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1 La ecuación de ondas

La ecuación de ondas expresa de manera matemática el
fenómeno de la propagación a través de un medio en equili-
brio, material o no, de una perturbación producida en algún
punto del mismo. Esta ecuación aparece en multitud de si-
tuaciones en la Física, como la propagación del sonido o de
la luz, y tiene siempre la misma forma. Si se llama ϕ a la
magnitud que se propaga, entonces la ecuación de ondas se
escribe en la forma

∇2ϕ − 1
v2

∂2ϕ

∂t2 = 0. (1)

donde ∇2 es el operador laplaciano que, en coordenadas car-

tesianas, se escribe en la forma ∇2ϕ = ∂2ϕ

∂x2 + ∂2ϕ

∂y2 + ∂2ϕ

∂z2 , y v
es lo que se conoce como velocidad de fase. En el caso de
las ondas electromagnéticas, como la luz, se obtiene que los
campos eléctrico y magnético asociados a estas ondas se pro-
pagan de acuerdo con esta ecuación, con una velocidad de
fase que toma el valor conocido como c = 299 792 458 m

s ≈
3 · 108 m

s . Dado que la obtención de la ecuación de ondas pa-
ra las ondas electromagnéticas requiere la manipulación de
las conocidas como ecuaciones de Maxwell[1], aquí la justi-
ficación de dicha ecuación se hará mediante un sistema más
sencillo, como el mostrado en la figura 1. Este sistema es-
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Figura 1: Recreación de la propagación de una onda en un sistema
unidimensional.

tá formado por una cadena unidimensional de muelles, de
constante recuperadora k, y de masas, de valor m, entre los
muelles. En equilibrio, todos los muelles poseen la misma
elongación y todas las masas son equidistantes respecto de
la anterior y la posterior, siendo la distancia entre ellas de va-
lor h. En un determinado instante, las masas pueden sacarse
de la situación de equilibrio, de modo que cada una de ellas

esté desplazada respecto de dicha posición una cierta distan-
cia. Llamaremos Sn a esas distancias, donde n enumera todas
las masas del sistema. Como consecuencia, los muelles ejer-
cen una fuerza recuperadora sobre cada masa dando lugar a
una dinámica que, teniendo en cuenta la ley de Hooke[2], se
expresa mediante la ecuación

m
d2Sn

dt2 = −k (Sn − Sn−1)− k (Sn − Sn+1) . (2)

Esta expresión puede llevarse al límite para obtener la ecua-
ción de ondas en un medio continuo, por ejemplo, una barra
de material caracterizado por un módulo de elasticidad* de
valor E. Dicho valor se define como el cociente entre la ten-
sión T aplicada al material, definida como la fuerza F apli-
cada por unidad de sección transversal A del material, y la
deformación relativa que ésta provoca, definida como el co-
ciente entre la elongación s y la longitud del material h. De

este modo, E =
F
A
s
h
= Fh

As . Si se recolocan los términos de es-

ta definición, se tiene entonces que F = EA
h s, es decir, la ley

de Hooke, donde k = EA
h . Adicionalmente, si se considera

que la masa está repartida uniformemente en la barra, con
una densidad de masa ρ, entonces una longitud h de la barra
posee una masa m = ρAh.

Manipulando ahora (2), y llevándola al límite continuo ha-
ciendo h → 0 y definiendo la elongación en forma local, es
decir, Sn = s (x), puede escribirse

lı́m
h→0

m
Ah

∂2s
∂t2 = E lı́m

h→0

s (x + h, t)− 2s (x, t) + s (x − h, t)
h2 , (3)

donde se ha tenido en cuenta el resultado (A.2) que se mues-
tra en el apéndice al final de este texto y se han cambiado
las derivadas totales por derivadas parciales para tener en
cuenta que la elongación local depende de la posición y del
tiempo. De esta manera, se llega finalmente a que

∂2s
∂x2 − ρ

E
∂2s
∂t2 = 0, (4)

que corresponde a la expresión de la ecuación de ondas con

una velocidad de fase v =
√

E
ρ para las ondas de deforma-

ción a lo largo de la barra.

*También conocido como módulo de Young.
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Tal y como se discute en el apéndice A, una segunda de-
rivada en el espacio y, en general, el operador laplaciano, lo
que vienen es a dar cuenta de una diferencia entre el valor
de la función en un punto y el valor medio de la función en
el entorno de ese punto. Así, el sistema permanece en equi-
librio cuando esa diferencia es nula

(
∂2s
∂t2 = 0

)
. Sin embargo,

si el sistema es sacado del equilibrio, provocando que en al-
guno de esos puntos esa diferencia no sea nula, aparece una
fuerza recuperadora que trata de llevar ese punto a su situa-
ción de equilibrio. El principio de acción y reacción hace que
esa fuerza recuperadora saque del equilibrio a los puntos del
entorno y, dado que el sistema no posee ningún mecanismo
de disipación de energía, el resultado será la propagación de
esa perturbación en la forma que se conoce como un fren-
te de onda. Así, en el caso unidimensional, cualquier fun-
ción en la forma s (x ± vt)† puede ser solución de la ecua-
ción de ondas. Un caso particular de esta solución es aquél
en el que la perturbación es de tipo armónico, es decir, una
vibración de una única frecuencia f . En ese caso, todos los
puntos del medio van a vibrar con esa frecuencia, pero con
un desfase que va a depender de la distancia en longitudes
de onda λ que haya desde ese punto a aquél donde se ha
producido la perturbación. Frecuencia y longitud de onda
están entonces relacionadas a través de la velocidad de fase
v en la forma v = λ f . El estado de vibración de cada pun-
to se expresa entonces a través de la expresión matemática
cos (kx − ωt + φ0)

‡, donde k = 2π
λ es el número de ondas y

ω = 2π f la pulsación angular (o, simplemente, frecuencia).
φ0 es simplemente un término de fase asociado al estado ini-
cial del sistema, y es, en muchos casos, un valor irrelevante.
Así se habla de frentes de onda al conjunto de puntos que se
encuentran en el mismo estado de vibración, típicamente un
máximo, es decir, kx − ωt + φ0 = 2πn con n ∈ N. De este
modo, cada punto del medio de propagación que ha sido al-
canzado por un frente de ondas se comporta a su vez como
una fuente secundaria de ondas, según el principio de Huy-
gens[3], principio que se ilustra en la figura 2. Cada frente de
ondas se obtiene así como la envolvente de los frentes secun-
darios producidos por las fuentes secundarias, y la dirección
de propagación será la perpendicular en cada punto al frente
de ondas que pase por ese punto.

