
The Equational Theories Project: Advancing Collaborative Mathematical
Research at Scale

Matthew Bolan, Joachim Breitner, Jose Brox, Nicholas Carlini, Mario Carneiro, Floris van Doorn, Martin
Dvorak, Andrés Goens, Aaron Hill, Harald Husum, Hernán Ibarra Mejia, Zoltan Kocsis, Bruno Le Floch,
Amir Livne Bar-on, Lorenzo Luccioli, Douglas McNeil, Alex Meiburg, Pietro Monticone, Pace P. Nielsen,
Emmanuel Osalotioman Osazuwa, Giovanni Paolini, Marco Petracci, Bernhard Reinke, David Renshaw,
Marcus Rossel, Cody Roux, Jérémy Scanvic, Shreyas Srinivas, Anand Rao Tadipatri, Terence Tao, Vlad

Tsyrklevich, Fernando Vaquerizo-Villar, Daniel Weber, Fan Zheng

Abstract. We report on the Equational Theories Project (ETP), an online collaborative
pilot project to explore new ways to collaborate in mathematics with machine assistance.
The project successfully determined all 22 028 942 edges of the implication graph between
the 4694 simplest equational laws on magmas, by a combination of human-generated and
automated proofs, all validated by the formal proof assistant language Lean. As a result of
this project, several new constructions of magmas satisfying specific laws were discovered,
and several auxiliary questions were also addressed, such as the effect of restricting attention
to finite magmas.

Contents

1. Introduction 2
2. Notation and mathematical foundations 8
3. Formal foundations 10
4. Project management 12
5. Counterexample constructions 20
6. Syntactic arguments 33
7. Proof automation 40
8. Implications for finite magmas 52
9. Spectrum of equational laws 53
10. Higman–Neumann laws 54
11. AI and Machine Learning contributions 57
12. User Interfaces 60
13. Data management 62
14. Conclusions and future directions 62
Acknowledgments 66
Appendix A. Numbering system 66
Appendix B. Author contributions 69
References 71

Date: December 9, 2025.
1

ar
X

iv
:2

51
2.

07
08

7v
1

 [
m

at
h.

R
A

]
 8

 D
ec

 2
02

5

https://arxiv.org/abs/2512.07087v1

2 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

1. Introduction

The purpose of this paper is to report on the Equational Theories Project (ETP)1, a pilot
project launched2 in September 2024 to explore new ways to collaboratively work on mathe-
matical research projects using machine assistance. The project goal, in the area of universal
algebra, was selected3 to be particularly amenable to crowdsourced and computer-assisted
techniques, while still being of mathematical research interest.

The project achieved its primary goal on 14 April 2025, when the 4694 × (4694 − 1) =
22 028 942 implications between the test set of 4694 equational laws were completely deter-
mined, with proofs or refutations formalized in Lean. This required coordinating the efforts
of a large number of participants contributing both human-written formalizations and au-
tomatically generated proofs from various computer tools. In this paper, we report on both
the scientific outcomes of the project, as well as the organizational issues that came up with
organizing a mathematical project of this scale.

1.1. Magmas and equational laws. In order to describe the mathematical goals of the
ETP, we need some notation. A magma M = (M, ⋄) is a set M (known as the carrier)
together with a binary operation ⋄ : M × M → M . An equational law for a magma, or law
for short, is an identity involving ⋄ and some formal indeterminates, which we will typically
denote using the Roman letters x, y, z, w, u, v, as well as the formal equality symbol ≃ in
place of the equality symbol = to emphasize the formal nature of the law. If M is finite, we
refer to its cardinality as the size of the magma M.

An equational theory is a collection of equational laws; in this paper we will primarily be
concerned with theories generated by a single such law, although it is certainly of interest
to explore larger theories as well. Equational theories are one of the simplest non-trivial
examples of a theory in the model-theoretic sense; they also arise in various areas of computer
science, such as term rewriting systems [7], automated theorem proving [45], and in the
Dolev–Yao model [23] of interactive cryptographic protocols.

In the ETP, a unique number was assigned to each equational law, via a numbering system
that we describe in Appendix A. For instance, the commutative law x ⋄ y ≃ y ⋄ x is assigned
to the equation number E43, while the associative law x ⋄ (y ⋄ z) ≃ (x ⋄ y) ⋄ z is assigned
to the equation E4512. A list of all equations referred to by number in this paper is also
provided in Appendix A.

A magma M = (M, ⋄) satisfies a law E if the law E holds for all possible assignments of
the indeterminates to elements of M , in which case we write M |= E. Thus, for instance
M |= E43 if one has x ⋄ y = y ⋄ x for all x, y ∈ M . Note that the formal indeterminate
symbols x, y in E43 are now replaced by concrete elements x, y of the carrier M .

1https://teorth.github.io/equational_theories/
2https://terrytao.wordpress.com/2024/09/25
3The specific mathematical goal was inspired by the MathOverflow question “Is there an identity between

the associative identity and the constant identity?”, posed on July 17, 2023.

https://teorth.github.io/equational_theories/
https://terrytao.wordpress.com/2024/09/25
https://mathoverflow.net/questions/450930
https://mathoverflow.net/questions/450930

Equational Theories Project 3

We say that a law E entails or implies another law E′ if every magma that satisfies E, also
satisfies E′: (M |= E) =⇒ (M |= E′). We write this relation as E |= E′. We say that two
laws are equivalent if they entail each other. For instance, the constant law x ⋄ y ≃ z ⋄ w
(E46) can easily be seen to be equivalent to the law x ⋄ x ≃ y ⋄ z (E41). It is clear that |= is
a pre-order, that is to say a partial order after one quotients by equivalence.

In this entailment pre-ordering, the maximal element is given by the trivial law x ≃ x (E1),
and the minimal element is given by the singleton law x ≃ y (E2), thus E2 |= E |= E1 for
all laws E.

We also define a variant: we say that E entails E′ for finite magmas, and write E |=fin E′,
if every finite magma that satisfies E, also satisfies E′. Clearly, the relation E |= E′ implies
E |=fin E′; but, as observed by Austin [6], the converse is not true in general.

The order of an equational law is the number of occurrences of the magma operation, and
can be viewed as a crude measure of complexity of the law. For instance, the commutative
law E43 has order 2, while the associative law E4512 has order 4. We note some selected
laws of small order that have previously appeared in the literature:

• The central groupoid law x ≃ (y ⋄ x) ⋄ (x ⋄ z) (E168) is an order-3 law introduced
by Evans [26] and studied further by Knuth [35] and many further authors, being
closely related to central digraphs (also known as unique path property digraphs),
and leading in particular to the discovery of the Knuth-Bendix algorithm [36]; see
[40] for a more recent survey.

• Tarski’s axiom x ≃ y ⋄ (z ⋄ (x ⋄ (y ⋄ z))) (E543) is an order-4 law that was shown by
Tarski [65] to characterize the operation of subtraction in an abelian group; that is
to say, a magma M = (M, ⋄) satisfies E543 if and only if there is an abelian group
structure on M for which x ⋄ y = x − y for all x, y ∈ M .

• In a similar vein, it was shown in [49] (see also [50]) that the order-4 law x ≃
(y⋄z)⋄(y⋄(x⋄z)) (E1571) characterizes addition (or subtraction) in an abelian group
of exponent 2; it was shown in [46] that the order-6 law x ≃ (y⋄((x⋄y)⋄y))⋄(x⋄(z⋄y))
(E345169) characterizes the Sheffer stroke in a boolean algebra, and it was shown in
[29] that the order-8 law x ≃ y ⋄ ((((y ⋄ y) ⋄ x) ⋄ z) ⋄ (((y ⋄ y) ⋄ y) ⋄ z)) (E42323216)
characterizes division in a (not necessarily abelian) group.

Some further examples of laws characterizing well-known algebraic structures are listed
in [45].

The Birkhoff completeness theorem [7, Th. 3.5.14] implies that an implication E |= E′ of
equational laws holds if and only if the left-hand side of E′ can be transformed into the
right-hand side by a finite number of substitution rewrites using the law E. However, the
problem of determining whether such an implication holds is undecidable in general [48].
Even when the order is small, some implications4 can require lengthy computer-assisted
proofs; for instance, it was noted in [34] that the order-4 law x ≃ (y ⋄ x) ⋄ ((x ⋄ z) ⋄ z)
(E1689) was equivalent to the singleton law x ≃ y (E2), but all known proofs were found

4Another contemporaneous example of this phenomenon was the solution of the Robbins problem [44].

4 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

with computer assistance.5 Furthermore, for the finite magma implication relation E |=fin E′,
no analogue of the Birkhoff completeness theorem is available.

1.2. The Equational Theories Project. As noted in Appendix A, there are 4694 equa-
tional laws of order at most 4. The primary mathematical goal of the ETP was to completely
determine the implication graph for these laws, in which there is a directed edge from E to E′

precisely when E |= E′. As the project progressed, an additional goal was added to determine
the slightly larger finite implication graph, in which there is a directed edge from E to E′

precisely when E |=fin E′.

Such systematic determinations of implication graphs have been seen previously in the lit-
erature; for instance, in [58], the relations between 60 identities of Bol–Moufang type were
established, and in the blog post [69, §17], some initial steps towards generating this graph
for the first hundred or so laws on our list were performed. However, to our knowledge, the
ETP is the first project to study such implications at the scale of thousands of laws.

The ETP requires the determination of the truth or falsity of 46942 = 22 033 636 implica-
tions (for both arbitrary magmas and finite magmas), or 4694 × (4694 − 1) = 22 028 942
if the reflexive implications E |= E are removed; while one can use properties such as the
transitivity of entailment to reduce the work somewhat, this is clearly a task that requires
significant automation. It was also a project highly amenable to crowdsourcing, in which
different participants could work on developing different techniques, each of which could be
used to fill out a different part of the implication graph. In this respect, the project could be
compared with a Polymath project [28], which used online forums such as blogs and wikis
to openly collaborate on a mathematical research problem. However, the Polymath model
required human moderators to review and integrate the contributions of the participants,
which clearly would not scale to the ETP which required the verification of over twenty mil-
lion mathematical statements. Instead, the ETP was centered around a GitHub repository
in which the formal mathematical contributions had to be entered in the proof assistant
language Lean, where they could be automatically verified. In this respect, the ETP was
more similar to the recently concluded Busy Beaver Challenge6, which was a similarly crowd-
sourced project that computed the fifth Busy Beaver number BB(5) to be 47 176 870 through
an analysis of about 180 million Turing machines, with the halting analysis being verified in
a variety of computer languages, with the final formal proof written in the proof assistant
language Coq [67, 18]. One of the aims of the ETP was to explore potential workflows for
such collaborative, formally verified mathematical research projects that could serve as a
model for future projects of this nature.

Secondary aims of the ETP included the possibility of discovering unusually interesting
equational laws, or new experimental observations about such laws, that had not previously
been noticed in the literature; and to develop benchmarks to assess the performance of
automated theorem provers and other AI tools.

5We improved such a proof to make it human-readable, see the blueprint of the ETP.
6https://bbchallenge.org/

https://teorth.github.io/equational_theories/blueprint/implications-chapter.html
https://bbchallenge.org/

Equational Theories Project 5

Figure 1. A Hasse diagram of all the equational laws implied by E854 (for
unrestricted magmas). An edge in this diagram indicates that the lower equa-
tion implies the higher one. Rounded rectangles indicate groups of equivalent
laws. This graph was produced by the visualization tool Graphiti, which was
developed for this project.

Figure 2. A Hasse diagram of all the equational laws implied by E1729, both
for unrestricted magmas (left) and finite magmas (right). Note the slightly
larger number of implications in the latter.

1.3. Outcomes. The ETP achieved almost all of its primary objectives, with all of the
22 033 636 implications E |= E′ and non-implications E ̸|= E′ formalized in the proof assistant
language Lean, and can be found on the ETP GitHub repository. See Figure 1, Figure 2 and
Figure 3 for some small fragments of the implication graphs produced. The 4694 laws were
organized into 1415 equivalence classes, with by far the largest class being the class of 1496
equations equivalent to the singleton law E2.

For the finite implication graph E |=fin E′, we could similarly formalize all but two implica-
tions. Specifically, we were unable to obtain either a human-readable or formalized proof or
disproof of the implication E677 |=fin E255 (or its equivalent dual E2910 |=fin E47), despite
extensive efforts from the participants of the project; we tentatively conjecture this impli-
cation to be false (i.e., that there exists a finite magma satisfying E677 but not E255), but
the refutation appears to be “immune” to most of the techniques that we developed for the
project. (We were however able to establish that the corresponding implication E677 |= E255
for arbitrary magmas was false, using the greedy construction discussed in Section 5.5.)

6 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

x ≃ x (E1)

x ⋄ x ≃ x ⋄ (x ⋄ (x ⋄ x)) (E3253)x ⋄ x ≃ x ⋄ ((x ⋄ x) ⋄ x) (E3456)

x ⋄ y ≃ x ⋄ (y ⋄ (y ⋄ y)) (E3319)x ⋄ x ≃ x ⋄ (x ⋄ x) (E307)x ⋄ y ≃ x ⋄ ((y ⋄ y) ⋄ y) (E3522)

x ⋄ y ≃ x ⋄ (y ⋄ y) (E326)

x ⋄ y ≃ (x ⋄ x) ⋄ (y ⋄ y) (E3715)

x ≃ x ⋄ x (E3)

x ≃ x ⋄ (x ⋄ (x ⋄ (x ⋄ y))) (E412)

x ≃ x ⋄ (x ⋄ (x ⋄ y)) (E48)

x ≃ x ⋄ (x ⋄ ((x ⋄ y) ⋄ z)) (E618)x ≃ x ⋄ (x ⋄ (y ⋄ (x ⋄ z))) (E418)

x ≃ x ⋄ (x ⋄ y) (E9)

x ≃ x ⋄ ((x ⋄ y) ⋄ (x ⋄ z)) (E824) x ≃ x ⋄ ((x ⋄ y) ⋄ (z ⋄ y)) (E829) x ≃ x ⋄ ((x ⋄ (y ⋄ x)) ⋄ z) (E1027) x ≃ x ⋄ ((x ⋄ (y ⋄ z)) ⋄ z) (E1033)

x ≃ x ⋄ ((x ⋄ y) ⋄ z) (E103)x ≃ x ⋄ (((x ⋄ y) ⋄ z) ⋄ y) (E1235)

x ≃ x ⋄ (((x ⋄ y) ⋄ z) ⋄ w) (E1237)

x ≃ x ⋄ ((y ⋄ (x ⋄ x)) ⋄ z) (E1037)

x ≃ x ⋄ y (E4)

x ≃ y (E2)

Figure 3. Longest chains of implications (length 15) between inequivalent
laws in the implication graph. The parts above/below law E3 can be indepen-
dently dualized.

Of the 22 033 636 possible implications E |= E′, 8 178 279 (or 37.12%) would end up being
true; for an additional set of either 820 or 822 pairs E, E′, the weaker implication E |=fin E′

also held. To establish such positive implications E |= E′ or E |=fin E′, the main techniques
used were as follows:

• A very small number of positive implications were established and formalized by
hand, mostly through direct rewriting of the laws; but this approach would not scale
to the full project.

• Simple rewriting rules, for instance based on the observation that any law of the
form x ≃ f(y, z, . . .) was necessarily equivalent to the singleton law E2, could already
reduce the size of potential equivalence classes by a significant fraction. We discuss
this method in Section 6.1.

• The preorder axioms for |=, as well as the “duality” symmetry of the preorder with
respect to replacing a magma operation x ⋄ y with its opposite x ⋄op y := y ⋄ x, can be
used to significantly cut down on the number of implications that need to be proven
explicitly; ultimately, only 10 657 (0.13%) of the positive implications needed a direct
proof.

• To obtain additional implications for finite magmas, heavy reliance was made on the
fact that for functions f : M → M on a finite set M , surjectivity was equivalent
to injectivity. Some more sophisticated variants of this idea can lead to additional
implications; see Section 5.1.

Equational Theories Project 7

• Automated Theorem Provers (ATP) could be deployed at extremely fast speeds
to establish a complete generating set of positive implications; see Section 7.

More challenging were the 13 855 357 (62.88%) implications that were false, E ̸|= E′, and
particularly the slightly smaller set of 13 854 535 or 13 854 537 implications that were false
even for finite magmas, E ̸|=fin E′. Here, the range of techniques needed to refute such
implications were quite varied, and may be of independent interest:

• Small finite magmas, which can be described explicitly by multiplication tables,
could be tested by brute force computations to provide a large number of finite
counterexamples to implications, or by ATP-assisted methods. See Section 5.1.

• Linear models, in which the magma operation took the form x ⋄ y = ax + by for
some (commuting or noncommuting) coefficients a, b, allowed for another large class
of counterexamples to implications, which could be automatically scanned for, either
by brute force or by Gröbner basis type calculations; many of these examples could
also be made finite. See Section 5.2.

• Translation invariant models, in which the magma operation took the form x⋄y =
x + f(y − x) on an additive group, or x ⋄ y = xf(x−1y) on a noncommutative group,
reduce matters to analyzing certain functional equations; see Section 5.3.

• To each equation E one can associate a “twisting semigroup” SE. If SE is larger
than SE′ , then this can often be used to disprove the implication E |= E′; see Sec-
tion 5.4.

• Greedy methods, in which either the multiplication table (x, y) 7→ x ⋄ y or the
function f determining a translation-invariant model are iteratively constructed by
a greedy algorithm subject to a well-chosen ruleset, were effective in resolving many
implications not easily disposed of by preceding methods. See Section 5.5.

• Starting with a simple base magma M satisfying both E and E′, and either enlarging
it to a larger magma M′ containing M as a submagma, extending it to a magma
N with a projection homomorphism π : N → M, or modifying the multiplication
table on a small number of values, also proved effective when combined with greedy
methods or with a “magma cohomology” construction. See Section 5.6.

• Syntactic methods, such as observing a “matching invariant” of the law E that
was not shared by the law E′, could be used to obtain some refutations. For instance,
if both sides of E had the same order, but both sides of E′ did not, this could be
used to syntactically refute E |= E′. Similarly, if the law E was confluent, enjoyed
a complete rewriting system, or otherwise permitted some understanding of the free
magma associated to that law, one could decide the assertions E |= E′ for all possible
laws E′, or at least a significant fraction of such laws. We discuss these methods, and
the extent to which they can be automated, in Section 6.

• Some ad hoc models based on existing mathematical objects, such as infinite trees,
rings of polynomials, or “Kisielewicz models” utilizing the prime factorization of the
natural numbers, could also handle some otherwise difficult cases. In some cases, the
magma law induced some relevant and familiar structures, such as a directed graph
or a partial order, which also helped guide counterexample constructions. We will
not detail these diverse examples here, but refer the reader to the ETP blueprint for
more discussion.

8 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

• Automated theorem provers were helpful in identifying which simplifying axioms
could be added to the magma without jeopardizing the ability to refute the desired
implication E |= E′ or E |=fin E′.

While the vast majority of negative implications could be quickly resolved by one of the
above techniques, either with human input or in a completely automated fashion, there
were perhaps two dozen such negative results that required quite delicate and sui generis
constructions. The hardest such implication, E1729 ̸|= E817, took several months to establish
and then formalize (using a combination of many of the above constructions), with the final
proof in Lean requiring just over 4000 dedicated lines of code from multiple contributors.

In the course of completing the implication graph, some interesting new algebraic structures
were discovered. One such example concerns the magmas satisfying E1485, which we refer
to as weak central groupoids as they contain the central groupoids (satisfying E168) as a
subclass. In [35] it was observed that all finite central groupoids have order equal to a
perfect square n2; empirically, we have found that finite weak central groupoids always have
order n2 or 2n2, although we have no rigorous proof of this claim; they also have a graph-
theoretic interpretation analogous to the interpretation of central groupoids as digraphs
with the unique path property. For these and other observations we refer the reader to the
blueprint of the ETP.

The objective of using the data from the ETP to establish well-calibrated benchmarks to
evaluate ATPs remains an interesting open problem; the participants of this project did not
have the required expertise to develop and test such benchmarks to the standards expected in
the area. However, in Section 7 we present a more informal “field report” of our experiences
using ATPs in the project, in the hope that this will provide some useful guidance to other
researchers seeking to incorporate ATPs into their own research.

1.4. Further directions. While the primary objective of the ETP was being completed,
some additional related results were generated as spinoffs. Specifically:

• In the blueprint on the ETP web site, we report some partial progress on classifying
which of the 57 882 distinct laws of order 5 are equivalent to the singleton law E2,
either with or without the requirement that the magma be finite.

• In Section 9 we report on the determination of laws with full spectrum, i.e., with
magmas satisfying them of all finite sizes.

• In Section 10 we report on classifying the laws of order 8 that are equivalent to the
Higman-Neumann law E42323216.

2. Notation and mathematical foundations

If M = (M, ⋄) is a magma, we define the left and right multiplication operators La, Ra : M →
M for a ∈ M by the formula

(1) Lxy = Ryx := x ⋄ y.

https://teorth.github.io/equational_theories/blueprint/weak-central-groupoids-chapter.html
https://teorth.github.io/equational_theories/blueprint/weak-central-groupoids-chapter.html

Equational Theories Project 9

Blueprint

Lean formalization

Visualization tools

Human-gen. proofs

Computer-gen. proofs

Human discussion

ATPs, other
external tools

GitHub Lean Zulip

Figure 4. Some of the main dynamics in which proofs were generated, dis-
cussed within the Lean Zulip channel and then formalized in the GitHub repos-
itory. Boldface arrows indicate human activities, such as proposing an auto-
mated attack on outstanding implications, converting a computer-generated
proof into a human-readable format, formalizing a human readable proof di-
rectly, or first creating a more precise blueprint for other collaborators to work
on. Dashed arrows indicate fully automated processes, while the partly dashed
line indicates a semi-automated process requiring human supervision.

We also define the squaring operator S : M → M by
(2) Sx := x ⋄ x = Lxx = Rxx.

A homomorphism f : M → M′ between two magmas M = (M, ⋄), M′ = (M ′, ⋄′) is a
function f : M → M ′ such that f(x ⋄ y) = f(x) ⋄′ f(y) for all x, y ∈ M . An isomorphism is a
homomorphism that is invertible (which implies that the inverse is also a homomorphism).
An endomorphism is a homomorphism from a magma to itself.

If X is an alphabet, we let MX = (MX , ⋄) denote the free magma generated by X, thus
an element of MX is either a letter in X, or of the form7 w1 ⋄ w2 with w1, w2 ∈ MX .
Every function f : X → M into a magma M = (M, ⋄) extends to a unique homomorphism
φf : MX → M. Formally, an equational law with some indeterminates in X can be written
as w1 ≃ w2 for some w1, w2 ∈ MX ; a magma M = (M, ⋄) then satisfies this law if and only
if φf (w1) = φf (w2) for all f : X → M . We also define the order of a word w ∈ MX to be
the number of occurrences of ⋄ in the word, thus letters in X are of order 0, and the order
of w1 ⋄ w2 is the sum of the orders of w1, w2, plus one.

A theory is a collection Γ of equational laws; we say that a magma M satisfies a theory, and
write M |= Γ, if every law in Γ is satisfied by M. If E is an equational law, we write Γ |= E
if every magma that satisfies Γ also satisfies E. A free magma MX,Γ = (MX,Γ, ⋄) for such a
theory Γ and an alphabet X is a magma satisfying Γ together with a map ιX,Γ : X → MX,Γ
which is universal in the sense that every function f : X → M to a magma M satisfying
Γ uniquely determines a homomorphism φf,Γ : MX,Γ → M such that φf,Γ ◦ ιX,Γ = f . This

7Strictly speaking, one should use parentheses and write (w1 ⋄ w2) to avoid ambiguity, but to reduce
clutter we shall abuse notation by omitting parentheses when no ambiguity is caused by doing so.

10 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

magma is unique up to isomorphism; a canonical way to construct it is as the quotient
MX/ ∼Γ of the free magma MX by the equivalence relation ∼Γ given by declaring w ∼Γ w′

if Γ |= w ≃ w′ [7, Theorem 3.5.6]. If Γ = {E} consists of a single law E, we write MX,E, ∼E,
φf,E for MX,{E}, ∼{E}, φf,{E} respectively.

In general, the free magma MX,Γ is difficult to describe in a tractable form, but for some
theories, one has a simple description. We give two simple examples here:

Example 2.1 (Commutative and associative free magma). The free magma MX,{E43,E4512}
for the commutative law E43 and the associative law E4512 is the free abelian semigroup
generated by X (with ιX,{E43,E4512} the obvious embedding map).

Example 2.2 (Left-absorptive free magma). The free magma MX,{E4} for the left-absorptive
law E4 is the magma with carrier X and operation x ⋄ y = x (with ιX,E4 the identity).

Every magma M has an opposite Mop, which has the same carrier but the opposite operation
x ⋄op y := y ⋄ x. A magma M satisfies an equational law E if and only if its opposite Mop

satisfies the dual law E∗, defined by reversing all the operations. For instance, the dual of
x ⋄ y ≃ x ⋄ (y ⋄ z) (E327) is y ⋄ x ≃ (z ⋄ y) ⋄ x, which in our numbering system we rewrite in
normal form as x ⋄ y ≃ (z ⋄ x) ⋄ y (E395).

We then see that the implication graph has a duality symmetry: given two equational laws
E1, E2, we have E1 |= E2 if and only if E∗

1 |= E∗
2.

