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Abstract-

Objective: To evaluate whether detrended fluctuation analysis (DFA) provides
information that improves the diagnostic ability of the oximetry signal in the diagnosis
of paediatric sleep apnoea-hypopnoea syndrome (SAHS). Approach: A database
composed of 981 blood oxygen saturation (SpO:) recordings in children was used to
extract DFA-derived features in order to quantify the scaling behaviour and the
fluctuations of the SpO> signal. The 3% oxygen desaturation index (ODI3) was also
computed for each subject. Fast correlation-based filter (FCBF) was then applied to
select an optimum subset of relevant and non-redundant features. This subset fed a
multi-layer perceptron (MLP) neural network to estimate the apnoea-hypopnoea index
(AHI). Main results: ODI3 and 4 features from the DFA reached significant differences
associated with the severity of SAHS. An optimum subset composed of the slope in the
first scaling region of the DFA profile and the ODI3 was selected using FCBF applied
to the training set (60% of samples). The MLP model trained with this feature subset
showed high agreement with actual AHI, reaching an intra-class correlation coefficient
of 0.891 in the test set (40% of samples). Furthermore, the estimated AHI showed high
diagnostic ability, reaching 82.7%, 81.9%, and 91.1% accuracies using three common
AHI cut-offs of 1, 5, and 10 events per hour (e/h), respectively. These results
outperformed the overall performance of ODI3. Significance: DFA may serve as a
reliable tool to improve the diagnostic performance of oximetry recordings in the

evaluation of paediatric patients with symptoms suggestive of SAHS.
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1. INTRODUCTION

Childhood sleep apnoea-hypopnoea syndrome (SAHS) is a breathing disorder
whereby paediatric subjects manifest recurrent episodes of either complete cessation
(apnoea) or significant reductions (hypopnoea) of airflow while sleeping (Marcus et a/
2012). Paediatric SAHS has become a major health problem due to its high prevalence
and negative effects. SAHS has an estimated prevalence in the range of 1 to 5% in the
general paediatric population (Marcus et a/ 2012). In addition, cognitive deficits,
behavioural abnormalities, daytime sleepiness, cardiac and metabolic derangements,
and systemic inflammation are all morbid consequences that adversely affect the
optimal development of children affected by SAHS (Marcus et al 2012).

Based on the aforementioned considerations, an early diagnosis of paediatric
SAHS acquires an essential importance. The gold standard diagnostic approach to
childhood SAHS is overnight polysomnography (PSG) (Marcus et al 2012). It requires
patients to spend the night in a specialised sleep laboratory while being recorded for a
wide range of biomedical signals, including electrocardiogram, electroencephalogram,
electrooculogram, submental and leg electromyogram, oronasal airflow, and blood
oxygen saturation (SpO2) by pulse oximetry (Alonso-Alvarez et al 2011, Kaditis et al
2016). However, PSG is a complex text which is also quite costly due to the necessary
equipment and specialized medical personnel that is required to supervise the PSG and
to score the recordings. PSG is also intrusive, especially for children, due to the use of
multiple sensors. Additionally, PSG shows limited availability in many if not most
places around the world, which results in long waiting lists, thus delaying the diagnosis
and treatment of the affected children (Nixon et al 2004, Katz et al 2012).

Considering the inherent disadvantages and limitations of the PSG, along with the
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need of an early and timely diagnosis of SAHS, a search for simplified alternative
techniques has emerged in recent years. In this regard, one common approach consists
in the automated analysis of a reduced subset of cardiorespiratory signals that is
normally included in the overnight PSG. One of these alternatives is nocturnal pulse
oximetry (NPO), which records the blood oxygen saturation signal (SpO2) with a pulse
oximeter probe, usually placed in a finger (Netzar et al 2001). NPO can be readily
performed without the need for professional supervision in the patient’s home and is
widely available as reflected by the large number of commercially available portable
pulse oximeters (Nixon et al/ 2004, Garde et al 2014). Thus, NPO is a technically simple
test for children, and SpO, signal from NPO provides moment to moment oxygen
content in haemoglobin (McClatchey 2002), a signal that contains essential information
of apnoeic events from SAHS, since these events induce recurrent decreases in blood
oxygen levels, otherwise termed oxygen desaturations (Berry et al 2012).

Previous studies have examined the SpO; signal as a potential alternative to PSG
in the screening of paediatric SAHS. These studies employed different signal processing
techniques (Kirk et al 2003, Tsai et al 2013, Garde et al 2014, Eyck et al 2015, Alvarez
et al 2017, Crespo et al 2017, Hornero et al 2017, Vaquerizo-Villar et al 2018), and
more specifically conventional oximetry indices, common statistics, frequency domain
analysis techniques, and nonlinear methods. Among these approaches, nonlinear
parameters proved as useful to characterise the oxygen desaturations caused by apnoeic
events in adults and children. However, a recent study using a very large database of
4,191 paediatric subject recordings showed that traditional nonlinear metrics (central
tendency measure, Lempel-Ziv complexity and sample entropy) were redundant with
respect to the 3% oxygen desaturation index (ODI3) (Hornero ef al/ 2017), an oximetry

index commonly used in the clinical practice for simplified screening purposes.



