

1 **Effect of the mother tree age and acorn weight in the regenerative characteristics of**
2 ***Quercus faginea***

4 Alonso-Crespo, I.M.¹; Silla, F.¹; Jiménez del Nogal, P.¹; Fernández, M.J.²; Martínez-Ruiz,
5 C.²; Fernández-Santos, B.¹

7 ¹ Area of Ecology, University of Salamanca, Unamuno Campus, 37071 Salamanca, Spain

8 ² Department of Statistics, University of Salamanca, 37071 Salamanca, Spain

9 ³ Area of Ecology, University of Valladolid, La Yutera Campus, 34071 Palencia, Spain

10 Corresponding author: B. Fernandez-Santos belens@usal.es

13 **Abstract**

14 The establishment of oak trees is often a slow and difficult process. Hence, it is necessary to
15 determine the characteristics that can lead to improving their regeneration. In this genus, seed size
16 is highly variable both at the interspecific and intraspecific levels, and the effects of intrapopulation
17 variability are not well understood, being even less so for *Quercus faginea*. In this study, the effects
18 of the age of the mother tree, seed weight and the interaction between these two factors on seed
19 germination, emergence and growth (biomass) were analysed. For this purpose, 16 trees —8 young
20 and 8 old— were selected with the intent to cover the entire range of acorn weights produced in this
21 population. Among the main results, it should be noted that: (1) in older trees, it is easier to find larger
22 acorns; (2) the percentage and the speed of germination of the acorns of young trees is greater than
23 that of old trees; (3) the percentage and the speed of seedling emergence of young trees is greater
24 than that of old trees; and (4) cotyledon weight is the variable that most influences biomass, quite
25 often in a positive way. Therefore, maintaining intrapopulation variability seems to be an approach
26 that most favours the persistence of these populations.

28 **Keywords:** Emergency, Germination, Mother tree age, *Quercus faginea*, Reforestry, Seed size,
29 Seedling biomass

30 **Introduction**

32 The *Quercus* genus is able to adapt to most of the environmental conditions of the Iberian Peninsula,
33 owing to the variety of leaf lifespan strategies of the deciduous, perennial and marcescent species
34 (Blanco et al. 1996). In addition, anthropogenic activities are the main cause of the configuration of
35 the landscape of the Mediterranean basin due to livestock, agricultural and forestry practices
36 (Blanco et al. 1996; Bergmeier et al. 2010). Consequently, the real landscape is comprised of a
37 mosaic of forests interspersed among agricultural crops, grasslands, shrubs, open woodlands and
38 forests (Blanco et al. 1996), where the areas occupied by *Quercus* species have greatly been
39 reduced. Although the current distribution of *Quercus* is still wide, it only represents a very small
40 sample of its once original distribution (San Miguel-Ayanz 1985). Moreover, the reforestation of
41 Mediterranean areas with *Quercus* species, which is a slow growing genus (Villar et al. 2008; Costa
42 et al. 2017) in an environment fragmented by human activities, is not an easy task.

43 In this study, we will specifically focus on the species *Quercus faginea* Lam. *Q. faginea*, which
44 mainly has a western circumboreal distribution (Ceballos and Ruiz de la Torre 1971). Its chorology is
45 markedly Ibero–North African, with the exception that this species can be found towards the south

46 of France and on the island of Mallorca (Blanco et al. 1996). *Q. faginea* has a wide ecological valence
47 and grows at altitudes of 500–1500 m in all types of soils, including those with small or large amounts
48 of lime. Some of its races hold up well in continental climates, with strong contrasts between
49 temperature and humidity. These characteristics probably make it the Iberian oak with the greatest
50 thermal amplitude. However, *Q. faginea* is the most affected species for deforestation and the
51 associated soil degradation, and the historic preference that humans had by *Quercus ilex* (Blanco
52 et al. 1996).

53 In addition to anthropogenic activities, other external factors affect the early establishment of
54 *Quercus* such as soil dryness, predation, phytopathogens and rainfall. (Pérez-Ramos et al. 2010;
55 Costa et al. 2017). Also, animals use the acorns of *Quercus* species as a food source. These animals
56 include small invertebrates (e.g. Coleoptera or Lepidoptera larvae), large vertebrates (red and roe
57 deer, cattle, wild boars, etc.) and other small species (rodents, birds, lagomorphs) (Pérez-Ramos et
58 al. 2008; Del Arco et al. 2018). In addition, many of these species can have periodic high population
59 densities that cause the massive consumption of acorns (Del Arco et al. 2018).

60 These external factors, however, do not act alone, and some intrinsic factors can affect the
61 success of the establishment of seedlings. One of these factors is acorn weight, since they make up
62 the reserves that are available in the first stages of life (Khan and Shankar 2001; Gómez 2004; Quero
63 et al. 2007; Fahrettin 2010). The weight of the seeds of the *Quercus* species is highly variable
64 (Ramírez-Valiente et al. 2009), especially at the intraspecific level, whether individuals belong to the
65 same or different populations (Gómez 2004). Another interesting intrinsic factor is the regenerative
66 characteristics of the mother tree, of which very little is known. Some studies have reported that
67 intrapopulation variability among *Quercus* trees can change the relationship between seed weight
68 and the traits related to seedling survival (González-Rodríguez et al. 2011). In one study, differences
69 in regenerative characteristics (germination, emergence and growth) were observed when the age of
70 the *Q. ilex* mother trees was taking into account (Fernández-Santos et al. 2013). No other
71 publications on the germination of *Quercus* species have been found which consider mother tree
72 age. However, the effect of the age of trees on the germination of their seeds has been analysed in
73 other species such as *Sorbus torminalis* (Espahbodi et al. 2007) and more recently in *Sapindus*
74 *mukorossi* (Bisht et al. 2016), *Acacia melanoxylon* (Cruz et al. 2017) and *Pinus pinaster* (Cruz et al.
75 2019). Therefore, including “mother tree age” in studies on the regeneration of *Quercus* species may
76 help to better understand intrapopulation variability.

77 In this study, the intrapopulation variability of the regenerative characteristics of *Q. faginea* has
78 been examined by considering two varying factors: mother tree age and acorn weight. To do so, in
79 this work, we analysed: (1) variability in the weight of the acorns of the trees of most contrasted sizes
80 in a population; (2) the percentage and speed of the germination of acorns (days elapsed until
81 germination); (3) the percentage and speed of seedling emergence (days elapsed until the seedlings
82 appear); and (4) seedling growth (aboveground biomass, belowground biomass and total biomass
83 per plant).

84 **Materials and methods**

85 **Study area**

86 The study area is located in the north subdivision of the central plateau of the Iberian Peninsula
87 (41°07'N, 5°47'W; 790–820 m a.s.l.; Fig. 1). Eutric and humic cambisols are the dominant soils
88 (Dorronsoro 1992). Mean annual precipitation varies between 400 and 450 mm with a typical
89 Mediterranean period of low precipitation during July and August. The mean annual temperature is
90 between 11 and 12 °C, with mean temperatures between 3 and 4 °C and 20–21 °C during the coldest
91 and the warmest months, respectively. The study area is characterized by a variety of land covers,
92 with open and closed woodlands (dominated by *Q. ilex* subsp. *rotundifolia*, *Q. suber*, *Q. faginea* and
93 a minor presence of *Q. pyrenaica*), plantations of *Pinus pinaster*, shrublands dominated by *Cistus*
94 and *Cytisus* species, old fields and abandoned vineyards.