3. Formal foundations

All proofs in the ETP were ultimately formalized in the proof assistant language Lean, though
in many cases the proofs were first written in an informal human document, which was then
incorporated into the human-readable blueprint [42] that accompanied the formalization.
Many of the computer-assisted proofs were also first generated as computer output from a
source other than Lean, such as an ATP, and later converted to a Lean proof by a separate
program custom-written for this task.

The project relied on Lean’s extensive Mathlib library, for instance to provide support for al-
gebraic concepts such as the free group that arose in some of the more difficult constructions.
Additional extensions to Lean, such as duper or egg, were employed by some participants
in external forks of the repository, but we did not incorporate them into the master reposi-
tory to simplify the version control process. As a consequence, some manual translation of
proofs produced using such extensions to a proof that avoided such extensions were needed
at various stages of the project.

The concept of a magma could be modeled by existing Mathlib classes such as Mul; however
we chose early in the project to define a custom magma class Magma instead, as for some
magma constructions the magma operation (which we denoted ⋄) was distinct from an ex-
isting multiplication structure ∗ on the same carrier. Most components of the Lean codebase
were placed in namespaces to avoid collisions with each other, and with Mathlib.

Equational Theories Project 11

@[equational_result]
theorem _root_.Equation1437_not_implies_Equation4269 :
∃ (G : Type) (_ : Magma G), Equation1437 G ∧ ¬ Equation4269 G := by

use N × Fin 3, 〈op〉
constructor
· intro x y z

simp [op, add_assoc]
· simp only [not_forall, op]

use (0, 0), (2, 0)
decide

Figure 5. A sample proof of a formalized implication, in this case that
E1437 ̸|= E4269.

@[equational_result]
theorem «Facts from All4x4Tables [[1,2,3,4,5,0],[4,1,2,5,0,3],[3,0,5,2,1,4],
[0,5,4,3,2,1],[5,4,1,0,3,2],[2,3,0,1,4,5]]» :

∃ (G : Type) (_ : Magma G) (_: Finite G), Facts G [1316, 2863] [411, 680,
817, 1020, 1426, 2035, 2441, 2644, 2853, 2855, 2865, 2872, 2947, 3050,
3253, 3456, 4270, 4283, 4290, 4380, 4598, 4605, 4656] :=

〈Fin 6, «All4x4Tables [[1,2,3,4,5,0],[4,1,2,5,0,3],[3,0,5,2,1,4],[0,5,4,3,2,1],
[5,4,1,0,3,2],[2,3,0,1,4,5]]», Finite.of_fintype _, by decideFin!〉

Figure 6. A computer generated Facts theorem, using an explicit finite
magma of order 6 to refute several implications at once.

Equational laws in the project were implemented both syntactically — as a structure LawX
containing two words in a free group — as well as semantically, as a predicate EquationX
that could be applied to a magma. Here X is the number assigned to the law. The semantic
formulation (EquationX) was more convenient for proving or refuting specific implications,
while the syntactic formulation (LawX) was preferred for implementing metatheorems, such
as the use of duality between laws. Lean’s metaprogramming features proved to be vital to
relate the two representations. A custom command, equation, was created for specifying
equational laws. Elaborating the equation command generated both EquationX and LawX
definitions from this description, as well as theorems relating them to each other. A similar
construction was used to generate dual laws, where the dual law was given explicitly for
simplicity.

To facilitate the automatic generation of an implication graph from the Lean codebase, a
custom @[equational_result] tag was formed to attach to propositions in Lean to indicate
that they were proving or refuting one or more implications; see Figure 5. A conjecture
keyword was also created for implications or refutations which we wished to identify as
having an informal proof that had yet to be formalized in Lean.

A single construction of a magma could satisfy multiple laws E1, E2, . . . and not satisfy others
E′

1, E′
2, . . . , leading to a large number of refutations of the form Ei ̸|= E′

j. A custom Facts
command was designed to organize such information efficiently; see Figure 6.

12 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

As an additional precaution against “exploit”-based proofs (such as those that might be
contributed by an AI tool) lean4checker was used to ensure that no axioms were used in
Lean outside of a small trusted set. In particular, Lean tactics such as native_decide that
relied on external tools were not permitted into the codebase.

Explicitly formalizing all 22 028 942 implications as theorems would lead to an infeasible
compilation time in Lean. Instead, a reduced generating set of 10 657 positive implications
and 586 925 negative implications were formalized, with the latter in turn mostly organized
into a smaller number of Facts theorems as discussed above. The extension of these results to
the rest of the implication graph via transitivity and duality is currently done by programs
external to Lean, although in principle one could create an “end-to-end theorem” which
completely establishes the implication graph within Lean.

Some lemmas generated in the project were suitable for upstreaming back to Mathlib, as well
as several technical improvements to the LeanBlueprint software.

4. Project management

This project is, among other things, an experiment on how to organise large scale collabora-
tions for mathematical work. In this section, we describe several aspects of the organisation
of the collaborative effort.

4.1. Problems of scale in mathematical collaboration. In order to understand the
scaling issues that can arise in large scale collaborations, it helps to revisit the mechanics
of traditional mathematical collaborations and their limitations. While every collaboration
is unique, there are some general patterns. A small number of contributors, usually under
ten, who may know each other, join forces to tackle some class of problems. Typically the
collaborators are almost all academics who share substantial amounts of common knowledge.
They discuss the problem at hand together, typically with some shared written medium such
as a whiteboard. After several rounds of discussion and refinement, different members of the
collaboration come up with different pieces of a solution. These pieces are then put together
via discussion and merging of write-ups over several iterations. Once the collaborators are
reasonably confident about the correctness of their work, including theorem statements and
proofs, they submit the paper for peer review. Thus the correctness of mathematical research
relies on this basic cycle of discuss, solve, write, cross-check, and revise, followed by peer
review. Ultimately the authors take responsibility for the contents of their research article.
This joint responsibility for authorship is formally enshrined by mathematical societies. For
instance, see point 4 of the EMS code of practice for joint responsibility [63].

However, this project involved over fifty contributors spread across the world with diverse
academic and professional backgrounds. They collaborated across several timezones and
countries over the internet. The aforementioned process does not scale. Collaborators do
not usually know each other nearly as well as they would in a traditional project. Thus such
a collaboration does not have the same level of mutual trust. Further, as the number of
contributors grows beyond the single digits, it becomes increasingly difficult to ensure the
robustness of each other’s results, because of the sheer volume of material produced. Even

Equational Theories Project 13

delegating responsibility for the various pieces of mathematical work and integrating them
into a coherent whole becomes difficult. Concretely, the scaling challenge manifests in several
ways:

• Partitioning and allocating tasks to voluntary contributors, keeping track of progress
on the respective subtasks, and ensuring that everybody gets a fair chance at con-
tributing without conflicting submissions for the same subproblems.

• Homogenising the mathematical content generated across multiple discussions span-
ning various forums into a coherent piece of work.

• Tracking progress relative to the goals of the project.
• Verifying the correctness of contributions made by more than fifty people with diverse

backgrounds who might not share a common mathematical vocabulary, and who
collaborate across multiple timezones, using a diverse set of tools.

Of the challenges mentioned above, this section deals with the first, second, and last. We
briefly address the third challenge of tracking progress, the tools for which are described in
Section 12. We spend a lot of time on the last point of trust and verification of results for
two reasons. On the one hand, use of tools like Lean is fairly new in mathematical research,
and while the community researching theorem provers is familiar with their guarantees and
limitations, a clear academic exposition targeted at mathematics researchers will be a helpful
resource for future reference, to fill a gap that is currently covered by online forums and
folklore. We also describe the important role played by a number of other tools in the
project.

4.2. The Blueprint tool. The formalization of proofs is an act of careful engineering. It
is therefore helpful to have a blueprint with detailed natural language lemmata, definitions,
and proof sketches in Lean. In the Lean community it has been conventional to use the
Lean blueprint tool by Patrick Massot et al. [42]. The typical formalization project has a
clearly defined set of target theorems, and the authors of the project work with a known
proof, to produce a clear roadmap for the formalization. The Lean blueprint tool is capable
of linking each piece of this natural language document to its Lean encoding, tracking the
dependency of definitions and theorems, and progress through them, by producing a key
coloured dependency graph. Thus the managers of the formalization project can not only
organise the project to distribute tasks among contributors, but also track when various
pieces of the formalization are complete.

In this project, we were entering uncharted mathematical territory. We had a clear list of
tasks to accomplish, namely to prove the implication or anti-implication between every pair
of equational laws, up to transitivity and duality. At the same time there was no clearly
known pen and paper proof available for any of these beforehand. This meant that we could
not prepare the blueprint of the project in advance and organise the formalization around
it. Thus the traditional roles played by the blueprint were replaced by a number of other
tools and mechanisms. In particular, the dependency graph did not play its traditional role
in formalization projects. We developed a number of visual tools to track our progress in
the project in terms of remaining open implications and anti-implications (see Section 12).
Within Lean, every equational result was tagged with the @[equational_result] attribute

14 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

to identify the theorem as one of the project goals, and this attribute was used to collect the
status of all the goal theorems of the project. Instead of covering the dependency graph node
by node, progress in the project happened as various contributors uncovered some structural
ideas or heuristics that helped ATPs solve one or more pairs of laws.

The blueprint tool played a very important role in recording our progress and formalizing
these classes of implications or anti-implications. It is the only comprehensive record of all
the techniques that were employed in the project. Further at the level of specific implications
and anti-implications, the blueprint and formalization evolved as in other projects, hand in
hand. As an example, the formalization of the anti-implication E1729 ̸|= E817 proceeded
through several iterations of refinement of the blueprint and formalization.

In conclusion, when using ITPs for tackling open problems, especially at scale, we observed
that the role of the blueprint changed, but it still remained an important way to track and
document our progress at a local level across the project.

4.3. The project template. When working on a formalization project, there are many
moving pieces that need to work in concert. At the core level, there is the project set up
by Lean’s build and dependency management system lake. But in addition to that, there
are several pieces, including the aforementioned blueprint tool, as well as scripts that a user
may choose to run to visualise various aspects of the project, or check the project in specific
ways, or compile documentation automatically as the project advances. These additional
tasks are accomplished by a number of external tools, and combining them in a mutually
compatible way can be challenging. We side-stepped most of these issues by using the
GitHub template repository of Pietro Monticone [51]. At the same time, when we began the
project, the template in place was suited for more conventional formalization projects and
the tooling they required. It also did not include the scripts that enabled automated project
management support that we added, as well as support for deploying our visualisation tools
and the paper. Over the course of the project, the leanproject template in turn received
substantial new additions. One elementary example is the addition of git pre-push hooks,
which are scripts that perform a basic sanity check on the local working copy of a contributor
before pushing their contributions to the central GitHub repository.

4.4. The Lean Zulip chat forum. The Lean community traditionally congregates on the
leanprover Zulip chat forum8. Our project was coordinated and organised primarily from this
forum. At the beginning we created a channel called Equational. Zulip allows the creation
and management of discussion topics within the scope of a channel. We made extensive use
of the Zulip channel for several purposes. In the beginning it became the gathering point for
new contributors. The new contributions process was designed and discussed on this forum.
Later, topics were created for each specific technical topic, including the metatheory and its
formalization, specific design decisions, specific implications and anti-implications, design of
tools, etc. As shown in Figure 7, the Zulip chat served as the beginning of the contributions
process for each piece of the project. Contributors first discussed their proposed contributions

8leanprover.zulipchat.com

leanprover.zulipchat.com
leanprover.zulipchat.com

Equational Theories Project 15

or specific problems they tackled on Zulip before following the steps of claiming tasks on
GitHub, writing a blueprint write up and/or formalization.

4.5. Organising the collaboration: the precedent set by the PFR project. When
five people collaborate in person, splitting up the research on a question into subtasks and
assigning them to collaborators can be accomplished by discussion and consensus. When
there are more than fifty collaborators working together online, a more systematic approach
is required. In previous formalization projects such as the formalization of the proof of
the Polynomial Freiman–Ruzsa (PFR) conjecture [22], tasks were managed over the Lean
zulipchat forum. The organiser of the project, Terence Tao, posted a series of message
threads. Each thread corresponded to a list of outstanding tasks. These tasks were then
claimed by collaborators on Zulip. The claims were recorded on a first-come first-served
basis by the organiser by tagging the respective users against the tasks. Contributors could
claim any open task and disclaim tasks if they couldn’t finish it, with the organiser keeping
track of these requests. This system allowed contributors to take their time to flesh out
their work, without worrying about competing claims to the same task. Further, it helped
the organisers track the task assignment and communicate with the respective collaborators
to track and ascertain progress. Unfortunately, this involved a lot of manual and time-
consuming management of the task list by organisers. In this project, we automated several
pieces of this approach. This freed up organisers to help contributors and review their
contributions.

4.6. Organizing the collaboration in this project. We adopted tools that are familiar
to software engineers as ticket systems but are also known in the wider world of industrial
production, such as the kanban system. Our project dashboard was built using the GitHub
projects feature. We were able to encode some pieces of our automation using the stan-
dard GitHub-provided interface. For the rest, we relied on continuous integration scripts
(hereon CI). The exact flow of contributions is specified in the CONTRIBUTING.md file of the
project repository [13]. Briefly,

(1) Tasks were proposed by organisers. A contributor might start a discussion on Zulip
or raise an issue on GitHub to prompt the organisers to launch tasks.

(2) Contributors could then claim tasks with a comment under the task. The CI ensured
that at most one contributor could claim a task at any time.

(3) Contributors could then work on the task and propose a corresponding pull request.
(4) Upon completion of the task, the pull request received reviews, while the CI automat-

ically checked that the project compiled and passed additional checks such as Lean’s
environment replay tool leanchecker and the semi-external checker lean4lean [16].

(5) If all was well, the PR was merged onto the main branch of the project repository.

At any point in this process, the contributor could disclaim the task or replace a proposed
PR with an alternative. In addition, organisers could always step in to fix any errors that
occurred and follow up with contributors. Each of the steps described above happened
automatically, triggered by a well-defined set of actions described in the CONTRIBUTING.md
file. The typical workflow of this process is shown in the flowchart in Figure 7. The figure
omits error handling and situations where organisers might manually intervene. The user

16 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

Figure 7. A partial flowchart of the automated task management process.
Each task corresponds to an issue. A pull request is created to resolve tasks and
once a pull request linked to a task is merged, the task is considered complete.
The thick boxes represent states of the project dashboard represented by task
columns. The movement of tasks between these states is automated by the
CI which is triggered upon specific actions performed by contributors on the
respective GitHub issues and pull requests. A more detailed description is
found in the contributions file of the GitHub file, named CONTRIBUTING.md by
convention.

interface to this project management is the GitHub project dashboard, of which we include
a snapshot in Figure 8

We note that our method has since been adopted by other major formalization projects
including the one to formalize Fermat’s Last Theorem [15].

4.7. Trusting ITPs to scale collaboration. In our project we used the interactive theo-
rem prover (hereon ITP) Lean 4 [52] precisely to address these issues of scaling. The contents
of this section are common knowledge in the ITP and ITP-adjacent research communities.
The exposition is intended to be useful to a user of ITPs.

At its core, an interactive theorem prover implements an expressive logic, encoded in a suit-
able choice of mathematical foundations. Lean 4 has the calculus of constructions extended
by inductive types as its core logic. This logic is sufficiently powerful to express mathematical
definitions and theorems for almost all areas of mathematical interest, while being relatively
spartan and easy to write proof checkers for. Additionally, modern ITPs provide a convenient
programming language which helps express mathematical ideas in a syntax closer to a math-
ematician’s intuition than would be permitted by raw logical terms. A subset of ITPs like
Lean, Rocq (formerly Coq), and Isabelle go one step further and provide the means to gener-
ate proofs through so-called tactics. There are usually numerous tactics, each specialised for

Equational Theories Project 17

Figure 8. A snapshot of the project dashboard as of July 30, 2025

specific proof generation methods. Among other things, they search mathematical libraries,
simplify expressions, and identify lemmas and hypotheses to make progress in proofs. The
proofs generated by this overlying programming machinery are terms in the core logical cal-
culus which are checked mechanically by the proof checker. But in a large project, there is
more to trust. It helps to understand the nature and limits of trust one can place on ITPs.

For our purposes, Lean consists of three pieces:

(1) A core proof checker called the kernel. This checker encodes a typed λ-calculus that is
sufficiently expressive for most mathematical purposes. Without getting into details,
theorems are encoded as a formal specification of the intended theorem statement.
Proofs are encoded as deduction trees using known lemmata, acceptable axioms, and
inference rules. The kernel checks whether this deduction tree constitutes a correct
deduction in the context of existing theorems and lemmata, called the environment.
Once a theorem’s proof has been checked, it is added to the environment and can be
used for constructing subsequent proofs. In reality, Lean allows users some flexibility
in adding declarations into its environment without checking their types.

(2) A sophisticated programming language in which users express their definitions and
theorems. Programs in this language are said to be elaborated to produce definitions
and proofs in the core logic that the kernel can check.

(3) A compiler which compiles executable Lean code into reasonably efficient C code.

Of these three pieces, the kernel is the smallest and most trusted piece. Programs in the
programming language are translated by an elaborator to the spartan language of the kernel.
In reality the elaborator does much more, but the key takeaways are the following:

• The kernel only verifies programs of a very simple barebones language. A proof
verified by Lean can be trusted modulo the correctness of the kernel implementation.

18 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

This caveat can usually be dropped because the kernel is also one of the most battle-
hardened pieces of an ITP.

• The kernel checks proofs against a given specification. This means that if the formal
theorem statement itself is flawed or incorrectly uses other definitions, a correct
and verified proof of this theorem would be mathematically meaningless. The formal
statement of a theorem gives expression to a mathematician’s intuition and intention,
and as such, the only check against mistakes in this area come from human review.
Lean cannot offer any guarantees against false statements written by its users or
artificial intelligence tools.

• The higher level programming language can in-principle, generate arbitrary deduc-
tions. Their correctness is ultimately validated by the kernel. This gives the higher
level programming language more leeway in generating possibly incorrect deductions.

• Ideally the environment only consists of definitions and lemmata already checked by
the kernel. Thus their correct usage in the proof of subsequent theorems is valid.
However this assumption is often not entirely true in practical implementations of
theorem provers for efficiency reasons. In this case, trust in the kernel is restored
by replaying each assumption from scratch in the kernel. This can be accomplished
by external checkers. Such checkers, which are ideally independent implementations
of the kernel, can also guard against implementation mistakes in the kernel. In this
project we used the environment replay tool lean4checker and the lean4lean [16] tool.
To our knowledge this was the first such use of the lean4lean tool.

Remark 4.1. A bug in the kernel that allows false statements to be proved is usually called
a soundness bug. Concretely, a soundness bug can be exploited to produce a kernel-certified
proof of the proposition False. Such bugs are rare but not entirely non-existent. This is
distinct from being able to prove False by simply assuming contradictory or false statements.
A proof of the proposition False implies a proof of any statement by ex falso quod libet.

Users of Lean only interact directly with the higher level programming language and usually
get confirmation of the correctness of their proofs through the editor interface. Further,
collaborators on a project such as ours are likely to deploy automated tools such as SAT
solvers, SMT solvers, first-order theorem provers, and perhaps even modern AI tools. These
tools usually produce proof certificates which are imported or inserted into a Lean source file.
Some modern AI tools are integrated into code editors which might automatically produce
or edit even the statements of theorems and the definitions they deal with. Given the limits
to trust mentioned above, a productive and useful collaboration using Lean also requires a
collaboration and verification infrastructure combining human effort and automated tools.
It is in this context that we discuss the project infrastructure. It is a concrete answer to the
questions posed by one of the authors at the beginning of this project [64] that combines tools
from the ITP community and the software engineering community. All these tools already
exist. The goal of this exposition is to explain how they address the concerns described
above.

The non-Lean pieces: While Lean can check proofs of theorems up to the limitations
described above, a project of this scale involves the use of several non-Lean tools. For
example there are tools which extract the proven implications and anti-implications. There
are tools which construct various visualisations. There are also metaprograms which call

Equational Theories Project 19

external automated theorem provers, and extract proof certificates from them to construct
a Lean proof out of them. In keeping with the garbage-in garbage-out principle, if these
tools get spurious inputs and throw spurious outputs, Lean can only tell us that the proofs
are incorrect after the formal proofs have been translated to Lean. It cannot, for instance,
stop us from generating a large number of spurious conjectures that misguide contributors
because of a simple index error in an array. Further, the continuous integration scripts that
run Lean and check the Lean code with external checkers are not formally verified. Such
bugs can only be uncovered by empirical testing and user reports. This highlights a basic
caveat when using interactive theorem provers. These tools check something highly specific,
a proof, against a specification. Contributors are responsible for the correctness of everything
else. This makes the role of organisers and maintainers especially important.

4.8. The Role of organisers and maintainers. As mentioned before, the correctness
of the project depends on a lot of moving pieces, many of which cannot be guaranteed
to be correct or functional by Lean. In this section, we give a brief description of the
variety of tasks that need to be performed by maintainers. We wish to emphasize that the
role played by maintainers is akin to that played by the principal investigator and senior
postdoctoral researchers in a large experimental project, in that they need to understand the
big picture and mathematical details of the project to a reasonable extent and be capable of
making highly technical decisions, either themselves, on in consultation with subject experts.
Further, they are likely to have limited time to get involved in highly specific details of the
project, and while they might make technical contributions, most of their time will be spent
managing and organising tasks for other contributors. The role requires a combination of
mathematical research skills and capacity with software engineering tools.

The organisers and maintainers have several tasks in a project such as ours.

• They are responsible for monitoring the Zulip chat and onboarding new contributors.
• They are responsible for creating new tasks based on requirements and Zulip discus-

sions, and ensuring that they are properly assigned.
• They are responsible for ensuring that all the project automation functions smoothly

and step in when an issue is detected. It greatly helps to have a geographically
distributed set of maintainers across timezones to help fix issues at any time of the day.

• They are responsible for reviewing all code, both Lean proofs and theorems, and non-
Lean scripts. This includes ensuring that the automation to build and check proofs,
compile the documentation and blueprint, and test and run scripts works smoothly.
When necessary they must be willing to step in and build or repair the automation.

• They are responsible for reviewing and developing the basic definitions and theo-
rems. As mentioned before, Lean takes definitions and theorems for granted. Thus
maintainers need to be familiar with both the mathematical content and good ways
of expressing this content in Lean. Being proficient in Lean internals is helpful for
maintainers in identifying anti-patterns like the use of certain tactics that lead to
trusting the Lean compiler, such as native_decide.

• Maintainers are responsible for helping contributors who might get stuck in a proof.
Other contributors may also assist in such matters, but ultimately it is up to the
maintainers to ensure progress.

20 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

• Experienced maintainers might also offer suggestions and guidance on how to produce
shorter or more elegant proofs.

• They are responsible for ensuring that some basic standards are met in proof blocks
that make proofs robust to upstream changes. For instance, non-terminal uses of
the simp tactic must be replaced with the simp only tactic with an explicit list of
lemmas used. Otherwise, changes in the behaviour of upstream libraries can change
how the tactic works and affect the correctness of the proof, when the Lean toolchain
is updated.

• They are responsible for maintaining some record of the progress of the project.
Projects on this scale can take a long time and it can become hard to remember how
the project progressed. It would be extremely tedious to try to reconstruct real-time
impressions long after the fact just from the GitHub commit history and Zulip chat
archive. Thus it is extremely helpful if maintainers keep and publish regular logs of
activities at a frequency that is proportionate to the scale of activity in the project. In
our case, the main organiser maintained a daily log of activities during the busiest part
of the project, which became less frequent as the progress rate slowed towards the end.

In this project, we were still learning a lot of the aforementioned lessons. A key learning
from this project is that it really helps to have a maintainer structure in place before the
project begins, rather than inventing one on the fly. Of course, new contributors can be
onboarded as maintainers as necessary. But a small maintainer team in the initial stages
can hamper proper review processes and result in suboptimal design choices in the Lean
formalization that become hard to undo later; for instance, we developed a theory of free
magmas before realizing that Mathlib already had this concept, but by that point we did
not feel it worth the effort to refactor the existing code to use the Mathlib version. As one
example, the initial list of equations were translated and put into one Lean file as opposed
to several. This created excessively large Lean files which could have been managed better
with a better file organisation.

In conclusion, we wish to emphasize that as projects scale, the administrative aspects of
the project assume non-trivial importance. They require people who are proficient in at
least part of the research topic, technical tools, and administrative matters. Setting these
processes well in advance of announcing the project and inviting contributors should lead to
a smoother project.

5. Counterexample constructions

In this section we collect the various techniques developed in the ETP to construct coun-
terexamples to implications E |= E′.

5.1. Finite magmas. A finite magma M of size n can be assumed without loss of generality
to have carrier {1, . . . , n} and described by specifying the multiplication table ⋄ : {1, . . . , n}×
{1, . . . , n} → {1, . . . , n}. By generating a list of all the equational laws Ej, j = 1, . . . , 4694
satisfied by this magma, one can create refutations: if M |= Ej and M ̸|= Ek, then clearly
Ej ̸|=fin Ek and hence also Ej ̸|= Ek. (As mentioned previously, these statements were

Equational Theories Project 21

Table 1. Number of laws of order at most 4 whose smallest non-trivial model
(if any) is of a given size.