Therefore, additional research is needed to find alternative and better performant
nonlinear methods that may provide further insights into the properties of the oximetry
signal and allow for extraction of additional information to the one provided by the
ODI3. In this regard, detrended fluctuation analysis (DFA) is a nonlinear analysis
technique widely used to detect the correlation properties of a non-stationary signal
(Peng et al 1994, 1995). DFA computes the logarithm of the fluctuation function of a
time series versus the logarithm of a window time length (scale). DFA provides a
quantitative parameter, the scaling exponent (o), which measures the linear relationship
between the fluctuation function and the scale (Peng et al 1994). The variation of a
value for different ranges of scales (different window time lengths) identifies regions
with different correlation (Peng et al 1995). In this sense, the scaling behaviour of a
signal is given by the different regions observed in the DFA profile and the value of a in
these regions (Peng et al 1995). Thus, DFA is a useful tool to analyse signals with
segments that modify its scaling behaviour, such as random spikes or segments which
have a different local behaviour (Chen et a/ 2002, Hua and Yu 2017). Apnoeic events
produce random spikes and/or irregular fluctuations in the SpO; signal. Hence, DFA
could be useful to analyse the oximetry signal in the context of SAHS.

Previous work has suggested the ability of DFA to analyse the correlation
properties of physiological signals in the context of both adult and paediatric SAHS
(Lee et al 2002, Penzel et al 2003, Dehkordi et al 2016, Kaimakamis et al 2016, Hua
and Yu 2017). Hua and Yu (2017) applied DFA to SpO» signals in the context of
diagnosing adult SAHS. However, there are no studies focused on applying DFA to
SpO- recordings in the context of paediatric SAHS. SpO> signal properties in children
differ from those of adults. Furthermore, the frequency of events that are required to

define abnormality or severity markedly differ between adults and children. In addition,



scoring rules for apnoeas and hypopnoeas are also more restrictive in the case of
paediatric SAHS (Berry et al 2012). Thus, the diagnosis of SAHS in children is vastly
more challenging than in adults.

Thus, we hypothesised that DFA could extract additional information from the
oximetry signal, which could be associated to the presence and severity of SAHS in
children and could therefore assist in the diagnostic accuracy of overnight oximetry.
Accordingly, the aim of this study was to assess the usefulness of DFA-derived features

obtained from the oximetry signal to simplify the diagnosis of paediatric SAHS.

2. METHODS

2.1. Subjects and signals under study

The dataset included 981 children (602 boys and 379 girls) ranging from 2 to 13
years of age. All children were consecutively and prospectively referred to the Pediatric
Sleep Unit at the University of Chicago Medicine Comer Children’s Hospital (Chicago,
IL, USA) due to clinical suspicion of SAHS. Their legal caretakers gave their informed
consent as a prerequisite to participate in the study. The Ethical Committee of the
University of Chicago Medicine approved the research protocols (#11-0268-AMO017, #

09-115-B-AMO031, and # IRB14-1241).

A digital polysomnography system (Polysmith; Nihon Kohden America Inc., CA,
USA) was used to monitor children’s sleep. SpO> recordings were obtained during
overnight PSG at samplings rates of 25, 200, or 500 Hz. They were exported and
processed offline. Artifacts were rejected from oximetric recordings by removing those
SpO:> values below 50% and sudden changes between consecutive SpO- samples faster
than 4%/second (Magalang ef a/ 2003). Then, a non-overlapping averaging-window of
1 second was applied (effective sampling rate=1Hz) to speed up the signal processing
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stage, which has been found to be appropriate to perform a multiscale analysis of the
oximetry signal (Crespo et a/ 2017, Hua and Yu 2017). This window size is lower than
3 seconds, which is the maximum averaging-time recommended by the American
Academy of Sleep Medicine (AASM) (Berry et al 2012). The resolution of the SpO
signals was set to two decimal points in order to have the same resolution (Hornero et a/

2017).

Sleep and cardiorespiratory events were scored and quantified by specialised
technologists and further confirmed by paediatric sleep medicine specialists who were
unaware of the study purpose. The AHI was estimated according to the AASM
guidelines (Berry et a/ 2012). In this sense, there is no consensus regarding the AHI cut-
off used to determine SAHS and its severity (Alonso-Alvarez et al 2011, Church 2012,
Marcus et al 2012, Tan et al 2014). However, a wide range of studies typically classify
children into four SAHS severity degrees: no-SAHS (AHI<I e/h), mild SAHS
(1<AHI<5 e/h), moderate SAHS (5<AHI<10 e¢/h), and severe SAHS (AHI>10 e/h)
(Alonso-AlvareZ et al 2011, Church 2012, Tan et al 2014, Hornero et al 2017). Thus,

the AHI cut-offs of 1, 5, and 10 e/h were adopted in this study.

The dataset was randomly divided into a training set (60%) and a test set (40%).
Table 1 shows clinical and demographic data of the population under study. No
statistically significant differences (p-value < 0.01) were found in either age or body

mass index (BMI).
2.2. Automated signal processing

Our approach consisted of three sequential stages. First, features derived from
DFA and ODI3 were obtained from the SpO, recording of each subject. Then, a smaller

subset of relevant and non-redundant features was selected using the fast correlation-



Table 1. Clinical and demographic data of the population under study.