Mediante este principio pueden justificarse, en particular,
los comportamientos de la luz de carácter oscilatorio, como
la reflexión y refracción en la frontera entre dos medios en

†Basta tener en cuenta que, en este caso, la función es de la forma s (u)

con u = x± vt, de modo que ∂u
∂x = 1 y ∂u

∂t = ±v. Se obtiene así que ∂2 f
∂x2 = d2 f

du2

y ∂2 f
∂t2 = d2 f

du2

(
∂u
∂t

)2
= v2 d2 f

du2
‡Siempre referido al caso unidimensional.
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Figura 2: Recreación de un grabado de Christian Huygens ilus-
trando el principio que lleva su nombre. Cada punto del medio de
propagación alcanzado por un frente se convierte a su vez en una
fuente de ondas secundarias.

los que el índice de refracción n es distinto, indice que, para
la luz, se define como el cociente entre la velocidad de la luz
en el vacío c y la velocidad de propagación v en el medio, es
decir, n = c

v ≥ 1.

2 Leyes de Snell

§2.1 Leyes de Snell a partir del principio de Huygens

El cambio de dirección de un rayo al pasar de un medio
a otro[4] puede deducirse de manera sencilla considerando
la diferente velocidad de propagación de los frentes de onda
de la luz en cada medio, de acuerdo con el principio de Huy-
gens. La figura 3 muestra la construcción geométrica para el
cálculo. Dado que el tiempo que tarda en recorrer el extremo
superior del haz la distancia d sen α marcada en el dibujo es
el mismo tiempo que tarda su extremo inferior en recorrer
la distancia d sen α′, se obtiene que d sen α

v = d sen α′
v′ , siendo v

y v′ las respectivas velocidades de propagación en cada me-
dio. Sin más que multiplicar por la velocidad de la luz en el
vacío c en ambos lados de la igualdad, la relación anterior se
convierte en la conocida como ley de Snell de la refracción,
es decir,

n sen α = n′ sen α′. (5)

En el caso de la reflexión, resulta inmediato obtener que
el ángulo incidente coincide con el reflejado, ya que, al no
haber cambio de medio, las velocidades de propagación del
haz incidente y reflejado son las mismas. Ambos rayos son,
por tanto, simétricos respecto de la dirección normal a la su-
perficie de separación de los medios. Es importante notar
que los rayos incidente, transmitido y reflejado están conte-
nidos en el mismo plano, conocido como plano de incidencia.
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Figura 3: Construcción geométrica del fenómeno de la refracción.
Un haz del luz pasa de un medio con índice de refracción n a otro
cuyo índice es n′ . Mediante esta construcción se establece la relación
entre el ángulo de incidencia α y el de transmisión α′ .

§2.2 Ley de Snell de la refracción a partir del principio de
Fermat

El principio de Fermat establece que el camino que sigue
un rayo que parte de un punto hasta llegar a un segundo
punto es el que minimiza el camino óptico (tiempo) entre
ambos. El camino óptico se calcula como la distancia reco-
rrida por el rayo multiplicado por el índice de refracción del
medio. Sobre la figura 4 puede verse el resultado de aplicar
este principio cuando un rayo atraviesa la superficie de se-
paración de dos medios con índices de refracción distintos n
y n′. Sin pérdida de generalidad, se pueden considerar dos
puntos separados una distancia l en horizontal y una altura
2h en vertical, cada uno dentro de un medio distinto. El rayo
trazado atraviesa la interfaz entre los dos medios en una po-
sición, en principio arbitraria, a una distancia x en horizontal
y h en vertical del punto inicial. El camino óptico seguido por
este rayo viene dado por el valor τ (x):

τ (x) = n
√

x2 + h2 + n′
√
(l − x)2 + h2. (6)

El camino se hace mínimo para un cierto x tal que dτ
dx = 0,

por lo tanto, si

τ′ (x) = n
x√

x2 + h2
− n′ l − x√

(l − x)2 + h2
= 0, (7)

y dado que sen α = x√
x2+h2 y sen α′ = l−x√

(l−x)2+h2
, entonces

se vuelve a obtener de nuevo n sen α = n′ sen α′.

Con este principio, Fermat puede considerarse como pio-
nero a la hora de plantear que la Naturaleza obedece algún
tipo de principio de optimización.

Figura 4: Trazado de un rayo desde entre dos puntos en el espacio
situados cada uno en diferentes medios caracterizados por índices
de refracción n y n′ . El principio de Fermat permite determinar la
relación entre el ángulo de incidencia α y el de transmisión α′ .

3 Transmisión de rayos a través de una esfera

En primer lugar, se examina la transmisión de un rayo a
través de una esfera, mostrada en la figura 5. En este caso,
el punto de entrada del rayo en la esfera se encuentra a una
altura z respecto de su eje, es decir, el llamado parámetro de
impacto[5], el punto de salida del rayo transmitido a través
de la esfera se encuentra a una altura z′ = R sen θ, siendo R el
radio de la esfera. El ángulo θ queda determinado teniendo
en cuenta que el rayo a través de la esfera dibuja una cuerda
que define un ángulo isósceles, siendo el ángulo opuesto a
dicha cuerda igual a π− 2α′. De este modo, α+π− 2α′+ θ =

π y, entonces, θ = 2α′ − α. Adicionalmente, el ángulo γ que
determina la dirección del rayo transmitido puede obtenerse
considerando la igualdad θ + π − α + γ = π, luego γ = α −
θ = 2 (α − α′). Otro cálculo que puede hacerse es la distancia
respecto del centro de la esfera a la que el rayo transmitido
cruza el eje de ésta, es decir, la distancia x = R cos θ + z′

tg γ .
Dicha distancia se obtiene como

x = R
[

cos
(
2α′ − α

)
+

sen (2α′ − α)

tg 2 (α − α′)

]
. (8)

Haciendo uso de la ley de Snell, los ángulos α y α′ se relacio-
nan en la forma sen α = n sen α′, siendo n el índice de refrac-
ción del material de la esfera. De este modo, α = arc sen z

R y
α′ = arc sen z

nR lo cual permite relacionar la distancia x con
el parámetro de impacto z.

La dependencia con el parámetro de impacto z de la dis-
tancia x respecto del centro de la esfera a la que el rayo trans-
mitido cruza el eje se presenta en la gráfica de la figura 6.
Puede comprobarse que la distancia es máxima para los ra-
yos que atraviesan más próximos al eje, y esta máxima dis-
tancia depende del índice de refracción del material de la
esfera.
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Figura 5: Trazado de rayos a través de la esfera. Se indica el ángu-
lo γ que define la orientación del rayo transmitido y la posición x,
referida al centro de la esfera, en la que el rayo transmitido cruza su
eje.
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Figura 6: Dependencia con el parámetro de impacto z de la dis-
tancia x respecto del centro de la esfera a la que el rayo transmitido
cruza el eje dada por (8), con el índice de refracción n del material
de la esfera como parámetro. Debe notarse que para n = 1,5 el rayo
no se transmite al exterior para z ≈ R.