95

96 **Selection of the mother trees and seed collection**

97 Sixteen mother trees were selected within the same population (Table 1): eight fully mature trees,
98 with a diameter at breast height (DBH) of ≥ 50 cm (old trees), and eight young trees with a DBH of $<$
99 20 cm. The trees were selected in such a way as to cover the widest range possible of acorn sizes
100 existing within the population for each age category. First, 15 random points were deployed, and the
101 nearest tree of each diameter class was selected per point. Only trees with healthy acorns and
102 enough acorn production for the experiment were considered. Secondly, of every 15 trees per
103 diameter class, eight trees were retained and seven were discarded using a stratified random
104 sampling approach covering the widest range of acorn sizes. Lastly, we walked through the
105 woodland looking for trees with more extreme acorn sizes, and the trees Y8, O1 and O2 were
106 selected for the experiment. The acorns were collected in October, which coincided with optimal
107 maturation (López-González 2001). The seeds were collected manually by shaking the branches with
108 a stick.

109 Increment cores from all trees were extracted using Pressler increment borers (Häglöf, Sweden)
110 at 0.2–0.3 m above ground level to obtain the most accurate age of each tree. Increment cores were
111 mounted and sanded following the procedure established by Stokes and Smiley (1968), and the
112 annual rings were counted using a stereomicroscope (SMZ800, Nikon, Japan).

113

114 **Experimental design**

115 The acorns were stored at a temperature between 2 and 4 °C until used to carry out the experiments.
116 First, the acorns were visually inspected and then subjected to a flotation test, and the damaged
117 seeds were discarded. The remaining acorns were allowed to air-dry for a few days, and then, 50
118 acorns were randomly selected from each mother tree. A total of 800 acorns (50 acorns \times 8 mothers
119 \times 2 ages) were obtained, and their fresh weight was measured (Analytical balance Sartorius CP
120 124S—Precision 0.1 mg). Twenty acorns originating from each tree were used to obtain the

121 regression lines in order to estimate the dry weight of the cotyledons of the acorns sown. To do this,
122 the acorns were oven-dried at 70 °C for a minimum of 24 h and subsequently weighed to obtain the
123 dry mass of the acorn. The pericarp was removed from the cotyledons and reweighed to obtain the
124 dry weight of each cotyledon. Linear regression equations for acorn fresh mass and cotyledons dry
125 mass were developed for each mother tree, which permitted the cotyledon dry mass to be estimated
126 from the acorn fresh mass (R^2 ranging between 0.72 and 0.96) (Appendix, see Supplemental Data
127 with the online version of this article).

128 The remaining 30 acorns of each parental tree were sown, and the germination, emergence and
129 growth of each were analysed. After weighting each fresh acorn, they were individually sown in pots
130 under laboratory conditions. At the beginning of the experiment, the acorns were sown on the
131 surface of the soil to be able to record the time of germination. Then, the acorns were buried
132 horizontally into the soil at a depth of 1–2 cm for observing seedling emergence. Acorn layout was
133 carried out following a model of random distribution in pots (type S.1 35, 235 cm³, 16 cm deep × 5
134 cm wide) filled with a 1:1 mixture of soil, coming from the area where the seeds were collected, and
135 peat. The plants were watered until saturation twice a week with distilled water to ensure that water
136 was not a limiting factor in their growth. The plants were grown under laboratory conditions; the
137 mean temperature was 19.7 ± 6.3 °C during the course of the experiment that lasted for 6 months.
138

139 **Data collection**

140 From December 2014 until May 2015, the data collection was done. Twice a week, germination and
141 emergence dates were registered. When the seedlings showed the first group of 4–5 leaves
142 completely unfurled (Green and Juniper 2004; González-Rodríguez et al. 2011), which correspond to
143 the moment in which they stopped relying exclusively on cotyledon reserves (Green and Juniper
144 2004; González-Rodríguez et al. 2011), the seedlings were harvested, and each plant was washed
145 with water and fractioned in different parts, leaves, stem, fine roots and thick roots. All parts of the
146 seedlings were dried at 70° for 24 h, and the aerial and subterranean fractions were weighted
147 (Analytical balance Sartorius CP 124S—Precision 0.1 mg).

148

149 **Statistical analysis**

150 To mean values, Student's *t* test or a one-way ANOVA was used, according to the number of groups
151 to be compared, after checking normality and homoscedasticity. To analyse the elapsed time until
152 germination or emergence and biomass variables, linear models (LM) were used, establishing as a
153 dependent variable number days until germination, number days until emergency or biomass, as an
154 independent variable fixed factor "Mother Tree Age" (young or old) and the quantitative variable "Dry
155 weight of the Cotyledon", also
156 taking into account the interaction between both factors. The IBM SPSS Statistics 19 program was
157 used to carry out the statistical analysis.

158

159 **Results**

160 **Tree ages**

161 The young trees had an average age of 29.4 ± 1.6 years (mean \pm SE, Table 1). However, only minimum
162 ages were estimated for the old trees as the trees had rotten centres. The average minimum age was
163 estimated to be 210 ± 17.7 years (mean \pm SE, Table 1).

164

165 **Cotyledon weights**

166 There was a wide range of acorn weights among the trees within the population for both the young
167 group (0.61–4.39 g dry weigh) and the old group (0.80–4.40 g dry weigh) (Table 1), although it was
168 more difficult to find young trees with large acorns and old trees with small acorns. The values
169 obtained for the mean cotyledon dry weights for each selected tree were between 0.44 and 3.41 g for
170 the young trees and between 0.64 and 3.51 g for old trees (Table 1). It was made a comparison among
171 the mean values of the extrapolate data for the dry cotyledon weight of sown acorns, and statistically
172 significant differences were detected for most of the mother trees (Table 1) not being able to
173 differentiate clear categories of sizes for the two age groups; because of that, cotyledon dry weight
174 will be taken as continuous variable for the following analyses.

175

176 **Germination and emergence**

177 The germination and emergence (%) values obtained for each tree are shown in Table 1. When
178 germination values were analysed, statistically significant differences were detected between young
179 and old trees (t : 2.798, gl : 14, p = 0.014), being the mean value of young trees (51.7%) significantly
180 higher than the old ones (34.6%) (Fig. 2a).

181 In addition, the percentages of seedling emergence obtained for both young and old trees also
182 showed statistically significant differences (t : 2.717, gl : 14, p = 0.017), where the mean value for
183 young trees (47.1%) was significantly higher than the value corresponding to the old trees (30.8%)
184 (Fig. 2b).

185 The analysis of the time elapsing between sowing and germination (Fig. 3a) detected statistically
186 significant differences with respect to mother tree age (F : 3.918, p = 0.049).

187 However, this was not the case for the cotyledon dry weight (F : 0.157, p = 0.693) or the interaction
188 between these two factors (F : 0.615, p = 0.434) (Table 2). As can be seen in Fig. 3a, the acorns from
189 young trees germinated before (mean value 24.4 days) those coming from old trees (mean value 46.9
190 days), and it did not depend on the dry cotyledon weight.

191 The analysis of the time elapsing until seedling emergence (Fig. 3b) detected that mother tree age
192 may be important (F : 3.571, p = 0.060), since significant differences were detected (Table 2). This
193 again was not the case for cotyledon dry weight (F : 0.079, p = 0.779) or the interaction between both
194 factors (F : 0.242, p = 0.623). Seedling emergence from acorns collected from old trees took longer
195 (mean value = 70.4 days) than those coming from the young trees (mean value = 59.8 days) (Fig. 3b).

