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1 La ecuaciéon de ondas

La ecuacién de ondas expresa de manera matematica el
fenémeno de la propagacioén a través de un medio en equili-
brio, material o no, de una perturbacién producida en algiin
punto del mismo. Esta ecuacién aparece en multitud de si-
tuaciones en la Fisica, como la propagacién del sonido o de
la luz, y tiene siempre la misma forma. Si se llama ¢ a la
magnitud que se propaga, entonces la ecuacion de ondas se
escribe en la forma
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donde V? es el operador laplaciano que, en coordenadas car-
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es lo que se conoce como velocidad de fase. En el caso de

tesianas, se escribe en la forma V?¢ =

las ondas electromagnéticas, como la luz, se obtiene que los
campos eléctrico y magnético asociados a estas ondas se pro-
pagan de acuerdo con esta ecuacién, con una velocidad de
fase que toma el valor conocido como ¢ = 299792458 ¢ ~
3-10%2. Dado que la obtencién de la ecuacién de ondas pa-
ra las ondas electromagnéticas requiere la manipulacién de
las conocidas como ecuaciones de Maxwell[1], aqui la justi-
ficacién de dicha ecuacién se hard mediante un sistema maés
sencillo, como el mostrado en la figura 1. Este sistema es-
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Figura 1: Recreacién de la propagacion de una onda en un sistema
unidimensional.

t4 formado por una cadena unidimensional de muelles, de
constante recuperadora k, y de masas, de valor m, entre los
muelles. En equilibrio, todos los muelles poseen la misma
elongacién y todas las masas son equidistantes respecto de
la anterior y la posterior, siendo la distancia entre ellas de va-
lor h. En un determinado instante, las masas pueden sacarse
de la situacion de equilibrio, de modo que cada una de ellas

esté desplazada respecto de dicha posicién una cierta distan-
cia. Llamaremos S;; a esas distancias, donde n enumera todas
las masas del sistema. Como consecuencia, los muelles ejer-
cen una fuerza recuperadora sobre cada masa dando lugar a
una dindmica que, teniendo en cuenta la ley de Hooke[2], se
expresa mediante la ecuacién
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Esta expresién puede llevarse al limite para obtener la ecua-
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cién de ondas en un medio continuo, por ejemplo, una barra
de material caracterizado por un médulo de elasticidad* de
valor E. Dicho valor se define como el cociente entre la ten-
siéon T aplicada al material, definida como la fuerza F apli-
cada por unidad de seccién transversal A del material, y la
deformacion relativa que ésta provoca, definida como el co-
ciente entre la elongacion s y la longitud del material &. De

F
este modo, E = 4 = %’. Si se recolocan los términos de es-

h
ta definicién, se tiene entonces que F = %s, es decir, la ley

de Hooke, donde k = %. Adicionalmente, si se considera
que la masa esta repartida uniformemente en la barra, con
una densidad de masa p, entonces una longitud / de la barra
posee una masa m = pAh.

Manipulando ahora (2), y llevandola al limite continuo ha-
ciendo i — 0 y definiendo la elongacién en forma local, es

decir, S, = s (x), puede escribirse
m 9%s s(x+h,t)—2s(x,t)+s(x—h,t)
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donde se ha tenido en cuenta el resultado (A.2) que se mues-

, (3

tra en el apéndice al final de este texto y se han cambiado

las derivadas totales por derivadas parciales para tener en

cuenta que la elongacién local depende de la posicion y del

tiempo. De esta manera, se llega finalmente a que
Ps_p¥s @
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que corresponde a la expresion de la ecuacién de ondas con
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una velocidad de fase v = \/% para las ondas de deforma-
cién a lo largo de la barra.

*También conocido como médulo de Young.



Tal y como se discute en el apéndice A, una segunda de-
rivada en el espacio y, en general, el operador laplaciano, lo
que vienen es a dar cuenta de una diferencia entre el valor
de la funcién en un punto y el valor medio de la funcién en
el entorno de ese punto. Asi, el sistema permanece en equi-
librio cuando esa diferencia es nula (g—i; = ) . Sin embargo,
si el sistema es sacado del equilibrio, provocando que en al-
guno de esos puntos esa diferencia no sea nula, aparece una
fuerza recuperadora que trata de llevar ese punto a su situa-
cién de equilibrio. El principio de accién y reacciéon hace que
esa fuerza recuperadora saque del equilibrio a los puntos del
entorno y, dado que el sistema no posee ningtin mecanismo
de disipacion de energia, el resultado serd la propagacién de
esa perturbacién en la forma que se conoce como un fren-
te de onda. Asf, en el caso unidimensional, cualquier fun-
cién en la forma s (x 4= vt)" puede ser solucién de la ecua-
cién de ondas. Un caso particular de esta solucion es aquél
en el que la perturbacién es de tipo armoénico, es decir, una
vibracién de una tnica frecuencia f. En ese caso, todos los
puntos del medio van a vibrar con esa frecuencia, pero con
un desfase que va a depender de la distancia en longitudes
de onda A que haya desde ese punto a aquél donde se ha
producido la perturbacién. Frecuencia y longitud de onda
estdn entonces relacionadas a través de la velocidad de fase
v en la forma v = Af. El estado de vibracién de cada pun-
to se expresa entonces a través de la expresion matematica
cos (kx — wt + ¢p)¥, donde k = 27 es el niimero de ondas y
w = 27tf la pulsacién angular (o, simplemente, frecuencia).
@ es simplemente un término de fase asociado al estado ini-
cial del sistema, y es, en muchos casos, un valor irrelevante.
Asf se habla de frentes de onda al conjunto de puntos que se
encuentran en el mismo estado de vibracion, tipicamente un
méximo, es decir, kx — wt + @9 = 2tn con n € IN. De este
modo, cada punto del medio de propagacién que ha sido al-
canzado por un frente de ondas se comporta a su vez como
una fuente secundaria de ondas, segtn el principio de Huy-
gens[3], principio que se ilustra en la figura 2. Cada frente de
ondas se obtiene asi como la envolvente de los frentes secun-
darios producidos por las fuentes secundarias, y la direccién
de propagacion serd la perpendicular en cada punto al frente
de ondas que pase por ese punto.

Mediante este principio pueden justificarse, en particular,
los comportamientos de la luz de caracter oscilatorio, como
la reflexion y refraccién en la frontera entre dos medios en

Basta tener en cuenta que, en este caso, la funcién es de la forma s (u)
. c i 4
conu = x +ovt,demodo que % =1y %—’t‘ = %0. Se obtiene asi que ﬁ = ﬁ
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tSiempre referido al caso unidimensional.