Si se considera ahora entonces un haz de rayos parale-
los atravesando la esfera, estos tenderán a concentrarse for-
mando lo que se conoce como una cáustica justo detrás de
la esfera, como muestra la figura 7. Para determinar las di-
mensiones de esta cáustica, basta calcular la distancia x pa-
ra rayos muy próximos al eje. Mediante las aproximaciones
sen ε ≈ ε ≈ tg ε y cos ε ≈ 1 − 1

2 ε2, para pequeños valores

de ε, se obtiene que x ≈
[

n
n−1 − z2

R2

( 2−n
n

)2
]

R
2 para z ≈ 0.

La distancia n
n−1

R
2 , de hecho, constituye la posición del foco

en lo que se conoce como aproximación paraxial en la óptica
geométrica.

El foco es el punto donde la potencia tiende a concentrar-
se si la esfera es iluminada de manera uniforme, como puede
intuirse sobre en la gráfica de la figura 6 y se refleja en la figu-
ra 7. Si la iluminación es uniforme, se obtiene que la potencia
P de la luz se distribuye en el haz según la función dP

dz = 2P0
R2 z,

siendo P0 la potencia total, tal y como se demuestra en el
apéndice C. Teniendo en cuenta la relación decreciente entre

Figura 7: Trazado de rayos a través de la esfera: formación de una
cáustica a partir de un haz de rayos paralelos. La distribución de
rayos considerada corresponde a un haz cuya distribución de po-
tencia a través del área transversal al haz es uniforme (ver texto).

x y z, si dx = x′ (z) dz, entonces dP
dx = − 2P0

R2
z

x′(z) , distribu-
ción que se representa en la figura 8 para diferentes índices
de refracción. Se comprueba cómo la distribución de poten-
cia crece hacia el punto donde se sitúa el foco en cada caso,
también conocido como la focal. En la gráfica de la figura 8,
para los índices de refracción considerados n = 1,2, 1,25, 1,33
y 1,5, las focales se sitúan en las posiciones x = 3R, 2,5R, 2R
y 1,5R, respectivamente.
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Figura 8: Distribución de la potencia en función de la distancia x
respecto del centro de la esfera con el índice de refracción n del ma-
terial de la esfera como parámetro. Puede comprobarse que la dis-
tribución es creciente con la distancia x, crecimiento que se agudiza
en el punto focal.

4 Reflexión en el interior de una esfera

Los rayos trazados en el interior de la esfera, además de
transmitirse hacia el exterior, como se ha visto en el apartado
anterior, sufren una reflexión que los confina en el interior de
la esfera hasta que alcanzan un nuevo punto de su superfi-
cie, como ilustra la figura 9. Es ahora la transmisión en estos
nuevos puntos la que va a motivar el siguiente cálculo. En
particular, interesa conocer el ángulo δ indicado en la figura,

4



y que determina la dirección de los rayos reflejados por el sis-
tema respecto de la dirección de los rayos incidentes. Puede
comprobarse en este caso la relación 1

2 δ + α + π − 2α′ = π,
de modo que δ = 4α′ − 2α. En términos del parámetro de
impacto z, el ángulo δ puede escribirse entonces como

δ (z) = 4 arc sen
( z

nR

)
− 2 arc sen

( z
R

)
. (9)

Figura 9: Trazado de rayos a través de la esfera para el caso de la
primera reflexión interna. Se indica el ángulo δ que define la orien-
tación del rayo reflejado. A modo de ayuda, también se indica el
ángulo φ = 4α′ − α que especifica la orientación de la normal en el
punto de la esfera donde el rayo se trasmite de nuevo al exterior tras
la primera reflexión. El cálculo de este ángulo es sencillo sin más que
tener en cuenta el resultado del Apéndice B

En la gráfica de la figura 10 se representa la dependencia
de δ con el parámetro de impacto z. Puede comprobarse que
el ángulo crece hasta alcanzar un máximo, a partir del que
el ángulo disminuye bruscamente. El ángulo máximo puede
obtenerse como dδ

dz

∣∣∣
δ=∆

= 0. De este modo, resulta

∆ (n) = 4 arcsin

√
4 − n2

3n2 − 2 arcsin

√
4 − n2

3
. (10)

La gráfica interior de la figura 10 muestra la dependencia de
este ángulo máximo con el índice de refracción, estando en
un valor cercano a 36◦ para un índice de refracción n ≈ 1,38.

La expresión (10) permite, en particular, dibujar el traza-
do de rayos a través de la esfera para el caso de la primera
reflexión en su interior. El trazado de rayos mencionado se
muestra en la figura 11 donde, al igual que en la figura 7, se
ha tenido en cuenta la distribución de potencia luminosa con
el parámetro de impacto z de cada uno de los rayos. Puede
comprobarse sobre este trazado una mayor concentración de
rayos reflejados según la dirección del ángulo ∆ obtenido en
(10) .

De nuevo, la concentración de rayos en la dirección dada
por el ángulo ∆ formará una cáustica. Esta cáustica que se
produce, por ejemplo, al incidir la luz del sol sobre las gotas
de lluvia en el aire, es la que se observa como el arco iris que
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Figura 10: Dependencia del ángulo δ que forma el rayo reflejado
con el rayo incidente tras la reflexión en el interior de la esfera en
función del parámetro de impacto z del rayo incidente, según (9). La
gráfica interior representa el máximo ángulo alcanzado ∆ en función
del índice de refracción n del medio, dada por (10).

 

 

 

 

 

 

Figura 11: Trazado de rayos a través de la esfera para el caso de
la primera reflexión interna. La distribución de rayos considerada
corresponde a un haz cuya distribución de potencia a través del área
transversal al haz es uniforme (ver texto). Se indica el ángulo ∆ que
corresponde al mayor ángulo de desvío entre el rayo incidente y el
reflejado internamente en la esfera.

se conoce como primario, y es resultado de la dependencia
del índice de refracción con la longitud de onda de la luz que
se describe a continuación. Es importante notar que en el in-
terior de una gota se pueden producir sucesivas reflexiones
de rayos. Este efecto se aprecia en la imagen de la figura 12
en la que se aprecian las sucesivas reflexiones (hasta seis) en
el interior de un recipiente de vídrio lleno de agua de la luz
procedente de un puntero láser que incide sobre el recipien-
te.

