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Abstract-  

Objective: To evaluate whether detrended fluctuation analysis (DFA) provides 

information that improves the diagnostic ability of the oximetry signal in the diagnosis 

of paediatric sleep apnoea-hypopnoea syndrome (SAHS). Approach: A database 

composed of 981 blood oxygen saturation (SpO2) recordings in children was used to 

extract DFA-derived features in order to quantify the scaling behaviour and the 

fluctuations of the SpO2 signal. The 3% oxygen desaturation index (ODI3) was also 

computed for each subject. Fast correlation-based filter (FCBF) was then applied to 

select an optimum subset of relevant and non-redundant features. This subset fed a 

multi-layer perceptron (MLP) neural network to estimate the apnoea-hypopnoea index 

(AHI). Main results: ODI3 and 4 features from the DFA reached significant differences 

associated with the severity of SAHS. An optimum subset composed of the slope in the 

first scaling region of the DFA profile and the ODI3 was selected using FCBF applied 

to the training set (60% of samples). The MLP model trained with this feature subset 

showed high agreement with actual AHI, reaching an intra-class correlation coefficient 

of 0.891 in the test set (40% of samples). Furthermore, the estimated AHI showed high 

diagnostic ability, reaching 82.7%, 81.9%, and 91.1% accuracies using three common 

AHI cut-offs of 1, 5, and 10 events per hour (e/h), respectively. These results 

outperformed the overall performance of ODI3. Significance: DFA may serve as a 

reliable tool to improve the diagnostic performance of oximetry recordings in the 

evaluation of paediatric patients with symptoms suggestive of SAHS. 
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1.  INTRODUCTION 

Childhood sleep apnoea-hypopnoea syndrome (SAHS) is a breathing disorder 

whereby paediatric subjects manifest recurrent episodes of either complete cessation 

(apnoea) or significant reductions (hypopnoea) of airflow while sleeping (Marcus et al 

2012). Paediatric SAHS has become a major health problem due to its high prevalence 

and negative effects. SAHS has an estimated prevalence in the range of 1 to 5% in the 

general paediatric population (Marcus et al 2012). In addition, cognitive deficits, 

behavioural abnormalities, daytime sleepiness, cardiac and metabolic derangements, 

and systemic inflammation are all morbid consequences that adversely affect the 

optimal development of children affected by SAHS (Marcus et al 2012).  

Based on the aforementioned considerations, an early diagnosis of paediatric 

SAHS acquires an essential importance. The gold standard diagnostic approach to 

childhood SAHS is overnight polysomnography (PSG) (Marcus et al 2012). It requires 

patients to spend the night in a specialised sleep laboratory while being recorded for a 

wide range of biomedical signals, including electrocardiogram, electroencephalogram, 

electrooculogram, submental and leg electromyogram, oronasal airflow, and blood 

oxygen saturation (SpO2) by pulse oximetry (Alonso-Álvarez et al 2011, Kaditis et al 

2016). However, PSG is a complex text which is also quite costly due to the necessary 

equipment and specialized medical personnel that is required to supervise the PSG and 

to score the recordings. PSG is also intrusive, especially for children, due to the use of 

multiple sensors. Additionally, PSG shows limited availability in many if not most 

places around the world, which results in long waiting lists, thus delaying the diagnosis 

and treatment of the affected children (Nixon et al 2004, Katz et al 2012).  

Considering the inherent disadvantages and limitations of the PSG, along with the 
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need of an early and timely diagnosis of SAHS, a search for simplified alternative 

techniques has emerged in recent years. In this regard, one common approach consists 

in the automated analysis of a reduced subset of cardiorespiratory signals that is 

normally included in the overnight PSG. One of these alternatives is nocturnal pulse 

oximetry (NPO), which records the blood oxygen saturation signal (SpO2) with a pulse 

oximeter probe, usually placed in a finger (Netzar et al 2001). NPO can be readily 

performed without the need for professional supervision in the patient’s home and is 

widely available as reflected by the large number of commercially available portable 

pulse oximeters (Nixon et al 2004, Garde et al 2014). Thus, NPO is a technically simple  

test for children, and SpO2 signal from NPO provides moment to moment oxygen 

content in haemoglobin (McClatchey 2002), a signal that contains essential information 

of apnoeic events from SAHS, since these events induce recurrent decreases in blood 

oxygen levels, otherwise termed oxygen desaturations (Berry et al 2012). 

Previous studies have examined the SpO2 signal as a potential alternative to PSG 

in the screening of paediatric SAHS. These studies employed different signal processing 

techniques (Kirk et al 2003, Tsai et al 2013, Garde et al 2014, Eyck et al 2015, Álvarez 

et al 2017, Crespo et al 2017, Hornero et al 2017, Vaquerizo-Villar et al 2018), and 

more specifically conventional oximetry indices, common statistics, frequency domain 

analysis techniques, and nonlinear methods. Among these approaches, nonlinear 

parameters proved as useful to characterise the oxygen desaturations caused by apnoeic 

events in adults and children. However, a recent study using a very large database of 

4,191 paediatric subject recordings showed that traditional nonlinear metrics (central 

tendency measure, Lempel-Ziv complexity and sample entropy) were redundant with 

respect to the 3% oxygen desaturation index (ODI3) (Hornero et al 2017), an oximetry 

index commonly used in the clinical practice for simplified screening purposes. 
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Therefore, additional research is needed to find alternative and better performant 

nonlinear methods that may provide further insights into the properties of the oximetry 

signal and allow for extraction of additional information to the one provided by the 