196 **Biomass**

197 With respect to the variables associated with biomass, cotyledon dry weight appeared to have a
198 significant influence. However, in contrast, mother tree age and the interaction between the two
199 factors did not (Table 2). Also, cotyledon dry weight appeared to have a positive influence on
200 biomass (Fig. 3): total biomass ($F: 108.915, p = 0.001$; Fig. 4a); aboveground biomass ($F: 46.321 p =$
201 0.001 ; Fig. 4b); and belowground biomass ($F: 123.769, p = 0.001$; Fig. 4c). Biomass increased as the
202 cotyledon weight increased. On the other hand, a negative influence of cotyledon dry weight was
203 detected over some variables (Fig. 5): aboveground biomass/total biomass ($F: 5.166, p = 0.025$; Fig.
204 5a) and aboveground biomass/belowground biomass ($F: 5.557, p = 0.020$; Fig. 5c) increased with the
205 decrease in the cotyledon. Although belowground biomass/total biomass ($F: 5.166, p = 0.025$; Fig.
206 5b) increased with the increase in cotyledon weight, the acorns weighing less gave rise to seedlings
207 with more aboveground with respect to the belowground biomass than the acorns of higher weights.

208

209 **Discussion**

210 **Effect of intrapopulation variability**

211 In this work, the average weights of the acorns collected from different trees are highly variable. The
212 range of the average acorn weight per tree (the average values of acorn dry mass per tree 0.61 and
213 4.40 and between 0.44 and 3.51 for seed dry mass) is wider than that registered for other populations
214 of *Q. faginea* [with a seed dry mass ranging between 0.76 and 3.32 in González-Rodríguez et al. (2011)
215 and 0.87–3.08 in González-Rodríguez et al. (2012)]. However, these weights are quite similar to those
216 recorded for other *Quercus* populations (Leiva and Fernández-Alés 1998; González-Rodríguez et al.
217 2011, 2012; Fernández-Santos et al. 2013). Moreover, a high level of variability was found among the
218 seed dry weights calculated for both young and old trees (young 0.44–3.41 g, old 0.64–3.51 g). In
219 addition, it was difficult to find old mother trees with small acorns and young mother trees with large
220 acorns, which also occurred in a population of *Q. ilex* located in the same study region (Fernández-
221 Santos et al. 2013). For other species, such as *Pinus nigra*, tree age did not seem to have a significant
222 influence on seed size (Alejano et al. 2019).

223

224 **Germination**

225 In this study on *Q. faginea*, the age of the mother tree had a clear influence on germination,
226 independent of the dry weight of the cotyledon. This influence is statistically significant and is
227 observed for both the germination rate and for the time elapsing until acorn germinates. The seeds
228 produced by young mother trees are more likely to germinate, and more quickly, than those
229 produced by old mother trees. In terms of the germination rate, the acorns of the young mother trees
230 germinate in greater proportion than those produced by the old mother trees (mean 51% and 35%,
231 respectively). In the few existing studies on *Quercus* species, this effect has not been detected. In
232 Fernández-Santos et al. (2013), no significant differences in the percentage of germinated seeds

233 have been found between the acorns produced by young and old trees for *Q. ilex*. For other species,
234 such as *Pinus nigra* (Tíscar-Oliver 2002; Alejano et al. 2019) and *Acacia melanoxylon* (Cruz et al.
235 2017), the age of the mother tree did not seem to have an influence on the final germination values.
236 However, in a study on *Sorbus torminalis*, Espahbodi et al. (2007) detected differences in the
237 germination rate according to the age of the mothers. The highest germination rate was obtained for
238 seeds produced by middle-aged trees, and similar to our study, no correlation is found between the
239 weight of the seeds and the percentage of germination. Regarding the effect of the weight of the
240 acorn on germination, in this study, no significant influence was detected. The same finding has also
241 been reported by Fernández-Santos et al. (2013) for *Q. ilex*, although in several other studies, higher
242 germination rates for large seeds of *Q. ilex* (Gómez 2004) and *Q. suber* (Quero et al. 2009) were
243 observed, and also in negative humidity conditions for *Q. suber* (Urbíeta et al. 2008). Furthermore,
244 when assessing the time it takes for acorns to germinate, in this study, it can be seen that acorns
245 from young mother trees take approximately half the number of days to germinate on average than
246 those from old mother trees (average 24 and 50 days, respectively). Seed weight also has no effect
247 on germination. Previously, in Fernández-Santos et al. (2013), it was reported that mother tree age
248 and acorn have a joint influence on the rate of germination in *Q. ilex*, where the small acorns of young
249 trees germinate the fastest. Tíscar-Oliver (2002) also detected for *Pinus nigra* subsp. *salzmannii* that
250 the seeds of old trees take longer to germinate, but the seeds are smaller, and Cruz et al. (2017)
251 showed that *A. melanoxylon* mother plant age influences the time in which the first germinations
252 occur after fire. Other studies also show that the germination time of the seeds varied with the
253 provenances but not with seed mass in *P. pinaster*, although mother age was not considered as a
254 potential influencing factor (Calvo et al. 2016).

255

256 **Emergence**

257 Seedling emergence of *Q. faginea* is clearly influenced by mother tree age, independent of cotyledon
258 dry weight. This influence is statistically significant for the emergency percentage and probably
259 significant for the emergency speed. The seedlings produced by young mother trees are more likely
260 to emerge and more quickly than those produced by old trees. Again, acorn weight seemed not to
261 have an effect. Regarding the rate of seedling emergence, it can be said that the acorns of young
262 mother trees emerge in greater numbers than those produced by the old mother trees (mean 47%
263 and 33%, respectively). This effect has not been previously detected. Fernández-Santos et al. (2013)
264 are unable to draw clear conclusions about the effect of the mother age on seedling emergence in
265 *Q. ilex*. González-Rodríguez et al. (2011), who do not consider mother tree age in their study on *Q.*
266 *faginea*, do not find any interaction between these two factors. In this study, acorn weight has not
267 appeared to be an influencing factor on seedling emergence as has been shown in previous studies
268 on *Q. ilex* (Gómez 2004) or *Q. canariensis* (Urbíeta et al. 2008). In contrast, Quero et al. (2009)
269 reported a seed weight has a positive effect on seedling emergence in *Q. suber* and *Q. pyrenaica*. In
270 Urbíeta et al. (2008), it was detected that the largest seeds of *Q. suber* and *Q. pyrenaica* were more

likely to emerge. For other species, Castro (1999) observes a relationship between the seed weight and the seedling emergence of *Pinus sylvestris*. When assessing the time of emergence, mother tree age does have an influence, where the acorns of young trees shorten the time of emergence by 16% with respect to the acorns of adult trees (average 59 and 70.4 days, respectively). González-Rodríguez et al. (2011) found the producing mother did not have an effect on *Q. faginea* and age was not considered. However, an effect on *Q. suber* was detected, where the speed of emergence was influenced by the acorn weight. With respect to the effect of acorn weight in this study, no influence on the time of emergence has been detected. In Urbierta et al. (2008) and Quero et al. (2009), it is confirmed that for *Q. pyrenaica*, there is a positive relationship between the time of emergence and seed weight; that is, the larger seeds took longer to emerge. In Tíscar and Lucas (2010), a negative correlation involving seeds weight is found for *Pinus nigra* subsp. *salzmannii*, depending on the type of substrate and the mother plant. Therefore, there is no consensus regarding the effect of the seed weight on the time of seedling emergence.