Figura 2: Recreacion de un grabado de Christian Huygens ilus-
trando el principio que lleva su nombre. Cada punto del medio de
propagacién alcanzado por un frente se convierte a su vez en una
fuente de ondas secundarias.

los que el indice de refraccién n es distinto, indice que, para
la luz, se define como el cociente entre la velocidad de la luz
en el vacio c y la velocidad de propagacién v en el medio, es
decir,n = § > 1.

2 Leyes de Snell

§2.1 Leyes de Snell a partir del principio de Huygens

El cambio de direcciéon de un rayo al pasar de un medio
a otro[4] puede deducirse de manera sencilla considerando
la diferente velocidad de propagacién de los frentes de onda
de laluz en cada medio, de acuerdo con el principio de Huy-
gens. La figura 3 muestra la construccion geométrica para el
célculo. Dado que el tiempo que tarda en recorrer el extremo
superior del haz la distancia d sen « marcada en el dibujo es

el mismo tiempo que tarda su extremo inferior en recorrer

dsena __ dsena’
v v’

y ¢’ las respectivas velocidades de propagacién en cada me-

la distancia d sena/, se obtiene que , siendo v
dio. Sin mas que multiplicar por la velocidad de la luz en el
vacio c en ambos lados de la igualdad, la relacién anterior se
convierte en la conocida como ley de Snell de la refraccién,
es decir,

nsena = n'sena’.

©)

En el caso de la reflexién, resulta inmediato obtener que
el dngulo incidente coincide con el reflejado, ya que, al no
haber cambio de medio, las velocidades de propagacién del
haz incidente y reflejado son las mismas. Ambos rayos son,
por tanto, simétricos respecto de la direcciéon normal a la su-
perficie de separacion de los medios. Es importante notar
que los rayos incidente, transmitido y reflejado estan conte-
nidos en el mismo plano, conocido como plano de incidencia.
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Figura 3: Construccién geométrica del fenémeno de la refraccion.
Un haz del luz pasa de un medio con indice de refraccién n a otro
cuyo indice es n’. Mediante esta construccion se establece la relacién
entre el &ngulo de incidencia « y el de transmisién o’

§2.2 Ley de Snell de la refraccién a partir del principio de
Fermat

El principio de Fermat establece que el camino que sigue
un rayo que parte de un punto hasta llegar a un segundo
punto es el que minimiza el camino 6ptico (tiempo) entre
ambos. El camino 6ptico se calcula como la distancia reco-
rrida por el rayo multiplicado por el indice de refraccién del
medio. Sobre la figura 4 puede verse el resultado de aplicar
este principio cuando un rayo atraviesa la superficie de se-
paracién de dos medios con indices de refraccion distintos n
y n’. Sin pérdida de generalidad, se pueden considerar dos
puntos separados una distancia / en horizontal y una altura
2h en vertical, cada uno dentro de un medio distinto. El rayo
trazado atraviesa la interfaz entre los dos medios en una po-
sicién, en principio arbitraria, a una distancia x en horizontal
y h en vertical del punto inicial. El camino 6ptico seguido por
este rayo viene dado por el valor 7 (x):

T(x) = nVa2+h2 +n'\/ (1 — x)* + h2.

(6)

El camino se hace minimo para un cierto x tal que g—; =0,

por lo tanto, si

I—x
' (x)=n AR =0, (7)
e N ey
y dado que sena = ﬁ y sena’ = ﬁ, entonces

se vuelve a obtener de nuevo nsena = n’ sena’.

Con este principio, Fermat puede considerarse como pio-
nero a la hora de plantear que la Naturaleza obedece algtin
tipo de principio de optimizacién.
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Figura 4: Trazado de un rayo desde entre dos puntos en el espacio
situados cada uno en diferentes medios caracterizados por indices
de refraccién n y n'. El principio de Fermat permite determinar la
relacion entre el angulo de incidencia « y el de transmisién o’

3 Transmision de rayos a través de una esfera

En primer lugar, se examina la transmisién de un rayo a
través de una esfera, mostrada en la figura 5. En este caso,
el punto de entrada del rayo en la esfera se encuentra a una
altura z respecto de su eje, es decir, el llamado pardmetro de
impacto[5], el punto de salida del rayo transmitido a través
de la esfera se encuentra a una altura z’ = Rsen8, siendo R el
radio de la esfera. El &ngulo 6 queda determinado teniendo
en cuenta que el rayo a través de la esfera dibuja una cuerda
que define un angulo isésceles, siendo el dangulo opuesto a
dicha cuerda igual a 7 — 2a’. De este modo, a + 77 — 24’ 4+ 6 =
7y, entonces, 6 = 2a’ — a. Adicionalmente, el dngulo 7y que
determina la direccién del rayo transmitido puede obtenerse
considerando la igualdad 0 + 77 — &« +y = 7, luego v = & —
6 =2 (a — a’). Otro célculo que puede hacerse es la distancia

respecto del centro de la esfera a la que el rayo transmitido
'

cruza el eje de ésta, es decir, la distancia x = Rcos8 + 57

Dicha distancia se obtiene como

sen (20 — w)

_ r sen (2a” —a)
x =R |cos (2 g2 (a— )

) + (8)
Haciendo uso de la ley de Snell, los angulos a y &’ se relacio-
nan en la forma sen « = nsena’, siendo 7 el indice de refrac-
cion del material de la esfera. De este modo, « = arcsen % y
' = arcsen ;5% lo cual permite relacionar la distancia x con
el pardmetro de impacto z.

La dependencia con el pardmetro de impacto z de la dis-
tancia x respecto del centro de la esfera a la que el rayo trans-
mitido cruza el eje se presenta en la grafica de la figura 6.
Puede comprobarse que la distancia es médxima para los ra-
yos que atraviesan mas proximos al eje, y esta maxima dis-
tancia depende del indice de refraccién del material de la
esfera.



Figura 5: Trazado de rayos a través de la esfera. Se indica el dngu-
lo ¥ que define la orientacién del rayo transmitido y la posicién x,
referida al centro de la esfera, en la que el rayo transmitido cruza su
eje.
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Figura 6: Dependencia con el pardmetro de impacto z de la dis-
tancia x respecto del centro de la esfera a la que el rayo transmitido
cruza el eje dada por (8), con el indice de refraccion n del material
de la esfera como parametro. Debe notarse que para n = 1,5 el rayo
no se transmite al exterior para z = R.

Si se considera ahora entonces un haz de rayos parale-
los atravesando la esfera, estos tenderdn a concentrarse for-
mando lo que se conoce como una cdustica justo detrds de
la esfera, como muestra la figura 7. Para determinar las di-
mensiones de esta cdustica, basta calcular la distancia x pa-
ra rayos muy proximos al eje. Mediante las aproximaciones

sene ~ ¢ ~ tgey cose ~ 1 — 12, para pequefios valores
2 2
; ~ n__ z- (2=n R ~
de ¢, se obtiene que x ~ |ty — %5 (%) } 5 para z ~ 0.