5 Dependencia del índice de refracción con la
longitud de onda de la luz.

Se da la circunstancia de que los materiales ofrecen una
respuesta distinta que depende de la longitud de onda[6], lo
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Figura 12: Fotografía de un rayo de luz procedente de un puntero
láser en el interior de un recipiente de vidrio lleno de agua. Pueden
apreciarse en la imagen hasta seis reflexiones internas.

que se refleja en una variación del índice de refracción pa-
ra cada color. Una primera aproximación analítica a esta de-
pendencia viene dada por lo que se conoce como fórmula de
Cauchy, y que consiste en un desarrollo en serie de poten-
cias de la inversa del cuadrado de la longitud de onda, en la
forma

n (λ) = A +
B
λ2 +

C
λ4 + . . . (11)

Es importante notar que, en esta expresión, λ es la longitud
de onda de la luz calculada en el vacío, y que para la luz vi-
sible varía entre los 380 nm para el violeta y los 750 nm del
rojo. Se trata, por tanto, de una expresión empírica, de mo-
do que los coeficientes que en ella aparecen se determinan
de manera experimental. En el caso del agua a 20 ◦C, por
ejemplo, se obtiene que A = 1,322, B = 1,504 · 10−14 m2 y
C = 2,4 · 10−28 m4.

En la figura 13, se presenta de manera gráfica la aplicación
de la fórmula de Cauchy en el caso particular mencionado
del agua a 20 ◦C. Puede observarse cómo el índice de refrac-
ción decrece con la longitud de onda de manera que, para el
espectro visible, varía desde un valor de aproximadamente
1,35 para el rojo hasta 1,44 para el violeta. Esta diferencia en
índices de refracción para cada color es la que provoca, por
lo tanto, la dispersión de la luz solar en los diferentes colores
que forman el arco iris.

6 Composición espectral de la luz solar

La figura 14 presenta superpuestas diferentes gráficas. La
gráfica en amarillo corresponde a la irradiancia espectral de
la luz solar, donde se muestra cómo dicha luz es una dis-
tribución continua de longitudes de onda que van desde
el ultravioleta extremo (de unas decenas de nanómetros) a
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Figura 13: Dependencia del índice de refracción n con la longitud
de onda de la luz en el vacío λ para el agua a 20◦C, según la fórmula
de Cauchy expresada en (11), y considerados los parámetros indica-
dos en el texto. La curva se ha superpuesto sobre la gama de colores
que corresponde a cada longitud de onda para facilitar relacionar
cada color con el índice de refracción correspondiente.

longitudes casi en la banda del infrarrojo medio (3000 nm).
De acuerdo con la teoría de Planck sobre la radiación del
cuerpo negro[7], esta irradiancia puede ajustarse a la cur-
va de emisión de un cuerpo a una temperatura alrededor
de los 5500 K, es decir, la curva gris de la gráfica. Según
la ley de desplazamiento de Wien§, el máximo de la curva
a esa temperatura se encuentra para una longitud de onda
λmax ≈ 527 nm, que corresponde al color verde. Finalmente,
la curva en rojo presenta la irradiancia a nivel del mar. Esta
curva es el resultado de descontar de la irradiancia sobre la
exosfera el efecto de los diferentes mecanismos de dispersión
y absorción que se producen por los gases de la atmósfera,
fundamentalmente el vapor de agua. Estos mecanismos dan
lugar a una distribución más o menos uniforme de colores
en la composición de la luz solar visible. La mezcla de todos
los colores se aprecia por el ojo humano como luz blanca.

7 Formación de los arcoiris

Cuando un haz de luz procedente del sol atraviesa una
gota de agua, la primera reflexión en el interior de la gota
provoca que cada color forme una cáustica según una di-
rección distinta. Estas direcciones vienen dadas por el va-
lor ∆ obtenido en (10), que, en el caso del agua, irían desde
∆violeta ≈ 29◦ hasta ∆rojo ≈ 40◦. La luz procedente de esa
primera reflexión forma un cono como el que se recrea en la
imagen de la figura 15. Puede apreciarse el tono blanquecino

§Esta ley permite estimar la longitud de onda λmax del pico de la cur-
va de irradiancia a una cierta temperatura T a partir de la aproximación
λmaxT ≈ 2,90 · 10−3 m · K
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Figura 14: Irradiancia solar para cada longitud de onda. Tomando
la temperatura del sol en el entorno de los 5500 K, puede compro-
barse que la irradiancia medida en la exosfera coincide aproximada-
mente con el espectro de emisión del cuerpo negro a esa temperatu-
ra[8]. La absorción en la atmósfera por gases como el ozono (O3), el
oxígeno (O2), el dióxido de carbono (CO2) y el vapor de agua (H2O)
se refleja en diferentes cortes en la gráfica correspondiente a la irra-
diancia al nivel del mar. Imagen adaptada de [9].

de la luz en el interior del cono, pero también la iridiscencia
justo en su borde. Esta iridiscencia se debe a las diferentes
direcciones que toman las cáusticas de cada color. Tenien-
do en cuenta la mayor intensidad de la luz en las direccio-
nes de las cáusticas, el color correspondiente a cada cáustica
predomina sobre rayos de otros colores fuera de sus corres-
pondientes cáusticas y, por tanto, mucho menos intensos. La
superposición de esos rayos menos intensos son los que dan
el mencionado tono blanquecino al interior del cono.

Figura 15: Primera reflexión de un haz de luz blanca en el interior
de una esfera de cristal. Puede apreciarse la forma cónica del haz
reflejado, fundamentalmente blanco, pero con una iridiscencia justo
en el borde.

La proyección de este cono sobre una pantalla daría lugar
a una forma circular, blanquecina en el centro, pero con la
mencionada iridiscencia en el borde, de modo que el color
rojo quedaría en la zona más exterior y el violeta en el in-

terior. Sería, por tanto, el resultado de generar una imagen
de revolución a partir de la gama de colores de mostrada
en el interior de la gráfica de la figura 16. Esta gama esta
construida por superposición, considerando la distribución
de potencia en función del ángulo δ para todo el espectro
de colores, la cual se muestra en la gráfica para distintos co-
lores, considerado el correspondiente índice de refracción.
Debe notarse en dicha gráfica como la potencia crece brusca-
mente hacia el ángulo correspondiente a la cáustica.
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Figura 16: Distribución de intensidad de luz para diferentes colo-
res tras la primera reflexión en función del ángulo de salida obtenida
de acuerdo con (9) y la distribución de potencia del haz de luz blan-
ca incidente. En el interior se muestra la gama de colores resultante
de la superposición de las curvas de intensidad de cada color.

Por lo tanto, el arco iris principal, el más visible, es el re-
sultado de esta primera reflexión en el interior de cada gota
suspendida en la atmósfera. Es un apreciación subjetiva del
observador, de modo que el centro del arco iris se sitúa sobre
el eje que une la fuente de luz (el sol) y su cabeza. Según ele-
ve la vista respecto de este eje, el observador verá el reflejo
blanquecino del interior de los conos producidos por las go-
tas en su línea de visión, posteriormente la cáustica del color
con menor ángulo ∆¶, es decir, el violeta, a unos 30◦ y, a par-
tir de ahí las demás cáusticas del resto de colores. Y, una vez
superados los 40◦, aproximadamente, el ojo no vería refleja-
da ninguna luz procedente de las gotas en es línea de visión.
Esto se muestra de manera esquemática en la figura 17. Si el
observador mira a la gota 1, verá el reflejo blanquecino del
interior del cono. Si mira la gota 2, verá el color de la cáustica
formada a unos 34◦, es decir, el color verde. Y, finalmente, de
la gota 3, en la parte más alta, no recibirá reflejo ninguno. Es-
ta banda oscura que se forma encima del arco iris primario
recibe el nombre de banda de Alejandro||.

