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Abstract- Background and objective. The aim of this study was to assess the utility of 

bispectrum-based oximetry approaches as a complementary tool to traditional 

techniques in the screening of pediatric sleep apnea-hypopnea syndrome (SAHS). 

Methods: 298 blood oxygen saturation (SpO2) signals from children ranging 0-13 years 

of age were recorded during overnight polysomnography (PSG). These recordings were 

divided into three severity groups according to the PSG-derived apnea hypopnea index 

(AHI): AHI<5 events per hour (e/h), 5≤AHI<10 e/h, AHI≥10 e/h. For each pediatric 

subject, anthropometric variables, 3% oxygen desaturation index (ODI3) and spectral 

features from power spectral density (PSD) and bispectrum were obtained. Then, the 

fast correlation-based filter (FCBF) was applied to select a subset of relevant features 

that may be complementary, excluding those that are redundant. The selected features 

fed a multiclass multi-layer perceptron (MLP) neural network to build a model to 

estimate the SAHS severity degrees. Results: An optimum subset with features from all 

the proposed methodological approaches was obtained: variables from bispectrum, as 

well as PSD, ODI3, Age, and Sex. In the 3-class classification task, the MLP model 

trained with these features achieved an accuracy of 76.0% and a Cohen’s kappa of 0.56 

in an independent test set. Additionally, high accuracies were reached using the AHI 

cutoffs for diagnosis of moderate (AHI=5 e/h) and severe (AHI=10 e/h) SAHS: 81.3% 

and 85.3%, respectively. These results outperformed the diagnostic ability of a MLP 

model built without using bispectral features. Conclusions: Our results suggest that 

bispectrum provides additional information to anthropometric variables, ODI3 and PSD 

regarding characterization of changes in the SpO2 signal caused by respiratory events. 

Thus, oximetry bispectrum can be a useful tool to provide complementary information 

for screening of moderate-to-severe pediatric SAHS. 
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1.  INTRODUCTION 

Childhood sleep apnea-hypopnea syndrome (SAHS) is a breathing disorder 

characterized by recurrent episodes of complete cessation (apnea) and/or significant 

reduction (hypopnea) of airflow during sleep due to the presence of increased upper 

airway collapsibility [1]. According to the American Academy of Pediatrics (AAP), 

SAHS has a prevalence in the range of 1% to 5% and it may impose many adverse 

effects on the health and development of infants and young children, such as 

neurocognitive deficits, cardio-metabolic dysfunction, and somatic growth stunting [1].  

The gold standard test for pediatric SAHS diagnosis is overnight 

polysomnography (PSG). PSG requires the patient to spend the night in a specialized 

sleep laboratory while recording a wide range of biomedical signals [2,3]. Thus, PSG is 

costly and complex due to the necessary expensive equipment and intensive labor of 

medical personnel. It is also especially intrusive for children, due to the use of multiple 

sensors, and shows limited availability in most places around the world [4,5].    

These drawbacks, together with the relatively high prevalence of the disease, have 

led the scientific community to explore the use of simplified screening tests [4]. The 

guidelines of the AAP recommend performing alternative tests when PSG is not 

available while requiring more conclusive evidences about the efficacy of these tests 

[1]. Thus, a commonly used approach has been the assessment of a reduced set of 

cardiorespiratory recordings. Cardiorespiratory signals contain essential information 

about the alterations produced by apneic events in the electrocardiogram (ECG) [6], 

pulse rate variability (PRV) [7,8], airflow (AF) [9], photopletysmography [10], 

oximetry [7,9,11–19], and acoustic pulmonary sounds [20,21]. Among these 

approaches, nocturnal oximetry is the alternative most frequently advocated. In the 
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nocturnal oximetry, pulse rate and blood oxygen saturation (SpO2) signals are recorded 

with a pulse oximeter probe, typically placed on the earlobe, finger, or toe [22]. 

Moreover, SpO2 signals can be recorded in an unsupervised way at the patient’s home 

due to the development of commercial portable pulse oximeters [4,7]. Previous studies 

have shown the utility of the SpO2 signal to assist in the SAHS diagnosis in both adults 

[23,24] and children [7,9,11–19]. In this study, we aim at gaining further insights into 

the diagnostic ability of the SpO2 signal in the screening of pediatric SAHS. 

Different techniques have been reported to automatically analyze biomedical 

signals in the context of SAHS. Several studies have assessed the performance of 

frequency domain features, which reflects the duration and periodicity of respiratory 

events in children [6–10,18–21]. Power Spectral Density (PSD) is the most common 

spectral analysis technique in these studies [6–9,18–21]. However, the information 

present in the PSD cannot characterize phase relationships and deviations from 

gaussianity in a signal [25]. By contrast, bispectrum is a frequency domain technique 

defined as the spectral representation of the third order statistic that contains 

information about the phase of the Fourier transform of a time series. It can detect 

deviations from linearity, stationarity, and gaussianity in the signal, such as those 

produced in physiological recordings by respiratory events [25].   