Characteristics All AHI<1 1<AHI<S 5<AHI<10 AHI>10
All subjects
Subjects (n) 981 175 401 176 229
Age (years) 6 7 6 5 4
[3,9] [4,10] [4,9] [2,8] [2,8]
Males (%) 602 (61.4%) 109 (62.3%) 247 (61.6%) 107 (60.8%) 139 (60.7%)
BMI (kg/m?) 17.9 17.4 17.7 18.6 18.3
[15.8,21.9] [15.5,20.9] [15.9,21.2] [16.2,24.0] [16.0,23.2]
AHI (e/h) 3.8 0.5 2.5 6.8 19.1
[1.5,9.3] [0.1,0.8] [1.7,3.5] [5.8,8.3] [13.9,31.1]
Training set (60%)
Subjects (n) 589 98 232 113 146
Age (years) 6 6 7 5 5
(3.8] [4.8] [4.9] (28] [3.8]
Males (%) 348 (59.1%) 61 (62.2%) 140 (60.3%) 72 (63.7%) 75 (51.4%)
BMI (kg/m?) 17.6 17.0 17.5 18.6 18.1
[15.9,22.0] [15.4,19.9] [15.9,21.6] [16.2,23.7] [15.9,23.6]
AHI(e/h) 4.1 0.4 2.5 6.9 18.9
[1.7,9.9] [0.0,0.8] [1.8,3.6] [5.8,8.5] [13.8,33.5]
Test set (40%)
Subjects (n) 392 77 169 63 83
Age (years) 6 8 5 6 4
[3,9] [5,10] [2,9] [4,9] [2,8]
Males (%) 254 (64.8%) 48 (62.3%) 107 (63.3%) 35 (55.6%) 64 (77.1%)
BMI (kg/m?) 18.1 18.0 18.0 18.9 18.3
[15.8,21.7] [15.6,21.7] [15.8,20.7] [15.7,26.3] [16.0,22.1]
AHI(e/h) 33 0.5 2.5 6.8 19.2
[1.4,7.8] [0.3,0.8] [1.7,3.4] [5.8,7.8] [15.1,28.2]

BMI: Body Mass Index; AHI: Apnoea Hypopnoea Index. Data are presented as median [interquartile

range], n or %.

based filter (FCBF) method (Yu and Liu 2004). Finally, a multi-layer perceptron (MLP)
neural network (Bishop 1995) was applied to this optimum subset in order to estimate

the AHI of each patient.
2.2.1. Detrended fluctuation analysis

DFA performs a multiscale analysis of a time series to study its correlation
properties (Peng et al 1994). The DFA profile shows changes in the correlation
properties for different ranges of scales, termed ‘crossovers’, which may be caused by
different non-stationarities in the signal such as (Chen et al 2002): (i) segments removed

from the signal; (if) random spikes with variable amplitude; (ii7) segments with different



local behaviour. Segments of the SpO: signal associated to apnoeic events typically

have different statistical properties, presenting fluctuations and spikes (Crespo et al

2017, Hua and Yu 2017). Thus, these properties of the SpO- signal may be reflected in

the DFA profile.

Given a signal x(7), the DFA method consists of the following steps (Peng et al

1994):

. The time series x(¢) is integrated:

y(0)= S () x| = L. 0

where x.¢ is the average of the whole signal x(¢), and N is the length of

the SpO: signal.

. The integrated signal y(7) is divided into B non-overlapping windows of

equal size. In the case of SpO; recordings, the minimum length of the
signal is 3 hours (10800 samples) in order to have sleep cycles enough
(Berry et al 2012). Thus, the length of each window (i.e., the scale), £, is
between 3 and 1080, since the maximum box size in DFA must be one-

tenth of the signal length (Chen et al 2002).

. For each window b (b=1, ..., B), the local trend was obtained as a straight

line, ), estimated by applying a least squares fitting to y:.

. The variance of the fluctuation in each window, F»*(k), is defined as

follows:

F; (k) =% ,_ﬁ(y(j)— »()f &)

b—1)k+1

. The fluctuation function, F(k), is obtained as the square root of the

average of F»*(k) over all windows:
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> F (k) 3)

Steps 2 to 5 are iterated until the highest scale is used.

A double logarithmic plot was used to analyse the evolution of the DFA plot
along scales: log (F(k)) vs log (k) (Penzel et al 2003, Dehkordi et a/ 2016, Hua and Yu
2017). Figure 1 shows the averaged DFA plot for the four SAHS severity groups
(AHI<I e/h, ISAHI<S e/h, 5<AHI<10 e/h, and AHI>10 e/h) in the training set. It can be
shown that higher fluctuations are observed as the SAHS severity increases.
Additionally, two scaling regions can be observed in the DFA plot:

e Region 1, for scales in the range 0.48 < log (k) < 1.3 (3<k<20).

e Region 2, for scales in the range 1.60 < log (k) < 3.03 (40<k<1080).

2+ AHI<1 1
1<AHI<5
------- 5<AHI<10
1571 1

AHI=10

< 05 1
'
>
o

0 - -

-05r .