Size of smallest non-trivial model Number of laws
Trivial only 1496
2 3136
3 32
4 14
5 14
7 2

organized in Lean using the Facts statement.) It is feasible to brute force over all ∑4
n=2 nn2 ≈

4.3 × 109 non-trivial magmas of size at most 4 to obtain many refutations of this type. By
performing brute force over all magmas up to size 4, a total of 13 632 566 implications (61.9%
of all implications, and 96.3% of the false ones) can be refuted with 524 distinct magmas.
Of these implications, 13 345 053 were refuted with magmas of size9 3, with the remaining
415 293 requiring magmas of size 4. Performing this search took 165 CPU-hours.

However, it is not feasible to exhaustively search over the 552 ≈ 3 × 1017 magmas of size 5,
even after quotienting out by isomorphism and symmetry (which roughly saves a factor of
5! × 2 = 240). Randomly sampling such magmas did not produce significant refutations,
as random magmas of size 5 tended to satisfy few laws, and the set of laws covered were
usually also exhibited by smaller magmas. A more fruitful approach was to randomly sam-
ple from magmas with additional properties that encouraged satisfiability of a greater set
of laws. These included linear and quadratic magmas (discussed below), and cancellative
magmas. On the other hand, some classes of magmas, such as commutative magmas, ended
up producing a disappointingly small number of additional refutations.

For specific refutations, it was sometimes possible to locate a finite example with an ATP,
particularly if one also imposed additional axioms (e.g., an idempotence axiom x = x ⋄ x)
that one suspected would be useful; see Section 7 for further discussion. For medium-sized
magmas (of size n = 5, 6, 7, 8), this appeared to be a more efficient approach than brute
force exhaustion of all such magmas.

It is a result of Kisielewicz [33] that every law En with n ≤ 4694 is either equivalent to
the singleton law E2, or else has a non-trivial finite model; in other words, the implications
En |= E2 and En |=fin E2 are equivalent for n ≤ 4694. Our brute force search revealed
that in the latter case there is always a model of size 2 ≤ n ≤ 5, with the lone exception
of E1286 (and its dual E2301), for which the smallest non-trivial finite model was of size 7,
as presented in Example 5.2 below. In fact, most of the 4694 laws either only had trivial
models, or had a size 2 model, as shown in Table 1.

Remark 5.1. The laws satisfied by a given finite magma M need not be finitely ax-
iomatizable. The smallest example is the three-element magma {0, 1, 2} with 1 ⋄ 2 = 1,
2 ⋄ 1 = 2 ⋄ 2 = 2, and x ⋄ y = 0 for all other x, y [53]. It was also shown in [54] that “almost

9For an earlier computer exploration of size 3 magmas, see [11].

22 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

all” magmas M (in a certain precise sense) are idemprimal10, which implies that their laws
are finitely axiomatizable, and all other finite magmas satisfying these laws are isomorphic
to powers of M.

5.2. Linear models. As it turns out, a particularly fruitful source of counterexamples is
the class of linear magmas, where the carrier M is a ring (which may be commutative or
noncommutative, finite or infinite), and the operation ⋄ is given by x ⋄ y = ax + by for some
coefficients a, b ∈ M ; one can also generalize this slightly to affine magmas, in which the
operation is given by x ⋄ y = ax + by + c, but for simplicity we shall focus on linear magmas
here. It is easy to see that in a linear magma, any word w(x1, . . . , xn) of n indeterminates
also takes the linear form

w(x1, . . . , xn) =
n∑

i=1
Pw,i(a, b)xi

for some (possibly noncommutative) polynomial Pw,i in a, b with integer coefficients. Thus,
a linear magma will satisfy an equational law w1 ≃ w2 if and only if the pair (a, b) lies in
the (possibly noncommutative) variety
(3) Vw1,w2(M) := {(a, b) ∈ M × M : Pw1,i(a, b) = Pw2,i(a, b) for all i} ⊆ M2.

As such, a necessary condition for such a law w1 ≃ w2 to entail another law w′
1 ≃ w′

2 is that
one has the inclusion

Vw1,w2(M) ⊆ Vw′
1,w′

2
(M)

for all rings M . For commutative rings, this criterion can be checked in an automatable
fashion by standard Gröbner basis techniques; in the noncommutative case one can use
methods such as the diamond lemma [10].

Example 5.2 (Commutative counterexample). For the law x ≃ y⋄(((x⋄y)⋄x)⋄y) (E1286),
the variety (3) can be computed to be

{(a, b) ∈ M × M : 1 = ba3 + bab, 0 = a + ba2b + b2}

while the variety for the idempotent law E3 is
{(a, b) ∈ M × M : a + b = 1}.

Thus, to show that E1286 does not entail E3, it suffices to locate elements a, b of a ring M
for which one has 1 = ba3 + bab, 0 = a + ba2b + b2, and a + b ̸= 1. Here one can take a
commutative example, for instance when M = Z/pZ and (p, a, b) = (11, 1, 7).

Example 5.3 (Noncommutative counterexample). For the law x ≃ y ⋄ ((y ⋄ (x ⋄ z)) ⋄ z)
(E1117), the variety (3) can be computed to be

{(a, b) ∈ M × M : 1 = baba, 0 = a + ba2, 0 = bab2 + b2}

10A magma is idemprimal if every idempotent function is expressed by a term. This is weaker than being
primal (in which every function is expressible by a term), but stronger than being quasiprimal (in which the
discriminator f(a, b, c), defined to equal c if a = b and a otherwise, is expressed by a term); quasiprimality
is sufficient to show that all other finite magmas satisfying the laws of M are isomorphic to products of
submagmas of M. By combining these observations with [57], one can also show that quasiprimal finite
magmas can be axiomatized by a single equation. We thank Stanley Burris for these comments, as well as
the other references and observations in this remark.

Equational Theories Project 23

while the variety for x ≃ (x ⋄ ((x ⋄ x) ⋄ x)) ⋄ x (E2441) is

{(a, b) ∈ M × M : 1 = a2 + aba2 + abab + ab2 + b}.

Observe that if ba = −1, then (a, b) automatically lies in the first set, and lies in the second
set if and only if (ab+1)(b−1) = 0. One can then show that E1117 does not imply E2441 by
setting a = L, b = −R where L, R are the left and right shift operators respectively on the
ring of integer-valued sequences ZN. With some ad hoc effort one can convert this example
into a less linear, but simpler (and easier to formalize) example, namely the magma with
carrier Z and operation x ⋄ y = 2x − ⌊y/2⌋.

Remark 5.4. As essentially observed in [5], if there is a commutative linear counterexample
to an implication E |= E′, then by the Lefschetz principle this counterexample can be realized
in a finite field Fq for some prime power q (and by the Chebotarev density theorem one can
in fact take q to be a prime, so that the carrier is of the form Z/pZ for some prime p), so that
one also has E |=fin E′. As such, we have found that an effective way to refute implications
by the commutative linear magma method is to simply perform a brute force search over
linear magmas x ⋄ y = ax + by in Z/pZ for various triples (p, a, b).

On the other hand, the refutations obtained by noncommutative linear constructions need
not have a finite model. For instance, consider the refutation E1117 ̸|= E2441 from Exam-
ple 5.3. The law E1117 can be rewritten as LyRzLyRzx = x. This implies that Rz is injective
and Ly is surjective for all y, z. For finite magmas M, this then implies that the Ly, Rz are
in fact invertible, and hence we have also RzLyRzLyx = x, which implies E2441 by setting
x = y = z. Thus, the refutation E1117 ̸|= E2441 is “immune” to finite counterexamples.

Remark 5.5. One can also consider nonlinear magma models, such as quadratic models
x ⋄ y = ax2 + bxy + cy2 + dx + ey + f in a cyclic group Z/NZ. For small values of N , we
have found such models somewhat useful in providing additional refutations of implications
E |=fin E′ beyond what can be achieved by the linear or affine models. However, as the
polynomials associated to a word w(x1, . . . , xn) tend to be of high degree (exponential in the
order of the word), it becomes quite rare for such models to satisfy a given equation E when
N is large.

Remark 5.6. One can also consider the seemingly more general linear model x⋄y = ax+by,
where the carrier M is now an abelian group, and a, b act on M by homomorphisms, that is to
say that they are elements of the endomorphism ring End(M). However, this leads to exactly
the same varieties (3) (where M is now replaced by the endomorphism ring End(M)) and
so does not increase the power of the linear model for the purposes of refuting implications.

On the other hand, there are certainly some refutations E ̸|= E′ of implications that are
“immune” to both commutative and noncommutative linear models, in the sense that all such
models that satisfy E, also satisfy E′. One such example is the refutation E1485 ̸|= E151,
which we discuss further in Section 5.4 below.

5.3. Translation-invariant models. It is natural to look for counterexamples amongst
magmas that satisfy a large number of symmetries. One such class of counterexamples are
translation-invariant models, in which the carrier M is a group, and the left translations of

24 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

this group form isomorphisms of the magma M. In the case of an abelian group M = (M, +),
such models take the form
(4) x ⋄ y = x + f(y − x)
for some function f : M → M ; in the case of a non-abelian group M = (M, ·), such models
instead take the form

x ⋄ y = xf(x−1y).
For such models, the verification of an equational law in n variables corresponds to a func-
tional equation for f in n − 1 variables, as the translation symmetry allows one to normalize
one variable to be the identity (say). This can simplify an implication to the point where
an explicit counterexample can be found. These functional equations are trivial to analyze
when n = 1. For n = 2, they are not as trivial, but still quite tractable, and has led to
several refutations in practice. The method does not appear to be particularly effective for
n > 2 due to the complexity of the functional equations.

Example 5.7 (Abelian example). For the law x ≃ (x ⋄ y) ⋄ ((x ⋄ y) ⋄ y) (E1648), we apply
the abelian translation-invariant model (4) with y = x + h to obtain

x ⋄ y = x + f(h)
(x ⋄ y) ⋄ y = x + f(h) + f(h − f(h))

(x ⋄ y) ⋄ ((x ⋄ y) ⋄ y) = x + f(h) + f(f(h − f(h)))
so that this model satisfies E1648 if and only if the functional equation

f(h) + f(f(h − f(h))) = 0
holds for all h ∈ M . Similarly, the law x ≃ (x ⋄ (x ⋄ y)) ⋄ y (E206) is satisfied if and only if

f(f(h)) + f(h − f(f(h))) = 0
for all h ∈ M . One can now check that the function f : Z → Z defined by f(h) := −sgn(h)
(thus f(h) equals −1 when h is positive, +1 when h is negative, and 0 when h is zero) satisfies
the first functional equation but not the second, thus establishing that E1648 ̸|= E206.

Example 5.8 (Non-abelian example). We now obtain the opposite refutation E206 ̸|= E1648
to Example 5.7 using the non-abelian translation-invariant model. By similar calculations
to before, we now seek to find a function f : M → M on a non-abelian group (M, ·) that
satisfies the functional equation
(5) f(f(h))f(f(f(h))−1h) = 1
for all h ∈ M , but fails to satisfy the functional equation
(6) f(h)f(f(f(h)−1h)) = 1
for at least one h ∈ M . Now take M to be the group generated by three generators a, b, c
subject to the relations a2 = b2 = c2 = 1, or equivalently the group of reduced words in a, b, c
with no adjacent letters in the word equal. We define

f(1) = 1, f(a) = b, f(b) = c, f(c) = a

and then f(aw) = a for any non-empty reduced word w not starting with a, and similarly
for b and c. The equation (5) can be checked directly for h = 1, a, b, c. If h = aw with w non-
empty, reduced, and not starting with a, then f(f(h))−1 = f(f(h)) = b and f(f(f(h))−1h) =

Equational Theories Project 25

f(baw) = b, giving (5) in this case, and similarly for cyclic permutations. Meanwhile, (6)
can be checked to fail for h = a.

Remark 5.9. The construction in Example 5.8 also has the following more “geometric”
interpretation. The carrier M can be viewed as the infinite 3-regular tree, in which every
vertex imposes a cyclic ordering on its 3 neighbors (for instance, if we embed M as a planar
graph, we can use the clockwise ordering). For x, y ∈ M , we then define x ⋄ y to equal x if
x = y. If y is instead a neighbor of x, we define x⋄y to be the next neighbor of x in the cyclic
ordering. Finally, if y is distance two or more from x, we define x ⋄ y to be the neighbor of
x that is closest to y. One can then check that this model satisfies (5) but not (6).

Remark 5.10. These constructions are necessarily infinitary in nature, because E206 and
E1648 can be shown to be equivalent for finite magmas. Indeed, E206 can be written as
x = RyLxLxy, which implies that Ry is surjective, hence injective, on a finite magma; writing
x = Ryz we conclude that Ryz = RyLz⋄yLz⋄yy and hence z = Lz⋄yLz⋄yy, giving E1648. The
opposite implication is similar (using E1648 to show that Ry is injective, hence surjective),
and is left to the reader.

Some refutations E ̸|= E′ are “immune” to translation-invariant models, in the sense that
any translation-invariant model that satisfies E, also satisfies E′. One obstruction is that
for such models, the squaring map S is necessarily an invertible map, since Sx = x + f(0)
in the abelian case and Sx = xf(1) in the non-abelian case. On the other hand, adding
the assumption of invertibility of squares can sometimes force the implication E |= E′ to
hold. For instance, the commutative law x ⋄ (y ⋄ y) ≃ (y ⋄ y) ⋄ x (E4482) for a square
and an arbitrary element will imply the full commutative law E43 for translation-invariant
models due to the surjectivity of S, but does not imply it in general (as one can easily see
by considering models where S is constant).

5.4. The twisting semigroup. Suppose one has a magma M satisfying a law E, that also
enjoys some endomorphisms T, U : M → M. Then one can “twist” the operation ⋄ by T, U
to obtain a new magma operation
(7) x ⋄′ y := Tx ⋄ Uy.

If one then tests whether this new operation ⋄′ satisfies the same law E as the original
operation ⋄, one will find that this will be the case provided that T, U satisfy a certain set
of relations. The semigroup generated by formal generators T, U with these relations will be
called the twisting semigroup TwistE of E. This can be best illustrated with some examples.

Example 5.11. We compute the twisting semigroup of x ≃ (y ⋄ x) ⋄ (x ⋄ (z ⋄ y)) (E1485).
We test this law on the operation (7), thus we consider whether

x = (y ⋄′ x) ⋄′ (x ⋄′ (z ⋄′ y))
holds for all x, y, z ∈ M . Substituting in (7) and using the homomorphism property repeat-
edly, this reduces to

x = (T 2y ⋄ TUx) ⋄ (UTx ⋄ (U2Tz ⋄ U3y)).
If we impose the conditions TU = UT = id, T 2 = U3, then this equation would follow from
E1485 (with x, y, z replaced with TUx = UTx = x, T 2y, and U2Tz respectively). Thus the
twisting semigroup TwistE1485 of E1485 is generated by two generators T, U subject to the

26 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

relations TU = UT = 1, T2 = U3. This is a cyclic group of order 5, since the relations can
be rewritten as T5 = 1, U = T−1.

Now consider x ≃ (x ⋄ x) ⋄ (x ⋄ x) (E151). Applying the same procedure, we arrive at
x = (T 2x ⋄ TUx) ⋄ (UTx ⋄ U2x)

so the twisting group TwistE151 is generated by two generators T, U subject to the relations
TU = UT = T2 = U2 = 1. This is a cyclic group of order 2, since the relations can be
rewritten as T2 = 1, U = T.

Suppose the twisting semigroup TwistE is not a quotient of TwistE′ , in the sense that the
relations that define TwistE′ are not satisfied by the generators of TwistE. Then one can
often disprove the implication E |= E′ by attempting the following procedure.

• First, locate a non-trivial magma M = (M, ⋄) satisfying the law E. Then the Carte-
sian power MTwistE of tuples (xW)W ∈TwistE , with the pointwise magma operation, will
also satisfy E.

• Furthermore, this Cartesian power admits two endomorphisms T, U defined by
T (xW)W ∈TwistE = (xW T)W ∈TwistE ; U(xW)W ∈TwistE = (xW U)W ∈TwistE ,

which satisfy the relations defining TwistE.
• We now twist the magma operation ⋄ on MTwistE by T, U to obtain a new magma

operation ⋄′ defined by (7), that will still satisfy law E.
• Because T, U will not satisfy the relations defining TwistE′ , it is highly likely that

this twisted operation will not satisfy E′, thus refuting the implication E |= E′. If M
and the twisting semigroup were finite, this approach should also refute E |=fin E′.

For instance, a non-trivial finite model for E1485 is given by the finite field F2 of two elements
with the NAND operation x⋄y := 1−xy. If we twist F5

2 by the left shift T (xi)5
i=1 = (xi+1)5

i=1
and right shift U(xi)5

i=1 = (xi−1)5
i=1, where we extend the indices periodically modulo 5, then

the resulting operation
(xi)5

i=1 ⋄′ (yi)5
i=1 := (1 − xi+1yi−1)5

i=1
on F5

2 still satisfies E1485, but does not satisfy E151, thus showing that E1485 ̸|=fin E151
and hence E1485 ̸|= E151. This particular implication does not seem to be easily refuted by
any of the other methods discussed in this paper.

5.5. Greedy constructions. We have found greedy extension methods, or greedy methods
for short, to be a powerful way to refute implications, especially when the carrier M is
allowed to be infinite. Such constructions have a long history in model theory, with possibly
the earliest11 such construction due to Skolem [62]. A basic implementation of this method
is as follows. To build a magma operation ⋄ : M × M → M that satisfies one law E but
not another E′, one can first consider partial magma operations ⋄ : Ω → M , defined on some
subset Ω of M × M . Thus x ⋄ y is defined if and only if (x, y) ∈ Ω. A magma operation is
then simply a partial operation which is total in the sense that Ω = M × M . We say that a
partial magma operation is finitely supported if Ω is finite.

11We thank Stanley Burris for this reference.

Equational Theories Project 27

In the language of first-order logic (in which functions and relations must be total), it is
convenient to view a partial magma operation as a ternary relation R(x, y, z) on M with the
axiom that R(x, y, z) ∧ R(x, y, z′) =⇒ z = z′ for all x, y, z ∈ M . The support Ω is then the
set of (x, y) for which R(x, y, z) holds for some (necessarily unique) z, which one can then
take to be the definition of z = x ⋄ y.

We say that one partial operation ⋄′ : Ω′ → M extends another ⋄ : Ω → M if Ω′ contains Ω,
and x⋄y = x⋄′y whenever x⋄y (and hence x⋄′y) are defined. Given a sequence ⋄n : Ωn → M of
partial operations, each of which is an extension of the previous, we can define the direct limit
⋄∞ : ⋃

n Ωn → M to be the partial operation defined by x⋄∞ y := x⋄n y whenever (x, y) ∈ Ωn.

Abstractly, the greedy algorithm strategy can now be described as follows.

Theorem 5.12 (Abstract greedy algorithm). Let E, E′ be equational laws, and let Γ be a
theory of first-order sentences regarding a partial magma operation ⋄ : Ω → M on a carrier
M . Assume the following axioms:

(i) (Seed) There exists a finitely supported partial magma operation ⋄0 : Ω0 → M satis-
fying Γ that contradicts E′, in the sense that there is some assignment of variables in
E′ in M such that both sides of E′ are defined using ⋄0, but not equal to each other.

(ii) (Soundness) If ⋄n : Ωn → M is a sequence of partial magma operations satisfying Γ
with each ⋄n+1 an extension of ⋄n, and the direct limit ⋄∞ is total, then this limit
satisfies E.

(iii) (Greedy extension) If ⋄ : Ω → M is a finitely supported partial magma operation
satisfying Γ, and a, b ∈ M , then there exists a finitely supported extension ⋄′ : Ω′ →
M ′ of ⋄ to a possibly larger carrier M ′, and also satisfying Γ, such that a⋄′b is defined.

Then E ̸|= E′.

We remark that this greedy method seems to be inherently infinitary in nature, and does
not seem well adapted to refute finite magma implications E |=fin E′.

Proof. We work on the countably infinite carrier N. By embedding the finitely supported
operation ⋄0 from axiom (i) into N, we can assume without loss of generality that ⋄0 has
carrier N. By similar relabeling, we can assume in (iii) that M ′ = M when M = N, since
any elements of M ′ \ N that appear in Ω′ can simply be reassigned to natural numbers that
did not previously appear in Ω. We well-order the pairs in N×N by (an, bn) for n = 1, 2,
Iterating (iii) starting from ⋄0, we can thus create a sequence of finitely supported magma
operations ⋄0, ⋄1, . . . on N satisfying Γ, with each ⋄n+1 an extension of ⋄n, and an⋄nbn defined
for all n ≥ 1. Then the direct limit ⋄∞ of these operations is total, and does not satisfy E′

thanks to axiom (i). On the other hand, by axiom (ii) it satisfies E, and the claim follows. □

We refer to Γ as the rule set for the greedy extension method. To apply Theorem 5.12 to
obtain a refutation E ̸|= E′, we have found the following trial-and-error method to work well
in practice:

1. Start with a minimal rule set Γ that has just enough axioms to imply the soundness
property for the given hypothesis E.

28 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

2. Attempt to establish the greedy extension property for this rule set by setting a ⋄′ b
equal to a new element c ̸∈ M , and then defining additional values of ⋄′ as necessary
to recover the axioms of Γ′.

3. If this can be done in all cases, then locate a seed ⋄0 refuting the given target E′, and
STOP.

4. If there is an obstruction (often due to a “collision” in which a given operation x ⋄′ y
is required to equal two different values), add one or more rules to Γ to avoid this
obstruction, and return to Step 2.

As an example, we present

Proposition 5.13 (E73 ̸|= E4380). The law x ≃ y ⋄ (y ⋄ (x ⋄ y)) (E73) does not imply
x ⋄ (x ⋄ x) ≃ (x ⋄ x) ⋄ x (E4380).

Proof. To build a rule set Γ that will imply E73 when total, a natural first choice would be
the single rule

1. If y ⋄ (x ⋄ y) is defined, then y ⋄ (y ⋄ (x ⋄ y)) is defined and equal to x.

However, the greedy algorithm will fail just with this rule: if the partial operation has x ⋄ y
and z ⋄ y both equal to some w for some x ̸= z, then any attempt to assign a value to
y ⋄ (y ⋄ w) will lead to a contradiction, as the above rule will force y ⋄ w to equal both x and
z. Indeed, it is clear that E73 forces all the right translation operators Ry to be injective.
We therefore add this as an additional rule:

2. If x ⋄ y and z ⋄ y are defined and equal, then x = z.

To avoid some unwanted edge cases, it is also convenient to impose the additional rule

3. If x ⋄ y is defined, it is not equal to y.

Unlike Rule 2, this rule is not forced by E73, but can be enforced as part of the greedy
construction.

The ruleset clearly satisfies the soundness axiom (ii) of Theorem 5.12. We now verify the
greedy extension axiom (iii). Let Ω, a, b be as in that axiom. We may assume that a ⋄ b is
undefined, since we are done otherwise. We adjoin a new element c to M to create M ′, and
set a ⋄′ b = c. If we also have b = d ⋄ a for some d (unique by Rule 2, and only possible for
a ̸= b by Rule 3), set a ⋄′ c = d (this is necessary to retain Rule 1). Of course, we also set
x ⋄′ y = x ⋄ y whenever x ⋄ y is already defined.

Since c ̸∈ M , it is clear that ⋄′ is a finitely supported partial magma operation on M ′. It is
also clear that ⋄′ satisfies Rule 2 and Rule 3. Now we case check Rule 1:

• Case 1: x = c or y = c. Not possible since no left multiplication with c is defined.
• Case 2: x⋄′ y = c. Only possible when x = a, y = b, but then y ⋄′ (x⋄′ y) is undefined

since y = b ̸= a if d is defined.

Equational Theories Project 29

• Case 3. y ⋄′ (x ⋄′ y) = c. Only possible when y = a and x = d, and holds in this case.
• Case 4: x, y, x ⋄′ y, y ⋄′ (x ⋄′ y) ̸= c: In this case ⋄′ = ⋄ on all pairs, so the claim

reduces to Rule 1 for ⋄, which holds by the induction hypothesis.

To conclude, we need to locate a seed ⋄0 satisfying Rules 1,2,3 and containing a counterex-
ample to E4380. One simple example is the carrier {0, 1, 2, 3} with 0 ⋄0 0 = 1, 0 ⋄0 1 = 2,
0 ⋄0 2 = 0, 1 ⋄0 0 = 3. □

This method is not guaranteed to halt in finite time, as there may be increasingly lengthy
sets of rules one has to add to Γ to avoid collisions. However, in practice we have found
many of the refutations that could not be resolved by simpler techniques to be amenable to
this method (or variants thereof, as discussed below).

One can automate the above procedure by using ATPs (or SAT solvers) to locate new rules
that are necessary and sufficient to resolve any potential collision (and which, a posteriori,
can be seen to be necessarily consequences of the law E). The seed-finding step (Step 3)
is particularly easy to automate, and can also often be done by hand. In some cases, the
SAT solver calculations provided by these methods were difficult to formalize efficiently in
Lean, and so we elected in some cases to replace computer-generated rulesets with shorter
human-generated versions in preparation for the formalization step.

However, in some cases we have found it necessary to add “inspired” choices of rules that
were not forced by the initial hypothesis E, but which simplified the analysis by removing
problematic classes of collisions from consideration. We were unable to fully automate the
process of guessing such choices; however, we found ATPs very useful for testing any proposed
such guess. In particular, if an ATP was able to show that the existing ruleset, together
with a proposed new rule A, implied E′, then this clearly indicated that one should not add
A to the rule set Γ. Conversely, if an ATP failed to establish such an implication, this was
evidence that this was a “safe” rule to impose.