ODI3. In this regard, detrended fluctuation analysis (DFA) is a nonlinear analysis 

technique widely used to detect the correlation properties of a non-stationary signal 

(Peng et al 1994, 1995). DFA computes the logarithm of the fluctuation function of a 

time series versus the logarithm of a window time length (scale). DFA provides a 

quantitative parameter, the scaling exponent (α), which measures the linear relationship 

between the fluctuation function and the scale (Peng et al 1994). The variation of α 

value for different ranges of scales (different window time lengths) identifies regions 

with different correlation (Peng et al 1995). In this sense, the scaling behaviour of a 

signal is given by the different regions observed in the DFA profile and the value of α in 

these regions (Peng et al 1995). Thus, DFA is a useful tool to analyse signals with 

segments that modify its scaling behaviour, such as random spikes or segments which 

have a different local behaviour (Chen et al 2002, Hua and Yu 2017). Apnoeic events 

produce random spikes and/or irregular fluctuations in the SpO2 signal. Hence, DFA 

could be useful to analyse the oximetry signal in the context of SAHS.  

Previous work has suggested the ability of DFA to analyse the correlation 

properties of physiological signals in the context of both adult and paediatric SAHS 

(Lee et al 2002, Penzel et al 2003, Dehkordi et al 2016, Kaimakamis et al 2016, Hua 

and Yu 2017). Hua and Yu (2017) applied DFA to SpO2 signals in the context of 

diagnosing adult SAHS. However, there are no studies focused on applying DFA to 

SpO2 recordings in the context of paediatric SAHS. SpO2 signal properties in children 

differ from those of adults. Furthermore, the frequency of events that are required to 

define abnormality or severity markedly differ between adults and children. In addition, 
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scoring rules for apnoeas and hypopnoeas are also more restrictive in the case of 

paediatric SAHS (Berry et al 2012). Thus, the diagnosis of SAHS in children is vastly 

more challenging than in adults. 

Thus, we hypothesised that DFA could extract additional information from the 

oximetry signal, which could be associated to the presence and severity of SAHS in 

children and could therefore assist in the diagnostic accuracy of overnight oximetry. 

Accordingly, the aim of this study was to assess the usefulness of DFA-derived features 

obtained from the oximetry signal to simplify the diagnosis of paediatric SAHS.  

2. METHODS 

2.1. Subjects and signals under study 

The dataset included 981 children (602 boys and 379 girls) ranging from 2 to 13 

years of age. All children were consecutively and prospectively referred to the Pediatric 

Sleep Unit at the University of Chicago Medicine Comer Children’s Hospital (Chicago, 

IL, USA) due to clinical suspicion of SAHS. Their legal caretakers gave their informed 

consent as a prerequisite to participate in the study. The Ethical Committee of the 

University of Chicago Medicine approved the research protocols (#11-0268-AM017, # 

09-115-B-AM031, and # IRB14-1241). 

 A digital polysomnography system (Polysmith; Nihon Kohden America Inc., CA, 

USA) was used to monitor children’s sleep. SpO2 recordings were obtained during 

overnight PSG at samplings rates of 25, 200, or 500 Hz. They were exported and 

processed offline. Artifacts were rejected from oximetric recordings by removing those 

SpO2 values below 50% and sudden changes between consecutive SpO2 samples faster 

than 4%/second (Magalang et al 2003). Then, a non-overlapping averaging-window of 

1 second was applied (effective sampling rate=1Hz) to speed up the signal processing 
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stage, which has been found to be appropriate to perform a multiscale analysis of the 

oximetry signal (Crespo et al 2017, Hua and Yu 2017). This window size is lower than 

3 seconds, which is the maximum averaging-time recommended by the American 

Academy of Sleep Medicine (AASM) (Berry et al 2012). The resolution of the SpO2 

signals was set to two decimal points in order to have the same resolution (Hornero et al 

2017).  

Sleep and cardiorespiratory events were scored and quantified by specialised 

technologists and further confirmed by paediatric sleep medicine specialists who were 

unaware of the study purpose. The AHI was estimated according to the AASM 

guidelines (Berry et al 2012). In this sense, there is no consensus regarding the AHI cut-

off used to determine SAHS and its severity (Alonso-Álvarez et al 2011, Church 2012, 

Marcus et al 2012, Tan et al 2014). However, a wide range of studies typically classify 

children into four SAHS severity degrees: no-SAHS (AHI<1 e/h),  mild SAHS 

(1≤AHI<5 e/h), moderate SAHS (5≤AHI<10 e/h), and severe SAHS (AHI≥10 e/h) 

(Alonso-Álvarez et al 2011, Church 2012, Tan et al 2014, Hornero et al 2017).  Thus, 

the AHI cut-offs of 1, 5, and 10 e/h were adopted in this study. 

The dataset was randomly divided into a training set (60%) and a test set (40%). 

Table 1 shows clinical and demographic data of the population under study. No 

statistically significant differences (p-value < 0.01) were found in either age or body 

mass index (BMI).  

2.2. Automated signal processing 

Our approach consisted of three sequential stages. First, features derived from 

DFA and ODI3 were obtained from the SpO2 recording of each subject. Then, a smaller 

subset of relevant and non-redundant features was selected using the fast correlation-
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based filter (FCBF) method (Yu and Liu 2004). Finally, a multi-layer perceptron (MLP) 

neural network (Bishop 1995) was applied to this optimum subset in order to estimate 

the AHI of each patient.  

