

Universidad de Valladolid

**PROGRAMA DE DOCTORADO EN INGENIERÍA
QUÍMICA Y AMBIENTAL**

TESIS DOCTORAL:

**Optimization of biogas upgrading in
algal-bacterial photobioreactors at pilot and
demo scale**

Presentada por **María del Rosario Rodero Raya**
para optar al grado de
Doctora por la Universidad de Valladolid

Dirigida por:
Dr. Raúl Muñoz Torre
Dra. Raquel Lebrero Fernández

**PROGRAMA DE DOCTORADO EN INGENIERÍA QUÍMICA Y
AMBIENTAL**

TESIS DOCTORAL:

**Optimización de la limpieza de biogás en
fotobiorreactores de algas y bacterias a
escala piloto y demostración**

Presentada por **María del Rosario Rodero Raya** para
optar al grado de
Doctora por la Universidad de Valladolid

Dirigida por:
Dr. Raúl Muñoz Torre
Dra. Raquel Lebrero Fernández

**Memoria para optar al grado de Doctor,
con Mención Doctor Internacional,
presentada por la Ingeniera Química:**

María del Rosario Rodero Raya

Siendo el tutor en la Universidad de Valladolid:

Dr. Raúl Muñoz Torre

Dra. Raquel Lebrero Fernández

**Y en Aquatic Biology Lab, KU Leuven, Campus Kulak Kortrijk
(Belgium):**

Dr. Koenraad Muylaert

Valladolid, Diciembre de 2020

Universidad de Valladolid

ESDUVa
Escuela de Doctorado Universidad de Valladolid

UNIVERSIDAD DE VALLADOLID
ESCUELA DE INGENIERÍAS INDUSTRIALES

Secretaría

La presente tesis doctoral queda registrada en el
folio número _____ del correspondiente libro de
registro número _____

Valladolid, a _____ de _____ de 2020

Fdo. El encargado del registro

Universidad de Valladolid

Raúl Muñoz Torre
Catedrático de Universidad

Departamento de Ingeniería Química y Tecnología del Medio Ambiente
Universidad de Valladolid

y

Raquel Lebrero Fernández
Profesora Titular de Universidad

Departamento de Ingeniería Química y Tecnología del Medio Ambiente
Universidad de Valladolid

Certifican que:

MARÍA DEL ROSARIO RODERO RAYA ha realizado bajo su dirección el trabajo “*Optimization of biogas upgrading in algal-bacterial photobioreactors at pilot and demo scale*”, en el Departamento de Ingeniería Química y Tecnología del Medio Ambiente de la Escuela de Ingenierías Industriales de la Universidad de Valladolid. Considerando que dicho trabajo reúne los requisitos para ser presentado como Tesis Doctoral expresan su conformidad con dicha presentación.

Valladolid, a _____ de _____ de 2020

Fdo. Raúl Muñoz Torre

Fdo. Raquel Lebrero Fernández

Universidad de Valladolid

Reunido el tribunal que ha juzgado la Tesis Doctoral titulada
“Optimization of biogas upgrading in algal-bacterial photobioreactors at pilot and demo scale” presentada por María del Rosario Rodero Raya y en cumplimiento con lo establecido por el Real Decreto 99/2011 de 28 de enero de 2011 acuerda conceder por _____ la calificación de _____.

Valladolid, a _____ de _____ de 2020

PRESIDENTE

SECRETARIO

VOCAL

Table of content

Resumen	I
Abstract	V
List of publications	IX
Contribution to the papers included in the thesis.....	XI
Chapter 1. Introduction	1
1.1. The need for biogas upgrading, global market and future trends	3
1.2. End-of-the-pipe technologies for biogas upgrading	5
1.2.1. Physical/chemical technologies.....	5
1.2.2. Biological technologies	11
1.3. Photosynthetic biogas upgrading.....	16
1.3.1. Fundamentals	16
1.3.2. Parameters affecting photosynthetic biogas upgrading.....	21
1.3.3. Wastewater as a nutrient source	26
1.3.4. Microalgal-bacterial biomass harvesting.....	28
1.4. References	32
Chapter 2. Aims and scope of the thesis	43
2.1. Justification of the thesis	45
2.2. Main objectives	45
2.3. Development of the thesis	46
Chapter 3. Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds	49
Chapter 4. Long-term influence of high alkalinity on the performance of photosynthetic biogas upgrading	69
Chapter 5. Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor	95
Chapter 6. Development of a control strategy to cope with biogas flowrate variations during photosynthetic biogas upgrading.....	115
Chapter 7. Performance evaluation of a control strategy for photosynthetic biogas upgrading in a semi-industrial scale photobioreactor	145
Chapter 8. Harvesting microalgal-bacterial biomass from biogas upgrading process and evaluating the impact of flocculants on their growth during repeated recycling of the spent medium.....	169
Chapter 9. Conclusions and future work	195
Chapter 10. About the author	201

Resumen

El biogás, principal subproducto de la digestión anaerobia de residuos sólidos o fangos del tratamiento de aguas residuales, constituye una fuente de bioenergía con alto potencial para reducir parcialmente el actual consumo de combustibles fósiles. A pesar de este potencial, su aprovechamiento como sustituto renovable del gas natural aún presenta importantes limitaciones, entre ellas la presencia de contaminantes como CO₂ y H₂S. Una disminución en el contenido de CO₂ del biogás resultará en un aumento del contenido energético de éste, una disminución de los costes de transporte, así como en menores emisiones de gases de efecto invernadero (GEIs) asociadas a su combustión. Del mismo modo, la eliminación del H₂S es decisiva al ser altamente corrosivo, tóxico y generar molestias por malos olores. El mercado de tecnologías de limpieza (*upgrading*) de biogás para su conversión a biometano está dominado en la actualidad por tecnologías físico-químicas, que presentan tanto altos costes de operación e inversión como impactos ambientales negativos. Además, no existe todavía en el mercado ninguna tecnología capaz de eliminar simultáneamente el CO₂ y H₂S del biogás.

En este contexto, la intensificación de la simbiosis entre microalgas y bacterias heterótrofas/quimioautótrofas en fotobioreactores representa una plataforma tecnológica muy novedosa para la eliminación simultánea de CO₂ y H₂S del biogás. En estos sistemas, las microalgas usan la energía proveniente de la luz solar para fijar el CO₂ del biogás vía fotosíntesis, con la consiguiente generación de oxígeno. Este oxígeno generado *in-situ* será empleado por bacterias quimioautótrofas para la oxidación de H₂S a sulfato. Esta tecnología permite además una recuperación de nutrientes de aguas residuales o centrados en forma de biomasa que podría utilizarse como biofertilizante, mejorando así la sostenibilidad ambiental y económica del proceso. Sin embargo, esta tecnología aún requiere una mayor optimización para superar las limitaciones técnicas (por ejemplo, transferencia de masa de CO₂ limitada, baja eficiencia de sedimentación para la separación de biomasa) y el escalado del proceso es necesario para mejorar su aceptación por el sector industrial e impulsar su implementación generalizada a gran escala. Por tanto, esta tesis tiene como objetivo evaluar sistemáticamente la influencia de parámetros ambientales y operativos en el rendimiento del upgrading fotosintético de biogás, y desarrollar un sistema de control para optimizar la operatividad del proceso a escala piloto y semi-industrial antes de su exitosa implementación a escala industrial.

Para ello, en el **Capítulo 3** se evaluó la influencia de la alcalinidad (1500, 500 y 100 mg de carbono inorgánico L^{-1}) y la temperatura (12 y 35°C) del caldo de cultivo en la calidad del biometano en un fotobiorreactor abierto de lagunaje de 180 L interconectado a una columna de absorción de 2.5 L mediante recirculación del caldo de cultivo previamente sedimentado. En este estudio, la alcalinidad del caldo de cultivo se identificó como un parámetro ambiental clave para fomentar una alta transferencia de masa de CO₂ y H₂S en la columna de absorción y, en consecuencia, obtener una alta pureza de CH₄ en el biometano. Por otro lado, la temperatura tuvo un efecto insignificante sobre la calidad del biometano a alcalinidades medias-altas, mientras que, a alcalinidades bajas, la calidad del biometano mejoró cuando se disminuyó la temperatura.

Los resultados obtenidos en el capítulo anterior destacaron el papel clave del pH durante la limpieza fotosintética del biogás y la necesidad de una alta alcalinidad en el caldo de cultivo para mantener un pH alto a lo largo de la columna de absorción. Sin embargo, una alta alcalinidad en el caldo de cultivo podría ejercer un impacto negativo en la actividad fotosintética y contribuir a intensificar la desorción de CO₂ a la atmósfera. En este sentido, se evaluó la operación a largo plazo del sistema de upgrading de biogás trabajando a altas concentraciones de carbono inorgánico (**Capítulo 4**). Aunque las concentraciones de carbono inorgánico superiores a 2400 mg C L^{-1} mejoraron la eficacia y la robustez del proceso en términos de calidad de biometano, estas altas concentraciones de carbono inorgánico en el caldo de cultivo contribuyeron a aumentar la cantidad de CO₂ emitido a la atmósfera y a disminuir la actividad fotosintética, reduciendo así el beneficio medioambiental de esta tecnología. Además se evaluó el efecto de la concentración de biomasa en el fotobiorreactor abierto sobre la operación del proceso, ejerciendo una alta concentración de biomasa un impacto negativo tanto en la transferencia de masa del CO₂ entre el gas y el líquido en la columna de absorción como en la productividad de la biomasa.

En el **Capítulo 5**, el escalado del proceso de *upgrading* del biogás acoplado al tratamiento de aguas residuales se realizó en un fotobiorreactor abierto de 9.6 m^3 interconectado a una columna de absorción de 150 L mediante la recirculación del caldo de cultivo de un sedimentador de 7 m^3 . El proceso se llevó a cabo en ambiente exterior. La influencia de la relación líquido/biogás (L/G = 1.2, 2.1 y 3.5) y del caudal de biogás (274, 370 y 459 $L\ h^{-1}$) en la columna de absorción, el tiempo de retención hidráulico

(TRH) en el fotobiorreactor y el tipo de fuente de nutrientes (aguas residuales domésticas o digestato) sobre la calidad del biometano fueron evaluados. A pesar de que la relación L/G más alta consiguió las eliminaciones más altas de CO₂ y H₂S, el contenido de CH₄ en el biometano estaba limitado por la desorción asociada de N₂ y O₂. No se observó una influencia significativa del caudal de biogás y TRH en el fotobiorreactor sobre el rendimiento del proceso de *upgrading*, mientras que el tipo de fuente de nutrientes se identificó como un parámetro operativo clave: el uso de centrado mejoró la eliminación de CO₂ y H₂S como resultado de su alto pH y alcalinidad. Este trabajo constituyó la primera validación a escala semi-industrial de un proceso de algas y bacterias para la eliminación simultánea de CO₂ y H₂S del biogás acoplado al tratamiento de aguas residuales en condiciones exteriores.

Para la comercialización del biometano se requiere una calidad uniforme que permita su inyección en redes de gas natural o su uso como combustible para vehículos, independientemente de las condiciones ambientales o los posibles fallos operativos. Para ello, el diseño y validación de un sistema de control para la tecnología de limpieza de biogás fotosintético se llevó a cabo en el **Capítulo 6** en un sistema experimental similar al de los Capítulos 3 y 4. El caudal del líquido de recirculación, e indirectamente la relación L/G en la columna de absorción, fue seleccionado como variable manipulada con el fin de controlar el contenido de CO₂ y O₂ del biometano, y por tanto cumplir con los requisitos para su uso como sustituto del gas natural. La estrategia de control desarrollada fue capaz de mantener la concentración de CO₂ por debajo del valor de consigna (2.5%), partiendo de una concentración inicial de 29.5% CO₂ en el biogás, ante cualquier alteración en el caudal de biogás. Además, se obtuvo un contenido de O₂ inferior al 1% y contenidos despreciables de H₂S en el biometano a diferentes concentraciones de carbono inorgánico (1500, 500 y 100 mg C L⁻¹) y temperaturas (15 y 35°C) en el caldo de cultivo a un pH de 10. Sin embargo, la disminución del pH del caldo de cultivo hasta 8.5 conllevó una baja transferencia de masa de CO₂ que resultó en la necesidad de operar a altos caudales de líquido. En estas condiciones, se produjo un aumento significativo de las cantidades de O₂ transferidas del líquido de recirculación al biometano y, en consecuencia, un contenido de O₂> 1% en el biometano.

Con base en estos resultados prometedores obtenidos, la validación de la estrategia de control se llevó a cabo en un fotobiorreactor abierto a escala semi-industrial (**Capítulo 7**). El sistema de control aseguró una calidad de biometano constante (CH₄> 95%, CO₂

<2%, O₂ <1% y H₂S=0) independientemente del pH en el caldo de cultivo (9.05-9.50) o variaciones en el caudal de biogás de 143 a 420 L h⁻¹. Además, el sistema de control restauró la calidad del biometano después de fallos en el suministro de biogás o del líquido de recirculación. Estos resultados confirmaron la eficacia de la estrategia de control para evitar los efectos adversos en el funcionamiento del sistema fotosintético de *upgrading* de biogás a pesar de las inevitables fluctuaciones de las condiciones ambientales o fallos operativos.

Finalmente, en el **Capítulo 8** se evaluó el uso de la floculación para mejorar el cosechado de la biomasa de microalgas y bacterias. Esto permitiría utilizar el caldo de cultivo libre de biomasa como líquido de lavado en la columna de absorción, aumentando así la transferencia de masa de CO₂ entre el líquido y el gas como se demostró en el Capítulo 4. En esta investigación, se probó la eficiencia de diferentes floculantes para el cosechado de la biomasa en condiciones de alta alcalinidad y pH, resultando sólo Zetag 8125 (un floculante sintético con base de acrilamida) y nanocristales de celulosa modificados catiónicamente (CNCs) en eficiencias de floculación > 90% sin efecto perjudicial para el cultivo cuando se recicla el sobrenadante. Además, se demostró que el filtrado a través de una malla de nylon con un tamaño de poro de 180 µm después de la floculación es una alternativa prometedora a la sedimentación por gravedad como etapa de separación a continuación de la floculación.

Los resultados obtenidos en la presente tesis conducen a una mejora en el rendimiento del proceso de *upgrading* de biogás basado en procesos de algas y bacterias, y un primer paso hacia la industrialización de esta biotecnología. Su comercialización contribuiría al aumento en el uso de biogás generado a partir de residuos orgánicos como sustituto del gas natural vía *upgrading* de una manera rentable y ambientalmente sostenible.

Abstract

Biogas, the main byproduct from the anaerobic digestion of organic solid waste or sludge from wastewater treatment, constitutes a potential bioenergy source able to reduce the current consumption of fossil fuels. However, its use as a renewable substitute for natural gas still presents limitations like the presence of pollutants such as CO₂ and H₂S. A decrease in the CO₂ concentration of biogas increases its energy content and decreases transportation costs and the greenhouse gas (GHG) emissions associated to its combustion. Likewise, the removal of H₂S is a requirement since it is highly corrosive, toxic and generates odor nuisance. The biogas upgrading market is currently dominated by physical-chemical technologies, which present both high operating and investment costs and negative environmental impacts. Furthermore, there is still no commercial technology able to remove CO₂ and H₂S simultaneously.

In this context, the intensification of the symbiosis between microalgae and heterotrophic/chemoautotrophic bacteria in photobioreactors represents an innovative platform for the simultaneous removal of CO₂ and H₂S from biogas. In these systems, microalgae use the light energy to fix the CO₂ via photosynthesis with the subsequent generation of oxygen. This oxygen generated *in-situ* is used by sulfur oxidizing bacteria for the oxidation of H₂S to sulfate. This biotechnology can also support the recovery of nutrients from wastewaters or centrates in the form of biomass, which could be used as biofertilizer, thus improving the environmental and economic sustainability of this process. Nevertheless, this technology still requires more optimization to overcome the current technical constraints (e.g. limited CO₂ gas-liquid mass transfer, poor efficiency of settling for biomass separation) and a process scale-up must be conducted in order to increase the acceptance of this technology in the industrial sector and boost its widespread full-scale implementation. Therefore, this thesis aims at evaluating the influence of environmental and operational parameters on photosynthetic biogas upgrading performance and developing a control system to optimize the performance of the process at pilot and semi-industrial scale prior to a successful industrial implementation.

For this purpose, in **Chapter 3** the influence on biomethane quality of the alkalinity (1500, 500 and 100 mg inorganic carbon L⁻¹) and temperature (12 and 35°C) of the cultivation broth was assessed in a 180 L high rate algal pond (HRAP) interconnected to a 2.5 L absorption column via settled broth recirculation. In this study, the alkalinity of

the cultivation broth was identified as a key environmental parameter to support a high CO₂ and H₂S gas-liquid mass transfer in the absorption column and consequently, obtaining high CH₄ purity in the upgraded biogas. On the other hand, a negligible effect of the temperature on the quality of the upgraded biogas was recorded at high-medium alkalinities, while low temperature improved biomethane quality at a low alkalinity.

The results obtained in the previous chapter highlighted the key role of the pH during photosynthetic biogas upgrading and the need to maintain a high alkalinity in the cultivation broth to support a high pH along the absorption column. However, a high alkalinity in the cultivation broth could exert a negative impact on the photosynthetic activity and contribute to intensify CO₂ stripping to the atmosphere. In this regard, the long-term performance of photosynthetic biogas upgrading was evaluated under high inorganic carbon concentrations (**Chapter 4**). Although inorganic carbon concentrations higher than 2400 mg C L⁻¹ can improve the effectiveness and robustness of the process in terms of biomethane quality, these high inorganic carbon concentrations in the cultivation broth entail an increase in the amount of CO₂ stripped to the atmosphere and decrease the photosynthetic activity, thus reducing the environmental benefit of this technology. Moreover, the effect of biomass concentration in the HRAP on process operation was also assessed, a high biomass concentration exerting a negative impact on both CO₂ gas-liquid mass transfer in the absorption column and biomass productivity.

In **Chapter 5**, the scale-up of photosynthetic biogas upgrading coupled to wastewater treatment was performed in an outdoors 9.6 m³ HRAP interconnected to a 150 L absorption column via recirculation of the cultivation broth from a 7 m³ settler. The influence of liquid to biogas ratio (L/G = 1.2, 2.1 and 3.5) and biogas flowrate (274, 370 and 459 L h⁻¹) in the absorption column, hydraulic retention time (HRT) in the HRAP and type of nutrient source (domestic wastewater *vs* centrate) on the quality of the biomethane was evaluated. Despite the highest L/G ratio supported the highest CO₂ and H₂S removals, CH₄ content in the biomethane was limited by the associated N₂ and O₂ desorption. No significant influence of biogas flowrate and HRT in the HRAP on process performance was observed, while the type of nutrient source was identified as a key operational parameter, the use of centrate enhancing CO₂ and H₂S removals as a result of its high pH and alkalinity. This work represented the first demo-scale validation of algal-bacterial processes devoted to the simultaneous removal of CO₂ and H₂S from biogas coupled to wastewater treatment under outdoor conditions.

A consistent biomethane quality for its injection into natural gas grids or its use as vehicle fuel regardless of environmental conditions or operational failures is required for biomethane commercialization. For this purpose, the design and evaluation of a control system for the photosynthetic biogas upgrading unit was successfully carried out in **Chapter 6** in a similar system than that used in Chapters 3 and 4. The recycling liquid flowrate, and indirectly the liquid to biogas (L/G) ratio in the absorption column, was selected as the manipulated variable in order to control the CO₂ and O₂ content of biomethane, and therefore comply with the requirements for its use as natural gas substitute. The control strategy developed was capable of maintaining the CO₂ concentration below the set point (2.5%) from a concentration of 29.5% CO₂ in the raw biogas under any disturbance in the biogas flowrate together with an O₂ content lower than 1% and negligible H₂S contents in the biomethane at different inorganic carbon concentrations (1500, 500 and 100 mg C L⁻¹) and temperatures (15 and 35°C) in the cultivation broth at a pH of 10. However, the decrease in the pH of the cultivation broth down to 8.5 involved a low CO₂ mass transfer resulting in high liquid flowrates, which led to large amounts of O₂ stripped from the recycling liquid to the biomethane, and consequently a biomethane O₂ content >1%.

Based on these promising results, the validation of the control strategy was further performed in a semi-industrial scale outdoors photobioreactor (**Chapter 7**). The control system was able to ensure a consistent biomethane quality (CH₄>95%, CO₂<2%, O₂<1% and no H₂S) regardless of the pH in the cultivation broth (9.05-9.50) and variations in the biogas flowrate from 143 to 420 L h⁻¹. Moreover, the control system restored the biomethane quality after a failure in the biogas or liquid supply. These results confirmed the effectiveness of the control strategy to avoid adverse effects on the biogas upgrading performance due to the inherent environmental fluctuations or operational failures in this technology.

Finally, the use of flocculation to enhance the microalgal-bacterial harvesting in order to use the biomass-free cultivation broth as scrubbing liquid in the absorption column and increase the CO₂ gas liquid-mass transfer as demonstrated in Chapter 4 was assessed in **Chapter 8**. In this research, the harvesting efficiency of different flocculants was tested under high alkalinity and pH conditions. Only Zetag 8125 (a synthetic acrylamide-based flocculant) and cationically modified cellulose nanocrystals (CNCs) resulted in flocculation efficiencies >90% with no detrimental effect to the culture when the

supernatant was recycled. In addition, screening with a nylon mesh of 180 µm pore size after flocculation was demonstrated to be a promising alternative to gravity settling as a separation step.

The results obtained in the present thesis improved biogas upgrading performance based on algal-bacterial processes and represented a first step in the scale up of this green technology towards industrialization. The commercialization of this technology would contribute to increase the use of biogas from waste resources as a natural gas substitute via upgrading in a cost-effective and environmentally sustainable way.

List of publications

The following publications are presented as part of the current thesis. All papers were published in international journals indexed in ISI Web of Knowledge.

Manuscript I. Rodero, M. del R., Posadas, E., Toledo-Cervantes, A., Lebrero, R., Muñoz, R., 2018. Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds. *Algal Res.* 33, 284–290. doi:10.1016/j.algal.2018.06.001.

Manuscript II. Rodero, M. del R., Lebrero, R., Serrano, E., Lara, E., Arbib, Z., García-Encina, P.A., Muñoz, R., 2019. Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor. *Bioresour. Technol.* 279, 43–49. doi:10.1016/j.biortech.2019.01.110.

Manuscript III. Rodero, M. del R., Carvajal, A., Castro, V., Navia, D., de Prada, C., Lebrero, R., Muñoz, R., 2019. Development of a control strategy to cope with biogas flowrate variations during photosynthetic biogas upgrading. *Biomass and Bioenergy* 131, 105414. doi:10.1016/j.biombioe.2019.105414.

Manuscript IV. Rodero, M. del R., Carvajal, A., Arbib, Z., Lara, E., de Prada, C., Lebrero, R., Muñoz, R., 2020. Performance evaluation of a control strategy for photosynthetic biogas upgrading in a semi-industrial scale photobioreactor. *Bioresour. Technol.* 307, 123207. doi:10.1016/j.biortech.2020.123207.

Manuscript V. Rodero, M. del R., Muñoz, R., Lebrero, R., Verfaillie, A., Blockx, J., Thielemans, W., Muylaert, K., Praveenkumar, R., 2020. Harvesting microalgal-bacterial biomass from biogas upgrading process and evaluating the impact of flocculants on their growth during repeated recycling of the spent medium. *Algal Res.* 48, 101915. doi:10.1016/j.algal.2020.101915.

Manuscript VI. Rodero, M. del R., Severi, C., Rocher-Rivas, R., Quijano, G., Muñoz, R., 2020 Long-term influence of high alkalinity on the performance of photosynthetic biogas upgrading. *Fuel* 281, 118804. doi:10.1016/j.fuel.2020.118804.

Contribution to the papers included in the thesis

Manuscript I. In this research, I was responsible for the design, start-up and operation of the experimental set-up in collaboration with Dr. Alma Toledo-Cervantes and under the supervision of Dr. Raquel Lebrero and Dr. Raúl Muñoz. I performed the results evaluation and the preparation of the manuscript in collaboration with Dr. Esther Posadas under the supervision of Dr. Raquel Lebrero and Dr. Raúl Muñoz.

Manuscript II. In this work, I was responsible for the design, start-up and operation of the experimental set-up in collaboration with AQUALIA FCC and under the supervision of Dr. Raquel Lebrero and Dr. Raúl Muñoz. I performed the results evaluation and the preparation of the manuscript under the supervision of Dr. Raquel Lebrero, Dr. Pedro A. García-Encina and Dr. Raúl Muñoz.

Manuscript III. In this research, I was responsible for the design, start-up and operation of the experimental set-up, results evaluation and preparation of the manuscript in collaboration with Dr. Andrea Carvajal and under the supervision of Dr. Raquel Lebrero and Dr. Raúl Muñoz. Víctor Castro and Dr. Andrea Carvajal were responsible for the control system implementation, where I collaborated under the supervision of Dr. Daniel Navia and Dr. César de Prada.

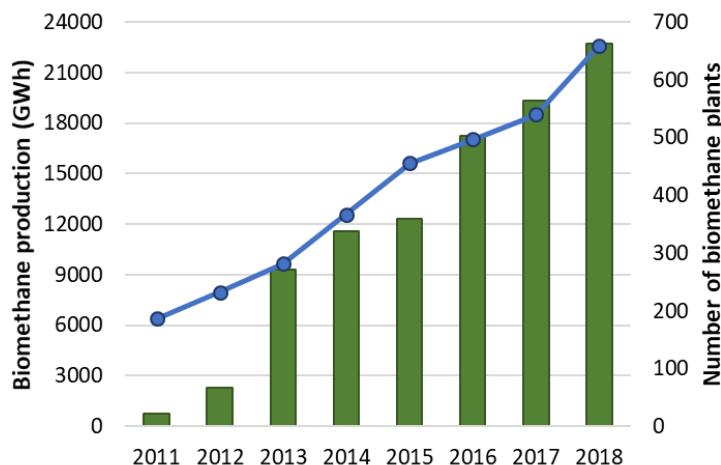
Manuscript IV. In this work, I was responsible for the design, start-up and operation of the experimental set-up under the supervision of Dr. Raquel Lebrero and Dr. Raúl Muñoz. I performed the results evaluation and the preparation of the manuscript under the supervision of Dr. Andrea Carvajal, Dr. Raquel Lebrero and Dr. Raúl Muñoz. Dr. César de Prada collaborated with the control strategy implementation.

Manuscript V. During this research, I was in charge of the design, start-up and operation of the experimental set-up, results evaluation and manuscript preparation in collaboration with Dr. Ramasamy Praveenkumar and under the supervision of Dr. Koenraad Muylaert, Dr. Raquel Lebrero and Dr. Raúl Muñoz. Miss An Verfaillie and Dr. Jonas Blockx were responsible for the preparation of flocculants and collaborated with the manuscript revision under the supervision of Dr. Wim Thielemans.

Manuscript VI. In this work, I was responsible for the design, start-up, operation of the experimental set-up, results evaluation and preparation of the manuscript in collaboration with Cristian Alfredo Severi and Ricardo Rocher-Rivas under the supervision of Dr. Guillermo Quijano and Dr. Raúl Muñoz.

Chapter 1

Introduction

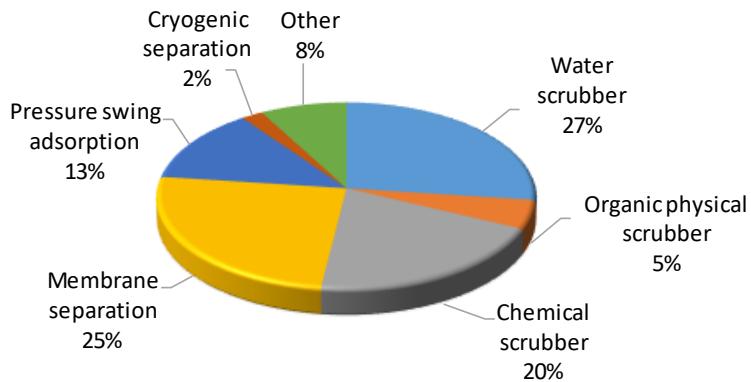

1.1. The need for biogas upgrading, global market and future trends

Today, fossil fuels constitute the major source of energy generation at global scale. Oil, coal and gas accounted for 31.8, 27.1 and 22.2%, respectively, of the world total primary energy supply in 2017 [1]. However, the rapid growth of the world energy consumption (~1.6-fold increase between 1990 and 2017) due to the increase in human population and industrial activity is compromising the availability of fossil fuel resources. Moreover, global warming, which mainly results from greenhouse gas emissions to the atmosphere during the combustion of fossil fuels, is a worldwide concern that encourages the development and utilization of renewable energy sources [2]. In this context, biogas production from the anaerobic digestion of organic waste such as municipal organic waste, livestock manure or wastewater treatment sludge can partially reduce the current fossil fuels dependence and their associated greenhouse gas emissions with the added benefit of organic waste treatment [3]. As a result of feedstock availability and national policy support, the global biogas production reached 1.31 exajoule in 2016, equivalent to a total volume of biogas of 60.8 billion Nm³ y⁻¹, of which 54% corresponded to Europe [4]. In Europe, the installed electric capacity of biogas plants was 11082 megawatt (MW) in 2018, with a total number of biogas plants of 18202, which represented an increase of 11% in the installed electric capacity with respect to 2016 [5].

Biogas is typically composed of methane (40–75%), carbon dioxide (15–60%) and lower concentrations of other components such as hydrogen sulfide (0.005–2 %), oxygen (0–1%), nitrogen (0–2%), ammonia (<1%), carbon monoxide (<0.6%), siloxanes (0–0.02%), halogenated hydrocarbons (VOC< 0.6%) and water (5–10%) [6]. Due to its high CH₄ content, biogas is commonly used directly as household fuel for cooking, or to produce heat and electricity at *on-site* co-generation or only-electricity generation facilities (which requires low H₂S or siloxane concentration) [7]. The high content of CO₂ increases carbon dioxide emissions during biogas combustion, reduces biogas calorific value and increases its transportation and compression costs, which limits the economic feasibility of biogas. In this context, the energy content of biogas (CH₄ concentration of 60%) expressed by the lower calorific value is ~21 MJ m⁻³, while in natural gas this value averages 36 MJ m⁻³ [8]. On the other hand, other biogas components such as H₂S, NH₃ and halocarbons are toxic and/or generate corrosion in pipelines, storage tanks and internal combustion engines [6]. These biogas pollutants

must be removed (in a process called biogas upgrading) to enable biomethane use as fuel in natural gas-powered vehicles or its injection into natural gas grids, which requires concentrations in biogas of $\text{CH}_4 \geq 90\%$, $\text{CO}_2 \leq 2\text{--}4\%$, $\text{O}_2 \leq 1\%$ and $\text{H}_2\text{S} + \text{COS} < 5 \text{ mg Nm}^{-3}$ according to most international regulations (including the recent European Standard UNE-EN 16723).