We also found that human verification of the greedy extension property was a highly error-
prone process, as the case analysis often included many delicate edge cases that were easy to
overlook. Both ATPs and the Lean formalization therefore played a crucial role in verifying
the human-written greedy arguments, often revealing important gaps in those arguments
that required either minor or major revisions to the rule set.

The greedy method can also be combined with the translation-invariant method, both in
abelian and non-abelian settings. For instance, we can modify the proof of Theorem 5.12 to
obtain the following variant:

Theorem 5.14 (Noncommutative translation-invariant greedy algorithm). Let F, F ′ be func-
tional equations on groups, and let Γ be a theory of first-order sentences regarding a partial
function f : Ω → G on a group (G, ·, ·−1, 1). Assume the following axioms:

(i) (Seed) There exists a finitely supported partial function f0 : Ω0 → G satisfying Γ that
contradicts F ′, in the sense that there is some assignment of variables in F ′ in G
such that both sides of F ′ are defined using f0, but not equal to each other.

30 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

(ii) (Soundness) If fn : Ωn → G is a sequence of partial functions satisfying Γ with each
fn+1 an extension of fn, and the direct limit f∞ is total, then this limit satisfies F .

(iii) (Greedy extension) If f : Ω → G is a finitely supported partial function satisfying Γ,
and a ∈ G, then there exists a finitely supported extension f ′ : Ω′ → G′ of f to a
possibly larger group G′, and also satisfying Γ, such that f ′(a) is defined.

Then F ̸|= F ′.

One can of course also develop an abelian analogue of the above theorem, in which (G, +, −, 0)
and (G′, +, −, 0) are now required to be abelian. We can then give an alternate proof of
Proposition 5.13 as follows:

Second proof of Proposition 5.13. (Sketch) The functional equations associated to E73 and
E4380 are f 2(h−1f(h)) = h−1 and f 2(1) = f(1)f(f(1)−1) respectively. We apply Theo-
rem 5.14 with the following ruleset:

1. If f(h−1f(h)) is defined, then f 2(h−1f(h)) is defined and equal to h−1.
2. If h−1f(h) and k−1f(k) are defined and equal, then h = k.
3. If f(h) is defined, it is not equal to h.

Axiom (ii) is clear. To verify axiom (iii), we can assume f(h) is undefined, then adjoin an
element c freely to G to create a larger group G′, and set f ′(h) = c. If h = k−1f(k) for
some k (which is unique by Rule 2, and only possible for h ̸= 1 by Rule 3), then also set
f ′(c) = k−1. One can then check that axiom (iii) is satisfied. For axiom (i), take G to be a
free cyclic group with one generator a, and set f(1) = a, f(a) = a3, f(a3) = 1, f(a−1) = a3

(say). □

More complex (and ad hoc) variants of the greedy algorithm are possible. In some cases,
we were not able to preserve the finitely supported nature of the partial operation or partial
function, and needed to extend that partial object at an infinite number of values at each
step. In other cases, one also had to add additional temporary data during the greedy process
to record tasks that one wished to attend to at a later stage of the process, but could not
handle immediately because it was awaiting some other operation to become well-defined.
We will not attempt to survey all possible variants of this method here, but refer the reader
to the ETP blueprint for further examples.

5.6. Modifying base models. A general technique that we have found useful in obtaining
a refutation such as E ̸|= E′ is to start with a simple base model M = (M, ⋄) that satisfies
both E and E′, and modify it in various ways to preserve E, but create a violation of E′. There
are many such possible modifications, but three general ways that have proven effective are
as follows:

(i) Modify the magma operation ⋄ : M × M → M on a small set in order to violate E′,
and then make further modifications as needed to recover E.

Equational Theories Project 31

(ii) Construct an extension N of M, equipped with a surjective magma homomorphism
π : N → M, and defined in terms of some additional data. Then solve for that data
in such a way that N satisfies E but not E′.

(iii) Construct an enlargement M′ = (M ′, ⋄′) of M = (M, ⋄), which is a magma that
contains M as a submagma. One needs to construct the multiplication table ⋄ on
(M ′ × M ′)\(M × M) in order to retain E but disprove E′.

One appealing case of (ii) that our project discovered, involving a “magma cohomology”
analogous to (abelian) group cohomology, is that of an affine extension of a magma G =
(G, ⋄G) by another magma (M, ⋄M) which is an abelian group M with a linear magma
operation s ⋄M t := as + bt for some endomorphisms a, b ∈ End(M). One can then consider
extensions with carrier G × M and magma operation

(8) (x, s) ⋄ (y, t) := (x ⋄G y, s ⋄M t + f(x, y))

for some function f : G × G → M . If (M, ⋄M) and (G, ⋄G) already satisfy a law E, then this
extension will also satisfy E if and only if f satisfies a certain “cocycle equation”, which is a
linear equation on f . One can then sometimes use linear algebra to locate an f that satisfies
the cocycle equation for one law E but not another E′, thus refuting the implication E |= E′.
An example is as follows:

Proposition 5.15 (E1110 ̸|= E1629). The law x ≃ y ⋄ ((y ⋄ (x ⋄ x)) ⋄ y) (E1110) does not
imply x ≃ (x ⋄ x) ⋄ ((x ⋄ x) ⋄ x) (E1629), even for finite magmas.

Proof sketch. Using the linear ansatz, we find that E1110 has a model M with carrier F5
(the finite field Z/5Z) with operation x ⋄ y = 3x − y. We then apply the ansatz (8) with
G = M . One then finds that this operation satisfies E1110 if f : F5 × F5 → F5 the cocycle
equation

3f(x, x) − 3f(y, 2x) − f(3y − 2x, y) + f(y, 3y − x) = 0
for all x, y ∈ F5, and satisfies E1629 if f satisfies the cocycle equation

f(2x, 0) − f(2x, 2x) = 0

for all x ∈ F5. A routine symbolic algebra package computation reveals that the space of
f that satisfies the former equation is a six-dimensional vector space over F5, which is not
contained in the solution space of the latter equation, giving the claim. In fact, since these
equations preserve the space of homogeneous polynomials of a fixed degree, one can use
linear algebra to locate an example that is a homogeneous polynomial; one explicit choice is

f(x, y) = y5 + xy4 + x2y3 + 3x3y2 + 3x4y. □

It may be of interest to develop this theory of “magma cohomology” further, for instance by
defining higher order magma cohomology groups.

Now we give an example of how method (ii) can be combined with method (i).

Proposition 5.16 (E1659 ̸|= E4315). The law x ≃ (x ⋄ y) ⋄ ((y ⋄ y) ⋄ z) (E1659) does not
imply x ⋄ (y ⋄ x) ≃ x ⋄ (y ⋄ z) (E4315).

32 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

Proof. There are two simple models for E1659: the model G with carrier Z/2Z and operation
x⋄y = x+1, and the model M with carrier Z and operation x⋄y = x. Using the ansatz (8),
one can soon discover that one obtains a magma operation ⋄ : (G × Z) × (G × Z) → G × Z
with f(0, 0) = f(1, 0) = 0, f(0, 1) = −1, and f(1, 1) = 1. This model still satisfies E4315.
However, we can create a modification ⋄′ of ⋄ as follows. We will seek to violate E4315 at
x = (0, 0), y = (0, 0), z = (1, 0), thus we want

(0, 0) ⋄′ ((0, 0) ⋄′ (0, 0)) ̸= (0, 0) ⋄′ ((0, 0) ⋄′ (1, 0)).
We have (0, 0) ⋄ (0, 0) = (1, 0) and (0, 0) ⋄ (1, 0) = (1, −1). One can try to force the
counterexample by setting (0, 0) ⋄′ (1, 0) to equal (0, 0) instead of (1, −1). However, if this is
the only change we make, then we no longer satisfy E1659, since

(1, 0) ̸= ((0, 0) ⋄′ (1, 0)) ⋄′ (((1, 0) ⋄′ (1, 0)) ⋄′ (1, t))
for any t ∈ N\{0}. But these are the only counterexamples created involving elements in
the subset G × N of G × Z; and if one then sets (0, 0) ⋄′ (1, t) = (0, 0) for all t ∈ N, and
then restricts to G ×N (which is now closed under ⋄′), then one can check that the modified
operation ⋄′ on this submagma now satisfies E1659 but not E4315 as required. Incidentally,
this submagma is isomorphic to the magma M′ = (Z, ⋄′′) with m ⋄′′ n = −m for n < 0 and
m ⋄′′ n = −m− 1 for n ≥ 0 under the bijection that maps (0, s) to s and (1, s) to −s− 1. □

The specific law x ≃ x ⋄ ((y ⋄ z) ⋄ (x ⋄ z)) (E854) turned out to be somewhat “mutable”, in
the sense that one can often change a small number of entries in the multiplication table
of a finite magma satisfying this law, or add rows and columns to the table, in ways that
preserve the law E854. This makes the law amenable to methods (i) and (iii) to construct
new models of this equation that refute various implications E854 ̸|=fin E, for instance by
starting with a model that already refuted some stronger law E′, and then attempting to
modify it (possibly with ATP assistance) by some combination of methods (i) and (iii) to
produce a model that violates E.

Some heuristics loosely inspired by discrete-time dynamical systems proved helpful. The idea
is to generate a sequence of magmas, each of which is generated from the previous entry by
applying various operations expected to increase the likelihood of finding a refutation. This
is similar to the greedy methods in Section 5.5, except that we require our resulting magma
to be finite and completely defined, and our transformations need not be deterministic.

Since our goal is simply to find a finite model — and any candidate can be checked directly —
we are not limited to transformations that can be rigorously justified. SAT solvers like
Glucose [3, 4] inspired by the earlier MiniSAT [25], via convenient interfaces like PySAT [30,
31], other fast SAT solvers such as Kissat [12], counterexample finders like Mace4 [43], and
more general ATPs like Vampire [38] which can be used as solvers, all succeeded in finding
useful magmas following this approach.

For example, suppose our goal is to show E854 ̸|=fin E, for some E. We start with a magma
table which satisfies both equations, and remove a random subset of the table entries (cre-
ating a partially defined magma). We then ask the ATP to find a magma which satisfies
E854, filling in the unspecified values and potentially adding new elements. If in fact E is not
implied by E854, the ATP might succeed in finding a magma refuting the implication. We

Equational Theories Project 33

may also directly insert a violation of E into the magma cells we have emptied, hoping that
a consistent completion still exists. Another method, by analogy with slowly introducing
forcing terms into numerical integrations while preserving adiabatic invariants, is to impose
selected implications of a given equation without directly enforcing the equation itself. This
can gradually drive the magmas in the sequence toward satisfying the equation without
immediately imposing it.

Combining several of these techniques allowed us to find proofs of
E854 ̸|=fin E413, E1045, E1055, E3316, E3925.

As an example of the process, we started with a magma that satisfied E854 and all the above
equations, but had an E10 violation. We suspected that E10 might be relevant (and later
found an argument showing multiple E10 violations would be required in a magma which
showed E854 ̸|=fin E1055), and so used Kissat and Vampire to grow E854 magmas with such
violations. These larger magmas were then used as seeds for the random evolution process,
and the ATPs eventually succeeded in finding magmas which satisfied E854 but refuted the
implications in question.

Note that these approaches have their limitations. To be effective, it must be easy to
transition between different states, which usually involves finding a magma satisfying the
equation of interest or at least some related one. Equations whose finite magmas are difficult
to find (e.g. E677), whether because of absolute rarity or the numerical challenges that our
ATPs have in finding them without taking advantage of a structural ansatz, appear resistant
to these methods in practice.

Another way to utilize (iii), which proved useful for laws that involved the squaring operator
S, was to adopt a “squares first” approach in which one selected a base model SM = (SM, ⋄)
to serve as the set of squares, then extend it to a larger model M with carrier M = SM ⊎ N
by first determining what the multiplication map should be on the diagonal {(x, x) : x ∈ N}
(i.e., to determine the squaring map S : N → SM), together with the values on the blocks
SM ×N , N ×SM , and then finally resolve the remaining values on the N ×N block. Often,
versions of the greedy algorithm are useful for each of these stages of the construction. The
precise details are quite technical, particularly for the law x ≃ (y ⋄ y) ⋄ ((y ⋄ x) ⋄ y) (E1729),
which was the last of the equations whose implications were settled by the ETP. We refer
the reader to the ETP blueprint for further details.

6. Syntactic arguments

Many proofs or refutations of implications (or equivalences) between two equational laws
E, E′ can be obtained from the syntactic form of the equation. We discuss some techniques
here that were useful in the ETP.

6.1. Simple rewrites. Many equational laws E′ can be formally deduced from a given law
E by applying the Lean rw tactic to rewrite E′ repeatedly by some forward or backward
application of E applied to arguments that match some portion of E. For instance, the

34 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

commutative law E43 clearly implies x ⋄ (y ⋄ z) ≃ (y ⋄ z) ⋄ x (E4531) by a single such
rewrite. A brute force application of such rewrite methods is already able to directly generate
about 15 000 such implications, including many equivalences to the singleton law E2 and the
constant law E46. After applying transitive closure, this generates about four million further
such implications.

A simple observation that already generates a reasonable number of equivalences is that
any equation of the form x ≃ f(y, z, . . .) necessarily is equivalent to the trivial law x ≃ y,
by transitivity; similarly, an equation of the form f(x, y) ≃ g(z, w, . . .) implies f(x, y) ≃
f(x′, y′); and so forth. Equivalences of this form were useful early in the project by cutting
down the number of distinct equivalence classes of laws that needed to be studied.

6.2. Matching invariants. Fix an alphabet X. A matching invariant is an assignment
I : MX → I of an object I(w) ∈ I in some space I to each word w ∈ MX with the property
that if an equational law w1 ≃ w2 has matching invariants I(w1) = I(w2), then the same
matching I(w′

1) = I(w′
2) holds for any consequence w′

1 ≃ w′
2. In particular, if one has

I(w1) = I(w2) and I(w′
1) ̸= I(w′

2), then the law w1 ≃ w2 does not imply the law w′
1 ≃ w′

2.

A simple example of a matching invariant is the multiplicity (nx)x∈X of variables of a word:
if w1, w2 have all variables x appear the same number of times nx in both words, then
any rewriting of a word w using the law w1 ≃ w2 will preserve this property. Hence, if
w′

1, w′
2 do not have that each variable appear the same number of times in both words, then

w1 ≃ w2 cannot imply w′
1 ≃ w′

2. For instance, the commutative law E43 cannot imply the
left-absorptive law E4.

One source of matching invariants comes from the free magma MX,Γ of a theory:
Proposition 6.1 (Free magmas and matching invariants). Let ιX,Γ : X → MX,Γ be the map
associated to the free magma MX,Γ for a theory Γ. Then the map I : MX → MX,Γ defined
by I(w) := φιX,Γ(w) is an invariant.

Proof. Suppose that w1 ≃ w2 entails w′
1 ≃ w′

2, and that I(w1) = I(w2). For any f : X →
MX,Γ, the two maps φf , φf,Γ ◦ φιX,Γ : MX → MX,Γ are both homomorphisms that extend
f , hence agree by the universal property of MX , as displayed by the following commutative
diagram:

X

MX MX,Γ MX,Γ

ιX,Γ
f

I=φιX,Γ

φf

φf,Γ

In particular, the hypothesis I(w1) = I(w2) implies that φf (w1) = φf (w2) for all f : X →
MX,Γ; that is to say, the magma MX,Γ satisfies the law w1 ≃ w2, and hence also w′

1 ≃ w′
2

by hypothesis. Thus φιX,Γ(w′
1) = φιX,Γ(w′

2), which gives I(w′
1) = I(w′

2) as required. □

Example 6.2. If we take Γ = {E4} to be the theory of the left-absorptive law E4 as
described in Example 2.2, then the matching invariant I(w) produced by Proposition 6.1 is

Equational Theories Project 35

the leftmost letter of the alphabet X appearing in the word; for instance I((x ⋄ y) ⋄ z) = x.
Thus, for example, the left-absorptive law E4 cannot imply the right-absorptive law E5.

Example 6.3. If we take Γ = {E43, E4512} to be the theory of the commutative law E43 and
the associative law E4512, then by Example 2.1, the associated invariant I(w) = ∑

x∈X nxex

is the formal sum of all the generators ex appearing in the word w, in the free abelian
semigroup generated by those generators. This recovers the preceding observation that the
multiplicities (nx)x∈X form a matching invariant.

Example 6.4. Let n ≥ 1 be a positive integer, and consider the theory Γ = {E43, E4512, En}
consisting of the previous theory {E43, E4512} together with the order-n law Ln

xy = y.
One can check that the free magma MX,Γ can be described as the free abelian group of
exponent n with generators ex, x ∈ X, with associated map ιX,Γ : x 7→ ex. The associated
matching invariant I(w) = ∑

x∈X nxex is essentially the multiplicities (nx mod n)x∈X modulo
n, which gives a slightly stronger criterion than the preceding matching invariant for refuting
implications. For example, the cubic idempotent law x ≃ (x ⋄ x) ⋄ x (E23) has matching
invariants ex = 3ex in the n = 2 case, and hence does not imply the idempotent law x ≃ x⋄x
(E3) since ex ̸= 2ex in the n = 2 case.

In practice, we found that these invariants could be used to establish a significant fraction of
the non-implications in the implication graph, although in most cases these non-implications
could also be established by other means, for instance through consideration of small finite
counterexamples, especially small models of Γ.

Remark 6.5. One can also obtain matching invariants from the free objects associated to
theories that involve additional operations beyond the magma operation ⋄, such as an identity
element or an inverse operation. We leave the precise generalization of Proposition 6.1 to
such theories to the interested reader.

6.3. Canonization. One possible way of obtaining refutations of a given implication E |=
E′ between equational laws is by building a special kind of syntactic model, via certain
involutions on elements of the free magma MX we call canonizers.

Definition 6.6. A function C : MX → MX is a canonizer for an equation E if
(1) C is computable.
(2) if w1 ∼E w2, then C(w1) = C(w2).

In fact, a canonizer is simply a matching invariant with target in MX .

We describe a concrete strategy for building such Cs, which will require a number of defini-
tions.

Definition 6.7. Let R : MX → MX be an arbitrary function.
• We say that R is weakly collapsing if for every word w, R(w) is a (not necessarily

proper) sub-word of w.
• A function θ : X → MX is called a substitution, and we can extend θ to an endo-

morphism φθ : MX → MX in the usual way. We write φθw instead of φθ(w) for
application of substitutions.

36 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

• If E is the equation l ≃ r, and l is not a variable, we say that R is a weak canonizer
if for any substitution θ, R(φθl) = φθr.

• Finally we say that R is non-overlapping for E if for every word w ∈ MX which is a
strict sub-word of l that is not in X, and any substitution θ, R(φθw) = φθw.

We can then define CR : MX → MX as follows:

CR(x) := x(9)
CR(w ⋄ w′) := R(CR(w) ⋄ CR(w′))(10)

The following lemma is readily proven by induction on the structure of terms.

Lemma 6.8. If t is a strict sub-word of l, and R is non-overlapping, then CR(φθt) = φCR◦θt.

We now have the following theorem.

Theorem 6.9. Whenever R is weakly collapsing, a weak canonizer, and non-overlapping,
then CR is a canonizer.

Proof. Assume w ∼E w′. We proceed by induction over the proof of equality.

The only nontrivial case is w = φθl and w′ = φθr for some substitution θ. The case l = r is
clear, so we may assume that l ̸= r. Then we have

CR(φθl) = R(φCR◦θl)
= φCR◦θr

= CR(φθr)

where the first and third equalities follow from the Lemma, observing that r is a strict sub-
term of l (since R is weakly collapsing and a weak canonizer), and the second from weak
canonicity. □

We mention an example to show why this is a useful theorem. Take E to be the equation

y ⋄ (x ⋄ (y ⋄ (y ⋄ y))) ≃ x.

We can take R to be the transformation which sends a term of the form w ⋄ (v ⋄ (w ⋄ (w ⋄w)))
to v for any two words v, w, and leaves all other words unchanged. It is then somewhat easy
to show that this transformation satisfies the conditions of Theorem 6.9, and so we have a
canonizer CR. This can be used, e.g. to refute the implication of x ≃ (x ⋄ x) ⋄ (x ⋄ (x ⋄ x))
from E.

As a conclusion for this section, we note that a very general strategy for building canonizers
comes from the theory of rewrite systems, see e.g. Baader & Nipkow [7]. In that setting
one defines rewriting as a transformation on words (or terms), and if this transformation
is terminating and confluent (intuitively, rewrites cannot go on forever, or diverge forever),
then one may simply pick the transformation which sends a term to its normal form as a
canonizer.

Equational Theories Project 37

Figure 9. Equations similar to E854 that are of the form (11) (possibly
involving a fourth indeterminate w) and imply E378. For brevity, 70 equations
equivalent to E4 have been omitted.

Though we note that the non-overlapping criterion seems very similar to the notion of or-
thogonality in rewriting, we leave the investigation of the precise relationship of the classical
theory with the above technique as future work.

6.4. Unique factorization. In general, the free magma MX,E for a given equational law E,
which we can canonically define as MX/∼E, is hard to describe explicitly; indeed, from the
undecidability of implications between equational laws, such a magma cannot be computably
described for arbitrary E. Nevertheless, for some laws it is possible to obtain some partial
understanding of MX,E from a syntactic perspective. For instance, if we can refute the
equivalence w′

1 ∼E w′
2 by constructing a counterexample magma M that satisfies E but not

w′
1 ≃ w′

2, then this implies that the representatives ιX,E(w′
1), ιX,E(w′

2) of w′
1, w′

2 in MX,E are
distinct.

We illustrate this approach with equations E of the left-absorptive form
(11) x ≃ x ⋄ f(x, y, z)
for some word f(x, y, z), that are also known to imply the right-idempotent law E378. An
illustrative example is the law E854 depicted in Figure 1. Other examples are listed in
Figure 9.

Lemma 6.10. Equation E854 is of the form (11) and implies E378.

Proof. Clearly we have (11) with f(x, y, z) := (y ⋄ z) ⋄ (x ⋄ z). From (11) we have in any
magma satisfying E854 that

x = x ⋄ f(x, x, S2x) = x ⋄ S(x ⋄ S2x) = x ⋄ S(x ⋄ f(x, x, x)) = x ⋄ Sx.

38 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

This implies from a further application of (11) that
y = y ⋄ f(y, x, y) = (y ⋄ Sy) ⋄ ((x ⋄ y) ⋄ Sy) = f(x ⋄ y, y, Sy)

and hence by (11) again
(x ⋄ y) ⋄ y = x ⋄ y

giving E378. □

Let E be a law of the form (11) that implies E378. We define a directed graph →E on words
in MX by declaring w′ →E w if w ∼E w′′ ⋄ w′ for some w′ ∈ MX . By E378 (applied to the
quotient magma MX,E = MX/ ∼E), this is equivalent to requiring that w ∼E w ⋄ w′. In
particular, from (11) we have f(x, y, z) → x for all x, y, z. Furthermore, the relation →E
factors through ∼E: if w ∼E w̃ and w′ ∼E w̃′, then w′ →E w if and only if w̃′ →E w̃.

Call a word w ∈ MX irreducible if it is not of the form w = w1 ⋄ w2 with w2 →E w1. We can
partially understand the equivalence relation ∼E on irreducible words:

Theorem 6.11 (Description of equivalence). Let E be an equation of the form (11). Let w
be an irreducible word, and let w′ be a word with w ∼E w′.

(i) If w is a product w = w1 ⋄ w2, then w′ takes the form
w′ = (. . . ((w′

1 ⋄ w′
2) ⋄ v1) ⋄ . . .) ⋄ vn

for some w′
1 ∼E w1, w′

2 ∼E w2, some n ≥ 0, and some words v1, . . . , vn such that for
all 0 ≤ i < n, vi+1 is of the form

vi+1 ∼E f(xi, yi, zi)
for some xi, yi, zi with

xi ∼E (. . . ((w′
1 ⋄ w′

2) ⋄ v1) ⋄ . . .) ⋄ vi.

In particular, vi+1 →E xi.
(ii) Similarly, if w ∈ X is a generator of MX , then w′ takes the form

w′ = (. . . (w ⋄ v1) ⋄ . . .) ⋄ vn

for some n ≥ 0, and some words v1, . . . , vn such that for all 0 ≤ i < n, vi+1 is of the
form

vi+1 ∼E f(xi, yi, zi)
for some xi, yi, zi with

xi ∼E (. . . (w ⋄ v1) ⋄ . . .) ⋄ vi.

In particular, vi+1 →E xi.
Conversely, any word of the above forms is equivalent to w.

Proof. We just verify claim (i), as claim (ii) is similar. The converse direction is clear from
(11) (after quotienting by ∼E), so it suffices to prove the forward claim. By the Birkhoff
completeness theorem, it suffices to prove that the class of words described by (i) is preserved
by any term rewriting operation, in which a term in the word is replaced by an equivalent
term using (11). Clearly the term being rewritten is in w′

1 or w′
2 then the form of the word is

Equational Theories Project 39

preserved, and similarly if the term being rewritten is in one of the vi. The only remaining
case is if we are rewriting a term of the form

xi = (. . . ((w′
1 ⋄ w′

2) ⋄ v1) ⋄ . . .) ⋄ vi.