2.2.1. Detrended fluctuation analysis 

DFA performs a multiscale analysis of a time series to study its correlation 

properties (Peng et al 1994). The DFA profile shows changes in the correlation 

properties for different ranges of scales, termed ‘crossovers’, which may be caused by 

different non-stationarities in the signal such as (Chen et al 2002): (i) segments removed 

from the signal; (ii) random spikes with variable amplitude; (iii) segments with different 

Table 1. Clinical and demographic data of the population under study. 

Characteristics All AHI<1 1≤AHI<5 5≤AHI<10 AHI≥10 
All subjects    

Subjects (n) 981 175 401 176 229 
Age (years) 6  

[3,9] 
7 

[4,10] 
6 

[4,9] 
5 

[2,8] 
4  

[2,8] 
Males (%) 602 (61.4%) 109 (62.3%) 247 (61.6%) 107 (60.8%) 139 (60.7%) 

BMI (kg/m2) 17.9 
[15.8,21.9] 

17.4 
[15.5,20.9] 

17.7 
[15.9,21.2] 

18.6 
[16.2,24.0] 

18.3 
[16.0,23.2] 

AHI (e/h) 3.8  
[1.5,9.3] 

0.5  
[0.1,0.8] 

2.5  
[1.7,3.5] 

6.8  
[5.8,8.3] 

19.1 
[13.9,31.1] 

Training set (60%)    
     Subjects (n) 589 98 232 113 146 
      Age (years) 6  

[3,8] 
6 

[4,8] 
7  

[4,9] 
5 

[2,8] 
5 

[3,8] 
        Males (%) 348 (59.1%) 61 (62.2%) 140 (60.3%) 72 (63.7%) 75 (51.4%) 

BMI (kg/m2)         17.6 
[15.9,22.0] 

17.0 
[15.4,19.9] 

17.5 
[15.9,21.6] 

18.6 
[16.2,23.7] 

18.1 
[15.9,23.6] 

         AHI(e/h) 4.1  
[1.7,9.9] 

0.4 
[0.0,0.8] 

2.5  
[1.8,3.6] 

6.9  
[5.8,8.5] 

18.9 
[13.8,33.5] 

Test set (40%)    
     Subjects (n) 392 77 169 63 83 
      Age (years) 6 

[3,9] 
8  

[5,10] 
5 

[2,9] 
6 

[4,9] 
4 

[2,8] 
        Males (%) 254 (64.8%) 48 (62.3%) 107 (63.3%) 35 (55.6%) 64 (77.1%) 

BMI (kg/m2)        18.1 
[15.8,21.7] 

18.0 
[15.6,21.7] 

18.0 
[15.8,20.7] 

18.9 
[15.7,26.3] 

18.3 
[16.0,22.1] 

         AHI(e/h) 3.3  
[1.4,7.8] 

0.5  
[0.3,0.8] 

2.5 
[1.7,3.4] 

6.8 
[5.8,7.8] 

19.2 
[15.1,28.2] 

BMI: Body Mass Index; AHI: Apnoea Hypopnoea Index. Data are presented as median [interquartile 

range], n or %. 
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local behaviour. Segments of the SpO2 signal associated to apnoeic events typically 

have different statistical properties, presenting fluctuations and spikes (Crespo et al 

2017, Hua and Yu 2017). Thus, these properties of the SpO2 signal may be reflected in 

the DFA profile.  

Given a signal x(t), the DFA method consists of the following steps (Peng et al 

1994): 

1. The time series x(t) is integrated: 

( ) ( )[ ] ,,...,1,
1

Nixjxiy
i

j
avg =−= ∑

=

       (1) 

where xavg is the average of the whole signal x(t), and N is the length of 

the SpO2 signal. 

2. The integrated signal y(i) is divided into B non-overlapping windows of 

equal size. In the case of SpO2 recordings, the minimum length of the 

signal is 3 hours (10800 samples) in order to have sleep cycles enough 

(Berry et al 2012). Thus, the length of each window (i.e., the scale), k, is 

between 3 and 1080, since the maximum box size in DFA must be one-

tenth of the signal length (Chen et al 2002).  

3. For each window b (b=1, ..., B), the local trend was obtained as a straight 

line, yb, estimated by applying a least squares fitting to yi. 

4. The variance of the fluctuation in each window, Fb
2(k), is defined as 

follows: 

   
( ) ( ) ( )( )

( )
∑

+−=

−=
bk

kbj

b
b jyjy

k
kF

11

22 1       (2) 

5. The fluctuation function, F(k), is obtained as the square root of the 

average of Fb
2(k) over all windows: 
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Steps 2 to 5 are iterated until the highest scale is used. 

A double logarithmic plot was used to analyse the evolution of the DFA plot 

along scales: log (F(k)) vs log (k) (Penzel et al 2003, Dehkordi et al 2016, Hua and Yu 

2017). Figure 1 shows the averaged DFA plot for the four SAHS severity groups 

(AHI<1 e/h, 1≤AHI<5 e/h, 5≤AHI<10 e/h, and AHI≥10 e/h) in the training set. It can be 

shown that higher fluctuations are observed as the SAHS severity increases. 

Additionally, two scaling regions can be observed in the DFA plot:  

• Region 1, for scales in the range 0.48 ≤ log (k) ≤ 1.3 (3≤k≤20).  

• Region 2, for scales in the range 1.60 ≤ log (k) ≤ 3.03 (40≤k≤1080). 