The European Renewable Energy Directive (RED II) targets a 32% consumption of energy from renewable sources by 2030, including a contribution of 14% of renewable energy in the transport sector by 2030 and an annual increase of 1.3% in the share of renewable energy in the heating sector [9]. The low profitability of electricity biogas plants and the new opportunities for biomethane use in the transport sector has encouraged biogas upgrading in Europe during the last years. Indeed, Europe is nowadays the world's leading producer of biomethane [10]. For instance, the number of biomethane plants in Europe has increased from 187 in 2011 to 660 in 2018, with a biomethane production up to 22737 GWh in 2018 (Fig. 1). However, biogas upgrading is still marginal in most countries, with an estimated number of biomethane plants in non-European countries of 160 in 2017 [4].

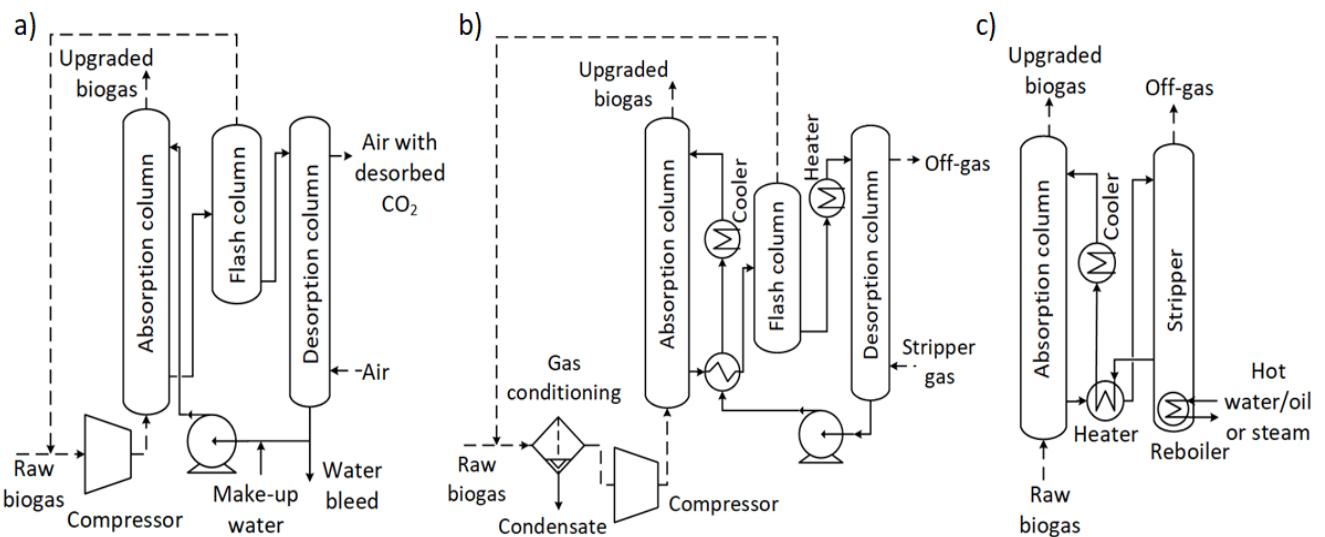

Fig. 1. Development of biomethane production in GWh (green bars) and number of biomethane plants (blue line) in Europe (EBA Database).

Biomethane is a promising energy carrier that could reach a production of 1072 TWh (22% of current natural gas consumption) in 2050 according to “Gas for Climate: a path to 2050” initiative [11]. Nevertheless, the development of a cost-competitive and environmentally friendly biogas upgrading technology is still necessary to boost the use of this energy source [10].

1.2. End-of-the-pipe technologies for biogas upgrading

1.2.1. Physical/chemical technologies

Currently, physical/chemical technologies are widely applied for biogas upgrading in the European market due to their high efficiency and commercial availability (Fig. 2). However, these technologies require high energy and chemical demands, which limits the use of biomethane as a green technology.


Fig. 2. Market share of CO₂ removal technologies in the European Union (EBA Database).

1.2.1.1. CO₂ removal

Physical and chemical absorption

CO₂ removal by absorption relies on the higher solubility of CO₂ in a scrubbing liquid solution (water, organic solvent or chemical solution) compared to CH₄. Water or organic solvent scrubbing is based only on the gas-liquid mass transfer of CO₂ (physical absorption) in a packed column operating at high pressures (6-10 bar) under counter-current mode. Treated water from wastewater treatment plants can be used in single-pass scrubbers, however, when tap water is supplied, a two-stage stripping process (a flash column to recover most of the dissolved methane followed by a CO₂ desorption column) after CO₂ absorption is recommended for water regeneration (Fig. 3a) [12]. The use of organic solvents, such as methanol or polyethylene glycol, allows for a reduction in plant sizing and liquid recycling rates due to their higher affinity for CO₂ than water [6]. However, organic scrubbing requires a biogas pretreatment and a solvent cooling to 20°C prior CO₂ absorption and a heating stage to 40°C for solvent regeneration (Fig. 3b) [13]. Despite biomethane quality of 95-99% and CH₄ losses lower than 2% can be achieved using physical absorption processes, this technology exhibits high energy costs [14].

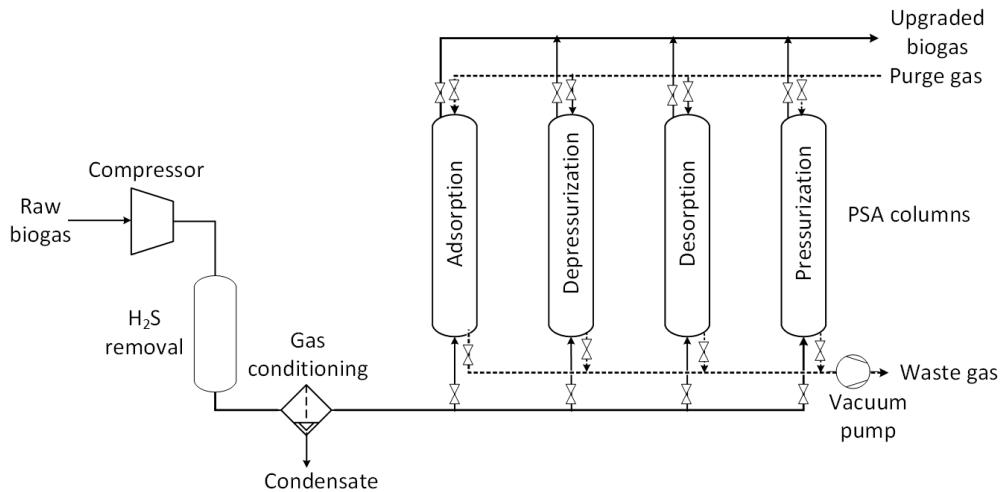

Chemical scrubbing typically uses alkanol amines or alkali aqueous solutions (i.e. NaOH, KOH, CaOH) to react with the CO₂ absorbed in the liquid, forming HCO₃⁻/CO₃⁻ species that boost CO₂ gas-liquid mass transfer. This process entails lower liquid recycling rates and operation at low pressure in the absorption column (1-2 bar) with CH₄ concentrations in the biomethane up to 99.8% and CH₄ losses of 0.1%. However, solvent regeneration requires temperatures of 120-150°C, thus increasing the overall energy costs and requiring a H₂S pretreatment prior amine scrubbing (Fig. 3c).

Fig. 3. CO₂ removal by absorption: a) water scrubbing, b) organic solvent scrubbing, c) chemical scrubbing. Adapted from Bauer et al. [13].

Pressure swing adsorption

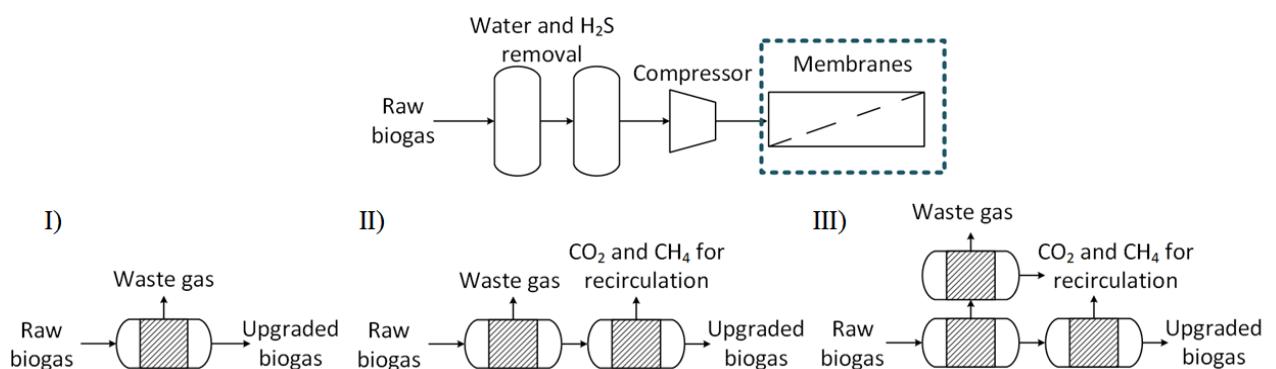

Pressure swing adsorption (PSA) is based on the lower size of CO₂ molecules and its higher affinity to certain adsorbents in comparison with CH₄, which allows the selective retention of CO₂ by a solid phase while CH₄ molecules pass through the interstitial spaces of the adsorbent unit [15]. The adsorbents typically used are activated carbon, zeolite, activated alumina, silica gel or polymeric solvents with a high surface area [6,15]. Conventional PSA units consist of 4 interconnected vertical columns packed with the adsorbent working in a different stage: pressurization, adsorption at 4-10 bar to increase CO₂ retention, depressurization by venting and regeneration of the adsorbent by purging with the upgraded biogas (Fig. 4) [12]. Despite this process is capable of providing a CH₄ concentration in the upgraded biogas of 96-98% with CH₄ losses of 2-4%, PSA requires drying the biogas and removal of H₂S prior injection of the biogas in the PSA columns [16].

Fig. 4. CO₂ removal by pressure swing adsorption (PSA). Adapted from Bauer et al. [13].

Membrane separation

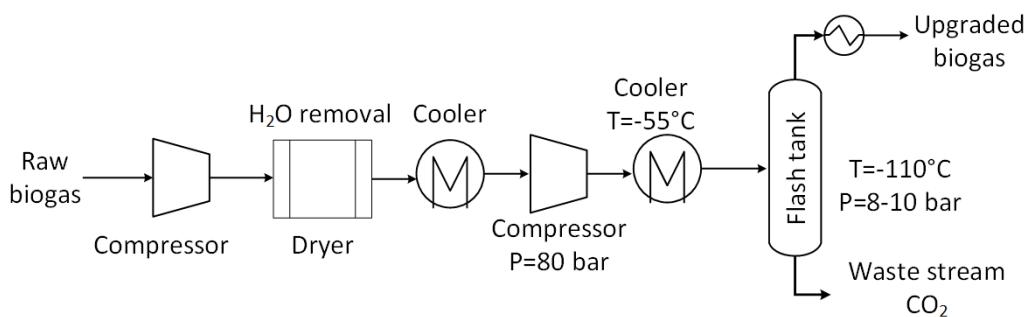

Membrane-based processes for CO₂ removal are based on the selective permeability of specific membranes, which allows CO₂ to pass through the membrane while CH₄ is retained. This technology operates at atmospheric pressure in gas-liquid modules using alkanol amines or alkali aqueous solutions on one side of the membrane, or at high pressure (20-40 bar) in gas-gas modules [12]. Gas-gas units need multiple membrane stages and internal recirculation of permeates and retentates to increase CH₄ recovery and avoid CH₄ losses (CH₄ concentrations of 10-25% are typically found in the permeates; Fig. 5) [6]. Although CH₄ concentrations between 96 and 98% can be reached in gas-liquid modules or multiple-stage gas-gas modules, [3,6], the main drawback of this technology is the high maintenance cost due to the need for a periodical membrane replacement [16].

Fig. 5. CO₂ removal by membrane separation. Different configurations of gas-gas units: I) single-pass membrane, II) multiple stage membrane units with internal recirculation of permeate and III) internal recirculation of permeate and retentate. Adapted from Bauer et al. [13].

Cryogenic separation

This technology consists on the selective separation of biogas components based on their different liquefaction/solidification points. The process typically entails a sequential biogas compression till 80 bar followed by a stepwise temperature drop down to -45 and -55°C to remove CO₂ via liquefaction, and a further expansion to 8-10 bar reaching a temperature of -110°C, where CO₂ in solid phase is separated from the biomethane (Fig. 6) [6]. This process needs a previous step for the removal of water, H₂S, siloxanes and halocarbons to avoid freezing or clogging [12]. Despite a high purity biomethane (CH₄ > 97%) with limited CH₄ losses (< 2%) can be achieved, cryogenic separation still exhibits high investment and operation costs [3,13].

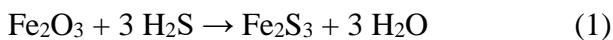
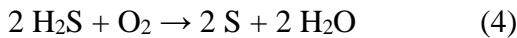


Fig. 6. CO₂ removal by cryogenic separation. Adapted from Adnam et al. [17].

1.2.1.2. H₂S removal

Adsorption using metal oxides or hydroxides

This technology is based on the chemical adsorption of H₂S on the surface of metal oxides or hydroxides such as Fe₂O₃, ZnO and Fe(OH)₃ supported onto wood chips or pellets made of red mud [8]. The unit operation usually consists of two parallel modules for H₂S removal (Eqs. 1 and 2) and the subsequent regeneration of the adsorbent material with air (Eq. 3) (Fig. 7a).



Both reactions involved in H₂S oxidation are endothermic, while adsorbent regeneration is highly exothermic and might lead to auto-ignition if temperature is not rigorously controlled [6]. This process is simple and effective resulting in H₂S levels in

biomethane < 1 ppm_v [18]. However, the operating costs are high and it is recommended for biogas streams with H₂S concentrations up to 150 ppm_v [19].

Adsorption on activated carbon

H₂S can be removed by physical adsorption using non-impregnated activated carbon or by catalytic oxidation of H₂S to elemental sulfur, where activated carbon is impregnated with NaHCO₃, Na₂CO₃, NaOH, KOH, KI or KMnO₄. Adsorption via partial oxidation of H₂S (Eq. 4) requires the addition of 4-6% air to the biogas, temperatures of 50-70 °C and pressures of 7-8 bar (Fig. 7b) [6].

In this method, carbon impregnated with KI or KMnO₄ is the most suitable option for biomethane use as vehicle fuel or natural gas substitute, since these compounds can support the partial oxidation of H₂S without air addition, thus avoiding O₂ content in the biomethane [18]. Regeneration with nitrogen or steam at high temperatures or replacement of the carbon is necessary after carbon saturation, which could entail between 4000 and 8000 h of operation subject to the H₂S loading rate [6,8].

In-situ H₂S precipitation

Addition of iron salts such as FeSO₄, FeCl₂ and FeCl₃ directly into the digester or to the organic influent effectively reduces H₂S concentrations in the biogas by reacting with the dissolved H₂S, leading to insoluble FeS and/or elemental sulfur formation (Eqs. 5 and 6) [6,12]:

This process is simple and requires low investment costs (an iron salt storage tank and a dosing pump) (Fig. 7c). Nevertheless, the main drawbacks of this method are its limited efficiency to reduce H₂S levels below 100-150 ppm_v, accumulation of FeS in the digester, higher presence of iron in the effluent and high operating cost derived from the high cost of iron salts purchase [20,21].

Absorption

This process is based on the gas-liquid mass transfer of the H₂S using water or organic solvents (physical absorption) or via H₂S mass transfer prior to its conversion to metal

sulfides or elemental sulfur using aqueous chemical solutions (chemical absorption) [6]. Physical absorption can be implemented in a single pass or following by a solvent regenerative step, the latter being mandatory when using organic solvents due to their high costs. This method is only cost-effective in combination with CO₂ removal and suitable for the removal of low concentrations of H₂S (Fig.) [22]. On the other hand, chemical absorption using reagents such as NaOH, Fe(OH)₃, FeCl₂, Fe³⁺/MgO, Fe³⁺/CuSO₄ and Fe³⁺/EDTA allows obtaining higher H₂S concentration gradients between the biogas and the solution resulting in lower liquid/biogas ratios [12]. In this context, the catalytic solution Fe³⁺/EDTA is widely applied since the product of H₂S oxidation is elemental S, which can be easily removed by sedimentation followed by the regeneration of the solution by oxidation with O₂ (Fig. 7d). This technology achieves H₂S removals of 90-100% operating at ambient temperature and pressure and low biogas residence times [23].

Membrane separation

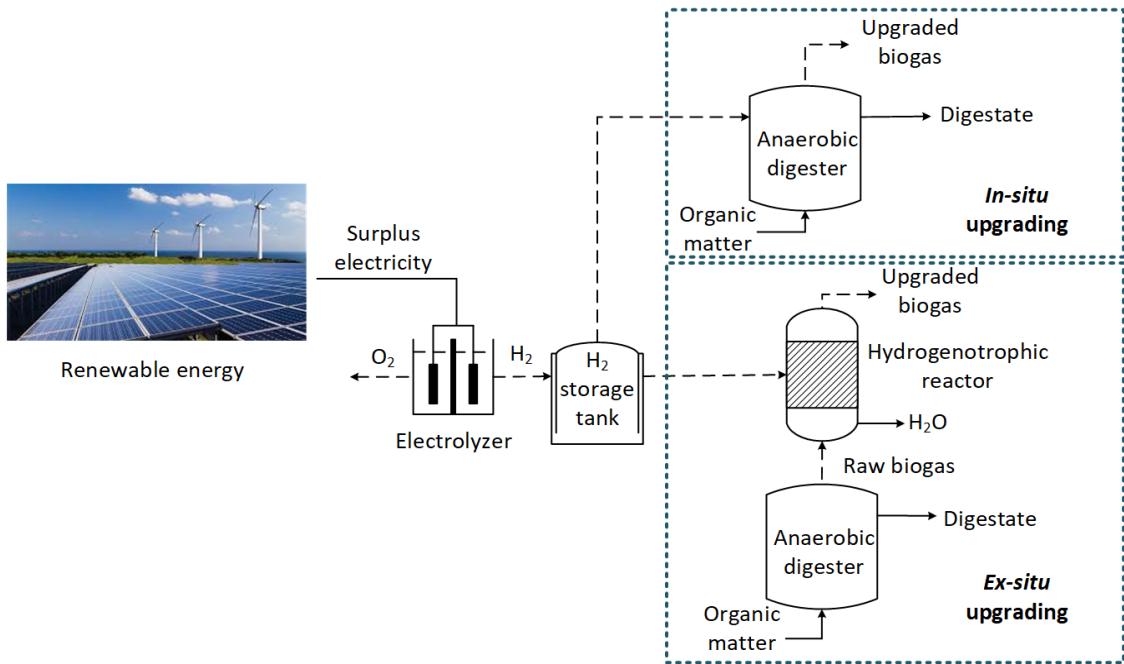
Similarly to CO₂ removal, H₂S can be separated from raw biogas by using certain membranes with a preferential permeation of H₂S and retention of CH₄ (Fig. 7e). High pressure gas-gas units or low pressure gas-liquid units using alkaline solutions are commercially available for H₂S removal. A complete H₂S removal has been reported in a gas-liquid membrane with NaOH solution as liquid absorbent at a pH of 10 operating at a gas retention time of 19 min [24]. Likewise, H₂S removal efficiencies of up to 94% were achieved with a polymeric membrane at feed flow rates of 25-41 kg/h and pressures between 4-8 barg [25]. This technology entails high operation costs and is not suitable for biogas streams with medium-high H₂S concentration.

Fig. 7. Physical-chemical H₂S removal technologies: a) adsorption using metal oxides or hydroxides, b) adsorption on activated carbon, c) in-situ precipitation, d) chemical absorption and e) membrane separation.

1.2.2. Biological technologies

Biological technologies constitute a low-cost and environmentally friendly alternative to their physical-chemical counterparts. These technologies are currently being optimized at pilot scale and some of them (such as photosynthetic biogas upgrading) can support a simultaneous removal of CO₂ and H₂S.

1.2.2.1. CO₂ removal

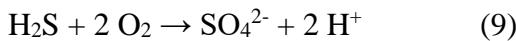
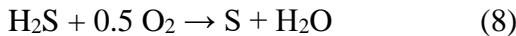

Hydrogenotrophic CO₂ removal

Hydrogenotrophic biogas upgrading or biological methanation of CO₂ relies on the ability of hydrogenotrophic methanogens to convert the CO₂ present in biogas to CH₄ using H₂ as electron donor according to Eq. 7 [26]:

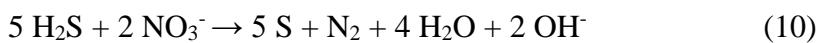
The H₂ required for the bioconversion of CO₂ to CH₄ should come from a renewable origin in order to make this technology environmentally sustainable. In this context, surplus electricity from renewable sources such as solar panels or wind mills can be used for the production of H₂ via water hydrolysis prior biogas upgrading [27]. Moreover, H₂ could be also co-generated by dark fermentation processes [28].

Hydrogenotrophic methanogenic archaea play a key role during CO₂ conversion. Microorganisms from the genera *Methanobacterium*, *Methanoculleus*, *Methanomicrobium* and *Methanothermobacter* have been consistently found in bioreactors devoted to the conversion of CO₂ to CH₄ via H₂ injection [29–33]. These hydrogenotrophic methanogens often present an optimum activity at pH 6.5–8 under mesophilic and thermophilic condition [12]. In this context, methanogenic activity is not always the limiting step during hydrogenotrophic biogas upgrading, the low solubility of H₂ in water (dimensionless gas-water Henry's Law constant of 52 at 35°C) typically limiting H₂ mass transfer from the gas to the aqueous phase that contains the methanogenic culture [34]. Hydrogen assisted CO₂ removal can be carried out in two different configurations: i) *in-situ* biogas upgrading, which involves supplying H₂ inside the anaerobic digester; and ii) *ex-situ* biogas upgrading, where biogas and H₂ are injected in an external bioreactor designed to maximize H₂ mass transfer and containing a hydrogenotrophic archaeal culture (Fig. 8) [35].

Fig. 8. Main configurations for the biological conversion of CO_2 into CH_4 . Adapted from Rodero et al. [35].

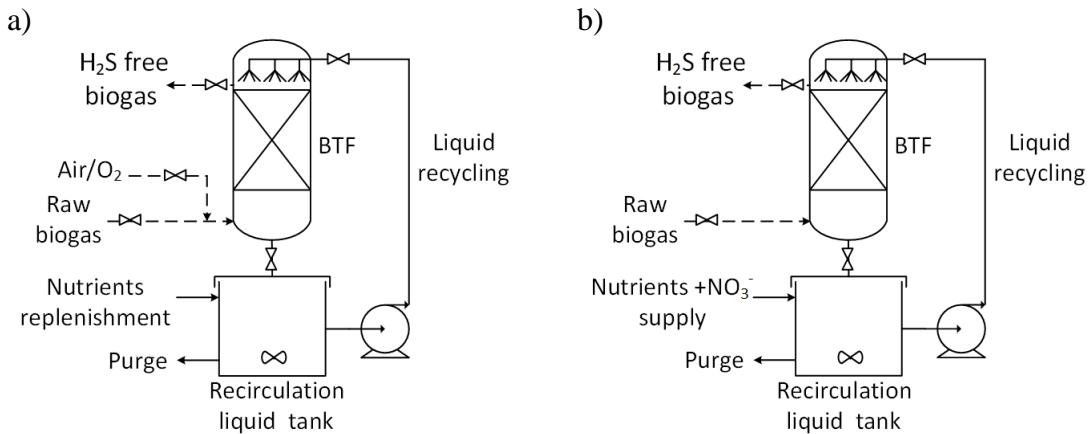


In-situ biological biogas upgrading is limited by the low gas-liquid mass transfer since anaerobic digesters are designed to maximize the removal of organic matter but not H_2 absorption [36]. Another important operating issue in this process configuration is the increase in pH above 8.5 induced by the consumption of CO_2 , which might result in methanogenesis inhibition [37]. On the other hand, *ex-situ* biomethanation requires a supplementary process unit for the upgrading of biogas, which represents an additional investment [38]. However, this process configuration does not affect organic matter degradation in the anaerobic digester, thus making the biochemical process simpler and more flexible (allowing the treatment of different CO_2 residual sources) [16]. Recently, a hybrid configuration, in which *in-situ* upgrading results in the conversion of part of the CO_2 present in biogas into CH_4 prior to the *ex-situ* process has been proposed. This integrated system can solve the problem of the pH increase during the *in-situ* process, while reducing the reactor volume needed in the *ex-situ* process [32]. However, further optimization of this process configuration is needed.

1.2.2.2. H_2S removal


Biotrickling filtration

Biotrickling filters (BTF) consist of packed bed columns (where biomass growth occurs as a biofilm) sprayed by a recirculating aqueous phase that contains the essential

nutrients for microbial growth. In aerobic BTF, lithoautotrophic bacteria can use H₂S as the energy source while O₂ is used as the electron acceptor according to Eqs. 8 and 9:



The control of the oxygen dosage into the BTF is critical due to both safety concerns (explosion risks) and to the need to avoid biogas dilution (Fig. 9a) [39]. NO₃⁻ or NO₂⁻ can be also used in anoxic BTFs as electron acceptor for the biological oxidation of H₂S, which would contribute to a concomitant nitrogen removal from digestates via denitrification (Fig. 9b) [40]. The stoichiometry of H₂S removal via nitrate reduction is described by Eqs. 10 and 11 [39,41].

Elemental sulfur might be preferred over sulfate formation in order to avoid trickling liquid acidification [42]. However, the accumulation of elemental sulfur under oxygen or nitrate limiting conditions increases the risk of BTF clogging [43]. In this context, O₂/H₂S ratios of 2-41 and NO₃⁻/H₂S ratios of 0.25-1.6 are recommended for an efficient H₂S oxidation in aerobic and anoxic BTFs, respectively [12,40,44].

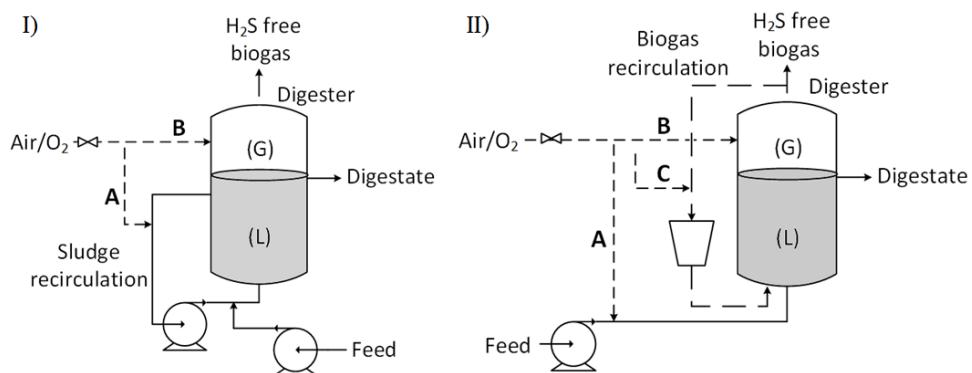
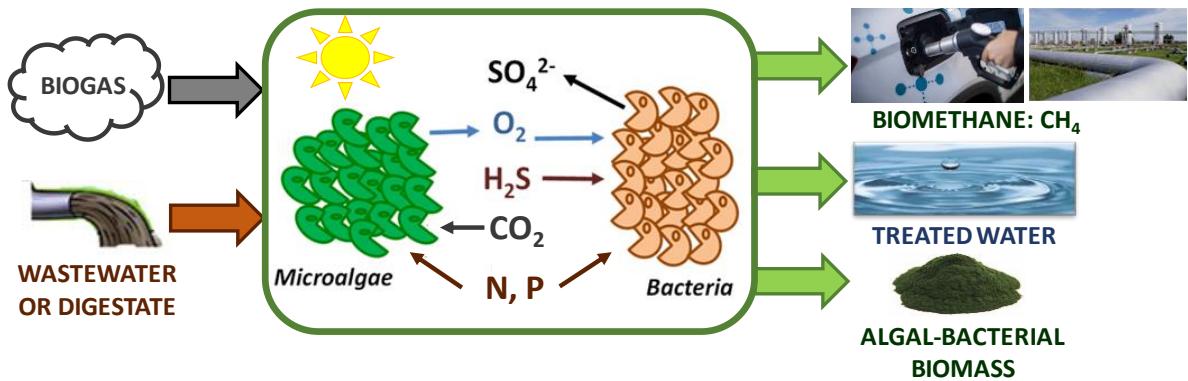

Sulfur oxidizing bacteria (SOB) such as *Thiothrix* sp., *Thiobacillus* sp., *Thiomonas* sp., *Acidithiobacillus* sp. and *Sulfurimonas* sp. are capable of oxidizing H₂S under neutral/basic pH conditions using the CO₂ present in biogas as a carbon source [45,46]. Process operation under acidic pH conditions does not entail a reduction in the H₂S removal capacity as a result of the development of acidophilic bacterial biofilms of *Acidithiobacillus thioxidans*, *Acidiphilum* sp. and *Thiobacillus ferrooxidans* able to grow at a pH of 2 - 4 [47,48]. High removal efficiencies of 80-100% have been achieved under anoxic and aerobic conditions with inlet H₂S concentrations in the range 500-10000 ppm_v [12]. However, elemental sulfur accumulation is nowadays considered the bottleneck limiting the applicability of BTFs. Indeed, packing material replacement (HD-Q-PAC, polyurethane foam, pall rings or polypropylene carriers) represents the main cost during the operation of this biotechnology (up to 44% of the total operation cost) [49].

Fig. 9. H₂S removal by a) aerobic and b) anoxic biotrickling filter.

In-situ microaerobic H₂S removal

This biotechnology is based on the oxidation of H₂S to elemental sulfur via the action of SOBs under O₂-limited conditions in the headspace of the anaerobic digester according to Eq. 8. O₂ or air can be added directly to the headspace of the anaerobic digester or to the liquid phase with sludge recirculation, or even to the biogas when it is recirculated (Fig. 10). The O₂ supply rate is normally adjusted to 0.3-3% of the biogas production rate, although this parameter depends on biogas residence time and H₂S concentration [35,51]. SOBs from the genera *Acidithiobacillus*, *Arcobacter*, *Sulfuricurvum*, *Acinetobacter*, *Sulfurimonas*, *Thiobacillus*, *Thiofaba* and *Thiomonas* have been found at the headspace of microaerobic digesters [52,53]. This biotechnology avoids the use of an additional desulfurization unit with H₂S removal efficiencies > 97% at biogas residence time > 5 h [12]. Nevertheless, periodical cleaning of the digester headspace due to elemental sulfur deposition is the main factor governing a sustainable implementation of microaerobic conditions in full-scale reactors [54].

