

Natural Product Research

Formerly Natural Product Letters

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/gnpl20

Phytochemical study of 'tajy' (*Handroanthus impetiginosus* (Mart.) Mattos) and 'ka'a ovet#' (*Luehea divaricata* Mart.) extracts

Eva Sánchez-Hernández, Claudia Cáceres-González, José Ignacio García-Valdecasas, Sintya Valdez-Ayala, Jesús Martín-Gil & Pablo Martín-Ramos

To cite this article: Eva Sánchez-Hernández, Claudia Cáceres-González, José Ignacio García-Valdecasas, Sintya Valdez-Ayala, Jesús Martín-Gil & Pablo Martín-Ramos (27 Feb 2024):
Phytochemical study of 'tajy' (*Handroanthus impetiginosus* (Mart.) Mattos) and 'ka'a ovet#' (*Luehea divaricata* Mart.) extracts, *Natural Product Research*, DOI: [10.1080/14786419.2024.2319658](https://doi.org/10.1080/14786419.2024.2319658)

To link to this article: <https://doi.org/10.1080/14786419.2024.2319658>

 View supplementary material [↗](#)

 Published online: 27 Feb 2024.

 Submit your article to this journal [↗](#)

 Article views: 99

 View related articles [↗](#)

 View Crossmark data [↗](#)

Phytochemical study of 'tajy' (*Handroanthus impetiginosus* (Mart.) Mattos) and 'ka'a oveti' (*Luehea divaricata* Mart.) extracts

Eva Sánchez-Hernández^a, Claudia Cáceres-González^{b,c},
José Ignacio García-Valdecasas^c, Sintya Valdez-Ayala^d, Jesús Martín-Gil^a and
Pablo Martín-Ramos^a

^aDepartment of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Palencia, Spain;

^bEscuela de Posgrado, Universidad Nacional de Itapúa, Encarnación, Paraguay; ^cDepartment of Sociology and Social Work, Facultad de Ciencias del Trabajo, Universidad de Valladolid, Palencia, Spain; ^dCentro de Estudios Rurales Interdisciplinarios – CERI, Asunción, Paraguay

ABSTRACT

This study explores the phytochemical composition of leaf extracts from *Handroanthus impetiginosus* (Mart.) Mattos and *Luehea divaricata* Mart., used in a contraceptive decoction by Mbya-Guarani women. The phytocompounds were identified by gas chromatography-mass spectrometry, while Fourier-transform infrared spectroscopy, multi-elemental, and thermal analyses were used to characterise plant biomass. Notably, no phytoconstituent supporting the efficacy of these extracts as female contraceptives was found, except for a small amount (0.3%) of sitosterol. Conversely, *L. divaricata* leaves contained compounds like 1,3-dihydroxyacetone dimer, N-methyl-N-nitroso-2-propanamine, 2-methoxy-N-(2-methoxyethyl)-N-methyl-ethanamine, and 1,3,5-triazine-2,4,6-triamine, potentially exerting cytotoxic, genotoxic, and toxicogenomic effects. Due to the absence of scientific support for the claimed contraceptive efficacy and the presence of safety concerns, we propose an alternative valorisation pathway centred on the presence of phytochemicals exhibiting antimicrobial activity. This proposition is substantiated by their considerable *in vitro* efficacy against *Botrytis cinerea*.

- Multielemental, vibrational, and thermal analyses of plant parts
- Identification of extract phytoconstituents by GC-MS
- Antifungal assays

↓

- No support for the efficacy of these extracts as female contraceptives
- Presence of cytotoxic, genotoxic, and toxicogenomic phytoconstituents
- Strong antifungal activity against *Botrytis cinerea*

ARTICLE HISTORY

Received 20 October 2023

Accepted 10 February 2024

KEYWORDS

antifungal; *Botrytis cinerea*; contraceptive; Paraguay; phytoconstituents; pink lapacho; whips horse

CONTACT Pablo Martín-Ramos pmr@uva.es

 Supplemental data for this article can be accessed online at <https://doi.org/10.1080/14786419.2024.2319658>.
This article has been corrected with minor changes. These changes do not impact the academic content of the article.
© 2024 Informa UK Limited, trading as Taylor & Francis Group