 

Figure 1. Averaged DFA profile for the four SAHS severity groups: (a) AHI<1 e/h, 

(b) 1≤AHI<5 e/h, (c) 5≤AHI<10 e/h, and (d) AHI≥10 e/h in the training set. 
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A crossover is produced in the space between these two regions of the DFA profile. 

Robust linear regression (Hua and Yu 2017) was applied to estimate the line that fits 

both regions for each SpO2 recording.  

Figure 2 shows the lines fitted in both regions in an illustrative example of a 

patient from the training set. We characterised the DFA plot by extracting the following 

features, as it can be seen in the figure 2 (Penzel et al 2003, Hua and Yu 2017): 

• Slopes (scaling exponents) in the line that fits the DFA profile in both 

regions (slope1 and slope2), as well as the ratio of them (slope1/2). These 

parameters measure the scaling behaviour of the oximetry signal in each 

region (slope1 and slope2) and the relative differences of this behaviour 

between both regions (slope1/2). 

• Coordinates (k12 and F(k12)) of the intersection formed by the lines fitted in 

 

Figure 2. Illustrative example of the DFA plot of the SpO2 signal of a patient from 

the training set. 
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the regions 1 and 2. These parameters are intended to characterise the 

crossover point of the DFA plot.  

• Fluctuation function in the scale with a maximum correlation with the 

severity of SAHS (F(kx)). This parameter was extracted to quantify the 

fluctuations of the oximetry signal. In order to obtain the optimum value 

of kx, Spearman’s correlation was computed for each scale between F(k) 

and the AHI. Kx=21 was therefore obtained as the scale with a maximum 

Spearman’s correlation with the AHI.  

It is expected that these parameters for quantification of the differences in the 

scaling behaviour and the fluctuations of the SpO2 signal associated to the severity of 

SAHS, as shown in figure 1. 

2.2.2. Oxygen desaturation index 

ODI3 was computed as the number of oxygen desaturations from preceding 

baseline greater than or equal 3% per hour of recording (Taha et al 1997). This clinical 

parameter has commonly been used in the SAHS context (Kirk et al 2003, Chang et al 

2013, Tsai et al 2013). Higher values of ODI3 are expected in patients with a higher 

severity of SAHS, since oxygen desaturations are associated with apnoea or hypopnoea 

events (Berry et al 2012). 

2.2.3. Feature selection: Fast Correlation-Based Filter (FCBF) 

FCBF was applied to evaluate the relevance of the extracted features and their 

redundancy within them (Yu and Liu 2004). FCBF has proven its utility in the context 

of paediatric SAHS diagnosis to obtain subsets of relevant and non-redundant features 

(Hornero et al 2017, Vaquerizo-Villar et al 2018). First, FCBF computes symmetrical 

uncertainty (SU) between each feature xi and the dependent variable y in order to assess 
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its relevancy (Yu and Liu 2004): 

( ) ( )
( ) ( ) ,,...,2,1,2, Ni

yHxH
yxIG

yxSU
i

i
i =








+

=      (4) 

where IG(xi|y)= H(xi) - H(xi|y), N is the total number of features extracted (N=7), y is the 

AHI value of each subject, and H refers to Shannon’s entropy (Yu and Liu 2004). SU 

values vary between 0 and 1. SU=1 means that one variable is completely predictable 

from the other, whereas SU=0 indicates that the two variables are independent. 

 According to their SU value, features are ranked from the most relevant (highest 

SU with the AHI) to the least relevant one (lowest SU with the AHI). Different SU-

based thresholds can be used to discard non-relevant features. Nevertheless, the number 

of features comprising our original feature set is not high. Therefore, as proposed by Yu 

and Liu (2004), no relevance threshold was applied to discard non-relevant features in 

order to maximize the relevancy of information derived from oximetry (Gutierrez-Tobal 

et al 2018, Hornero et al 2017). In this regard, a feature that is useless by itself still may 

provide useful information when being selected with others (Guyon 2003). A 

redundancy analysis of each feature is then performed. The SU value between each pair 

of features (xi, xj) is computed, beginning with the most relevant one (Yu and Liu 2004). 

When SU (xi, xj) ≥ SU (xi, y), the feature xj is considered redundant with respect to the 

feature xi and discarded. In this way, an optimum subset composed of the most relevant 

and non-redundant features is obtained (Yu and Liu 2004).  

A bootstrap methodology was used in order to compose a stable optimum feature 

subset independent of a particular dataset. FCBF was applied to 1000 bootstrap 

replicates built from our training data (Efron and Tibshirani 1994, Guyon 2003). Those 

variables which were selected at least half of the runs (500) formed the optimum subset 

(Hornero et al 2017, Vaquerizo-Villar et al 2018).  
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2.2.4. AHI estimation: Multi-layer Perceptron (MLP) neural network 

MLP was applied to estimate the AHI of the subjects under study using the 

optimum feature subset obtained with FCBF. MLP is one of the most widely used 

artificial neural networks (ANNs). This ANN has already shown its usefulness in the 

screening of paediatric SAHS diagnosis using SpO2 recordings (Hornero et al 2017). 