If i > 0 we can rewrite this term down to xi−1, and this still preserves the required form
(decrementing n by one). If i = 0 then we cannot perform such a rewriting because of the
irreducibility of w1 ⋄ w2 and hence w′

1 ⋄ w′
2. Finally, we can rewrite xi to xi ⋄ v where v is of

the form
vi = f(xi, y, z),

and after some relabeling we are again of the required form (now incrementing n by one).
This covers all possible term rewriting operations, giving the claim. □

Specializing to the case where w, w′ are both irreducible, we conclude

Corollary 6.12 (Unique factorization). Two irreducible words w, w′ are equivalent if and
only if they are either the same generator of X, or are of the form w = w1 ⋄w2, w′ = w′

1 ⋄w′
2

with w1 ∼E w′
1 and w2 ∼E w′

2.

As an application of this corollary, we establish

Proposition 6.13 (E854 ̸|= E3316). Equation E854 does not imply E3316.

Proof sketch. We work in the free magma MX on two generators X = {x, y}. It suffices to
show that

x ⋄ y ̸∼E854 x ⋄ (y ⋄ (x ⋄ y)).
Suppose this were not the case, then by Corollary 6.12 one of the following statements must
hold:

(i) y →E854 x.
(ii) (y ⋄ (x ⋄ y)) →E854 x.
(iii) y ⋄ (x ⋄ y) ∼E854 y.

If (i) holds, then we have x ⋄ y = x must hold in MX/ ∼E, hence E854 would imply E4.
However, it is possible to refute this implication by a finite counterexample.

Similarly, if (iii) held, then E854 would have to imply E10, but this can also be refuted by
a finite magma.

Finally, if (ii) held, then the claim

x ⋄ y ∼E854 x ⋄ (y ⋄ (x ⋄ y))

to refute simplifies to
x ⋄ y ∼E854 x

and we are back to (i), which we already know not to be the case. □

40 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

7. Proof automation

In this project we used proof automation in two ways: automated theorem provers (ATPs)
and Lean tactics. ATPs are generally stand-alone tools that implement a (semi-)decision pro-
cedure for a given formal language or related set of languages. For example, Vampire [38, 8] is
an ATP focused primarily on first-order logic using superposition, which we used extensively
in this project. We also made extensive use of Prover9 and Mace4 [43].

ATPs are complex software that can contain bugs. Instead of trusting ATP output, we used
proof certificates, which many ATPs can produce, to reconstruct proofs in Lean. The details
of proof reconstruction depend on the form of the proof certificate produced by the ATP.
We expand on this in Section 7.2.

Tactics in Lean, on the other hand, are meta-programs [24] that build proofs. In other words,
they essentially take Lean code as input and produce Lean code as output. In this manner,
they look like another keyword in the language, and are tightly integrated by producing
proofs directly. Under the hood, their implementation can be arbitrarily complex, from
syntactic sugar to full decision procedures. The duper tactic [17], for example, implements
a superposition calculus similar to Vampire’s, but for dependent types — Lean’s underlying
logical foundation.

In the rest of this section we describe the different proof automation techniques used in
this project. We first discuss the different proof methods used: primarily superposition and
equational reasoning; we then discuss the integration in Lean, and finally we report some
basic empirical results from this project.

7.1. Proof techniques. The two main families of ATPs and tactics we used are based on
superposition/saturation and equational reasoning. In this context we also include SMT
solvers, which combine specific decision procedures for theories, like congruence closure for
equational reasoning, with satisfiability (SAT) solving [19]. Finally, we also used aesop [41],
which implements a version of tableau search. This was used mainly to help specific con-
structions in refutations, and is not specific to proving or disproving magma implications in
this sense. We describe our use of aesop in Section 7.2 below.

Saturation. Most of the ATPs used extensively in this project rely primarily on saturation
procedures in the superposition calculus. For example, this is the case for Vampire [38].12 The
core idea of these provers is that they take a set of assumptions and a conjecture, expressed
in (say) first-order logic. The conjecture is negated and added to the set of assumptions,
which are all put into a normal form. The ATP then tries to refute the negation by applying
rules of an underlying calculus, until a proof of false (a contradiction) is derived. In this
case, the conjecture was (classically) true, and the ATP has found a proof by contradiction,
often called a “refutation” or “saturation” proof.

12See also [9] for a gentler exposition.

Equational Theories Project 41

The underlying calculi vary from system to system, but they often have a variant of a
resolution clause of the form:

C ∨ L D ∨ ¬L
C ∨ D

This can be read as C ∨ L with D ∨ ¬L implies C ∨ D, where C, D, L are formulas in e.g.
first-order logic. Superposition calculi have a variant of this rule that deals with equality
directly, and thus are more efficient at reasoning about equality.

In this project we used Vampire [38], Duper [17] and Prover9 and Mace4 [43] which are all
based on variants of saturation for proving.

Equational Reasoning. As already discussed in Section 6.3, equational reasoning is a type
of reasoning that is based13 on equational logic and rewriting with congruence [7]. In general,
an equational reasoning procedure takes a series of equations and tries to determine whether
another equation can be deduced from it. A core tool in equational reasoning are e-graphs, a
data structure used to represent congruence classes of terms. By themselves, e-graphs provide
an efficient means of implementing a decision procedure for congruence closure over ground
equations (i.e., equations without variables). Extensions to this procedure, for example
by quantifier instantiation via e-matching [20], also allow for a semi-decision procedure for
congruence closure over non-ground equations.

SMT solvers like Z3 [21] use equational reasoning for deciding the theory of equality with
uninterpreted functions [39, 20]. On the other hand, equality saturation [68] uses e-graphs
by extending congruence closure to a more controlled search, enabling optimization and
conditional rewriting. One of the main advantages of equational reasoning for implications
of magma laws is that we get very explicit proofs: a proof that l |= l′ is given by a sequence
of rewrites that starts at the left-hand side of l′ and arrives at the right-hand side through
applications of l.

In this project we used Z3 [21], Prover9 and Mace4 [43], a custom ATP MagmaEgg for
magmas based on egg [68], and the Lean egg tactic [37, 59], which all work with equational
logic. We have also reasoned with manual (custom written) heuristics about simple rewrites.

7.2. Integration of automation procedures. While ATPs are very useful for proving
theorems in this project, they do not integrate with Lean out of the box. ATPs may produce
unsound proofs, or worse, derive incorrect results. Thus, by default, theorems in Lean cannot
be proven by deferring to the result of an ATP. Instead, the results of an ATP can be used
to reconstruct a proof of the form required by Lean. Thus, in general, integration of ATPs
requires two steps. First, there is the invocation of the ATPs by translating the problem from
Lean into the languages and logics they use. And second, there is the reconstruction of the
ATPs’ results as a (persistent) Lean proof. These two aspects present different challenges,
and require different strategies, depending mostly on the kind of proof strategy the ATP
uses.

13More precisely, one can formalize this reasoning using Birkhoff’s five rules of inference (reflexive, sym-
metric, transitive, replacement, and substitution); see, e.g., [14].

42 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

Figure 10. Example of a proof reconstructed from output of Vampire.
Note how the proof proceeds by contradiction and uses the superpose and
subsumption steps implemented in Lean.

More generally, we have observed that there are multiple ways of integrating decision pro-
cedures within Lean, with different levels of integration.

(1) Using a Lean tactic, which calls a decision procedure written in Lean (like aesop or
duper).

(2) Using a Lean tactic, which calls an existing (external) ATP and reconstructs a proof
term from the ATP’s result (like bv_decide or egg).

(3) Using an external script which calls an existing ATP and generates a source file .lean
which captures the result explicitly.

This project primarily used the least integrated approach, Option 3, as it was the fastest
to implement and imposed no additional technical requirements on other contributors. The
matter of technical requirements caused problems, for example, when integrating the egg
tactic (Option 2) as it initially expected certain software on the user’s machine. Such trade-
offs between Option 2 and Option 3 are, however, mutual, as the higher upfront cost of
integrating a proof tactic in Option 2 makes the decision procedure easier to use than with
Option 3. Additionally, Option 2 can benefit from Lean’s meta-programming capabilities
when encoding the problem for use with an ATP, and when reconstructing a Lean proof
from the result.

Proof Reconstruction. The relative simplicity of the objects used in this project benefits
the implementations of proof reconstruction. By focusing on the given problem domain,
difficult reconstruction issues, like complex dependent types, could be ignored.

For saturation proofs with Vampire, we implemented analogs of the superpose, resolve, and
subsumption steps in Lean. Proofs can then be reconstructed as sequences of these steps
(and additional technicalities) as shown in Figure 10.

For equational proofs from external provers, like MagmaEgg, we also used a tailored version
of reconstruction. Specifically, the MagmaEgg implementation turns explanations [55] from
egg into Lean proofs by simple applications of the defining properties of equality as shown
in Figure 11.

Equational Theories Project 43

Figure 11. Example of a proof reconstructed by MagmaEgg. Note the proof
only uses reflexivity, symmetry, transitivity, and congruence of equality.

Figure 12. Example of the egg tactic reconstructing a proof in human-
readable form with the help of calcify (invoked by the special syntax egg?).

In the case of the egg tactic, which also reconstructs proofs from egg explanations, the proof
could be converted into a more human-readable form by using the calcify14 tactic, as shown
in Figure 12

Semi-Automated Counterexample Guidance. Another use of ATPs has been in a
semi-automatic fashion, to find counterexamples. The general strategy was to use ATPs to
find counterexamples to implications by building magmas iteratively. If we want to build a
counterexample to l |= l′, we want to construct a magma where l holds but l′ does not. In
this method, we iteratively strengthen a construction with additional hypotheses, and use
the ATP to check whether these hypotheses are not too strong (to imply l′) or unsound (to
disallow l).

14https://github.com/nomeata/lean-calcify

https://github.com/nomeata/lean-calcify

44 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

While equational reasoning can also be used in a semi-automatic fashion to prove equa-
tions [37], the positive implications in the main implication graph of the project were all
simple enough that we did not need a semi-automatic approach for them.

7.3. ATP usage. When the project started, contributors had varying degrees of ATP knowl-
edge and skills, with some of us having to start using them from the ground up. With
hindsight, several of the project computations could have been approached in better ways,
their difficulty diminished due to better ATP expertise. Accordingly, in this section15 we
provide some facts and hints about ATP usage, primarily with the algebraist working with
(unsorted) equational theories in mind, based on our experience and available evidence16

within the ETP. We restrict our attention to Vampire and Prover9 -Mace4, which were the
main tools used for exploration of implications and anti-implications along the ETP.

7.3.1. Employing several ATPs. In general, given a batch of problems of interest, it is useful
to employ several ATPs when they complement each other on the batch — i.e., when they
can solve different sets of problems. This is often the case with Vampire and Prover9 : e.g.,
in a 2024 study [2], it is shown that from a batch of around 770 TPTP problems solved with
Vampire and Prover9 together (with some restrictions), around 60% are solved by both,
20% are solved only by Vampire, and the remaining 20% are solved only by Prover9.17

Although older and virtually discontinued, Prover9 is still very useful with equational logic
and algebraic problems. Within the ETP we likewise identified several problems that were
easier to solve with Prover9 than with Vampire, and even some solved by Prover9 but not
by Vampire (with the configurations we tried). The most salient example is the proof that
E102744082 implies the injectivity of the right multiplication map, used in the Higman-
Neumann side project (see Section 10), which was originally found by Prover9 in several
hours with parameters chosen to produce a big search space; an optimized choice of Prover9
options lowers the runtime to 0.2s. Upon contact with the Vampire development team, after
several attempts they were able to provide a Vampire configuration (inspired by the Prover9
optimization) which produces a proof in 3s.

In addition, Mace4 ’s non-SAT algorithm generally makes it faster at finding models than
generic SAT-based finite model builders, such as those implemented in Vampire. For ETP
problems in particular, a well-configured Mace4 is faster than Vampire’s finite model builder
in both the task of finding a model of a given size and that of exhausting a size with no
models. For example, for E677 models, Mace4 is able to exhaust size 8 in 1.5s, and to find
a model of size 9 in 16s, while Vampire’s finite model builder is unable to perform any of
these tasks in 10 minutes. By contrast, Vampire’s casc_sat mode can be quicker at finding
some model of some size for a given problem.

15Consult the ETP site for a substantially expanded version of these notes.
16The timings presented here cannot be taken as benchmarks. Different experiments were executed on

different machines, with heterogeneous software and OS environments (Ubuntu, Windows 10...), with varying
numbers of parallel processes — both internal and external to the experiment — and, in many cases, under
the Linux nice command.

17In contrast, in said study the E prover solves only a single problem not solved by Vampire.

Equational Theories Project 45

7.3.2. Basic usage. When running an ATP or finite model builder on a nontrivial problem,
the two key recommendations are: 1) Conduct several runs with different search-parameter
settings, and 2) provide enough computational resources for each search: memory18, number
of processing cores19, number of user instructions executed, and especially, time. Along
the ETP, some proofs or models that could not be found in under 1 second with a given
configuration, could be obtained in under (say) 8 seconds without altering the configuration;
other implications initially required runs lasting several minutes, or even hours. Once a proof
is found by some configuration, a short and quick proof can typically be found by tweaking
that configuration.

The configuration of the search parameters is a difficult art that has become more sophisti-
cated as ATPs have grown in complexity. To address difficult problems, we strongly recom-
mend acquiring a solid understanding of the available configuration options and their effects,
enabling the search space to be tailored as closely as possible to the problem at hand. Cur-
rently, options allow control over numerous aspects of each proving stage, including search
limits, preprocessing steps, inference rules, formulas ordering and weighting, etc.

7.3.3. Flow control. Vampire is equipped with a user-friendly and powerful standard mode,
the CASC mode (or CASC SAT mode for finite model building) that in many situations
avoids the need of configuring specific search options for the given problem. This mode
invokes a sequence of strategies (different option configurations) with assigned time limits.
The time given to each strategy is important: counterintuitively, giving less time to the
CASC mode may end up producing a faster proof: there are proofs that can be found when
the time limit is set to less than 5% of the time Vampire needs to find a proof without the
time limit [38]. At least two factors contribute to this effect: the correct strategy is explored
sooner because less time is spent on each strategy, and the behaviour of Vampire’s default
saturation algorithm, the limited resource strategy (LRS) algorithm.

On the other hand, Prover9 itself does not have the capability of running several schedules in
a row, although it lets the user implement some rudimentary strategies through commands
called actions. Also, a separate program called FOF-Prover9 includes a preprocessing step
that attempts to reduce the problem to independent subproblems, possibly reducing the
overall time significantly.

7.3.4. Input. Both Prover9 -Mace4 and Vampire present pitfalls regarding quantifier scope,
which can lead to mistakes for unwary algebraists. Let us illustrate this with Prover9, using
* for the operation ⋄. In this ATP, free variables are universally quantified at the outermost
level of the whole formula, regardless of its parenthesization. For example, to formulate the
property that right multiplications are injective (y*x = z*x -> y=z) if and only they are

18If a memory limit is not specified, Vampire will try to use as much RAM as possible, but by default
Prover9 -Mace4 sets memory limits which are rather low for current standards, so we advise raising them
before starting a long computation.

19Vampire can make use of as many cores as the user specifies. To take advantage of multicore processors
with Prover9 -Mace4, one can run several terminal or GUI instances. Moreover, each GUI window allows to
run Prover9 and Mace4 simultaneously on the same problem, and they run on different cores.

46 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

surjective (exists w w*u=v), one must include universal quantifiers explicitly on both sides
of the binary connective <-> (quantifiers have higher precedence than <->),

all x all y all z (y*x = z*x -> y=z) <-> all u all v exists w w*u = v.

Omitting the all quantifiers would quantify all variables outside the equivalence, while
writing the left-hand side as (all x all y all z y*x = z*x -> y=z) would amount to
(∀x, y, z, y ⋄ x = z ⋄ x) =⇒ y′ = z′, with y′ and z′ being free variables, hence universally
quantified. We have in fact committed such mistakes over the course of the ETP, thereby
giving rise to false proofs of E677 |=fin E255, our only open implication.

Frequently, it is useful not to run an ATP alone, but to run it in a larger environment
permitting multiple calls with different input files, strategies, etc. so that we can provide
semi-automated guidance. Integrating the ATP into a computer algebra system further al-
lows to leverage the latter’s mathematical capabilities, such as preparing input files with
operations from sophisticated algebraic structures. For example, in the ETP we have inte-
grated Prover9 -Mace4 with Python and SAGE, and (among several other applications) used
SAGE to access GAP’s small groups library to search, via Mace4, for translation-invariant
countermodels on specific groups (see Section 5.3).

An important factor to consider when generating an input file for proving a conjecture is,
for both Vampire and Prover9, that owing to the way the saturation algorithm operates, the
original order in which formulas are presented is actually important: it is perfectly possible
to have a collection of axioms which produces a proof in some order but not in another.
Vampire includes the option --normalize to prevent this effect. For Prover9, one can use a
larger environment to automate the permutations of the input file and make several tries with
time restrictions. In contrast, the order of the formulas does not affect Mace4 ’s response.

Moreover, the inclusion of additional formulas redundant with the premises may significantly
speed up the proof search, if those formulas are not quickly derived by the ATP algorithm
(e.g., evaluations mapping different variables to the same one are routinely included).

Finally, the use of demodulators can greatly simplify and speed up the proof search. In
Prover9, the assign(eq_defs, fold) command allows to substitute any specified subex-
pression by a user-defined symbol, simplifying all further expressions generated by the ATP.
For instance, a quick proof that E102744082 implies the injectivity of right multiplications is
obtained by setting eq_defs and adding the formula s(x) = x*x (where * stands for ⋄) to
the premises (together with a good weight limit, see Section 7.3.5). In Vampire, deactivating
the --function_definition_elimination mode can serve a similar purpose.

7.3.5. The weight-sos limit strategy. In Prover9, each clause is assigned a weight depending
on its length (and other customizable parameters), with newly generated clauses exceeding
the max_weight limit being discarded. In addition, the size of the list of clauses awaiting
processing (the SOS list) is controlled with the sos_limit parameter, with most newly
generated clauses being discarded once the list is full. Consequently, the size and shape of
the search space can be partially controlled through these parameters. Ideally, we would
want to use the smallest values of max_weight and sos_limit that still guarantee a proof

Equational Theories Project 47

Figure 13. Proof-finding time as a function of max_weight, for several values
of sos_limit.

to be contained in the search space. Thus smaller values are preferable, provided they are
not so low that the search is exhausted without finding a proof.

Since there are more parameters affecting the search, and different proofs may be reachable
depending on the configuration, the system’s behaviour with respect to max_weight and
sos_limit is not straightforward, with several casuistics arising. When sos_limit is fixed,
the proof-finding time tends to rise with max_weight until reaching a plateau, with the
length of this increasing phase extending for higher sos_limit values (see Figure 13). For
this reason we recommend lowering sos_limit from its default value of 20000 to substantially
smaller values.

On the other hand, when max_weight is fixed, the smallest sos_limit values that still yield
proofs typically produce a chaotic transient phase with higher proof-finding times, after
which a better-defined relation between proof-finding time and sos_limit emerges, which
tends to follow either a near-plateau pattern (Figure 14a)), or a monotonically increasing
trend (Figure 14b)). We recommend avoiding an excessively low sos_limit, in order to
prevent the onset of the transient phase.

Other relevant characteristics related to the complexity of the resulting proof (such as
proof level, length, weight, etc.) may also vary in nontrivial ways depending on the cho-
sen sos_limit value (see Figure 15).

Remarkably, Prover9 can establish all positive implications between laws of order up to 4
using max_weight 55 and sos_limit 20000, with max_weight 25 being sufficient for almost
every case. With default parameters (max_weight 100, sos_limit 20000), all consequences
of each equation can be proven in at most 1 second per equation, with the exception of laws
E450 and E650 (and their duals), which take somewhat longer20.

20For details, see https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/
Which.20implications.20are.20harder.20for.20ATPs/near/547089094.

https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/Which.20implications.20are.20harder.20for.20ATPs/near/547089094
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/Which.20implications.20are.20harder.20for.20ATPs/near/547089094

48 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

Figure 14. Proof-finding time as a function of sos_limit, for different values
of max_weight. a) Stabilization as plateau, same for different weights. b)
Different behaviours for different weights, with one trend monotonically in-
creasing.

Figure 15. Proof-complexity indicators as a function of sos_limit.

Vampire does not allow the imposition of a user-defined maximum weight, although its
default LRS algorithm already implements a dynamic weight limit. According to [32], Vam-
pire 5.0 can prove all true implications from the ETP, and can prove 99.97% of them using
less than 500 instructions per proof.

Equational Theories Project 49

Table 2. Largest size of E1485 (weak central groupoids) models exhausted
by each configuration in under 300s. The skolems_last parameter turns out
to be irrelevant for this problem.

Configuration: (2,4,Y/N) (0,4,Y/N) (2,3,Y/N) (2,2,Y/N) (2,1,Y/N)
Size: 14 (in 127s) 14 (in 166s) 13 (in 290s) 9 (in 33s) 7 (in 8s)

7.3.6. Mace4. The configuration of Mace4 likewise has a substantial impact on its run-
ning time, with different parameter settings resulting in differences of orders of magnitude.
In particular, model-computation time is greatly affected by the selection_measure and
skolems_last parameters. The selection_order parameter is also relevant, but our em-
pirical data indicate that selection_order 2 is by far the best general choice. It is outper-
formed by selection_order 0 only in a few cases, and even then the improvement in comput-
ing time is not that substantial. The effect of setting skolems_last can range from slightly
detrimental to highly advantageous: as an example, a model of E272260 ̸|= E42323216 of
size 7 is found in 0.0s with (2,4,Y), and in 4.0s with (2,4,N). Here and in the following we
use notation (a,b,S) to mean the configuration selection_order a, selection_measure b,
and skolems_last set (S=Y) or clear (S=N).

There is no universally optimal configuration (a,b,S): for each (potential) implication or
theory, configurations may be ranked differently. However, in the ETP context, certain con-
figurations have performed consistently better, roughly ordered as (2,3,Y), (2,1,Y), (2,4,Y),
(2,3,N), (2,1,N), (2,4,N), (0,1,N), (0,1,Y), with the remaining configurations being largely
avoidable. Problems involving several algebraic operations, or presenting some kind of sym-
metry (see Table 2 on weak central groupoids), tend to perform better with (2,4,N/Y). Prob-
lems may also be considerably sensitive to changes in formulas that appear minor, for example
adding fn(x) = x with different values of n can result in different optimal configurations.

In addition, while in the ETP we typically searched for a single model to contradict a given
implication, in some cases we sought all models of a certain size for some given theory,
either to better understand a collection of base examples in order to extend them, or just
to improve our understanding. Accordingly, it should be noted that a configuration that is
fast for finding one model of a given size may be slower than others for exhausting the whole
size. A notable example of this is (2,2,Y) for models of E677 of size 9, which finds a single
model in 160s, but is unable to exhaust the whole size after 20h (see Table 3).

When undertaking a long-running model search at a large size, it is advisable to determine
in advance the potentially optimal configuration(s) by examining smaller sizes. Throughout
the ETP, we have employed the following procedure. If time permits, exhaust the previous
size with all configurations to make a choice. If that process is prohibitively time-consuming,
then set the target number of desired configurations (e.g., for parallel runs), initialize the
pool of configurations with all possibilities, and iterate:

(1) Pick the next available smallest size.
(2) Run all configurations on that size under a reasonable time limit and collect their

running times, whether for finding a single model, a predetermined number of models,
or for exhausting the size.

50 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

Table 3. Time to find one model of E677 of size 9 and to exhaust the same
size for different configurations. Some finite-setting formulas were included
to speed up the search (see Section 7.3.8). The configurations not listed here
were unable to find a model in 4000s.

Configuration One model Exhaust size
(2,1,N) 16s 190s
(2,1,Y) 16s 210s
(0,1,Y) 20s 149s
(0,1,N) 32s 169s
(2,2,Y) 154s 72000s+
(2,2,N) 180s 43000s+
(2,3,N) 557s 877s
(2,3,Y) 587s 941s
(2,4,Y) 596s 761s
(2,4,N) 620s 730s
(0,3,N) 3746s 4151s
(0,3,Y) 3777s 4254s

Table 4. Comparison of the two best configurations for finding certain special
E677 models, both for exhausting each size and for finding a single model, with
best times in boldface. Note that initially (2,4,N) seems the best configuration,
but in the long run, (2,3,Y) outperforms it. The comparison is particularly
misleading at size 16 when searching for a single model.

Size (2,3,Y) exhaust (2,4,N) exhaust (2,3,Y) model (2,4,N) model
9 0.14s 0.04s 0.02s 0.0s
10 0.32s 0.12s - -
11 0.82s 0.37s 0.15s 0.01s
12 2.17s 1.2s - -
13 6.18s 4.35s 2.74s 0.91s
14 15.47s 14.39s - -
15 38.82s 50.87s - -
16 120s 175s 11.95s 0.02s
17 306s 660s - -
18 883s 2382s - -
19 2300s 3600s+ 846s 2082s

(3) Based on the smallest time found, determine a statistically significant time threshold.
(4) Remove from the pool those configurations whose time differs from the best one by

more than the threshold (if any). End the loop once the number of configurations
contained in the pool is the desired one.

Be aware that this algorithm assumes that once a configuration outperforms another, this
advantage carries over to larger sizes. This is not always the case (see Table 4 for an
example). Additionally, the algorithm may be further refined by considering combinations
of the configurations with different subsets of formulas.

Equational Theories Project 51

7.3.7. Search of compatible properties. When in search of a model, either theoretically or
using a model builder, it is useful to be able to identify additional properties to impose on
the model, strong enough to simplify the search, yet weak enough to guarantee compatibility
with the original axioms. In particular, when seeking a countermodel to implication E |= E′,
we should avoid properties that, together with E, would imply E′. This search can be greatly
aided by an ATP: if we have an educated guess that some property P is compatible with
the problem E ̸|= E′, we can run the ATP on E ∧ P under various strategies to attempt a
proof of E′. If, after allowing ample time, no proof is found, this provides heuristic evidence
that a countermodel satisfying P exists. Note that even if no proof actually exists, it may
well be that there are infinite countermodels but not finite ones.