Fig. 10. Microaerobic digesters with I) sludge and II) biogas recirculation: A O₂/air dosage in the liquid phase, B dosage in the headspace of the digester, C dosage in the biogas recirculation. Adapted from Krayzelova et al. [55].


1.3. Photosynthetic biogas upgrading

1.3.1. Fundamentals

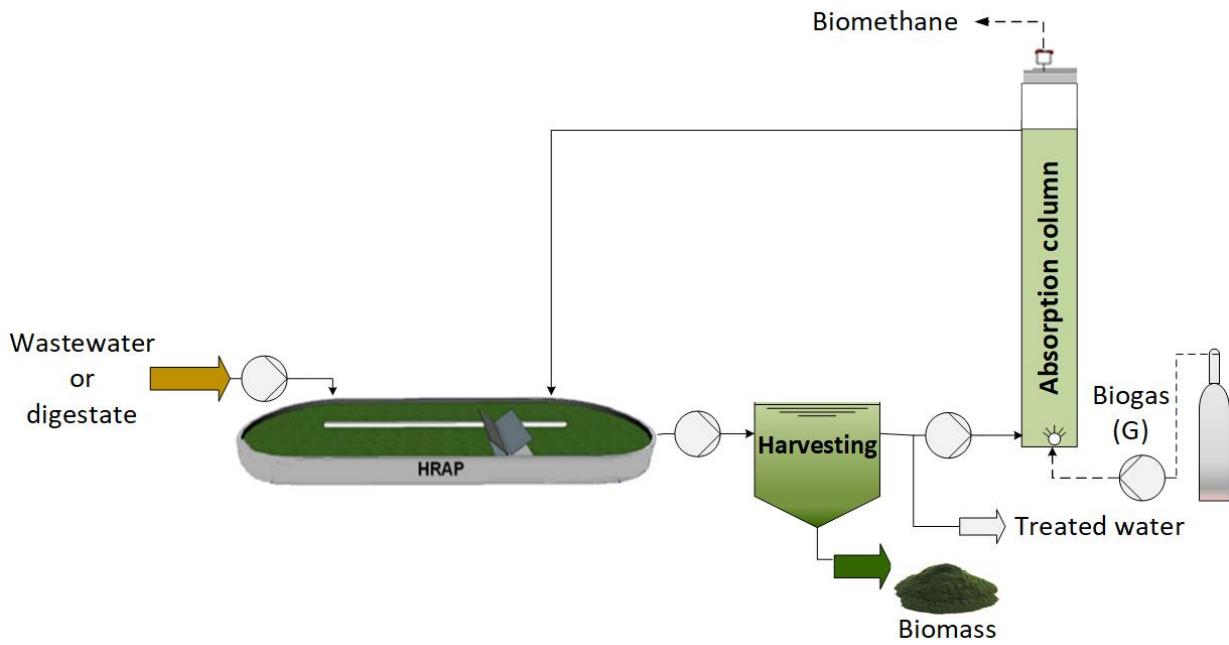
Biogas upgrading in algal–bacterial photobioreactors constitutes a promising alternative for the simultaneous removal of H₂S and CO₂ in a cost-effective and sustainable way [56]. Photosynthetic CO₂ removal is based on the biofixation of the CO₂ present in the biogas by eukaryotic microalgae and prokaryotic cyanobacteria (from now on referred to as microalgae) using solar radiation, which generates a valuable microalgae biomass. During this redox process, known as oxygenic photosynthesis, the electrons released during water photolysis are used to reduce the CO₂ present in biogas. In addition, this biotechnology can support the concomitant oxidation of H₂S to sulfate or elemental sulfur by aerobic SOB using the oxygen photosynthetically produced by microalgae (Fig. 11). These processes can be stoichiometrically described as follows (Eq. 12, 13) [12,48]:

The addition of nutrients (N, P and other trace elements) in the cultivation broth is mandatory to support microalgal-bacterial growth and the subsequent CO₂ sequestration and H₂S oxidation [57]. In this context, domestic wastewaters and anaerobic effluents have emerged as an inexpensive nutrient and water source that ultimately reduce the associated operational costs of this technology [58]. Moreover, microalgal-bacterial biomass is obtained as a byproduct, whose productivity will depend mainly on the set-up configuration, nutrient availability and environmental conditions. In this context, approximately 1.8 g of CO₂ are needed per gram of microalgae generated [59]. Since microalgal biomass is composed of 40-60% carbon, 4-9% nitrogen and 0.2-3.9% phosphorous [60,61], these nutrients can be further recycled by using microalgal biomass as biofertilizer or feedstock for biofuel production (i.e. biogas), thus increasing the sustainability of this process.

Fig. 11. Algal-bacterial symbiosis during photosynthetic biogas upgrading.

Photosynthetic biogas upgrading requires a previous CO_2 and H_2S mass transfer from the raw biogas to the aqueous cultivation broth, the limiting step being CO_2 removal due to the three times higher H_2S aqueous solubility according to their Henry's Law constants (dimensionless water-gas Henry's Law constant of 0.83 and 2.44 at 25 °C for CO_2 and H_2S , respectively) and to the rapid biological H_2S oxidation [12,34]. In this regard, process operation at high pH values (9-10) in the cultivation broth enhances CO_2 and H_2S mass transfer (as explained in section 1.3.2). Some microalgae such as *Chlorella*, *Scenedesmus*, *Anabaena* and *Spirulina* can support photosynthetic biogas upgrading due to their tolerance to a wide range of pH and high CO_2 concentrations [62]. Indeed, no inhibitory effect on isolated microalgae have been found at CO_2 concentrations of up to 40-60% [63,64]. Moreover, CH_4 has a poor aqueous solubility, which prevents any microalgae growth inhibition while minimizing CH_4 losses ($\leq 5\%$) during the process of biogas upgrading [65,66]. Finally, the rapid H_2S oxidation to sulfate mediated by alkaliphilic SOB and the high dissolved oxygen concentrations prevailing in the cultivation broth, prevents H_2S inhibition on microalgae activity (H_2S concentration $\geq 100 \text{ ppm}_v$) [65,67]. Actually, a recent study has identified bacteria from the genus *Thioalbus* in the algal-bacterial broth, which supported the biological nature of H_2S oxidation in photobioreactors devoted to biogas upgrading [66].

On the other hand, an appropriate design and operation of the photobioreactor is necessary in order to improve CO_2 removal from biogas and microalgae growth [34]. High rate algal ponds (HRAPs) or closed photobioreactors such as bubble column and horizontal tubular photobioreactors are the most common configurations used for biogas upgrading. HRAPs require lower capital investment and operation costs than their closed counterparts, and thereby are considered the best configuration for low-cost algal biomass production [68]. However, HRAPs typically present low biomass


concentrations in the cultivation broth (0.3–1.2 g total suspended solid (TSS) L⁻¹) and low biomass productivities (5–30 g m⁻² d⁻¹) due to their low photosynthetic efficiency (~2%) [69–71]. Consequently, HRAPs entail large land requirements for biogas upgrading and a high water footprint (up to 9 L m⁻² d⁻¹ during summer in temperate climates) [72,73]. In contrast, closed photobioreactors need high investment costs and energy requirements, but can support biomass concentrations of 2-8 g TSS L⁻¹ and biomass productivities of 25–45 g m⁻² d⁻¹ as a result of their higher light utilization efficiency (4-6%) due to the higher turbulence and illuminated surface-volume ratio [69,74]. Biogas can be introduced either directly via biogas sparging in the photobioreactor or in an external absorption column where the CO₂-containing cultivation broth is recirculated to the photobioreactor. The former configuration entails a poor CO₂ removal in HRAPs due to low gas-liquid contact times, resulting in a low CO₂ gas-liquid mass transfer [68]. On the other hand, the main constraint of enclosed photobioreactors is the build-up of oxygen concentrations produced as a result of the high algal photosynthetic activity, which could lead to a high oxygen concentration in the upgraded biogas and produce explosive mixtures of CH₄/O₂ [75,76].

In this context, the engineering of an external bubble column interconnected to the photobioreactor improves the gas-liquid mass transfer and promotes lower oxygen content in the upgraded biogas than the single stage process (Fig. 12) [80]. Therefore, HRAP interconnected to an external bubble column represents an efficient and cost-competitive configuration for the simultaneous biological removal of CO₂ and H₂S from biogas [68]. In addition, the absence of packing material in the biogas scrubbing unit together with the high O₂ concentration prevailing in the algal-bacterial cultivation broth during biogas upgrading, prevent the clogging problems typically encountered in biotrickling filters due to elemental sulfur accumulation [39]. H₂S removal efficiencies of 100 % concomitant with CO₂ removals of 70-95% are typically reported during photosynthetic biogas upgrading in HRAPs interconnected to an absorption column at lab scale (Table 1). Despite these promising results, the validation of this biotechnology at semi-industrial scale is a requirement prior its full-scale implementation.

Table 1. Experimental studies on photosynthetic biogas upgrading under different configurations

Photobioreactor and absorption unit design	Gas residence time (h)	L/G ratio	CO ₂ -RE (%)	H ₂ S-RE (%)	CH ₄ (%)	O ₂ (%)	pH	Microalgae population	References
Indoors closed photobioreactor of 1 L	96	-	100	-	70-76	10-24	9.5	<i>Spirulina platensis</i>	[77]
Outdoors closed photobioreactor of 1 L	-	-	98	100	50-53	18-23	5.5-7.0	<i>Chlorella vulgaris</i>	[76]
Outdoors set of 50 L bubble columns	0.06-0.3	-	74-86	-	86-91	-	-	Mutant <i>Chlorella</i> sp. strain (MB-9)	[65]
Indoors 180 L HRAP interconnected to a 0.8 L bubble column	0.7	0.4-1.6	40-95	100	-	0.2-1.0	7-10	<i>Spirulina platensis</i> , <i>Phormidium</i> , <i>Oocystis</i> , <i>Microspora</i> sp.	[56]
Indoors 180 L HRAP interconnected to a 2.5 L bubble column	1.4-8.3	0.5-67	80	100	-	0.3-3	8	<i>Chlorella</i> sp., <i>Pseudanabaena</i> sp., <i>Chloromonas</i> sp., <i>Geitlerinema</i> sp., <i>Microspora</i> sp., <i>Stigeoclonium</i> sp. and <i>Planktolyngbya</i> sp.	[78]
Indoors 180 L HRAP interconnected to a 2.5 L bubble column	1.4	10.7	72-79	100	81	0.7-1.2	8	<i>Geitlerinema</i> sp., <i>Limnothrix</i> <i>planktonica</i> , <i>Pseudanabaena</i> <i>minima</i> , <i>Stigeoclonium</i> <i>tenue</i> , <i>Leptolyngbya</i> <i>benthonica</i> , <i>Planktolyngvya</i> <i>brevicellularis</i> , <i>Staurosira</i> sp.	[79]
Indoors 75 L HRAP interconnected to a 0.7 L bubble column	0.1-1.2	-	93	-	-	5	-	<i>Nannochloropsis gaditana</i>	[80]
Indoors 180 L HRAP interconnected to a 2.5 L bubble column	1	0.3-1.0	97-99	97	95-96	0.7-1.2	10.2	<i>Chlorella minutissima</i>	[66]

Photobioreactor and absorption unit design	Gas residence time (h)	L/G ratio	CO ₂ -RE (%)	H ₂ S-RE (%)	CH ₄ (%)	O ₂ (%)	pH	Microalgae population	References
Indoors 25 L HRAP interconnected to a 0.35 L bubble column	0.4	5.0	89-94	99-100	-	-	9.3-9.7	<i>Picochlorum</i> sp. and <i>Halospirulina</i> sp.	[81]
Outdoors 180 L HRAP interconnected to a 2.5 L bubble column	0.8	0.5	50-95	100	72-93	0.1-2.0	9-10	<i>Chlorella</i> sp., <i>Chloridium saccharophilum</i> and <i>Pseudanabaena</i> sp.	[73]
Outdoors 180 L HRAP interconnected to a 2.5 L bubble column	0.8	1.0	64-96	100	85-98	0-3.4	9.2-9.8	<i>Chlorella vulgaris</i> , <i>Pseudanabaena</i> sp., <i>Chlorella kessleri</i> and <i>Leptolyngbya lagerheimii</i>	[82]
Indoors 60 L closed photobioreactor interconnected to a 3.5 L bubble column	1.5	1-11	57-100	97	83	8.3-9.6	7.2-10.7	<i>Acutodesmus obliquus</i>	[83]
Outdoors 11.7 m ³ semi-closed photobioreactor interconnected to a 45 L bubble column	10.8	0.5-5.0	>91	100	94-99	-	8-9	<i>Chlorella vulgaris</i> , <i>Stigeoclonium tenue</i> , <i>Nitzschia closterium</i> , and <i>Navicula amphora</i>	[84]

Fig. 12. Schematic diagram of the experimental set-up used in this thesis for the simultaneous biogas upgrading and wastewater treatment.

1.3.2. Parameters affecting photosynthetic biogas upgrading

Environmental conditions such as light availability, temperature and, indirectly, the dissolved oxygen (DO) concentration in the cultivation broth, impact on both CO₂ fixation by microalgae and the final quality of the upgraded biogas. In addition, the composition of the wastewater added as a nutrient and water source (section 1.3.3) is one of the main factors governing microalgae productivity and influencing key parameters in this process like the pH and the alkalinity of the cultivation broth. Furthermore, the optimization of the operational parameters in the system is a must to achieve a standard biomethane quality while improving microalgae productivity.

Light intensity and photoperiod

Light availability is a relevant factor affecting the rate and efficiency of the photosynthetic process since light provides the energy required to convert dissolved inorganic carbon into organic biomass via photosynthesis [85]. CO₂ capture rate increases with light intensity until it reaches a maximum where the culture becomes light saturated and microalgae growth remains constant. Higher intensities above the light saturation point can lead to photoinhibition or photodamage [86]. Most microalgae reach this saturation point at light intensities of $\sim 200 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$, which is approximately 8% of the summer and 17% of the winter maximum light irradiances in

temperate latitudes (2500 and 1200 $\mu\text{mol m}^{-2} \text{ s}^{-1}$, respectively) [87]. However, due to the fact that about 10–20% of the total solar radiation is lost by reflection in the HRAPs and only 48% of the solar irradiance is photosynthetically active radiation (PAR; wavelength range from 400 to 750 nm), the maximum solar energy fixed by microalgae ranges from 1.3-2.4% depending on the climate, algal strains and operation conditions in the photobioreactor [70].

Microalgae growth is also affected by the length of the light/dark cycle since a long exposure to high irradiances may cause photoinhibition leading to decreased photosynthesis, while the dark period enables the recovery of the electron transport chain [88]. On the contrary, Jacob-Lopes et al. [89] reported a decrease in the biomass concentration and CO_2 fixation potential when the duration of the light period was reduced in *Aphanothecce microscopica Nägeli* cultures at light intensity of 150 $\mu\text{mol m}^{-2} \text{ s}^{-1}$ as a result of a severe light limitation. Otherwise, Meier et al. [90] reported higher CO_2 removal efficiencies in the absorption column during the dark period, which was attributed to the temperature decrease in the absence of light. In contrast, a higher CO_2 stripping to the atmosphere was obtained during the dark period, which could eventually jeopardize the environmental sustainability of this biotechnology.

Temperature

Temperature governs most metabolic processes, which ultimately impacts on photosynthetic activity [91]. The optimal temperature for microalgae growth often ranges between 15 and 30°C, but it is highly species-specific, some strains being able to tolerate or even prefer lower or higher temperatures [92]. For instance, *Chlorella* sp. exhibits an optimal activity between 30 and 35°C [12]. A significant decrease in the metabolic activity of *Spirulina maxima* and *S. platensis* was recorded at temperatures below 17°C, while growth was not inhibited at 40°C [93]. On the other hand, low temperatures (2°C) positively impacted *Asterionella formosa* growth, being unable to survive at 27°C [94]. On the other hand, the solubility of the gases (CO_2 , H_2S , O_2) increases when the temperature decreases, low temperatures thus supporting higher CO_2 and H_2S removal efficiencies in the absorption column [90]. In addition, other properties such as the ionic equilibria of the cultivation broth, the water evaporation rates and pH also depend on the temperature [95].

pH of the cultivation broth

During biogas upgrading coupled with wastewater treatment, the pH of the cultivation broth depends on the rates of algal/bacterial respiration, nitrification, CO₂ and H₂S mass transfer, photosynthetic activity of microalgae, and on the alkalinity and ionic composition of the wastewater [70]. The pH of the cultivation broth modifies the enzymatic activity and energetics of the cells associated with microalgal growth [96]. pH tolerance and the optimal pH value for microalgal growth differ among species. Despite most microalgae show a maximum activity at pH 7–8, acidophilic microalgae such as *Chlamydomonas acidophila* present an optimal growth at pH below 6, whereas the optimum pH reported for *Spirulina platensis* (alkaliphilic microalgae) is 10 [12,97,98]. Moreover, pH influences the NH₃/NH₄⁺ equilibria and also phosphorus and heavy metals availability. Therefore, nutrient removal via NH₃ volatilization and orthophosphate precipitation occur at pH between 9 and 11 [99]. In addition, the pH of the cultivation broth impacts on the mass transfer phenomena associated to CO₂ and H₂S absorption from biogas and the distribution of their species in the liquid phase (Eqs. 14-17, pKa values at 25°C) [100]:

In this context, a high pH in the cultivation broth increases the CO₂ and H₂S gas–liquid concentration gradient due to the acidic nature of these gases and consequently, their mass transfer in the absorption column [56]. Despite CO₂ consumption via photosynthesis increases the pH, photobioreactors with a high nitrification activity, which releases H⁺ from NH₄⁺ oxidation, and/or a continuous overload of biogas may undergo a severe acidification. In this context, low alkalinity systems might need alkali addition in order to compensate this acidification [101].

Alkalinity

The alkalinity in the cultivation broth plays a key role on CO₂ and H₂S mass transfer in the absorption column. A high alkalinity in the cultivation broth (high concentration of inorganic carbon) results in a high buffer capacity, which can sustain a limited decrease

of the pH along the absorption column [101]. Nevertheless, a high alkalinity inherently involves a high salinity in the photobioreactor cultivation broth, which might negatively impact on photosynthetic activity due to oxidative and osmotic stress on microalgae [102]. Moreover, high inorganic carbon concentrations tend to increase CO₂ stripping to the atmosphere, thus jeopardizing the environmental benefits of photosynthetic biogas upgrading.

Dissolved oxygen concentration

The large amounts of oxygen produced during the photosynthetic process (1.5 g O₂ per g of microalgae produced using NH₄⁺ as a N source) might result in DO concentrations in the cultivation broth up to 40 mg O₂ L⁻¹ [103]. High concentrations of DO (>25 mg L⁻¹) can inhibit the activity of some enzymes involved in photosynthesis (e.g., RuBisCO), induce light energy dissipation by photorespiration, or cause photochemical damages to membrane structures and to the photosynthetic apparatus, among others, which in turn results in a decrease in microalgal growth [104,105]. Moreover, high DO levels in the cultivation broth could result in a high O₂ desorption from the scrubbing liquid to the biogas and consequently, the production of an upgraded biogas unsuitable for use as a natural gas substitute or even explosion hazards [79]. In this context, the biological O₂ demand mediated by the oxidation of H₂S from biogas and organic matter or NH₄⁺ from digestate or wastewater (which requires a minimum DO concentration of 2 mg L⁻¹ to support the aerobic bacterial activity), partially mitigates this issue in algal-bacterial photobioreactors devoted to biogas upgrading [106].

Operational parameters in the absorption column

The **liquid to biogas (L/G) ratio** in the absorption column is a key operating parameter that must be optimized in order to achieve a high CO₂ and H₂S removal with a low O₂ and N₂ desorption from the liquid to the upgraded biogas. High L/G ratios entail an increase in the gas-liquid concentration gradients due to the lower acidification of the liquid along the absorption column, thus increasing the CO₂ and H₂S removal efficiencies. Nevertheless, an increase in the L/G ratio also enhances O₂ and N₂ stripping from the liquid to the upgraded biogas [78]. In this context, the optimum L/G ratio not only depends on the characteristics of the absorption unit (dimensions, configuration, diffuser type) but also on the environmental conditions and the type of wastewater used to support algal-bacterial growth, which directly influences the characteristics of the cultivation broth (i.e. pH, alkalinity, temperature). Hence, the L/G

ratio should be controlled over time in outdoors systems in order to guarantee an upgraded biogas complying with biomethane standards.

The **gas-liquid flow configuration** in the absorption column influences the biomethane quality. Counter-current flow operation is preferred in absorption units since it involves higher overall concentration gradients and mass transfer rates. Nonetheless, the superior O₂ and N₂ stripping along with operational problems such as elemental sulfur accumulation in the biogas diffuser due to the depletion of oxygen at the bottom of the column during counter-current configuration, counterbalance its beneficial CO₂ mass transfer rates. Therefore, co-current flow operation has provided the best performance during photosynthetic biogas upgrading [107]. Besides, the **biogas flowrate** should be optimized in order to improve the removal efficiency in the absorption column without exceeding the photosynthetic capacity of the photobioreactor. In this regard, an increase in the biogas flowrate maintaining a constant L/G could improve the gas-liquid mass transfer coefficient in the absorption column due to the higher turbulence induced.

Operational parameters in the photobioreactor

The **hydraulic retention time (HRT)**, defined as the volume of the photobioreactor divided by the inlet wastewater flowrate, determines the amount of nutrients supplied to the system and consequently, the biomass productivity under no light or CO₂ limitation [106,108]. The HRT must be optimized depending on the wastewater composition, environmental conditions and photobioreactor configuration in order to prevent biomass wash-out at low HRTs (which would entail a decrease in pH due to the lower photosynthetic activity) or nutrient limitation at high HRTs [109]. In this context, HRTs between 3 and 9 days are typically reported in HRAPs using domestic wastewaters while higher HRTs (>50 days) are commonly required when digestates or high-strength wastewaters are supplied due to their high nutrient content, which could lead to microalgae growth inhibition [66,110,111]. **Mixing** provides homogeneous conditions in the photobioreactor, limits the formation of anaerobic zones and supports the light/dark cycles that prevent photoinhibition [99]. Mixing must be optimized since it is energy-demanding, can generate shear stress in the microalgal-bacterial population and impacts on the gas/liquid mass transfer and, consequently, on the water evaporation rates and CO₂/NH₃ stripping in the photobioreactor [112]. In this regard, cultivation broth velocities of 15-30 cm s⁻¹ are commonly applied in HRAPs [113].

1.3.3. Wastewater as a nutrient source

Wastewaters are characterized by their high content in carbon (organic and inorganic) and nutrients (mainly nitrogen and phosphorous) [114]. The concentration of these pollutants must be reduced before wastewaters are discharged into natural water bodies in order to avoid eutrophication, oxygen depletion and toxicity issues [115]. In this context, microalgae, which present a high tolerance to harsh environmental conditions, are able to grow in different types of wastewater and support a high nutrient removal and a cost-effective oxygenation potential [58]. Moreover, these effluents typically present a pH of 7–9, which matches the optimal range for microalgae growth [116]. In **domestic wastewaters**, most of the nitrogen is present as ammonium (NH_4^+), with low concentrations of nitrite and nitrate (Table 2). This feature favors nitrogen consumption by microalgae since NH_4^+ assimilation requires less energy than NO_3^- and NO_2^- conversion into structural nitrogen [117]. Despite domestic wastewaters present a C:N ratio (3.5:1) and a C:P ratio (20:1) too low in comparison with the optimum ratios for microalgae growth (C:N:P of 100:18:2), the CO_2 transferred from the biogas can compensate this C deficit [118,119].

Although domestic wastewaters can be used as a nutrient source, **digestates** (by-product of the anaerobic digestion) are preferred in photosynthetic biogas upgrading systems due to their higher pH (8-10) and alkalinity, which support a more cost-effective CO_2 and H_2S mass transfer to the aqueous phase (Table 2). In addition, nitrogen and phosphorous concentrations in digestates are considerably higher than in typical domestic wastewaters, although their composition varies depending on the type of organic waste digested, operational temperature, supplementation of trace elements, organic loading rates and the digester configuration [120]. On the other hand, **agro-industrial wastewaters** such as piggery wastewaters, which contain higher concentrations of organic matter, nitrogen, and phosphorus than domestic wastewaters, can be also used as nutrient source in microalgal-bacterial processes (Table 2) [121]. Similar to urban wastewater, the C:N:P ratios in digestates and agro-industrial wastewaters are lower than those required for microalgal growth and nutrient removal by assimilation. Otherwise, despite NH_4^+ is the preferred form of nitrogen for microalgae and bacterial growth, NH_4^+ concentrations $>100 \text{ mg L}^{-1}$ at $\text{pH} > 8$ decrease microalgae growth in some species due to the occurrence of free ammonia toxicity [119]. As a result, agro-industrial wastewaters and digestates must be diluted or fed at

low loading rates to microalgae-based treatment technologies (Table 3) [78,101]. In fact, these low feeding rates when using high-strength digestates along with high evaporation rates have resulted in a zero-effluent process operation [73,111]. Moreover, dilution strategies or pretreatment steps (e.g. oxidation via H₂O₂-UV combination or ozonation, the use of positively charged flocculants, biopolymers or adsorbents) contribute to reducing or removing the dark color of these effluents, thus avoiding problems of light limitation in the cultivation broth of the photobioreactors [122].

Table 2. pH and composition of different wastewaters

Parameters	Domestic wastewater	Centrate	Piggery wastewater
pH	7.1-7.8	8.3-9.2	7.3-7.6
COD (mg L ⁻¹)	395-1179	134-1043	987-11241
TOC (mg L ⁻¹)	112-292	16-891	3935-10340
IC (mg L ⁻¹)	68-186	450-974	1450-1750
TN (mg L ⁻¹)	49-166	316-1570	475-3680
N-NH ₄ ⁺ (mg L ⁻¹)	41-102	316-1143	364-655
N-NO ₃ ⁻ (mg L ⁻¹)	0-0.5	0.2-8	<5
N-NO ₂ ⁻ (mg L ⁻¹)	0-0.5	0	<5
TP (mg L ⁻¹)	10-52	45-297	44-85
P-PO ₄ ³⁻ (mg L ⁻¹)	4-41	26-135	-
References	[58,114,123–125]	[111,126–128]	[129–131]

Finally, other pollutants such as heavy metals (Cu, Pb, Cd, Cr, or Zn) are commonly found in these wastewaters. Heavy metals can inhibit photosynthetic activity and bacterial growth even at low concentrations. For instance, Hamed et al. [132] reported the inhibition of *Chlorella sorokiniana* and *Scenedesmus acuminatus* growth when exposed to Cu concentrations of 1.6 and 3.2 mg L⁻¹, respectively. In contrast, some metals at trace level concentrations may improve microalgae growth. Indeed, Zhang et al. [133] observed an increase in *Ostreococcus tauri* growth at arsenic concentrations of 0.75–2.25 mg L⁻¹, while Huang et al. [134] reported that Cd concentrations of ~4.5 mg L⁻¹ stimulated *Chlorella vulgaris* growth.

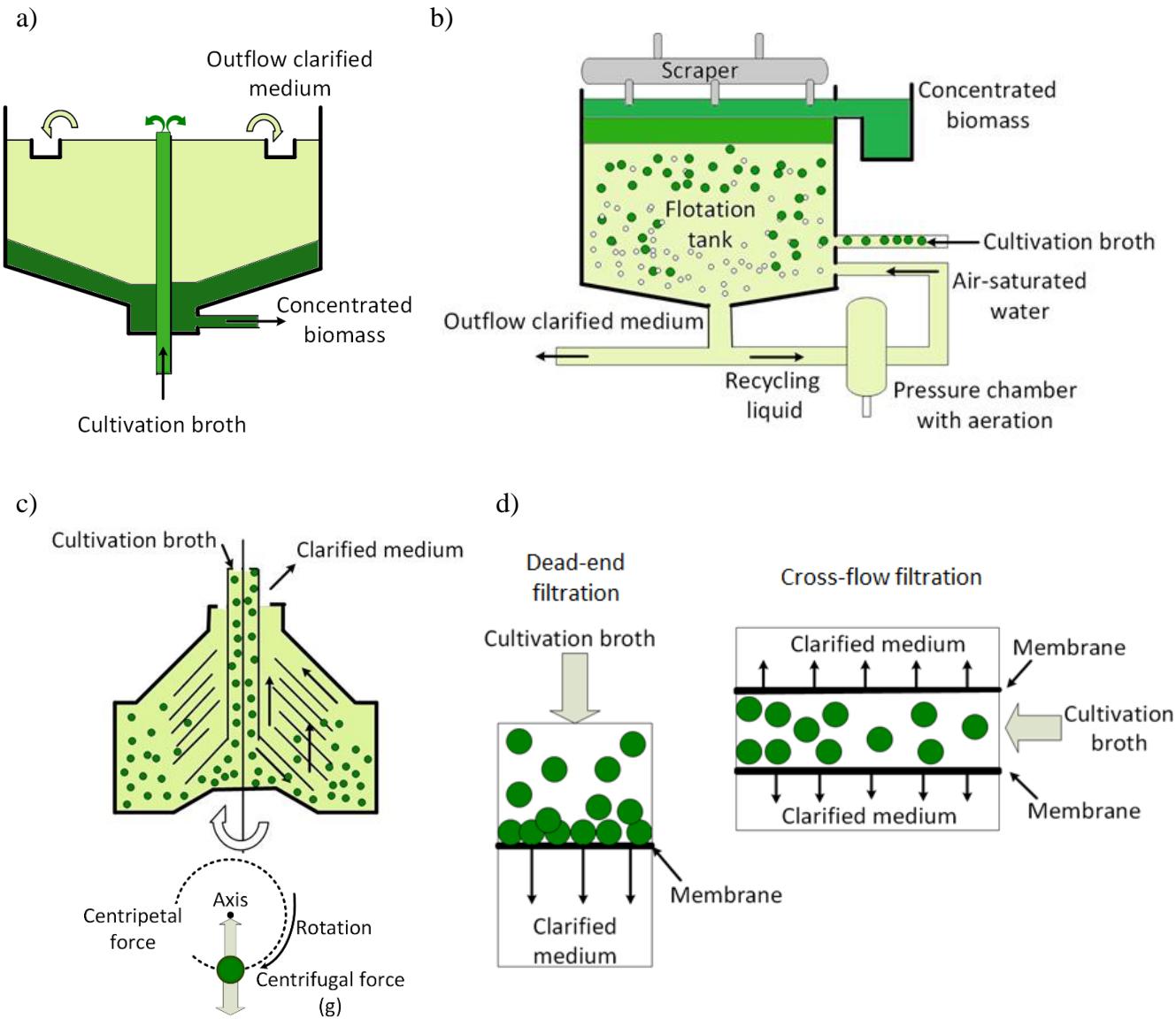

Table 3 compiles the removal efficiencies obtained during the simultaneous biogas upgrading coupled with wastewater treatment using microalgae-based processes.