1 F .

Region 1 Region 2
-15r .
0.5 1 1.5 2 25 3

log(k)

Figure 1. Averaged DFA profile for the four SAHS severity groups: (a) AHI<1 e/h,

(b) 1<AHI<S e/h, (c) 5<AHI<10 e/h, and (d) AHI>10 e/h in the training set.



A crossover is produced in the space between these two regions of the DFA profile.
Robust linear regression (Hua and Yu 2017) was applied to estimate the line that fits
both regions for each SpO; recording.

Figure 2 shows the lines fitted in both regions in an illustrative example of a
patient from the training set. We characterised the DFA plot by extracting the following
features, as it can be seen in the figure 2 (Penzel et al 2003, Hua and Yu 2017):

e Slopes (scaling exponents) in the line that fits the DFA profile in both
regions (slope1 and slopez), as well as the ratio of them (slopei2). These
parameters measure the scaling behaviour of the oximetry signal in each
region (slopei and slopez) and the relative differences of this behaviour
between both regions (slopei2).

e (Coordinates (k12 and F(k12)) of the intersection formed by the lines fitted in

151 y
1 - -
05F y
S3
w 0 i
>
o
-05F y
s i
151 Region 1 Region 2 .
0.5 1 1.5 2 2.5 3
log(k)

Figure 2. Illustrative example of the DFA plot of the SpO; signal of a patient from

the training set.
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the regions 1 and 2. These parameters are intended to characterise the
crossover point of the DFA plot.

e Fluctuation function in the scale with a maximum correlation with the
severity of SAHS (F(kx)). This parameter was extracted to quantify the
fluctuations of the oximetry signal. In order to obtain the optimum value
of kx, Spearman’s correlation was computed for each scale between F(k)
and the AHI. K,=21 was therefore obtained as the scale with a maximum
Spearman’s correlation with the AHI.

It is expected that these parameters for quantification of the differences in the
scaling behaviour and the fluctuations of the SpO, signal associated to the severity of

SAHS, as shown in figure 1.

2.2.2. Oxygen desaturation index

ODI3 was computed as the number of oxygen desaturations from preceding
baseline greater than or equal 3% per hour of recording (Taha et al 1997). This clinical
parameter has commonly been used in the SAHS context (Kirk et al 2003, Chang et al
2013, Tsai et al 2013). Higher values of ODI3 are expected in patients with a higher
severity of SAHS, since oxygen desaturations are associated with apnoea or hypopnoea

events (Berry et al 2012).

2.2.3. Feature selection: Fast Correlation-Based Filter (FCBF)

FCBF was applied to evaluate the relevance of the extracted features and their
redundancy within them (Yu and Liu 2004). FCBF has proven its utility in the context
of paediatric SAHS diagnosis to obtain subsets of relevant and non-redundant features
(Hornero et al 2017, Vaquerizo-Villar et al 2018). First, FCBF computes symmetrical

uncertainty (SU) between each feature x; and the dependent variable y in order to assess
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its relevancy (Yu and Liu 2004):

B IG(xi|y) .
SU(x,,y)= Z(M}z =12,...,N, 4)

where IG(xi|y)= H(x:) - H(xi|y), N is the total number of features extracted (N=7), y is the
AHI value of each subject, and H refers to Shannon’s entropy (Yu and Liu 2004). SU
values vary between 0 and 1. SU=1 means that one variable is completely predictable
from the other, whereas SU=0 indicates that the two variables are independent.

According to their SU value, features are ranked from the most relevant (highest
SU with the AHI) to the least relevant one (lowest SU with the AHI). Different SU-
based thresholds can be used to discard non-relevant features. Nevertheless, the number
of features comprising our original feature set is not high. Therefore, as proposed by Yu
and Liu (2004), no relevance threshold was applied to discard non-relevant features in
order to maximize the relevancy of information derived from oximetry (Gutierrez-Tobal
et al 2018, Hornero et al 2017). In this regard, a feature that is useless by itself still may
provide useful information when being selected with others (Guyon 2003). A
redundancy analysis of each feature is then performed. The SU value between each pair
of features (x;, x;) is computed, beginning with the most relevant one (Yu and Liu 2004).
When SU (x;, xj) > SU (xi, y), the feature x; is considered redundant with respect to the
feature x; and discarded. In this way, an optimum subset composed of the most relevant
and non-redundant features is obtained (Yu and Liu 2004).

A bootstrap methodology was used in order to compose a stable optimum feature
subset independent of a particular dataset. FCBF was applied to 1000 bootstrap
replicates built from our training data (Efron and Tibshirani 1994, Guyon 2003). Those
variables which were selected at least half of the runs (500) formed the optimum subset

(Hornero et al 2017, Vaquerizo-Villar et al 2018).
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2.2.4. AHI estimation: Multi-layer Perceptron (MLP) neural network

MLP was applied to estimate the AHI of the subjects under study using the
optimum feature subset obtained with FCBF. MLP is one of the most widely used
artificial neural networks (ANNs). This ANN has already shown its usefulness in the
screening of paediatric SAHS diagnosis using SpO; recordings (Hornero et al 2017).
MLP is arranged in several interconnected layers (input, hidden layers, and output)
composed of simple units called perceptrons or neurons (Bishop 1995). Each neuron
consists of an activation function g; and adaptive weights wj; representing connections
with neurons from the following layer. In our case, the output layer has one neuron y,
which represents the estimated AHI. Additionally, a single hidden layer configuration
was implemented, since it is able to provide universal approximation to any function