1. Introduction

Handroanthus impetiginosus (Mart.) Mattos is a tree from the *Bignoniaceae* family, predominantly found in the Amazon rainforest and other Central and South American tropical areas. Zhang J et al. (2020) recently conducted a thorough review of its traditional applications and phytochemical composition. *Luehea divaricata* Mart. is another species of deciduous tree native to South America, belonging to the *Malvaceae-Tiliaceae* family, whose pharmacological and chemical properties have been reviewed by Calixto-Júnior et al. (2016). Additional information on the traditional uses and previous phytochemical profiling of various plant organs from both species is presented in the [supplementary material](#).

Although *H. impetiginosus* and *L. divaricata* were not included in the review by Kujawska and Schmeda-Hirschmann (2022) concerning the medicinal plant usage among the people of Paraguay, according to an ethnographic study carried out with funding from the National Council of Science and Technology of Paraguay (Fogel Pedroso et al. 2016), women in six Mbya Guaraní indigenous communities use a mixture of these two plants as contraceptives. Martínez et al. (2006) indicated that the way of administration of *H. impetiginosus* was as an infusion, obtained by 'concoction in combination with other elements'. Martínez Crovetto (2012) indicated that the bark of *H. impetiginosus* with the fern *Blechnum australe* L. subsp. *auriculatum* (Cav.) de la Sota was taken in the water for mate and consumed monthly. Therefore, the mixture of *H. impetiginosus* and *L. divaricata* could be considered an alternative recipe. This use of mixtures differs from the one reported by Yazbek et al. (2016), who only referred to *H. impetiginosus* in a comprehensive investigation into the utilisation of plants in Brazilian cultures for menstrual cycle, maternity, and various women's health issues.

Since no phytochemical study has been conducted on these two plants' leaf aqueous extracts to date, the aim of this study was to investigate the constituents present in these extracts and to determine whether the presumed contraceptive activity is backed up by scientific evidence.

2. Results and discussion

The results of plant biomass characterisation through multi-elemental, thermal, and Fourier-transform infrared spectroscopy analyses are presented in the [supplementary information](#).

Regarding the gas chromatography-mass spectrometry (GC-MS) characterisation results, the analysis of the *H. impetiginosus* leaf extract (Table S2, Figure S4) revealed the presence of terpenic constituents, including megastigmatrienone (3,5,5-trimethyl-4-(1,3-butadienyl)-2-cyclohexene-1-one, also known as tabanone); megastigm-4-ene-3,9-dione (or 3,5,5-trimethyl-4-(3-oxobutyl)-2-cyclohexen-1-one); 9-hydroxymegastigma-4-en-3-one (4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen-1-one); phytol (Figure S5); and γ -sitosterol. The percentage of megastigmatrienone was found to be 2.8%. Other phytochemicals were also identified, including linolenic acid (or 9,12,15-octadecatrienoic acid) and its methyl ester; phenol; *n*-hexadecanoic acid and its esters; 1-methylpyrrolidine-2-carboxylic acid; 1,2,3,4-butanetetrol; and 1-ethylideneoctahydro-7a-methyl-1*H*-indene.

(7E)-4,7,9-megastigmatrien-3-one is a product found in *Aptenia cordifolia* (L.fil.) Schwantes (DellaGreca et al. 2007) and *Chenopodium album* L. (DellaGreca et al. 2004) without any known reproductive toxicity. Phytol is an acyclic diterpene alcohol that is part of chlorophyll. γ -Sitosterol was found to possess anti-fertility and contraceptive effects in rodents, exhibiting *in vitro* inhibitory properties on cultured decidual stromal cells (Zhang X et al. 2007), which are important for female fertility, as they are involved in the preparation of the uterus for implantation of the embryo. Nonetheless, the content in the extract would be small (0.3%). Concerning other phytoconstituents of *H. impetiginosus* leaf extract, α -linolenic acid methyl ester is antiandrogenic (Duke 1992; Abdel Aziz et al. 2020); 1-methylpyrrolidine-2-carboxylic acid (also known as N-methyl-L-proline) was located in the placenta in spontaneous preterm birth (Elshenawy et al. 2020), but its reproductive toxicity is unknown; and 1,2,3,4-butanetetrol is suspected of causing infertility (Halpern et al. 2016).