Table 3. Average removal efficiencies (RE) obtained during the treatment of wastewaters coupled with biogas upgrading in photobioreactors

Wastewater	HRT (days)	COD-RE (%)	TOC-RE (%)	TC-RE (%)	TN-RE (%)	TP-RE (%)	Ref.
Diluted anaerobically digested vinasse	7.4	31-51	24-57	50-73	21-37	36-86	[78]
Diluted anaerobically digested vinasse / Raw vinasse	7.4	36-88	41-85	51-72	16-74	36-78	[79]
Synthetic digestate	146	-	-	72-87	91-98	63-77	[66]
Diluted digestate	7	-	-	20-44	40-100	45-82	[135]
Digestate	10	61-70	-	-	60-69	56-64	[136]
Digestate	180	81-93	-	-	97-99	90-99	[138]
Digestate	146	-	59-74	-	80-87	84-92	[101]

1.3.4. Microalgal-bacterial biomass harvesting

The separation of microalgal-bacterial biomass from the cultivation broth is a crucial step during photosynthetic biogas upgrading in order to use a biomass-free cultivation medium as scrubbing liquid to improve the gas-liquid mass transfer in the biogas absorption column, and to obtain a biomass that can be further valorized, thus increasing the economic feasibility of the process (as mentioned in section 1.3.1.). The low biomass concentrations typically encountered in HRAPs result in large volumes of cultivation broth to be managed to harvest a relevant biomass productivity. In this context, a suitable harvesting technology should be able to handle large volumes at a minimal cost and energy requirements [139]. The harvesting of algal biomass is affected by the species of microalgae, since they have different size, shape and cell wall composition, together with the composition of the cultivation broth such as algal organic matter or salt content [140]. Moreover, the harvesting process should not generate or introduce toxic substances that avoid microalgal-bacterial growth, since the clarified broth is recirculated to the photobioreactor during photosynthetic biogas upgrading, or that contaminate or alter microalgae biomass. Currently, harvesting methods such as gravity settling, flotation, centrifugation, filtration and flocculation, or a combination of them are typically applied for algal-bacterial biomass harvesting.

Fig. 13. Biomass separation by: a) gravity settling, b) dissolved air flotation, c) centrifugation, d) filtration. Adapted from Roselet et al. [141].

Gravity settling: This method is based on the separation of microalgae from the cultivation broth by the gravity force in settling tanks or lamella separators (Fig. 13a). Sedimentation is a simple process that requires low investment and operation costs. A key operational parameter in sedimentation is the settling rate of microalgae, which is determined by Stokes' Law. This law establishes that the settling rate is proportional to the square of the radius of the cells (assuming spheroidal shapes) and the difference in density between the microalgae and the liquid [142]. Since most microalgae have a small size ($<20 \mu\text{m}$) and a density similar to that of water ($1030\text{-}1140 \text{ kg m}^{-3}$), sedimentation is often very time-consuming (settling velocity $\sim 1 \text{ cm h}^{-1}$), provides low cell recovery efficiencies (60-65%) and low biomass concentrations ($<1.5\%$ solids)

[143,144]. In this context, flocculation prior to sedimentation can enhance the settling rate, cell recovery and the final algal sludge concentration.

Flotation: Flotation is based on the lower density of the microalgae particles in comparison with water promoted by the adhesion of microscopic air bubbles, which raise microalgae to the surface where they can be separated via skimming [145]. This method is classified according to the mechanism of bubble production into dissolved air (DAF), dispersed air (DiAF) and electrolytic-flotation (EF) [141]. DAF consists on the formation of air bubbles by a sudden decompression of air-saturated water in the flotation tank at atmospheric pressure (Fig. 13b). In DiAF, air is sparged directly into the flotation tank through a diffuser or a high-speed mechanical agitator. On the other hand, EF involves the electrolysis of water into oxygen and hydrogen microbubbles. Although flotation is faster and can achieve higher biomass concentration (up to 7%) than sedimentation, this method typically involves a high energy demand [143]. Moreover, the use of additives is necessary to avoid the electrostatic repulsion between the gas bubbles and microalgae cells [146].

Centrifugation: This technology uses a centrifugal force to intensify the separation of microalgae from the medium based on their different density (Fig. 13c). Two types of centrifuges are widely applied for microalgae harvesting: disk stack centrifuges are suitable for separating particles of low size (3-30 μm) and dilute microalgae cultures (0.02-0.05%), while decanters are more appropriate for particle size greater than 15 μm and concentrated suspensions (>15%) [142]. Centrifugation is a fast and an efficient method that can achieve recovery efficiencies >90% and biomass concentrations up to 22% of solids without the addition of chemicals [141]. However, centrifugation is not cost-competitive for large-scale microalgae harvesting during wastewater treatment since it exhibits high investment costs and a prohibitive energy demand, thereby limiting its use only to the production of high-value compounds or as a second dewatering step. In addition, centrifugation can result in cell damage due to the high shear forces applied [147].

Filtration-based technologies: This harvesting method uses a permeable medium such as screens or membranes where microalgae are retained. A pressure difference across the barrier via vacuum, pressure or gravity force is necessary to force the liquid pass through. The system can operate in continuous or discontinuous mode in dead-end (the liquid flow is perpendicular to the filter surface) or cross-flow (the liquid flow is

parallel to the filter surface) configuration, the latter being preferred since cake formation is prevented (Fig. 13d) [144]. Membrane filters can be classified by the pore size into macrofiltration ($>10\text{ }\mu\text{m}$), microfiltration ($0.1\text{-}10\text{ }\mu\text{m}$) and ultrafiltration ($0.001\text{-}0.10\text{ }\mu\text{m}$). Despite lower pore sizes increase the efficiency of the separation, the energy required for microalgae separation increases proportionally. In this context, microfiltration exhibits the most appropriate size to retain most microalgae species at lower energy consumption than ultrafiltration [145]. Although nearly 100% of the microalgae can be retained in micro or ultrafiltration without addition of chemicals and no biomass disruption, the main drawback of filtration methods is the clogging and fouling of the membrane pores, which entails high maintenance costs to wash or replace the membranes [144].

Flocculation: Microalgae cells have a negative surface charge due to the presence of proton-active functional groups (i.e. carboxylic acids) that prevent the spontaneous aggregation of the cells as a result of electrostatic repulsive forces [144]. During flocculation, the addition of chemicals overcomes the electrostatic repulsion of microalgal cells, thus inducing the formation of large microalgae flocs. Flocculation can be induced by different mechanisms: i) charge neutralization, where the negative surface charge of microalgae is cancelled by the adsorbed positively charged ions, polymers or colloids; ii) electrostatic patch, where a positively charged polymer locally reverse the charge of the microalgae surface resulting in the connection of particles through patches with opposite charge; iii) bridging, where a polymer or colloid attaches simultaneously to the surface of several microalgae cells forming a bridge between them; and iv) sweeping, where the flocculant forms a precipitate that entangles microalgal cells (Fig. 14) [148]. A wide variety of flocculants are commercially available, the most applied being inorganic metal salts (FeCl_3 , $\text{Al}_2(\text{SO}_4)_3$, $\text{Fe}_2(\text{SO}_4)_3$) and synthetic polyacrylamide-based polymers. Currently, natural biopolymers (i.e. chitosan, tanfloc, derivatives of cassia gum, cellulose or starch) are attracting interest as flocculants due to their biodegradability and sustainability [149]. On the other hand, flocculation can occur spontaneously by increasing the pH above 9, which results in salt precipitation (autoflocculation), or by the presence of other microorganisms (bioflocculation) [141,150]. Flocculation results in a rapid flocs separation by gravity or filtration-based technologies, which entails lower operational and/or investment costs. However, this harvesting technique requires the use of chemicals, which eventually can

result in contamination of the medium. In this context, the ideal flocculant should be inexpensive, efficient at low concentrations, non-toxic and environmentally friendly [142].

Fig. 14. Overview of different flocculation mechanisms: a) charge neutralization, b) electrostatic patch, c) bridging and d) sweeping flocculation. Adapted from Roselet et al. [141].

1.4. References

- [1] International Energy Agency, IEA World Energy Balances, 2019. <https://www.iea.org/reports/world-energy-balances-2019>.
- [2] S.A. Sarkodie, S. Adams, T. Leirvik, Foreign direct investment and renewable energy in climate change mitigation : Does governance matter ?, *J. Clean. Prod.* 263 (2020) 121262. doi:10.1016/j.jclepro.2020.121262.
- [3] D. Andriani, A. Wresta, T.D. Atmaja, A. Saepudin, A Review on Optimization Production and Upgrading Biogas Through CO₂ Removal Using Various Techniques, *Appl. Biochem. Biotechnol.* 172 (2014) 1909–1928. doi:10.1007/s12010-013-0652-x.
- [4] Global Bioenergy Statistics, WBA Global Bioenergy Statistics 2018, World Bioenergy Assoc. (2018) 43.
- [5] European Biogas Association, EBA Annual Report 2019, (2019).
- [6] E. Ryckebosch, M. Drouillon, H. Vervaeren, Techniques for transformation of biogas to biomethane, *Biomass and Bioenergy*. 35 (2011) 1633–1645. doi:10.1016/j.biombioe.2011.02.033.
- [7] International Energy Agency, Outlook for biogas and biomethane: Prospects for organic growth, 2020.
- [8] A. Wellinger, A. Lindberg, Biogas upgrading and utilisation, IEA Bioenergy. Task 24. (2005). <http://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/Biogas-upgrading.pdf> (accessed April 3, 2020).
- [9] Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable sources, 2018. <https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN>.
- [10] N. Scarlat, J.F. Dallemand, F. Fahl, Biogas: Developments and perspectives in Europe, *Renew. Energy*. 129 (2018) 457–472. doi:10.1016/j.renene.2018.03.006.

- [11] ECOFYS, Gas Decarbonisation Pathways 2020 – 2050, (2020). <https://gasforclimate2050.eu/> (accessed May 4, 2020).
- [12] R. Muñoz, L. Meier, I. Díaz, D. Jeison, A review on the state-of-the-art of physical / chemical and biological technologies for biogas upgrading, *Rev. Environ. Sci. Bio/Technology*. (2015) 727–759. doi:10.1007/s11157-015-9379-1.
- [13] F. Bauer, C. Hulteberg, T. Persson, D. Tamm, Biogas upgrading – Review of commercial technologies, *SGC Rapp.* 270 (2013).
- [14] R. Kapoor, P. Ghosh, M. Kumar, V.K. Vijay, Evaluation of biogas upgrading technologies and future perspectives: a review, *Environmental Science and Pollution Research*, 2019. doi:10.1007/s11356-019-04767-1.
- [15] T. Patterson, S. Esteves, R. Dinsdale, A. Guwy, An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK, *Energy Policy*. 39 (2011) 1806–1816. doi:10.1016/j.enpol.2011.01.017.
- [16] I. Angelidaki, L. Treu, P. Tsapekos, G. Luo, S. Campanaro, H. Wenzel, P.G. Kougias, Biogas upgrading and utilization: Current status and perspectives, *Biotechnol. Adv.* (2018). doi:10.1016/j.biotechadv.2018.01.011.
- [17] A.I. Adnan, M.Y. Ong, S. Nomanbhay, K.W. Chew, P.L. Show, Technologies for biogas upgrading to biomethane: A review, *Bioengineering*. 6 (2019) 1–23. doi:10.3390/bioengineering6040092.
- [18] A. Petersson, A. Wellinger, Biogas upgrading technologies – developments and innovations, *IEA Bioenergy*. Task 37. (2009). https://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/upgrading_rz_low_final.pdf (accessed April 3, 2020).
- [19] S. Singhal, Upgrading techniques for transformation of biogas to bio-CNG : a review, (2017) 1657–1669. doi:10.1002/er.
- [20] M. Persson, O. Jönsson, A. Wellinger, Biogas Upgrading to Vehicle Fuel Standards and Grid Injection, *IEA Bioenergy*. Task 37. (2006). http://task37.ieabioenergy.com/files/daten-redaktion/download/publi-task37/upgrading_report_final.pdf (accessed April 1, 2020).
- [21] I. Díaz, I. Ramos, M. Fdz-Polanco, Economic analysis of microaerobic removal of H₂S from biogas in full-scale sludge digesters, *Bioresour. Technol.* 192 (2015) 280–286. doi:10.1016/j.biortech.2015.05.048.
- [22] O.W. Awe, Y. Zhao, A. Nzhou, D.P. Minh, N. Lyczko, A Review of Biogas Utilisation, Purification and Upgrading Technologies, *Waste and Biomass Valorization*. 8 (2017) 267–283. doi:10.1007/s12649-016-9826-4.
- [23] M.S. Horikawa, F. Rossi, M.L. Gimenes, C.M.M. Costa, M.G.C. Silva, Chemical absorption of H₂S for biogas purification, *Brazilian J. Chem. Eng.* 21 (2004) 415–422.
- [24] E. Tilahun, E. Sahinkaya, B. Çalli, Effect of Operating Conditions on Separation of - H₂S from Biogas Using a Chemical Assisted PDMS Membrane Process, *Waste and Biomass Valorization*. 9 (2018) 2349–2359. doi:10.1007/s12649-018-0226-9.
- [25] P. Iovane, F. Nanna, Y. Ding, B. Bikson, A. Molino, Experimental test with polymeric membrane for the biogas purification from CO₂ and H₂S, *Fuel*. 135 (2014) 352–358. doi:10.1016/j.fuel.2014.06.060.
- [26] S. Rittmann, A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems, *Adv. Biochem. Eng. Biotechnol.* 151 (2015) 117–135. doi:10.1007/978-3-319-21993-6_5.
- [27] D. Curto, M. Martín, Renewable based biogas upgrading, *J. Clean. Prod.* 224 (2019) 50–59. doi:10.1016/j.jclepro.2019.03.176.
- [28] M.M. Yeshanew, F. Paillet, C. Barrau, L. Frunzo, P.N.L. Lens, G. Esposito, R. Escudie, E. Trably, Co-production of Hydrogen and Methane From the Organic Fraction of

Municipal Solid Waste in a Pilot Scale Dark Fermenter and Methanogenic Biofilm Reactor, 6 (2018) 1–14. doi:10.3389/fenvs.2018.00041.

[29] N. Alfaro, M. Fdz-Polanco, F. Fdz-Polanco, I. Díaz, H₂ addition through a submerged membrane for in-situ biogas upgrading in the anaerobic digestion of sewage sludge, *Bioresour. Technol.* 280 (2019) 1–8. doi:10.1016/j.biortech.2019.01.135.

[30] A.J. Guneratnam, E. Ahern, J.A. FitzGerald, S.A. Jackson, A. Xia, A.D.W. Dobson, J.D. Murphy, Study of the performance of a thermophilic biological methanation system, *Bioresour. Technol.* 225 (2017) 308–315. doi:10.1016/j.biortech.2016.11.066.

[31] G. Luo, I. Angelidaki, Co-digestion of manure and whey for in situ biogas upgrading by the addition of H₂: Process performance and microbial insights, *Appl. Microbiol. Biotechnol.* 97 (2013) 1373–1381. doi:10.1007/s00253-012-4547-5.

[32] P.G. Kougias, L. Treu, D.P. Benavente, K. Boe, S. Campanaro, I. Angelidaki, Ex-situ biogas upgrading and enhancement in different reactor systems, *Bioresour. Technol.* 225 (2017) 429–437. doi:10.1016/j.biortech.2016.11.124.

[33] I. Bassani, P.G. Kougias, L. Treu, I. Angelidaki, Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions, *Environ. Sci. Technol.* 49 (2015) 12585–12593. doi:10.1021/acs.est.5b03451.

[34] R. Sander, Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential importance in Environmental Chemistry, (1999).

[35] M. del R. Rodero, R. Ángeles, D. Marín, I. Díaz, A. Colzi, E. Posadas, R. Lebrero, R. Muñoz, Biogas Purification and Upgrading Technologies, in: *Biogas Fundam. Process. Oper.*, Springer, 2018. doi:10.1007/978-3-319-77335-3.

[36] M.A. Voelklein, D. Rusmanis, J.D. Murphy, Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion, *Appl. Energy.* 235 (2019) 1061–1071. doi:10.1016/j.apenergy.2018.11.006.

[37] G. Luo, S. Johansson, K. Boe, L. Xie, Q. Zhou, I. Angelidaki, Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor, *Biotechnol. Bioeng.* 109 (2012) 1088–1094. doi:10.1002/bit.24360.

[38] N. Aryal, T. Kvist, F. Ammam, D. Pant, L.D.M. Ottosen, An overview of microbial biogas enrichment, *Bioresour. Technol.* 264 (2018) 359–369. doi:10.1016/j.biortech.2018.06.013.

[39] R. Lebrero, A. Toledo-Cervantes, R. Muñoz, V. del Nery, E. Foresti, Biogas upgrading from vinasse digesters: a comparison between an anoxic biotrickling filter and an algal-bacterial photobioreactor, *J. Chem. Technol. Biotechnol.* 91 (2016) 2488–2495. doi:10.1002/jctb.4843.

[40] X. Li, X. Jiang, Q. Zhou, W. Jiang, Effect of S/N ratio on the removal of hydrogen sulfide from biogas in anoxic bioreactors, (2016) 930–944. doi:10.1007/s12010-016-2143-3.

[41] E. Dumont, H₂S removal from biogas using bioreactors: a review, *Int. J. Energy Environ.* 6 (2015) 479–498.

[42] M. Fortuny, J.A. Baeza, X. Gamisans, C. Casas, J. Lafuente, M.A. Deshusses, D. Gabriel, Biological sweetening of energy gases mimics in biotrickling filters, 71 (2008) 10–17. doi:10.1016/j.chemosphere.2007.10.072.

[43] A.M. Montebello, M. Fernández, F. Almenglo, M. Ramírez, D. Cantero, M. Baeza, D. Gabriel, Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters, *Chem. Eng. J.* 200–202 (2012) 237–246. doi:10.1016/j.cej.2012.06.043.

[44] G. Soreanu, M. Béland, P. Falletta, K. Edmonson, P. Seto, Laboratory pilot scale study for H₂S removal from biogas in an anoxic biotrickling filter, *Water Sci Technol.* 57

(2008) 201–207. doi:10.2166/wst.2008.023.

[45] N. de Arespacochaga, C. Valderrama, C. Mesa, L. Bouchy, J.L. Cortina, Biogas biological desulphurisation under extremely acidic conditions for energetic valorisation in Solid Oxide Fuel Cells, *Chem. Eng. J.* 255 (2014) 677–685. doi:10.1016/j.cej.2014.06.073.

[46] J.P. Maestre, R. Rovira, F.J. Álvarez-hornos, M. Fortuny, J. Lafuente, X. Gamisans, D. Gabriel, Bacterial community analysis of a gas-phase biotrickling filter for biogas mimics desulfurization through the rRNA approach, *Chemosphere*. 80 (2010) 872–880. doi:10.1016/j.chemosphere.2010.05.019.

[47] A.M. Montebello, T. Bezerra, R. Rovira, L. Rago, J. Lafuente, X. Gamisans, S. Campoy, M. Baeza, D. Gabriel, Operational aspects , pH transition and microbial shifts of a H₂S desulfurizing biotrickling filter with random packing material, *Chemosphere*. 93 (2013) 2675–2682. doi:10.1016/j.chemosphere.2013.08.052.

[48] M. Syed, G. Soreanu, P. Falletta, M. Béland, Removal of hydrogen sulfide from gas streams using biological processes - A review, *Can. Biosyst. Eng.* 48 (2006) 2.1-2.14.

[49] J.M. Estrada, N.J.R.B. Kraakman, R. Lebrero, R. Muñoz, A sensitivity analysis of process design parameters , commodity prices and robustness on the economics of odour abatement technologies, *Biotechnol. Adv.* 30 (2012) 1354–1363. doi:10.1016/j.biotechadv.2012.02.010.

[50] Q. Zhou, H. Liang, S. Yang, X. Jiang, The Removal of Hydrogen Sulfide from Biogas in a Microaerobic Biotrickling Filter Using Polypropylene Carrier as Packing Material, (2015) 3763–3777. doi:10.1007/s12010-015-1545-y.

[51] I. Díaz, S.I. Pérez, E.M. Ferrero, M. Fdz-Polanco, Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters, *Bioresour. Technol.* 102 (2011) 3768–3775. doi:10.1016/j.biortech.2010.12.016.

[52] I. Ramos, R. Pérez, M. Fdz-Polanco, Microaerobic desulphurisation unit: A new biological system for the removal of H₂S from biogas, *Bioresour. Technol.* 142 (2013) 633–640. doi:10.1016/j.biortech.2013.05.084.

[53] T. Kobayashi, Y.-Y. Li, K. Kubota, H. Harada, T. Maeda, H.-Q. Yu, Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization, *Appl. Microbiol. Biotechnol.* 93 (2012) 847–857. doi:10.1007/s00253-011-3445-6.

[54] I. Ramos, R. Pérez, M. Reinoso, R. Torio, M. Fdz-polanco, Microaerobic digestion of sewage sludge on an industrial-pilot scale : The efficiency of biogas desulphurisation under different configurations and the impact of O₂ on the microbial communities, *Bioresour. Technol.* 164 (2014) 338–346. doi:10.1016/j.biortech.2014.04.109.

[55] L. Krayzelova, J. Bartacek, I. Díaz, D. Jeison, E.I.P. Volcke, P. Jenicek, Microaeration for hydrogen sulfide removal during anaerobic treatment: a review, *Rev. Environ. Sci. Biotechnol.* 14 (2015) 703–725. doi:10.1007/s11157-015-9386-2.

[56] M. Bahr, I. Díaz, A. Dominguez, A. González Sánchez, R. Muñoz, Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents, *Environ. Sci. Technol.* 48 (2014) 573–581. doi:10.1021/es403596m.

[57] Y. Zhang, K. Bao, J. Wang, Y.Z. Prof, C. Hu, Performance of mixed LED light wavelengths on nutrient removal and biogas upgrading by different microalgal-based treatment technologies, *Energy*. 130 (2017) 392–401. doi:10.1016/j.energy.2017.04.157.

[58] E. Posadas, P.-A. García-Encina, A. Soltau, A. Domínguez, I. Díaz, R. Muñoz, Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors, *Bioresour. Technol.* 139 (2013) 50–58. doi:<https://doi.org/10.1016/j.biortech.2013.04.008>.

[59] Y. Chisti, Biodiesel from microalgae, *Biotechnol. Adv.* 25 (2007) 294–306.

doi:10.1016/j.biotechadv.2007.02.001.

[60] I. Teles, D. Cabanelas, J. Ruiz, Z. Arbib, F. Alexandre, C. Garrido-pérez, F. Rogalla, I. Andrade, J.A. Perales, Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal, *Bioresour. Technol.* 131 (2013) 429–436. doi:10.1016/j.biortech.2012.12.152.

[61] N. Powell, A. Shilton, Y. Chisti, S. Pratt, Towards a luxury uptake process via microalgae - Defining the polyphosphate dynamics, *Water Res.* 43 (2009) 4207–4213. doi:10.1016/j.watres.2009.06.011.

[62] A. Bose, R. Lin, K. Rajendran, R. O'Shea, A. Xia, J.D. Murphy, How to optimise photosynthetic biogas upgrading: a perspective on system design and microalgae selection, *Biotechnol. Adv.* (2019) 107444. doi:10.1016/j.biotechadv.2019.107444.

[63] S. Miyairi, CO₂ assimilation in a thermophilic cyanobacterium, *Energy Convers. Manag.* 36 (1995) 763–766. doi:[https://doi.org/10.1016/0196-8904\(95\)00116-U](https://doi.org/10.1016/0196-8904(95)00116-U).

[64] B. Wang, Y. Li, N. Wu, C.Q. Lan, CO₂ bio-mitigation using microalgae, *Appl. Microbiol. Biotechnol.* 79 (2008) 707–718. doi:10.1007/s00253-008-1518-y.

[65] C.Y. Kao, S.Y. Chiu, T.T. Huang, L. Dai, L.K. Hsu, C.S. Lin, Ability of a mutant strain of the microalga *Chlorella* sp. to capture carbon dioxide for biogas upgrading, *Appl. Energy.* 93 (2012) 176–183. doi:10.1016/j.apenergy.2011.12.082.

[66] A. Toledo-Cervantes, M.L. Serejo, S. Blanco, R. Pérez, R. Lebrero, R. Muñoz, Photosynthetic biogas upgrading to bio-methane: Boosting nutrient recovery via biomass productivity control, *Algal Res.* 17 (2016) 46–52. doi:10.1016/j.algal.2016.04.017.

[67] L. Meier, D. Stará, J. Bartacek, D. Jeison, Removal of H₂S by a continuous microalgae-based photosynthetic biogas upgrading process, *Process Saf. Environ. Prot.* 119 (2018) 65–68. doi:10.1016/j.psep.2018.07.014.

[68] A. Toledo-Cervantes, R. Lebrero, C. Cavinato, R. Muñoz, Biogas upgrading using algal-bacterial processes, *Microalgae-Based Biofuels Bioprod. From Feed. Cultiv. to End-Products.* (2017) 283–304. doi:10.1016/B978-0-08-101023-5.00012-1.

[69] O. Pulz, Photobioreactors: Production systems for phototrophic microorganisms, *Appl. Microbiol. Biotechnol.* 57 (2001) 287–293. doi:10.1007/s002530100702.

[70] J.B.K. Park, R.J. Craggs, A.N. Shilton, Wastewater treatment high rate algal ponds for biofuel production, *Bioresour. Technol.* 102 (2011) 35–42. doi:<https://doi.org/10.1016/j.biortech.2010.06.158>.

[71] D.H. Cho, R. Ramanan, J. Heo, Z. Kang, B.H. Kim, C.Y. Ahn, H.M. Oh, H.S. Kim, Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater, *Bioresour. Technol.* 191 (2015) 481–487. doi:10.1016/j.biortech.2015.02.013.

[72] A. Toledo-Cervantes, J.M. Estrada, R. Lebrero, R. Muñoz, A comparative analysis of biogas upgrading technologies: Photosynthetic vs physical/chemical processes, *Algal Res.* 25 (2017) 237–243. doi:10.1016/j.algal.2017.05.006.

[73] E. Posadas, D. Marín, S. Blanco, R. Lebrero, R. Muñoz, Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond, *Bioresour. Technol.* 232 (2017) 133–141. doi:10.1016/j.biortech.2017.01.071.

[74] F.G. Acién, J.M. Fernández, J.J. Magán, E. Molina, Production cost of a real microalgae production plant and strategies to reduce it, *Biotechnol. Adv.* 30 (2012) 1344–1353. doi:10.1016/j.biotechadv.2012.02.005.

[75] F. Camacho, F.G. Acién, E. Molina, Prediction of Dissolved Oxygen and Carbon Dioxide Concentration Profiles in Tubular Photobioreactors for Microalgal Culture, *Biotechnol Bioeng.* 62 (1999) 71–86.

[76] G. Mann, M. Schlegel, R. Schumann, A. Sakalauskas, Biogas-conditioning with

microalgae, *J. Invest. Dermatol.* 7 (2009) 33–38.
<http://linkinghub.elsevier.com/retrieve/pii/S0022202X15498355>.

[77] A. Converti, R.P.S. Oliveira, B.R. Torres, A. Lodi, M. Zilli, Biogas production and valorization by means of a two-step biological process, *Bioresour. Technol.* 100 (2009) 5771–5776. doi:10.1016/j.biortech.2009.05.072.

[78] M.L. Serejo, E. Posadas, M.A. Boncz, S. Blanco, P. García-Encina, R. Muñoz, Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes, *Environ. Sci. Technol.* 49 (2015) 3228–3236. doi:10.1021/es5056116.

[79] E. Posadas, M.L. Serejo, S. Blanco, R. Pérez, P.A. García-Encina, R. Muñoz, Minimization of biomethane oxygen concentration during biogas upgrading in algal-bacterial photobioreactors, *Algal Res.* 12 (2015) 221–229. doi:10.1016/j.algal.2015.09.002.

[80] L. Meier, R. Pérez, L. Azócar, M. Rivas, D. Jeison, Photosynthetic CO₂ uptake by microalgae: An attractive tool for biogas upgrading, *Biomass and Bioenergy*. 73 (2015) 102–109. doi:10.1016/j.biombioe.2014.10.032.

[81] M. Franco-Morgado, C. Alcántara, A. Noyola, R. Muñoz, A. González-Sánchez, A study of photosynthetic biogas upgrading based on a high rate algal pond under alkaline conditions: Influence of the illumination regime, *Sci. Total Environ.* 592 (2017) 419–425. doi:10.1016/j.scitotenv.2017.03.077.

[82] D. Marín, E. Posadas, P. Cano, V. Pérez, S. Blanco, R. Lebrero, R. Muñoz, Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor, *Bioresour. Technol.* 263 (2018) 58–66. doi:10.1016/j.biortech.2018.04.117.

[83] A. Toledo-cervantes, T. Morales, Á. González, R. Muñoz, R. Lebrero, Long-term photosynthetic CO₂ removal from biogas and flue-gas : Exploring the potential of closed photobioreactors for high-value biomass production, *Sci. Total Environ.* 640–641 (2018) 1272–1278. doi:10.1016/j.scitotenv.2018.05.270.

[84] D. Marín, A. Ortíz, R. Díez-Montero, E. Uggetti, J. García, R. Lebrero, R. Muñoz, Influence of liquid-to-biogas ratio and alkalinity on the biogas upgrading performance in a demo scale algal-bacterial photobioreactor, *Bioresour. Technol.* 280 (2019) 112–117. doi:10.1016/j.biortech.2019.02.029.

[85] D.L. Sutherland, M.H. Turnbull, R.J. Craggs, Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds, *Water Res.* 53 (2014) 271–281. doi:10.1016/j.watres.2014.01.025.

[86] A.P. Carvalho, S.O. Silva, J.M. Baptista, F.X. Malcata, Light requirements in microalgal photobioreactors: An overview of biophotonic aspects, *Appl. Microbiol. Biotechnol.* 89 (2011) 1275–1288. doi:10.1007/s00253-010-3047-8.