(Bishop 1995). Thus, the output unit in our MLP architecture is calculated as follows:

Ny d
y:gl{zwjkgt{zwijxi+b_/}+bk}7 ®)

j=1 i=1
where g; and g; are the activation functions of the output and hidden layer, respectively,
wj are the weights connecting the hidden layer to the output layer, w;; are the weights
connecting the input layer to the hidden layer, x; is the input feature i, b; and by are the
bias associated to the hidden and the output units respectively, Ny is the number of units
in the hidden layer, and d is the number of input features (Bishop 1995). Weights of the
network were randomly initialised. Then, the scaled conjugate gradient with weight-
decay regularisation was applied to optimise these weights. This optimisation algorithm
minimises the cross-entropy error function and achieves good generalisation, as
recommended for pattern recognition tasks (Bishop 1995).

Our MLP network was implemented using the Netlab toolbox (Nabney 2002).

The design parameters of the MLP network (the regularisation parameter (o) and Ng)

15



were optimised by means of 10-fold cross-validation using the training set. This
optimisation allows to control the complexity of the MLP network, thus minimising
under-fitting and overfitting. Once these parameters were optimised, the MLP model

was built using the whole training dataset.

2.2.5. Statistical Analysis and Diagnostic Performance

Matlab R2016a (The MathWorks Inc., Natick, MA, USA) was used to implement
automated signal processing algorithms, as well as to perform statistical analyses. The
Kruskal-Wallis test was used to assess statistical differences (p-value <0.01) between
groups, since the extracted features did not pass the Lilliefors normality test. The
Bonferroni correction was applied to deal with multiple comparisons. Both agreement
between estimated AHI (AHImip) and actual AHI (AHIpsg), as well as agreement
between ODI3 and AHIpsg were assessed by means of Bland-Altman plots and the
intra-class correlation coefficient (ICC). Cohen’s kappa index (kappa) was used to
measure the agreement between AHImip and AHlpsg to estimate the severity of SAHS
(Cohen 1960). Diagnostic ability of ODI3 and AHImip was assessed in terms of
sensitivity (Se, percentage of SAHS positive patients correctly classified), specificity
(Sp, percentage of SAHS negative children correctly classified), positive predictive
value (PPV, proportion of subjects classified as positive that are true positives),
negative predictive value (NPV, proportion of subjects classified as negative that are
true negatives), positive likelihood ratio (LR+, likelihood ratio for subjects classified as
positive), negative likelihood ratio (LR-, likelihood ratio for subjects classified as
negative), accuracy (Acc, percentage of subjects correctly classified), and area under the
ROC curve (AUC). A bootstrapping approach was employed in order to compare the
ICC, kappa, overall Acc (four classes), and AUC values between ODI3 and AHImrp.
The number of bootstrap replicates built from the test data was set to 1000, since it
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ensures a proper estimation of the 95% confidence interval (Efron and Tibshirani 1994).
ICC, kappa, overall Acc, and AUC values were obtained for ODI3 and AHImrp from
each of these replicates. Then, the p-value between ODI3 and AHImip was computed

for each of these metrics according to the Mann-Whitney U test.

3. RESULTS

3.1. Training set
3.1.1. Features separability

A total of 7 features were obtained for each subject: ODI3, and 6 DFA-derived
features. Table 2 shows the median and interquartile range of these features in the
training set for each SAHS severity group, along with their corresponding p-values.
ODI3 and 4 out of 6 DFA-derived features (slopei, slopei,, F(ki2), and F(kx)) showed

statistical significant differences (p-value <0.01, after Bonferroni correction).
3.1.2. Optimum feature subset

Figure 3 displays the histogram with the number of times that each feature was

Table 2. Feature values for the SAHS severity groups (median [interquartile range])

in the training set.

Features AHI<1 1<AHI<S 5<AHI<10 AHI>10 D-
value
o3 1.04 [0.52,2.47] 2.03 [0.93,3.89] 3.69 [1.94,7.23] 12.35 [6.65,24.49] <0.01
sloper 1.63 [1.58,1.68] 1.64 [1.58,1.70] 1.67[1.60,1.71] 1.74 [1.66,1.79] <0.01
slope: 0.96 [0.90,1.05] 0.95[0.87,1.03] 0.92 [0.85,1.02] 0.94 [0.88,1.01] 0.18"
sloper> 1.66 [1.53,1.82] 1.69 [1.55,1.87] 1.77 [1.60,1.94] 1.82[1.68,1.95] <0.01
P 1.33[1.23,1.42] 1.36 [1.26,1.44] 1.38 [1.29,1.45] 1.34 [1.23,1.42] 0.04"
Flki) 0.01 [-0.18,0.18] 0.12 [-0.12,0.26] 0.22 [0.04,0.38] 0.42 [0.16,0.61] <0.01
Flky) -0.05[-0.13,0.04]  0.02[-0.07,0.11] 0.10 [0.00,0.20] 0.31[0.18,0.52] <0.01