Based on the aforementioned considerations, we hypothesized that bispectrum 

analytic could provide additional information about respiratory events, thus being a 

complementary tool to ODI3, anthropometric variables, and PSD parameters. Therefore, 

the aim of this study was to evaluate the complementarity of bispectrum to traditional 

approaches in the screening of pediatric SAHS using SpO2 recordings.  

We conducted our study in three phases: feature extraction, feature selection, and 

feature classification. First, anthropometric variables, ODI3 [26], and spectral features 
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from PSD and bispectrum were obtained. Then, the fast correlation-based filter (FCBF) 

method [27] was applied to select a smaller subset of relevant and non-redundant 

features. Finally, a multi-layer perceptron (MLP) neural network [23] was applied to 

this optimum subset for multiclass (3-class) classification in order to estimate the SAHS 

severity degrees according to the apnea-hypopnea index (AHI) from standard PSG.  

2. SUBJECTS AND SIGNALS UNDER STUDY 

The dataset was composed of 298 children (166 boys and 132 girls) ranging 0-13 

years of age. All children were consecutively and prospectively referred to the Pediatric 

Sleep Unit at the University of Chicago Medicine Comer Children’s Hospital (Chicago, 

IL, USA) due to clinical symptoms and physical examination findings leading to the 

clinical suspicion of SAHS. In all participants, an informed consent was obtained as a 

prerequisite to be included in the study. The Ethical Committee of the University of 

Chicago Medicine Comer Children’s Hospital approved the protocol. 

 Sleep was monitored using a digital polysomnography system (Polysmith; Nihon 

Kohden America Inc., CA, USA). SpO2 recordings were acquired during overnight PSG 

at a sampling rate of 25 Hz. They were exported and processed offline. Artifacts were 

discarded from oximetric recordings by removing SpO2 values below 50% and sudden 

changes between consecutive SpO2 sampling intervals ≥4%/second [28]. 

Sleep and cardiorespiratory events were scored and quantified by specialized 

technologists who were unaware of the study purpose, and AHI was estimated 

according to the American Academy of Sleep Medicine guidelines. In this regard, there 

is no consensus about the AHI cutoff used to determine SAHS in infants [1–3,29,30]. 

However, a wide range of studies typically classify children showing 5≤AHI<10 e/h as 

moderate SAHS and children with AHI ≥10 e/h as severe SAHS [2,3,29,30]. Hence, we 
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have classified the subjects under study into the three groups defined by these 

commonly used thresholds (AHI<5 e/h, 5≤AHI<10 e/h, and AHI≥10 e/h).   

The dataset was randomly divided into three sets: feature optimization set (25%), 

training set (50%), and test set (25%). The first set (feature optimization set) was 

employed to optimize the feature extraction stage and obtain an optimum subset of 

features with FCBF. A bootstrap procedure was applied to select the optimum features 

in order to select a generalizer optimum subset of features [31]. The second set (training 

set) was used to select the optimal design parameters of the MLP classifier as well as 

train the MLP model. Ten-fold cross validation was used to emulate a different dataset 

when optimizing the MLP design parameters [32]. Finally, the third set (test set) was 

employed to assess the diagnostic performance of our proposal in an independent 

dataset (unknown data). Table 1 shows clinical and demographic data of the population 

under study. No statistically significant differences (p-value < 0.05) were found in the 

Age and Body Mass Index (BMI) between the three groups. 

PLEASE, DISPLAY TABLE 1 AROUND HERE 

3. METHODS 

3.1. Feature Extraction 

Four clinical and signal processing approaches were applied to each subject: 

anthropometric, ODI3, and PSD and bispectrum, which lead to an initial feature set 

composed of 22 features.  

3.1.1. Anthropometric variables 

Age, sex and BMI were acquired for each child since the prevalence of childhood 

SAHS has been associated with these factors in previous studies [1].  
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3.1.2. Oxygen desaturation index 

In order to obtain information about the number of desaturations produced by 

respiratory events, ODI3 was computed for each SpO2 recording [2]. The definition of a 

desaturation event employed for computing ODI3 is based in the study developed by 

Taha et al. [26]. In this study, a desaturation event occurs when SpO2 value decreases at 

least by 3% with respect to the preceding baseline levels, at a rate between 0.1% and 

4% per second, and the SpO2 value subsequently returns to the baseline level or 

increases by at least 3% with respect to the preceding minimum value. The total 

duration of the event must be between 10 and 60 seconds.   

3.1.3. Power Spectral Density (PSD) 

PSD was estimated for each SpO2 recording to explore differences in the spectral 

information of SpO2 signals associated to the duration and recurrence of apneic events. 

Welch’s method was used to estimate PSDs [33], using a Hamming window of 5 

minutes (7500 samples) with 50% overlap and a discrete Fourier transform (DFT) of 214 

points. 

 According to previous research in the context of childhood SAHS diagnosis [9], a 

frequency band of interest was determined as the frequency region of the PSD where 

there were statistically significant differences (p-value under 0.05) between severity 

groups (AHI<5 e/h, 5≤AHI<10 e/h, and AHI≥10 e/h) in the feature optimization set. P-

value was computed between the PSD amplitudes for each pair of severity groups at 

each frequency using the non-parametric Mann-Whitney U test.  Accordingly, our band 

of interest was 0.018-0.050 Hz. In this band, higher PSD amplitude is obtained as the 

severity of SAHS increases. 