[87] G. Torzillo, B. Pushparaj, J. Masojidek, A. Vonshak, Biological constraints in algal biotechnology, *Biotechnol. Bioprocess Eng.* 8 (2003) 338–348. doi:10.1007/BF02949277.

[88] D.L. Sutherland, V. Montemezzani, C. Howard-Williams, M.H. Turnbull, P.A. Broady, R.J. Craggs, Modifying the high rate algal pond light environment and its effects on light absorption andphotosynthesis, *Water Res.* 70 (2015) 86–96. doi:10.1016/j.watres.2014.11.050.

[89] E. Jacob-Lopes, C.H.G. Scoparo, L.M.C.F. Lacerda, T.T. Franco, Effect of light cycles (night/day) on CO₂ fixation and biomass production by microalgae in photobioreactors, *Chem. Eng. Process. Process Intensif.* 48 (2009) 306–310. doi:10.1016/j.cep.2008.04.007.

[90] L. Meier, P. Barros, A. Torres, C. Vilchez, D. Jeison, Photosynthetic biogas upgrading

using microalgae: Effect of light/dark photoperiod, *Renew. Energy*. 106 (2017) 17–23. doi:10.1016/j.renene.2017.01.009.

[91] S. Chinnasamy, B. Ramakrishnan, A. Bhatnagar, K.C. Das, Biomass production potential of a wastewater alga *Chlorella vulgaris* ARC 1 under elevated levels of CO₂ and temperature, *Int. J. Mol. Sci.* 10 (2009) 518–532. doi:10.3390/ijms10020518.

[92] W. Zhou, J. Wang, P. Chen, C. Ji, Q. Kang, B. Lu, K. Li, J. Liu, R. Ruan, Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives, *Renew. Sustain. Energy Rev.* 76 (2017) 1163–1175. doi:10.1016/j.rser.2017.03.065.

[93] M.A.C.L. De Oliveira, M.P.C. Monteiro, P.G. Robbs, S.G.F. Leite, Growth and chemical composition of *Spirulina maxima* and *Spirulina platensis* biomass at different temperatures, *Aquac. Int.* 7 (1999) 261–275. doi:10.1023/A:1009233230706.

[94] C. Butterwick, S.I. Heaney, J.F. Talling, Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance, *Freshw. Biol.* 50 (2005) 291–300. doi:10.1111/j.1365-2427.2004.01317.x.

[95] R. Bouterfas, M. Belkoura, A. Dauta, Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake, *Hydrobiologia*. 489 (2002) 207–217. doi:10.1023/A:1023241006464.

[96] O. Perez-Garcia, F.M.E. Escalante, L.E. de-Bashan, Y. Bashan, Heterotrophic cultures of microalgae: Metabolism and potential products, *Water Res.* 45 (2011) 11–36. doi:10.1016/j.watres.2010.08.037.

[97] M. Cuaresma, I. Garbayo, J.M. Vega, C. Vílchez, Growth and photosynthetic utilization of inorganic carbon of the microalga *Chlamydomonas acidophila* isolated from Tinto river, *Enzyme Microb. Technol.* 40 (2006) 158–162. doi:10.1016/j.enzmictec.2005.10.049.

[98] A. Çelekli, M. Yavuzatmaca, H. Bozkurt, Modeling of biomass production by *Spirulina platensis* as function of phosphate concentrations and pH regimes, *Bioresour. Technol.* 100 (2009) 3625–3629. doi:10.1016/j.biortech.2009.02.055.

[99] R. Muñoz, B. Guiyesse, Algal-bacterial processes for the treatment of hazardous contaminants: A review, *Water Res.* 40 (2006) 2799–2815. doi:10.1016/j.watres.2006.06.011.

[100] J.A. Dean, *LANGE'S HANDBOOK OF CHEMISTRY*, 15th ed., McGraw-Hill, 1999.

[101] E. Posadas, D. Marín, S. Blanco, R. Lebrero, R. Muñoz, Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond, *Bioresour. Technol.* 232 (2017) 133–141. doi:10.1016/j.biortech.2017.01.071.

[102] A. Latifi, M. Ruiz, C. Zhang, Oxidative stress in cyanobacteria, *FEMS Microbiol Rev.* 33 (2009) 258–278. doi:10.1111/j.1574-6976.2008.00134.x.

[103] L. Peng, C.Q. Lan, Z. Zhang, Evolution, detrimental effects, and removal of oxygen in microalga cultures: A review, *Environ. Prog. Sustain. Energy*. 32 (2013) 982–988. doi:10.1002/ep.11841.

[104] A. Pawłowski, J.L. Mendoza, J.L. Guzmán, M. Berenguel, F.G. Acién, S. Dormido, Selective pH and dissolved oxygen control strategy for a raceway reactor within an event-based approach, *Control Eng. Pract.* 44 (2015) 209–218. doi:10.1016/j.conengprac.2015.08.004.

[105] C. Jiménez, B.R. Cossío, F.X. Niell, Relationship between physicochemical variables and productivity in open ponds for the production of *Spirulina*: A predictive model of algal yield, *Aquaculture*. 221 (2003) 331–345. doi:10.1016/S0044-8486(03)00123-6.

[106] Metcalf, Eddy, *Wastewater Engineering: Treatment and Reuse*, Fifth Edit, McGraw-Hill, New York, 2014.

[107] A. Toledo-Cervantes, C. Madrid-Chirinos, S. Cantera, R. Lebrero, R. Muñoz, Influence

of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors, *Bioresour. Technol.* 225 (2017) 336–342. doi:10.1016/j.biortech.2016.11.087.

[108] R. Ángeles, R. Rodero, A. Carvajal, R. Muñoz, R. Lebrero, Potential of Microalgae for Wastewater Treatment and Its Valorization into Added Value Products, in: S.K. Gupta, F. Bux (Eds.), *Appl. Microalgae Wastewater Treat. Vol. 2 Biorefinery Approaches Wastewater Treat.*, Springer International Publishing, Cham, 2019: pp. 281–315. doi:10.1007/978-3-030-13909-4_13.

[109] Z. Arbib, J. Ruiz, P. Álvarez-Díaz, C. Garrido-Pérez, J. Barragan, J.A. Perales, Effect of pH control by means of flue gas addition on three different photo-bioreactors treating urban wastewater in long-term operation, *Ecol. Eng.* 57 (2013) 226–235. doi:10.1016/j.ecoleng.2013.04.040.

[110] R. Craggs, J. Park, S. Heubeck, D. Sutherland, High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production, *New Zeal. J. Bot.* 52 (2014) 60–73. doi:10.1080/0028825X.2013.861855.

[111] D. Marín, E. Posadas, P. Cano, V. Pérez, R. Lebrero, R. Muñoz, Influence of the seasonal variation of environmental conditions on biogas upgrading in an outdoors pilot scale high rate algal pond, *Bioresour. Technol.* (2018). doi:10.1016/j.biortech.2018.01.136.

[112] F.G. Acién Fernández, J.M. Fernández Sevilla, E. Molina Grima, Photobioreactors for the production of microalgae, *Rev. Environ. Sci. Biotechnol.* 12 (2013) 131–151. doi:10.1007/s11157-012-9307-6.

[113] M.R. Tredici, Mass Production of Microalgae: Photobioreactors, *Handb. Microalgal Cult.* (2003) 178–214. doi:doi:10.1002/9780470995280.ch9.

[114] D. García, C. Alcántara, S. Blanco, R. Pérez, S. Bolado, R. Muñoz, Enhanced carbon, nitrogen and phosphorus removal from domestic wastewater in a novel anoxic-aerobic photobioreactor coupled with biogas upgrading, *Chem. Eng. J.* 313 (2017) 424–434. doi:<http://dx.doi.org/10.1016/j.cej.2016.12.054>.

[115] S.A. Razzak, S.A.M. Ali, M.M. Hossain, H. DeLasa, Biological CO₂ fixation with production of microalgae in wastewater – A review, *Renew. Sustain. Energy Rev.* 76 (2017) 379–390. doi:10.1016/j.rser.2017.02.038.

[116] E. Posadas, C. Alcántara, P.A. García-Encina, L. Gouveia, B. Guieysse, Z. Norvill, F.G. Acién, G. Markou, R. Congestri, J. Koreiviene, R. Muñoz, Microalgae cultivation in wastewater, in: *Microalgae-Based Biofuels Bioprod. From Feed. Cultiv. to End-Products*, 2017: pp. 67–91. doi:10.1016/B978-0-08-101023-5.00003-0.

[117] T. Cai, S.Y. Park, Y. Li, Nutrient recovery from wastewater streams by microalgae: Status and prospects, *Renew. Sustain. Energy Rev.* 19 (2013) 360–369. doi:10.1016/j.rser.2012.11.030.

[118] I. Woertz, A. Feffer, T. Lundquist, Y. Nelson, Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock, *J. Environ. Eng.* 135 (2009) 1115–1122. doi:10.1061/(ASCE)EE.1943-7870.0000129.

[119] E. Posadas, S. Bochon, M. Coca, M.C. García-González, P.A. García-Encina, R. Muñoz, Microalgae-based agro-industrial wastewater treatment : a preliminary screening of biodegradability, *J Appl Phycol.* 26 (2014) 2335. doi:10.1007/s10811-014-0263-0.

[120] A. Xia, J.D. Murphy, Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems, *Trends Biotechnol.* 34 (2016) 264–275. doi:10.1016/j.tibtech.2015.12.010.

[121] I. de Godos, S. Blanco, P.A. García-Encina, E. Becares, R. Muñoz, Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates, *Bioresour. Technol.* 100 (2009) 4332–4339. doi:10.1016/j.biortech.2009.04.016.

[122] O. Depraetere, I. Fouquet, K. Muylaert, Decolorisation of piggery wastewater to

stimulate the production of *Arthrospira platensis*, *Bioresour. Technol.* 148 (2013) 366–372. doi:10.1016/j.biortech.2013.08.165.

[123] I. Krustok, M. Odlare, J. Truu, E. Nehrenheim, Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake, *Bioresour. Technol.* 202 (2016) 238–243. doi:10.1016/j.biortech.2015.12.020.

[124] Z.N. Norvill, A. Toledo-Cervantes, S. Blanco, A. Shilton, B. Guiyesse, R. Muñoz, Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds, *Bioresour. Technol.* 232 (2017) 35–43. doi:10.1016/j.biortech.2017.02.011.

[125] A. Saddoud, M. Ellouze, A. Dhouib, S. Sayadi, A comparative study on the anaerobic membrane bioreactor performance during the treatment of domestic wastewaters of various origins, *Environ. Technol.* 27 (2006) 991–999. doi:10.1080/09593332708618712.

[126] M. del M. Morales-Amaral, C. Gómez-Serrano, F.G. Acién, J.M. Fernández-Sevilla, E. Molina-Grima, Production of microalgae using centrate from anaerobic digestion as the nutrient source, *Algal Res.* 9 (2015) 297–305. doi:10.1016/j.algal.2015.03.018.

[127] M. Singh, D.L. Reynolds, K.C. Das, Microalgal system for treatment of effluent from poultry litter anaerobic digestion, *Bioresour. Technol.* 102 (2011) 10841–10848. doi:10.1016/j.biortech.2011.09.037.

[128] F. Ji, Y. Liu, R. Hao, G. Li, Y. Zhou, R. Dong, Biomass production and nutrients removal by a new microalgae strain *Desmodesmus* sp. in anaerobic digestion wastewater, *Bioresour. Technol.* 161 (2014) 200–207. doi:10.1016/j.biortech.2014.03.034.

[129] D. García, E. Posadas, C. Grajeda, S. Blanco, S. Martínez-Páramo, G. Acién, P. García-Encina, S. Bolado, R. Muñoz, Comparative evaluation of piggery wastewater treatment in algal-bacterial photobioreactors under indoor and outdoor conditions, *Bioresour. Technol.* 245 (2017) 483–490. doi:10.1016/j.biortech.2017.08.135.

[130] H.C. Kim, W.J. Choi, A.N. Chae, J. Park, H.J. Kim, K.G. Song, Treating high-strength saline piggery wastewater using the heterotrophic cultivation of *Acutodesmus obliquus*, *Biochem. Eng. J.* 110 (2016) 51–58. doi:10.1016/j.bej.2016.02.011.

[131] H. Zheng, M. Liu, Q. Lu, X. Wu, Y. Ma, Y. Cheng, M. Addy, Y. Liu, R. Ruan, Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters, *Bioresour. Technol.* 249 (2018) 479–486. doi:10.1016/j.biortech.2017.10.057.

[132] S.M. Hamed, Sensitivity of two green microalgae to copper stress : Growth , oxidative and antioxidants analyses, *Ecotoxicol. Environ. Saf.* 144 (2017) 19–25. doi:10.1016/j.ecoenv.2017.05.048.

[133] S.Y. Zhang, G.X. Sun, X.X. Yin, C. Rensing, Y.G. Zhu, Biomethylation and volatilization of arsenic by the marine microalgae *Ostreococcus tauri*, *Chemosphere*. 93 (2013) 47–53. doi:10.1016/j.chemosphere.2013.04.063.

[134] Z. Huang, L. Li, G. Huang, Q. Yan, B. Shi, X. Xu, Growth-inhibitory and metal-binding proteins in *Chlorella vulgaris* exposed to cadmium or zinc, *Aquat. Toxicol.* 91 (2009) 54–61. doi:10.1016/j.aquatox.2008.10.003.

[135] E. Posadas, D. Szpak, F. Lombó, A. Domínguez, I. Díaz, S. Blanco, P.A. García-Encina, R. Muñoz, Feasibility study of biogas upgrading coupled with nutrient removal from anaerobic effluents using microalgae-based processes, *J. Appl. Phycol.* 28 (2016) 2147–2157. doi:10.1007/s10811-015-0758-3.

[136] X. Wang, K. Bao, W. Cao, Y. Zhao, C.W. Hu, Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology, (2017) 1–12. doi:10.1038/s41598-017-05841-9.

[137] A. Anbalagan, A. Toledo-Cervantes, E. Posadas, E. María, R. Lebrero, A. González-

sánchez, E. Nehrenheim, R. Muñoz, Continuous photosynthetic abatement of CO₂ and volatile organic compounds from exhaust gas coupled to wastewater treatment : Evaluation of tubular algal-bacterial photobioreactor, *J. CO₂ Util.* 21 (2017) 353–359. doi:10.1016/j.jcou.2017.07.016.

[138] M. Franco-morgado, A. Toledo-cervantes, A. González-sánchez, R. Lebrero, R. Muñoz, Integral (VOCs, CO₂, mercaptans and H₂S) photosynthetic biogas upgrading using innovative biogas and digestate supply strategies, *Chem. Eng. J.* 354 (2018) 363–369. doi:10.1016/j.cej.2018.08.026.

[139] K. Muylaert, D. Vandamme, I. Foubert, P. V Brady, Harvesting of Microalgae by Means of Flocculation, in: N.R. Moheimani, M.P. McHenry, K. de Boer, P.A. Bahri (Eds.), *Biomass Biofuels from Microalgae Adv. Eng. Biol.*, Springer International Publishing, Cham, 2015: pp. 251–273. doi:10.1007/978-3-319-16640-7_12.

[140] I.A. Matter, V.K. Hoang Bui, M. Jung, J.Y. Seo, Y.E. Kim, Y.C. Lee, Y.K. Oh, Flocculation harvesting techniques for microalgae: A review, *Appl. Sci.* 9 (2019). doi:10.3390/app9153069.

[141] F. Roselet, D. Vandamme, K. Muylaert, P.C. Abreu, Harvesting of Microalgae for Biomass Production, in: M.A. Alam, Z. Wang (Eds.), *Microalgae Biotechnol. Dev. Biofuel Wastewater Treat.*, Springer Singapore, Singapore, 2019: pp. 211–243. doi:10.1007/978-981-13-2264-8_10.

[142] J.J. Milledge, S. Heaven, A review of the harvesting of micro-algae for biofuel production, (2013) 165–178. doi:10.1007/s11157-012-9301-z.

[143] M. Al Hattab, A. Ghaly, A. Hammouda, Microalgae Harvesting Methods for Industrial Production of Biodiesel : Critical Review and Comparative Analysis Fundamentals of Renewable Energy and Applications, *J. Fundam. Renewable Energy Appl.* 5 (2015) 1–26. doi:10.4172/20904541.1000154.

[144] K. Muylaert, L. Bastiaens, D. Vandamme, L. Gouveia, Harvesting of microalgae: Overview of process options and their strengths and drawbacks, Elsevier Ltd., 2017. doi:10.1016/B978-0-08-101023-5.00005-4.

[145] G. Singh, S.K. Patidar, Microalgae harvesting techniques: A review, *J. Environ. Manage.* 217 (2018) 499–508. doi:10.1016/j.jenvman.2018.04.010.

[146] S. Garg, Y. Li, L. Wang, P.M. Schenk, Flotation of marine microalgae: Effect of algal hydrophobicity, *Bioresour. Technol.* 121 (2012) 471–474. doi:10.1016/j.biortech.2012.06.111.

[147] U. Suparmaniam, M.K. Lam, Y. Uemura, J.W. Lim, K.T. Lee, S.H. Shuit, Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review, *Renew. Sustain. Energy Rev.* 115 (2019) 109361. doi:10.1016/j.rser.2019.109361.

[148] D. Vandamme, I. Foubert, K. Muylaert, Flocculation as a low-cost method for harvesting microalgae for bulk biomass production, *Trends Biotechnol.* 31 (2013) 233–239. doi:10.1016/j.tibtech.2012.12.005.

[149] F. Roselet, D. Vandamme, M. Roselet, K. Muylaert, P.C. Abreu, Screening of commercial natural and synthetic cationic polymers for flocculation of freshwater and marine microalgae and effects of molecular weight and charge density, *Algal Res.* 10 (2015) 183–188. doi:10.1016/j.algal.2015.05.008.

[150] A.I. Barros, A.L. Gonçalves, M. Simões, J.C.M. Pires, Harvesting techniques applied to microalgae: A review, *Renew. Sustain. Energy Rev.* 41 (2015) 1489–1500. doi:10.1016/j.rser.2014.09.037.

Chapter 2

Aims and scope of the thesis

2.1. Justification of the thesis

The rapid increase of the energy demand worldwide as a result of the steady growth of the human population, together with the new energy and climate change policies focused on reducing greenhouse gas (GHG) emissions, have promoted the use of renewable energy sources. In this context, biogas from the anaerobic digestion of organic waste constitutes a promising biofuel able to reduce our current dependence on fossil fuels. In fact, the global biogas sector is growing based on the new business opportunities brought about by its potential use as a vehicle fuel or its injection into natural gas grids after biogas upgrading to biomethane. Despite the potential of biomethane as a renewable energy vector able to decrease fossil fuels consumption and GHG emissions, the current physical-chemical biogas upgrading technologies entail a high energy or chemical demand, which limits the environmental benefits of biomethane.

Photosynthetic biogas upgrading has emerged as an inexpensive and environmentally friendly alternative capable of removing CO₂ and H₂S from biogas and partially mitigating the eutrophication potential of wastewaters or digestates simultaneously. Despite these advantages, further research focused on the optimization of this technology is required in order to overcome the current technological and microbiological bottlenecks limiting its applicability, such as the limited CO₂ gas-liquid mass transfer rates and the subsequent biological CO₂ uptake by microalgae. Likewise, this innovative biotechnology must be further validated at demo scale prior to its full-scale implementation. Moreover, the development and validation of a control strategy to assure a consistent biomethane quality regardless of environmental conditions or operational failures is necessary in order to foster the acceptance of this biotechnology by the industrial sector. Finally, since algal-bacterial biomass harvesting constitutes a critical step in this microalgae-based process, the development of an efficient and low-cost biomass separation process prior use of the cultivation broth as scrubbing solution is a requirement. Therefore, more research in the above mentioned fields is still needed to consolidate the implementation of this promising green upgrading technology.

2.2. Main objectives

The overall objective of this thesis was to evaluate and optimize photosynthetic biogas upgrading in a high rate algal pond (HRAP) interconnected to an absorption column via a biomass settler, to obtain a biomethane complying with national and international

standards while recovering nutrients from domestic wastewater or digestates, and its subsequent implementation at semi-industrial scale with a robust control strategy. More specifically, the individual objectives pursued to achieve this overall goal were:

1. Evaluation of the influence of environmental conditions in the cultivation broth (i.e. alkalinity, temperature) on the final biomethane quality.
2. Evaluation of the long-term impact of high alkalinity on the robustness and efficiency of biogas upgrading process and microalgae activity.
3. Optimization of the process at semi-industrial scale under outdoors conditions.
4. Design and evaluation of a control strategy to maintain biomethane quality over time under typical operational fluctuations and failures during photosynthetic biogas upgrading at pilot scale and its subsequent validation at semi-industrial scale under outdoors conditions.
5. Enhancement of biomass harvesting in photosynthetic biogas upgrading via flocculation.

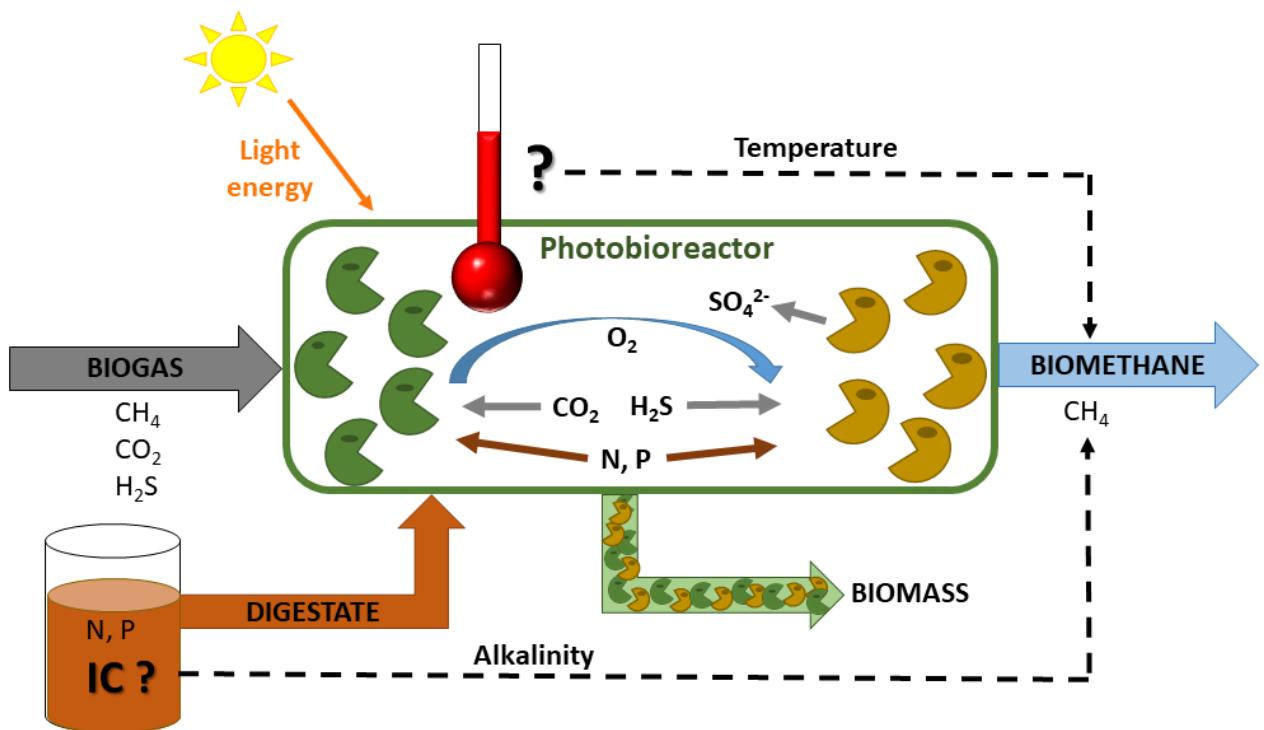
2.3. Development of the thesis

In the present thesis, the optimization and scale-up of a photosynthetic biogas upgrading process consisting of a HRAP interconnected to a biogas absorption column were conducted.

In order to fulfill the first objective aforementioned, the influence of inorganic carbon (IC) concentrations typically encountered in high and medium strength digestates and domestic wastewater, and temperatures representative of spring-autumn and summer seasons in temperate climates, on CO₂ and H₂S removal from biogas was investigated at pilot scale (180 L HRAP and 2.5 L absorption column) under indoor conditions (**Chapter 3**). Since a high alkalinity in the cultivation broth was previously identified as a key parameter to maintain the pH along the absorption column but also potentially detrimental to algal-bacterial activity, the impact of long-term process operation under high IC concentrations in the cultivation broth on H₂S and CO₂ removal efficiency and process robustness was assessed. CO₂ stripping from the HRAP to the atmosphere was also determined in order to evaluate the environmental sustainability of this technology at a high alkalinity. In addition, the influence of the biomass concentration in the cultivation broth on the performance of the upgrading process was also assessed (**Chapter 4**).

The scale-up of the process was carried out in a 9.6 m³ HRAP interconnected to a 150 L absorption column via an external liquid recirculation of the supernatant from a 7 m³ settler in the facilities of “El Torno” WWTP (Chiclana de la Frontera, Spain). An optimization of the liquid to biogas (L/G) ratio and biogas flowrate in the absorption column, the hydraulic retention time (HRT) in the HRAP and the nutrient source (domestic wastewater or centrate) was systematically performed (**Chapter 5**). Based on the previous results, the recycling liquid flowrate, which determines the L/G ratio in the absorption column, was chosen as manipulated variable to design a rule-based control strategy to cope with the fluctuations in the process over time. The performance of the control system against fluctuations in the biogas flowrate under different environmental conditions (pH, alkalinity and temperature) was evaluated at pilot scale (**Chapter 6**). The successful control strategy developed in Chapter 6 was further validated against environmental and operational variations (different pH of the cultivation broth, daily biogas production fluctuations) or operational failures at semi-industrial scale under outdoors conditions (**Chapter 7**).

Finally, the poor efficiency of settling of the algal-bacterial biomass in the settler located between the absorption column and the HRAP, which decreased the CO₂ and H₂S mass transfer efficiency in the absorption column, fostered research on the performance of different flocculants to promote biomass aggregation. The potential of this biomass harvesting technology was evaluated at lab scale in the facilities of the Aquatic Biology Lab at KU Leuven Campus Kulak (Kortrijk, Belgium) (**Chapter 8**).


Chapter 3

Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds

Rodero, M. del R., Posadas, E., Toledo-Cervantes, A., Lebrero, R., Muñoz, R., 2018. Algal Res. 33, 284–290.
doi:10.1016/j.algal.2018.06.001

Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds

María del Rosario Rodero¹, Esther Posadas¹, Alma Toledo-Cervantes², Raquel Lebrero¹, Raúl Muñoz¹

¹Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011, Valladolid, Spain

²Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1451, C.P. 44430, Guadalajara, Jalisco, México.

ABSTRACT

Algal-bacterial photobioreactors have emerged as a cost-effective platform for biogas upgrading. The influence on biomethane quality of the inorganic carbon concentration (1500, 500 and 100 mg L⁻¹) and temperature (12 and 35°C) of the cultivation broth was evaluated in a 180 L high rate algal pond (HRAP) interconnected to a 2.5 L absorption column via settled broth recirculation. The highest CO₂ and H₂S removal efficiencies (REs) from biogas were recorded at the highest alkalinity (CO₂-REs of 99.3±0.1 and 97.8±0.8% and H₂S-REs of 96.4±2.9 and 100±0% at 12 and 35°C, respectively), which resulted in CH₄ concentrations of 98.9±0.2 and 98.2±1.0% at 12 and 35°C, respectively, in the upgraded biogas. At the lowest alkalinity, the best upgrading performance was observed at 12°C (CO₂ and H₂S-REs of 41.5±2.0 and 80.3±3.9%, respectively). The low recycling liquid to biogas ratio applied (0.5) resulted in a negligible O₂ stripping regardless of the alkalinity and temperature, which entailed a biomethane O₂ content ranging from 0 to 0.2±0.3%.

Keywords: algal-bacterial photobioreactor; alkalinity; biogas upgrading; biomethane; temperature.

1. Introduction

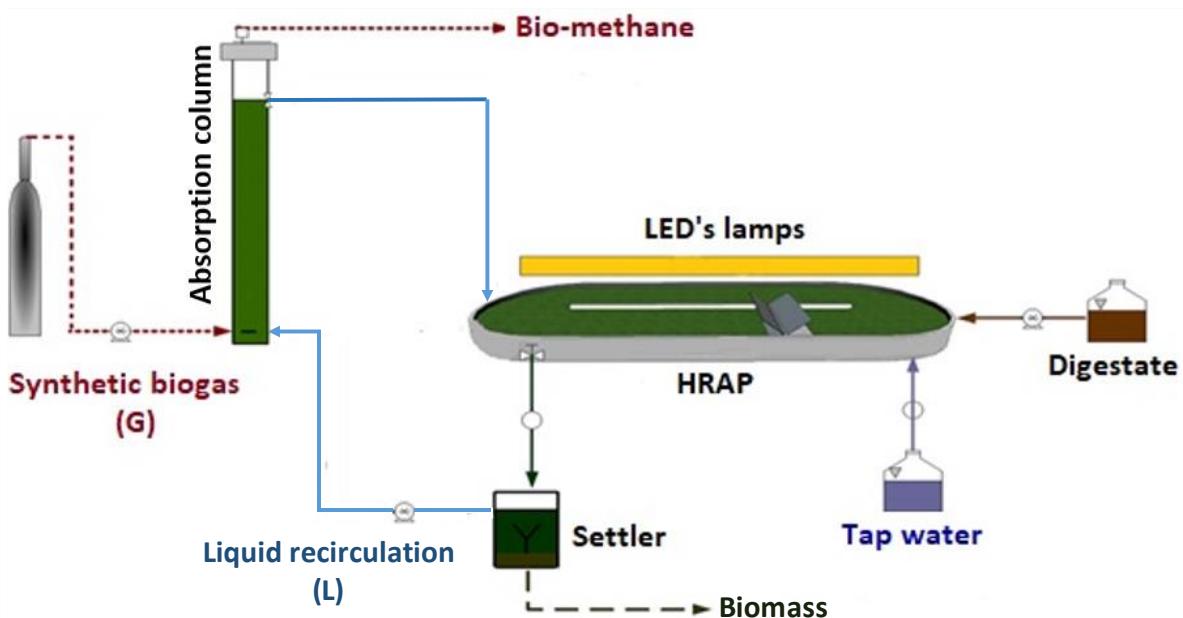
Biogas from the anaerobic digestion of organic matter constitutes a promising renewable energy vector for the production of heat and power in households and industry [1]. Raw biogas is mainly composed of CH₄ (40-75%), CO₂ (25-50%) and other components at lower concentrations such as H₂S (0.005-2%), oxygen (0-1%), nitrogen (0-2%), siloxanes (0-0.02%), ammonia (<1%) and halogenated hydrocarbons (VOC<0.6%) [2]. The high content of CO₂ significantly reduces the specific calorific value of biogas, increases its transportation costs and promotes emissions of CO and hydrocarbons during combustion. On the other hand, H₂S is a toxic and malodorous gas that severely reduces the lifespan of the biogas storage structures, pipelines, boilers and internal combustion engines [3]. The removal of these biogas pollutants is mandatory in order to comply with the technical specifications required for biogas injection into natural gas grids (CH₄ > 95%, CO₂ < 2.5-4%, O₂ < 0.001-1% and H₂S + COS < 5 mg/Nm³) or use as a vehicle fuel [4]. State-of-the-art physical/chemical or biological technologies for CO₂ removal often need a previous H₂S cleaning step, while the few technologies capable of simultaneously removing CO₂ and H₂S from biogas (i.e. water/chemical scrubbing and membrane separation) exhibit a high energy and chemicals consumption, which limits their economic and environmental sustainability for biogas upgrading [5]. In this context, algal-bacterial symbiosis represents a cost-effective and environmentally friendly platform for the simultaneous removal of CO₂ and H₂S from raw biogas in a single step process [6].