This study shows that acorns from young mother trees have higher speeds of germination and emergence than those produced by old mother trees in *Q. faginea*. The main advantage is that earlier growth equates to greater plant development at the time of facing environmental stresses, especially in climates with great intra- and interannual variation like the Mediterranean. So, the species of *Quercus*, which do not have dormancy and have transient soil seed banks, have shown different germination times related to the intensity of water stress during the summer (Reyes and Casal 2006). For example, acorns of *Q. ilex* showed germination times shorter than *Q. pyrenaica* and *Q. robur*, which allows an earlier seedling development in *Q. ilex* and to cope better with the typical summer drought of the Mediterranean climate (Reyes and Casal 2006).

293

294 **Biomass**

295 The analyses carried out to evaluate seedling growth indicate there is a clear significant relationship
296 between the weight of the acorns of *Q. faginea* and the biomass of their seedlings, a relationship that
297 is not affected by the mother tree age. A positive influence of the dry weight of the cotyledon is
298 observed in the total biomass, belowground and aboveground biomass, which supports the
299 hypothesis of the “seedling size effect”. This indicates that larger seeds produce larger seedlings
300 (Westoby et al. 1996), which may lead to certain adaptive advantages in the establishment of
301 seedlings (Hendrix et al. 1991; Eriksson 1999; Chacón and Bustamante 2001; Khan 2004; Castro et
302 al. 2008; González-Rodríguez et al. 2011). This had already been detected in other populations of
303 *Quercus*. The work of González-Rodríguez et al. (2011) supports this hypothesis for *Q. faginea*, *Q.*
304 *ilex*, *Q. suber* and *Q. pyrenaica*. The authors also find significant interaction between the producing
305 mother and seed weight, depending on the species and the phase of growth. But similar to our study,
306 the mother has no effect on the seed growth of *Q. faginea*. The effect of acorn weight has been
307 verified for *Q. ilex* and *Q. pyrenaica* under different light conditions. This relationship is more evident
308 under lower light intensities where the seedlings depend more on cotyledon reserves (Quero et al.

309 For *Pinus sylvestris*, Castro (1999) suggests that this positive relationship is indirectly related
310 to other characteristics associated with seed weight such as the genetic variability of the mother in
311 the same population.

312 In this study, cotyledon weight only begins to have an influence during the growing phase and not
313 prior to this. But some studies have observed that the most successful plants (understanding this as
314 the combination of emergence and survival) originate from larger acorns from different species of
315 *Quercus* (*Q. faginea*, *Q. ilex*, *Q. suber*, *Q. pyrenaica*) (González-Rodríguez et al. 2011), which have
316 been sown directly into soil. It has been found that in general, plants from larger seeds have higher
317 germination and emergence percentages and are more likely to survive, especially if the
318 environmental conditions are adverse for *Q. ilex* (Gómez 2004) and *Q. suber*, *Q. Canariensis* and *Q.*
319 *pyrenaica* (Urbieta et al. 2008). In recent years, some studies have been carried out that support the
320 idea that the biomass of a plant at a given time depends not only on its relative growth rate (RGR) but
321 also on the initial biomass, which is determined during the first stages by the weight of the seed
322 (Villar et al. 2008). Also, for some *Quercus* species, the size of the acorn may influence the biomass
323 accumulation of the seedlings for 7 months or more (Quero et al. 2008). However, in the field, it could
324 be that this effect is not as remarkable as, after dispersion, a large proportion of *Quercus* seeds are
325 consumed by different predators (Santos and Tellería 1997; Del Arco et al. 2018) and smaller seeds
326 tend to have a lower probability of depredation (Pérez-Ramos et al. 2008). Nevertheless, although
327 larger seeds are more likely to be predated (Gómez 2004), it could occur that during the years of
328 mass production (mast seeding), predation satiation (Xiaogai et al. 2010) would allow larger acorns
329 to produce trees with higher aerial and underground biomass with a greater probability of survival
330 (González-Rodríguez et al. 2011). Therefore, abundant crops or mast years probably contribute the
331 most to the natural regeneration of *Q. faginea*, as has been suggested for *Pinus nigra* (Tíscar-Oliver
332 2002; Tíscar and Lucas 2010).

333 On the other hand, in this study, a negative influence of the weight of the cotyledon has been
334 detected for aboveground biomass/total biomass and aboveground biomass/belowground biomass
335 ratios, which indicates that smaller acorns invested more in the aerial part. Probably, this
336 relationship is due to the fact that by having fewer reserves in the seed, there is a greater initial
337 dependence on the photosynthetic tissues in these seedlings with respect to those that come from
338 larger seeds (Poorter and Rose 2005). These results are consistent with the fact that seedlings tend
339 to maximize growth in the initial stages in order to reach the deep soil layers (Escudero and
340 Mediavilla 2003; Mediavilla and Escudero 2004) and to deal with stress water during the first
341 summer, which is one of the most limiting factors in the successful establishment of the *Quercus*
342 genus in Mediterranean environments (Valladares et al. 2008).

343 The results of this study show that the acorns from young mother trees have a clear advantage
344 over those produced by old mother trees with regard to germination and emergence. Our findings
345 suggest there may have been a change in selection pressures during the last decades towards earlier
346 germination and emergency. The main advantage is that earlier growth equates to greater plant

347 development at the time of facing water stress typical of summer. If this is correct it could explain
348 why young trees produce acorns with higher speeds of germination and emergence, since what they
349 would do is express a characteristic that gave them an adaptive advantage in their establishment.
350 Variations in regenerative characteristics have also been observed in different age groups in
351 response to changes selective pressures in other tree species, such as *Pinus pinaster* (Cruz et al.
352 2019). However, the differences detected in this study according to the age of *Q. faginea* trees could
353 also be due to the fact that there are changing reproductive alternatives during the tree's lifetime, as
354 Tíscar and Lucas (2010) suggest for *Pinus nigra*.

355

356 **Conclusions**

357 Taking into account the aforementioned, it can be concluded that within a population of *Quercus*
358 *faginea*, both mother tree age and acorn weight are factors to be taken into account if successful
359 establishment is to be favoured (germination, emergence and growth). On one hand, the presence
360 of young trees would favour success during the germination and emergence phases, since these
361 trees produce acorns that germinate and emerge more and faster. On the other hand, the presence
362 of old trees in the populations would favour the presence of larger acorns, and these acorns would
363 tend to produce larger seedlings. Both factors may be important in the natural regeneration of
364 *Quercus* populations and should be taken into account when carrying out reforestation programs.

365

366 **Acknowledgements**

367 We thank Emma Keck for her kindness in correcting English. We also thank the editor and two
368 anonymous reviewers for their valuable comments and corrections to improve the manuscript. This
369 study was partially supported by the "Programa I: Programa de financiación de grupos de
370 investigación" from the Salamanca University (2014/00165/001) and the Project SA013G19 from
371 "Junta de Castilla y León" to B. Fernández-Santos.