" Not lower after Bonferroni correction (p-value=0.01/6)
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selected over the 1000 bootstrap replicates. ODI3 was selected all the times, which
agrees with previous studies (Hornero et al 2017, Vaquerizo-Villar et al 2018).
Additionally, slope; was selected more than half of the times (535). Thus, ODI3 and

slope; were chosen as the optimum subset.
3.1.3. MLP model optimisation and training

The MLP network was designed and trained using this optimum feature subset
(ODI3 and slope;). In order to find the optimum values, Ny and a were varied from
Ni=2 up to Ny=30 and a=0 up to a=10, respectively. For each Ny-a pair, kappa was
obtained through ten-fold cross validation. Since the network is sensitive to the initial

random values of the weights, kappa was computed on the cross validation set and
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Figure 3. Histogram with the number of times each feature is selected over the 1000
bootstrap iterations.
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averaged for a total of 10 runs for each Ny-a pair. Figure 4 shows the kappa value
obtained for each Ny-a pair. According to this figure, the optimum values Ny=5 and
0=6 were obtained as those for which kappa was higher. Finally, the optimum feature
subset (ODI3 and slope;) from the entire training set was used to train the MLP model

(AHImrp) with these optimum user-dependent network parameters.
3.2. Test set

Figure 5 (a) and (b) show the Bland-Altman plots of ODI3 and AHImip compared
with AHIpsg, respectively, in the test set. ICC between ODI3 and AHImip with AHIpsg
is also shown. AHImrp reached a lower mean difference (bias) with AHIpsg than ODI3
(0.75 vs. -1.65), whereas ODI3 achieved a slightly lower confidence interval than

AHImip (23.2 vs. 24.3). Notice that ODI3 underestimates AHI, whereas AHImrp
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Figure 4. Averaged kappa for each Ny-a pair.
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corrects this behaviour by showing a slight overestimation. In addition, AHImrp
achieved higher agreement with AHIpsg (ICC= 0.891) than ODI3 (ICC=0.866).
Regarding the diagnostic performance, table 3 shows the confusion matrices of ODI3
and AHImrp in the test group. These matrices show the class predicted by both original
ODI3 and AHImrp for each subject versus the actual SAHS severity group, according to
AHlpsg. Using ODI3, 55.4% of the subjects. (217/392) were correctly assigned to their
actual group of SAHS severity (sum of the main diagonal elements of the matrix).
Conversely, AHImrp rightly assigned 60.0% (235/392) of the subjects to their SAHS
severity group. Kappa values were 0.355 (ODI3) and 0.412 (AHImip). Table 4 shows
the diagnostic ability of both ODI3 and AHImrp for the AHIpsg-based cut-offs of 1, 5,
and 10 e/h. AHImrp outperformed single ODI3 in terms of ICC, overall Acc and kappa.
Additionally, our AHImrp reached higher Acc for the single AHI cut-offs of 1 and 10
e/h. With respect to the comparison of the results of ODI3 and AHlmrp, statistically
significant higher values (p-value<0.01) were obtained using AHImip in the case of
ICC, kappa, and overall Acc. In addition, statistically significant differences were found

for the AHI cut-offs of 5 and 10 e/h between AUC of ODI3 and AHImrp.
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Figure 5. Bland-Altman plots comparing (a) ODI3 with AHIpsg and (b) AHImLp with

AHIlpsg.

Table 3. Confusion matrices of ODI3 and AHImrp in the test set. Regarding ODI3,

average Acc=55.4% and kappa=0.355, whereas for AHImip, average Acc=60.0% and

kappa=0.412.
oDI3 AHImre
AHI<I 1<AHIS5  5<AHI<10  AHI210 | AHI<I 1<AHISS  5<AHI<I0  AHI>10

AHI<1 39 36 1 1 18 55 3 1

o ISAHISS | 47 107 12 3 8 125 33 3

=

< SSAHI<I0 | 5 33 17 8 1 22 28 12
AHI210 0 13 16 54 0 8 11 64
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Table 4. Diagnostic ability of ODI3 and AHImwp in the test set for AHI cut-offs= 1, 5,

and 10 e/h.
AHI cut-off=1 e/h
Features Se Sp PPV NPV LR+ LR- Acc AUC
oDI3 83.5 50.6 87.4 429 1.7 0.33 77.0 0.811
AHImLp 97.1 233 83.9 66.7 1.3 0.12 82.7 0.813
AHI cut-off=5 e/h
Features Se Sp PPV NPV LR+ LR- Acc AUC
oDI3 65.1 93.1 84.8 81.8 9.4 0.37 82.7 0.883
AHImLp 78.8 83.7 74.2 86.9 4.8 0.25 81.9 0.888
AHI cut-off=10 e/h
Features Se Sp PPV NPV LR+ LR- Acc AUC
oDI3 65.1 96.1 81.8 91.1 16.7 0.36 89.5 0.921
AHImLp 77.1 94.8 80.0 93.9 14.9 0.24 91.1 0.930

4. DISCUSSION

This study evaluated the usefulness of DFA to provide additional information
from oximetry dynamics in order to assist with the screening of children at risk for
paediatric SAHS. To our knowledge, the application of DFA to SpO; recordings is
novel in the context of paediatric SAHS. Our proposed approach shows high diagnostic
ability, and outperforms the conventional oximetric index ODI3.