Photosynthetic biogas upgrading in algal-bacterial photobioreactors is based on the light-driven CO₂ consumption by microalgae coupled to the oxidation of H₂S to either elemental sulfur or sulfate by sulfur-oxidizing bacteria (i.e. belonging to the *Thioalbus* genus) using the oxygen photosynthetically produced [3, 7]. The environmental and economic sustainability of the process can be boosted with the integration of wastewater treatment in the photobioreactor devoted to biogas upgrading [8]. In this regard, digestate or domestic wastewater can be used as an inexpensive nutrient source for microalgae and bacteria growth during photosynthetic biogas upgrading, which in turn would reduce the costs associated to nutrients removal [9,10]. Recent investigations have focused on the optimization of the simultaneous biogas upgrading and digestate treatment in photobioreactors. These studies have identified the optimum photobioreactor configuration [6,8,11,12], the strategies for minimizing oxygen

concentration in the biomethane [13,14] and the influence of light intensity, wavelength and photoperiod regime on the final quality of the upgraded biogas under indoors conditions [15–19]. Unfortunately, most of these previous works did not result in a biomethane composition complying with the specifications of most European regulations due to the limited CO₂ mass transfer rates from the raw biogas to the aqueous phase [20]. In this context, a recent study conducted outdoors in a high rate algal pond (HRAP) interconnected to an external absorption column for the simultaneous treatment of biogas and centrate suggested that both alkalinity and temperature in the algal-bacterial broth can play a key role on the final biomethane quality [11]. Indeed, culture broth alkalinity determines the kinetics of both microalgae growth in the HRAP and CO₂/H₂S absorption in the absorption column [21]. Likewise, culture broth temperature directly impacts on the gas/liquid equilibria and biomass growth kinetics [19]. However, despite the relevance of these environmental parameters on the performance of photosynthetic biogas upgrading, no study has evaluated to date the effect of alkalinity and temperature on the final quality of biomethane in algal-bacterial photobioreactors.

This work systematically evaluated the influence of inorganic carbon concentration and temperature in the cultivation broth on biomethane quality in a 180 L HRAP interconnected to a 2.5 L absorption column via external recirculation of the settled cultivation broth under indoor conditions. The tested inorganic carbon concentrations (1500, 500 and 100 mg L⁻¹) are typically encountered in high and medium strength digestates and domestic wastewater, respectively, while the tested temperatures are representative of spring-autumn (12 °C) and summer (35 °C) seasons in temperate climates.

2. Materials and methods


2.1. Biogas and centrate

A synthetic gas mixture composed of CO₂ (29.5%), H₂S (0.5%) and CH₄ (70%), was used in this study as a model biogas (Abello Linde; Spain). Centrate was collected from the anaerobically digested sludge-dehydrating centrifuges at Valladolid wastewater treatment plant (WWTP) and stored at 4 °C prior to use. The average centrate composition was as follows: inorganic carbon (IC) = 459 ± 83 mg L⁻¹, total nitrogen (TN) = 576 ± 77 mg L⁻¹ and S-SO₄²⁻ = 4.7 ± 3.4 mg L⁻¹. NH₄Cl was added to the raw

centrate to a final TN concentration of $1719 \pm 235 \text{ mg L}^{-1}$ in order to simulate a high-strength digestate and thus minimize the flow rate of centrate used in the pilot plant.

2.2. Experimental set-up

The experimental set-up was located at the Department of Chemical Engineering and Environmental Technology at Valladolid University (Spain). The set-up consisted of a 180 L HRAP (depth: 15 cm, width: 63 cm, length: 202 cm) with an illuminated surface of 1.2 m^2 divided by a central wall in two water channels. The HRAP was interconnected to a 2.5 L absorption column ($\varnothing: 4.4 \text{ cm}$, height: 165 cm) via external liquid recirculation of the supernatant of the algal-bacterial cultivation broth from a 10 L conical settler coupled to the HRAP (Figure 1). The remaining algal bacterial biomass collected at the bottom of the settler was continuously recirculated to the HRAP in order to avoid the development of anaerobic conditions in the settler due to an excessive biomass accumulation. The HRAP cultivation broth was continuously agitated by a 6-blade paddlewheel at an internal recirculation velocity of $\approx 20 \text{ cm s}^{-1}$. A photosynthetic active radiation (PAR) of $1350 \pm 660 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ at the HRAP surface was provided by six high-intensity LED PCBs (Phillips SA, Spain) operated in a 12h:12h light/dark regime.

Figure 1. Schematic diagram of the experimental set-up.

2.3. Operational conditions

Six operational conditions were tested in order to assess the influence of alkalinity and temperature on biomethane quality. The influence of IC concentrations of 1500, 500 and 100 mg L⁻¹ was evaluated in stages I-II, III-IV and V-VI, respectively, while a temperature of 35 °C was maintained during stages I, III and V and a temperature of 12°C during stages II, IV and VI (Table 1). The HRAP was initially filled with an aqueous solution containing a mixture of NaHCO₃ and Na₂CO₃ before inoculation to adjust the initial IC concentration to the corresponding concentration set in the operational stage. The IC concentration of the digestate fed to the HRAP during each operational stage was also adjusted accordingly. Thus, IC concentrations of 1500 and 500 mg L⁻¹ were obtained by addition of NaHCO₃ to the raw centrate, while IC concentrations of 100 mg L⁻¹ were achieved via an initial centrate acidification with HCl aqueous solution (37%) to a final pH of 5.5 in order to remove IC by air-aided CO₂ stripping followed by NaHCO₃ addition to adjust the IC concentration. The temperature of the HRAP cultivation broth was controlled with an external heat exchanger (FisherbrandTM PolystatTM Immersion Circulator, Germany). A consortium of microalgae/cyanobacteria (from now on referred to as microalgae) from outdoors HRAPs treating centrate and domestic wastewater at the Department of Chemical Engineering and Environmental Technology at Valladolid University and at the WWTP of Chiclana de la Frontera (Spain), respectively, was used as inoculum in each operational stage.

Table 1. Average environmental parameters along with the corresponding standard deviation (n=4) in the HRAP, absorption column and digestate under steady state conditions during the six operational stages tested.

Stage	I	II	III	IV	V	VI
Average IC feed (mg L⁻¹)	1581±135	1467±115	505±57	517±46	102±7	103±11
Average Temperature (°C)	35.0±1.3	12.5±1.8	36.0±1.2	12.4±2.0	36.0±1.6	12.9±1.8
Evaporation rate (L m⁻² d⁻¹)	14.1±0.2	2.3±0.4	15.8±1.1	1.6±0.3	17.5±0.1	1.8±0.3
DO light (mg L⁻¹)	10.1±2.1	14.4±0.9	13.5±0.8	16.6±1.9	8.8±0.8	16.5±1.7
DO dark (mg L⁻¹)	1.3±0.0	6.2±1.2	3.7±0.1	7.0±0.9	4.6±0.6	10.0±0.5
pH HRAP	11.0±0.0	10.5±0.3	10.5±0.4	9.7±0.2	7.2±0.3	7.5±0.2
pH outlet column	10.4±0.1	9.9±0.2	7.3±0.1	6.9±0.1	5.3±0.2	5.5±0.1
Average IC HRAP (mg L⁻¹)	1667±157	1891±31	321±52	367±23	4±1	7±2
TSS (g L⁻¹)	0.43±0.02	0.54±0.05	0.44±0.07	0.45±0.02	0.20±0.07	0.18±0.03
S-SO₄²⁻ accumulation (g m⁻³ d⁻¹)	1.85	1.10	1.57	0.97	1.33	0.60
Duration (d)	26	28	29	27	28	26

IC: inorganic carbon; DO: dissolved oxygen; TSS: total suspended solids

During the illuminated periods, the HRAP was fed with the modified digestate as a nutrient source at a flow rate of 2 L d^{-1} , while synthetic biogas was sparged into the absorption column under co-current flow operation at a flow rate of 4.9 L h^{-1} and a recycling liquid flow rate (L min^{-1}) to biogas flow rate (L min^{-1}) ratio (L/G, dimensionless) of 0.5 [12]. Tap water was continuously supplied in order to compensate water evaporation losses. A biomass productivity of $7.5 \text{ g dry matter m}^{-2} \text{ d}^{-1}$ was set in the six operational stages evaluated by controlling the biomass harvesting rate. The algal-bacterial biomass was harvested by sedimentation after coagulation-flocculation via addition of the polyacrylamide-based flocculant Chemifloc CV-300 (Chemipol S.A) [22]. This operational strategy resulted in a process operation without effluent. Approximately two weeks after the beginning of each stage, the system had already achieved a steady state, which was confirmed by the negligible variation of most parameters during the rest of the stage (variations $< 5\%$ of the recorded values).

2.4. Sampling procedure

The ambient and cultivation broth temperatures, the flow rates of digestate, tap water and external liquid recycling, and the dissolved oxygen (DO) concentration in the cultivation broth were monitored three times per week during the illuminated and dark periods. The PAR was measured at the HRAP surface at the beginning of each stage. Gas samples of $100 \mu\text{L}$ from the raw and upgraded biogas were drawn three times per week in order to monitor the CO_2 , H_2S , CH_4 , O_2 and N_2 concentrations. The inlet and outlet biogas flow rates at the absorption column were also measured to accurately determine CO_2 and H_2S removals. Liquid samples of 100 mL of digestate and cultivation broth were drawn three times per week and filtered through $0.20 \mu\text{m}$ nylon filters to monitor pH, dissolved IC, TN and SO_4^{2-} . In addition, liquid samples of 20 mL were also drawn three times per week from the cultivation broth to monitor the TSS concentration. Unfortunately, no analysis of the microbial population structure was conducted in this study.

2.5. Analytical methods

The DO concentration and temperature were monitored with an OXI 330i oximeter (WTW, Germany), while a pH meter Eutech Cyberscan pH 510 (Eutech instruments, The Netherlands) was used for pH determination. The PAR at the HRAP surface was recorded with a LI-250A lightmeter (LI-COR Biosciences, Germany). CO_2 , H_2S , O_2 , N_2 and CH_4 gas concentrations were analysed using a Varian CP-3800 GC-TCD (Palo

Alto, USA) according to Posadas et al. [13]. The dissolved IC and TN concentrations were determined using a Shimadzu TOC-VCSH analyser (Japan) equipped with a TNM-1 chemiluminescence module. SO_4^{2-} concentration was measured by HPLC-IC according to Posadas et al. [23], while the determination of TSS concentration was carried out according to standard methods [24].

2.6. Statistical treatment

The ambient and cultivation broth temperatures, pH, cultivation broth TSS concentrations, the flow rates of digestate, tap water and external liquid recycling, the dissolved oxygen (DO) concentration, and the flowrate and composition of biogas were obtained under steady state operation. CO_2 -REs and H_2S -REs were calculated according to [13] based on duplicate measurements of the biogas and biomethane composition. The results here presented were provided as the average values (obtained for at least 4 sampling days over a two weeks period during each steady state) along with their corresponding standard deviation.

A t-student statistical analysis was performed in order to determine the statistically significant differences between the pH value at the bottom and the top of the absorption column. In addition, the t-student test was applied to determine the effect of temperature at the different alkalinites tested. Finally, a one-way ANOVA was performed to determine the effect of alkalinity and temperature on the quality of the biomethane produced along the six operational stages.

3. Results and discussion

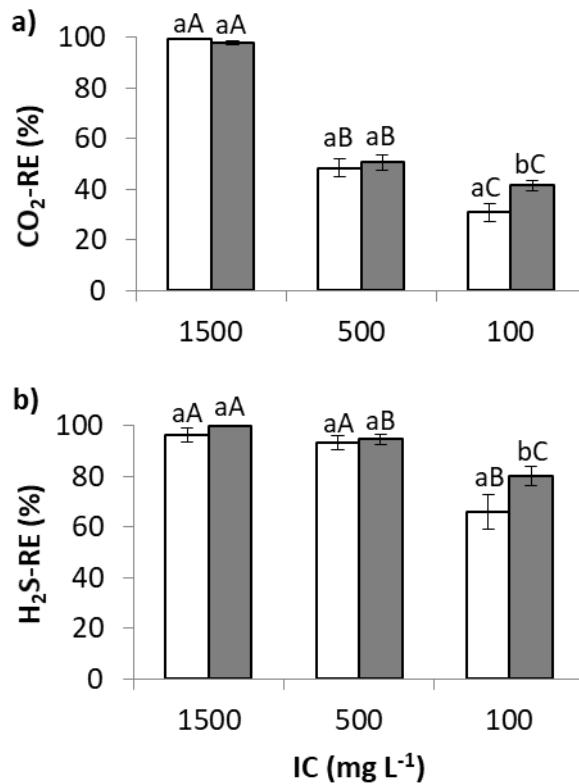
3.1. Environmental parameters and biomass concentration

The average water loss by evaporation in the HRAP (average tap water flow rate needed to maintain the level of the HRAP constant) during process operation at 35 °C was $15.9 \pm 1.2 \text{ L d}^{-1} \text{ m}^{-2}$, while this value decreased to $1.9 \pm 0.4 \text{ L d}^{-1} \text{ m}^{-2}$ at 12 °C (Table 1). The maximum evaporation rate recorded in this study was ~1.8 times higher than the maximum reported by Posadas et al. [11] in a similar outdoors HRAP during summer in a temperate climate and ~2.6 times higher than the highest value estimated by Guieysse et al. [25] in an arid location. The high water losses here recorded were caused by the high and constant temperatures of the cultivation broth throughout the entire day (no decrease in the culture broth temperature occurred during the night) and the high turbulence induced by the oversized paddlewheel typical in lab-scale systems [25]. On

the other hand, the lower temperature prevented water losses, the minimum value recorded being in the range obtained by Posadas et al. [26] in a similar outdoors HRAP during spring in a temperate climate ($3\pm8\text{ L m}^{-2}\text{ d}^{-1}$).

The average DO concentrations in the cultivation broth during the illuminated period (~6 hours after turning on the lights) were 10.1 ± 2.1 , 14.4 ± 0.9 , 13.5 ± 0.8 , 16.6 ± 1.9 , 8.8 ± 0.8 and $16.5\pm1.7\text{ mg O}_2\text{ L}^{-1}$ during stages I, II, III, IV, V and VI, respectively; while the DO concentrations during the dark period (~6 hours after turning off the lights) averaged 1.3 ± 0.5 , 6.2 ± 1.2 , 3.7 ± 0.1 , 7.0 ± 0.9 , 4.6 ± 0.6 and $10.0\pm0.5\text{ mg O}_2\text{ L}^{-1}$ in stages I to VI, respectively. The higher DO concentrations recorded at $12\text{ }^{\circ}\text{C}$ were attributed to the increased oxygen solubility at low temperatures [27]. No pernicious effect of these DO concentrations on microalgae activity was expected since inhibition of photosynthesis typically occurs above $25\text{ mg O}_2\text{ L}^{-1}$, and the values remained within the optimal range to support nutrients and CO_2 bioassimilation [28].

The average pHs in the HRAP during stages I, II, III, IV, V and VI were 11.0 ± 0.0 , 10.5 ± 0.3 , 10.5 ± 0.4 , 9.7 ± 0.2 , 7.2 ± 0.3 and 7.5 ± 0.2 , respectively. These findings confirmed that the influence of the IC concentration in the cultivation broth was higher than that of the temperature on the steady state pH of the cultivation broth, which was in accordance with previous results from Posadas et al. [11]. Moreover, the highest pH values here recorded matched those observed by Toledo-Cervantes et al. [12] during the simultaneous treatment of biogas and digestate in a similar experimental set-up, while Lebrero et al. [20] reported comparable pHs to the lowest values obtained in this study when evaluating biogas upgrading in a transparent PVC column photobioreactor. A higher pH in the cultivation broth enhances the mass transfer rate of the acidic gases (CO_2 and H_2S) from biogas to the liquid phase, which ultimately results in higher upgrading performances as discussed below [6].


TSS concentrations of $0.4\text{--}0.5\text{ g L}^{-1}$ were recorded during process operation at both high and medium alkalinity (Table 1). Thus, the biomass concentration in the cultivation broth at the imposed biomass productivity ($7.5\text{ g dry matter m}^{-2}\text{ d}^{-1}$) during stages I to IV was representative of the operation of conventional outdoor raceways, where TSS concentration typically ranges from 0.3 to 0.5 g L^{-1} [29]. However, the biomass concentration and productivity, during stages V and VI (IC concentration of 100 mg L^{-1}), decreased to 0.2 g TSS L^{-1} and $5\text{--}7\text{ g dry matter m}^{-2}\text{ d}^{-1}$ respectively, due to the lower

carbon load supplied in the feed and the lower CO_2 mass transfer in the absorption column mediated by the low pH of the cultivation broth (as discussed in section 3.2.1).

3.2. Biogas upgrading efficiency

3.2.1. CO_2 - removal efficiency

Average CO_2 -REs of 99.3 ± 0.1 , 97.8 ± 0.8 , 48.3 ± 3.6 , 50.6 ± 3.0 , 30.8 ± 3.6 and $41.5 \pm 2.0\%$ were recorded during stages I, II, III, IV, V and VI, respectively (Figure 2).

Figure 2. Influence of the inorganic carbon concentration (IC) and temperature on the removal efficiency (RE) of a) carbon dioxide (CO_2) and b) hydrogen sulphide (H_2S) at 35°C (□) and at 12°C (■), average removal efficiencies and their standard deviation (n=8). Similar lowercase letters indicate no significant differences ($p>0.05$) when comparing both temperatures at each IC concentration. Similar uppercase letters indicate no significant differences ($p>0.05$) when comparing the IC concentrations at the same temperature.

During stages I and II (1500 mg IC L⁻¹), the high CO_2 mass transfer rates between the biogas and the liquid phase were promoted by the high pH (> 10.5) and high buffer capacity of the cultivation broth. The initial pH of the system (pH = 10.5) was roughly maintained in the cultivation broth of the HRAP (10.4 ± 0.1) and along the absorption column (9.9 ± 0.2) as a result of the high alkalinity of the digestate (Table 1). During stages III and IV (500 mg IC L⁻¹), a slight decrease in the pH of the cultivation broth from the initial value occurred as a result of biogas absorption in the column due to both

the acidic nature of CO₂ and H₂S and the lower buffer capacity of the media, thus resulting in lower CO₂-REs. This effect was more pronounced in stages V and VI (100 mg IC L⁻¹), where the low buffer capacity of the cultivation broth was unable to maintain a constant and high pH, which resulted in the lowest CO₂-REs recorded in this experiment (Table 1). The pH of the cultivation broth significantly differed (t-student test, $p < 0.05$) between the bottom (10.5±0.4, 9.7±0.2, 7.2±0.3 and 7.5±0.2 in stages III, IV, V and VI, respectively) and the top (7.3±0.1, 6.9±0.1, 5.3±0.2 and 5.5±0.1 in stages III, IV, V and VI, respectively) of the absorption column at medium and low alkalinity (Table 1). Higher L/G ratios would have avoided these high pH variations along the absorption column. Nevertheless, a lower biomethane quality would be expected at high L/G ratios as a result of the enhanced O₂ and N₂ stripping from the recycling cultivation broth to the upgraded biogas [8]. These data was in accordance to Lebrero et al. [20], who reported an average CO₂-RE of 23% at a pH 7 and of 62% when the pH of the cultivation broth was increased up to 8.1. Overall, these results showed the relevance of inorganic carbon concentration to maintain a high pH in the scrubbing cultivation broth during biogas upgrading.

On the other hand, a negligible effect of the temperature on CO₂-RE was found at high and medium alkalinity (from stages I to IV) (Figure 2). However, the higher CO₂ solubility at lower temperatures resulted in a higher CO₂-RE at 12°C compared to that achieved at 35°C under low alkalinity (stages V and VI) (Figure 2). This suggests that, despite the lower alkalinity of the cultivation broth could be partially compensated with the decrease in temperature, the latter mediated a major effect on CO₂ mass transfer.

C-CO₂ desorption ratios, defined as the ratio between the mass flow rate of IC desorbed from the cultivation broth and the total mass flow rate of IC supplied to the system (C-CO₂ absorbed in the absorption column + IC supplied in the centrate) and considering a carbon content of 50% in the microalgal biomass [30], of 51, 50, 2 and 4% were recorded in stages I, II, III and IV, respectively. However, a negligible C-CO₂ desorption was estimated at low alkalinities as a result of the low CO₂ mass transfer in the absorption column and low IC input via centrate addition, which ultimately resulted in process operation under carbon limiting conditions (Table 2). The highest CO₂ desorption rates obtained during stages I and II were associated to the high IC concentration in the cultivation broth, which supported a positive CO₂ concentration gradient to the atmosphere even though IC was mainly in the form of CO₃²⁻. On the

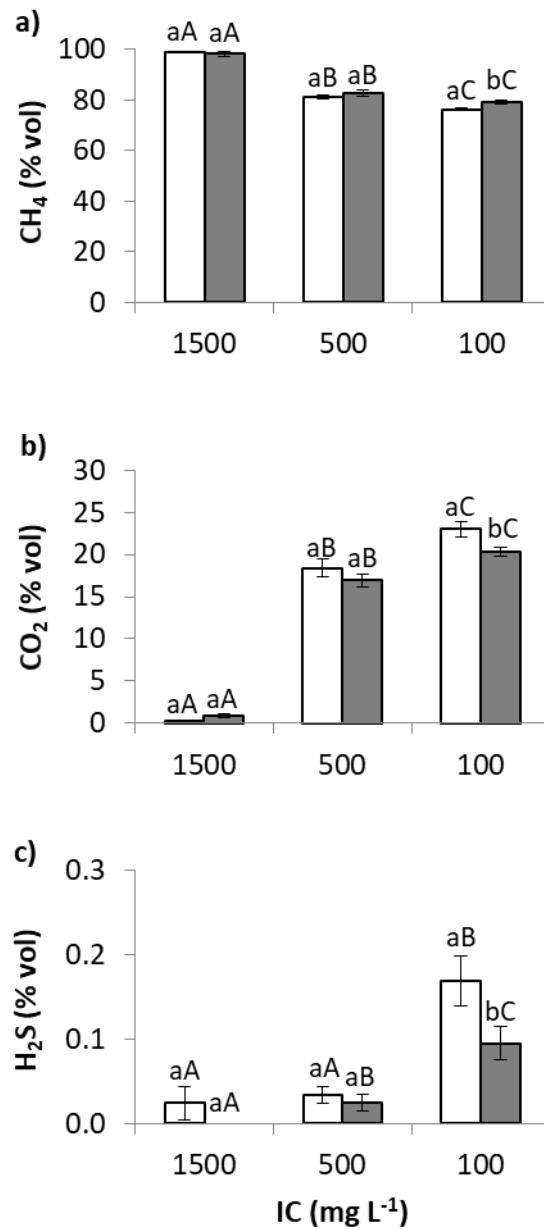
contrary, IC was preferentially used by microalgae rather than removed by stripping despite the low pH prevailing in the cultivation broth at low alkalinity. These results agreed with those reported by Meier et al. [19], who identified stripping as the main mechanism responsible for carbon removal in a 50 L photobioreactor fed with a mineral medium and connected to a bubble column. Similarly, Alcántara et al. [10] observed a 49% CO₂ loss by desorption in a comparable 180 L HRAP interconnected to an absorption column during the simultaneous treatment of biogas and centrate.

Table 2. Inorganic carbon mass balance with the corresponding standard deviation (n=4) under steady state conditions during the six operational stages tested.

STAGE	INPUTS (g d ⁻¹)		OUTPUTS (g d ⁻¹)		
	IC biogas ¹	IC digestate ¹	IC biomass ¹	IC accumulated ¹	IC desorption ²
I	7.87±0.24	1.48±0.20	4.54±0.00	0.03±0.04	4.78±0.40
II	7.91±0.61	1.37±0.15	4.54±0.00	0.02±0.04	4.73±0.70
III	4.04±0.29	0.46±0.04	4.54±0.00	0.00±0.00	0.11±0.04
IV	4.20±0.32	0.45±0.05	4.54±0.00	0.00±0.00	0.20±0.23
V	2.78±0.46	0.08±0.01	2.91±0.00	0.00±0.00	0.00±0.00
VI	3.78±0.19	0.10±0.01	3.93±0.00	0.00±0.00	0.00±0.00

1-Measured; 2-Estimated from the mass balance

3.2.2. H₂S- removal efficiency


Average H₂S-REs of 96.4±2.9, 100±0, 93.4±2.6, 94.7±1.9, 66.2±6.9 and 80.3±3.9% were recorded during stages I, II, III, IV, V and VI, respectively (Figure 2). The higher H₂S-REs compared to CO₂-REs were attributed to the higher dimensionless Henry's Law constants of H₂S, defined as the ratio between the aqueous phase concentration of H₂S or CO₂ and its gas phase concentration (H_{H2S}≈2.13 and H_{CO2}≈0.71 at 20°C) [27]. The highest H₂S removals were achieved at the highest alkalinities (stages I and II), corresponding to the highest pH along the absorption column. Similarly, Franco-Morgado et al. [18] obtained H₂S-RE of 99.5±0.5% during the operation of a HRAP interconnected to an absorption column using a highly carbonated medium at a pH of 9.5. On the other hand, the low pH in the cultivation broth together with the large decrease in pH in the absorption column under low alkalinity caused the poor H₂S removal recorded (Table 1). These results were in accordance with those reported by Bahr et al. [6], who observed a significant deterioration in the H₂S-RE from 100% to 80% when the pH in the absorption column decreased from 7 to 5.4 in a similar HRAP-absorption column system.

No significant effect (t-student test, $p>0.05$) of the temperature was observed at high-medium alkalinity on the removal of H_2S (Figure 2). On the contrary, higher H_2S -REs were recorded at 12°C under low alkalinity likely due to the increase in the aqueous solubility of H_2S .

H_2S oxidation ratios (defined as the mass flow rate of S-SO_4^{2-} accumulation in the HRAP divided by the mass flow rate of $\text{S-H}_2\text{S}$ absorbed in the absorption column, subtracting the S-SO_4^{2-} introduced with the centrate) of 100%, 87% and 94% were obtained at 35 °C during stages I, III and V, respectively. However, an incomplete oxidation of H_2S occurred at 12°C, resulting in ratios of 55%, 67% and 33% during stages II, IV and VI, respectively. The remaining sulphur being most likely present as S-intermediates (i.e S° , thiosulfate or sulfite) or biomass (a typical S content of 0.07% can be assumed). Incomplete H_2S oxidation was also reported by Toledo-Cervantes et al. [3], who estimated than only 40% of the absorbed H_2S was oxidized to SO_4^{2-} in a similar experimental set-up. Interestingly, the high DO concentrations in the cultivation broth at 12°C did not result in higher H_2S oxidation ratios likely due to the lower microbial activity at low temperatures.

3.2.3. Biomethane composition

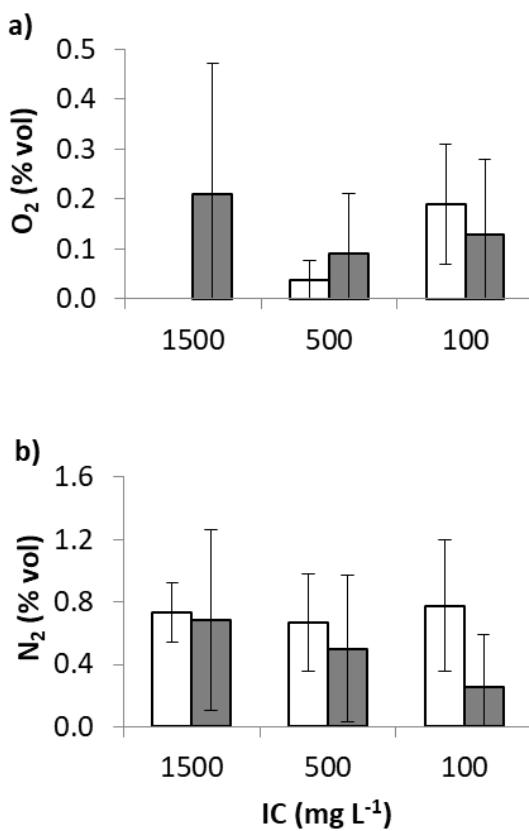

An average CH_4 content of 98.9 ± 0.2 , 98.2 ± 1.0 , 80.9 ± 0.8 , 82.5 ± 1.2 , 75.9 ± 0.7 and $79.2\pm0.7\%$ was obtained in the final biomethane during stages I, II, III, IV, V and VI, respectively (Figure 3). The high CH_4 contents in stages I and II ($1500 \text{ mg IC L}^{-1}$) were attributed to the high absorption efficiency of CO_2 and H_2S and the limited desorption of N_2 and O_2 . Furthermore, a negligible CH_4 absorption in the absorption column was observed along the six operational stages, with average losses of $2.8\pm3.4\%$ (on a mass basis) regardless of the alkalinity or temperature. Posadas et al. [11] obtained slightly lower CH_4 losses ($2.2\pm1.2\%$) in an outdoors HRAP, while CH_4 losses of $4.9\pm2.4\%$ were reported by Toledo-Cervantes et al. [3] in a similar indoors system. At this point it should be pointed out that the composition of the biomethane produced in stages I and II complied with most European regulations for biogas injection into natural gas grids or use as autogas in terms of content of CH_4 ($\geq 95\%$) and $\text{CO}_2 < 2.5\text{-}4\%$ [5]. In fact, the CO_2 content in the upgraded biogas accounted for 0.3 ± 0.1 , 0.9 ± 0.3 , 18.4 ± 1.0 , 16.9 ± 0.8 , 23.0 ± 0.9 and $20.3\pm0.6\%$ during stages I, II, III, IV, V and VI, respectively (Figure 3).