MLP is arranged in several interconnected layers (input, hidden layers, and output) 

composed of simple units called perceptrons or neurons (Bishop 1995). Each neuron 

consists of an activation function gi and adaptive weights wjk representing connections 

with neurons from the following layer. In our case, the output layer has one neuron y, 

which represents the estimated AHI. Additionally, a single hidden layer configuration 

was implemented, since it is able to provide universal approximation to any function 

(Bishop 1995). Thus, the output unit in our MLP architecture is calculated as follows: 

,
1 1 








+








+= ∑ ∑
= =

HN

j
k

d

i
jiijtjkl bbxwgwgy      (5) 

where gl and gt are the activation functions of the output and hidden layer, respectively, 

wjk are the weights connecting the hidden layer to the output layer, wij are the weights 

connecting the input layer to the hidden layer, xi is the input feature i,  bj and bk are the 

bias associated to the hidden and the output units respectively, NH is the number of units 

in the hidden layer, and d is the number of input features (Bishop 1995). Weights of the 

network were randomly initialised. Then, the scaled conjugate gradient with weight-

decay regularisation was applied to optimise these weights. This optimisation algorithm 

minimises the cross-entropy error function and achieves good generalisation, as 

recommended for pattern recognition tasks (Bishop 1995). 

Our MLP network was implemented using the Netlab toolbox (Nabney 2002). 

The design parameters of the MLP network (the regularisation parameter (α) and NH) 
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were optimised by means of 10-fold cross-validation using the training set. This 

optimisation allows to control the complexity of the MLP network, thus minimising 

under-fitting and overfitting. Once these parameters were optimised, the MLP model 

was built using the whole training dataset.  

2.2.5. Statistical Analysis and Diagnostic Performance 

Matlab R2016a (The MathWorks Inc., Natick, MA, USA) was used to implement 

automated signal processing algorithms, as well as to perform statistical analyses. The 

Kruskal-Wallis test was used to assess statistical differences (p-value <0.01) between 

groups, since the extracted features did not pass the Lilliefors normality test. The 

Bonferroni correction was applied to deal with multiple comparisons. Both agreement 

between estimated AHI (AHIMLP) and actual AHI (AHIPSG), as well as agreement 

between ODI3 and AHIPSG were assessed by means of Bland-Altman plots and the 

intra-class correlation coefficient (ICC). Cohen’s kappa index (kappa) was used to 

measure the agreement between AHIMLP and AHIPSG to estimate the severity of SAHS 

(Cohen 1960). Diagnostic ability of ODI3 and AHIMLP was assessed in terms of 

sensitivity (Se, percentage of SAHS positive patients correctly classified), specificity 

(Sp, percentage of SAHS negative children correctly classified), positive predictive 

value (PPV, proportion of subjects classified as positive that are true positives), 

negative predictive value (NPV, proportion of subjects classified as negative that are 

true negatives), positive likelihood ratio (LR+, likelihood ratio for subjects classified as 

positive), negative likelihood ratio (LR-, likelihood ratio for subjects classified as 

negative), accuracy (Acc, percentage of subjects correctly classified), and area under the 

ROC curve (AUC). A bootstrapping approach was employed in order to compare the 

ICC, kappa, overall Acc (four classes), and AUC values between ODI3 and AHIMLP. 

The number of bootstrap replicates built from the test data was set to 1000, since it 
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ensures a proper estimation of the 95% confidence interval (Efron and Tibshirani 1994). 

ICC, kappa, overall Acc, and AUC values were obtained for ODI3 and AHIMLP from 

each of these replicates. Then, the p-value between ODI3 and AHIMLP was computed 

for each of these metrics according to the Mann-Whitney U test.  

3. RESULTS 

3.1. Training set 

3.1.1. Features separability 

A total of 7 features were obtained for each subject: ODI3, and 6 DFA-derived 

features. Table 2 shows the median and interquartile range of these features in the 

training set for each SAHS severity group, along with their corresponding p-values. 

ODI3 and 4 out of 6 DFA-derived features (slope1, slope1/2, F(k12), and F(kx)) showed 

statistical significant differences (p-value <0.01, after Bonferroni correction).  

3.1.2. Optimum feature subset 

Figure 3 displays the histogram with the number of times that each feature was 

Table 2. Feature values for the SAHS severity groups (median [interquartile range]) 

in the training set. 

Features AHI<1 1≤AHI<5 5≤AHI<10 AHI≥10 p-
value 

ODI3 1.04 [0.52,2.47] 2.03 [0.93,3.89] 3.69 [1.94,7.23] 12.35 [6.65,24.49] < 0.01 

slope1 1.63  [1.58,1.68] 1.64 [1.58,1.70] 1.67 [1.60,1.71] 1.74 [1.66,1.79] < 0.01 

slope2 0.96  [0.90,1.05] 0.95 [0.87,1.03] 0.92  [0.85,1.02] 0.94  [0.88,1.01] 0.18* 

slope12 1.66 [1.53,1.82] 1.69 [1.55,1.87] 1.77 [1.60,1.94] 1.82 [1.68,1.95] < 0.01 

k12 1.33 [1.23,1.42] 1.36 [1.26,1.44] 1.38 [1.29,1.45] 1.34 [1.23,1.42] 0.04* 

F(k12) 0.01 [-0.18,0.18] 0.12 [-0.12,0.26] 0.22 [0.04,0.38] 0.42 [0.16,0.61] < 0.01 

F(kx) -0.05 [-0.13,0.04] 0.02 [-0.07,0.11] 0.10 [0.00,0.20] 0.31 [0.18,0.52] < 0.01 

* Not lower after Bonferroni correction (p-value=0.01/6) 
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selected over the 1000 bootstrap replicates. ODI3 was selected all the times, which 

agrees with previous studies (Hornero et al 2017, Vaquerizo-Villar et al 2018). 

Additionally, slope1 was selected more than half of the times (535). Thus, ODI3 and 

slope1 were chosen as the optimum subset.  