ODI3 and 4 out of 6 features from DFA (slopei, slopein, F(ki2), and F(ky))
reached significantly higher values that were associated with increased severity of
SAHS. The statistical differences shown by these DFA-derived parameters indicate that
the scaling behaviour of the DFA profile of the SpO» signal is affected in the presence
of SAHS, as illustrated by figure 1. This change in the correlation properties of the
SpO, signal along time scales may be caused by the presence of spikes or segments with
different statistical properties (Chen et al 2002, Hua and Yu 2017). Figure 1 shows two

regions with different scaling exponents (correlation), one region for the short-time
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scales (region 1) and another region for long-time scales (region 2). Two scaling regions
were also obtained in the studies developed by Dehkordi ef a/ (2016) and Penzel et al
(2003). Dehkordi et al (2016) and Penzel et al (2003) applied DFA to analyse the
scaling behaviour of the pulse rate variability (HRV) and heart rate variability (PRV)
signals in the context of SAHS, respectively. According to these studies (Dehkordi et al
2016, Penzel et al 2003), the time scales of these regions may be related to the duration
of apnoeic events. In these studies, short-time scales have been related to the effects of
respiration on the heart rate, whereas long time scales have been related to the effects of
sleep stages and circadian rhythm (Penzel ef al 2003).

According to the physiological interpretation of both regions in the DFA profile,
the higher values shown by slopei and slopei > that associate with the severity of SAHS
may be related to the variations in the SpO; signals caused by respiratory events (Hua
and Yu 2017, Peng et al 1995, Penzel et al 2003), which directly affect the oximetry
dynamics. On the contrary, slope> did not show statistical significant differences.
According to Penzel et al. (2003), slope; is related to the effects of slower brain
functions on the HRV signal. Nevertheless, slower brain functions may not have
relation with the effects of SAHS in the oximetry signal. That is one possible reason
why the value of slope> does not increase with the severity of SAHS. Figure 1 also
shows higher values of F(k) in the SpO, signal as the severity of SAHS increases. These
differences may be due to the fluctuations produced in the SpO> signal by apnoeic
events (Hua and Yu 2017). These fluctuations are reflected in significantly higher
values of F(ki2) and F(k) associated with a higher SAHS severity. Finally, it can be
appreciated in the figure 1 that the crossover point between the two regions of the DFA
profile occurs at similar time scales for the different SAHS severity groups. The scale

value k of the crossover point is related to the duration of apnoeic events (Penzel et a/
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2003), which does not depend on the severity of SAHS. This may be the reason why k12
did not show statistical significant differences.

Regarding the results of the feature selection stage, figure 3 shows that only ODI3
and slope1 were selected more than 500 times after the bootstrapping approach. The
remaining features showed high redundancy. ODI3 and slope; come from different
methodological approaches. Therefore, this suggests that information from DFA is
complementary to that obtained from the conventional ODI3. As aforementioned, a
MLP neural network fed with this optimum subset outperformed the ODI3 (tables 3 and
4). A higher agreement with the AHIpsg was achieved with our AHImrp, as well as a
higher diagnostic ability to predict SAHS severity. This highlights the usefulness of
FCBEF, the feature selection method employed in our proposal. According to our results,
slope1, which was involved in the optimum subset, quantifies changes in the scaling
behaviour of the DFA profile that provide additional information about oximetry
dynamics able to enhance its diagnostic ability.

Previous studies also evaluated the usefulness of DFA to characterise SAHS in
both adults (Lee et al 2002, Penzel et al 2003, Kaimakamis et al/ 2016, Hua and Yu
2017) and children (Dehkordi et al 2016). Penzel et al. (2003) and Dehkordi et al.
(2016) extracted the slopes in the scaling regions of the DFA profile from the HRV and
PRYV signals in order to discriminate sleep stages and detect the presence of SAHS in
adults and paediatric patients, respectively. Their findings indicate that the scaling
analysis provided by DFA is suitable to quantify the changes of the cardiac signals
during sleep stages, as well as the properties of these signals associated with apnoeic
events. These results agree with Lee ef al (2002), who also reported that the scaling
exponents of the DFA of the electroencephalogram signal are useful to discriminate

between sleep stages in adult patients. Kaimakanis et al. (2016) reported a 0.77

24



correlation coefficient in predicting AHI with a linear regression model fed with DFA
and other nonlinear methods applied to airflow and thoracic signals from adult patients.
Finally, Hua and Yu (2017) evaluated the diagnostic ability of the slopes of four
different scaling regions and the coordinates and angles of the intersections of these
regions in the DFA plot of the SpO: signal in the context of adult SAHS. High
diagnostic performance was achieved with these features, with 90.8%, 80.1%, and
87.4% accuracies for the common adult SAHS cut-offs of 5, 15, and 30 e/h,
respectively. Importantly, our research is not limited to the analysis of individual
features from DFA, and assesses the capability of DFA to provide additional and
relevant information complementary to conventional approaches (i.e., ODI3) to simplify
the diagnosis of paediatric SAHS.