The following parameters of the PSD were computed in the band of interest: 

• First to fourth-order statistical moments (M1f-M4f) of the PSD amplitudes. 



9 

 

The mean (M1f), variance (M2f), skewness (M3f) and kurtosis (M4f) 

quantify the central tendency, dispersion, asymmetry and peakedness of 

the power spectrum, respectively. 

• Relative power (PR). PR is defined as the ratio between the power (area 

enclosed under the PSD) in the band of interest and the total signal power.  

• Maximum amplitude (MA) and minimum amplitude (mA) of the PSD.  

• Spectral entropy (SE), is a irregularity measure which quantifies the 

flatness of the PSD [34]. 

• Mobility (Mb). It is a Hjorth descriptor, which measures the concentration 

of the signal power. It is defined as the squared root of the ratio between 

the variance (M2f) and the signal power [35]. 

3.1.4. Bispectrum 

High order spectra (HOS) are representations in the frequency domain of high 

order cumulants of a random process [25]. PSD is the Fourier transform of the second-

order cumulant, while bispectrum and trispectrum are the spectral representations of the 

third- and fourth-order cumulant, respectively [25]. Bispectrum can be described as a 

spectral decomposition of the skewness of a signal over frequency. In contrast to 

conventional PSD, bispectrum contains additional information about the phase 

relationships and deviations from gaussianity, linearity, and stationarity of a signal [25].    

Let be x(n) a deterministic and zero-mean signal, the bispectrum is expressed in 

terms of the Fourier transform of the signal X(f) [25]:  
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where f1 and f2 are the frequency indices. Due to the symmetry conditions of the 

bispectrum, it is sufficient to evaluate the bispectrum in the triangular region (Ω) that 

satisfies f2 ≥0, f2 ≥f1, f1 + f2 ≤ fs/2, where fs is the sampling frequency of the signal [25]. 

In this study, bispectrum was estimated with a non-parametric approach using a 

Hamming window of 5 minutes with 50% overlap and a DFT of 214 points. Figure 1 

shows the averaged magnitude of the bispectrum for the three severity groups. Notice 

that higher amplitude in the bispectrum is observed at frequencies below 0.03 Hz, as the 

SAHS severity increases. 

PLEASE, DISPLAY FIGURE 1 AROUND HERE 

The following bispectral features were extracted in the region Ω to quantify the 

differences in the bispectrum between groups [36,37]:   

• Mean amplitude of the bispectrum (MB1). This parameter is intended to 

differentiate between signals with similar PSD but different bispectrum 

[37]: 
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where L is the number of points in region Ω.  

• Sum of logarithmic amplitudes of the bispectrum (H1), sum of logarithmic 

amplitudes of elements in the diagonal of the bispectrum (H2), and first-

order spectral moment of amplitudes of elements in the diagonal of the 

bispectrum (H3) [36]. These parameters are related to the moments of the 

bispectrum [36]: 
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where Ωdiagonal is the diagonal of the bispectrum.   

• Normalized bispectral entropy (BE1) and normalized bispectral squared 

entropy (BE2), which quantify regularity in the amplitude of the 

bispectrum [37]: 
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• Phase entropy (PE), which measures regularity in the phase of the 

bispectrum [37]: 
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where ɸ is the phase angle of the bispectrum, Ind(·) is the indicator 

function, whose value is 1 if ɸ is within the range of histogram bins ψn, 

and N is the number of bins of the histogram, being calculated according 

to Doane’s rule [38].  

• Mean (meanPa) and variance (varPa) of the bispectrum invariant (P(a)). 

These features identify a chaotic process with third-order time correlations 

or phase coupling between spectral components [37]. P(a) is the phase of 

the integrated bispectrum along a radial with slope a [37]: 
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where Ir(a) and Ii(a) are the real and imaginary part of I(a): 
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for 0≤a≤1.  
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3.2. Feature selection: Fast Correlation-Based Filter (FCBF) 

After the feature extraction stage, FCBF is applied to select a subset of relevant 

and non-redundant features [27]. FCBF has previously shown its utility in the context of 

adult SAHS diagnosis [39]. It is based on symmetrical uncertainty (SU), which is a 

normalization of the information gain (IG) between two variables [27]. First, features 

are ranked from the most relevant ones (highest SU with the AHI). Then, the features 

considered redundant with respect to features that are more relevant were discarded. 

Thus, an optimum subset with the most relevant and non-redundant features is obtained 

[27].  

In order to compose an optimum feature subset independent of a particular 

dataset, 1000 bootstrap replicates were built from our feature optimization set so that 

the FCBF method was applied to each bootstrapping subset [31,40]. An optimum subset 

composed of the variables that appear at least in 500 runs was selected.  