La distancia .5 %, de hecho, constituye la posicién del foco

en lo que se conoce como aproximacion paraxial en la éptica
geométrica.

El foco es el punto donde la potencia tiende a concentrar-
se si la esfera es iluminada de manera uniforme, como puede
intuirse sobre en la gréfica de la figura 6 y se refleja en la figu-

ra 7. Sila iluminacién es uniforme, se obtiene que la potencia
ar _ 2By,
dz = R2*%
siendo Py la potencia total, tal y como se demuestra en el

P de laluz se distribuye en el haz segtin la funcién

apéndice C. Teniendo en cuenta la relacién decreciente entre

Figura 7: Trazado de rayos a través de la esfera: formacién de una
cdustica a partir de un haz de rayos paralelos. La distribucién de
rayos considerada corresponde a un haz cuya distribucién de po-
tencia a través del drea transversal al haz es uniforme (ver texto).

Xy z,si dx = x'(z)dz, entonces % = —%"ﬁ, distribu-

cién que se representa en la figura 8 para diferentes indices
de refraccién. Se comprueba cémo la distribucién de poten-
cia crece hacia el punto donde se sitta el foco en cada caso,
también conocido como la focal. En la gréfica de la figura 8,
para los indices de refraccién considerados n = 1,2,1,25,1,33
y 1,5, las focales se sittian en las posiciones x = 3R,2,5R, 2R
y 1,5R, respectivamente.
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Figura 8: Distribuci6n de la potencia en funcién de la distancia x
respecto del centro de la esfera con el indice de refraccion n del ma-
terial de la esfera como pardmetro. Puede comprobarse que la dis-
tribucion es creciente con la distancia x, crecimiento que se agudiza
en el punto focal.

4 Reflexion en el interior de una esfera

Los rayos trazados en el interior de la esfera, ademds de
transmitirse hacia el exterior, como se ha visto en el apartado
anterior, sufren una reflexién que los confina en el interior de
la esfera hasta que alcanzan un nuevo punto de su superfi-
cie, como ilustra la figura 9. Es ahora la transmisién en estos
nuevos puntos la que va a motivar el siguiente calculo. En
particular, interesa conocer el angulo § indicado en la figura,



y que determina la direccién de los rayos reflejados por el sis-
tema respecto de la direccién de los rayos incidentes. Puede
comprobarse en este caso la relacion 16 +a + 7 — 22/ = 7,
de modo que § = 4a’ — 2a. En términos del pardmetro de
impacto z, el &ngulo 6 puede escribirse entonces como

©)

0 (z) =4arcsen (%) — 2arcsen (E) .

R

Figura 9: Trazado de rayos a través de la esfera para el caso de la
primera reflexién interna. Se indica el éngulo & que define la orien-
tacion del rayo reflejado. A modo de ayuda, también se indica el
angulo ¢ = 4a’ — « que especifica la orientacién de la normal en el
punto de la esfera donde el rayo se trasmite de nuevo al exterior tras
la primera reflexién. El cdlculo de este dngulo es sencillo sin mas que
tener en cuenta el resultado del Apéndice B

En la gréfica de la figura 10 se representa la dependencia
de 6 con el parametro de impacto z. Puede comprobarse que
el angulo crece hasta alcanzar un méximo, a partir del que
el &ngulo disminuye bruscamente. El &ngulo méaximo puede

do

obtenerse como =
Z | 5=

A
4 — n2 4 — n2
A (n) = 4arcsin ??—Zarcsin\/Tn. (10)

La gréfica interior de la figura 10 muestra la dependencia de

= 0. De este modo, resulta

este dngulo maximo con el indice de refraccién, estando en
un valor cercano a 36° para un indice de refraccién n ~ 1,38.

La expresion (10) permite, en particular, dibujar el traza-
do de rayos a través de la esfera para el caso de la primera
reflexién en su interior. El trazado de rayos mencionado se
muestra en la figura 11 donde, al igual que en la figura 7, se
ha tenido en cuenta la distribucién de potencia luminosa con
el pardmetro de impacto z de cada uno de los rayos. Puede
comprobarse sobre este trazado una mayor concentracién de
rayos reflejados segtin la direccién del &ngulo A obtenido en
(10) .

De nuevo, la concentracién de rayos en la direccién dada
por el dngulo A formard una cdustica. Esta cdustica que se
produce, por ejemplo, al incidir la luz del sol sobre las gotas
de lluvia en el aire, es la que se observa como el arco iris que
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Figura 10: Dependencia del dngulo & que forma el rayo reflejado
con el rayo incidente tras la reflexion en el interior de la esfera en
funcién del pardmetro de impacto z del rayo incidente, segtin (9). La
grafica interior representa el maximo dngulo alcanzado A en funcién
del indice de refraccion n del medio, dada por (10).
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Figura 11: Trazado de rayos a través de la esfera para el caso de
la primera reflexién interna. La distribucién de rayos considerada
corresponde a un haz cuya distribucién de potencia a través del drea
transversal al haz es uniforme (ver texto). Se indica el dngulo A que
corresponde al mayor dngulo de desvio entre el rayo incidente y el
reflejado internamente en la esfera.

se conoce como primario, y es resultado de la dependencia
del indice de refraccién con la longitud de onda de la luz que
se describe a continuacién. Es importante notar que en el in-
terior de una gota se pueden producir sucesivas reflexiones
de rayos. Este efecto se aprecia en la imagen de la figura 12
en la que se aprecian las sucesivas reflexiones (hasta seis) en
el interior de un recipiente de vidrio lleno de agua de la luz
procedente de un puntero ldser que incide sobre el recipien-
te.

5 Dependencia del indice de refraccién con la
longitud de onda de la luz.

Se da la circunstancia de que los materiales ofrecen una
respuesta distinta que depende de la longitud de onda[6], lo



Figura 12: Fotograffa de un rayo de luz procedente de un puntero
laser en el interior de un recipiente de vidrio lleno de agua. Pueden
apreciarse en la imagen hasta seis reflexiones internas.

que se refleja en una variacién del indice de refraccién pa-
ra cada color. Una primera aproximacién analitica a esta de-
pendencia viene dada por lo que se conoce como férmula de
Cauchy, y que consiste en un desarrollo en serie de poten-
cias de la inversa del cuadrado de la longitud de onda, en la

forma

B C

T (11)

Es importante notar que, en esta expresion, A es la longitud
de onda de la luz calculada en el vacio, y que para la luz vi-
sible varia entre los 380 nm para el violeta y los 750 nm del
rojo. Se trata, por tanto, de una expresion empirica, de mo-
do que los coeficientes que en ella aparecen se determinan
de manera experimental. En el caso del agua a 20 °C, por
ejemplo, se obtiene que A = 1,322, B = 1,504 - 104 m? y
C=24-10"%m

Enla figura 13, se presenta de manera gréfica la aplicacion
de la férmula de Cauchy en el caso particular mencionado
del agua a 20 °C. Puede observarse como el indice de refrac-
cién decrece con la longitud de onda de manera que, para el
espectro visible, varia desde un valor de aproximadamente
1,35 para el rojo hasta 1,44 para el violeta. Esta diferencia en
indices de refraccién para cada color es la que provoca, por
lo tanto, la dispersién de la luz solar en los diferentes colores
que forman el arco iris.