¶Mayor índice de refracción.
||Nombrada así por Alejandro de Afrodisias, quien la describiera por

primera vez hacia el año 200AC
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Figura 17: Esquema representativo de la percepción subjetiva del
arco iris. Dependiendo de la altura de las gotas de agua, el observa-
dor verá un reflejo blanquecino para las gotas más bajas, una cáus-
tica del color correspondiente al ángulo de la línea de visión si éste
es de unos 34◦ o no recibirá luz reflejada de las gotas situadas más
altas.

Como indica su nombre, la banda de Alejandro se corres-
ponde con una zona oscura entre el arco iris primario y el
llamado arco iris secundario, por encima del primario, y con
el orden de colores invertido respecto de éste. De hecho, tal
y como se mostraba en la figura 12, en el interior de una gota
son posibles múltiples reflexiones. Los rayos transmitidos al
exterior después de haberse reflejado varias veces en el in-
terior de cada gota forman sucesivos arco iris, aunque cada
vez más tenues.

8 Polarización y ángulo de Brewster

Dado el carácter de onda electromagnética de la luz, es-
te tipo de ondas llevan asociados un campo eléctrico y un
campo magnético en cada punto del espacio. Estos campos,
de tipo vectorial, vibran en cada uno de estos puntos con la
frecuencia de la onda. En el caso considerado, en el que se
produce propagación libre a través de diferentes medios, las
direcciones de estos campos son perpendiculares a la direc-
ción de propagación de la onda. En particular, si el campo
eléctrico vibra en todos los puntos atravesados por el rayo
luminoso siempre con la misma orientación, se dice que la
onda está linealmente polarizada**. Se suelen considerar tres
tipos de polarización para la luz: lineal, circular y elíptica.
Salvo la actuación de dispositivos, conocidos como polariza-
dores, la luz generada por cualquier fuente está, en general,
despolarizada. El uso de estos polarizadores proporciona en-
tonces luz cuyos campos eléctrico y magnético toman direc-
ciones que pueden describirse perfectamente en cada punto
del espacio.

**El campo magnético asociado a la onda vibrará en un tercera dirección,
perpendicular tanto al campo eléctrico como a la dirección de propagación.

Ocurre que la reflexión de la luz en la superficie de separa-
ción de dos medios distintos puede dar lugar a que el haz re-
flejado quede linealmente polarizado. De este modo, el cam-
po eléctrico de la luz reflejada se orienta dentro del plano que
define la interfaz entre los dos medios, es decir, perpendicu-
lar al plano de incidencia. El mecanismo físico que lo explica
puede entenderse cualitativamente a partir de la forma en
que las cargas eléctricas de la estructura del medio respon-
den a la componente del campo eléctrico de la luz en el plano
de incidencia. El campo eléctrico de La luz que incide sobre
la interfaz entre los dos medios acelera las cargas eléctricas
en esta superficie, siendo la luz a su vez reemitida por dichas
cargas, dando así lugar a los rayos reflejado y transmitido. El
campo eléctrico asociado a estos dos rayos debe ser perpen-
dicular a la dirección de propagación. Si se da la situación
mostrada en la figura 18, la componente en el plano de pola-
rización del campo eléctrico sólo puede propagarse con el ra-
yo transmitido ya que posee la misma dirección que el rayo
reflejado. Esto se debe a que ambos haces forman un ángulo
recto. De este modo, el rayo reflejado sólo tiene componente
del campo eléctrico normal al plano de incidencia y queda,
por tanto, linealmente polarizado††. Teniendo en cuenta las
leyes de Snell, existe un ángulo de incidencia para el cual
se cumple que los rayos reflejado y transmitido formen un
ángulo recto. Este ángulo de incidencia recibe el nombre de
ángulo de Brewster, por ser este físico escocés el descubridor
de este fenómeno.

Figura 18: Reflexión y refracción en el caso de incidencia según el
ángulo de Brewster (αB). La componente en el plano de incidencia
del rayo reflejado debe desaparecer para que sea compatible con la
condición de que los campos sean perpendiculares a la dirección de
propagación. Esta circunstancia se da cuando los rayos reflejado y
transmitido forman un ángulo recto.

La demostración rigurosa de este condición se obtiene a
través de las llamadas ecuaciones de Fresnel que, teniendo en
cuenta la orientación de los campos, establecen las relacio-

††El uso de polarizadores en cámaras fotográficas permite, por ejemplo,
eliminar la luz reflejada en las superficies cuando se hace una fotografía.
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nes entre las componentes de los campos eléctrico y mag-
nético para los rayos incidente, reflejado y transmitido, y,
por lo tanto, determinan la proporción entre la intensidad
de los haces reflejado y transmitido en función del ángu-
lo de incidencia y de los índices de refracción de los me-
dios[10]. La condición que determina el ángulo de Brewster
(αB) es entonces la de que la componente en el plano de in-
cidencia del campo eléctrico de la onda reflejada se anule, la
cual viene dada por la expresión (que no se demostrará aquí)
n′ cos αB = n cos α′B, siendo α′B el ángulo que forma el rayo
transmitido para una incidencia según el ángulo de Brews-
ter.

Esta condición es totalmente equivalente a la de que el
ángulo reflejado y el transmitido formen un ángulo de 90◦.
Cuando el ángulo de incidencia coincide con el ángulo de
Brewster αB se tiene entonces la relación αB + π

2 + α′B = π,
es decir, α′B = π

2 − αB y, por tanto, sen α′B = cos αB. Por la ley
de Snell, de lo anterior se deduce que n2

n′2 sen2 αB = cos2 αB y,
de forma inmediata,

αB = arc tg
n′

n
. (12)

En consecuencia, esta es la expresión que permite determi-
nar αB conocida la proporción entre los índices de refracción
de los medios, donde n representa el índice de refracción pa-
ra el rayo incidente (y reflejado) y n′ el índice de refracción
del medio para el rayo transmitido. Por ejemplo, en el caso
de la reflexión de luz verde incidiendo desde el aire sobre la
superficie del agua (n′ ≈ 1,38) se tiene que αB ≈ 54◦. Si la in-
cidencia es, sin embargo, al revés, es decir, desde el agua ha-
cia el aire ( 1

n′ ≈ 0,72), entonces αB ≈ 36◦. Este es el caso que
va a ocupar ahora la siguiente discusión, es decir, la reflexión
interna en el medio de índice de refracción n′. En la gráfica
de la figura 19 presenta la dependencia de αB con la relación
entre los índices de refracción de los medios cuando la luz
atraviesa la interfaz desde el medio de índice de refracción
n′, por ejemplo, una gota de agua, hacia el medio de índice
de refracción n, el aire, en este caso‡‡. La misma gráfica pre-
senta también el ángulo α′∆, es decir, el ángulo de incidencia
en el interior del medio cuando se produce la cáustica§§. Se
da la circunstancia de que ambos ángulos αB y α′∆ coinciden
para una relación de índices de refracción n

n′ ≈ 0,72, es de-
cir, para la cáustica del color verde en el caso de las gotas de
agua. Esto significa que la luz procedente de la primera re-
flexión, y que da lugar al arco iris primario, está fuertemente
polarizada. Esto puede comprobarse haciendo uso de un po-

‡‡La expresión (12) se escribiría en esta situación como en αB = arc tg n
n′ .