372

373 **References**

374 Alejano R, Domínguez-Delmás M, García-González I, Wazny T, Vázquez-Piqué J (2019) The age of black pine (*Pinus*
375 *nigra* Arn. ssp. *salzmannii* (Dunal Franco) mother trees has no effects on seed germination and on offspring seedling
376 performance. *Ann For Sci* 76:15. <https://doi.org/10.1007/s13595-019-0801-7>

377 Bergmeier E, Petermann J, Schröder E (2010) Geobotanical survey of wood-pasture habitats in Europe: diversity,
378 threats and conservation. *Biodivers Conserv* 19:2995–3014. <https://doi.org/10.1007/s10531-010-9872-3>

379 Bisht VK, Kuniyal CP, Negi JS, Bhandari AK, Bhatt VP (2016) Variations in the seed germination in *Sapindus mukorossi*
380 in relation to tree age dependent seed vigour. *Natl Acad Sci Lett* 39:379–382. <https://doi.org/10.1007/s40009-016-0448-y>

381 Blanco E, Casado MA, Costa M, Escrivano R, García M, Génova M, Gómez A, Gómez F, Moreno Saiz JC, Morla C, Regato
382 P, Saiz H (1996) Los bosques ibéricos. Una interpretación geobotánica. Planeta, Barcelona

383 Calvo L, Hernández V, Valbuena L, Taboada A (2016) Provenance and seed mass determine seed tolerance to high
384 temperatures associated to forest fires in *Pinus pinaster*. *Ann For Sci* 73:381–391. <https://doi.org/10.1007/s13595-015-0527-0>

385 Castro J (1999) Seed mass versus seedling performance in Scots pine: a maternally dependent trait. *New Phytol*
386 144:153–161. <https://doi.org/10.1046/j.1469-8137.1999.00495.x>

387 Castro J, Reich PB, Sánchez-Miranda A, Guerrero JD (2008) Evidence that the negative relationship between seed mass
388 and relative growth rate is not physiological but linked to species identity: a within-family analysis of Scots pine.
389 *Tree Physiol* 28:1077–1082. <https://doi.org/10.1093/treephys/28.7.1077>

393 Ceballos L, Ruiz de la Torre J (1971) Árboles y arbustos de la España Peninsular. I.F.I.E.-E.T.S.I.M, Madrid
394 Chacón P, Bustamante RO (2001) The effects of seed size and pericarp on seedling recruitment and biomass in
395 *Cryptocarya alba* (Lauraceae) under two contrasting moisture regimes. *Plant Ecol* 152:137–144.
396 <https://doi.org/10.1023/A:10114 63127 918>

397 Costa A, Villa S, Alonso P, García-Rodríguez JA, Martín FJ, Martínez-Ruiz C, Fernández-Santos B (2017) Can native
398 shrubs facilitate the early establishment of contrasted co-occurring oaks in Mediterranean grazed areas? *J Veg Sci*
399 28:1047–1056. <https://doi.org/10.1111/jvs.12550>

400 Cruz O, García-Duro J, Casal M, Reyes O (2017) Can the mother plant age of *Acacia melanoxylon* (Leguminosae)
401 modulate the germinative response to fire? *Aust J Bot* 65:593–600. <https://doi.org/10.1071/BT170 83>

402 Cruz O, García-Duro J, Casal M, Reyes O (2019) Role of serotiny on *Pinus pinaster* Aiton germination and its relation to
403 mother plant age and fire severity. *iForest* 12:491–497. <https://doi.org/10.3832/ifor2 968-012>

404 Del Arco JM, Beltrán D, Martínez-Ruiz C (2018) Risk for the natural regeneration of *Quercus* species due to the
405 expansion of rodent species (*Microtus arvalis*). *Behav Ecol Sociobiol* 72:60. <https://doi.org/10.1007/s00265-018-2575-6>

406 Dorronsoro C (1992) Suelos. In: Gómez JM (ed) El libro de las dehesas salmantinas. Junta de Castilla y León.
407 Consejería de Medio Ambiente, Salamanca, pp 71–124

408 Eriksson O (1999) Seed size variation and its effect on germination and seedling performance in the clonal herb
409 *Convallaria majalis*. *Acta Oecol* 20:61–66. [https://doi.org/10.1016/S1146-609X\(99\)80016-2](https://doi.org/10.1016/S1146-609X(99)80016-2)

410 Escudero A, Mediavilla S (2003) Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption
411 as determinants of leaf life span. *J Ecol* 91:880–889. <https://doi.org/10.1046/j.1365-2745.2003.00818.x>

412 Espahbodi K, Hosseini SM, Mirzaie-Nodoushan H, Tabari M, Akbarinia M, Dehghan-Shooraki Y (2007) Tree age effects
413 on seed germination in *Sorbus torminalis*. *Gen Appl Plant Physiol* 33:107–119

414 Fahrettin T (2010) Influence of acorn size and storage duration on moisture content, germination and survival of
415 *Quercus petraea* (Mattuschka). *J Environ Biol* 31:325–328

416 Fernández-Santos B, Moro D, Martínez-Ruiz C, Fernández MJ, Martín FJ (2013) Efectos del peso de la bellota y de la
417 edad del árbol productor en las características regenerativas de *Quercus ilex* subsp. *ballota*. In:
418 Martínez-Ruiz C, Lario Leza FJ, Fernández-Santos B (eds) Avances en la restauración de sistemas forestales. Técnicas
419 de implantación. SECF-AEET, Madrid, pp 198–202

420 Gómez JM (2004) Bigger is not always better: conflicting selective pressures on seed size in *Quercus ilex*. *Evolution*
421 58:71–80. <https://doi.org/10.1016/j.actao.2010.10.006>

422 González-Rodríguez V, Villar R, Navarro-Cerrillo RM (2011) Maternal influences on seed mass effect and initial
423 seedling growth in four *Quercus* species. *Acta Oecol* 37:1–9. <https://doi.org/10.1016/j.actao.2010.10.006>

424 González-Rodríguez V, Barrio IC, Villar R (2012) Within-population variability influences early seedling establishment
425 in four Mediterranean oaks. *Acta Oecol* 41:82–89. <https://doi.org/10.1016/j.actao.2012.04.008>

426 Green PT, Juniper PA (2004) Seed seedling allometry in tropical rain forest trees: seed mass-related patterns of
427 resource allocation and the 'reserve effect'. *J Ecol* 92:397–408. <https://doi.org/10.1111/j.0022-0477.2004.00889.x>

428 Hendrix SD, Nielsen E, Nielsen T, Schutt M (1991) Are seedlings from small seeds always inferior to seedlings from
429 large seeds? Effects of seed biomass on seedling growth in *Pastinaca sativa* L. *New Phytol* 119:299–305.
430 <https://doi.org/10.1111/j.1469-8137.1991.tb010 34.x>

431 Khan ML (2004) Effects of seed mass on seedling success in *Artocarpus heterophyllus* L. a tropical tree species of
432 north-east India. *Acta Oecol* 25:103–110. <https://doi.org/10.1016/j.sab.2003.11.007>

433 Khan ML, Shankar U (2001) Effect of seed weight, light regime and substratum microsite on germination and seedling
434 growth of *Quercus semiserrata* Roxb. *Trop Ecol* 42:117–125

435 Leiva MJ, Fernández-Alés R (1998) Variability in seedling water status during drought within a *Quercus ilex* subsp.
436 *ballota* population, and its relation to seedling morphology. *For Ecol Manag* 111:147–156.
437 [https://doi.org/10.1016/S0378-1127\(98\)00320-X](https://doi.org/10.1016/S0378-1127(98)00320-X)

438 López-González GA (2001) Guía de los árboles y arbustos de la Península Ibérica y Baleares. Mundi-Prensa, Madrid

439 Mediavilla S, Escudero A (2004) Stomatal responses to drought of mature trees and seedlings of two co-occurring
440 Mediterranean oaks. *For Ecol Manag* 187:281–294. <https://doi.org/10.1016/j.foreco.2003.07.006>

441 Pérez-Ramos IM, Urbieta TI, Marañón T, Zavala MA, Kobe RK (2008) Seed removal in two coexisting oak species:
442 ecological consequences of seed size, plant cover and seed-drop timing. *Oikos* 117:1386–1396.
443 <https://doi.org/10.1111/j.2008.0030-1299.16370.x>

