screening of moderate-to-severe childhood SAHS.
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TABLES

Table 1. Clinical and demographic data of the population under study. Data are

presented as median [interquartile range], n or %.

Characteristics All AHI<5 S5<AHI<10 AHI>10
All subjects
Subjects (n) 298 164 56 78
Age (years) 6.0[4.0,9.0] 7.0[5.0,10.0] 5.0[3.0,8.0] 5.5[3.0,9.0]
Males (%) 55.7 55.5 57.1 55.1
BMI(kg/m?) 18.4[16.3,23.0] 18.2[16.3,22.3] 18.1[16.3,22.6] 19.1[16.5,25.7]
Time (h) 7.8[7.3,8.4] 7.9[7.3,8.4] 7.9 [7.3,8.4] 7.7 [7.3,8.3]
AHI(e/h) - 1.9[1,3.5] 7.0 [5.9,8.5] 17.7[11.7,27.3]
Feature optimization set (25%)
Subjects (n) 74 41 14 19
Age (years) 6.0 [3.0,10.0] 7.0 [4.8,11.0] 4.0 [2.0,8.0] 6.0 [3.0,9.0]
Males (%) 58.1 52.6 71.4 56.1
BMI(kg/m?) 18.216.3,22.5] 18.2[16.8,22.6] 19.0 [16.2,23.0] 17.7[15.4,22.3]
Time (h) 8.0 [7.5,8.3] 8.0 [7.5,8.3] 7.9 [7.6,8.7] 7.7 [7.2,8.2]
AHI(e/h) - 1.7 [1.0,3.4] 6.9 [5.9,8.1] 17.9[11.5,26.4]
Training set (50%)
Subjects (n) 149 82 28 39
Age (years) 7.0[4.0,9.3] 7.0[5.0,10.0] 6.0[3.0,8.0] 5.0[3.0,9.8]
Males (%) 51.7 46.2 46.4 56.1
BMI(kg/m?) 18.5[16.4,23.2] 18.5[16.3,21.7] 17.5116.1,21.1]  20.1[17.2,27.8]
Time (h) 7.7[7.2,8.4] 7.8 [7.2,8.4] 7.9 [7.3,8.4] 7.7 [7.3,8.4]
AHI(e/h) - 2.0[1.0,3.6] 7.0 [5.9,8.5] 18.2 [12.0,27.3]
Test set (25%)
Subjects (n) 75 41 14 20
Age (years) 6.0 [4.0,8.0] 7.0 [5.0,8.5] 5.0 [4.0,6.0] 5.5[3.0,8.5]
Males (%) 61.3 75.0 64.3 53.7
BMI(kg/m?) 18.1[16.0,23.6] 18.0 [15.6,23.7] 18.5[16.7,23.6] 18.5[16.2,24.4]
Time (h) 7.8[7.3,8.4] 7.8[7.2,8.3] 7.9 [7.3,8.4] 7.9 [7.3,8.4]
AHI(e/h) - 1.80.9,3.2] 7.0 [5.9,8.7] 17.0[11.8,30.2]

BMI: Body Mass Index; AHI: Apnea Hypopnea Index
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Table 2. Feature values for the SAHS severity groups (median [interquartile range]) in

the feature optimization set.

Features AHI<5 5<AHI<10 AHI>10 p-value”
Age 7.0 [4.8,11.0] 4.0 [2.0,8.0] 6.0 [3.0,9.0] 0.24
Sex - - - 0.52
BMI (10Y) 1.82[1.68,2.26] 1.90 [1.62,2.30] 1.77 [1.54,2.23] 0.76
oDI3 2.08[0.77,3.93] 5.82[3.79,9.28] 8.72 [7.23,19.65] << 0.05
M1f 2.95[1.93,4.23] 5.67 [5.10,8.58] 14.73 [7.51,28.45] << 0.05
M2f (10" 0.18[0.05,0.32] 1.11 [0.56,1.54] 4.07 [1.34,14.39] << 0.05
M3f 0.48[0.29,0.75] 0.68[0.33,1.04] 0.54[0.32,0.83] 0.54
M4af 2.10[1.79,2.73] 2.33[1.87,3.06] 2.20[1.60,2.70] 0.65
Pr 0.31[0.25,0.35] 0.24 [0.21,0.34] 0.3410.30,0.39] 0.05
MA (10Y 0.60[0.33,0.87] 1.27 [1.00,1.54] 2.92[1.68,4.59] <<0.05
mA 1.21[0.84,2.12] 2.30[1.91,2.88] 3.46 [2.56,8.59] <<0.05
SE 4.33[4.26,4.37] 4.30[4.24,4.32] 4.20[4.12,4.30] <<0.05
Mb 0.17[0.11,0.20] 0.28 [0.23,0.32] 0.420.25,0.56] <<0.05
MB1(10%) 0.05[0.02,0.21] 0.23 [0.09,0.63] 0.4910.17,1.22] <<0.05
H1 (108 -5.78 [-5.90,-5.57] -5.59 [-5.73,-5.45] -5.40 [-5.58,-5.28] <<0.05
H2 (-10%) -1.38 [-1.41,-1.33] -1.32[-1.36,-1.29] -1.28 [-1.32,-1.25] << 0.05
H3 (-10%) -2.96 [-3.02,-2.86] -2.87 [-2.93,-2.79] -2.77 [-2.86,-2.71] << 0.05
BE1 8.51[7.88,9.43] 8.17[7.71,8.71] 8.60[8.11,8.79] 0.34
BE2 6.08 [4.88,6.62] 5.26 [4.43,5.58] 6.70 [5.68,7.07] 0.13
PE 2.14 [2.08,2.15] 2.12[2.05,2.14] 2.11[2.08,2.13] 0.64
meanPa (10?) -1.60 [-3.19,0.81] 0.89[-0.47,2.21] 0.92 [-1.96,3.20] 0.29
varPa 0.38[0.26,0.43] 0.34 [0.22,0.37] 0.3310.22,0.44] 0.87