§§Es decir, el valor de α′ para el que δ = ∆ según la discusión de la
sección 4.

larizador lineal, de modo que, según esté orientado éste, la
luz del arco iris será visible o no a través del polarizador.
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Figura 19: Ángulo de Brewster (αB) en función de la relación de
índices de refracción. Aquí se está considerando la reflexión interna
en el medio de índice de refracción n′ . En la misma gráfica se pre-
senta el ángulo α′

∆ que marca la orientación del ángulo de incidencia
en el interior del medio para el que se produce la cáustica.

9 Resultados experimentales

§9.1 Foco de un disco de material transparente

En este primer apartado se trata de obtener la posición de
la focal de un disco de un material transparente, como es el
metacrilato, de radio R = 20 cm. Para ello se ilumina el dis-
co mediante una linterna y se comprueba cómo se forma una
cáustica al otro lado del disco. Esto es lo que se muestra en
la figura 20. De acuerdo con la discusión realizada en la sec-
ción 3, el foco de encuentra a una distancia del centro dada
por la expresión n

n−1
R
2 . Medida esa distancia, puede estimar-

se el índice de refracción del medio. En este caso, la distancia
del foco al centro del disco es de unos 7 cm, de lo que resul-
ta un índice de refracción n ≈ 1,42, un valor relativamente
próximo al de este tipo de plásticos, que ronda el 1,5. El error
puede deberse a que, dadas las dimensiones del disco, no se
ha podido encontrar una fuente suficientemente plana para
realizar el experimento.

§9.2 Curvas de primera reflexión

Tal y como se discutió en la sección 4, el ángulo δ con el
que se refleja un rayo mediante una esfera depende del pa-
rámetro de impacto z. En este apartado tratará de medirse
dicho ángulo. Para ello se considerará el mismo disco de me-
tacrilato del apartado anterior. Este disco se ha situado a una
distancia d = 43 cm de una regla graduada que permite me-
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Figura 20: Cáustica formada al atravesar un haz de luz un disco
de metacrilato. Los rayos de luz convergen marcando el punto focal
del disco.

dir el parámetro de impacto. Sobre la regla desliza un dispo-
sitivo que permite acoplar diferentes punteros láser, de tres
colores diferentes: rojo, verde y azul. Dado que el ángulo δ

no es sencillo de medir, lo que se hará es comprobar este án-
gulo de manera indirecta, determinando la posición y sobre
la regla graduada en la que incide el rayo reflejado. Según la
imagen de la figura 21, esta posición puede calcularse como
y = l tg δ + R sen φ, donde l = d + R (1 − cos φ) y los ángu-
los φ y δ se obtuvieron en su momento como φ = 4α′ − α

y δ = 4α′ − 2α, por lo que φ = δ + α. De acuerdo con la
discusión del apéndice D, se obtiene la dependencia de y
con z a través del ángulo δ como aparece en (D.2), es decir,
y = (d + R) tg δ + z

cos δ .

Figura 21: Cálculo del punto de incidencia y para un rayo reflejado
por una esfera, obtenido para un cierto parámetro de impacto z.

En la gráfica de la figura 22 se presentan los resultados ex-
perimentales obtenidos junto con un ajuste teórico de dichos
datos. Aunque se observan leves discrepancias, el resulta-
do es, en general, bastante satisfactorio, pudiéndose obser-
var como el índice de refracción decrece con la longitud de
onda de la luz aplicada, siendo, por tanto menor para el co-

lor rojo y mayor para el azul, quedando la curva del color
verde entre ambas.
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Figura 22: Resultados experimentales de la medida del punto de
incidencia y en función del parámetro de impacto z y ajuste de los
resultados a la curva de dependencia especificada en el texto.

§9.3 Polarización de la luz reflejada

En la sección 8 se justificó el hecho de que la luz que forma
el arco iris primario es luz polarizada, debido a que el ángu-
lo de incidencia en el interior de las gotas para la cáustica es
aproximadamente igual al ángulo de Brewster para la inter-
faz agua-aire. Para comprobar esta situación se ha utilizado
un recipiente de vidrio esférico lleno de agua sobre el que se
ha hecho incidir un haz de luz blanca procedente de un pro-
yector de imágenes. Se ha estudiado en este caso la cáustica
que forma la luz de la primera reflexión, la cual se ha hecho
pasar a través de un polarizador lineal. El polarizador se ha
situado en dos posibles posiciones, bien horizontal, o bien
vertical. La imagen en el primer caso es la que aparece en la
figura 23a en la que se comprueba que el polarizador permi-
te el paso de la luz reflejada. La segunda situación se muestra
en la figura 23b donde el efecto del polarizador situado en es-
ta segunda posición es la de atenuar de manera muy notable
el brillo de la cáustica. Esto demuestra que, efectivamente, la
luz procedente de esta primera reflexión está fundamental-
mente polarizada, con polarización lineal.

§9.4 Trazado de rayos

Para complementar el trabajo experimental se ha imple-
mentado código sobre la plataforma p5.js. Tal y como indi-
ca esta plataforma, «p5.js es una herramienta amigable para
aprender a programar y hacer arte. Es una biblioteca de Ja-
vaScript libre y de código abierto.»¶¶. Dada la versatilidad

¶¶Ver https://p5js.org/es/about/
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(a) Imagen de la luz reflejada en el interior de una esfera de vidrio
conteniendo agua. La imagen ha sido tomada con el polarizador en la
posición denominada como horizontal.

(b) Imagen de la luz reflejada en el interior de una esfera de vidrio
conteniendo agua. La imagen ha sido tomada con el polarizador en la
posición denominada como vertical.

Figura 23: Comprobación de la polarización de la luz reflejada en
el interior de una esfera conteniendo agua.

de esta herramienta, resulta relativamente sencillo presentar
el trazado de rayos a través de una esfera tanto para el es-
tudio de la focal de la misma como de la primera reflexión
en su interior y obtener las correspondientes cáusticas en ca-
da caso, todo ello en función del índice de refracción relativo
entre la esfera y su entorno. En el caso de la formación de
la focal, se puede obtener una imagen como la de la figu-
ra 24. El código implementado para realizar esta imagen se
presenta a continuación.