444 Pérez-Ramos IM, Gómez-Aparicio L, Villar R, García LV, Marañón T (2010) Seedling growth and morphology of three
445 oak species along field resource gradients and seed mass variation: a seedling age-dependent response. *J Veg Sci*
446 21:419–437. <https://doi.org/10.1111/j.1654-1103.2009.01165.x>

447 Poorter L, Rose SA (2005) Light-dependent changes in the relationship between seed mass and seedling traits: a meta-
448 analysis for rain forest tree species. *Oecologia* 142:378–387. <https://doi.org/10.1007/s00442-004-1732-y>

449 Quercus *faginea* Lam. in GBIF Secretariat (2019) GBIF Backbone Taxonomy. Checklist dataset
450 <https://doi.org/10.15468/39ome> accessed via GBIF.org on 2019-12-16

451 Quero JL, Villar R, Marañón T, Zamora R, Poorter L (2007) Seed mass effects in four Mediterranean *Quercus* species
452 (*Fagaceae*) growing in contrasting light environments. *Am J Bot* 94:1795–1803.
453 <https://doi.org/10.3732/ajb.94.11.1795>

454 Quero JL, Villar R, Marañón T, Zamora R, Vega D, Sack L (2008) Relating leaf photosynthetic rate to whole-plant growth:
455 drought and shade effects on seedlings of four *Quercus* species. *Funct Plant Biol* 35:725–737.
456 <https://doi.org/10.1071/FP081 49>

457

458

459 Quero JL, Villar R, Pérez-Ramos IM, González-Rodríguez V, Urbieta IR, Gómez-Aparicio L, Zavala MA, Marañón T,
460 Navarro-Cerrillo RM, Zamora R, Poorter L (2009) Implicaciones ecológicas del peso de semilla en especies del
461 género *Quercus*. Evidencias en condiciones controladas y experimentos de campo. 5º Congreso Forestal
462 Español. Montes y sociedad: Saber qué hacer. Ed. S.E.C.F-Junta de Castilla y León

463 Ramírez-Valiente JA, Valladares F, Gil L, Aranda I (2009) Population differences in juvenile survival under increasing
464 drought are mediated by seed size in cork oak (*Quercus suber* L.). For Ecol Manag 257:1676–1683.
465 <https://doi.org/10.1007/s11295-010-0331-9>

466 Reyes O, Casal M (2006) Seed germination of *Quercus robur*, *Q. pyrenaica* and *Q. ilex* and the effects of smoke, heat,
467 ash and charcoal. Ann For Sci 63:205–212. <https://doi.org/10.1051/forests:2005112>

468 San Miguel-Ayanz A (1985) Ecología, tipología, valoración y alternativas silvopascicolas de los quejigares (*Quercus*
469 *faginea* Lamk.) de Guadalajara. Ph.D. Dissertation, Universidad Politécnica de Madrid

470 Santos T, Tellería JL (1997) Vertebrate predation on Holm oak, *Quercus ilex*, acorns in a fragmented habitat: effects on
471 seedling recruitment. For Ecol Manag 98:181–187. [https://doi.org/10.1016/S0378-1127\(97\)00080-7](https://doi.org/10.1016/S0378-1127(97)00080-7)

472 Stokes MA, Smiley TL (1968) Introduction to tree-ring dating. University of Chicago Press, Chicago Tíscar PA, Lucas ME
473 (2010) Seed mass variation, germination time and seedling performance in a population of *Pinus nigra* subsp.
474 *salzmannii*. For Syst 19:344–353. <https://doi.org/10.5424/fs/2010193-9094>

475 Tíscar-Oliver PA (2002) Capacidad reproductiva de *Pinus nigra* subsp. *salzmanni* en relación con la edad de la planta
476 madre. Invest Agric Sist Recur For 11:357–371

477 Urbieta IR, Perez-Ramos IM, Zavala MA, Marañón T, Kobe RK (2008) Soil water content and emergence time control
478 seedling establishment in three co-occurring Mediterranean oak species. Can J For Res 38:2382–2393.
479 <https://doi.org/10.1139/X08-089>

480 Valladares F, Vilagrosa A, Peñuelas J, Ogaya R, Camarero JJ, Corcuera L, Sisó S, Gil-Pelegón E (2008) In: Valladares F
481 (ed) Ecología del bosque mediterráneo en un mundo cambiante, 2nd. EGRAF, Madrid, pp 163–190

482 Villar R, Ruiz-Robledo J, Quero JL, Poorter H, Valladares F, Marañón T (2008) Tasas de crecimiento en especies leñosas:
483 aspectos funcionales e implicaciones ecológicas. In: Valladares F (ed) Ecología del bosque mediterráneo en un
484 mundo cambiante 2nd. EGRAF, Madrid, pp 193–230

485 Westoby M, Leishman M, Lord J (1996) Comparative ecology of seed size and dispersal. Philos Trans R Soc Lond B Biol
486 Sci 351:1309–1318. <https://doi.org/10.1098/rstb.1996.0114>

487 Xiaogai H, Xianfeng Y, Yuequin Y, Wenjing L (2010) Acorn germination and seedling survival of *Q. variabilis*: effects of
488 cotyledon excision. Ann For Sci 67:711. <https://doi.org/10.1051/forest/2010036>

489

Table 1. Values obtained for each tree, young (Y) and old (O) trees selected for the study.

Tree	Diameter (cm)	Growth rings	Acorn weight	Cotyledon weight (g)	Germination (%)	Emergence (%)
Y1	11.5	26	0.61±0.15	0.44±0.14a	46.7	40.0
Y2	15.8	34	0.78±0.02	0.61±0.02a	43.3	43.3
Y3	17.1	38	1.06±0.06	0.83±0.04a	66.7	50.0
Y4	12.1	27	1.84±0.07	1.44±0.05b	50.0	46.7
Y5	10.2	24	1.85±0.05	1.45±0.04b	70.0	70.0
Y6	14.3	29	2.50±0.23	1.92±0.18bc	66.7	63.4
Y7	12.4	30	2.60±0.14	2.00±0.10c	36.7	33.3
Y8	13.7	27	4.39±0.11	3.41±0.08dg	33.3	30.0
O1	69.0		0.80±0.03	0.64±0.02a	43.3	40.0
O2	63.5	197*	0.93±0.03	0.70±0.02a	33.3	30.0
O3	66.9	110*	2.46±0.06	1.93±0.04c	53.3	50.0
O4	63.2	219*	3.43±0.08	2.64±0.05e	26.7	26.7
O5	73.9	239*	3.63±0.15	2.80±0.11ef	33.3	26.7
O6	58.7	243*	3.79±0.09	3.09±0.08df	23.3	20.0
O7	61.8	238*	4.30±0.09	3.43±0.07dg	30.0	23.3
O8	50.3	225*	4.40±0.10	3.51±0.08g	33.3	30.0

492 Acorn and cotyledon dry weights (g) (mean ± standard error, $n = 30$) and the results of the contrast of means
493 comparisons; different letters indicate significant differences ($p < 0.05$) with the Games-Howell test494 *The asterisks indicate the minimum ages of the trees. Due to the state of the putrefaction of the trees, the sample did
495 not reach the centre