Table 5 summarises the performance of previous studies focused on the analysis
of SpOz> as a simplified technique in the screening of paediatric SAHS (Kirk et a/ 2003,
Tsai et al 2013, Garde et al 2014, Eyck et al 2015, Alvarez et al 2017, Crespo et al
2017, Hornero et al 2017, Vaquerizo-Villar et al 2018). Some of them have applied
oxygen desaturation index (ODI) and clusters of desaturations (Kirk et a/ 2003, Tsai et
al 2013, Eyck et al 2015). However, only Tsai et al. (2013) reached accuracies higher
than 80%. Notwithstanding, further validation was felt to be still needed to
independently assess the proposed ODI-based cut-offs.

Recent studies have focused on the application of automated signal processing
approaches to enhance the diagnostic ability of the SpO» signal (Garde et al 2014,
Alvarez et al 2017, Crespo et al 2017, Hornero et al 2017, Vaquerizo-Villar et al 2018).
From these studies, only Hornero et al. (2017) assessed an AHI estimation model.
Hornero et al. (2017) built a MLP regression model with ODI3 and the skewness of the

PSD extracted from 4191 SpO, recordings from 13 sleep laboratories worldwide. Our
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Table 5. Summary of state-of-the-art in the context of analysis of SpO» recordings to

assist in the diagnosis of paediatric SAHS.

Studies Subjects AHI Methods Validation Se Sp Acc
(year) (n) cut- (%) (%) (%)
off
Kirk et al 58 5 oDI3 Direct 67 60 64*
(2003) validation™
Tsai et al 148 1 ODIA No 77.7 889 79.0%*
(2013) 5 83.8 86.5 85.1%
10 89.1 86.0 87.1*
Garde et al 146 5 Statistical, nonlinear 4-fold cross 80.0 839 785
(2014) features, classical validation
indices, and PSD
Van Eyck et 130 2 ODI3 and clusters of Train-test for 57 73 68%*
al. (2015) desaturations ODI3 58 88 78%*
66 69 68*
Alvarez et al 50 1 Statistical, nonlinear ~ Bootstrap 0.632 89.6 71.5 85.5
(2017) 3 features, PSD, and 829 844 834
5 classical indices 822 83.6 828
Crespo et al 50 3 Multiscale entropy Bootstrap 0.632  84.5 83.0 83.5
(2017) and classical indices
Hornero et 4191 1 Statistical, nonlinear Training-test 84.0 532 752
al (2017) 5 features, PSD, and 682 872 81.7
10 oDI3 68.7 94.1 90.2
Vaquerizo 2908 5 Bispectrum, PSD, Feature 61.8 976 813
et al (2018) 10 ODI3, anthropometric optimisation- 60.0 945 853
variables training-test
Our 981 1 DFA and ODI3 Training-test 97.1 233 82.7
proposal 5 78.8 837 81.9
10 77.1 948 91.1

* computed from reported data, ** direct validation of a scoring criteria against AHI from PSG.

study outperformed the state-of-the-art approaches except the performance reported by

the study of Alvarez et al (2017), which achieved higher accuracies for the AHI cut-offs

of 1 and 5 e/h. However, the database used by Alvarez et al (2017) had only 50

subjects. As a consequence, their results are less generalizable and they performed

binary classification instead of estimating the AHI of each patient.

In spite of the promising results of our proposed approach, several limitations

must be taken into account. First, the number of subjects belonging to the no-SAHS

(AHI<1 e/h) group is low when compared to the other severity groups. This issue likely

contributes to the slight trend of the MLP model to overestimate the AHI of the subjects
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belonging to this group, thus resulting in a low specificity for an AHI-threshold of 1 e/h.
However, this is likely the situation in clinical settings when only symptomatic children
would be referred for evaluation. Nonetheless, a more balanced proportion of subjects
among SAHS severity groups would likely minimise this effect. Another limitation
concerns the use of the SpO» signal alone to detect SAHS, since some physiological
perturbations of SAHS may not be detected by the oximetry signal, such as airflow
reductions, electroencephalographic arousals, or increased intrathoracic pressure swings
(Marcus et al 2012). The use of SpO> together with other biomedical signals could
detect these perturbations and, consequently, enhance the detection of SAHS. However,
this would increase the complexity of the screening method. Additionally, the
application of more advanced machine learning algorithms could be potentially useful
to improve the diagnostic ability of our proposal. Finally, it would be appropriate to
evaluate our methodology in a database of oximetry recordings obtained with the
patients being evaluated at home. Finally, the implementation of our proposal in a

portable oximeter could facilitate its use in ambulatory settings.

5. CONCLUSION

In summary, we investigated the usefulness of DFA to obtain additional
information from the SpO> recordings in order to simplify the detection of paediatric
SAHS. Four features extracted from DFA showed significant differences between
SAHS severity groups. An optimum subset composed of ODI3 and slopei was obtained
with FCBF, which suggests that these features are complementary and non-overlapping.
A MLP model fed with this optimum subset reached high agreement with the AHI from
PSG, obtaining 0.891 ICC and 0.412 kappa, as well as high diagnostic ability. This

MLP model reached higher agreement (ICC and kappa) than ODI3, as well as higher
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accuracies for the cut-offs of 1 and 10 e/h. Our methodology achieved a high diagnostic
performance in comparison with state-of-the-art techniques. This suggests that the
changes in the scaling behaviour of the DFA profile quantified by slopei can provide
additional information to enhance the diagnostic ability of the oximetry signal in the

context of paediatric SAHS.
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