Figure 3. Influence of the inorganic carbon concentration (IC) and temperature on bio-methane composition: a) CH₄, b) CO₂, c) H₂S average concentrations and their standard deviation (n=8) at 35°C (□) and at 12°C (■). Same lowercase letters indicate not significantly different (p>0.05) when compare both temperature at each IC concentration. Same uppercase letters indicate no significantly different (p>0.05) when compare the IC concentration for the same temperature.

During stages I to IV, H₂S concentrations below 0.03% were recorded in the upgraded biogas, which complied with EU regulations (Figure 3). Moreover, no significant differences (One-way ANOVA, p>0.05) in O₂ and N₂ content of the upgraded biogas were observed during the six operational stages (O₂ concentrations of 0.0±0.0, 0.2±0.3, 0.0±0.0, 0.1±0.1, 0.2±0.1 and 0.1±0.2%, and N₂ concentrations of 0.7±0.2, 0.7±0.6, 0.7±0.3, 0.5±0.5, 0.8±0.4 and 0.3±0.3% during stages I, II, III, IV, V and VI,

respectively), which also matched the levels required by most European regulations ($O_2 < 0.001\text{-}1\%$) (Figure 4). These results might be explained by the low L/G ratio (0.5) applied during the study, which entailed a limited O_2 and N_2 stripping from the cultivation broth to the biomethane in the absorption column [18]. No significant effect of the microalgae population structure on the removals of CO_2 and H_2S , and on the stripping of N_2 or O_2 , was expected above a certain photosynthetic activity threshold. In our particular study, the control of the biomass productivity (fixed at $7.5\text{ g m}^{-2}\text{ d}^{-1}$) guaranteed a constant rate of photosynthetic activity along the process regardless of the microalgae species dominant. In addition, previous works have consistently reported no-correlation between the dominant microalgae species and biogas upgrading performance [3, 8, 12].

Figure 4. Influence of the inorganic carbon concentration (IC) and temperature on biomethane composition: a) O_2 , b) N_2 average concentrations and their standard deviation ($n=8$) at 35°C (□) and at 12°C (■). Average values were not significantly different during the six operational stages ($p>0.05$).

4. Conclusions

The alkalinity of the cultivation broth was here identified as a key environmental parameter influencing biomethane quality. A negligible effect of the temperature on the

quality of the upgraded biogas was recorded at high-medium alkalinity, while temperature played a significant role on biomethane quality at low alkalinity. Biomethane composition complied with most European regulations for biogas injection into natural gas grids or use as a vehicle fuel when photosynthetic biogas upgrading was carried out at high alkalinity (IC concentrations of >1500 mg IC/L). In addition, this study also revealed that low alkalinity media might induce inorganic carbon limitation, which ultimately decreases the CO₂ mass transfer from biogas as a result of a rapid acidification of the scrubbing cultivation broth in the absorption column.

Acknowledgements

This work was supported by the project INCOVER. The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 689242. The financial support of MINECO (Red Novedar) and the Regional Government of Castilla y León (UIC 71) is also gratefully acknowledged.

References

- [1] C. Herrmann, N. Kalita, D. Wall, A. Xia, J.D. Murphy, Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates, *Bioresour. Technol.* 214 (2016) 328–337. doi:10.1016/j.biortech.2016.04.119.
- [2] E. Ryckebosch, M. Drouillon, H. Vervaeren, Techniques for transformation of biogas to biomethane, *Biomass and Bioenergy*. 35 (2011) 1633–1645. doi:10.1016/j.biombioe.2011.02.033.
- [3] A. Toledo-Cervantes, M.L. Serejo, S. Blanco, R. Pérez, R. Lebrero, R. Muñoz, Photosynthetic biogas upgrading to bio-methane: Boosting nutrient recovery via biomass productivity control, *Algal Res.* 17 (2016) 46–52. doi:10.1016/j.algal.2016.04.017.
- [4] A. Toledo-Cervantes, J.M. Estrada, R. Lebrero, R. Muñoz, A comparative analysis of biogas upgrading technologies: Photosynthetic vs physical/chemical processes, *Algal Res.* 25 (2017) 237–243. doi:10.1016/j.algal.2017.05.006.
- [5] R. Muñoz, L. Meier, I. Diaz, D. Jeison, A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading, *Rev. Environ. Sci. Biotechnol.* 14 (2015) 727–759. doi:10.1007/s11157-015-9379-1.
- [6] M. Bahr, I. Díaz, A. Dominguez, A. González Sánchez, R. Muñoz, Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents, *Environ. Sci. Technol.* 48 (2014) 573–581. doi:10.1021/es403596m.
- [7] S. Sun, Z. Ge, Y. Zhao, C. Hu, H. Zhang, L. Ping, Performance of CO₂ concentrations on nutrient removal and biogas upgrading by integrating microalgal strains cultivation with activated sludge, *Energy*. 97 (2016) 229–237. doi:10.1016/j.energy.2015.12.126.
- [8] M.L. Serejo, E. Posadas, M.A. Boncz, S. Blanco, P. García-Encina, R. Muñoz, Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes, *Environ. Sci. Technol.* 49 (2015) 3228–3236. doi:10.1021/es5056116.
- [9] A. Xia, J.D. Murphy, Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems, *Trends Biotechnol.* 34 (2016) 264–275. doi:10.1016/j.tibtech.2015.12.010.

- [10] C. Alcántara, P.A. García-Encina, R. Muñoz, Evaluation of the simultaneous biogas upgrading and treatment of centrates in a high-rate algal pond through C, N and P mass balances, *Water Sci. Technol.* 72 (2015) 150–157. doi:10.2166/wst.2015.198.
- [11] E. Posadas, D. Marín, S. Blanco, R. Lebrero, R. Muñoz, Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond, *Bioresour. Technol.* 232 (2017) 133–141. doi:10.1016/j.biortech.2017.01.071.
- [12] A. Toledo-Cervantes, C. Madrid-Chirinos, S. Cantera, R. Lebrero, R. Muñoz, Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors, *Bioresour. Technol.* 225 (2017) 336–342. doi:10.1016/j.biortech.2016.11.087.
- [13] E. Posadas, M.L. Serejo, S. Blanco, R. Pérez, P.A. García-Encina, R. Muñoz, Minimization of biomethane oxygen concentration during biogas upgrading in algal-bacterial photobioreactors, *Algal Res.* 12 (2015) 221–229. doi:10.1016/j.algal.2015.09.002.
- [14] G. Mann, M. Schlegel, N. Kanswohl, R. Schumann, Experimental system for the prevention of O₂- And air contamination during biogas upgrading with phototrophic microalgae, *Landbauforsch. Volkenrode.* 66 (2016) 93–100. doi:10.3220/LBF1471268642000.
- [15] Y. Ouyang, Y. Zhao, S. Sun, C. Hu, L. Ping, Effect of light intensity on the capability of different microalgae species for simultaneous biogas upgrading and biogas slurry nutrient reduction, *Int. Biodeterior. Biodegradation.* 104 (2015) 157–163. doi:10.1016/j.ibiod.2015.05.027.
- [16] C. Yan, R. Muñoz, L. Zhu, Y. Wang, The effects of various LED (light emitting diode) lighting strategies on simultaneous biogas upgrading and biogas slurry nutrient reduction by using of microalgae Chlorella sp., *Energy.* 106 (2016) 554–561. doi:10.1016/j.energy.2016.03.033.
- [17] C. Yan, L. Zhu, Y. Wang, Photosynthetic CO₂ uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods, *Appl. Energy.* 178 (2016) 9–18. doi:10.1016/j.apenergy.2016.06.012.
- [18] M. Franco-Morgado, C. Alcántara, A. Noyola, R. Muñoz, A. González-Sánchez, A study of photosynthetic biogas upgrading based on a high rate algal pond under alkaline conditions: Influence of the illumination regime, *Sci. Total Environ.* 592 (2017) 419–425. doi:10.1016/j.scitotenv.2017.03.077.
- [19] L. Meier, P. Barros, A. Torres, C. Vilchez, D. Jeison, Photosynthetic biogas upgrading using microalgae: Effect of light/dark photoperiod, *Renew. Energy.* 106 (2017) 17–23. doi:10.1016/j.renene.2017.01.009.
- [20] R. Lebrero, A. Toledo-Cervantes, R. Muñoz, V. del Nery, E. Foresti, Biogas upgrading from vinasse digesters: a comparison between an anoxic biotrickling filter and an algal-bacterial photobioreactor, *J. Chem. Technol. Biotechnol.* 91 (2016) 2488–2495. doi:10.1002/jctb.4843.
- [21] E. Posadas, D. Szpak, F. Lombó, A. Domínguez, I. Díaz, S. Blanco, P.A. García-Encina, R. Muñoz, Feasibility study of biogas upgrading coupled with nutrient removal from anaerobic effluents using microalgae-based processes, *J. Appl. Phycol.* 28 (2016) 2147–2157. doi:10.1007/s10811-015-0758-3.
- [22] I. de Godos, H.O. Guzman, R. Soto, P.A. García-Encina, E. Becares, R. Muñoz, V.A. Vargas, Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment, *Bioresour. Technol.* 102 (2011) 923–927. doi:10.1016/j.biortech.2010.09.036.
- [23] E. Posadas, P.-A. García-Encina, A. Soltau, A. Domínguez, I. Díaz, R. Muñoz, Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial

biofilm bioreactors, *Bioresour. Technol.* 139 (2013) 50–58.
doi:10.1016/j.biortech.2013.04.008.

[24] M.A.H. Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E., & Franson, APHA: standard methods for the examination of water and wastewater., Centen. Ed. APHA, AWWA, WEF, Washington, DC. (2005).

[25] B. Guieysse, Q. Béchet, A. Shilton, Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions, *Bioresour. Technol.* 128 (2013) 317–323.
doi:10.1016/j.biortech.2012.10.096.

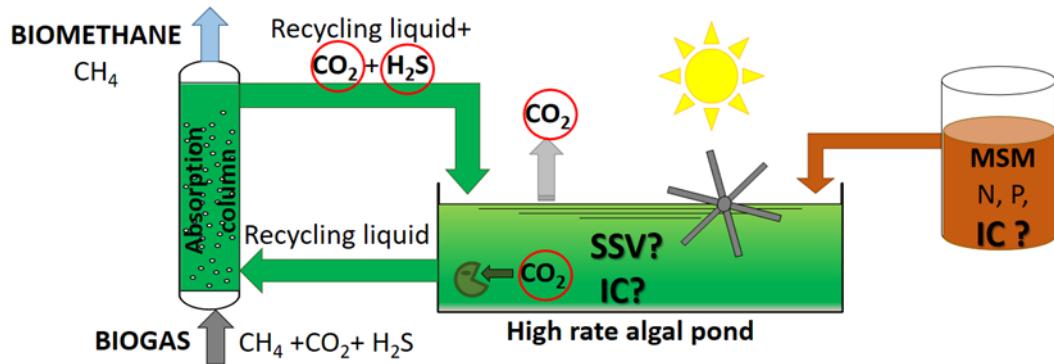
[26] E. Posadas, A. Muñoz, M.-C. García-González, R. Muñoz, P.A. García-Encina, A case study of a pilot high rate algal pond for the treatment of fish farm and domestic wastewaters, *J. Chem. Technol. Biotechnol.* 90 (2015) 1094–1101.
doi:10.1002/jctb.4417.

[27] R. Sander, Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential importance in Environmental Chemistry, (1999). (Last access: 12.11.2017) <<http://www.henrys-law.org/henry-3.0.pdf>>

[28] E. Molina, J. Fernández, F.G. Acién, Y. Chisti, Tubular photobioreactor design for algal cultures, *J. Biotechnol.* 92 (2001) 113–131. doi:10.1016/S0168-1656(01)00353-4.

[29] O. Pulz, Photobioreactors: Production systems for phototrophic microorganisms, *Appl. Microbiol. Biotechnol.* 57 (2001) 287–293. doi:10.1007/s002530100702.

[30] Z. Arribi, J. Ruiz, P. Álvarez-Díaz, C. Garrido-Pérez, J.A. Perales, Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO₂ bio-fixation and low cost biofuels production, *Water Res.* 49 (2014) 465–474.
doi:10.1016/j.watres.2013.10.036.


Chapter 4

Long-term influence of high alkalinity on the performance of photosynthetic biogas upgrading

Rodero, M. del R., Severi, C. A., Rocher-Rivas, R.,
Quijano, G., Muñoz, R., 2020. Fuel 281, 118804
doi:10.1016/j.fuel.2020.118804

Long-term influence of high alkalinity on the performance of photosynthetic biogas upgrading

María del Rosario Rodero^{a,b}, Cristian Alfredo Severi^{a,b}, Ricardo Rocher-Rivas^{a,c}, Guillermo Quijano^c, Raúl Muñoz^{a,b}

^a Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain.

^b Institute of Sustainable Processes, University of Valladolid, 47011, Valladolid, Spain.

^c Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, México.

ABSTRACT

The alkalinity of the cultivation medium plays a key role on photosynthetic biogas upgrading, exerting impact not only on the mass-transfer of CO₂ and H₂S in the biogas scrubbing column but also on the subsequent CO₂ uptake or stripping to the atmosphere. The long-term performance of algal-bacterial processes devoted to the concomitant removal of CO₂ and H₂S from biogas in a 180 L open pond interconnected to a 2.5 L biogas scrubbing column via an external liquid recirculation of supernatant from a 8 L conical settler under process operation at high inorganic carbon (IC) concentrations was assessed. The influence of biomass concentration in the cultivation medium on process performance was also evaluated. CO₂ concentrations in the upgraded biogas fluctuated between 1.5 and 4.4% at IC concentrations in the cultivation medium of 1200 mg C L⁻¹, and remained almost constant (0.7 ± 0.1%) at IC concentrations > 2400 mg C L⁻¹. However, the increase in the IC concentration from 1203 to 3476 mg C L⁻¹ entailed an increase in C-CO₂ stripping from 14.5 to 33.4% of the IC input to the system. The increase in biomass concentration from 0.33 to 1.38 g SSV L⁻¹ entailed a reduction in CO₂ removal of 1.1% even under process operation at high alkalinity. H₂S removal efficiencies of 100% were achieved regardless the IC or biomass concentration.

Keywords: algal-bacterial symbiosis; alkalinity; biomass concentration; biogas upgrading; biomethane.

1. Introduction

Biogas constitutes the most valuable byproduct from the anaerobic degradation of residual organic substrates. Typically, biogas consists of CH₄ (40-75%), CO₂ (25-50%), H₂S (0.005-3%) and other components such as O₂, N₂, NH₃, siloxanes, halogenated hydrocarbons and water at trace level concentrations [1]. The energy potential of biogas, due to its high CH₄ content, has promoted the use of this bioenergy source as a substitute of fossils fuels [2]. In this context, the global production of biogas has increased from 0.28 to 1.31 exajoule during the period 2000-2016, which represented a total volume of biogas of approx. 60.8 billion Nm³ [3]. However, the presence of pollutants, such as CO₂ and H₂S, prevents the direct use of biogas as a vehicle fuel or its addition into natural gas networks, which requires concentrations of CH₄ > 90%, CO₂ < 2-4%, O₂ < 0.001-1% and H₂S + COS < 5 mg/Nm³ according to most international regulations [4,5]. CO₂ removal increases the specific biogas energy content, reduces its transportation costs and results in lower greenhouse gas emissions during biogas combustion, while the removal of H₂S is crucial due to its hazardous, malodorous and corrosive nature [6,7].

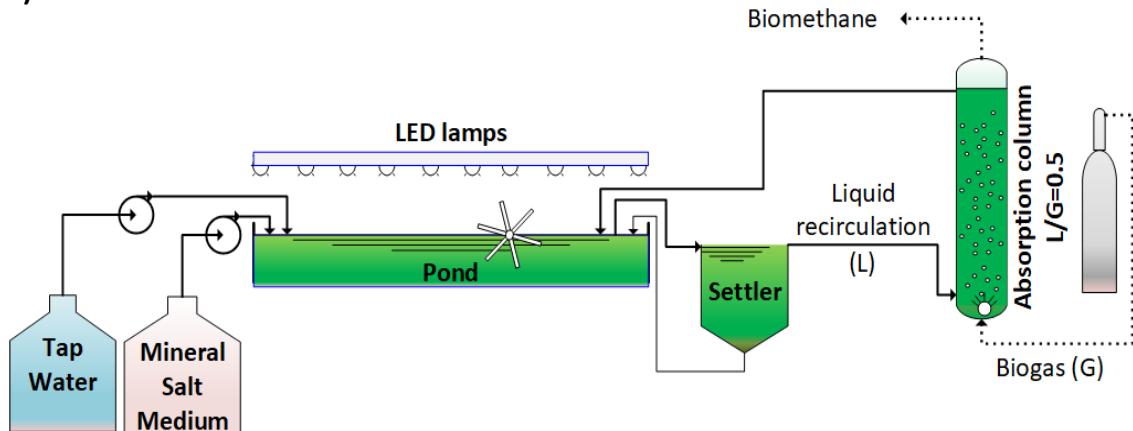
Physical-chemical technologies including water/organic/chemical scrubbing, pressure swing adsorption and membrane separation for CO₂ removal, and *in situ* precipitation, adsorption on activated carbon or metal ions, absorption and membrane separation for H₂S removal are widely applied for biogas upgrading [8]. Nevertheless, most of these technologies are not able to support the simultaneous removal of both components and typically entail a high energy and chemical consumption, which limit the environmental and economic sustainability of biomethane [9]. Likewise, biological technologies (i.e. biological methanation of CO₂ with H₂ and biofiltration or *in situ* microaerobic digestion for H₂S removal) must be combined to remove CO₂ and H₂S from biogas [10]. In this context, biogas upgrading based on algal-bacterial symbiosis is a cost-competitive alternative for the concomitant removal of H₂S and CO₂ from biogas in an environmentally sustainable way [11]. This platform technology is based on the light-driven CO₂ uptake by microalgae and the oxidation of H₂S to S⁰/SO₄²⁻ by sulfur-oxidizing bacteria promoted by the oxygen photosynthetically generated [12]. In addition, the liquid fraction of digestates from anaerobic digestion can be used as a free water and nutrient source to support algal-bacterial growth, which represents an economic and environmental benefit of this technology compared to its

physical/chemical and biological counterparts [13].

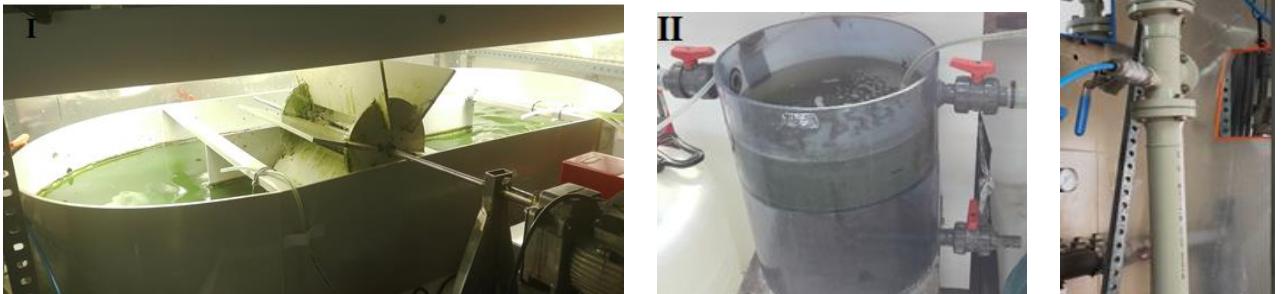
Recent works have evaluated the influence of operational and environmental parameters such as the wavelength, intensity and photoperiod of the light source [14–16], alkalinity and temperature of the cultivation broth [17], the diffuser type [18], liquid to biogas (L/G) ratio and gas-liquid flow configuration in the scrubbing column [19] on the quality of the biogas upgraded. These previous optimizations of the operational parameters allowed to obtain a biomethane complying with most international standards for its injection into natural gas networks. For instance, Franco-Morgado et al. [20] reported an average biomethane composition of 99.1% CH₄, 0.5% CO₂, 0.6% N₂ and 0.1% O₂ during the integral photosynthetic biogas upgrading in an analogous experimental set-up under indoors conditions. In addition, Marín et al. [21] obtained a CH₄ concentration between 85 and 98% in a pilot experimental set-up over one year operation under outdoor conditions. Rodero et al. [22] designed a control strategy based on the regulation of L/G ratio in order to maintain biomethane quality regardless of environmental fluctuations. In this study, a decrease in the pH of the cultivation medium mediated high liquid flowrates, with the subsequent increase in O₂ stripping and energy demand. In this context, Rodero et al. [17] reported an enhancement on CH₄ content in the upgraded biomethane from 79 to 98% with an increase on the inorganic carbon (IC) concentration in the cultivation medium from 100 to 1500 mg IC L⁻¹. Thereby, an optimum alkalinity capable of maintaining a high pH in the absorption column can support consistent CO₂ and H₂S removals. However, high IC concentrations in the pond could negatively impact on microalgae and bacterial activity due to a detrimental salinity effect, and increase CO₂ stripping from the cultivation medium to the atmosphere, thus limiting the environmental sustainability of photosynthetic biogas upgrading. For instance, de Farias Silva et al. [23] observed that the growth of *Synechococcus* PCC 7002 was inhibited at sodium bicarbonate concentrations above 22 g L⁻¹ (~3140 mg IC L⁻¹) while Li et al. [24] reported a cell growth decrease from 120 to 1920 mg IC L⁻¹ by addition of NaHCO₃ in *Chlorella vulgaris*. Besides, an inorganic salt content above 1-2 wt% might cause no salt-tolerant bacteria death due to cell plasmolysis [25]. Likewise, biomass concentration in the cultivation medium could potentially impact on both the CO₂ removal from biogas in the bubble column by promoting the accumulation of large algal-bacterial flocs in the vicinity of the biogas sparger, which could trigger biogas bubble coalescence and result in an inefficient CO₂

gas-liquid mass transfer [26], and its subsequent photosynthetic assimilation due to light limitation as a result of high biomass cell density.

This study systematically assessed the impact of long-term process operation under high IC concentration in the cultivation medium on the H₂S and CO₂ removal efficiency and robustness during photosynthetic biogas upgrading. Moreover, the influence of the biomass concentration on the performance of the upgrading process was also investigated. Finally, CO₂ stripping from the open pond was determined in order to evaluate the environmental performance of this technology.


2. Materials and methods

2.1. Experimental set-up


The experimental set-up, located indoors at the Institute of Sustainable Processes of Valladolid University (Spain), consisted of a High Rate Algal Pond (180 L) interconnected to a conical settler (8 L) whose supernatant was used as scrubbing solution in a 2.5 L absorption column and returned to the pond (Fig. 1). The pond (length: 202 cm, width: 63 cm, depth: 15 cm) was agitated by a 6-blade paddlewheel at a liquid recirculation velocity of ~20 cm s⁻¹, and illuminated continuously at 1240 ± 512 µmol m⁻² s⁻¹ (measured in different points along the total surface of the pond) by six Phillips LED PCBs (Spain). The pond (1.2 m² of illuminated surface) was continuously fed at an inlet flowrate of 3.2 L d⁻¹ with a mineral salt medium (MSM) containing (g L⁻¹): 0.58 K₂HPO₄, 1.91 NH₄Cl, 0.10 MgSO₄·7H₂O, 0.02 CaCl₂·2H₂O, 5 mL of a trace metal solution (based on the *Spirulina* mineral salt medium [27]) and a mixture of NaHCO₃ and Na₂CO₃ according to the IC concentration set in during each operational stage at a pH of ~10. Synthetic biogas (70% CH₄, 29.5% CO₂ and 0.5% H₂S, Abello Linde (Spain)) was sparged into the scrubbing column (Ø: 4.4 cm, height: 165 cm) using a 2 µm metallic biogas diffuser at a flow rate of 50 ml min⁻¹ and a recycling liquid to biogas ratio (L/G) of 0.5 according to Toledo-Cervantes et al. [28]. Despite counter-current flow operation involves higher CO₂ mass transfer rates, co-current mode was selected in this study since it entails lower O₂ and N₂ stripping which results in a higher biomethane quality. In addition, counter-current flow operation results in low dissolved O₂ concentrations in the liquid medium in the vicinity of the biogas sparger (at the bottom of the column), which induces the accumulation of elemental sulphur in the sparger and ultimately hinders CO₂ absorption [28]. Tap water was continuously added

to compensate evaporation losses from the open cultivation broth under operation with a zero effluent strategy.

a)

b)

Fig. 1. a) Schematic diagram of the indoor experimental set-up for photosynthetic biogas upgrading and b) photograph of the pilot scale system: I pond, II settler, III biogas scrubbing column.

2.2. Operational conditions and sampling procedures

The pond was initially inoculated with a microalgal-bacterial consortium (previously acclimated to the MSM at $1200 \text{ mg IC L}^{-1}$) from an outdoors pond upgrading biogas at the Institute of Sustainable Processes. Three operational strategies were implemented to evaluate the influence of process operation under high alkalinity and biomass concentration in the pond (determined as volatile suspended solids, VSS) on the photosynthetic biogas upgrading efficiency and robustness (Table 1). During stage A, the pond was fed with MSM at an IC concentration of 1200 mg C L^{-1} and operated at a fixed biomass productivity of $15 \text{ g VSS m}^{-2} \text{ d}^{-1}$ set according to the nutrients fed to the pond and considering a phosphorous and nitrogen content in the microalgal biomass of 1 and 8%, respectively [19]. The algal-bacterial biomass was harvested in an external

tank via coagulation-flocculation with a synthetic polymeric flocculant derived from acrylamide (Chemifloc CV-300, Chemipol S.A.) followed by a sedimentation step. During stage B, the IC concentration of the MSM was increased to 2400 mg C L⁻¹ and the IC concentration in the pond was adjusted accordingly by addition of NaHCO₃/Na₂CO₃ at the beginning of this operational stage. Biomass productivity at 15 g VSS m⁻² d⁻¹ was also maintained during stage B via coagulation-flocculation and sedimentation. In stage C, the operational conditions were similar to those in stage B but no algal-bacterial biomass was harvested.

Table 1. Operational conditions applied during the three operational stages.

Stage	A	B	C
Period (days)	0-65	66-113	114-134
Inorganic carbon in the feed (mg L⁻¹)	1200	2400	2400
Productivity (g m⁻² d⁻¹)	15	15	-

Temperature, pH and dissolved oxygen (DO) concentration in the cultivation medium were daily monitored. The photosynthetic active radiation (PAR) was measured at the pond surface at the beginning of the study. Gas samples of 100 µL from the raw biogas and biomethane were drawn twice per week using gas tight syringes to determine the CH₄, CO₂, H₂S, O₂ and N₂ concentrations by GC-TCD. Biogas flowrates at the inlet and outlet of the scrubbing column were also measured to calculate CO₂ and H₂S removal efficiencies. Liquid samples of 100 mL from the MSM and the cultivation medium were drawn twice per week and filtered through 0.20 µm nylon filters to monitor dissolved TN, N-NH₄⁺, N-NO₂⁻, N-NO₃⁻ and IC. Aliquots of 50 mL were also drawn from the cultivation medium twice per week to monitor the VSS concentration. The flowrate of tap water was measured twice per week to determine evaporation losses. The maximum quantum yield of photosystem II (PSII) defined as the ratio of variable to maximal fluorescence (Fv/Fm) was measured at the end of stage C.

2.3. Determination of the mass transfer performance and CO₂ stripping rate

The gas-liquid mass transfer performance of the pond was assessed by means of respirometric measurements under controlled conditions, considering the O₂ transfer rate (OTR), O₂ production rate (OPR) and the O₂ uptake rate (OUR) according to the following mass balance under light conditions:

$$\frac{dC_L}{dt} (\text{gO}_2 \text{ m}^{-3} \text{h}^{-1}) = \text{OTR}(\text{gO}_2 \text{ m}^{-3} \text{h}^{-1}) + \text{OPR}(\text{gO}_2 \text{ m}^{-3} \text{h}^{-1}) - \text{OUR}(\text{gO}_2 \text{ m}^{-3} \text{h}^{-1}) \quad (1)$$

Defining the terms OTR, OPR and OUR, Equation 1 can be written as follows:

$$\frac{dC_L}{dt} (gO_2 m^{-3}h^{-1}) = k_{LaO_2}(h^{-1}) \cdot (C^* - C_L)(gO_2 m^{-3}) + PO_2(gO_2 gSSV^{-1}h^{-1}) \cdot X(gSSV m^{-3}) - (R_{end} + R_{ex})(gO_2 m^{-3}h^{-1}) \quad (2)$$

where k_{LaO_2} , C^* and C_L are the volumetric oxygen mass transfer coefficient, the O_2 saturation concentration and the O_2 concentration at time t in the cultivation medium, respectively. PO_2 and X stand for the specific O_2 production and the biomass concentration, respectively. R_{end} and R_{ex} are the volumetric O_2 consumption rates due to endogenous biomass respiration and H_2S oxidation, respectively.

In the absence of air-liquid mass transfer and H_2S supply under illuminated conditions, Equation 2 can be written as follows:

$$\frac{dC_L}{dt} (gO_2 m^{-3}h^{-1}) = PO_2(gO_2 gSSV^{-1}h^{-1}) \cdot X(gSSV m^{-3}) - R_{end}(gO_2 m^{-3}h^{-1}) \quad (3)$$

On the other hand, in the absence of air-liquid mass transfer and H_2S supply under dark conditions, Equation 2 can be written as follows:

$$\frac{dC_L}{dt} (gO_2 m^{-3}h^{-1}) = -R_{end}(gO_2 m^{-3}h^{-1}) = -QO_2(gO_2 gSSV^{-1}h^{-1}) \cdot X(gSSV m^{-3}) \quad (4)$$

where, QO_2 is the specific O_2 uptake rate.

The term R_{ex} can be estimated from the H_2S elimination capacity (EC) and the stoichiometric amount of O_2 required for the full oxidation of the absorbed H_2S into sulfate ($1.9 \text{ g O}_2 \text{ g H}_2\text{S}_{\text{removed}}^{-1}$):

$$R_{ex}(gO_2 m^{-3}h^{-1}) = EC(gH_2S m^{-3}h^{-1}) \frac{1.9gO_2}{gH_2S} \quad (5)$$

The experimental determination of QO_2 and PO_2 required to assess OUR and OPR, respectively, was carried out as follows: when the pond coupled with the biogas scrubbing column reached a stable H_2S removal, an aliquot from the cultivation medium of known biomass concentration was introduced into a 2.1 L glass bottle covered with aluminum foil to avoid photosynthetic activity and the temperature maintained by a water jacket at $28 \pm 2^\circ\text{C}$. The test bottle was provided with magnetic stirring (300 rpm) and an optical dissolved O_2 sensor (Vernier, Oregon, USA) connected to a computer for data acquisition each 10 s. No headspace was allowed to avoid interfacial air-liquid mass transfer. Under these conditions, QO_2 was experimentally determined according to Equation 4 (QO_2 being the slope of the C_L vs time plot). The same experimental setup was used for PO_2 determination according to Equation 3, with PO_2 as the fitting

parameter. However, in this case the bottle was not covered with aluminum foil and provided with a similar PAR than that of the pond.