6 Composicion espectral de la luz solar

La figura 14 presenta superpuestas diferentes graficas. La
grafica en amarillo corresponde a la irradiancia espectral de
la luz solar, donde se muestra como dicha luz es una dis-
tribuciéon continua de longitudes de onda que van desde
el ultravioleta extremo (de unas decenas de nanémetros) a
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Figura 13: Dependencia del indice de refraccion n con la longitud
de onda de laluz en el vacio A para el agua a 20°C, segtin la férmula
de Cauchy expresada en (11), y considerados los pardmetros indica-
dos en el texto. La curva se ha superpuesto sobre la gama de colores
que corresponde a cada longitud de onda para facilitar relacionar
cada color con el indice de refraccion correspondiente.

longitudes casi en la banda del infrarrojo medio (3000 nm).
De acuerdo con la teoria de Planck sobre la radiacion del
cuerpo negro[7], esta irradiancia puede ajustarse a la cur-
va de emisiéon de un cuerpo a una temperatura alrededor
de los 5500 K, es decir, la curva gris de la grafica. Segun
la ley de desplazamiento de Wien$, el méximo de la curva
a esa temperatura se encuentra para una longitud de onda
Amax /= 527 nm, que corresponde al color verde. Finalmente,
la curva en rojo presenta la irradiancia a nivel del mar. Esta
curva es el resultado de descontar de la irradiancia sobre la
exosfera el efecto de los diferentes mecanismos de dispersién
y absorcién que se producen por los gases de la atmdsfera,
fundamentalmente el vapor de agua. Estos mecanismos dan
lugar a una distribucién mds o menos uniforme de colores
en la composicion de la luz solar visible. La mezcla de todos
los colores se aprecia por el ojo humano como luz blanca.

7 Formacion de los arcoiris

Cuando un haz de luz procedente del sol atraviesa una
gota de agua, la primera reflexién en el interior de la gota
provoca que cada color forme una cdustica segtin una di-
reccién distinta. Estas direcciones vienen dadas por el va-
lor A obtenido en (10), que, en el caso del agua, irfan desde
Avioleta = 29° hasta Ayyj, ~ 40°. La luz procedente de esa
primera reflexién forma un cono como el que se recrea en la
imagen de la figura 15. Puede apreciarse el tono blanquecino

SEsta ley permite estimar la longitud de onda A, del pico de la cur-
va de irradiancia a una cierta temperatura T a partir de la aproximacién
AmaxT 72,9010~ m-K
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Figura 14: Irradiancia solar para cada longitud de onda. Tomando
la temperatura del sol en el entorno de los 5500 K, puede compro-
barse que la irradiancia medida en la exosfera coincide aproximada-
mente con el espectro de emisién del cuerpo negro a esa temperatu-
ra[8]. La absorcién en la atmdsfera por gases como el ozono (O3), el
oxigeno (Oy), el didxido de carbono (CO;) y el vapor de agua (H,0)
se refleja en diferentes cortes en la grafica correspondiente a la irra-
diancia al nivel del mar. Imagen adaptada de [9].

de la luz en el interior del cono, pero también la iridiscencia
justo en su borde. Esta iridiscencia se debe a las diferentes
direcciones que toman las cdusticas de cada color. Tenien-
do en cuenta la mayor intensidad de la luz en las direccio-
nes de las cdusticas, el color correspondiente a cada cdustica
predomina sobre rayos de otros colores fuera de sus corres-
pondientes cdusticas y, por tanto, mucho menos intensos. La
superposicién de esos rayos menos intensos son los que dan
el mencionado tono blanquecino al interior del cono.

Figura 15: Primera reflexién de un haz de luz blanca en el interior
de una esfera de cristal. Puede apreciarse la forma cénica del haz
reflejado, fundamentalmente blanco, pero con una iridiscencia justo
en el borde.

La proyeccion de este cono sobre una pantalla daria lugar
a una forma circular, blanquecina en el centro, pero con la
mencionada iridiscencia en el borde, de modo que el color
rojo quedaria en la zona maés exterior y el violeta en el in-

terior. Serfa, por tanto, el resultado de generar una imagen
de revolucién a partir de la gama de colores de mostrada
en el interior de la grafica de la figura 16. Esta gama esta
construida por superposicién, considerando la distribucién
de potencia en funcién del dngulo § para todo el espectro
de colores, la cual se muestra en la grafica para distintos co-
lores, considerado el correspondiente indice de refraccién.
Debe notarse en dicha grafica como la potencia crece brusca-
mente hacia el &ngulo correspondiente a la cdustica.
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Figura 16: Distribucion de intensidad de luz para diferentes colo-
res tras la primera reflexién en funcién del dngulo de salida obtenida
de acuerdo con (9) y la distribucién de potencia del haz de luz blan-
ca incidente. En el interior se muestra la gama de colores resultante
de la superposicion de las curvas de intensidad de cada color.

Por lo tanto, el arco iris principal, el més visible, es el re-
sultado de esta primera reflexién en el interior de cada gota
suspendida en la atmdsfera. Es un apreciacién subjetiva del
observador, de modo que el centro del arco iris se sittia sobre
el eje que une la fuente de luz (el sol) y su cabeza. Segtn ele-
ve la vista respecto de este eje, el observador vera el reflejo
blanquecino del interior de los conos producidos por las go-
tas en su linea de vision, posteriormente la cdustica del color
con menor dngulo AT es decir, el violeta, a unos 30° y, a par-
tir de ahi las demads cdusticas del resto de colores. Y, una vez
superados los 40°, aproximadamente, el ojo no veria refleja-
da ninguna luz procedente de las gotas en es linea de vision.
Esto se muestra de manera esquematica en la figura 17. Si el
observador mira a la gota 1, vera el reflejo blanquecino del
interior del cono. Si mira la gota 2, verd el color de la caustica
formada a unos 34°, es decir, el color verde. Y, finalmente, de
la gota 3, en la parte mds alta, no recibird reflejo ninguno. Es-
ta banda oscura que se forma encima del arco iris primario
recibe el nombre de banda de Alejandro'!.