3.1.3. MLP model optimisation and training 

The MLP network was designed and trained using this optimum feature subset 

(ODI3 and slope1). In order to find the optimum values, NH and α were varied from 

NH=2 up to NH=30 and α=0 up to α=10, respectively. For each NH-α pair, kappa was 

obtained through ten-fold cross validation. Since the network is sensitive to the initial 

random values of the weights, kappa was computed on the cross validation set and 

 

Figure 3. Histogram with the number of times each feature is selected over the 1000 

bootstrap iterations. 
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averaged for a total of 10 runs for each NH-α pair. Figure 4 shows the kappa value 

obtained for each NH-α pair. According to this figure, the optimum values NH=5 and 

α=6 were obtained as those for which kappa was higher. Finally, the optimum feature 

subset (ODI3 and slope1) from the entire training set was used to train the MLP model 

(AHIMLP) with these optimum user-dependent network parameters. 

3.2. Test set 

Figure 5 (a) and (b) show the Bland-Altman plots of ODI3 and AHIMLP compared 

with AHIPSG, respectively, in the test set. ICC between ODI3 and AHIMLP with AHIPSG 

is also shown.  AHIMLP reached a lower mean difference (bias) with AHIPSG than ODI3 

(0.75 vs. -1.65), whereas ODI3 achieved a slightly lower confidence interval than 

AHIMLP (23.2 vs. 24.3). Notice that ODI3 underestimates AHI, whereas AHIMLP 

 

Figure 4. Averaged kappa for each NH-α pair. 
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corrects this behaviour by showing a slight overestimation. In addition, AHIMLP 

achieved higher agreement with AHIPSG (ICC= 0.891) than ODI3 (ICC=0.866). 

Regarding the diagnostic performance, table 3 shows the confusion matrices of ODI3 

and AHIMLP in the test group. These matrices show the class predicted by both original 

ODI3 and AHIMLP for each subject versus the actual SAHS severity group, according to 

AHIPSG. Using ODI3, 55.4% of the subjects.  (217/392) were correctly assigned to their 

actual group of SAHS severity (sum of the main diagonal elements of the matrix). 

Conversely, AHIMLP rightly assigned 60.0% (235/392) of the subjects to their SAHS 

severity group. Kappa values were 0.355 (ODI3) and 0.412 (AHIMLP). Table 4 shows 

the diagnostic ability of both ODI3 and AHIMLP for the AHIPSG-based cut-offs of 1, 5, 

and 10 e/h. AHIMLP outperformed single ODI3 in terms of ICC, overall Acc and kappa. 

Additionally, our AHIMLP reached higher Acc for the single AHI cut-offs of 1 and 10 

e/h. With respect to the comparison of the results of ODI3 and AHIMLP, statistically 

significant higher values (p-value<0.01) were obtained using AHIMLP in the case of 

ICC, kappa, and overall Acc. In addition, statistically significant differences were found 

for the AHI cut-offs of 5 and 10 e/h between AUC of ODI3 and AHIMLP.  
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Table 3. Confusion matrices of ODI3 and AHIMLP in the test set. Regarding ODI3, 

average Acc=55.4% and kappa=0.355, whereas for AHIMLP, average Acc=60.0% and 

kappa=0.412. 

 
ODI3 AHIMLP 

AHI<1 1≤AHI<5 5≤AHI<10 AHI≥10 AHI<1 1≤AHI<5 5≤AHI<10 AHI≥10 

A
H

I P
SG

 

AHI<1 39 36 1 1 18 55 3 1 

1≤AHI<5 47 107 12 3 8 125 33 3 

5≤AHI<10 5 33 17 8 1 22 28 12 

AHI≥10 0 13 16 54 0 8 11 64 

 

 

 

Figure 5. Bland-Altman plots comparing (a) ODI3 with AHIPSG and (b) AHIMLP with 

AHIPSG. 
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4. DISCUSSION 

This study evaluated the usefulness of DFA to provide additional information 

from oximetry dynamics in order to assist with the screening of children at risk for 

paediatric SAHS. To our knowledge, the application of DFA to SpO2 recordings is 

novel in the context of paediatric SAHS. Our proposed approach shows high diagnostic 

ability, and outperforms the conventional oximetric index ODI3. 

ODI3 and 4 out of 6 features from DFA (slope1, slope1/2, F(k12), and F(kx)) 

reached significantly higher values that were associated with increased severity of 

SAHS. The statistical differences shown by these DFA-derived parameters indicate that 

the scaling behaviour of the DFA profile of the SpO2 signal is affected in the presence 

of SAHS, as illustrated by figure 1. This change in the correlation properties of the 

SpO2 signal along time scales may be caused by the presence of spikes or segments with 

different statistical properties (Chen et al 2002, Hua and Yu 2017). Figure 1 shows two 

regions with different scaling exponents (correlation), one region for the short-time 

Table 4. Diagnostic ability of ODI3 and AHIMLP in the test set for AHI cut-offs= 1, 5, 

and 10 e/h. 