As for the main phytochemicals detected in the *L. divaricata* leaf extract (Table S3, Figure S6), they include 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, also known as DDMP (Olaniyan et al. 2018); N-methyl-N-nitroso-2-propanamine (NMIPA); a dimer of 1,3-dihydroxyacetone (DHA); 2-methoxy-N-(2-methoxyethyl)-N-methyl-ethanamine; 2-hydroxy-2-cyclopenten-1-one (2-HCP); 2-methoxy-4-vinylphenol (2M4VP); L-arabinitol; phytol; 1,3,5-triazine-2,4,6-triamine; 1-(3,6,6-trimethyl-1,6,7,7a-tetrahydrocyclopenta[c]pyran-1-yl)ethanone; 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen-1-one; 2,4-dimethylanisol; and coniferyl alcohol (Figure S7).

DDMP has antioxidant activity (Imad et al. 2015); NMIPA exhibits antibacterial and genotoxic properties; and DHA dimer exhibits cytotoxic, genotoxic, and toxicogenomic effects (Striz et al. 2021). 2-methoxy-N-(2-methoxyethyl)-N-methyl-ethanamine causes acute toxicity according to the European Chemical Agency. Finally, 1,3,5-triazine-2,4,6-triamine is genotoxic (Scognamiglio et al. 2012). The analgesic and anti-inflammatory activities reported for *L. divaricata* (Agra et al. 2007) can be associated with the presence of 2-HCP (Kala and Ammani 2017) and 2,3-dihydrobenzofuran (Diaz et al. 2009).

While acknowledging potential individual, genotype-dependent variations, location-related intra-varietal differences, seasonal fluctuations, and the presence of distinct chemotypes resulting from minor genetic and epigenetic changes—factors that could notably impact phytochemical composition and bioactivity (Chander et al. 2022)—the phytochemicals identified in the examined plant samples do not lend support to the efficacy of the plant extracts as a female oral contraceptive. The phytochemical profile of the *H. impetiginosus* leaf extract does not appear to have any component that could produce the abortifacient properties preconised for the stem bark extract in the literature (Martínez et al. 2006; Agra et al. 2007). However, the *L. divaricata* leaf extract contains phytochemicals that display cytotoxic, genotoxic, and toxicogenomic effects. This is consistent with the findings of Nunes (2015), who warned about the acute and subacute toxicity of extracts of *L. divaricata* in Wistar rats, and of Mendes Arrúa et al. (2020), who investigated their toxicity on *Daphnia magna* neonates. This raises concerns about the application of *L. divaricata* as a medicinal remedy.

Concerning other possible valorisation pathways, as an alternative to contraceptive use, the extracts have potential for other applications. *H. impetiginosus* leaf extract,

due to the identified phytochemicals, could be a valuable source of antimicrobial agents. For example, linolenic acid has shown antibacterial activity against *Xylophilus ampelinus* and *Erwinia amylovora* (Sánchez-Hernández et al. 2021). *n*-Hexadecanoic acid and its esters have been found to have antifungal activity against various fungi, including *Alternaria solani*, *Aspergillus erythrocephalus* (Abubacker and Deepalakshmi 2013), *Fusarium equiseti*, *Fusarium oxysporum* f. sp. *niveum*, *Neocosmospora falciformis*, *Neocosmospora keratoplastica*, *Macrophomina phaseolina*, and *Sclerotinia sclerotiorum* (Sánchez-Hernández, Martín-Ramos, et al. 2023).

Figure S8 displays the outcomes of the *in vitro* tests assessing mycelial growth inhibition conducted using leaf extracts of *H. impetiginosus* and *L. divaricata*. The extract of *H. impetiginosus* completely halted the growth of *B. cinerea* at 375 µg/mL, while *L. divaricata*'s extract exhibited higher activity, with a minimum inhibitory concentration (MIC) value of 250 µg/mL.