3.3. Feature classification: Multi-layer Perceptron (MLP) neural network 

Artificial neural network are mathematical models inspired in the human brain 

[41]. MLP are probably the most widely used neural network and it has already proven 

its usefulness in the context of adult SAHS diagnosis with SpO2 recordings [23]. Its 

architecture consists on several interconnected layers (input, hidden, and output layers) 

composed of simple units called perceptrons. Each unit is characterized by an activation 

function and adaptive weights representing connections with units from the subsequent 

layer.  

Since our problem is a 3-class classification task, the output layer has three output 

neurons, each one representing the posterior probability of belonging to each group. In 

addition, a configuration with a single hidden layer has been implemented, which may 

provide universal approximation to any function [41]. Weights of the network are 
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randomly initialized. Then, they are optimized using the scaled conjugate gradient with 

weight-decay regularization. It is used to minimize the cross-entropy error function and 

achieve good generalization, as recommended for classification tasks [41]. 

The Netlab toolbox was used to implement our MLP classifier [42]. A very 

complex MLP model leads to overfitting, whereas a very simple model leads to under-

fitting. Thus, the design parameters of the MLP (the number of units in the hidden layer 

(NH) and the regularization parameter (α)) were optimized by means of 10-fold cross-

validation using the training set. Then, the MLP model was built using the whole 

training set with the optimum design parameters. 

3.4. Statistical Analysis and Diagnostic Performance 

The Mann Whitney U test and the Kruskal Wallis test were used to assess 

statistical differences (p-value <0.05) between groups. The Bonferroni correction was 

applied to deal with multiple comparisons. Diagnostic ability of the MLP network was 

assessed by means of sensitivity (Se, percentage of SAHS positive patients correctly 

classified), specificity (Sp, percentage of SAHS negative children correctly classified), 

positive predictive value (PPV, proportion of subjects classified as positive that are true 

positives), negative predictive value (NPV, proportion of subjects classified as negative 

that are true negatives), positive likelihood ratio (LR+, likelihood ratio for subjects 

classified as positive), negative likelihood ratio (LR-, likelihood ratio for subjects 

classified as negative), accuracy (Acc, percentage of subjects correctly classified), and 

Cohen’s kappa index (kappa) [43].  

4. RESULTS 

4.1. Feature optimization and selection 

A total of 22 features were obtained for each subject: 3 anthropometric variables, 
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ODI3, 9 parameters from PSD, and 9 bispectral features. Table 2 displays the values of 

these features for each SAHS severity group in the feature optimization set (median 

[interquartile range]), along with their corresponding p-values. ODI3, 6 out of 9 features 

from PSD (M1f, M2f, MA, mA, SE, and Mb) and 4 out of 9 features from bispectrum 

(MB1, H1, H2, and H3) showed statistical significant differences (p-value <0.05). These 

features showed higher values as the severity of SAHS increased. 

PLEASE, DISPLAY TABLE 2 AROUND HERE 

 In order to assess the complementarity of bispectrum with respect to the other 

methodological approaches, two different feature sets were composed. The first one 

(setnobis) consisting of all but bispectrum features and the second one (setbis) consisting 

of all extracted features. FCBF was applied to each bootstrap replication generated with 

these feature sets (setnobis and setbis) using only the feature optimization group. In both 

cases, an optimum subset composed of the features selected at least 500 times was 

obtained. The optimum subset derived when applying FCBF to setnobis (subsetnobis) was 

composed of 3 anthropometric features (Age, Sex, and BMI), ODI3, and 5 features from 

the PSD (M1f, M2f, MA, PR, and Mb). Regarding the optimum subset obtained when 

applying FCBF to setbis (subsetbis), it was composed of 2 anthropometric features (Age 

and Sex), ODI3, 5 features from the PSD (M1f, M2f, MA, PR, and Mb), and 2 bispectral 

features (MB1 and meanPa). Notice that two bispectral features were selected: one 

amplitude bispectral feature (MB1) and one phase bispectral feature (meanPa).  

4.2. Model optimization and training  

Two MLP networks fed with these optimum subsets of features obtained with 

FCBF (MLPnobis: subsetnobis; MLPbis: subsetbis) were designed and trained using the 
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training set. NH was varied from 2 up to 50, while α was varied from 0 up to 5. Kappa 

was obtained through ten-fold cross validation for each NH-α pair, and the optimum 

values for NH and α were obtained as those for which kappa was higher. Due to the 

dependence of the network to the initial random values of the weights, kappa was 

computed and averaged for a total of 10 runs for each NH-α pair. Finally, user-

dependent network parameters NH = 3 and α = 1 were chosen using subsetnobis and NH = 

4 and α = 2 were chosen using subsetbis, since those pairs reached the highest kappa. 

The entire training set was used to train the corresponding MLP models in both cases 

(MLPnobis and MLPbis). 

4.3. Diagnostic performance assessment 

Table 3 shows the confusion matrices of the MLP models (MLPnobis and MLPbis) 

in the test group. These matrices show the class estimated by our MLP classifiers for 

each subject versus the actual SAHS severity group of the subjects in the test set. The 

overall accuracies (sum of the main diagonal elements) of these models in the test set 

were 69.3% (MLPnobis) and 76.0% (MLPbis), whereas the 3-class kappa values were 0.45 

(MLPnobis) and 0.56 (MLPbis). Table 4 shows the diagnostic ability of these models for 

AHI cutoffs = 5 and 10 e/h.  