TMayor indice de refraccién.
''Nombrada asi por Alejandro de Afrodisias, quien la describiera por
primera vez hacia el afio 200AC



Figura 17: Esquema representativo de la percepcién subjetiva del
arco iris. Dependiendo de la altura de las gotas de agua, el observa-
dor vera un reflejo blanquecino para las gotas mas bajas, una caus-
tica del color correspondiente al angulo de la linea de visién si éste
es de unos 34° o no recibira luz reflejada de las gotas situadas mas
altas.

Como indica su nombre, la banda de Alejandro se corres-
ponde con una zona oscura entre el arco iris primario y el
llamado arco iris secundario, por encima del primario, y con
el orden de colores invertido respecto de éste. De hecho, tal
y como se mostraba en la figura 12, en el interior de una gota
son posibles multiples reflexiones. Los rayos transmitidos al
exterior después de haberse reflejado varias veces en el in-
terior de cada gota forman sucesivos arco iris, aunque cada
vez mas tenues.

8 Polarizaciéon y angulo de Brewster

Dado el cardcter de onda electromagnética de la luz, es-
te tipo de ondas llevan asociados un campo eléctrico y un
campo magnético en cada punto del espacio. Estos campos,
de tipo vectorial, vibran en cada uno de estos puntos con la
frecuencia de la onda. En el caso considerado, en el que se
produce propagacion libre a través de diferentes medios, las
direcciones de estos campos son perpendiculares a la direc-
cién de propagacién de la onda. En particular, si el campo
eléctrico vibra en todos los puntos atravesados por el rayo
luminoso siempre con la misma orientacién, se dice que la
onda esta linealmente polarizada®™. Se suelen considerar tres
tipos de polarizacién para la luz: lineal, circular y eliptica.
Salvo la actuacién de dispositivos, conocidos como polariza-
dores, la luz generada por cualquier fuente estd, en general,
despolarizada. El uso de estos polarizadores proporciona en-
tonces luz cuyos campos eléctrico y magnético toman direc-
ciones que pueden describirse perfectamente en cada punto
del espacio.

*El campo magnético asociado a la onda vibrara en un tercera direccién,
perpendicular tanto al campo eléctrico como a la direccién de propagacion.

Ocurre que la reflexién de la luz en la superficie de separa-
cién de dos medios distintos puede dar lugar a que el haz re-
flejado quede linealmente polarizado. De este modo, el cam-
po eléctrico de la luz reflejada se orienta dentro del plano que
define la interfaz entre los dos medios, es decir, perpendicu-
lar al plano de incidencia. El mecanismo fisico que lo explica
puede entenderse cualitativamente a partir de la forma en
que las cargas eléctricas de la estructura del medio respon-
den a la componente del campo eléctrico de la luz en el plano
de incidencia. El campo eléctrico de La luz que incide sobre
la interfaz entre los dos medios acelera las cargas eléctricas
en esta superficie, siendo la luz a su vez reemitida por dichas
cargas, dando asf lugar a los rayos reflejado y transmitido. El
campo eléctrico asociado a estos dos rayos debe ser perpen-
dicular a la direccién de propagacién. Si se da la situaciéon
mostrada en la figura 18, la componente en el plano de pola-
rizacién del campo eléctrico s6lo puede propagarse con el ra-
yo transmitido ya que posee la misma direccién que el rayo
reflejado. Esto se debe a que ambos haces forman un angulo
recto. De este modo, el rayo reflejado sé6lo tiene componente
del campo eléctrico normal al plano de incidencia y queda,
por tanto, linealmente polarizado'. Teniendo en cuenta las
leyes de Snell, existe un dngulo de incidencia para el cual
se cumple que los rayos reflejado y transmitido formen un
angulo recto. Este dngulo de incidencia recibe el nombre de
dngulo de Brewster, por ser este fisico escocés el descubridor
de este fenémeno.

90°

Figura 18: Reflexion y refraccion en el caso de incidencia segtin el
angulo de Brewster (ap). La componente en el plano de incidencia
del rayo reflejado debe desaparecer para que sea compatible con la
condicién de que los campos sean perpendiculares a la direccién de
propagacién. Esta circunstancia se da cuando los rayos reflejado y
transmitido forman un dngulo recto.

La demostracién rigurosa de este condicién se obtiene a
través de las llamadas ecuaciones de Fresnel que, teniendo en
cuenta la orientacién de los campos, establecen las relacio-

*El uso de polarizadores en cdmaras fotograficas permite, por ejemplo,
eliminar la luz reflejada en las superficies cuando se hace una fotografia.



nes entre las componentes de los campos eléctrico y mag-
nético para los rayos incidente, reflejado y transmitido, y,
por lo tanto, determinan la proporcién entre la intensidad
de los haces reflejado y transmitido en funcién del angu-
lo de incidencia y de los indices de refraccién de los me-
dios[10]. La condicién que determina el d&ngulo de Brewster
(«p) es entonces la de que la componente en el plano de in-
cidencia del campo eléctrico de la onda reflejada se anule, la
cual viene dada por la expresién (que no se demostrard aqui)
n’ cosap = ncosa’, siendo aj el &ngulo que forma el rayo
transmitido para una incidencia segtn el d&ngulo de Brews-
ter.

Esta condicién es totalmente equivalente a la de que el
angulo reflejado y el transmitido formen un dngulo de 90°.
Cuando el dngulo de incidencia coincide con el dngulo de
Brewster ap se tiene entonces la relacion ap + 7 + “/B = 7,

To_

es decir, a; = 5 — ap y, por tanto, sen &y = cos ag. Por la ley

2 2

. 2
de Snell, de lo anterior se deduce que 7 sen” ag = cos~ apy,

de forma inmediata,

!/

xp = arctg % (12)

En consecuencia, esta es la expresion que permite determi-
nar ap conocida la proporcién entre los indices de refracciéon
de los medios, donde n representa el indice de refraccién pa-
ra el rayo incidente (y reflejado) y #’ el indice de refraccién
del medio para el rayo transmitido. Por ejemplo, en el caso
de la reflexién de luz verde incidiendo desde el aire sobre la
superficie del agua (n’ = 1,38) se tiene que ap ~ 54°. Si la in-
cidencia es, sin embargo, al revés, es decir, desde el agua ha-
cia el aire (% ~ 0,72), entonces ap ~ 36°. Este es el caso que
va a ocupar ahora la siguiente discusién, es decir, la reflexién
interna en el medio de indice de refraccion n’. En la grafica
de la figura 19 presenta la dependencia de ap con la relaciéon
entre los indices de refraccién de los medios cuando la luz
atraviesa la interfaz desde el medio de indice de refraccién
n’, por ejemplo, una gota de agua, hacia el medio de indice
de refraccién n, el aire, en este casotf. La misma gréfica pre-
senta también el angulo (X’A, es decir, el dngulo de incidencia
en el interior del medio cuando se produce la c4usticaSS. Se
da la circunstancia de que ambos dngulos ap y &/, coinciden
para una relacién de indices de refraccion % ~ 0,72, es de-
cir, para la caustica del color verde en el caso de las gotas de
agua. Esto significa que la luz procedente de la primera re-
flexién, y que da lugar al arco iris primario, estd fuertemente
polarizada. Esto puede comprobarse haciendo uso de un po-