While conducting individual antimicrobial tests for each identified compound would be essential to conclusively determine the specific chemical species responsible for the observed antifungal activity, existing literature allows for a tentative attribution of this activity to several phytoconstituents: 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one has demonstrated activity against plant pathogens, such as *Phytophthora megasperma*, *Verticillium dahliae*, and *Diaporthe amygdali* (Sánchez-Hernández et al. 2023). Catechol has been reported to inhibit bacterial phytopathogens, such as *Clavibacter michiganensis*, several *Pseudomonas syringae* pathovars, *Pseudomonas cichorii*, and *Xanthomonas vesicatoria* (Sánchez-Hernández, González-García Vicente, et al. 2023). Additionally, 2-hydroxy-2-cyclopenten-1-one exhibits antimicrobial properties (Kala and Ammani 2017), while 2-methoxy-4-vinylphenol shows strong antibacterial activity and it can act as a food bio-preservative (Rubab et al. 2020). Methyl stearate also demonstrates high antibacterial and antioxidant ability (Hagr et al. 2019). These findings may explain the antimicrobial activity observed against *Candida albicans*, *Salmonella typhimurium*, and *Trichomonas vaginalis* (Mendes Arrúa et al. 2020).

This pathway of valorisation of the extracts as sources of biorationals for crop protection was successfully demonstrated against *B. cinerea*, a phytopathogen that holds the second position on the rank of fungal pathogens, both in terms of economic impact and scientific significance (Dean et al. 2012). The MIC values obtained for *H. impetiginosus* and *L. divaricata* aqueous extracts (375 and 250 µg/mL, respectively) are very promising, being comparable to those reported for *Uncaria tomentosa* L. (375 µg/mL) (Sánchez-Hernández et al. 2022), which is among the most active plant extracts reported to date. Moreover, they would be lower than those of traditional synthetic fungicides such as azoxystrobin, metalaxyl, and fosetyl-Al, with MIC values of 625, 21, and 2 mg/mL, respectively (Sánchez-Hernández et al. 2022).

3. Conclusions

No phytochemicals detected by gas chromatography-mass spectroscopy support the purported activity of the two leaf extracts (separately or mixed) as female oral contraceptives. The content of compounds with anti-fertility activity (sitosterol and 1,2,3,4-butanetetrol) in *H. impetiginosus* extract was very low (0.3, and 2.8%, respectively). In turn, several constituents of *L. divaricata* leaf extract

(N-methyl-N-nitroso-2-propanamine, 1,3-dihydroxyacetone dimer, 2-methoxy-N-(2-methoxyethyl)-N-methyl-ethanamine, and 1,3,5-triazine-2,4,6-triamine) suggest toxicity, as they are genotoxic. In contrast, the finding of noticeable amounts of linolenic acid and *n*-hexadecanoic acid and its esters in *H. impetiginosus* extract; and of 2,3-dihydro-3,5-dihydroxy-6-methyl-4*H*-pyran-4-one, catechol, 2-hydroxy-2-cyclopenten-1-one, 2-methoxy-4-vinylphenol, and methyl stearate in *L. divaricata* extract suggests an alternative pathway for valorisation, as sources of bio-rationals. To test this hypothesis, the extracts were assayed *in vitro* against *B. cinerea*, showing strong antifungal activity with mycelial growth inhibition values of 375 and 250 µg/mL for *H. impetiginosus* and *L. divaricata* leaf extracts, respectively. These values rank among the lowest documented in the literature for plant extracts and are lower than those of several synthetic fungicides. Further studies are needed to determine their suitability as crop protection products against other phytopathogens.

Acknowledgements

To Dr. P Blasco and Dr. P. Candela, from the SSTI of the Universidad de Alicante (Alicante, Spain), for conducting the GC-MS analysis.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

Abdel Aziz SM, Ahmed OM, Abd El-Twab SM, Al-Muzafar HM, Amin KA, Abdel-Gabbar M. 2020. Antihyperglycemic effects and mode of actions of *Musa paradisiaca* leaf and fruit peel hydroethanolic extracts in nicotinamide/streptozotocin-induced diabetic rats. Evid Based Complementary Alternative Med. 2020:1–15. doi:[10.1155/2020/9276343](https://doi.org/10.1155/2020/9276343).