Notice that the results obtained with the model MLPbis outperformed MLPnobis in 

terms of Se, Sp, PPV, NPV, LR, LR-, Acc, and kappa for both cutoffs. 

 

PLEASE, DISPLAY TABLE 3 AROUND HERE 

 

PLEASE, DISPLAY TABLE 4 AROUND HERE 
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5. DISCUSSION 

This study assessed the usefulness of bispectrum to provide additional information 

from SpO2 recordings in the screening of pediatric SAHS. The results obtained with our 

proposed approach suggest that the information provided by bispectrum is relevant and 

complementary.   

Our findings showed that significantly higher values in 4 out of 9 features from 

bispectrum (MB1, H1, H2, and H3) are present in the subjects with the most severe 

degrees of SAHS. The statistical differences between groups of these bispectral features 

are consistent with the higher values of the bispectrum observed in Fig 1. MLPbis, which 

was fed with optimum features from all signal processing approaches, outperformed the 

neural network without information from bispectrum (MLPnobis). Regarding the 

optimum feature subset, FCBF automatically selected Age, Sex (anthropometric); ODI3 

(oximetric index); M1f, M2f, MA, PR, Mb (PSD); MB1 and meanPa (bispectrum). 

Moreover, the results obtained in this stage suggest that information from bispectrum-

based variables is complementary to that obtained from conventional approaches.  

In the test set, the proposed 3-class neural network (MLPbis) achieved an overall 

Acc of 76%, as well as kappa=0.56, with 81.3% Acc and 85.3% Acc for the common 

cutoffs AHI=5 e/h and AHI=10 e/h, respectively. It is remarkable to say that, with our 

MLP model (MLPbis), a high positive predictive value (95.5%) is obtained for an AHI 

cutoff of 5 e/h, whereas a high negative predictive value (86.7%) is obtained for an AHI 

cutoff of 10 e/h. These cutoffs (5 and 10 e/h) were not arbitrary selected. They are 

commonly employed in clinical settings to define the boundary for moderate 

(5≤AHI<10 e/h) and severe (AHI≥10 e/h) SAHS [2,3,29,30]. For patients with an 

AHI≥5 e/h, treatment with adenotonsillectomy is recommended [2]. Furthermore, 

children with an AHI≥10 e/h have an increased risk for cardiac strain and overnight 
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observation is recommended after treatment. In this sense, continuous positive airway 

pressure (CPAP) is recommended in these cases when other treatment strategies such as 

surgery have failed [2].   

To the best of our knowledege, this is the first study in the context of pediatric 

SAHS using bispectrum. Two parameters from bispectrum, MB1 and meanPa, were 

involved in the optimum feature subset obtained with FCBF. These features contain 

information about the amplitude (MB1) and the phase (meanPa) of the bispectrum. 

Thus, the changes in the amplitude and phase of the bispectrum of oximetric recordings 

detected by MB1 and meanPa can provide additional information about oximetry 

recordings to assist in pediatric SAHS screening. 

Table 5 shows the performance of previous research focused on the use of SpO2 

recordings in the screening of pediatric SAHS [7,9,11–19]. ODI has been used for this 

task [11,12]. Kirk et al. [11] reached 67% Se, 60% Sp, and 64% Acc (AHI≥5) using 

ODI3. Tsai et al. [12] reported 79.0% Acc for AHI≥1 (77.7% Se and 88.9% Sp), 85.1% 

Acc for AHI≥5 (83.8% Se and 86.5% Sp), and 87.1% Acc for AHI≥10 (89.1% Se and 

86.0% Sp) using 4% ODI (ODI4) in a multiclass task. Nevertheless, in this study, ODI4 

cutoff values for each severity group were optimized and validated using the same 

population [12]. 

 Clusters of desaturations have been also assessed [13–15]. Brouillette et al. [13] 

achieved 42.9% Se, 97.8% Sp, and 64.8% Acc (AHI≥1), whereas Velasco et al. [14] 

reached 86.6% Se, 98.9% Sp, and 93.4% Acc (AHI≥1). However, the latter study only 

included patients with adenotonsillar hypertrophy, which limits its generalization [14]. 

Moreover, Van Eyck et al. [15] achieved moderate Acc results when validating the 

methodologies proposed by Brouillette et al. [13] (58% Se, 88% Sp, and 78% Acc) and 

Velasco et al. [14] (57% Se, 73.0% Sp, and 68% Acc) in a sample of obese patients 
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using AHI≥2 e/h as cutoff. Van Eyck et al. [15] also assessed ODI3 reaching low 

diagnostic ability (66% Se, 69% Sp, and 68% Acc). However, these studies only assess 

the presence of SAHS in children without taking into account of its severity. 