* P-values obtained after Bonferroni correction

32



Table 3. Confusion matrices of the MLP models in the test set. Regarding the model

MLPnobis average Acc=69.3% and kappa=0.45, whereas for model MLPyis average

Acc=76.0% and kappa=0.56.

Estimated
MLPnobis MLPbis
AHI<5 5<AHI<10 AHI>10 AHI<5 5<AHI<10 AHI>10

AHI<5 37 3 1 40 1
=
g 5<AHI<10 6 6 2 7 2
<

AHI>10 7 4 9 6 12

Table 4. Diagnostic ability of the MLP models in the test set for AHI cutoffs= 5 e/h and

10 e/h.
AHI cutoff=5 e/h
Features Se Sp PPV NPV LR+ LR- Acc
MULProbis 61.8 90.2 84.0 74.0 6.33 0.42 77.3
ML Phis 61.8 97.6 95.5 75.5 25.32 0.39 81.3
AHI cutoff=10 e/h
Features Se Sp PPV NPV LR+ LR- Acc
MULProbis 45.0 94.5 75.0 82.5 8.25 0.58 81.3
MLPbis 60.0 94.5 80.0 86.7 11.00 0.42 85.3
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Table 5. Summary of previous relevant published studies in the context of automated

analysis of SpO; recordings to assist in the diagnosis of pediatric SAHS.

Studies Subjects Signal AHI Methods Validation Se Sp Acc
(n) cutoff (%) (%) (%)
Kirk et al 58 SpO» 5 ODI3 Direct 67 60 64*
[11] validation™
Tsai et al 148 SpO» 1 ODI4 No 77.7 889 79.0%
[12] 5 83.8 865 85.1%*
10 89.1 86.0 87.1%
Brouillette 349 SpO, 1 Clusters of Direct 429 97.8 64.7
etal. [13] desaturations validation™
Velasco et 167 SpO» 1 Clusters of Direct 86.6 989 93.4*
al. [14] desaturations validation™
Van Eyck 130 SpO:2 2 ODI3, Train-test for 57 73 68*
etal. [15] Brouillete et al. ODI3 58 88 78%
[13], and 66 69 68
Velasco et al.
[14]
Chang et 141 SpO. 5 ODI3 and Direct 60 86 72%*
al. [16] sympthoms validation™
Pia-Villa 268 SpO» McGill Direct 91.6* 40.6* 85.8*
etal [17] 5 oximetric score  validation™  40.6* 97.9*% 9.4*
and clinical
history
Cohen & 288 ECG Event Statistical Loocv 58.1  67.0 66.7
de Chazal and detection parameters,
[12] SpO, classical
indices, and
PSD
Gutiérrez- 50 FA 3 PSD (AF) and Bootstrap 859 874 863
Tobal et and ODI3 (Sp0O») 0.632
al [12] SpO2
Garde et 146 PRV 5 Statistical 4-fold cross 88.4 83.6 850
al. [7] and parameters, validation
SpO, nonlinear
features,
classical
indices, and
PSD
Alvarez et 50 SpO:2 Statistical Bootstrap 89.6 715 855
al. [19] 3 parameters, 0.632 829 844 834
5 nonlinear 822 836 828
features,
classical
indices, and
PSD
Our 298 SpO» 5 Bispectrum, Feature 61.8 97.6 813
proposal 10 PSD, OD1I3, optimization- 0.0 94.5 85.3
anthropometric  training-test
variables

loocv: leave-one-out cross validation; ECG: Electrocardiogram; AF. Airflow; PRV: Pulse rate variability.
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* computed from reported data,

** direct validation of a scoring criteria against AHI from PSG.

FIGURE LEGENDS

Figure 1. Averaged magnitude of the bispectrum for the three SAHS severity groups:

(a) AHI<S e/h, (b) 5<AHI<10 e/h, and (c) AHI>10 e/h in the feature optimization set.
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