1 var labsizex = 1024;

2 var labsizey = 704;

3 var panely = 64;

4 var sliderheight = 30;

5 var xcenter = 0.9*labsizex/2;

6 var ycenter = labsizey/2;

7

8 var img;

9 var imagex = 406;

10 var imagey = 470;

11 var R = imagex/2;

12 var n = 4/3;

13 var nmin = 1.2;

14 var nmax = 1.414213562;

15 var nray = 10;

16 var sray;

17

18 var rslider;

Figura 24: Imagen generada por el código escrito para realizar el
trazado de rayos a través de una esfera.

19 var nslider;

20

21 var fontMath;

22

23 function preload()

24 {

25 img = loadImage(’assets/ball.png’);

26 }

27

28

29 function setup() {

30 fontMath = loadFont(’/assets/Cambria.ttf’);

31 createCanvas(labsizex, labsizey+panely);

32 this.bkcolor = 240;

33 this.panelcolor = 192;

34

35 noStroke();

36

37 sray = new ray();

38 rslider = createSlider(2,20,nray,1);

39 rslider.position(0,labsizey+0.1*sliderheight)

40 nslider = createSlider(0,255,(n-nmin)/(nmax-

nmin)*255);

41 nslider.position(0,labsizey+1.1*sliderheight)

42

43 }

44

45 function draw() {

46 fill(bkcolor);

47 rect(0,0,labsizex,labsizey);

48

49 translate(xcenter, ycenter);

50

51 nray = rslider.value();

52 n = nslider.value()/255*(nmax-nmin)+nmin;

53 for (let k = 0; k < nray; k += 1) {

54 sray.display(R*sqrt(k/(nray-1)));

55 sray.display(-R*sqrt(k/(nray-1)));

56 }
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57

58 image(img,-R,-R,imagex,imagey);

59

60 translate(-xcenter, -ycenter);

61

62 fill(panelcolor);

63 rect(0,labsizey,labsizex,panely);

64 fill(0);

65 textSize(18);

66 textFont(’Arial’);

67 text("# rayos",rslider.width+10,labsizey+rslider.

height+2);

68 textSize(20);

69 textFont(fontMath);

70 text("n",rslider.width+10,labsizey+rslider.height

+2+sliderheight);

71

72 }

73

74 class ray

75 {

76 constructor(){}

77 alfa(z)

78 {

79 return asin(z/R);

80 }

81 alfap(z)

82 {

83 return asin(z/R/n);

84 }

85 theta(z)

86 {

87 return 2*this.alfap(z)-this.alfa(z);

88 }

89 gamma(z)

90 {

91 return 2*(this.alfa(z)-this.alfap(z));

92 }

93 display(z)

94 {

95 push();

96 stroke(255,0,0);

97 strokeWeight(2);

98 line(-xcenter,-z,-R*cos(this.alfa(z)),-z);

99 line(-R*cos(this.alfa(z)),-z,R*cos(this.theta(z

)),-R*sin(this.theta(z)));

100 line(R*cos(this.theta(z)),-R*sin(this.theta(z))

,R*cos(this.theta(z))+labsizex*cos(this.

gamma(z)),-R*sin(this.theta(z))+labsizex*
sin(this.gamma(z)));

101 pop();

102 }

103

104 }

Respecto del caso de la primera reflexión, una de las imáge-
nes obtenidas se muestra en la figura 25, y para ello se ha
implementado el código que se aparece a continuación.

1 var labsizex = 1024;

2 var labsizey = 704;

Figura 25: Imagen generada por el código escrito para realizar el
trazado de rayos a través de una esfera tras la primera reflexión en
su interior.

3 var panely = 64;

4 var sliderheight = 30;

5 var xcenter = 3*labsizex/4;

6 var ycenter = 2*labsizey/3;

7

8 var img;

9 var imagex = 406;

10 var imagey = 470;

11 var R = imagex/2;

12 var n = 4/3;

13 var nmin = 1.2;

14 var nmax = 1.5;

15 var nray = 10;

16 var sray;

17

18 var rslider;

19 var nslider;

20

21 var fontMath;

22

23 function preload()

24 {

25 img = loadImage(’assets/ball.png’);

26 }

27

28

29 function setup() {

30 fontMath = loadFont(’/assets/Cambria.ttf’);

31 createCanvas(labsizex, labsizey+panely);

32 this.bkcolor = 240;

33 this.panelcolor = 192;

34

35 noStroke();

36

37 sray = new ray();

38 rslider = createSlider(2,20,nray,1);

39 rslider.position(0,labsizey+0.1*sliderheight)

40 nslider = createSlider(0,255,(n-nmin)/(nmax-
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nmin)*255);

41 nslider.position(0,labsizey+1.1*sliderheight)

42

43 }

44

45 function draw() {

46 fill(bkcolor);

47 rect(0,0,labsizex,labsizey);

48

49 translate(xcenter, ycenter);

50

51 nray = rslider.value();

52 n = nslider.value()/255*(nmax-nmin)+nmin;

53 for (let k = 0; k < nray; k += 1) {

54 sray.display(-R*sqrt(k/(nray-1)));

55 // sray.display(-R*sqrt(k/(nray-1)));

56 }

57

58 image(img,-R,-R,imagex,imagey);

59

60 translate(-xcenter, -ycenter);

61

62 fill(panelcolor);

63 rect(0,labsizey,labsizex,panely);

64 fill(0);

65 textSize(18);

66 textFont(’Arial’);

67 text("# rayos",rslider.width+10,labsizey+rslider.

height+2);

68 textFont(fontMath);

69 text("n",rslider.width+10,labsizey+rslider.height

+2+sliderheight);

70

71 }

72

73 class ray

74 {

75 constructor(){}

76 alfa(z)

77 {

78 return asin(z/R);

79 }

80 alfap(z)

81 {

82 return asin(z/R/n);

83 }

84 theta(z)

85 {

86 return 2*this.alfap(z)-this.alfa(z);

87 }

88 gamma(z)

89 {

90 return (4*this.alfap(z)-this.alfa(z));

91 }

92 delta(z)

93 {

94 return (4*this.alfap(z)-2*this.alfa(z));

95 }

96 display(z)

97 {

98 push();

99 stroke(255,0,0);

100 strokeWeight(2);

101 line(-xcenter,-z,-R*cos(this.alfa(z)),-z);

102 line(-R*cos(this.alfa(z)),-z,R*cos(this.theta(z

)),-R*sin(this.theta(z)));

103 line(R*cos(this.theta(z)),-R*sin(this.theta(z))

,-R*cos(this.gamma(z)),R*sin(this.gamma(z))

);