Common symptoms and clinical history have been also involved in pediatric 

SAHS screening tools [16,17]. Chang et al. [16] used ODI3 and common symptoms to 

assess both a discriminative score and a logistic regression (LR) classifier [16]. The LR 

model achieved 76.6% Acc, whereas the discriminative score reached 60% Se, 86% Sp, 

and 72% Acc (AHI≥5). Recently, Villa et al. [17] developed a multiclass algorithm 

using both clinical history and the McGill oximetry score, which was defined by Nixon 

et al. [4]. This paper reported 57.4% Acc in the multiclass classification task (AHI<1 

e/h, 1≤AHI<5 e/h, and AHI≥5 e/h). From their confusion matrix, diagnostic 

performance metrics were computed: 85.8% Acc for AHI≥1 (91.6% Se and 40.6% Sp), 

69.4% Acc for AHI≥5 (40.6% Se and 97.9% Sp), and overall kappa=0.30. 

 Previous studies assessed the joint use of parameters from SpO2 and other 

cardiorespiratory signals [7,9,18]. Cohen & de Chazal [18] applied linear discriminant 

analysis (LDA) to automatic features computed from SpO2 and ECG recordings. This 

model achieved 58.1% Se, 67.0% Sp, and 66.7% Acc (AHI≥5). Gutiérrez-Tobal et al. 

[9] assessed a LR model built with ODI3 from SpO2 and PSD features from AF, 

achieving average 85.9% Se, 87.4% Sp, and 86.3% Acc (AHI≥3) using a bootstrap 

validation approach. Garde et al. [7] built a LDA model using features from PRV and 

SpO2 recordings. This model was validated using 4-fold cross validation and achieved 

88.4% Se, 83.6% Sp, and 85.0% Acc (AHI≥5). In contrast to these studies, our methods 

reached high diagnostic ability by the exclusive use of single-channel SpO2 as the only 

signal involved. 

Finally, Álvarez et al. [19] assessed oximetry-based LR models for different AHI 
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cutoffs (1, 3, and 5 e/h), reaching 85.5% Acc (89.6% Se and 71.5% Sp), 83.4% Acc 

(82.9% Se and 84.4% Sp), and 82.8% Acc (82.2% Se and 83.6% Sp), respectively. 

They used bootstrapping to validate results from a small sample size (50 children). 

While they focused on low severity AHI cutoffs, our current proposed methodology 

reached high diagnostic performance in the detection of moderate-to-severe pediatric 

SAHS (AHI ≥ 5, 10 e/h) in an independent test set from a large database (298 children).  

PLEASE, DISPLAY TABLE 5 AROUND HERE 

Although we present compelling evidence on the usefulness of our method, some 

limitations have to be taken into account. First, there were less subjects showing an AHI 

in the ranges 5≤AHI<10 and AHI≥10 e/h in the cohort. This is one possible reason for 

the slight tendency of the MLP classifier to underestimate for lower SAHS severity 

groups. A larger sample size, balancing the proportion of subjects among classes, would 

likely minimize this effect. Another limitation concerns the only detection of moderate 

(5≤AHI<10 e/h) to severe (AHI≥10 e/h) patients, while avoiding the evaluation of the 

presence of SAHS in subjects with AHI<5 e/h. However, while moderate to severe 

subjects are treated regardless the presence of co-morbidities, this group only requires 

treatment if neurocognitive or developmental deficits are concurrently present, and this 

latter feature cannot be evaluated by the AHI or any other PSG-derived variable [44]. 

Furthermore, since our methodology aims at simplifying the detection of pediatric 

SAHS, it would be also useful to validate this proposal using oximetry recordings 

obtained in unsupervised children at home. Finally, the only use of MLP for 

classification is another limitation of our study. In this sense, the application of more 

advanced machine learning algorithms for classification, such as ensemble learning 

classifiers, could be potentially useful to enhance our methodology. 
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In summary, a high diagnostic performance was achieved with a multiclass MLP 

model built with bispectral features, together with anthropometric variables, ODI3, and 

PSD parameters, in an independent set using a large database of oximetry recordings. 

Thus, bispectrum contains additional and complementary information to the other 

methodological approaches when aiming to further characterize desaturation events in 

the context of SAHS screening in children. Furthermore, this model outperformed 

previous results obtained by state-of-the-art studies. Therefore, bispectrum could be 

potentially used as a complementary tool in the analysis of oximetry recordings to help 

in the screening of moderate-to-severe childhood SAHS.  
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TABLES  

Table 1. Clinical and demographic data of the population under study. Data are 

presented as median [interquartile range], n or %. 