Abubacker MN, Deepalakshmi T. 2013. In vitro antifungal potentials of bioactive compound methyl ester of hexadecanoic acid isolated from *Annona muricata* Linn. (Annonaceae) leaves. Biosci, Biotechnol Res Asia. 10(2):879–884. doi:[10.13005/bbra/1211](https://doi.org/10.13005/bbra/1211).

Agra M, Freitas P, Barbosa-Filho JM. 2007. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev Bras Farmacogn. 17(1):114–140. doi:[10.1590/S0102-695X2007000100021](https://doi.org/10.1590/S0102-695X2007000100021).

Calixto-Júnior JT, Morais S, Colares AV, Coutinho HDM. 2016. The genus *Luehea* (Malvaceae-Tiliaceae): Review about chemical and pharmacological aspects. J Pharm (Cairo). 2016:1368971–1368979. doi:[10.1155/2016/1368971](https://doi.org/10.1155/2016/1368971).

Chander R, Maurya AK, Kumar K, Kumari S, Kumar R, Agnihotri VK. **2022.** *In vitro* antidiabetic and antimicrobial activity of *Dracocephalum heterophyllum* Benth. essential oil from different sites of North-western Himalayas India. *Nat Prod Res.* 37(6):1002–1005. doi:[10.1080/14786419.2022.2096603](https://doi.org/10.1080/14786419.2022.2096603).

Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. **2012.** The top 10 fungal pathogens in molecular plant pathology. *Mol Plant Pathol.* 13(4):414–430. doi:[10.1111/j.1364-3703.2011.00783.x](https://doi.org/10.1111/j.1364-3703.2011.00783.x).

DellaGreca M, Di Marino C, Zarrelli A, D'Abrosca B. **2004.** Isolation and phytotoxicity of apocarotenoids from *Chenopodium album*. *J Nat Prod.* 67(9):1492–1495. eng. doi:[10.1021/np049857q](https://doi.org/10.1021/np049857q).

DellaGreca M, Fiorentino A, Izzo A, Napoli F, Purcaro R, Zarrelli A. **2007.** Phytotoxicity of secondary metabolites from *Aptenia cordifolia*. *Chem Biodivers.* 4(2):118–128. doi:[10.1002/cbdv.200790016](https://doi.org/10.1002/cbdv.200790016).

Diaz P, Phatak SS, Xu J, Fronczeck FR, Astruc-Diaz F, Thompson CM, Cavasotto CN, Naguib M. **2009.** 2,3-dihydro-1-benzofuran derivatives as a series of potent selective cannabinoid receptor 2 agonists: design, synthesis, and binding mode prediction through ligand-steered modeling. *ChemMedChem.* 4(10):1615–1629. doi:[10.1002/cmdc.200900226](https://doi.org/10.1002/cmdc.200900226).

Duke JA. **1992.** Duke's Phytochemical and Ethnobotanical Databases. Washington DC: U.S. Department of Agriculture, Agricultural Research Service; [accessed]. <http://phytochem.nal.usda.gov>.

Elshenawy S, Pinney SE, Stuart T, Doulias P-T, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF, et al. **2020.** The metabolomic signature of the placenta in spontaneous preterm birth. *Int J Mol Sci.* 21(3):1043. doi:[10.3390/ijms21031043](https://doi.org/10.3390/ijms21031043).

Fogel Pedroso RB, Céspedes CI, López L, Valdez SC. **2016.** Propiedades medicinales de plantas. Conocimiento tradicional y patentes [Medicinal properties of plants. Traditional knowledge and patents]. Asunción, Paraguay: centro de Estudios Rurales Interdisciplinarios; Consejo Nacional de Ciencia y Tecnología – CONACYT.