AHI cut-off=1 e/h 
Features Se Sp PPV NPV LR+ LR- Acc AUC 
ODI3 83.5 50.6 87.4 42.9 1.7 0.33 77.0 0.811 
AHIMLP 97.1 23.3 83.9 66.7 1.3 0.12 82.7 0.813 

AHI cut-off=5 e/h 
Features Se Sp PPV NPV LR+ LR- Acc AUC 
ODI3 65.1 93.1 84.8 81.8 9.4 0.37 82.7 0.883 
AHIMLP 78.8 83.7 74.2 86.9 4.8 0.25 81.9 0.888 

AHI cut-off=10 e/h 
Features Se Sp PPV NPV LR+ LR- Acc AUC 
ODI3 65.1 96.1 81.8 91.1 16.7 0.36 89.5 0.921 
AHIMLP 77.1 94.8 80.0 93.9 14.9 0.24 91.1 0.930 
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scales (region 1) and another region for long-time scales (region 2). Two scaling regions 

were also obtained in the studies developed by Dehkordi et al (2016) and Penzel et al 

(2003). Dehkordi et al (2016) and Penzel et al (2003) applied DFA to analyse the 

scaling behaviour of the pulse rate variability (HRV) and heart rate variability (PRV) 

signals in the context of SAHS, respectively. According to these studies (Dehkordi et al 

2016, Penzel et al 2003), the time scales of these regions may be related to the duration 

of apnoeic events. In these studies, short-time scales have been related to the effects of 

respiration on the heart rate, whereas long time scales have been related to the effects of 

sleep stages and circadian rhythm (Penzel et al 2003). 

According to the physiological interpretation of both regions in the DFA profile, 

the higher values shown by slope1 and slope1/2 that associate with the severity of SAHS 

may be related to the variations in the SpO2 signals caused by respiratory events (Hua 

and Yu 2017, Peng et al 1995, Penzel et al 2003), which directly affect the oximetry 

dynamics. On the contrary, slope2 did not show statistical significant differences. 

According to Penzel et al. (2003), slope2 is related to the effects of slower brain 

functions on the HRV signal. Nevertheless, slower brain functions may not have 

relation with the effects of SAHS in the oximetry signal. That is one possible reason 

why the value of slope2 does not increase with the severity of SAHS. Figure 1 also 

shows higher values of F(k) in the SpO2 signal as the severity of SAHS increases. These 

differences may be due to the fluctuations produced in the SpO2 signal by apnoeic 

events (Hua and Yu 2017). These fluctuations are reflected in significantly higher 

values of F(k12) and F(kx) associated with a higher SAHS severity. Finally, it can be 

appreciated in the figure 1 that the crossover point between the two regions of the DFA 

profile occurs at similar time scales for the different SAHS severity groups. The scale 

value k of the crossover point is related to the duration of apnoeic events (Penzel et al 
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2003), which does not depend on the severity of SAHS. This may be the reason why k12 

did not show statistical significant differences. 

Regarding the results of the feature selection stage, figure 3 shows that only ODI3 

and slope1 were selected more than 500 times after the bootstrapping approach. The 

remaining features showed high redundancy. ODI3 and slope1 come from different 

methodological approaches. Therefore, this suggests that information from DFA is 

complementary to that obtained from the conventional ODI3. As aforementioned, a 

MLP neural network fed with this optimum subset outperformed the ODI3 (tables 3 and 

4). A higher agreement with the AHIPSG was achieved with our AHIMLP, as well as a 

higher diagnostic ability to predict SAHS severity. This highlights the usefulness of 

FCBF, the feature selection method employed in our proposal. According to our results, 

slope1, which was involved in the optimum subset, quantifies changes in the scaling 

behaviour of the DFA profile that provide additional information about oximetry 

dynamics able to enhance its diagnostic ability.  

Previous studies also evaluated the usefulness of DFA to characterise SAHS in 

both adults (Lee et al 2002, Penzel et al 2003, Kaimakamis et al 2016, Hua and Yu 

2017) and children (Dehkordi et al 2016). Penzel et al. (2003) and Dehkordi et al. 

(2016) extracted the slopes in the scaling regions of the DFA profile from the HRV and 

PRV signals in order to discriminate sleep stages and detect the presence of SAHS in 

adults and paediatric patients, respectively. Their findings indicate that the scaling 

analysis provided by DFA is suitable to quantify the changes of the cardiac signals 

during sleep stages, as well as the properties of these signals associated with apnoeic 

events. These results agree with Lee et al (2002), who also reported that the scaling 

exponents of the DFA of the electroencephalogram signal are useful to discriminate 

between sleep stages in adult patients. Kaimakanis et al. (2016) reported a 0.77 
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correlation coefficient in predicting AHI with a linear regression model fed with DFA 

and other nonlinear methods applied to airflow and thoracic signals from adult patients. 

Finally, Hua and Yu (2017) evaluated the diagnostic ability of the slopes of four 

different scaling regions and the coordinates and angles of the intersections of these 

regions in the DFA plot of the SpO2 signal in the context of adult SAHS. High 

diagnostic performance was achieved with these features, with 90.8%, 80.1%, and 

87.4% accuracies for the common adult SAHS cut-offs of 5, 15, and 30 e/h, 

respectively. Importantly, our research is not limited to the analysis of individual 

features from DFA, and assesses the capability of DFA to provide additional and 

relevant information complementary to conventional approaches (i.e., ODI3) to simplify 

the diagnosis of paediatric SAHS. 

Table 5 summarises the performance of previous studies focused on the analysis 

of SpO2 as a simplified technique in the screening of paediatric SAHS (Kirk et al 2003, 

Tsai et al 2013, Garde et al 2014, Eyck et al 2015, Álvarez et al 2017, Crespo et al 

2017, Hornero et al 2017, Vaquerizo-Villar et al 2018). Some of them have applied  

oxygen desaturation index (ODI) and clusters of desaturations (Kirk et al 2003, Tsai et 

al 2013, Eyck et al 2015). However, only Tsai et al. (2013) reached accuracies higher 

than 80%. Notwithstanding, further validation was felt to be still needed to 

independently assess the proposed ODI-based cut-offs. 