HLa expresi6n (12) se escribirfa en esta situacién como en ap = arctg v
88Es decir, el valor de &’ para el que § = A segtn la discusién de la
seccion 4.

larizador lineal, de modo que, segtin esté orientado éste, la
luz del arco iris serd visible o no a través del polarizador.
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Figura 19: Angulo de Brewster (xg) en funcién de la relacion de
indices de refraccion. Aqui se estd considerando la reflexi6n interna
en el medio de indice de refraccién n’. En la misma gréfica se pre-
senta el angulo &, que marca la orientacion del angulo de incidencia
en el interior del medio para el que se produce la caustica.

9 Resultados experimentales

§9.1 Foco de un disco de material transparente

En este primer apartado se trata de obtener la posicién de
la focal de un disco de un material transparente, como es el
metacrilato, de radio R = 20 cm. Para ello se ilumina el dis-
co mediante una linterna y se comprueba cémo se forma una
caustica al otro lado del disco. Esto es lo que se muestra en
la figura 20. De acuerdo con la discusién realizada en la sec-
cién 3, el foco de encuentra a una distancia del centro dada
por la expresion % Medida esa distancia, puede estimar-
se el indice de refraccién del medio. En este caso, la distancia
del foco al centro del disco es de unos 7 cm, de lo que resul-
ta un indice de refracciéon n ~ 1,42, un valor relativamente
proximo al de este tipo de plasticos, que ronda el 1,5. El error
puede deberse a que, dadas las dimensiones del disco, no se
ha podido encontrar una fuente suficientemente plana para
realizar el experimento.

§9.2 Curvas de primera reflexién

Tal y como se discutié en la seccién 4, el angulo § con el
que se refleja un rayo mediante una esfera depende del pa-
rametro de impacto z. En este apartado tratard de medirse
dicho dngulo. Para ello se considerard el mismo disco de me-
tacrilato del apartado anterior. Este disco se ha situado a una
distancia d = 43 cm de una regla graduada que permite me-



Figura 20: Cdustica formada al atravesar un haz de luz un disco
de metacrilato. Los rayos de luz convergen marcando el punto focal
del disco.

dir el pardmetro de impacto. Sobre la regla desliza un dispo-
sitivo que permite acoplar diferentes punteros laser, de tres
colores diferentes: rojo, verde y azul. Dado que el dngulo ¢
no es sencillo de medir, lo que se hard es comprobar este an-
gulo de manera indirecta, determinando la posicién y sobre
la regla graduada en la que incide el rayo reflejado. Segtin la
imagen de la figura 21, esta posicién puede calcularse como
y=1tgd+ Rseng,donde ! = d+ R (1 — cos ¢) y los dngu-
los ¢ y & se obtuvieron en su momento como ¢ = 4a’ —«
y & = 4a’ —2a, por lo que ¢ = J§ + a. De acuerdo con la
discusién del apéndice D, se obtiene la dependencia de y

con z a través del dngulo 6 como aparece en (D.2), es decir,
z

lor rojo y mayor para el azul, quedando la curva del color
verde entre ambas.

3,5 n
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Figura 22: Resultados experimentales de la medida del punto de
incidencia y en funcién del pardmetro de impacto z y ajuste de los
resultados a la curva de dependencia especificada en el texto.

§9.3 Polarizacién de la luz reflejada

En la seccién 8 se justifico el hecho de que la luz que forma
el arco iris primario es luz polarizada, debido a que el angu-
lo de incidencia en el interior de las gotas para la cdustica es
aproximadamente igual al d&ngulo de Brewster para la inter-
faz agua-aire. Para comprobar esta situacién se ha utilizado
un recipiente de vidrio esférico lleno de agua sobre el que se

y=(d+R)tgé+ ha hecho incidir un haz de luz blanca procedente de un pro-

cosd”

yector de imdgenes. Se ha estudiado en este caso la caustica
que forma la luz de la primera reflexion, la cual se ha hecho
pasar a través de un polarizador lineal. El polarizador se ha

situado en dos posibles posiciones, bien horizontal, o bien
vertical. La imagen en el primer caso es la que aparece en la
figura 23a en la que se comprueba que el polarizador permi-
te el paso de la luz reflejada. La segunda situacion se muestra

Figura 21: Calculo del punto de incidencia y para un rayo reflejado
por una esfera, obtenido para un cierto pardametro de impacto z.

En la gréfica de la figura 22 se presentan los resultados ex-
perimentales obtenidos junto con un ajuste teérico de dichos
datos. Aunque se observan leves discrepancias, el resulta-
do es, en general, bastante satisfactorio, pudiéndose obser-
var como el indice de refraccién decrece con la longitud de
onda de la luz aplicada, siendo, por tanto menor para el co-

10

en la figura 23b donde el efecto del polarizador situado en es-
ta segunda posicion es la de atenuar de manera muy notable
el brillo de la cdustica. Esto demuestra que, efectivamente, la
luz procedente de esta primera reflexién estd fundamental-
mente polarizada, con polarizacién lineal.

§9.4 Trazado de rayos

Para complementar el trabajo experimental se ha imple-
mentado coédigo sobre la plataforma p5.js. Tal y como indi-
ca esta plataforma, «p5.js es una herramienta amigable para
aprender a programar y hacer arte. Es una biblioteca de Ja-
vaScript libre y de c6digo abierto.»11. Dada la versatilidad

TVer https://p5is.org/es/about/


https://p5js.org/es/about/

(a) Imagen de la luz reflejada en el interior de una esfera de vidrio
conteniendo agua. La imagen ha sido tomada con el polarizador en la
posicién denominada como horizontal.

(b) Imagen de la luz reflejada en el interior de una esfera de vidrio
conteniendo agua. La imagen ha sido tomada con el polarizador en la
posicién denominada como vertical.

Figura 23: Comprobacién de la polarizacién de la luz reflejada en
el interior de una esfera conteniendo agua.

—— #rayos
— n

Figura 24: Imagen generada por el codigo escrito para realizar el
trazado de rayos a través de una esfera.