496

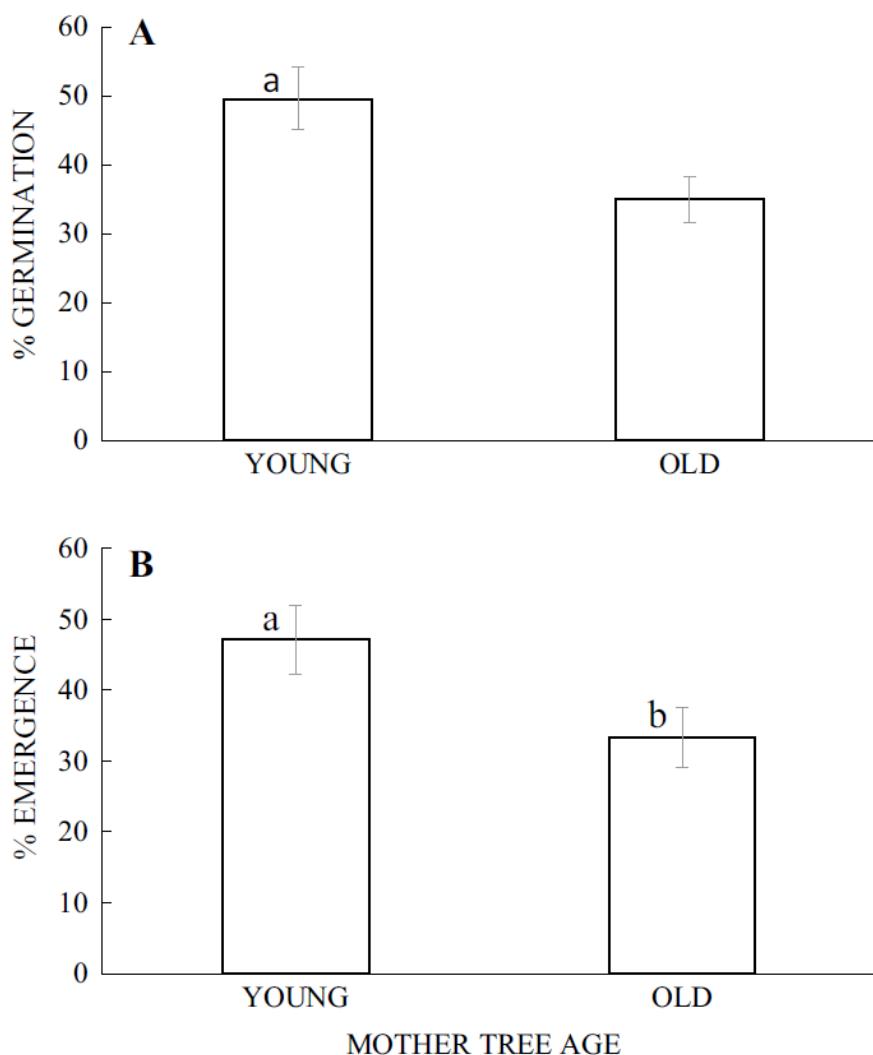
497

498

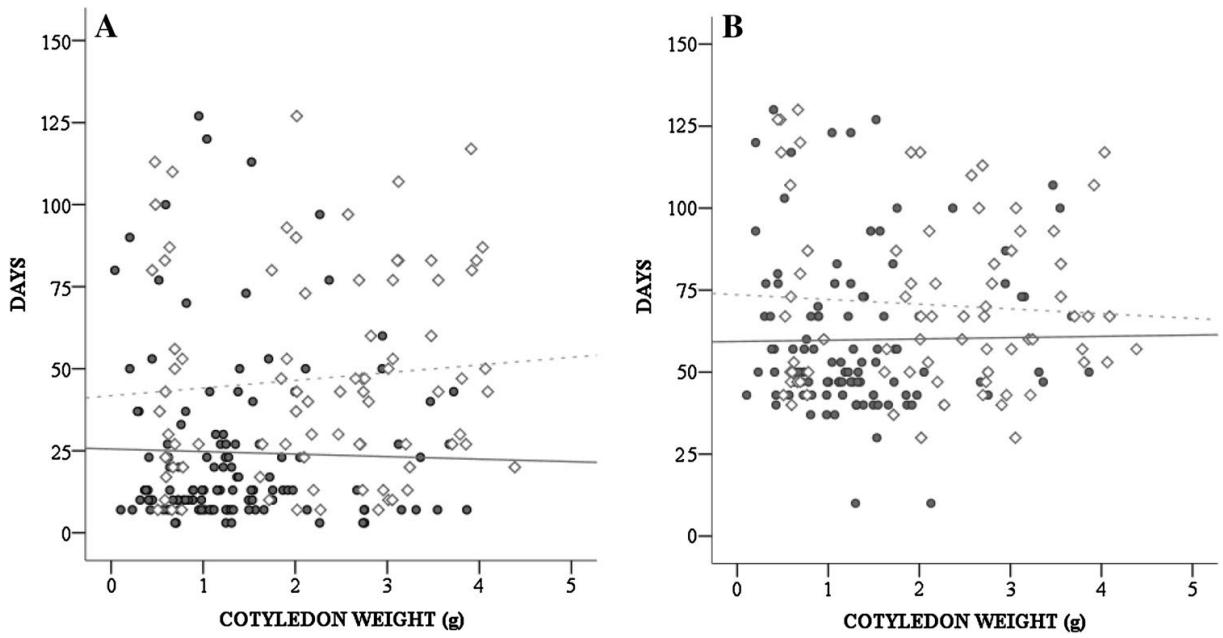
499

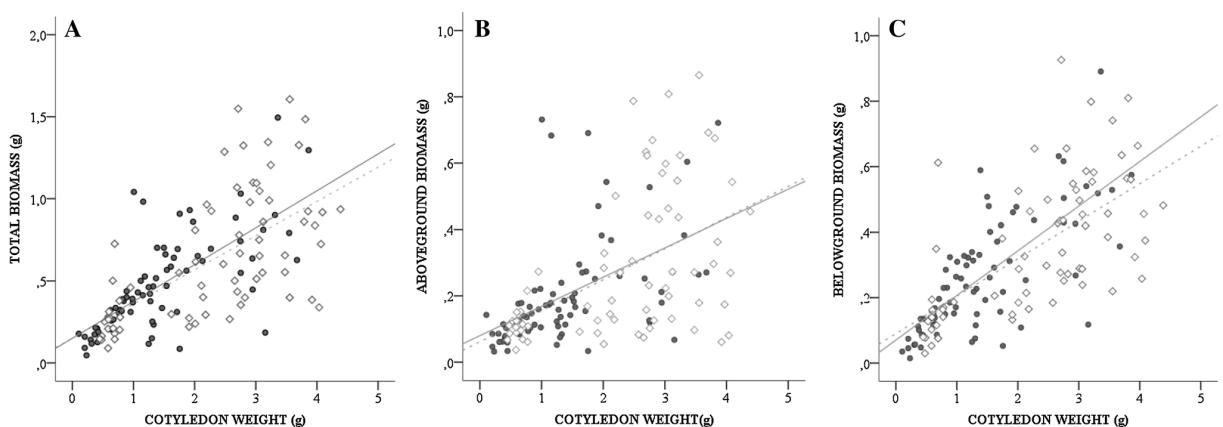
500 **Table 2.** Results of the contrasts made for the different variables and their relations as a
501 function of the age of the mother tree factor and cotyledon dry weight and the interaction
502 between both factors.