In the ETP, we successfully applied this approach to several of the outstanding implications.
Most notably, we were able to construct an infinite model of E1323 ̸|= E2744 after heuris-
tically verifying compatibility21 with a unit element and with closure of the operation over
the set of square elements.

7.3.8. Finite setting. There are situations in which one wants to work in the finite setting, for
example, when proving a finite implication. Indeed, model builders typically search for finite
models; therefore, when using them, we can usually assume we are operating in the finite
setting. In this context, injective (resp. surjective) maps are bijective, bijections are periodic
maps, and so on. In addition, any law of the form x = f(y) ⋄ g(x, y) for some maps f, g has
left multiplication map Lf(y) surjective, hence bijective. Thus by applying the substitution
x 7→ f(y) ⋄ x and simplifying f(y) on the left, the law finitely implies x = g(f(y) ⋄ x, y).

By this and similar approaches we typically find some multiplication or related map (squar-
ing, etc.) to be injective and surjective, properties that we may add to our initial formulas. In
hindsight, adding injectivity to a finite model builder usually increases performance, whereas
surjectivity (and other existentially quantified formulas) tend to diminish it. Moreover,
Prover9 -Mace4 performs better with operations and equalities than with non-equational
formulas. For this reason it is advantageous to convert an injectivity condition from an
implication into a new operation. For example, injectivity of the left multiplication map is
captured by x\(x∗y) = y (where ∗ stands for ⋄); this substitution typically yields a threefold
speedup. In contrast, this conversion appears to slow down Vampire slightly.
Example 7.1. As a case study, let us examine the model search for E1518 ̸|= E47 using
Mace4 (with ∗ standing for ⋄). It is now known that the smallest models have size 15.
Initially, this search exceeded our ATPs expertise, hence we ended up constructing a theo-
retical model of size 232. If we restrict to the original formulas E1518 and ¬E47, the optimal
configuration is (2,3,N), taking 2.5 minutes to exhaust size 10 and already exceeding 7 hours
to exhaust size 11. Putting S(x) := x ⋄ x, since E1518 is x = (y ⋄ y) ⋄ (x ⋄ (y ⋄ x)) we observe
that LS(y) is surjective, hence injective. Accordingly we add (y*y)*x = (y*y)*z -> x = z
to Mace4 and then size 11 is exhausted in less than 5 minutes. In addition, from the im-
plication graph we observe that E1518 implies E359, which states S(x) ⋄ x = S(x); when
added as (x*x)*x = x*x, Mace4 exhausts size 11 in under 1s, with the optimal configura-
tion shifting to (2,1,N). Size 12 is exhausted in 18s. We also note that if S(x) = S(y) then

21Specifically, for each property, we ran Prover9 for 20 minutes with the default configuration and Vampire
for 999s in CASC mode.

52 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

S(x) ⋄ x = S(x) = S(y) = S(y) ⋄ y, yielding x = y by injectivity of LS(x). Therefore S is
injective, we can add x*x = y*y -> x = y, and exhaust size 12 in 13.5s. Also, in E1518
we can substitute x 7→ S(y) ⋄ x and cancel S(y) on the left to get E320858, with which
we exhaust size 12 in under 2s and size 13 in under 1 minute. Moreover, as S is surjective
every element is a square, so the injectivity of LS(x) implies that of Lx, and we can add
x*y = x*z -> y = z to the search. But this actually worsens the performance! After some
experimentation, we observe that we should either add the injectivity of LS(x) or that of Lx,
but not both. It turns out that for size 13, injectivity of LS(x) performs slightly better, so
we retain it. Additionally, the implication formula for this injectivity can be replaced with
a new operation \ by writing x\((x*x)*y) = y. This further reduces the exhausting time
for size 13 to 33s. Now size 14 is exhausted in 30 minutes, and size 15 is well within reach.

7.3.9. Discriminators for Isofilter. Mace4 ’s output may be redundant, in that many of the
models found in a search may (and often will) be isomorphic to each other. To solve this prob-
lem, Mace4 ’s output can be fed to another tool called Isofilter, which returns a representative
model of each isomorphism class. Isofilter compares permutations of the models, restricted
according to some discriminators: by default the only one used is the frequency with which
each domain element appears in the operation tables22, but the user can include any number
of other discriminators. Isofilter “as is” handles models of size up to around 10 with ease; but
the combinatorial explosion soon makes computations unfeasible for larger sizes, unless dis-
criminators well suited to the problem are chosen. For example, Mace4 provides 10 models of
size 15 for E1518 ̸|= E47, of which 6 belong to different isomorphism classes. Vanilla Isofilter
requires 10 days and processes 3 ·1013 permutations in order to determine these classes, while
adding the discriminators x*x=x. (x*y)*z = x*(y*z). x*y=y. x*y=y*x. reduces the task
to 105 permutations, completed in 0.02s.

8. Implications for finite magmas

Many of the techniques used to determine the graph of implications E |= E′ can also be used
to determine the graph of finite implications E |=fin E′, with the notable exception of the
greedy construction, which appears to be inherently infinitary in nature. On the other hand,
when the magma M is finite, one can prove additional implications by using the fact that
any function f : M → M which is surjective is necessarily injective, or vice versa. We could
establish about 200 new implications by providing these two axioms to Vampire or to the
Lean package Duper, though in the latter case some human rewriting of the proof was needed
to formalize it in the base installation of Lean. A small number of additional implications
could be resolved by more complicated facts about functions f, g : M → M , such as the fact
that f = f ◦ f ◦ g implies f = f ◦ g ◦ f . We refer the reader to the blueprint for examples of
such arguments, which were obtained by ad hoc methods.

In the end, we were able to establish 820 new implications E |=fin E′ for which E ̸|= E′; and
for most other anti-implications E ̸|= E′, we were able to strengthen the anti-implication to

22This discriminator is entirely ineffective with models having same number of copies of each element in
their tables, such as quasigroups.

Equational Theories Project 53

E ̸|=fin E′. However, there was (up to duality) precisely one finite implication which we could
not settle, which we leave as an open problem:

Problem 8.1. Does the law x ≃ y⋄ (x⋄ ((y⋄x)⋄y)) (E677) imply the law x ≃ ((x⋄x)⋄x)⋄x
(E255) for finite magmas?

This problem appears to be “immune” to many of our constructions, such as the linear
magma construction or the magma cohomology construction; the greedy construction does
show that E677 ̸|= E255, but the construction is inherently infinite in nature. We tentatively
conjecture that E677 ̸|=fin E255; we refer the reader to the blueprint for several partial results
in this direction.

9. Spectrum of equational laws

Given an equational law En, one can ask for its spectrum, namely the set of cardinalities of
its finite models.23 The spectrum Spec(En) is a multiplicative subset of Z>0 since the direct
product of models is a model. We focus here on the most basic question, that is, which laws
(of order up to 4) have spectrum equal to Z>0?

Several extensions will be described in a separate publication: determining the spectrum
and not only whether it is full; the spectrum of simple magmas or (sub)directly irreducible
magmas; tracking multiplicity, namely counting (or bounding asymptotically) how many
finite magmas exist of each size in the spectrum; this is referred to as the fine spectrum in
[66]. These detailed considerations reveal profound differences in how much an equational
law constrains the magma operation, and may help organize the implication graph into
different families.

An ATP run shows that 1558 laws of order up to 4 have no model of size 2 and 62 have
a model of size 2 but none of size 3. Pushing the search to higher model sizes does not
resolve the question for any of the remaining 3074 laws. As we explain next, all of these laws
actually have full spectrum.24

Our main tool by far to show that a law has full spectrum is to consider the carrier set
Z/nZ, with a linear operation x ⋄ y = ax + by with a, b ∈ {−1, 0, 1}. If the law holds for
some choice of a, b then the law has full spectrum.

• For (a, b) = (0, 0) the operation is the constant operation, which is a model of any
law whose sides both have positive order. Equivalently, these laws are consequences
of the constant law E41.

23The infinite spectrum is uninteresting (assuming the axiom of choice). Let us show that if En is not
equivalent to the singleton law E2 then it has models of all infinite cardinalities κ. The free magma on En
with κ generators is such a model. Indeed, the generators are distinct in this magma (otherwise En would
imply E2) so its cardinal µ is at least κ. Conversely, µ ≤

∑
T κ|T | where the range sums over finite binary

trees, and this sum is bounded above by ℵ0 · κ = κ.
24Further investigations show that the lowest-numbered law with models of sizes 2 and 3 but not full

spectrum is E80887, namely x ≃ y ⋄ (y ⋄ (y ⋄ (((y ⋄ y) ⋄ x) ⋄ y))), of order 6.

54 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

• For (a, b) = (1, 0) the operation is a projection, which is a model of any law whose
sides start with the same first variable, equivalently the consequences of E4. (The
choice (a, b) = (−1, 0) is a model of fewer laws hence is not useful.) Likewise (a, b) =
(0, 1) shows that laws whose sides end with the same last variable (consequences of
E5) have full spectrum.

• For (a, b) = (1, −1) the operation is abelian group subtraction, characterized by
Tarski’s axiom E543, which shows that any law implied by E543 has full spectrum.
Likewise, backwards subtraction (a, b) = (−1, 1) provides models for E1090 (equiva-
lent to the dual of E543) and its consequences.

• The operation with (a, b) = (1, 1) cannot satisfy a law for all n.
• Finally, the operation (a, b) = (−1, −1) is a model of some more laws, such as the

semi-symmetric quasigroup law E14 and totally symmetric quasigroup law E492.

These considerations account for 3068 laws, and there remain three dual pairs of laws to
treat. This is done through ad hoc models: a piecewise linear model for E1682 and its dual,
and models whose operation table is mostly constant for the remaining laws E1482, E1523,
and their duals.

Since a law implied by a full spectrum law has full spectrum itself, the implication graph
reduces significantly the number of laws for which it is useful to formalize the full spectrum
property. Accounting for duality and implications, we found it sufficient to formalize the
proof that 32 laws have no magma of size 2 or none of size 3, and the explicit construction
of magmas of all finite sizes for the 7 laws E4, E41, E492, E543, E1482, E1523, and E1682.
In conclusion, we prove that 3074 laws (65%) have full spectrum Spec(En) = Z>0 and 1620
(35%) do not (including 1496 laws equivalent to E2). These percentages remain roughly
stable at higher orders, with 60% of laws of order up to 9 having full spectrum, as will be
reported elsewhere.

10. Higman–Neumann laws

10.1. Describing groups as magmas. The ETP is focused exclusively on magmas, which
only feature a single (binary) operation. Many mathematical structures traditionally defined
using several operations can nevertheless be fully described as magmas with a well-chosen
combined operation, from which the whole structure can be reconstructed. The first example
is how Boolean algebras defined in terms of three operations (∧, ∨, ¬) were equivalently
described in 1913 in terms of the Sheffer stroke x ⋄ y := ¬(x ∧ y) [60]. Once such a single
operation is found, a separate endeavor is to determine which laws it must satisfy to get
the desired structure, and, in favorable cases find a single law that encapsulates the whole
structure, or even find all equivalent laws of minimum order. The earliest such example is
Tarski’s description of abelian groups in terms of subtraction x ⋄ y := x + (−y), subject
to a single axiom x ≃ y ⋄ (z ⋄ (x ⋄ (y ⋄ z))) (E543), found in 1938 [65]. It then took three
decades [29, 61, 56] to sort out the full equivalence class of E543 among laws of order 4.
For Boolean algebras, a minimum-order single-law description was only found in [46], nine
decades after Sheffer’s work.

Equational Theories Project 55

We plan to report elsewhere on other examples such as modules over Eisenstein integers Z[ω3]
or Gaussian integers Z[ω4], with ωk a primitive kth root of unity, which can be described by
the operation x ⋄ y := x + ωky subject to the order-6 laws E85914 and E86082, respectively.

Here, we describe the case of groups. The binary operation ∗, unary operation (·)−1, and
nullary operation e (identity element) can be repackaged into a single division operation
x ⋄ y := x ∗ y−1, from which the original operations are easily reconstructed: for instance
x ∗ y = x ⋄ ((y ⋄ y) ⋄ y). A group equipped with division, called a Ward quasigroup, is a
magma (G, ⋄) satisfying the unipotence law x ⋄ x ≃ y ⋄ y (E40), the right-unit squares law
x ≃ x ⋄ (y ⋄ y) (E11), and a version of the associativity law dubbed the half-group law,
x ⋄ y ≃ (x ⋄ z) ⋄ (y ⋄ z) (E3737), from which group axioms are easily derived. These three
laws are equivalent to a single law EHN := E42323216 of order 8, found by Higman and
Neumann [29],

EHN : x ≃ y ⋄
((

((y ⋄ y) ⋄ x) ⋄ z
)

⋄
(
((y ⋄ y) ⋄ y) ⋄ z

))
.

McCune found two more laws equivalent to this one and of the same order [47], E42302852
and E147976245. A natural question is to find all characterizations of Ward quasigroups
(groups equipped with division) with minimum order. Throughout our exploration, we used
two criteria: the law must be satisfied by group division, and must fail for magmas that are
not Ward quasigroups.

10.2. Basic constraints. There are 298 012 537 laws of order up to 8, and running an ATP
on all of them is too slow, so one needs efficient ways to filter them beforehand. Let us begin
with restrictions on the shape of any law equivalent to EHN. The law must take the form
x ≃ . . . as otherwise it would be satisfied by the constant operation on any set. The law
must be satisfied when evaluated with all variables set to the same element (say, 1) in the
Ward quasigroup Z equipped with subtraction. In particular the law must have even order.
This reduces from 3470 shapes of order up to 8, down to just 548 shapes.

Next come some restrictions on the variables. The right-hand side must not start nor end
with the variable x, as otherwise the projection operations x ⋄ y := x, x ⋄ y := y respectively
would satisfy the law. The law must have at least three variables: otherwise it is satisfied
by division in any diassociative loop (such as a Moufang loop), namely a quasigroup with
identity element in which every 2-generated submagma is a group. Each variable must
appear an even number of times, so that the law holds in Boolean groups (abelian groups of
exponent 2). These basic constraints leave 54, 9000, and 1 841 910 candidate laws of orders
4, 6, and 8, respectively, which can be efficiently enumerated since the conditions so far
constrain separately the shape and list of variables (refer to Appendix A for the relevant
definitions).

Imposing further that the law is satisfied by division in a free non-abelian group (with one
generator per variable) reduces these numbers of laws to 0, 59, and 5692 at these same orders.
All of the laws coming out of these filters are consequences of EHN; accordingly, one must
determine which of these candidates imply said law.

56 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

10.3. Using automated theorem provers. We repeatedly whittled down the list of can-
didates by accumulating a collection of finite countermodels, namely magmas that sat-
isfy a candidate law while violating one of the laws E11, E40 and E3737 characterizing
Ward quasigroups. Automated searches of small magmas (of size up to 8) with Mace4
or Vampire gave many countermodels (of which 12 are enough). A second source was
that of linear models x ⋄ y := ax + by on Z/nZ with (a, b) ̸= (1, n − 1): the largest
one we used is x ⋄ y := 261x + 33y mod 307 to rule out the candidate law E68185620,
x ≃ (y ⋄y)⋄ (y⋄ ((x ⋄ (z⋄y))⋄ ((x ⋄x)⋄ z))). Finally, we introduced some models that are “al-
most” Ward quasigroups: the 7-element smallest non-associative inverse loop (equipped with
division), the 10-element smallest non-associative Steiner loop (commutative loop in which
divisions coincide with multiplication), and the 16-element Moufang loop of unit octonions
over Z.

These steps eliminated all candidates of order less than 8,25 and left only 213 laws of order 8
that could be equivalent to EHN. These laws come in 31 families consisting of a “parent”
5-variable law and some specializations with pairs of variables being identified. The lowest-
numbered law in this list is McCune’s law

x ≃ y ⋄
((

((x ⋄ x) ⋄ x) ⋄ z
)

⋄
(
((x ⋄ x) ⋄ y) ⋄ z

))
(E42302852),

which is in the same family as the Higman–Neumann law. Another common feature is that
all 213 candidate laws include at least one subexpression of the form v⋄v for some variable v.

For 179 candidate laws E, we showed the implication E |= EHN using the ATP Prover9.
For equations of this order, the ATP computation times increase significantly compared
to order-4 laws, with some proofs taking 20 times longer than checking with Prover9 all
8 178 279 positive implications of the main project. The choices of parameters bounding
the ATP search (such as the parameter max_weight limiting clause complexity in Prover9)
were particularly crucial, with different values being optimal in different proofs. Another
important speed-up was obtained by seeking proofs of a simple property such as E11, E40,
E3737, or injectivity/surjectivity of left or right multiplications, then seeking proofs that
the candidate law together with that property implies some other property, and so on, until
proving all three laws characterizing Ward quasigroups. The reverse approach also proved
useful, namely finding which property would allow the proof to succeed, then seeking a proof
of that property from the candidate law. The law E102744082 was a particularly difficult
instance: together with injectivity of right multiplications it easily implies the Higman–
Neumann law, but the proof that E102744082 does imply injectivity took several hours to
obtain in a sweeping search with general parameters; an optimized choice of Prover9 options
trims this time down to 0.2 seconds. The two characterizations E42302946 and E89176740
of division in groups deserve particular mention for being nicely expressed in terms of the
right-cubing map C(x) := (x ⋄ x) ⋄ x:

x ≃ y ⋄ ((C(x) ⋄ z) ⋄ (C(y) ⋄ z)), x ≃ C(y) ⋄ ((C(x) ⋄ z) ⋄ (y ⋄ z)).

25In particular we recover the nonexistence of laws of order 6 characterizing Ward quasigroups, already
announced by McCune and Kinyon at https://www.cs.unm.edu/~mccune/projects/gtsax/#division.

https://www.cs.unm.edu/~mccune/projects/gtsax/#division

Equational Theories Project 57

Among the 34 remaining candidates, we showed the finite implication E |=fin EHN for
21 laws E, which means that the law E characterizes Ward quasigroups among finite mag-
mas. Let us illustrate the proof technique for x ≃ (y ⋄ y) ⋄ (y ⋄ ((x ⋄ z) ⋄ (((x ⋄ x) ⋄ y) ⋄ z)))
(E67953597). In a finite magma, one gets x = Ly⋄y ◦ Ly ◦ fy,z(x) in terms of the function
fy,z : x 7→ (x⋄z)⋄(((x⋄x)⋄y)⋄z). Finiteness implies that the composition of several functions
can only be a bijection if all of them are bijections, thus left multiplications are bijective.
By selecting y = L−1

x⋄x(w) one gets that (x ⋄ z) ⋄ (w ⋄ z) equals the z-independent expression
L−1

y ◦ L−1
y⋄y(x). Taking w = x yields that the square of Lx(z) is z-independent, hence (by

surjectivity of Lx) all squares are equal. A routine ATP run then concludes. While the
resulting proofs of finite implications are relatively short and have been successfully ported
to Lean, our automated search involved thousands of Vampire runs. Indeed, rather than the
condition that a bijective composition implies bijectivity of its constituents, we had to use
the more concrete property that injectivity is equivalent to surjectivity for various collections
of specific functions f : M → M such as left or right multiplications, cubing, etc., with a
brute-force search over which functions to include in a given run.

The remaining 13 candidates have proven to be quite resistant to both proof and counter-
model attacks with a wide range of parameter options, target clauses, additional clauses,
and given time (up to 10 hours for each candidate and given experiment). We have shown
with Prover9 that a model of any of the remaining candidates E that has a right-identity
element, or that satisfies the right-unit squares law E11 or unipotence law E40, is a Ward
quasigroup. As such, any putative countermodel to the implication E |= EHN must be far
from being a Ward quasigroup, in the sense that it must violate these laws.26 In particular
it cannot be a loop; this discards, e.g., the 32-element loop of unit sedenions over Z as a
potential countermodel.

In summary, out of the 298 012 537 laws of order up to 8, we found 179 laws characterizing
Ward quasigroups, 21 characterizing them among finite magmas but perhaps not infinite
ones, and 13 candidates for which we have neither a counterexample nor a proof even for finite
magmas. No efforts have been made yet to find infinite countermodels with the techniques
developed in the main project. The results of this section27 have not been formalized in Lean
yet. More details and further progress on this side project will be published elsewhere.

11. AI and Machine Learning contributions

As discussed in Section 7, the ETP made extensive use of automated theorem provers in
completing the primary goal of determining and then formalizing all the implications between
the specified equational laws. In contrast, we were only able to utilize modern large language
models (LLMs) in a fairly limited fashion. Such models were useful in writing initial code for
graphical user interfaces that we discuss further in Section 12, as well as performing some
code autocompletion (using tools such as GitHub Copilot) when formalizing an informal

26In fact, we find that countermodels must violate many laws satisfied by group division: E11, E40, E823,
E835, E842, E846, E1049, E1637, E1673, E1718, E1835, E1876, E3282, E3323, E3662, E3665, E3677, E3684,
E3721, E3729, E3737, E3761, E3823, E3870, E3891, E3943, E4270, E4590 of order up to 4, and many more
of higher order, including the associative right division law E912704, x ⋄ (y ⋄ (z ⋄ w)) ≃ (x ⋄ (w ⋄ z)) ⋄ y.

27https://github.com/teorth/equational_theories/blob/main/data/Higman-Neumann.json

https://github.com/teorth/equational_theories/blob/main/data/Higman-Neumann.json

58 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

proof in Lean. In one instance, ChatGPT was used28 to guess a complete rewriting system
for the law x ⋄ y ≃ x ⋄ ((y ⋄ y) ⋄ z) (E3523) which could then be formally verified, thus
resolving all implications from this equation. However, in most of the difficult implications
that resisted automated approaches, we found that LLMs did not provide useful suggestions
beyond what the human participants could already propose.

On the other hand, we found that machine learning (ML) methods showed some promise of
being able to heuristically predict the truth value of portions of the implication graph; we
shall now discuss a convolutional neural network approach.29

Convolutional neural network model for the implication graph. To model the im-
plication graph, we used a convolutional neural network (CNN). For each pair of equations
(p, q), the input of the CNN consisted of a character-level tokenization (no vectorization) of
the two equations, and the output of the CNN was a yes/no label depending on whether
p implies q. The CNN processed the input data using a 5-layer architecture, each layer
composed of a 1-D convolution, followed by batch normalization and rectified linear unit
activation functions [27]. After the last convolutional layer, a flattening layer and a softmax
activation function were used to obtain the output of the network, i.e., the prediction of the
implication for the input pair of equations. Note that we trained our models with the 2024-
10-16 version of the (infinite) implication graph, for which 362 of the hardest implications
(less than 0.002% of the total) were still unknown.

Prior to training the CNN, we divided the data into training (60%), validation (20%), and
test (20%) subsets. The CNN was implemented in TensorFlow 2.9.0 [1] and trained on an
NVIDIA 3080 Ti GPU with the following configuration: the binary cross-entropy as the
loss function to minimize, the Adam method with an initial learning rate of 10−3 for the
adjustment of network weights, a batch size of 1024 with random shuffling, a learning rate
reduction by a factor of 2 after 15 epochs without improvement in the validation loss, and
early stopping if no improvement occurred for 40 epochs, with the model with the lowest
validation loss being retained as the final CNN. The final CNN was evaluated on the test set,
reaching a prediction accuracy of 99.7%, which means that the model misclassified around
66k of the 22 million implications. Since this accuracy was somewhat surprising for such a
small and “simple” model, as a control we generated a random label (yes/no) for each pair of
equations, then trained the CNN on this data with 60%/20%/20% training/validation/test
percentages, resulting in a 49.99% accuracy, as expected from an unbiased model.

It could be the case that the high accuracy of our CNN model was mostly due to it learning
the transitivity of the implication relation, as opposed to it discovering patterns in the
identities. To clarify this point, it was proposed to train our CNN model either on a random

28https://chatgpt.com/share/670ce7db-8a44-800d-a5dc-8462c12eca3b
29For some discussion of other machine learning experiments performed during the Equational The-

ories project, see https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/
Machine.20learning.2C.20first.20results for a (vectorized) transformer neural network ap-
proach, and see https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/
Graph.20ML.3A.20Directed.20link.20prediction.20on.20the.20implication.20graph for directed
link prediction on the implication graph using Graph Neural Network (GNN) autoencoders.

https://chatgpt.com/share/670ce7db-8a44-800d-a5dc-8462c12eca3b
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/Machine.20learning.2C.20first.20results
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/Machine.20learning.2C.20first.20results
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/Graph.20ML.3A.20Directed.20link.20prediction.20on.20the.20implication.20graph
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/Graph.20ML.3A.20Directed.20link.20prediction.20on.20the.20implication.20graph

Equational Theories Project 59

poset or on the equational poset with vertices and labels permuted, and check whether a
similar accuracy was achieved. This experiment has not been performed yet.

In any case, since there are around 600k explicit implications from which the rest can be
derived by transitivity (2.7% of the total), if the CNN was learning transitivity it should
perform well with a very small training dataset. Accordingly, we trained and assessed a
CNN model with a 5%/5%/90% training/validation/test proportion, with a resulting 99.6%
accuracy on test (the process finishing in under 20 minutes). But the high accuracy is
maintained with even smaller training datasets, as evidenced in Table 5.