19vvar nslider;

20

21 var fontMath;

22

23 function preload()

2 {

5 img = loadImage (’assets/ball.png’);
2 }

27

de esta herramienta, resulta relativamente sencillo presentar s

el trazado de rayos a través de una esfera tanto para el es- » function setup() {

. . . P93 30
tudio de la focal de la misma como de la primera reflexién
en su interior y obtener las correspondientes cdusticas en ca- ,,
da caso, todo ello en funcion del indice de refraccion relativo s

fontMath = loadFont (’ /assets/Cambria.ttf’);
31 createCanvas (labsizex, labsizey+panely);
this.bkcolor = 240;

this.panelcolor = 192;

entre la esfera y su entorno. En el caso de la formacién de *

la focal, se puede obtener una imagen como la de la figu- zz
ra 24. El c6digo implementado para realizar esta imagen se ,,

presenta a continuacion.

1var
2var
3var
4var
5var

6var

svar
9 var
10 var
1 var
12 var
13 var
4 var
15 var
16 var
17

18 var

labsizex = 1024;
labsizey = 704;

panely = 64;
sliderheight = 30;

xcenter = 0.9xlabsizex/2;
ycenter = labsizey/2;
img;

imagex = 406;

imagey = 470;

R = imagex/2;

n = 4/3;

nmin =1.2;

nmax = 1.414213562;
nray = 10;

sray;

rslider;

noStroke () ;

sray = new ray();
38 rslider = createSlider(2,20,nray,1);
39 rslider.position (0, labsizey+0.1lxsliderheight)
40 nslider = createSlider (0,255, (n—nmin) / (nmax—

nmin) *x255) ;

41 nslider.position (0, labsizey+l.lxsliderheight)
%2

43}

44

45 function draw () {

16 fill (bkcolor) ;

47 rect (0,0, labsizex, labsizey);

48

19 translate (xcenter, ycenter);

50

51 nray = rslider.value();

52 n = nslider.value () /255* (nmax—-nmin) +nmin;
53 for (let k = 0; k < nray; k += 1) {

54 sray.display (Rxsqrt (k/ (nray-1)));

55 sray.display (-R*sqgrt (k/ (nray-1)));

56 }

11



57
58 image (img, -R, -R, imagex, imagey) ;

59

60 translate (-xcenter, -ycenter);
61
62 fill (panelcolor) ;
63 rect (0, labsizey, labsizex,panely);
64 £111(0);
65 textSize (18);
66 textFont ('Arial’);
67 text ("# rayos",rslider.width+10,labsizey+rslider.

height+2);
68 textSize (20);
69 textFont (fontMath) ;
70 text ("n",rslider.width+10, labsizey+rslider.height

+2+sliderheight) ; — # [2Y0S
71 e —
72} Figura 25: Imagen generada por el codigo escrito para realizar el
7 trazado de rayos a través de una esfera tras la primera reflexion en
74 class ray su interior.
75 {
76 constructor () {}
77 alfa(z)
73 { 3var panely = 64;
7 return asin(z/R); 4var sliderheight = 30;
0 } 5var xcenter = 3xlabsizex/4;
s alfap (z) 6var ycenter = 2«xlabsizey/3;
82 { 7
83 return asin(z/R/n); svar img;
a4 } 9var imagex = 406;
85 theta (z) 10 var imagey = 470;
56 { 11var R = imagex/2;
87 return 2+this.alfap(z)-this.alfa(z); L vargd = 4/3;
58 } 13var nmin =1.2;
9 gamma (z) 14var nmax = 1.5;
% { 15var nray = 10;
91 return 2x (this.alfa(z)-this.alfap(z)); 16 EELSiEe
% } 7
9 display (z) 18var rslider;
o { 19var nslider;
95 push () ; 0
9% stroke (255,0,0) ; znvar fontMath;
97 strokeWeight (2) ; 2
98 line (-xcenter, -z, -Rxcos (this.alfa(z)),-z); 23 function preload()
9 line (-R#cos (this.alfa(z)), -z, R«cos (this.theta (z %

)),-R#sin (this.theta(z))); 25 1mg = loadImage (’'assets/ball.png’);

100 line (R*cos (this.theta(z)), -R*sin (this.theta (z)) 2!

,Rxcos (this.theta(z))+labsizexxcos (this. k4

gamma (z) ) , -R+*sin (this.theta (z))+labsizexx* 2

29 function setup() {

sin(this.gamma (z)));
101 pop () ; 30 fontMath = loadFont ('’ /assets/Cambria.ttf’);
102 } 31 createCanvas (labsizex, labsizey+panely);
103 32 this.bkcolor = 240;
104 } 33 this.panelcolor = 192;
34
Respecto del caso de la primera reflexién, una de las image- s nostroke () ;
nes obtenidas se muestra en la figura 25, y para ello se ha *
. L 1 . .. 37 sray = new ray();
implementado el c6digo que se aparece a continuacion. , :
38 rslider = createSlider(2,20,nray,1);
1var labsizex = 1024; 39 rslider.position (0, labsizey+0.1+xsliderheight)
2var labsizey = 704; 10 nslider = createSlider (0,255, (n—nmin) / (nmax—
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nmin) *255) ;

1 nslider.position (0, labsizey+l.lxsliderheight)
4

43}

44

45 function draw () {

46 fill (bkcolor) ;

47 rect (0,0, labsizex, labsizey);

48

49 translate (xcenter, ycenter);

50

51 nray = rslider.value();

52 n = nslider.value () /255% (nmax—-nmin) +nmin;

53 for (let k = 0; k < nray; k += 1) {

54 sray.display (-Rxsqgrt (k/ (nray-1)));

55// sray.display (-Rxsqgrt (k/ (nray-1)));

56 }

57

58 image (img, -R, -R, imagex, imagey) ;

59

60 translate (—xcenter, -ycenter);

61

62 fill (panelcolor) ;

63 rect (0, labsizey, labsizex, panely);

64 £111(0);

65 textSize (18);

66 textFont ('Arial’);

67 text ("# rayos",rslider.width+10,labsizey+rslider.
height+2);

68 textFont (fontMath) ;

69 text ("n",rslider.width+10, labsizey+rslider.height
+2+sliderheight) ;

70

71}

72

73 class ray

74 {

75 constructor () {}

76 alfa(z)

77 {

78 return asin (z/R);

79 }

80 alfap(z)

81 {

82 return asin(z/R/n);

83 }

84 theta (z)

85 {

86 return 2xthis.alfap(z)-this.alfa(z);

87 }

88 gamma (z)

89 {

90 return (4xthis.alfap(z)-this.alfa(z));

91 }

92 delta(z)

93 {

94 return (4xthis.alfap(z)-2+this.alfa(z));

95 }

% display(z)