Characteristics All AHI<5 5≤AHI<10 AHI≥10 

All subjects   

         Subjects (n) 298 164 56 78 

         Age (years) 6.0[4.0,9.0] 7.0[5.0,10.0] 5.0[3.0,8.0] 5.5[3.0,9.0] 

         Males (%) 55.7 55.5 57.1 55.1 

         BMI(kg/m2) 18.4 [16.3,23.0] 18.2 [16.3,22.3] 18.1 [16.3,22.6] 19.1 [16.5,25.7] 

         Time (h) 7.8 [7.3,8.4] 7.9 [7.3,8.4] 7.9 [7.3,8.4] 7.7 [7.3,8.3] 

         AHI(e/h) - 1.9 [1,3.5] 7.0 [5.9,8.5] 17.7 [11.7,27.3] 

Feature optimization set (25%)   

         Subjects (n) 74 41 14 19 

         Age (years) 6.0 [3.0,10.0] 7.0 [4.8,11.0] 4.0 [2.0,8.0] 6.0 [3.0,9.0] 

         Males (%) 58.1 52.6 71.4 56.1 

         BMI(kg/m2) 18.2 [16.3,22.5] 18.2 [16.8,22.6] 19.0 [16.2,23.0] 17.7 [15.4,22.3] 

         Time (h) 8.0 [7.5,8.3] 8.0 [7.5,8.3] 7.9 [7.6,8.7] 7.7 [7.2,8.2] 

         AHI(e/h) - 1.7 [1.0,3.4] 6.9 [5.9,8.1] 17.9 [11.5,26.4] 

Training set (50%)     

         Subjects (n) 149 82 28 39 

         Age (years) 7.0[4.0,9.3] 7.0[5.0,10.0] 6.0[3.0,8.0] 5.0[3.0,9.8] 

         Males (%) 51.7 46.2 46.4 56.1 

         BMI(kg/m2) 18.5 [16.4,23.2] 18.5 [16.3,21.7] 17.5 [16.1,21.1] 20.1 [17.2,27.8] 

         Time (h) 7.7 [7.2,8.4] 7.8 [7.2,8.4] 7.9 [7.3,8.4] 7.7 [7.3,8.4] 

         AHI(e/h) - 2.0 [1.0,3.6] 7.0 [5.9,8.5] 18.2 [12.0,27.3] 

Test set (25%)   

         Subjects (n) 75 41 14 20 

         Age (years) 6.0 [4.0,8.0] 7.0 [5.0,8.5] 5.0 [4.0,6.0] 5.5 [3.0,8.5] 

         Males (%) 61.3 75.0 64.3 53.7 

         BMI(kg/m2) 18.1 [16.0,23.6] 18.0 [15.6,23.7] 18.5 [16.7,23.6] 18.5 [16.2,24.4] 

         Time (h) 7.8 [7.3,8.4] 7.8 [7.2,8.3] 7.9 [7.3,8.4] 7.9 [7.3,8.4] 

         AHI(e/h) - 1.8 [0.9,3.2] 7.0 [5.9,8.7] 17.0 [11.8,30.2] 

BMI: Body Mass Index; AHI: Apnea Hypopnea Index 
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Table 2. Feature values for the SAHS severity groups (median [interquartile range]) in 

the feature optimization set. 

Features AHI<5 5≤AHI<10 AHI≥10 p-value* 

Age 7.0 [4.8,11.0] 4.0 [2.0,8.0] 6.0 [3.0,9.0] 0.24 

Sex - - - 0.52 

BMI (101) 1.82 [1.68,2.26] 1.90 [1.62,2.30] 1.77 [1.54,2.23] 0.76 

ODI3 2.08 [0.77,3.93] 5.82 [3.79,9.28] 8.72 [7.23,19.65] << 0.05 

M1f 2.95 [1.93,4.23] 5.67 [5.10,8.58] 14.73 [7.51,28.45] << 0.05 

M2f (101) 0.18 [0.05,0.32] 1.11 [0.56,1.54] 4.07 [1.34,14.39] << 0.05 

M3f 0.48 [0.29,0.75] 0.68 [0.33,1.04] 0.54 [0.32,0.83] 0.54 

M4f 2.10 [1.79,2.73] 2.33 [1.87,3.06] 2.20 [1.60,2.70] 0.65 

PR  0.31 [0.25,0.35] 0.24 [0.21,0.34] 0.34 [0.30,0.39] 0.05 

MA (101) 0.60 [0.33,0.87] 1.27 [1.00,1.54] 2.92 [1.68,4.59] << 0.05 

mA 1.21 [0.84,2.12] 2.30 [1.91,2.88] 3.46 [2.56,8.59] << 0.05 

SE 4.33 [4.26,4.37] 4.30 [4.24,4.32] 4.20 [4.12,4.30] << 0.05 

Mb  0.17 [0.11,0.20] 0.28 [0.23,0.32] 0.42 [0.25,0.56] << 0.05 

MB1(10-1) 0.05 [0.02,0.21] 0.23 [0.09,0.63] 0.49 [0.17,1.22] << 0.05 

H1 (108) -5.78 [-5.90,-5.57] -5.59 [-5.73,-5.45] -5.40 [-5.58,-5.28] << 0.05 

H2 (-105) -1.38 [-1.41,-1.33] -1.32 [-1.36,-1.29] -1.28 [-1.32,-1.25] << 0.05 

H3 (-108) -2.96 [-3.02,-2.86] -2.87 [-2.93,-2.79] -2.77 [-2.86,-2.71] << 0.05 

BE1 8.51 [7.88,9.43] 8.17 [7.71,8.71] 8.60 [8.11,8.79] 0.34 

BE2 6.08 [4.88,6.62] 5.26 [4.43,5.58] 6.70 [5.68,7.07] 0.13 

PE 2.14 [2.08,2.15] 2.12 [2.05,2.14] 2.11 [2.08,2.13] 0.64 

meanPa (10-2) -1.60 [-3.19,0.81] 0.89 [-0.47,2.21] 0.92 [-1.96,3.20] 0.29 

varPa 0.38 [0.26,0.43] 0.34 [0.22,0.37] 0.33 [0.22,0.44] 0.87 
* P-values obtained after Bonferroni correction 
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Table 3. Confusion matrices of the MLP models in the test set. Regarding the model 

MLPnobis average Acc=69.3% and kappa=0.45, whereas for model MLPbis average 

Acc=76.0% and kappa=0.56. 