Table 5. Prediction accuracy as a function of the size of the training set

Training/validation/test proportion (%) Prediction accuracy (%)
60/20/20 99.7
5/5/90 99.6
1/1/98 99.3

0.5/0.5/99 98.9
0.1/0.1/99.8 92.2

Since these training datasets were significantly smaller than the subset of explicit implica-
tions, and were not carefully chosen from the poset extremes but taken randomly, we can
conclude that even if the CNN were learning transitivity, that by itself is probably insufficient
to explain the high accuracy achieved by the CNN model.

Since sometimes machine learning is announced as a form of data compression, let us now
comment on the level of data compression achieved by our CNN model. In Table 6 we
compare the sizes of three different encodings of the implication graph: a) As the simplest
approach, we can encode the full implication graph in one file as labelled pairs of equations of
the form (p, q, yes/no). b) On the other extreme, we can encode it as a bit table containing
neither the explicit equation expressions nor their numbers, but just a 1/0 label for each
point with coordinates (p,q), together with a table mapping each number to its corresponding
equation expression and a small script to recover the file in a). c) Finally, we can encode it
in the complete files of the CNN model produced by TensorFlow 2.9.0. In addition, we can
either consider these files in their raw form, or we can highly (but losslessly) compress them
to achieve a rough comparison of their actual information content; accordingly, in Table 6
we also include the sizes of the encoding models when compressed with 7-zip LZMA2 ultra
compression with a 1536MB dictionary size and a 273 word size.

Table 6. Sizes of different encodings for the implication graph

Encoding model Uncompressed size Compressed size
Labelled pairs of equations 1.5GB 9MB

Bit table 42MB 40KB
CNN (99.7% accuracy) 1.34MB 700KB

As we see, the information in the CNN model is more than 13 times less than in the labelled
pairs model, while it is more than 18 times that of the bit table model. We also note that the

60 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

CNN model in its raw form is already quite incompressible, and more than 30 times smaller
than the raw bit table.

Lastly, note that our CNN model does not only encode the implication graph up to order
4 (with 0.03% of noise), but a priori may also be able to predict it for higher orders with a
significant accuracy. Thus it could be used to guide and speed up the determination of the
implication graph up to order 5, by letting ATPs focus first on the CNN’s predicted status
of the studied implication.

12. User Interfaces

A number of custom web applications were developed as part of the ETP. While many past
Lean formalization projects have primarily relied on the Lean blueprint tool to organize tasks
and track progress, the large volume of (transitive) implications tracked by the ETP, along
with the research-oriented nature of the project, necessitated the development of custom
tools to complement the blueprint tool. These web applications also made information more
accessible to project participants and other interested parties, including those unfamiliar with
Lean or the custom software developed for the project. The project features four primary
interfaces:

(1) The ETP dashboard30 displays the high-level overview of the project: the total
number of resolved, conjectured, and unknown implications for the general and finite
implication graphs. The dashboard also includes links to other tools, data, and
visualizations about the implication graphs.

(2) The Equation Explorer31 is the primary tool to navigate the implication graph. For
a given equation, it displays its inbound and outbound implications, as well as other
members of its equivalence class. The explorer allows navigating either the general or
finite implication graphs. The explorer also features custom commentary for a given
equation (when available), serving as a repository for information and links. It also
links to Graphiti visualizations and an example of its smallest satisfying magma, if
one exists. Figure 16 shows an example view of the explorer.

(3) Graphiti32 visualizes the implication graph as a Hasse diagram, where downward
edges represent subset relationships, and upward edges represent implications. Equiv-
alence classes are collapsed into single nodes for clarity. Graphiti supports search
parameters to visualize specific subsets of the graph. It can also display the entire
implication graph, though the complete graph is large and challenging to navigate.
Figure 9 is an example of a Graphiti visualization.

(4) The Finite Magma Explorer33 tests which equations a given finite magma satisfies
or fails to satisfy. Users input finite magmas as Cayley tables. The tool is aware of the
finite implication graph, so if an input magma witnesses an unknown refutation, it
notifies the user and provides instructions for contributing it to the GitHub repository.

30https://teorth.github.io/equational_theories/dashboard/
31https://teorth.github.io/equational_theories/implications/
32https://teorth.github.io/equational_theories/graphiti/
33https://teorth.github.io/equational_theories/fme/

https://teorth.github.io/equational_theories/dashboard/
https://teorth.github.io/equational_theories/implications/
https://teorth.github.io/equational_theories/graphiti/
https://teorth.github.io/equational_theories/fme/

Equational Theories Project 61

Figure 16. An example of the information displayed by the Equation Ex-
plorer for a specific equation.

The data for these tools is extracted directly from the Lean-formalized proofs in the project’s
GitHub repository, ensuring it always faithfully reflects the current state of progress. Addi-
tionally, the data is automatically updated with each code change using continuous integra-
tion (CI), eliminating the need for manual updates.

62 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

13. Data management

All the data and formalizations generated by the project are placed in the GitHub reposi-
tory34, while the discussion is almost entirely contained in a dedicated channel on the Lean
Zulip35. The implication graph can be downloaded from Equation Explorer36, and can also
indicate the individual Lean theorems required to establish or refute any given implication,
although currently we have only formalized a generating set of implications and refutations
in Lean, rather than the entirety of the implication graph.

14. Conclusions and future directions

This project successfully demonstrated that large-scale explorations of a space of mathemati-
cal statements (in this case, the implications or non-implications between selected equational
laws) can be crowdsourced using modern collaboration platforms and proof assistants. No
single tool or method was able to study the entirety of this space, and many informal proofs
generated contained non-trivial errors; but there were multiple techniques that could treat
significant portions of the space, and through a collaborative effort combined with the proof
validation provided by Lean, one could synthesize these partial and fallible contributions into
a complete and validated description of the entire implication graph. While this particular
graph was a comparatively simple structure to analyze, we believe that this paradigm could
also serve as a model for future projects devoted to exploring more sophisticated large-scale
mathematical structures.

Several factors appeared to be helpful in ensuring the success of the project, including the
following:

• A clearly stated primary goal, with an end condition and precise numerical
metrics to measure partial completion. From the outset, there was a specific
goal to attain, namely to completely determine and then formalize the implication
graph on the original set of 4694 laws. Progress towards that goal could be measured
by a number of metrics, such as the number of implications that were conjectured but
unformalized, or not conjectured at all. Such metrics allowed participants to see how
partial contributions, such as formalizing a certain subset of implications, advanced
the project directly towards its primary goal. This is not to say that all activity was
devoted solely towards this primary goal, but it did provide a coherent focus to help
guide and motivate other secondary activities.

• A highly modular project. It was possible for any given coauthor to work on a
small subset of implications and focus on a single proof technique, without needing
to understand or rely upon other contributions to the project. This allowed the
work to be both parallelized and decentralized; many contributors launched their
own investigations broadly within the framework of the project, without needing
centralized approval or coordination.

34https://github.com/teorth/equational_theories
35https://leanprover.zulipchat.com/#narrow/channel/458659-Equational
36https://teorth.github.io/equational_theories/implications/

https://github.com/teorth/equational_theories
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational
https://teorth.github.io/equational_theories/implications/

Equational Theories Project 63

• Low levels of required mathematical and formal prerequisites. The problems
considered in the project did not require advanced mathematical knowledge (beyond
a general familiarity with abstract algebra), nor a sophisticated understanding of
formal proof assistants. This permitted contributions from a broad spectrum of
participants, including those without a graduate mathematical training, as well as
mathematicians with no experience in proof formalization. At a technical level, it also
meant that formalization of proofs into Lean could be done immediately once certain
base definitions (such as Magma) were constructed. This can be compared for instance
with the recent formalization of the Polynomial Freiman–Ruzsa conjecture37, in which
significant effort was expended in the first few days to settle on a suitable framework
to formalize the mathematics of Shannon entropy. While some more sophisticated
formal structures (such as the syntactic description of laws as pairs of words in a
FreeMagma) were later introduced in the project, it was relatively straightforward to
refactor previously written code to be compatible with these structures as they were
incorporated into the project.

• Variable levels of difficulty, and the amenability to partial progress. Tra-
ditional mathematics projects generally involve a small number of extremely hard
problems, with incomplete progress on these problems being difficult to convert into
clean partial results. In contrast, the ETP studied a large number of problems with
a very broad range of difficulty, so that even if a given proof strategy did not work
for a given implication, it could be the case that there was some class of easier impli-
cations for which the strategy was successful. This allowed for a means to validate
such ideas, and allowed the project to build up a useful and diverse toolbox of proof
techniques which became increasingly necessary to handle the final and most difficult
implications in the project. It also created a dynamic in which the project initially
focused on easy techniques to resolve a significant fraction of the implications, grad-
ually transitioning into more sophisticated methods that focused on a much smaller
number of outstanding implications that had proven resistant (or even “immune”) to
all easier approaches.

• Centralized and standardized platforms for discussion, project manage-
ment, and validation. While the project was decentralized at the level of the par-
ticipant, there was a centralized location (a channel38 on the Lean Zulip) to discuss all
aspects of the project, as well as a centralized repository39 to track all contributions
and outstanding issues, a centralized blueprint40 to describe technical details of proofs
to be formalized, and a single formal language (Lean) to validate all contributions.
A significant portion of the activity in the early stages of the project was devoted
to setting out the standards and workflows for handling both the discussion and the
contributions, in particular setting up a contributions page41 and adopting a code of
conduct42. This gave some structure and predictability to what might otherwise be
a chaotic effort.

37https://github.com/teorth/pfr
38https://leanprover.zulipchat.com/#narrow/channel/458659-Equational
39https://github.com/teorth/equational_theories
40https://teorth.github.io/equational_theories/blueprint/
41https://github.com/teorth/equational_theories/blob/main/CONTRIBUTING.md
42https://github.com/teorth/equational_theories/blob/main/CODE_OF_CONDUCT.md

https://github.com/teorth/pfr
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational
https://github.com/teorth/equational_theories
https://teorth.github.io/equational_theories/blueprint/
https://github.com/teorth/equational_theories/blob/main/CONTRIBUTING.md
https://github.com/teorth/equational_theories/blob/main/CODE_OF_CONDUCT.md

64 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

• Development of custom visualization tools. As discussed in Section 12, several
tools were developed (in part with AI assistance) to help visualize and navigate
the implication graph while it was in a partial stage of development, allowing for
participants to independently identify problems to work on, and to validate and
use the contributions of other participants even before they were fully formalized.
For instance, a participant could propose a finite counterexample to an implication
by posting a link to the magma in Finite Magma Explorer, allowing for immediate
validation of the counterexample, or use Equation Explorer or Graphiti to observe
some interesting phenomenon in the implication graph that other participants could
reproduce and study.

• Applicability of existing software tools. As described in Section 7, many of the
implications in the ETP were amenable to application of “off-the-shelf” automated
theorem provers (ATPs); while some trial and error was needed to determine good
choices of parameters, these tools could largely be applied directly to the project
without extensive customization. (However, the later transcription of ATP output
into Lean was sometimes non-trivial.)

• Receptiveness to new techniques and tools. Crucially, the methods used to
make progress on the project were not specified in advance, and contributions from
participants with new ideas, techniques, or software tools that were not initially
anticipated were welcomed. For instance, the theory of canonizers (Section 6.3) was
not initially known to the first project participants, but was brought to the attention
of the project by a later contributor. Conversely, while there were hopes expressed
early in the project that modern large language models (LLMs) could automatically
generate many of the proofs required, it turned out in practice that other forms of
automation, particularly ATPs, were significantly more effective at this task (at least
if one restricted to publicly available LLMs), and the project largely moved away from
the use of such LLMs (other than to help create the code for the visualization tools).

There are several mathematical and computational questions that could potentially be ad-
dressed in future work building upon the outcomes of ETP. Here is a list of some possible
such future directions.

(1) Does the law x ≃ y ⋄ (x ⋄ ((y ⋄ x) ⋄ y)) (E677) imply x ≃ ((x ⋄ x) ⋄ x) ⋄ x (E255) for
finite magmas, i.e., E677 |=fin E255? This is the last remaining implication (up to
duality) for finite magmas to be resolved. A number of partial results on this problem
may be found at https://teorth.github.io/equational_theories/blueprint/
677-chapter.html.

(2) The ETP focused on determining relations E |= E′ between one law and another.
Could the same methods also systematically determine more complex logical rela-
tions, such as E1 ∧ E2 |= E3, for all laws E1, E2, E3 in a specified set? This includes
the question of implications between equational laws in semigroups (associative mag-
mas). One could also consider implications involving magma properties that are not
equational laws, such as cancellability or existence of a unit element.

(3) Call an implication E1 |= E2 “irreducible” if there is no equational law E with E1 |=
E |= E2, other than those laws equivalent to either E1 or E2. For instance, E2 |= E4 is
irreducible, since E4 implies any law of the form w ≃ w′ where the left-most variable

https://teorth.github.io/equational_theories/blueprint/677-chapter.html
https://teorth.github.io/equational_theories/blueprint/677-chapter.html

Equational Theories Project 65

of w matches the left-most variable of w′. On the other hand, E4 in conjunction with
any law not of that form yields E2. Similar ad hoc arguments can produce other
irreducible implications, e.g., E2 |= En for n = 5, 895, 26302. Could one replicate
the ETP to classify all stable implications among the same 4694 equations studied
in this project?

(4) For a given finite non-implication E1 ̸|=fin E2, are there bounds on the proportion of
variable assignments for which E2 holds, similarly to how in a finite group either all
elements square to the neutral element, or at most 3/4 of them do?

Some other directions do not concern implications between laws, but may benefit from data
generated by the ETP.

(5) Does the law x ≃ y ⋄ (y ⋄ (y ⋄ (x ⋄ (z ⋄ y)))) (E5093) have any infinite models? In
[34] it was shown that it has no non-trivial finite models, but the infinite model case
was left as an open question. A partial classification of laws of order 5 with infinite
models but no finite models is given at https://teorth.github.io/equational_
theories/blueprint/order-5-austin-laws.html.

(6) A key feature of finite magmas M is that they are surjunctive, in the sense that any
definable map from M to itself that is injective, is also surjective (or vice versa),
where “definable” is with respect to the language of magmas. Are there equational
theories that admit surjunctive models, but yet do not have any non-trivial finite
models?

(7) Are all finite weak central groupoids, namely magmas obeying x ≃ (y⋄x)⋄(x⋄(z⋄y))
(E1485), necessarily of size n2 or 2n2? More generally, what is the spectrum of
each law or conjunction of laws, and what are the possible asymptotics for the fine
spectrum in terms of model size?

(8) How “stable” is a given law E? For instance, if a finite magma satisfies a law E
some proportion 1 − ε of the time, with ε small, can the magma be perturbed into
one that satisfies E exactly? Related to this is the question of whether a law E is
“rigid” or “mutable”: is it possible to add an element or to make a small number
of modifications to a magma satisfying E, in a way that still preserves E? Such
properties helped suggest whether certain magma construction techniques, such as
modifying a base magma, were likely to be successful.

(9) For each law, can its free magma with one or more generators be described explicitly?
(10) Which laws admit an interesting theory of smooth magmas, analogous to Lie groups?

14.1. Miscellaneous remarks. It is possible that the timing in which certain proof meth-
ods were introduced into the project created some opportunity costs. For instance, by
deploying automated theorem provers at an early stage, we might have settled some im-
plications that had more interesting human-readable proofs that we missed. Similarly, we
developed some sophisticated theory for the equation E854, such as Corollary 6.12, that is
now superseded by finite counterexamples; but had the finite counterexamples been discov-
ered first, we would not have found the theoretical arguments. It may be productive for
future work to revisit some portions of the implication graph and locate alternate proofs and
methods.

https://teorth.github.io/equational_theories/blueprint/order-5-austin-laws.html
https://teorth.github.io/equational_theories/blueprint/order-5-austin-laws.html

66 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

Acknowledgments

We are grateful to the many additional participants in the Equational Theories Project for
their numerous comments and encouragement, with particular thanks to Stanley Burris,
Edward van de Meent and David Roberts. We warmly thank Michael Kinyon for generously
sharing his expertise with Prover9–Mace4, and we are likewise grateful to Laura Kovács,
Márton Hajdu, Martin Suda, and Michael Rawson of the Vampire development team for
their helpful explanations regarding Vampire’s options and functionality. Additionally, we
note that Shreyas Srinivas is a doctoral student at the Saarbrücken Graduate School for
Computer Science.

Appendix A. Numbering system

In this section we record the numbering conventions we use for equational laws.

For this formal definition we use the natural numbers 0, 1, 2, . . . to represent and order
indeterminate variables; however, in the main text, we use the symbols x, y, z, w, u, v, r, s, t
instead (and do not consider any laws with more than eight variables).

To define the ordering we use on equational laws, we first consider the case where there is a
single indeterminate ∗. We place a well-ordering on words w, w′ with a single indeterminate
∗ by declaring w > w′ if one of the following holds:

• w has a larger order than w′.
• w = w1 ⋄ w2 and w′ = w′

1 ⋄ w′
2 have the same order n ≥ 1 with w1 > w′

1.
• w = w1 ⋄ w2 and w′ = w′

1 ⋄ w′
2 have the same order n ≥ 1 with w1 = w′

1 and w2 > w′
2.

Thus
∗ < ∗ ⋄ ∗ < ∗ ⋄ (∗ ⋄ ∗) < (∗ ⋄ ∗) ⋄ ∗

< ∗ ⋄ (∗ ⋄ (∗ ⋄ ∗)) < ∗ ⋄ ((∗ ⋄ ∗) ⋄ ∗) < . . .

We similarly place a well-ordering on equational laws w1 ≃ w2 with a single indeterminate
∗ by declaring w1 ≃ w2 > w′

1 ≃ w′
2 if one of the following holds:

• w1 ≃ w2 has a larger order than w′
1 ≃ w′

2.
• If w1 ≃ w2 has the same order as w′

1 ≃ w′
2, and w1 > w′

1.
• If w1 ≃ w2 has the same order as w′

1 ≃ w′
2, w1 = w′

1, and w2 > w′
2.

Thus for instance
(∗ ⋄ ∗ ≃ ∗ ⋄ (∗ ⋄ ∗)) < (∗ ⋄ ∗ ≃ (∗ ⋄ ∗) ⋄ ∗).

Finally for equational laws with alphabet x, y, z, w, u, v, r, s, t, define the shape of that law
to be the law formed by replacing all indeterminates with ∗; for instance, the shape of
x ⋄ (y ⋄ z) = (x ⋄ y) ⋄ z (E4512), is ∗ ⋄ (∗ ⋄ ∗) ≃ (∗ ⋄ ∗) ⋄ ∗. We then place a well-ordering

Equational Theories Project 67

w1 ≃ w2 with indeterminates x, y, z, w, u, v, r, s, t by declaring w1 ≃ w2 > w′
1 ≃ w′

2 if one of
the following holds:

• The shape of w1 ≃ w2 is greater than the shape of w′
1 ≃ w′

2.
• w1 ≃ w2 and w′

1 ≃ w′
2 have the same shape, and the string of variables appearing in

w1 ≃ w2 is lower in the lexicographical ordering (using x < y < z < w < u < v <
r < s < t) than the corresponding string for w′

1 ≃ w′
2.

Thus for instance any law of shape ∗ ⋄ ∗ ≃ ∗ ⋄ (∗ ⋄ ∗) is lower than any law of shape
∗ ⋄ ∗ ≃ (∗ ⋄ ∗) ⋄ ∗. Among the laws of shape ∗ ⋄ ∗ ≃ ∗ ⋄ (∗ ⋄ ∗), the lowest is x ⋄ x ≃ x ⋄ (x ⋄ x),
which is less than (say) x ⋄ x ≃ y ⋄ (y ⋄ y), which is in turn less than x ⋄ y ≃ x ⋄ (x ⋄ x).

We say that two equational laws are definitionally equivalent43 if one can be obtained from
another by some combination of relabeling the variables and applying the symmetric law
w1 ≃ w2 ⇐⇒ w2 ≃ w1. For instance, (0 ⋄ 1) ⋄ 2 ≃ 1 is definitionally equivalent to
0 ≃ (1 ⋄ 0) ⋄ 2. We then replace every equational law with their minimal element in their
definitional equivalence class, which can be viewed as the normal form for that law; for
instance, the normal form of (0 ⋄ 1) ⋄ 2 ≃ 1 would be 0 ≃ (1 ⋄ 0) ⋄ 2. Finally, we eliminate
any law of the form w ≃ w other than 0 ≃ 0. We then number the remaining equations
E1, E2, For instance, E1 is the trivial law 0 ≃ 0, E2 is the constant law 0 ≃ 1, E3 is the
idempotent law 0 ≃ 0 ⋄ 0, and so forth. Lists and code for generating these equations, or the
equation number attached to a given equation, can be found in the ETP repository.

The number of equations in this list of order n = 0, 1, 2, . . . is given by
2, 5, 39, 364, 4284, 57882, 888365, . . .

(https://oeis.org/A376640). The number can be computed to be
Cn+1Bn+2/2

if n is odd, 2 if n = 0, and
(Cn+1Bn+2 + Cn/2(2Dn+2 − Bn+2))/2 − Cn/2Bn/2+1

if n > 2 is even, where Cn, Bn are the Catalan and Bell numbers, and Dn is the number of
partitions of [n] up to reflection, which for n = 0, 1, 2, . . . is

1, 1, 2, 4, 11, 32, 117, . . .

(https://oeis.org/A103293). A proof of this claim can be found in the ETP blueprint.
In particular, there are 4694 equations of order at most 4.

Below we record some specific equations appearing in this paper, using the alphabet x, y, z,
w in place of 0, 1, 2, 3 for readability.

x ≃ x (Trivial law)(E1)
x ≃ y (Singleton law)(E2)
x ≃ x ⋄ x (Idempotent law)(E3)

43This can be distinguished from the weaker notion of propositional equivalence (mutual entailment) used
in the rest of the paper.

https://oeis.org/A376640
https://oeis.org/A103293

68 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

x ≃ x ⋄ y (Left-absorptive law)(E4)
x ≃ y ⋄ x (Right-absorptive law)(E5)
x ≃ x ⋄ (y ⋄ x)(E10)
x ≃ x ⋄ (y ⋄ y) (Right-unit squares law)(E11)
x ≃ (x ⋄ x) ⋄ x(E23)

x ⋄ x ≃ y ⋄ y (Unipotence law)(E40)
x ⋄ x ≃ y ⋄ z (Constant law)(E41)
x ⋄ y ≃ y ⋄ x (Commutative law)(E43)
x ⋄ y ≃ z ⋄ w (Constant law)(E46)

x ≃ x ⋄ (x ⋄ (x ⋄ x))(E47)
x ≃ y ⋄ (y ⋄ (x ⋄ y))(E73)
x ≃ (x ⋄ x) ⋄ (x ⋄ x)(E151)
x ≃ (y ⋄ x) ⋄ (x ⋄ z) (Central groupoid law)(E168)
x ≃ (x ⋄ (x ⋄ y)) ⋄ y(E206)
x ≃ ((x ⋄ x) ⋄ x) ⋄ x(E255)

x ⋄ y ≃ x ⋄ (y ⋄ z) (Right reduction law)(E327)
x ⋄ y ≃ (x ⋄ y) ⋄ y (Right idempotence law)(E378)
x ⋄ y ≃ (z ⋄ x) ⋄ y (Left reduction law)(E395)

x ≃ x ⋄ (x ⋄ (x ⋄ (y ⋄ x)))(E413)
x ≃ y ⋄ (z ⋄ (x ⋄ (y ⋄ z))) (Tarski’s axiom)(E543)
x ≃ y ⋄ (x ⋄ ((y ⋄ x) ⋄ y)) (Last open implication)(E677)
x ≃ x ⋄ ((x ⋄ x) ⋄ (x ⋄ x))(E817)
x ≃ x ⋄ ((y ⋄ z) ⋄ (x ⋄ z))(E854)
x ≃ x ⋄ ((y ⋄ (y ⋄ x)) ⋄ x)(E1045)
x ≃ x ⋄ ((y ⋄ (z ⋄ x)) ⋄ x)(E1055)
x ≃ y ⋄ ((y ⋄ (x ⋄ x)) ⋄ y)(E1110)
x ≃ y ⋄ ((y ⋄ (x ⋄ z)) ⋄ z)(E1117)
x ≃ y ⋄ (((x ⋄ y) ⋄ x) ⋄ y)(E1286)
x ≃ (y ⋄ x) ⋄ (x ⋄ (z ⋄ y)) (Weak central groupoids)(E1485)
x ≃ (y ⋄ z) ⋄ (y ⋄ (x ⋄ z)) (Boolean groups)(E1571)
x ≃ (x ⋄ x) ⋄ ((x ⋄ x) ⋄ x)(E1629)
x ≃ (x ⋄ y) ⋄ ((x ⋄ y) ⋄ y)(E1648)
x ≃ (x ⋄ y) ⋄ ((y ⋄ y) ⋄ z)(E1659)
x ≃ (y ⋄ x) ⋄ ((x ⋄ z) ⋄ z) (Equivalent to (E2))(E1689)
x ≃ (y ⋄ y) ⋄ ((y ⋄ x) ⋄ y)(E1729)
x ≃ (y ⋄ (x ⋄ (y ⋄ x))) ⋄ y(E2301)

Equational Theories Project 69

x ≃ (x ⋄ ((x ⋄ x) ⋄ x)) ⋄ x(E2441)
x ≃ ((y ⋄ (x ⋄ y)) ⋄ x) ⋄ y (Dual of (E677))(E2910)

x ⋄ y ≃ x ⋄ (y ⋄ (x ⋄ y))(E3316)
x ⋄ y ≃ x ⋄ ((y ⋄ y) ⋄ z)(E3523)
x ⋄ y ≃ (x ⋄ z) ⋄ (y ⋄ z)(E3737)
x ⋄ y ≃ (x ⋄ (y ⋄ x)) ⋄ y(E3925)

x ⋄ (y ⋄ x) ≃ x ⋄ (y ⋄ z)(E4315)
x ⋄ (x ⋄ x) ≃ (x ⋄ x) ⋄ x (Cube-associativity law)(E4380)
x ⋄ (y ⋄ y) ≃ (y ⋄ y) ⋄ x (Central squares law)(E4482)
x ⋄ (y ⋄ z) ≃ (x ⋄ y) ⋄ z (Associative law)(E4512)
x ⋄ (y ⋄ z) ≃ (y ⋄ z) ⋄ x (Central products law)(E4531)

x ≃ y ⋄ (y ⋄ (y ⋄ (x ⋄ (z ⋄ y))))(E5093)
x ≃ y ⋄ (z ⋄ ((y ⋄ x) ⋄ (z ⋄ (y ⋄ z)))) (Eisenstein modules)(E85914)
x ≃ y ⋄ (z ⋄ ((y ⋄ z) ⋄ (w ⋄ (x ⋄ w)))) (Gaussian modules)(E86082)
x ≃ (y ⋄ ((x ⋄ y) ⋄ y)) ⋄ (x ⋄ (z ⋄ y)) (Sheffer stroke)(E345169)

We also list some order-8 characterizations of group division relevant for Section 10.
x ≃ y ⋄ ((((x ⋄ x) ⋄ x) ⋄ z) ⋄ (((x ⋄ x) ⋄ y) ⋄ z)) (McCune law)(E42302852)
x ≃ y ⋄ ((((x ⋄ x) ⋄ x) ⋄ z) ⋄ (((y ⋄ y) ⋄ y) ⋄ z))(E42302946)
x ≃ y ⋄ ((((y ⋄ y) ⋄ x) ⋄ z) ⋄ (((y ⋄ y) ⋄ y) ⋄ z)) (Higman–Neumann law)(E42323216)
x ≃ (y ⋄ y) ⋄ (y ⋄ ((x ⋄ z) ⋄ (((x ⋄ x) ⋄ y) ⋄ z))) (in finite magmas)(E67953597)
x ≃ ((y ⋄ y) ⋄ y) ⋄ ((((x ⋄ x) ⋄ x) ⋄ z) ⋄ (y ⋄ z))(E89176740)
x ≃ ((y ⋄ y) ⋄ ((x ⋄ z) ⋄ x)) ⋄ ((z ⋄ w) ⋄ (x ⋄ w))(E102744082)
x ≃ ((y ⋄ y) ⋄ (y ⋄ (x ⋄ (((y ⋄ y) ⋄ y) ⋄ z)))) ⋄ z (McCune law)(E147976245)

Appendix B. Author contributions

In a companion document to this paper, the contributions of each author of this paper to the
ETP are described, following the standard CRediT categories44. Below are the affiliations
and grant acknowledgments of individual participants.