Hagr TE, Adam IA, Almain AA, Mohammed MM. **2019.** Phytochemical screening, GC-MS analysis, antibacterial and antioxidant activity of seeds oil of *Annona squamosa* L. Sudanese medicinal plant. *J Pharm Pharmacol.* 7(1):1–6.

Halpern G, Braga DP, Setti AS, Figueira RC, Iaconelli A, Borges E. **2016.** Artificial sweeteners – do they bear an infertility risk? *Fertil Steril.* 106(3):e263. doi:[10.1016/j.fertnstert.2016.07.759](https://doi.org/10.1016/j.fertnstert.2016.07.759).

Imad HH, Hussein JH, Muhanned AK, Nidaa SH. **2015.** Identification of five newly described bioactive chemical compounds in methanolic extract of *Mentha viridis* by using gas chromatography - mass spectrometry (GC-MS). *J Pharmacognosy Phytother.* 7(7):107–125. doi:[10.5897/JPP2015.0349](https://doi.org/10.5897/JPP2015.0349).

Kala SC, Ammani K. **2017.** GC-MS analysis of biologically active compounds in *Canthium parviflorum* Lam. leaf and callus extracts. *Inter J ChemTech Res.* 10(6):1039–1058.

Kujawska M, Schmeda-Hirschmann G. **2022.** The use of medicinal plants by Paraguayan migrants in the Atlantic Forest of Misiones, Argentina, is based on Guaraní tradition, colonial and current plant knowledge. *J Ethnopharmacol.* 283:114702. doi:[10.1016/j.jep.2021.114702](https://doi.org/10.1016/j.jep.2021.114702).

Martínez Crovetto RN. **2012.** Estudios Ethnobotánicos 5. Nombres de plantas y su utilidad según los Mbya guaraní de Misiones, Argentina [Ethnobotanical Studies 5. Plant Names and Their Utility according to the Mbya Guarani of Misiones, Argentina]. Bonplandia. 21(2):109–133. doi:[10.30972/bon.2121282](https://doi.org/10.30972/bon.2121282).

Martínez MR, Pochettino ML, Crivos M, Remorini C, Sy A. **2006.** Gathering and circulation of medicinal plants in a pluricultural context (Misiones, Argentina). In: Proceedings of IVth International Congress of Ethnobotany (ICEB 2005): "Ethnobotany: at the Junction of the Continents and the Disciplines"; August 21–26; Istambul. p. 107–114.

Mendes Arrúa JM, Franco G, Ibarra PA, López Arias TR. **2020.** Evaluación preliminar del efecto antimicrobiano y toxicidad aguda del extracto etanólico bruto de *Luehea divaricata* (Ka'a oveti) [Preliminary evaluation of the antimicrobial effect and acute toxicity of the crude ethanolic extract of *Luehea divaricata* (Ka'a oveti)]. IEUNA. 2:78–86. doi:[10.47133/IEUNA2028](https://doi.org/10.47133/IEUNA2028).

Nunes LT. 2015. Estudo de toxicidade aguda e subaguda do extrato bruto das cascas de *Luehea divaricata* Mart. em ratos Wistar. [Acute and subacute toxicity study of the crude bark extract of *Luehea divaricata* Mart. in Wistar rats]. Santa Maria, RS, Brasil: universidade Federal de Santa Maria.

Olanayan OT, Kunle-Alabi OT, Raji Y. 2018. Protective effects of methanol extract of *Plukenetia conophora* seeds and 4H-pyran-4-one 2,3-dihydro-3,5-dihydroxy-6-methyl on the reproductive function of male Wistar rats treated with cadmium chloride. JBRA Assist Reprod. 22(4):289–300. doi:[10.5935/1518-0557.20180048](https://doi.org/10.5935/1518-0557.20180048).

Rubab M, Chelliah R, Saravanakumar K, Barathikannan K, Wei S, Kim J-R, Yoo D, Wang M-H, Oh D-H. 2020. Bioactive potential of 2-methoxy-4-vinylphenol and benzofuran from *Brassica oleracea* L. var. *capitata f. rubra* (red cabbage) on oxidative and microbiological stability of beef meat. Foods. 9(5):568. doi:[10.3390/foods9050568](https://doi.org/10.3390/foods9050568).