104 line(-R*cos(this.gamma(z)),R*sin(this.gamma(z))

,-R*cos(this.gamma(z))-labsizex*cos(this.

delta(z)),R*sin(this.gamma(z))+labsizex*sin

(this.delta(z)));

105

106 pop();

107 }

108

109 }

Apéndices

A Significado de la segunda derivada de una
función

En este apéndice se pretende mostrar el significado mate-
mático de la segunda derivada de una función. Es sobrada-
mente conocido que la derivada de una función determina la
pendiente de la recta tangente a a la función en cada punto
de la misma. La figura 26 muestra tal resultado. Si se con-
sidera un intervalo de anchura h para una función continua
y derivable, según el teorema del valor medio[11] se tiene
que la recta secante que pasa por los dos puntos de la fun-
ción marcados en la gráfica tiene la misma pendiente que la
tangente a la función en un punto intermedio del intervalo.
De este modo, reduciendo el tamaño del intervalo (h → 0)
se encuentra que

f ′ (x) = lı́m
h→0

f
(

x + h
2

)
− f

(
x − h

2

)

h
. (A.1)

Figura 26: Cálculo de la derivada de una función.
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Este resultado permite expresar la segunda derivada de la
función también mediante un límite, es decir,

f ′′ (x) = lı́m
h→0

f ′
(

x + h
2

)
− f ′

(
x − h

2

)

h
=

= lı́m
h→0

f (x+h)− f (x)
h − f (x)− f (x−h)

h
h

=

= lı́m
h→0

f (x + h)− 2 f (x) + f (x − h)
h2 .

(A.2)

Es interesante ahora pararse a pensar qué significa el resulta-
do anterior, en particular, bajo que circunstancias la derivada
segunda de una función se hace cero. Esto ocurre si, para h
suficientemente pequeño, se cumple que

f (x) =
f (x − h) + f (x + h)

2
, (A.3)

es decir, cuando el valor de la función en ese punto coincide
con el valor medio de la función en los puntos adyacentes.
Como ejemplo de esta situación se tiene cuando la función
varía linealmente en el entorno de ese punto.

B Un resultado trigonométrico

Un resultado necesario para los cálculos de ángulos en las
reflexiones internas se muestra en la figura 27. Considera-
da una cuerda sobre una circunferencia, puede determinarse
una relación sencilla entre el ángulo opuesto a esa cuerda en
el triángulo que forman los extremos de la cuerda y el centro
de la circunferencia y el ángulo opuesto a esa cuerda en el
triángulo que forman los extremos de la cuerda y cualquier
otro punto sobre la circunferencia. Llamando α = ̸ RSP a es-
te segundo ángulo, se tiene según el dibujo que α = α1 + α2.
Por otro lado, todos los triángulos con vértice en el centro de
la circunferencia son triángulos isósceles, por lo que se cum-
ple que ̸ SRO = ̸ OSR = α1 y ̸ SPO = ̸ OSP = α2. De este
modo, para el triángulo △RSP se puede escribir la suma de
sus ángulos internos como α + (α1 + β1) + (α2 + β2) = π, es
decir, 2α + β1 + β2 = π, que coincide con la suma de los án-
gulos internos de △ROP, por lo que ̸ ROP = 2 ̸ RSP = 2α.

C Distribución de potencia de una haz de luz de
intensidad uniforme y sección circular

Si se considera un haz de luz de intensidad uniforme cuya
potencia luminosa viene dada por un cierto valor P0, y di-
cho haz tiene sección circular, entonces la intensidad del haz
puede expresarse como P0

πR2 . Esto significa que un anillo del
haz de radio interior zk y radio exterior zk+1 (ver figura 28)

Figura 27: Considerada la cuerda PR sobre la circunferencia, el án-
gulo ̸ POR, donde O es el centro de la circunferencia, es el doble
que el ángulo ̸ PSR, donde S es un punto arbitrario sobre la circun-
ferencia.

transporta una potencia total P0
R2

(
z2

k+1 − z2
k

)
. Si el haz se

quiere dividir en anillos que transporten la misma potencia,
por ejemplo, el anillo con radio interior zk y radio exterior
zk+1 y el anillo con radio interior zk−1 y radio exterior zk, de-
berá cumplirse la relación P0

R2

(
z2

k+1 − z2
k

)
= P0

R2

(
z2

k − z2
k−1

)
,

es decir, z2
k+1 = 2z2

k − z2
k−1. En particular, el círculo interior,

de radio z1, define la potencia transportada en cada uno de
esos anillos, de valor P0

R2 z2
1, de modo que el radio exterior

del primer anillo deberá cumplir que z2
2 − z2

1 = z2
1, es decir,

z2 =
√

2z1. Por inducción completa, se obtiene entonces que
zk =

√
kz1.

Figura 28: División de un círculo en anillos de igual área. Se cum-
ple que zk =

√
kz1.

En términos matemáticos se define lo que se conoce co-
mo una función de distribución, en este caso, de la po-
tencia. Una fracción ∆P de la potencia se transporta den-
tro de un anillo de anchura ∆z, de modo que ∆P =
P0
R2

[
(z + ∆z)2 − z2

]
= P0

R2

[
2z∆z + (∆z)2

]
. Se obtiene enton-

ces que ∆P
∆z = P0

R2 (2z + ∆z). La función de distribución se
define como:

dP
dz

= lı́m
∆z→0

∆P
∆z

=
2P0

R2 z, (C.1)

y se dice que dP = 2P0
R2 zdz es la potencia que atraviesa cada

anillo de anchura dz. Si, por ejemplo, ahora se quiere deter-
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minar la potencia que atraviesa un anillo de radio interior
zk y radio exterior zk+1 está resultará de resolver la integral∫ zk+1

zk

2P0
R2 zdz = P0

R2

(
z2

k+1 − z2
k

)
.

D Cálculo del punto de impacto y en función del
ángulo δ

Dada la complejidad de este cálculo, se abre aquí es-
te apéndice para desglosarlo con detalle. Como se indicó
en la sección 9.2, se tiene que y = l tg δ + R sen φ, don-
de l = d + R (1 − cos φ), con φ = δ + α. De este modo,
l tg δ = (d + R) tg δ − R tg δ cos (δ + α). Si se considera el úl-
timo término, se tiene que

tg δ cos (δ + α) = tg δ (cos α cos δ − sen α sen δ) =

= sen δ cos α − sen α
sen2 δ

cos δ
=

= sen δ cos α − sen α

cos δ
+ sen α cos δ =

= sen (δ + α)− sen α

cos δ
.

(D.1)

Usando este resultado, puede escribirse

l = (d + R) tg δ − R
[
sen (δ + α)− sen α

cos δ

]
+

+ R sen (δ + α) =

= (d + R) tg δ + R
sen α

cos δ
=

= (d + R) tg δ +
z

cos δ
.

(D.2)
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