• Matthew Bolan: University of Toronto, matthew.bolan@mail.utoronto.ca.
Supported by an Ontario Graduate Scholarship.

• Joachim Breitner: Lean FRO, mail@joachim-breitner.de, ORCID
0000-0003-3753-6821

• Jose Brox: IMUVA-Mathematics Research Institute, Universidad de Valladolid,
josebrox@uva.es. Supported by a postdoctoral fellowship “Convocatoria 2021”
funded by Universidad de Valladolid, and partially supported by grant

44https://credit.niso.org/

https://github.com/teorth/equational_theories/blob/main/paper/contributions.md
https://credit.niso.org/

70 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

PID2022-137283NB-C22 funded by MCIN/AEI/10.13039/501100011033 and ERDF
“A way of making Europe”

• Nicholas Carlini: Unaffiliated, nicholas@carlini.com
• Mario Carneiro: Chalmers University of Technology & Gothenburg University,

Sweden, marioc@chalmers.se
• Floris van Doorn: University of Bonn, vdoorn@math.uni-bonn.de
• Martin Dvorak: Institute of Science and Technology Austria,

martin.dvorak@matfyz.cz
• Andrés Goens: TU Darmstadt, andres.goens@tu-darmstadt.de
• Aaron Hill: Unaffiliated, aa1ronham@gmail.com
• Harald Husum: Intelecy, harald.husum@intelecy.com
• Hernán Ibarra Mejia: Unaffiliated, hernan@ibarramejia.com
• Zoltan A. Kocsis: University of New South Wales, z.kocsis@unsw.edu.au
• Bruno Le Floch: CNRS and Laboratoire de Physique Théorique et Hautes Énergies,

Sorbonne Université, blefloch@lpthe.jussieu.fr, ORCID 0000-0002-3965-9705.
Partially supported by the grants Projet-ANR-23-CE40-0010 and
HORIZON-MSCA-2022-SE/101131233

• Amir Livne Bar-on: Unaffiliated, amir.livne.baron@gmail.com
• Lorenzo Luccioli: University of Bologna, lorenzo.luccioli2@unibo.it
• Douglas McNeil: Unaffiliated, dsm054@gmail.com
• Alex Meiburg: Perimeter Institute for Theoretical Physics / University of Waterloo

Institute for Quantum Computing, teqtp@ohaithe.re
• Pietro Monticone: University of Trento, pietro.monticone@studenti.unitn.it
• Pace P. Nielsen: Department of Mathematics, Brigham Young University,

pace@math.byu.edu
• Emmanuel Osalotioman Osazuwa: University of Benin,

emmanuel.osazuwa@physci.uniben.edu, ORCID 0009-0003-1415-8263
• Giovanni Paolini: University of Bologna, g.paolini@unibo.it
• Marco Petracci: University of Bologna, marco.petracci@studio.unibo.it
• Bernhard Reinke: Aix-Marseille Université, bernhard.reinke@univ-amu.fr
• David Renshaw: Institute for Computer-Aided Reasoning in Mathematics,

renshaw@icarm.io
• Marcus Rossel: Barkhausen Institut, marcus.rossel@barkhauseninstitut.org
• Cody Roux: Amazon Web Services, cody.roux@gmail.com
• Jérémy Scanvic: Laboratoire de Physique, École Normale Supérieure de Lyon,

jeremy.scanvic@ens-lyon.fr
• Shreyas Srinivas: CISPA Helmholtz Center for Information Security, Saarbrücken,

Germany, shreyas.srinivas@cispa.de
• Anand Rao Tadipatri: University of Cambridge, art71@cam.ac.uk
• Terence Tao: Department of Mathematics, UCLA, tao@math.ucla.edu. Supported

by the James and Carol Collins Chair, the Mathematical Analysis & Application
Research Fund, and by NSF grants DMS-2347850, and is particularly grateful to
recent donors to the Research Fund, ORCID 0000-0002-0140-7641

• Vlad Tsyrklevich: Unaffiliated, vlad@tsyrklevi.ch, ORCID 0009-0009-9511-5460

Equational Theories Project 71

• Fernando Vaquerizo-Villar: Biomedical Engineering Group, University of
Valladolid, and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, fernando.vaquerizo@uva.es

• Daniel Weber: Ben-Gurion University of the Negev, weberdan@post.bgu.ac.il
• Fan Zheng: Unaffiliated, fanzheng1729@outlook.com

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from https://www.tensorflow.org.

[2] Kristina Aleksandrova, Jan Jakubuv, and Cezary Kaliszyk. Prover9 unleashed: Automated config-
uration for enhanced proof discovery. In Nikolaj Bjørner, Marijn Heule, and Andrei Voronkov, ed-
itors, Proceedings of 25th Conference on Logic for Programming, Artificial Intelligence and Rea-
soning, volume 100 of EPiC Series in Computing, pages 360–369. EasyChair, 2024. URL: https:
//easychair.org/publications/paper/tGgl, doi:10.29007/sd6t.

[3] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers. In Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, pages 399–404,
2009. URL: https://www.ijcai.org/Proceedings/09/Papers/074.pdf.

[4] Gilles Audemard and Laurent Simon. Refining restarts strategies for SAT and UNSAT. In Michela
Milano, editor, Principles and Practice of Constraint Programming - 18th International Conference,
CP 2012, Québec City, QC, Canada, October 8-12, 2012. Proceedings, volume 7514 of Lecture Notes in
Computer Science, pages 118–126. Springer, 2012. doi:10.1007/978-3-642-33558-7_11.

[5] A. K. Austin. A note on models of identities. Proc. Amer. Math. Soc., 16:522–523, 1965. doi:10.2307/
2034688.

[6] A. K. Austin. Finite models for laws in two variables. Proc. Amer. Math. Soc., 17:1410–1412, 1966.
doi:10.2307/2035753.

[7] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, Cambridge,
1998. doi:10.1017/CBO9781139172752.

[8] Filip Bártek, Ahmed Bhayat, Robin Coutelier, Márton Hajdu, Matthias Hetzenberger, Petra Hoz-
zová, Laura Kovács, Jakob Rath, Michael Rawson, Giles Reger, Martin Suda, Johannes Schoiss-
wohl, and Andrei Voronkov. The Vampire diary. In Ruzica Piskac and Zvonimir Rakamarić, ed-
itors, Computer Aided Verification, pages 57–71, Cham, 2025. Springer Nature Switzerland. doi:
10.1007/978-3-031-98682-6_4.

[9] Alexander Bentkamp, Jasmin Blanchette, Visa Nummelin, Sophie Tourret, Petar Vukmirovic, and Uwe
Waldmann. Mechanical mathematicians. Commun. ACM, 66(4):80–90, 2023. doi:10.1145/3557998.

[10] George M Bergman. The diamond lemma for ring theory. Advances in Mathematics, 29(2):178–218,
1978. doi:10.1016/0001-8708(78)90010-5.

[11] Joel Berman and Stanley Burris. A computer study of 3-element groupoids. In Logic and algebra, pages
379–429. Routledge, 2017.

[12] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT competition 2020. In Tomas Balyo, Nils Froleyks, Marijn
Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of SAT Competition 2020 – Solver
and Benchmark Descriptions, volume B-2020-1 of Department of Computer Science Report Series B,
pages 51–53. University of Helsinki, 2020.

[13] Matthew Bolan, Joachim Breitner, Jose Brox, Nicholas Carlini, Mario Carneiro, Floris van Doorn,
Martin Dvorak, Andrés Goens, Aaron Hill, Harald Husum, Hernán Ibarra Mejia, Zoltan Kocsis, Bruno

https://www.tensorflow.org
https://easychair.org/publications/paper/tGgl
https://easychair.org/publications/paper/tGgl
https://doi.org/10.29007/sd6t
https://www.ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1007/978-3-642-33558-7_11
https://doi.org/10.2307/2034688
https://doi.org/10.2307/2034688
https://doi.org/10.2307/2035753
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/978-3-031-98682-6_4
https://doi.org/10.1007/978-3-031-98682-6_4
https://doi.org/10.1145/3557998
https://doi.org/10.1016/0001-8708(78)90010-5

72 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

Le Floch, Amir Livne Bar-on, Lorenzo Luccioli, Douglas McNeil, Alex Meiburg, Pietro Monticone,
Pace P. Nielsen, Emmanuel Osalotioman Osazuwa, Giovanni Paolini, Marco Petracci, Bernhard Reinke,
David Renshaw, Marcus Rossel, Cody Roux, Jérémy Scanvic, Shreyas Srinivas, Anand Rao Tadipatri,
Terence Tao, Vlad Tsyrklevich, Fernando Vaquerizo-Villar, Daniel Weber, and Fan Zheng. The Equa-
tional Theories project, September 2024. URL: https://github.com/teorth/equational_theories.

[14] Stanley Burris and H. P. Sankappanavar. A course in universal algebra, volume 78 of Grad. Texts Math.
Springer, Cham, 1981.

[15] Kevin Buzzard and Richard Taylor. FLT: An ongoing Lean formalization of Fermat’s last theorem,
2025. URL: https://github.com/ImperialCollegeLondon/FLT.

[16] Mario Carneiro. Lean4Lean: Verifying a typechecker for Lean, in Lean, 2025. arXiv:2403.14064.
[17] Joshua Clune, Yicheng Qian, Alexander Bentkamp, and Jeremy Avigad. Duper: A proof-producing

superposition theorem prover for dependent type theory. In Yves Bertot, Temur Kutsia, and Michael
Norrish, editors, 15th International Conference on Interactive Theorem Proving, ITP 2024, September
9-14, 2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2024. doi:10.4230/LIPICS.ITP.2024.10.

[18] The bbchallenge Collaboration, Justin Blanchard, Daniel Briggs, Konrad Deka, Nathan Fenner, Yannick
Forster, Georgi Georgiev (Skelet), Matthew L. House, Rachel Hunter, Iijil, Maja Kądziołka, Pavel
Kropitz, Shawn Ligocki, mxdys, Mateusz Naściszewski, savask, Tristan Stérin, Chris Xu, Jason Yuen,
and Théo Zimmermann. Determination of the fifth Busy Beaver value, 2025. URL: https://github.
com/bbchallenge/bbchallenge-paper, arXiv:2509.12337.

[19] Leonardo de Moura and Nikolaj Bjørner. Satisfiability modulo theories: An appetizer. In Marcel Viní-
cius Medeiros Oliveira and Jim Woodcock, editors, Formal Methods: Foundations and Applications,
pages 23–36, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[20] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Efficient e-matching for SMT solvers. In Frank
Pfenning, editor, Automated Deduction - CADE-21, 21st International Conference on Automated De-
duction, Bremen, Germany, July 17-20, 2007, Proceedings, volume 4603 of Lecture Notes in Computer
Science, pages 183–198. Springer, 2007. doi:10.1007/978-3-540-73595-3_13.

[21] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R. Ra-
makrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.
doi:10.1007/978-3-540-78800-3_24.

[22] Yael Dillies and Terence Tao. Formalization of the Polynomial Freiman-Ruzsa conjecture of Marton,
November 2023. URL: https://github.com/teorth/pfr.

[23] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198–208, 1983. doi:10.1109/TIT.1983.1056650.

[24] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo de Moura. A metapro-
gramming framework for formal verification. Proc. ACM Program. Lang., 1(ICFP):34:1–34:29, 2017.
doi:10.1145/3110278.

[25] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and Armando Tac-
chella, editors, Theory and Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume 2919 of Lecture
Notes in Computer Science, pages 502–518. Springer, 2003. doi:10.1007/978-3-540-24605-3_37.

[26] Trevor Evans. Products of points—some simple algebras and their identities. Amer. Math. Monthly,
74:362–372, 1967. doi:10.2307/2314563.

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. URL: http:
//www.deeplearningbook.org.

[28] Timothy Gowers and Michael Nielsen. Massively collaborative mathematics. Nature, 461(7266):879–881,
October 2009. doi:10.1038/461879a.

[29] Graham Higman and B. H. Neumann. Groups as groupoids with one law. Publ. Math. Debrecen, 2:215–
221, 1952. doi:10.5486/pmd.1952.2.3-4.10.

[30] Alexey Ignatiev, Antonio Morgado, and João Marques-Silva. PySAT: A Python toolkit for prototyping
with SAT oracles. In SAT, pages 428–437, 2018. doi:10.1007/978-3-319-94144-8_26.

https://github.com/teorth/equational_theories
https://github.com/ImperialCollegeLondon/FLT
https://arxiv.org/abs/2403.14064
https://doi.org/10.4230/LIPICS.ITP.2024.10
https://github.com/bbchallenge/bbchallenge-paper
https://github.com/bbchallenge/bbchallenge-paper
https://arxiv.org/abs/2509.12337
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/teorth/pfr
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1145/3110278
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.2307/2314563
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1038/461879a
https://doi.org/10.5486/pmd.1952.2.3-4.10
https://doi.org/10.1007/978-3-319-94144-8_26

Equational Theories Project 73

[31] Alexey Ignatiev, Zi Li Tan, and Christos Karamanos. Towards universally accessible SAT technology.
In SAT, pages 4:1–4:11, 2024. doi:10.4230/LIPICS.SAT.2024.16.

[32] Mikoláš Janota. Experimental results for Vampire on the Equational Theories project, 2025. arXiv:
2508.15856.

[33] Andrzej Kisielewicz. Varieties of algebras with no nontrivial finite members. In Lattices, semigroups,
and universal algebra (Lisbon, 1988), pages 129–136. Plenum, New York, 1990.

[34] Andrzej Kisielewicz. Austin identities. Algebra Universalis, 38(3):324–328, 1997. doi:10.1007/
s000120050057.

[35] Donald E. Knuth. Notes on central groupoids. J. Combinatorial Theory, 8:376–390, 1970.
[36] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In Computational

Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 263–297. Pergamon, Oxford-New York-
Toronto, Ont., 1970.

[37] Thomas Koehler, Andrés Goens, Siddharth Bhat, Tobias Grosser, Phil Trinder, and Michel Steuwer.
Guided equality saturation. Proc. ACM Program. Lang., 8(POPL):1727–1758, 2024. doi:10.1145/
3632900.

[38] Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha Sharygina
and Helmut Veith, editors, Computer Aided Verification - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer
Science, pages 1–35. Springer, 2013. doi:10.1007/978-3-642-39799-8_1.

[39] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic Point of View, Second
Edition. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016. doi:10.1007/
978-3-662-50497-0.

[40] André Kündgen, Gregor Leander, and Carsten Thomassen. Switchings, extensions, and reductions in
central digraphs. J. Combin. Theory Ser. A, 118(7):2025–2034, 2011. doi:10.1016/j.jcta.2011.03.
009.

[41] Jannis Limperg and Asta Halkjær From. Aesop: White-box best-first proof search for Lean. In Robbert
Krebbers, Dmitriy Traytel, Brigitte Pientka, and Steve Zdancewic, editors, Proceedings of the 12th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023, Boston, MA, USA,
January 16-17, 2023, pages 253–266. ACM, 2023. doi:10.1145/3573105.3575671.

[42] Patrick Massot. leanblueprint: plasTeX plugin to build formalization blueprints. URL: https://
github.com/PatrickMassot/leanblueprint.

[43] W. McCune. Prover9 and Mace4, 2005–2010. URL: http://www.cs.unm.edu/~mccune/prover9/.
[44] William McCune. Solution of the Robbins problem. J. Automat. Reason., 19(3):263–276, 1997. doi:

10.1023/A:1005843212881.
[45] William McCune. Single axioms: with and without computers. In Computer mathematics (Chiang Mai,

2000), volume 8 of Lecture Notes Ser. Comput., pages 83–89. World Sci. Publ., River Edge, NJ, 2000.
[46] William McCune, Robert Veroff, Branden Fitelson, Kenneth Harris, Andrew Feist, and Larry Wos.

Short single axioms for Boolean algebra. J. Automat. Reason., 29(1):1–16, 2002. doi:10.1023/A:
1020542009983.

[47] William W McCune. Single axioms for groups and Abelian groups with various operations. Journal of
Automated Reasoning, 10(1):1–13, 1993.

[48] Ralph McKenzie. On spectra, and the negative solution of the decision problem for identities having a
finite nontrivial model. J. Symbolic Logic, 40:186–196, 1975. doi:10.2307/2271899.

[49] N. S. Mendelsohn and R. Padmanabhan. Minimal identities for Boolean groups. J. Algebra, 34:451–457,
1975. doi:10.1016/0021-8693(75)90169-6.

[50] C. A. Meredith and A. N. Prior. Equational logic. Notre Dame J. Formal Logic, 9:212–226, 1968. URL:
http://projecteuclid.org/euclid.ndjfl/1093893457.

[51] Pietro Monticone. LeanProject: A template for blueprint-driven formalization projects in Lean, 2025.
URL: https://github.com/pitmonticone/LeanProject.

[52] Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language.
In Automated Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual
Event, July 12–15, 2021, Proceedings, page 625–635, Berlin, Heidelberg, 2021. Springer-Verlag. doi:
10.1007/978-3-030-79876-5_37.

https://doi.org/10.4230/LIPICS.SAT.2024.16
https://arxiv.org/abs/2508.15856
https://arxiv.org/abs/2508.15856
https://doi.org/10.1007/s000120050057
https://doi.org/10.1007/s000120050057
https://doi.org/10.1145/3632900
https://doi.org/10.1145/3632900
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1016/j.jcta.2011.03.009
https://doi.org/10.1016/j.jcta.2011.03.009
https://doi.org/10.1145/3573105.3575671
https://github.com/PatrickMassot/leanblueprint
https://github.com/PatrickMassot/leanblueprint
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1023/A:1005843212881
https://doi.org/10.1023/A:1005843212881
https://doi.org/10.1023/A:1020542009983
https://doi.org/10.1023/A:1020542009983
https://doi.org/10.2307/2271899
https://doi.org/10.1016/0021-8693(75)90169-6
http://projecteuclid.org/euclid.ndjfl/1093893457
https://github.com/pitmonticone/LeanProject
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37

74 EQUATIONAL THEORIES PROJECT CONTRIBUTORS

[53] V. L. Murskĭı. The existence in the three-valued logic of a closed class with a finite basis having no
finite complete system of identities. Dokl. Akad. Nauk SSSR, 163:815–818, 1965.

[54] V. L. Murskĭı. The existence of a finite basis of identities, and other properties of “almost all” finite
algebras. Problemy Kibernet., 30:43–56, 1975.

[55] Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence closure. In International Confer-
ence on Rewriting Techniques and Applications, pages 453–468. Springer, 2005.

[56] R Padmanabhan. On single equational-axiom systems for Abelian groups. Journal of the Australian
Mathematical Society, 9(1–2):143–152, 1969. doi:10.1017/S144678870000570X.

[57] R. Padmanabhan and R. W. Quackenbush. Equational theories of algebras with distributive congru-
ences. Proc. Amer. Math. Soc., 41:373–377, 1973. doi:10.2307/2039097.

[58] J. D. Phillips and Petr Vojtěchovský. The varieties of loops of Bol-Moufang type. Algebra Universalis,
54(3):259–271, 2005. doi:10.1007/s00012-005-1941-1.

[59] Marcus Rossel. An equality saturation tactic for Lean, 2024. URL: https://www.cfaed.tu-dresden.
de/files/Images/people/chair-cc/theses/2407_Rossel_MA.pdf.

[60] Henry Maurice Sheffer. A set of five independent postulates for Boolean algebras, with application to
logical constants. Trans. Amer. Math. Soc., 14(4):481–488, 1913. doi:10.2307/1988701.

[61] Marlow Sholander. Postulates for commutative groups. The American Mathematical Monthly, 66(2):93–
95, 1959. doi:10.1080/00029890.1959.11989250.

[62] Th. Skolem. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit math-
ematischer Sätze nebst einem Theoreme über dichte Mengen. Krist. Vid. Selsk. Skr. I, 1920, Nr. 4, 36
S. (1922)., 1922.

[63] European Mathematical Society. EMS code of practice for mathematical publication, 19 March 2025.
URL: https://euromathsoc.org/code-of-practice.

[64] Terence Tao. A pilot project in universal algebra to explore new ways to collaborate and use machine
assistance?, Sep 2024. URL: https://terrytao.wordpress.com/2024/09/25/a.

[65] Alfred Tarski. Ein Beitrag zur Axiomatik der Abelschen Gruppen. Fundamenta Mathematicae,
30(1):253–256, 1938. URL: http://eudml.org/doc/213009.

[66] Walter Taylor. The fine spectrum of a variety. Algebra Univers., 5:263–303, 1975. doi:10.1007/
BF02485261.

[67] The Coq Development Team. The Coq proof assistant 8.20.0, December 2024. doi:10.5281/zenodo.
14542673.

[68] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel
Panchekha. egg: Fast and extensible equality saturation. Proc. ACM Program. Lang., 5(POPL):1–29,
2021. doi:10.1145/3434304.

[69] Stephen Wolfram. The physicalization of metamathematics and its implications for the foundations of
mathematics, Mar 2022. arXiv:2204.05123.

https://doi.org/10.1017/S144678870000570X
https://doi.org/10.2307/2039097
https://doi.org/10.1007/s00012-005-1941-1
https://www.cfaed.tu-dresden.de/files/Images/people/chair-cc/theses/2407_Rossel_MA.pdf
https://www.cfaed.tu-dresden.de/files/Images/people/chair-cc/theses/2407_Rossel_MA.pdf
https://doi.org/10.2307/1988701
https://doi.org/10.1080/00029890.1959.11989250
https://euromathsoc.org/code-of-practice
https://terrytao.wordpress.com/2024/09/25/a
http://eudml.org/doc/213009
https://doi.org/10.1007/BF02485261
https://doi.org/10.1007/BF02485261
https://doi.org/10.5281/zenodo.14542673
https://doi.org/10.5281/zenodo.14542673
https://doi.org/10.1145/3434304
https://arxiv.org/abs/2204.05123

	1. Introduction
	2. Notation and mathematical foundations
	3. Formal foundations
	4. Project management
	5. Counterexample constructions
	6. Syntactic arguments
	7. Proof automation
	8. Implications for finite magmas
	9. Spectrum of equational laws
	10. Higman–Neumann laws
	11. AI and Machine Learning contributions
	12. User Interfaces
	13. Data management
	14. Conclusions and future directions
	Acknowledgments
	Appendix A. Numbering system
	Appendix B. Author contributions
	References