Sánchez-Hernández E, Balduque-Gil J, González-García V, Barriuso-Vargas JJ, Casanova-Gascón J, Martín-Gil J, Martín-Ramos P. 2023. Phytochemical profiling of *Sambucus nigra* L. flower and leaf extracts and their antimicrobial potential against almond tree pathogens. Int J Mol Sci. 24(2):1154. doi:[10.3390/ijms24021154](https://doi.org/10.3390/ijms24021154).

Sánchez-Hernández E, Buzón-Durán L, Langa-Lomba N, Casanova-Gascón J, Lorenzo-Vidal B, Martín-Gil J, Martín-Ramos P. 2021. Characterization and antimicrobial activity of a halophyte from the Asturian coast (Spain): *Limonium binervosum* (G.E.Sm.) C.E.Salmon. Plants. 10(9):1852. doi:[10.3390/plants10091852](https://doi.org/10.3390/plants10091852).

Sánchez-Hernández E, González-García V, Palacio-Bielsa A, Lorenzo-Vidal B, Buzón-Durán L, Martín-Gil J, Martín-Ramos P. 2023. Antibacterial activity of *Ginkgo biloba* extracts against *Clavibacter michiganensis* subsp. *michiganensis*, *Pseudomonas* spp., and *Xanthomonas vesicatoria*. Horticulturae. 9(4):461. doi:[10.3390/horticulturae9040461](https://doi.org/10.3390/horticulturae9040461).

Sánchez-Hernández E, Martín-Ramos P, Martín-Gil J, Santiago-Aliste A, Hernández-Navarro S, Oliveira R, González-García V. 2022. Bark extract of *Uncaria tomentosa* L. for the control of strawberry phytopathogens. Horticulturae. 8(8):672. doi:[10.3390/horticulturae8080672](https://doi.org/10.3390/horticulturae8080672).

Sánchez-Hernández E, Martín-Ramos P, Navas Gracia LM, Martín-Gil J, Garcés-Claver A, Flores-León A, González-García V. 2023. *Armeria maritima* (Mill.) Willd. flower hydromethanolic extract for Cucurbitaceae fungal diseases control. Molecules. 28(9):3730. doi:[10.3390/molecules28093730](https://doi.org/10.3390/molecules28093730).

Scognamiglio J, Jones L, Letizia CS, Api AM. 2012. Fragrance material review on 3-ethyl-2-hydroxy-2-cyclopenten-1-one. Food Chem Toxicol. 50 Suppl 3: s646–S649. doi:[10.1016/j.fct.2012.03.021](https://doi.org/10.1016/j.fct.2012.03.021).

Striz A, DePina A, Jones R, Gao X, Yourick J. 2021. Cytotoxic, genotoxic, and toxicogenomic effects of dihydroxyacetone in human primary keratinocytes. Cutan Ocul Toxicol. 40(3):232–240. doi:[10.1080/15569527.2021.1931877](https://doi.org/10.1080/15569527.2021.1931877).

Yazbek PB, Tezoto J, Cassas F, Rodrigues E. 2016. Plants used during maternity, menstrual cycle and other women's health conditions among Brazilian cultures. J Ethnopharmacol. 179:310–331. doi:[10.1016/j.jep.2015.12.054](https://doi.org/10.1016/j.jep.2015.12.054).

Zhang J, Hunto ST, Yang Y, Lee J, Cho JY. 2020. *Tabebuia impetiginosa*: a comprehensive review on traditional uses, phytochemistry, and immunopharmacological properties. Molecules. 25(18):4294. doi:[10.3390/molecules25184294](https://doi.org/10.3390/molecules25184294).

Zhang X, Han F, Gao P, Yu D, Liu S. 2007. Bioassay-guided fractionation of antifertility components of castorbean (*Ricinus communis* L.) seed extracts. Nat Prod Res. 21(11):982–989. doi:[10.1080/14786410701371462](https://doi.org/10.1080/14786410701371462).