 Estimated 

 MLPnobis MLPbis 

 AHI<5 5≤AHI<10 AHI≥10 AHI<5 5≤AHI<10 AHI≥10 

A
ct

ua
l 

AHI<5 37 3 1 40 0 1 

5≤AHI<10 6 6 2 7 5 2 

AHI≥10 7 4 9 6 2 12 

Table 4. Diagnostic ability of the MLP models in the test set for AHI cutoffs= 5 e/h and 

10 e/h. 

AHI cutoff=5 e/h 

Features Se Sp PPV NPV LR+ LR- Acc 

MLPnobis  61.8 90.2 84.0 74.0 6.33 0.42 77.3 

MLPbis 61.8 97.6 95.5 75.5 25.32 0.39 81.3 

AHI cutoff=10 e/h 

Features Se Sp PPV NPV LR+ LR- Acc 

MLPnobis 45.0 94.5 75.0 82.5 8.25 0.58 81.3 

MLPbis 60.0 94.5 80.0 86.7 11.00 0.42 85.3 
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Table 5. Summary of previous relevant published studies in the context of automated 

analysis of SpO2 recordings to assist in the diagnosis of pediatric SAHS. 

Studies Subjects 
(n) 

Signal AHI 
cutoff 

Methods Validation Se 
(%) 

Sp 
(%) 

Acc 
(%) 

Kirk et al.  
[11] 

58 SpO2 5 ODI3 Direct 
validation** 

67 60 64* 

Tsai et al.  
[12] 

148 SpO2 1 
5 
10 

ODI4  No 77.7 
83.8 
89.1 

88.9 
86.5 
86.0 

79.0* 
85.1* 
87.1* 

Brouillette 
et al. [13] 

349 SpO2 1 Clusters of  
desaturations 

Direct 
validation** 

42.9 97.8 64.7 

Velasco et 
al.  [14] 

167 SpO2 1 Clusters of 
desaturations 

Direct 
validation** 

86.6 98.9 93.4* 

Van Eyck 
et al. [15] 

130 SpO2 2 ODI3, 
Brouillete et al. 

[13], and 
Velasco  et al. 

[14] 

Train-test for 
ODI3 

57 
58 
66 

73 
88 
69 

68* 
78* 
68* 

Chang et 
al. [16] 

141 SpO2 5 ODI3 and 
sympthoms 

Direct 
validation** 

60 86 72* 

         
Pia-Villa 
et al. [17] 

268 SpO2 1 
5 

McGill 
oximetric score 

and clinical 
history 

Direct 
validation** 

91.6* 
40.6* 

40.6* 
97.9* 

85.8* 
69.4* 

         
Cohen & 
de Chazal 
[12] 

288 ECG 
and 

SpO2 

Event 
detection 

Statistical 
parameters, 

classical 
indices, and 

PSD 

Loocv 58.1 67.0 66.7 

Gutiérrez-
Tobal et 
al. [12] 

50 FA 
and 

SpO2 

3 PSD (AF) and 
ODI3 (SpO2) 

Bootstrap 
0.632 

85.9 87.4 86.3 

Garde  et 
al. [7] 

146 PRV 
and 

SpO2  

5 Statistical 
parameters, 
nonlinear 
features, 
classical 

indices, and 
PSD 

4-fold cross 
validation 

88.4 83.6 85.0 

Álvarez et 
al. [19] 

50 SpO2 1 
3 
5 

Statistical 
parameters, 
nonlinear 
features, 
classical 

indices, and 
PSD 

Bootstrap 
0.632 

89.6 
82.9 
82.2 

71.5 
84.4 
83.6 

85.5 
83.4 
82.8 

Our 
proposal 

298 SpO2 5 
10 

Bispectrum, 
PSD, ODI3, 

anthropometric 
variables 

Feature 
optimization- 
training-test 

61.8 
60.0 

97.6 
94.5 

81.3 
85.3 

loocv: leave-one-out cross validation; ECG: Electrocardiogram; AF. Airflow; PRV: Pulse rate variability. 
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* computed from reported data, 

** direct validation of a scoring criteria against AHI from PSG.  

FIGURE LEGENDS 

Figure 1. Averaged magnitude of the bispectrum for the three SAHS severity groups: 

(a) AHI<5 e/h, (b) 5≤AHI<10 e/h, and (c) AHI≥10 e/h in the feature optimization set. 
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