503


Variable	Acorn mass		Mother age		Interaction		R^2	Regression line $y = B_0 + B_1 \cdot (\text{Mother age}) + B_2 \cdot (\text{Cotyledon}) \cdot X + B_3 \cdot (\text{Interaction}) \cdot X$	
	F	p	F	p	F	p		Young	Old
Germination (days)	0.157	0.693	3.918	0.049*	0.615	0.434	0.137	$y = 25.533 - 0.77x$	$y = 41.775 + 2.34x$
Emergency (days)	0.079	0.779	3.571	0.060*	0.242	0.623	0.450	$y = 59.314 - 0.395x$	$y = 73.592 - 1.438x$
Total biomass	108.915	0.000*	0.000	0.990	0.158	0.692	0.469	$y = 0.151 + 0.192x$	$y = 0.152 + 0.208x$
Aboveground biomass	46.321	0.000*	0.107	0.745	0.041	0.841	0.280	$y = 0.08 + 0.089x$	$y = 0.062 + 0.094x$
Belowground biomass	123.769	0.000*	0.169	0.682	0.939	0.334	0.496	$y = 0.07 + 0.136x$	$y = 0.090 + 0.114x$
Aboveground Biomass/total biomass	5.166	0.025*	0.317	0.574	0.544	0.462	0.040	$y = 0.487 - 0.033x$	$y = 0.461 - 0.017x$
Belowground biomass/total biomass	5.166	0.025*	0.317	0.574	0.544	0.462	0.040	$y = 0.513 + 0.033x$	$y = 0.539 + 0.017x$
Aboveground biomass/belowground biomass	5.557	0.020*	1.477	0.226	2.115	0.148	0.031	$y = 1.056 - 0.127x$	$y = 0.884 - 0.030x$

504 Bold values indicate significant results
505


506


507
508 **Fig. 1.** Geographical location of the study area and distribution of *Quercus faginea* in the
509 Iberian Peninsula. Source GBIF ([2019](#))
510
511
512
513
514
515
516
517
518

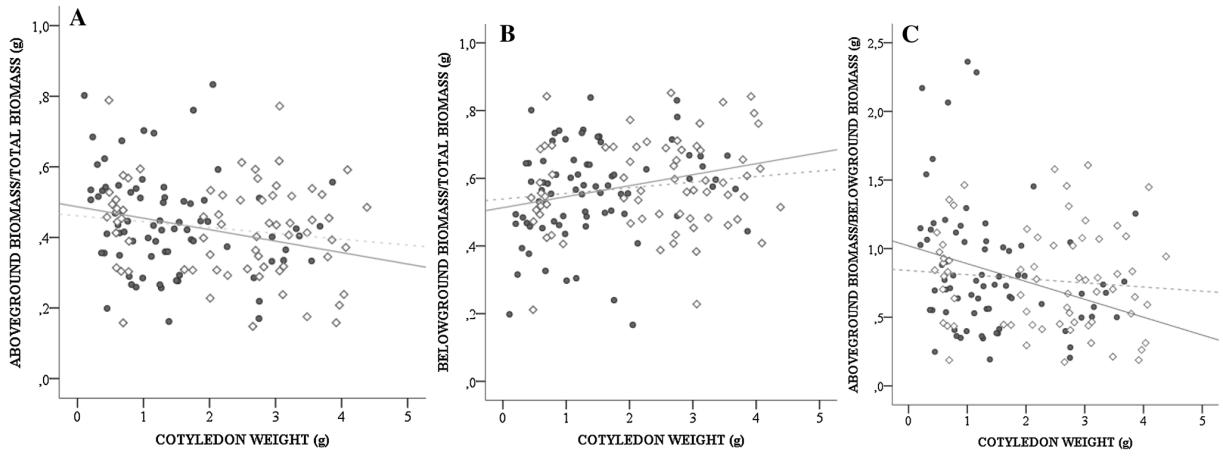

519
520 **Fig. 2** Germination (a) and emergence (b) final percentage (mean value \pm ES; $n = 8$) obtained
521 for the young and old mother tree groups of *Q. faginea*. For each variable, different letters
522 on the bars indicate significant differences with the Student's *t* test
523
524

Fig. 3. Time elapsed (days) between seed sowing to germination (a) and seedling emergence (b), depending on the cotyledon dry weight and mother tree age. White rhombus for old tree acorns; black circle for young tree acorns; dotted line for old tree acorns; continuous lines for young tree acorns.

Fig. 4. Total biomass (g) (a) aboveground biomass (g) (b) and belowground biomass (g) (c) of the seedlings in relation to the cotyledon dry weight and the mother tree age. White rhombus for old tree acorns; black circle for young tree acorns; dotted line for old tree acorns; continuous lines for young tree acorns.

541
 542
 543 **Fig. 5.** Ratio aboveground biomass/total biomass (a), belowground biomass/total biomass
 544 (b) and aboveground biomass/belowground biomass (c) developed by the seedlings in
 545 relation to the cotyledon dry weight and the age of the mother tree. White rhombus for old
 546 tree acorns; black circle for young tree acorns; dotted line for old tree acorns; continuous
 547 lines for young tree acorns.
 548

549 **Appendix Legends**

550

551 **Appendix S1.** Regression equations used to estimate both dry weights and cotyledon dry
552 weights for each mother tree. The weights are expressed in grams. The values of N and
553 R^2 of each regression are shown. All the regressions are significant.

Appendix S1

REGRESSION LINE			REGRESSION LINE				
TREE	Fresh weight - Cotyledon dry weight	R ²	N	TREE	Fresh weight - Dry weight	R ²	N
Y1	y = 0,7027x - 0,2825	R ² = 0,93609**	20	Y1	y = 0,7566x - 0,1678	R ² = 0,92687**	20
Y2	y = 0,4935x + 0,0505	R ² = 0,81826**	20	Y2	y = 0,5536x + 0,1586	R ² = 0,82883**	20
Y3	y = 0,5856x - 0,1368	R ² = 0,94588**	20	Y3	y = 0,7056x - 0,1063	R ² = 0,94751**	20
Y4	y = 0,6572x - 0,3479	R ² = 0,89538**	20	Y4	y = 0,7876x - 0,3087	R ² = 0,93308**	20
Y5	y = 0,5726x - 0,041	R ² = 0,93551**	20	Y5	y = 0,6346x + 0,0998	R ² = 0,89618**	20
Y6	y = 0,5945x - 0,2127	R ² = 0,96116**	19	Y6	y = 0,7671x - 0,2432	R ² = 0,98834**	19
Y7	y = 0,5489x - 0,0456	R ² = 0,9632**	19	Y7	y = 0,7278x - 0,1142	R ² = 0,9847**	19
Y8	y = 0,5293x + 0,153	R ² = 0,72182**	20	Y8	y = 0,7503x - 0,2259	R ² = 0,87742**	20
O1	y = 0,6335x - 0,1321	R ² = 0,87634**	20	O1	y = 0,7837x - 0,1523	R ² = 0,86976**	20
O2	y = 0,6305x - 0,235	R ² = 0,79586**	20	O2	y = 0,7555x - 0,1919	R ² = 0,87717**	20
O3	y = 0,4677x + 0,3044	R ² = 0,79118**	20	O3	y = 0,7386x - 0,1147	R ² = 0,95219**	20
O4	y = 0,4784x + 0,2965	R ² = 0,88796**	20	O4	y = 0,7063x - 0,0374	R ² = 0,96419**	20
O5	y = 0,6129x - 0,3591	R ² = 0,78059**	20	O5	y = 0,7893x - 0,4415	R ² = 0,92966**	20

O6	y = 0,5625x + 0,1135	R ² = 0,90076**	20	O6	y = 0,7114x + 0,0258	R ² = 0,93899**	20
O7	y = 0,6131x - 0,0974	R ² = 0,87**	20	O7	y = 0,8078x - 0,3469	R ² = 0,94394**	20
O8	y = 0,5543x + 0,0237	R ² = 0,81321**	20	O8	y = 0,7219x - 0,1345	R ² = 0,87565**	20