97 {

98
99
100
101

102

103

104

105
106
107
108

109
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push () ;

stroke (255,0,0) ;

strokeWeight (2) ;

line (-xcenter, -z, -R*cos (this.alfa(z)),-z);

line (-R*cos (this.alfa(z)),—-z,Rxcos (this.theta(z
)),-Rxsin (this.theta(z)));

line (Rxcos (this.theta(z)), -R+xsin(this.theta(z))
, —“Rxcos (this.gamma (z) ), Rxsin (this.gamma (z)
)i

line (-R*cos (this.gamma (z)),Rxsin (this.gamma (z))
, —“Rxcos (this.gamma (z) ) -labsizex*cos (this.
delta(z)),R+sin(this.gamma (z))+labsizex*sin
(this.delta(z)));

pop () ;

}

Apéndices

A Significado de la segunda derivada de una
funcién

En este apéndice se pretende mostrar el significado mate-
matico de la segunda derivada de una funcién. Es sobrada-
mente conocido que la derivada de una funcién determina la
pendiente de la recta tangente a a la funcién en cada punto
de la misma. La figura 26 muestra tal resultado. Si se con-
sidera un intervalo de anchura h para una funcién continua
y derivable, segtin el teorema del valor medio[11] se tiene
que la recta secante que pasa por los dos puntos de la fun-
cién marcados en la gréfica tiene la misma pendiente que la
tangente a la funcién en un punto intermedio del intervalo.
De este modo, reduciendo el tamario del intervalo (h — 0)
se encuentra que

NI=

PR G ) R G

h—0 h

) . (A1)

_——f(x)
//
yd

\

h h
X—5 X Xx+3

Figura 26: Calculo de la derivada de una funcion.



Este resultado permite expresar la segunda derivada de la

funcién también mediante un limite, es decir,

" (x) = limf/ (x—l—%) - (x—%) =

h—0 h
x+h)—f(x x)—f(x—h
o Seie) S (A2)
h—0 h
i LEEW =2 () f =)
h—0 h?

Es interesante ahora pararse a pensar qué significa el resulta-
do anterior, en particular, bajo que circunstancias la derivada
segunda de una funcién se hace cero. Esto ocurre si, para h
suficientemente pequefio, se cumple que

fla—m)+flx+h
2

fx) =

es decir, cuando el valor de la funcién en ese punto coincide

(A.3)

7

con el valor medio de la funcién en los puntos adyacentes.
Como ejemplo de esta situacién se tiene cuando la funcién
varia linealmente en el entorno de ese punto.

B Un resultado trigonométrico

Un resultado necesario para los célculos de dngulos en las
reflexiones internas se muestra en la figura 27. Considera-
da una cuerda sobre una circunferencia, puede determinarse
una relacién sencilla entre el &ngulo opuesto a esa cuerda en
el tridngulo que forman los extremos de la cuerda y el centro
de la circunferencia y el d&ngulo opuesto a esa cuerda en el
triangulo que forman los extremos de la cuerda y cualquier
otro punto sobre la circunferencia. Llamando « = /RSP a es-
te segundo dngulo, se tiene segtin el dibujo que & = a7 + ay.
Por otro lado, todos los tridngulos con vértice en el centro de
la circunferencia son triangulos isdsceles, por lo que se cum-
ple que /SRO = /OSR = a1y /SPO = /OSP = «;. De este
modo, para el tridngulo ARSP se puede escribir la suma de
sus dngulos internos como & + (&1 + 1) + (a2 + B2) = 7, es
decir, 2a + B1 + B2 = 7, que coincide con la suma de los 4n-
gulos internos de AROP, por lo que /ROP = 2/RSP = 2a.

C Distribucién de potencia de una haz de luz de
intensidad uniforme y seccién circular

Si se considera un haz de luz de intensidad uniforme cuya
potencia luminosa viene dada por un cierto valor Py, y di-

cho haz tiene seccién circular, entonces la intensidad del haz
Py

7R2"
haz de radio interior zj y radio exterior z 1 (ver figura 28)

puede expresarse como Esto significa que un anillo del

Figura 27: Considerada la cuerda PR sobre la circunferencia, el 4n-
gulo /POR, donde O es el centro de la circunferencia, es el doble
que el dngulo /PSR, donde S es un punto arbitrario sobre la circun-
ferencia.

transporta una potencia total % (z% 1 zi) . Si el haz se
quiere dividir en anillos que transporten la misma potencia,
por ejemplo, el anillo con radio interior z; y radio exterior
Zk+1 y el anillo con radio interior z;_; y radio exterior zj, de-
-4) =g (F-7).
es decir, z% = ZZ,% — z]%fl. En particular, el circulo interior,

< . 2 Py 2
berd cumplirse la relacién 43 (zk 1

de radio z;, define la potencia transportada en cada uno de

esos anillos, de valor %z%, de modo que el radio exterior

2 2 _ 2

del primer anillo debera cumplir que z; — z§ = z7, es decir,

2y = v/2z;. Por induccién completa, se obtiene entonces que

Zj = \/EZ].

@)

Figura 28: Divisi6n de un circulo en anillos de igual drea. Se cum-
ple que z; = Vkz;.

En términos matemaéticos se define lo que se conoce co-
mo una funcién de distribucién, en este caso, de la po-
tencia. Una fraccién AP de la potencia se transporta den-

tro de un anillo de anchura Az, de modo que AP
% [(z +Az)? — zz} = % [ZzAz + (AZ)Z] Se obtiene enton-
AP

ces que z;
define como:

% (2z + Az). La funcién de distribucion se

P . AP 2P

T AMA TR €1

y se dice que dP = %zdz es la potencia que atraviesa cada
anillo de anchura dz. Si, por ejemplo, ahora se quiere deter-
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minar la potencia que atraviesa un anillo de radio interior

zj y radio exterior zj, 1 esta resultara de resolver la integral

Zk+1 2P _ k(2 _ .2
fzk Rz 242 = 1\ Zi — %)

D Cilculo del punto de impacto y en funcién del
angulo

Dada la complejidad de este calculo, se abre aqui es-
te apéndice para desglosarlo con detalle. Como se indicé
en la seccién 9.2, se tiene que y = Itgd + Rsen ¢, don-
de! = d+ R(1—cos¢), con ¢ = 6+ «. De este modo,
Itgd = (d+ R)tgd — Rtgdcos (d + «). Si se considera el ul-
timo término, se tiene que

tgdcos (6 + ) = tgd (cosacosd —senasend) =

sen?§
=sendcosw —sena - =
senw« (D.1)
=sendcosnu — —— +senw cosd =
cos o
senw«
= 1) — .
sen (6 + a) -
Usando este resultado, puede escribirse
sen «
l=(d+R)tgd—R {sen(é—b—tx) - cosé}
+ Rsen(6+a) =
senw (D.2)
(d+R)tgd+ -
z
=(d+R)tgd + —.
(d+R)tgo+ cosd
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