Recent studies have focused on the application of automated signal processing 

approaches to enhance the diagnostic ability of the SpO2 signal (Garde et al 2014, 

Álvarez et al 2017, Crespo et al 2017, Hornero et al 2017, Vaquerizo-Villar et al 2018). 

From these studies, only Hornero et al. (2017) assessed an AHI estimation model. 

Hornero et al. (2017) built a MLP regression model with ODI3 and the skewness of the 

PSD extracted from 4191 SpO2 recordings from 13 sleep laboratories worldwide. Our 
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study outperformed the state-of-the-art approaches except the performance reported by 

the study of Álvarez et al (2017), which achieved higher accuracies for the AHI cut-offs 

of 1 and 5 e/h. However, the database used by Álvarez et al (2017) had only 50 

subjects. As a consequence, their results are less generalizable and they performed 

binary classification instead of estimating the AHI of each patient.  

 In spite of the promising results of our proposed approach, several limitations 

must be taken into account. First, the number of subjects belonging to the no-SAHS 

(AHI<1 e/h) group is low when compared to the other severity groups. This issue likely 

contributes to the slight trend of the MLP model to overestimate the AHI of the subjects 

Table 5. Summary of state-of-the-art in the context of analysis of SpO2 recordings to 

assist in the diagnosis of paediatric SAHS. 

Studies 
(year) 

Subjects 
(n) 

AHI 
cut-
off 

Methods Validation Se 
(%) 

Sp 
(%) 

Acc 
(%) 

Kirk et al  
(2003) 

58 5 ODI3 Direct 
validation** 

67 60 64* 

Tsai et al 
(2013) 

148 1 
5 

10 

ODI4  No 77.7 
83.8 
89.1 

88.9 
86.5 
86.0 

79.0* 
85.1* 
87.1* 

Garde et al 
(2014) 

146 5 Statistical, nonlinear 
features, classical 
indices, and PSD 

4-fold cross 
validation 

80.0 83.9 78.5 

Van Eyck et 
al. (2015)  

130 2 ODI3 and clusters of 
desaturations 

Train-test for 
ODI3 

57 
58 
66 

73 
88 
69 

68* 
78* 
68* 

Álvarez et al 
(2017) 

50 1 
3 
5 

Statistical, nonlinear 
features, PSD, and 

classical indices  

Bootstrap 0.632 89.6 
82.9 
82.2 

71.5 
84.4 
83.6 

85.5 
83.4 
82.8 

Crespo et al 
(2017) 

50 3 Multiscale entropy 
and classical indices 

Bootstrap 0.632 84.5 83.0 83.5 

Hornero et 
al (2017) 

4191 1 
5 

10 

Statistical, nonlinear 
features, PSD, and 

ODI3 

Training-test 84.0 
68.2 
68.7 

53.2 
87.2 
94.1 

75.2 
81.7 
90.2 

        
Vaquerizo 
et al (2018) 

298 5 
10 

Bispectrum, PSD, 
ODI3, anthropometric 

variables 

Feature 
optimisation-
training-test 

61.8 
60.0 

97.6 
94.5 

81.3 
85.3 

Our 
proposal 

981 1 
5 

10 

DFA and ODI3 Training-test 97.1 
78.8 
77.1 

23.3 
83.7 
94.8 

82.7 
81.9 
91.1 

* computed from reported data, ** direct validation of a scoring criteria against AHI from PSG.  

 



27 

 

belonging to this group, thus resulting in a low specificity for an AHI-threshold of 1 e/h. 

However, this is likely the situation in clinical settings when only symptomatic children 

would be referred for evaluation. Nonetheless, a more balanced proportion of subjects 

among SAHS severity groups would likely minimise this effect. Another limitation 

concerns the use of the SpO2 signal alone to detect SAHS, since some physiological 

perturbations of SAHS may not be detected by the oximetry signal, such as airflow 

reductions, electroencephalographic arousals, or increased intrathoracic pressure swings 

(Marcus et al 2012). The use of SpO2 together with other biomedical signals could 

detect these perturbations and, consequently, enhance the detection of SAHS. However, 

this would increase the complexity of the screening method. Additionally, the 

application of more advanced machine learning algorithms could be potentially useful 

to improve the diagnostic ability of our proposal. Finally, it would be appropriate to 

evaluate our methodology in a database of oximetry recordings obtained with the 

patients being evaluated at home. Finally, the implementation of our proposal in a 

portable oximeter could facilitate its use in ambulatory settings.  

5. CONCLUSION 

In summary, we investigated the usefulness of DFA to obtain additional 

information from the SpO2 recordings in order to simplify the detection of paediatric 

SAHS. Four features extracted from DFA showed significant differences between 

SAHS severity groups. An optimum subset composed of ODI3 and slope1 was obtained 

with FCBF, which suggests that these features are complementary and non-overlapping. 

A MLP model fed with this optimum subset reached high agreement with the AHI from 

PSG, obtaining 0.891 ICC and 0.412 kappa, as well as high diagnostic ability. This 

MLP model reached higher agreement (ICC and kappa) than ODI3, as well as higher 
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accuracies for the cut-offs of 1 and 10 e/h. Our methodology achieved a high diagnostic 

performance in comparison with state-of-the-art techniques. This suggests that the 

changes in the scaling behaviour of the DFA profile quantified by slope1 can provide 

additional information to enhance the diagnostic ability of the oximetry signal in the 

context of paediatric SAHS. 
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