Once OPR and OUR were determined, dark conditions were applied to the pond coupled with the scrubbing column operating under steady conditions by turning off the LED lamps. The optical dissolved O₂ sensor placed in the pond measured the progressive depletion of O₂ under dark conditions. When dissolved O₂ concentration reached a minimum value of ~1 g m⁻³, the LED lamps were turned on. Equation 2 was used to model dissolved O₂ data under illuminated conditions with k_{LAO2} as the fitting parameter. The volumetric CO₂ mass transfer coefficient (k_{LA CO₂}) was then estimated from k_{LAO2} according to Estrada et al.[29]. In brief, the mass transfer coefficient through an aqueous layer for a given gas substrate can be predicted based on its molecular volume at the boiling point (V_m) as:

$$k_{La} \propto \left(\frac{1}{V_m}\right)^{0.4} \quad (6)$$

Therefore, the mass transfer coefficient k_{LA CO₂} can be estimated from a reference coefficient (k_{LAO2}) previously determined in the same reactor under identical operating conditions as follows:

$$\frac{k_{LaCO_2}}{k_{LaO_2}} = \frac{\left(\frac{1}{V_{m,CO_2}}\right)^{0.4}}{\left(\frac{1}{V_{m,O_2}}\right)^{0.4}} \quad (7)$$

V_m values of 34.0 and 25.6 mL mol⁻¹ for CO₂ and O₂ were used [30]. A 4th-order Runge–Kutta method was used to solve Equations 2-4, while the Levenberg–Marquardt method was used for parameter fitting using ModelMakerTM (Cherwell Scientific, UK).

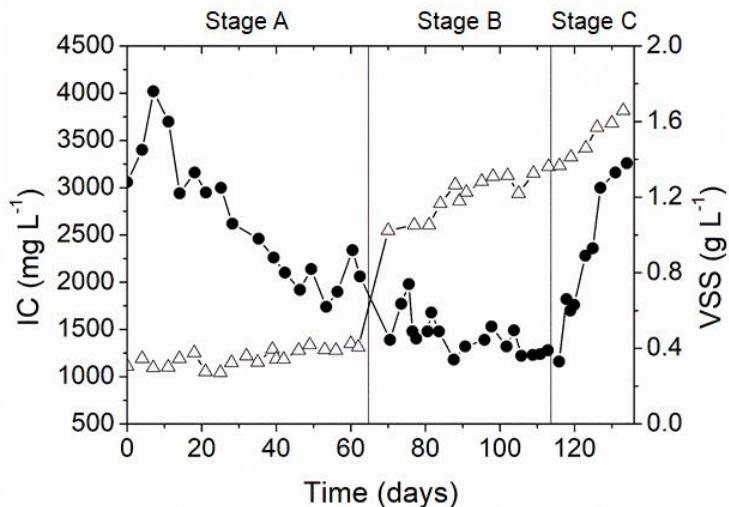
2.4. Analytical methods

The pH was monitored using a pH meter Eutech Cyberscan pH 510 (Eutech instruments, The Netherlands), while an Oxi 330i oximeter (WTW, Germany) was used for DO and temperature determination in the cultivation medium of the pond. CO₂, H₂S, O₂, N₂ and CH₄ biogas and biomethane concentrations were determined using a Bruker 430 GC-TCD (Palo Alto, USA) equipped with the following columns: a CP-Pora BOND Q (25 m × 0.53 mm × 15 µm) and a CP-Molsieve 5A (15 m × 0.53 mm × 15 µm), with helium as the carrier gas at 18 psi. The detector, injector and oven temperatures were maintained at 200, 150 and 45 °C, respectively. Dissolved IC and TN

concentrations were measured by means of a Shimadzu TOC-VCSH analyzer (Japan) equipped with a TNM-1 module. N-NO₃⁻ and N-NO₂⁻ concentrations were determined by HPLC-IC according to Serejo et al. [19]. N-NH₄⁺ concentration was measured using a selective electrode Orion Dual Star (Thermo Scientific, The Netherlands) and VSS analyses were carried out according to standard methods [31]. PAR was determined with a LI-250A lightmeter (LI-COR, Germany). The maximum quantum yield of PSII was analyzed using an Aquapen-C fluorometer (Photon Systems Instruments, Czech Republic).

3. Results and discussion

3.1. Photobioreactor performance


The temperature of the cultivation medium in the pond remained almost constant at an average value of 28.2 ± 1.3 °C, which resulted in an average evaporation rate of 6.9 ± 0.7 L m⁻² d⁻¹ along the three operational stages (Table 2). These water losses by evaporation were similar to those reported by Posadas et al. [32] in a similar outdoor pond during summer conditions. Similar pH values (9.7 ± 0.1) were observed in the three operational stages, supported by the high IC concentrations, which entailed a high buffer capacity of the cultivation medium [15]. On the other hand, the gradual increase in IC concentration exerted a negative impact on microalgal photosynthetic activity, as indicated by the gradual decrease in DO concentration in the cultivation medium. Average DO concentrations of 12.8 ± 1.9 , 8.6 ± 0.9 and 4.4 ± 1.2 were measured during stages A, B and C, respectively (Table 2). The decrease in DO from stage A to B could be caused by oxidative stress in the cyanobacterial/microalgal culture induced by the increase of the salt content in the pond, which ultimately decreased photosynthetic activity [33]. During stage C, the decrease in DO concentration could be attributed to the lower photosynthetic activity as a result of the higher oxidative stress due to IC accumulation, and consequently, higher salinity in the pond, along with the lower light availability and the higher endogenous oxygen consumption by photorespiration at the higher biomass concentrations prevailing in stage C. In addition, the maximum photochemical quantum yield (Fv/Fm), which is an indicator of the photosynthetic performance of PSII since it determines the maximal conversion of light into chemical energy of PSII, was 0.28 at the end of the stage C. This value was lower than those typically reported for microalgae and cyanobacteria under no stress conditions (0.46-0.75) [34-36]. Low Fv/Fm indicates an impairment of PSII activity, which may be

caused by the inhibition of the activity of the PSII reaction centers or the electron transport at both sides of PSII (donor and acceptor) under stress conditions [37]. Despite the low DO levels recorded in the cultivation medium during stage C, those values were high enough (>2 mg O₂ L⁻¹) to support the aerobic bacterial activity responsible of nitrification and H₂S oxidation to SO₄²⁻ [38,39].

Table 2. Average environmental parameters (n=12) in the cultivation medium along with their corresponding standard deviation under steady state conditions during the three operational stages tested.

Stage	A	B	C
Cultivation broth temperature (°C)	27.6 ± 0.6	29.5 ± 0.6	29.4 ± 0.6
DO (mg L⁻¹)	12.8 ± 1.9	8.6 ± 0.9	4.4 ± 1.2
pH	9.7 ± 0.1	9.8 ± 0.1	9.7 ± 0
Evaporation rate (L m⁻² d⁻¹)	6.4±1.5	7.0 ± 0.6	6.8 ± 0.4

The initial concentration of VSS in the pond was 1.3 g L⁻¹, which decreased to steady state values of 0.8 ± 0.1 g L⁻¹ during stage A (Fig. 2). The increase in the IC concentration during stage B led to a decrease in biomass concentration to steady state concentrations of 0.4 ± 0.1 g VSS L⁻¹ (Fig. 2). VSS concentrations during stages A and B were determined by the biomass productivity actively maintained (15 g m⁻² d⁻¹) and microalgal activity, which itself was influenced by the alkalinity in the pond. During stage C, no biomass was harvested, thus resulting in an increase in biomass concentration up to 1.38 g VSS L⁻¹ by the end of stage C. However, biomass productivities (calculated as the increase of the mass of algal-bacterial biomass during a period of time and divided by the illuminated surface) of 13.3 g m⁻² d⁻¹ from day 114 to 126, and 3.4 g m⁻² d⁻¹ from day 126 onwards, were obtained during stage C, which represented a decrease in productivity compared to stages A and B (15 g m⁻² d⁻¹). The lower biomass productivity by the end of stage C could be attributed to a higher oxidative stress of microalgae (mediated by the higher alkalinity), a decrease in light availability induced by the higher biomass concentration or the accumulation of inhibitory compounds in the cultivation medium under process operation without effluent and no biomass harvesting.

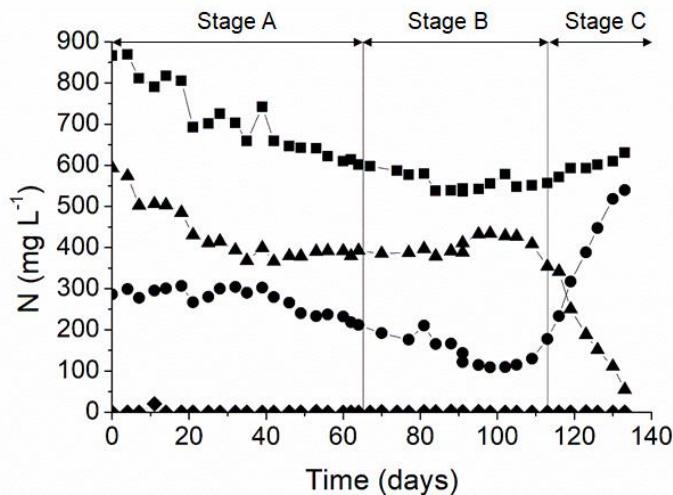


Fig. 2. Evolution of the concentration of inorganic carbon (IC, Δ) and volatile suspended solids (VSS, \bullet) in the pond.

IC concentration in the cultivation medium of the pond was adjusted at 1200 and 2400 mg C L⁻¹ at the beginning of stages A and B, respectively. In stage A, the IC concentration in the pond remained almost constant at 1203 ± 93 mg C L⁻¹. However, the IC concentration in the cultivation medium increased during stages B and C along with the decrease in photosynthetic activity and triggered by the higher IC load in the MSM fed to the pond, reaching values of 3152 and 3814 mg C L⁻¹ at the end of stages B and C, respectively (Fig. 2). In this context, Marín et al. [21] reported an increase in IC concentration up to 4138 mg L⁻¹ using high-strength digestate (2000 mg IC L⁻¹) in a similar system located outdoors and operated with a zero effluent strategy. In addition, the high pH in the cultivation broth (9.7 ± 0.1) prevented a massive IC loss by CO₂ stripping as latter described in section 3.3.

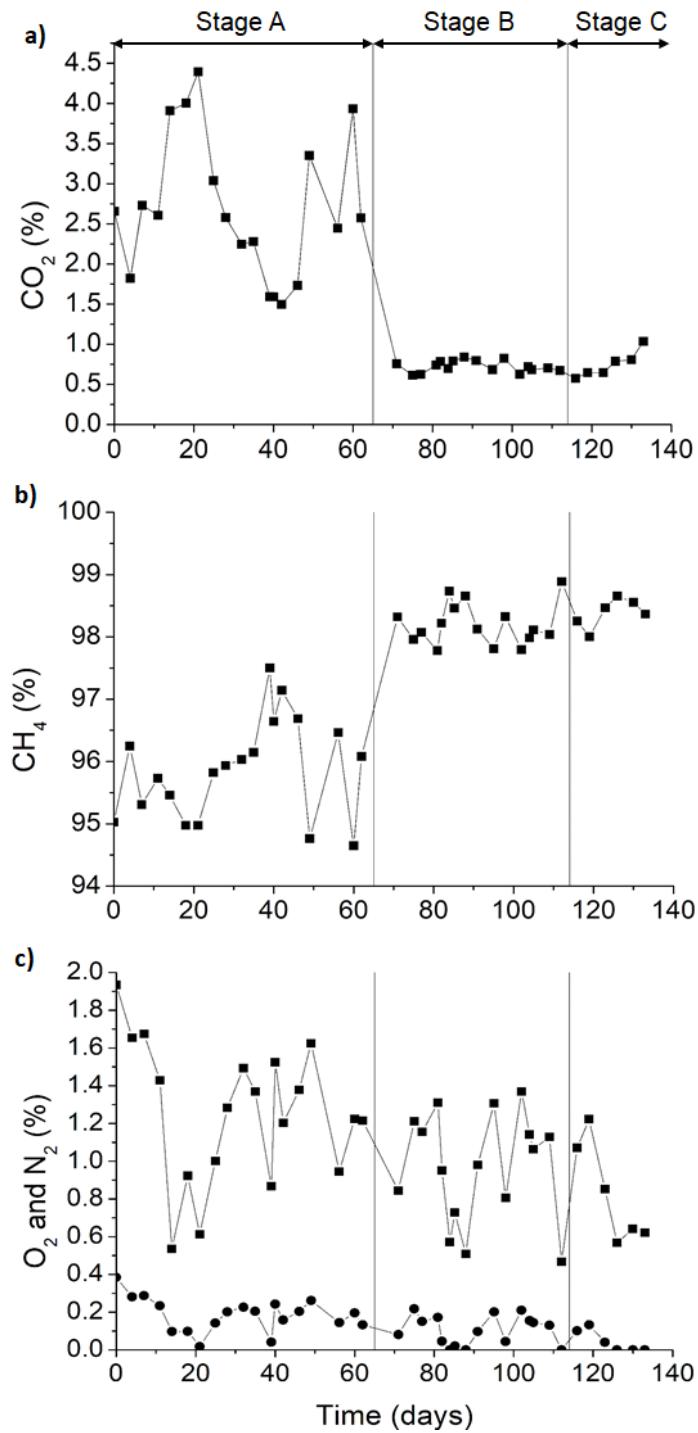
Similar average TN concentrations in the pond were recorded under steady state in the three stages (609.1 ± 9.7 , 558.5 ± 13.6 and 608.6 ± 16.2 mg N L⁻¹ in stages A, B and C, respectively) (Fig. 3). Although N was added to the pond in form of ammoniacal species, no N-NH₄⁺ was detected in the cultivation broth as a result of an active nitrification to NO₂⁻/NO₃⁻ and NH₄⁺ uptake by microorganisms. In fact, despite the high pH in the cultivation broth, the nitrogen mass balance conducted indicated that only 18, 13 and 1% of the initial nitrogen and the total nitrogen input was lost via volatilization during stages A, B and C, respectively (Table S1, Supplementary Material). Surprisingly, the predominant form of dissolved nitrogen during stages A and B was N-NO₂⁻ (average N-NO₂⁻ concentrations of 389.2 ± 5.6 and 404.3 ± 35.0 mg N L⁻¹, and

average N- NO_3^- concentrations of 226.7 ± 11.0 and $133.1 \pm 31.2 \text{ mg N L}^{-1}$ under steady state in stages A and B, respectively) despite the DO concentration in the pond remained always above saturation. This higher concentration of N- NO_2^- compared to N- NO_3^- could be explained by the higher growth rate of ammonia-oxidizing bacteria (AOB) compared to nitrite-oxidizing bacteria (NOB) at temperatures over 27 °C, photoinhibition of NOB due to excessive light irradiance, a potential NOB activity inhibition due to high salinity and/or preferential N- NO_3^- assimilation by microalgae as a result of N- NH_4^+ depletion in the cultivation medium [38,40,41]. Interestingly, N- NO_3^- was the dominant specie of N during stage C despite the lower DO, with a final concentration of 540 mg N L^{-1} almost 10 folds higher than that of N- NO_2^- (55 mg N L^{-1}) (Fig. 3). These results could be attributed to the lower average irradiance in the cultivation medium due to a mutual shading effect caused by the increase in both biomass concentration and residence time, which likely enhanced NOB growth and nitrite oxidation. This high nitrate concentration could have contributed to microalgae inhibition during stage C since nitrate uptake rate is typically lower than that of ammonia and high nitrate concentration in the cultivation medium could cause an accumulation of intracellular nitrite [42].

Fig. 3. Evolution of the concentration of nitrogen compounds in the pond: total nitrogen (■), N- NH_4^+ (♦), NO_2^- (▲) and NO_3^- (●).

3.2. Biogas upgrading

During stage A, the CO₂ concentration in the upgraded biogas varied from 1.5 to 4.4%, which corresponded to CO₂-REs between 96.6 and 89.5%, respectively. A more robust biogas upgrading was obtained as a result of the increase in IC concentration in stage B, where CO₂ concentrations ranged from 0.6 to 0.8% (corresponding to CO₂-REs ranging


between 98.4 and 98.1%). Similarly, CO₂ concentrations between 0.6 and 1.0% and CO₂-REs from 97.5 to 98.6% were recorded in stage C (Fig. 4a). These results were in agreement with Marín et al. [21], who reported CO₂ concentrations fluctuating between 2.6 and 11.9% in the upgraded biogas at IC concentrations of 1500-2000 mg C L⁻¹, which decreased to 0.7-2.1% at IC concentrations > 2800 mg C L⁻¹. Similarly, Rodero et al. [43] observed a CO₂ concentration increase from 2.7 to 12% due to the decrease in the pH of the cultivation medium from 9.50 to 9.05 at an IC concentration of ~1900 mg C L⁻¹. In this particular study, the increase in the alkalinity of the cultivation medium from 1200 to 2400 mg IC L⁻¹ supported stable CO₂ concentrations in the upgraded biogas and improved the robustness of the upgrading process. These low CO₂ levels complied with the most restrictive values according to the recent European standard EN 16723-1 for biogas injection into natural gas networks ($\leq 2\%$) [4]. On the other hand, the CO₂ values recorded during stage C gradually increased along with the increase in the algal-bacterial biomass (Fig. 2 and 4). The high biomass concentrations prevailing at the end of stage C could have negatively impacted on the CO₂ gas-liquid mass transfer in the scrubbing biogas column as a result of biomass build-up on the diffuser. However, this effect of the biomass concentration on CO₂ removal was no significant ($p>0.05$, one-way ANOVA) due to the high IC concentration in the cultivation medium (up to 3814 mg C L⁻¹ by the end of stage C).

On the other hand, H₂S-REs of 100% were achieved regardless of the alkalinity (1100-3800 mg IC L⁻¹) and the biomass concentration (0.3-1.38 g SSV L⁻¹) in the cultivation medium. These higher eliminations compared to CO₂-REs were mediated by the higher aqueous solubility of H₂S relative CO₂ according to their dimensionless Henry's law constants (C_L/C_G, H_{H2S} ≈ 2.44 vs H_{CO2} ≈ 0.83 at 25 °C) and the rapid oxidation of H₂S in the liquid phase [44,45]. In this context, the high DO concentration and pH typically encountered in algal-bacterial ponds lead to the formation of SO₄²⁻ as the major end-product of H₂S oxidation which can be chemically supported by the DO concentration in the cultivation medium and/or biologically by the action of aerobic sulfur-oxidizing bacteria, i.e. *Thioalbus* genus [43,46]. Similarly, a complete H₂S removal was obtained regardless of the environmental conditions variations in a similar system over one year operation using a high alkalinity digestate [21]. Franco-Morgado et al. [15] also reported H₂S-REs of 99.5 ± 0.5% during biogas upgrading at IC concentrations in the

cultivation medium $> 1000 \text{ mg C L}^{-1}$. These results confirmed the long-term robustness of algal-bacterial processes under high-alkalinity conditions for H_2S removal.

The low L/G ratio implemented in this study (0.5) constrained the amount of N_2 and O_2 stripped out from the recycling liquid to the biogas in the scrubbing column. In this regard, average N_2 concentrations of 1.3 ± 0.4 , 1.0 ± 0.3 and $0.8 \pm 0.3\%$, and O_2 concentrations of 0.2 ± 0.1 , 0.1 ± 0.1 and $0 \pm 0.1\%$ were recorded in the upgraded biogas during stage A, B and C, respectively (Fig. 4c). Although a slight decrease in N_2 and O_2 desorption was recorded during stages B and C, these differences were minimal. In fact, no-correlation between the alkalinity and N_2 and O_2 stripping was obtained in a similar experimental set-up at IC concentrations ranging from 100 to 1500 mg C L^{-1} at an L/G ratio of 0.5 [17]. The O_2 content in the upgraded biogas along the three stages was below the regulatory limits for biomethane injection into natural gas networks or its use as vehicle fuel ($\leq 1\%$) as a result of the low L/G ratio set in this study.

Finally, CH_4 concentrations in the biomethane ranged from minimum values of 94.6, 97.8 and 98.0% to maximum values of 97.5, 98.9 and 98.7%, during stages A, B and C, respectively (Fig. 4b). Although, a good biomethane quality in terms of CH_4 concentration ($\geq 95\%$) was achieved in the three operational stages, these values were more stable during stages B and C as a result of the consistent CO_2 removal and the low O_2 and N_2 stripping. In this context, the CH_4 concentrations achieved in this study were comparable to those recently reported in outdoors systems. Thus, Rodero et al. [43] recorded a CH_4 concentration of 97.3% in a similar configuration system at semi-industrial scale operating at a L/G ratio of 0.8, pH 9.5 and an IC concentration in the pond of $\sim 1900 \text{ mg C L}^{-1}$, while Marín et al. [21] obtained a maximum CH_4 concentration of 97.8% in the upgraded biogas operating at a L/G ratio of 1, IC concentrations in the cultivation medium $> 2780 \text{ mg C L}^{-1}$ and a pH of ~ 9.6 .

Fig. 4. Evolution of the concentration of a) CO₂, b) CH₄, c) O₂ (●) and N₂ (■) in the upgraded biogas.

3.3. Volumetric gas-liquid mass transfer coefficient and CO₂ stripping

The gas-liquid mass transfer performance of the open pond was evaluated under steady H₂S removal in stage B. The respirometric characterization performed in these days yielded average QO₂ and PO₂ values of 10.1 ± 3.0 and 11.3 ± 0.1 mg O₂ g SSV⁻¹ h⁻¹, respectively. These QO₂ values were in agreement with previous studies reporting endogenous respiration rates of microalgae-bacteria cultures in the range of 4-6 mg O₂ g

VSS h⁻¹ [47,48]. Likewise, Sforza et al. [49] reported PO₂ values in the range of 6-15 mg O₂ g VSS h⁻¹ for microalgae-bacteria systems. The H₂S elimination capacity supported by the system was 107 mg H₂S m_{liquid}⁻³ h⁻¹, corresponding to a R_{ex} value of 204 mg O₂ m_{liquid}⁻³ h⁻¹. The values of QO₂, PO₂ and R_{ex} experimentally determined were used in Equation 2 to estimate k_{LaO₂} and then k_{LaCO₂} (Equation 7). The fitting of Equation 2 to the experimental dissolved O₂ concentrations is shown in Figure S1 (supplementary material). Correlation coefficients (R²) ranging from 0.97 to 0.99 were obtained, which confirmed that the experimental data were adequately described by the model.

Considering the three mass transfer characterizations performed in the pond, average k_{LaO₂} and k_{LaCO₂} values of 1.18 ± 0.30 and 1.05 ± 0.27 h⁻¹ were retrieved, respectively. The k_{LaO₂} obtained in this study was in the range of that reported by Franco-Morgado et al. [15] (0.83 h⁻¹) in a 25 L pond with a depth of 14 cm and an internal recirculation velocity of 15 cm s⁻¹. Similarly, Ouargui et al. [50] reported a k_{LaO₂} of 0.76±0.12 h⁻¹ in a full-scale pond of 400 m long, 2.5 m uniform width and 0.5 m deep with a recirculation time of 79 min. In addition, Pham et al. [51] obtained k_{LaO₂} values of 0.8-3.1 h⁻¹ with a liquid recirculation velocity in the range of ~15-45 cm s⁻¹ in a pond of 386 cm long × 40 cm wide × 15 cm deep. Based on the empirical IC concentration and pH value, the H₂CO₃ (dissolved CO₂) concentration was calculated considering the dissociation equilibria of the inorganic carbon (pKd₁ and pKd₂ of 6.35 and 10.33, respectively). CO₂ stripping was then estimated based on k_{LaCO₂} and the dissolved CO₂ concentration in the pond under steady state in each operational stage. An average stripping rate of 0.43 ± 0.08, 0.94 ± 0.31 and 1.30 ± 0.09 g C-CO₂ m_{liquid}⁻³ h⁻¹ was estimated during stages A, B and C, respectively, which showed that even at the high pH values recorded in the pond, CO₂ can be stripped out due to the high IC concentration. These values corresponded to 14.5, 24.1 and 33.4% of the IC input to the system (C-CO₂ absorbed from the biogas and IC added in the MSM) in stages A, B and C, respectively. In this context, Meier et al. [14] recorded higher IC losses to the atmosphere of 57% in an open-photobioreactor at a cultivation broth pH of ~7.3. Based on IC equilibrium, the CO₂ stripping potential increases exponentially as pH decreases. However, these results were higher than the 5% reported by Toro-Huertas et al. [52] in an alkaline cultivation medium (IC concentration of 1320±140 mg IC L⁻¹) in a high rate algal pond operated at a recirculation velocity of ~ 15 cm s⁻¹ and a pH values between 9.3 and 9.8.

4. Conclusions

The alkalinity in the cultivation medium impacted both on the efficiency of CO₂ removal in the biogas scrubbing column and on CO₂ fixation by microalgae in the pond. IC concentrations > 2400 mg C L⁻¹ enhanced the effectiveness and robustness of the upgrading process at the expenses of a decreasing photosynthetic activity due to oxidative stress of microalgae. In addition, high alkalinites can mediate high CO₂ stripping even at high pH values, thereby decreasing the environmental benefits of this green technology. Finally, an increase in biomass concentration induced a slight decrease on the CO₂ gas-liquid mass transfer in the biogas scrubbing column and lower biomass productivities in the pond.

Acknowledgements

This work was supported by the regional government of Castilla y León and the European FEDER Programme (CLU 2017-09 and UIC 071). The support from DGAPA-UNAM through the PAPIIT project IA100719 is also acknowledged.

References

- [1] Ryckebosch E, Drouillon M, Vervaeren H. Techniques for transformation of biogas to biomethane. *Biomass and Bioenergy* 2011;35:1633–45. doi:10.1016/j.biombioe.2011.02.033.
- [2] Yousef AM, El-maghly WM, Eldrainy YA, Attia A. Upgrading biogas to biomethane and liquid CO₂: A novel cryogenic process. *Fuel* 2019;251:611–28. doi:10.1016/j.fuel.2019.03.127.
- [3] Global Bioenergy Statistics. WBA Global Bioenergy Statistics 2018. World Bioenergy Assoc 2018:43.
- [4] Muñoz R, Meier L, Díaz I, Jeison D. A review on the state-of-the-art of physical / chemical and biological technologies for biogas upgrading. *Rev Environ Sci Bio/Technology* 2015;727–59. doi:10.1007/s11157-015-9379-1.
- [5] UNE-EN 16723. Natural gas and biomethane for use in transport and biomethane for injection in the natural gas network. 2016.
- [6] Kapoor R, Ghosh P, Kumar M, Vijay VK. Evaluation of biogas upgrading technologies and future perspectives: a review. *Environmental Science and Pollution Research*; 2019. doi:10.1007/s11356-019-04767-1.
- [7] San-Valero P, Penya-roja JM, Javier Álvarez-Hornos F, Buitrón G, Gabaldón C, Quijano G. Fully aerobic bioscrubber for the desulfurization of H₂S-rich biogas. *Fuel* 2019;241:884–91. doi:10.1016/j.fuel.2018.12.098.
- [8] European Biogas Association Statistical Report. <http://european-biogas.eu/2017/12/14/eba-statistical-report-2017-published-soon/> 2018.
- [9] Sarker S, Lamb JJ, Hjelme DR, Lien KM. Overview of recent progress towards in-situ biogas upgradation techniques. *Fuel* 2018;226:686–97. doi:10.1016/j.fuel.2018.04.021.
- [10] Ángeles R, Marín D, Rodero M del R, Pascual C, González-Sánchez A, de Godos I, et al. Chapter 8 - Biogas treatment for H₂S, CO₂, and other contaminants removal. In: Soreanu G,

Dumont É, editors. From Biofiltration to Promis. Options Gaseous Fluxes Biotreat., Elsevier; 2020, p. 153–76. doi:10.1016/B978-0-12-819064-7.00008-X.

[11] Nagarajan D, Lee D-J, Chang J-S. Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. *Bioresour Technol* 2019;290:121804. doi:10.1016/j.biortech.2019.121804.

[12] Bahr M, Díaz I, Dominguez A, González Sánchez A, Muñoz R. Microalgal-Biotechnology As a Platform for an Integral Biogas Upgrading and Nutrient Removal from Anaerobic Effluents. *Environ Sci & Technol* 2013;48:573–81. doi:10.1021/es403596m.

[13] Sun S, Ge Z, Zhao Y, Hu C, Zhang H, Ping L. Performance of CO₂ concentrations on nutrient removal and biogas upgrading by integrating microalgal strains cultivation with activated sludge. *Energy* 2016;97:229–37. doi:10.1016/j.energy.2015.12.126.

[14] Meier L, Barros P, Torres A, Vilchez C, Jeison D. Photosynthetic biogas upgrading using microalgae: Effect of light/dark photoperiod. *Renew Energy* 2017;106:17–23. doi:10.1016/j.renene.2017.01.009.

[15] Franco-Morgado M, Alcántara C, Noyola A, Muñoz R, González-Sánchez A. A study of photosynthetic biogas upgrading based on a high rate algal pond under alkaline conditions: Influence of the illumination regime. *Sci Total Environ* 2017;592:419–25. doi:10.1016/j.scitotenv.2017.03.077.

[16] Yan C, Zhu L, Wang Y. Photosynthetic CO₂ uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods. *Appl Energy* 2016;178:9–18. doi:10.1016/j.apenergy.2016.06.012.

[17] Rodero M del R, Posadas E, Toledo-Cervantes A, Lebrero R, Muñoz R. Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds. *Algal Res* 2018;33:284–90. doi:10.1016/j.algal.2018.06.001.

[18] Marín D, Carmona-martínez AA, Lebrero R, Muñoz R. Influence of the diffuser type and liquid-to-biogas ratio on biogas upgrading performance in an outdoor pilot scale high rate algal pond. *Fuel* 2020;275:117999. doi:10.1016/j.fuel.2020.117999.

[19] Serejo ML, Posadas E, Boncz MA, Blanco S, García-Encina P, Muñoz R. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. *Environ Sci Technol* 2015;49:3228–36. doi:10.1021/es5056116.

[20] Franco-morgado M, Toledo-cervantes A, González-sánchez A, Lebrero R, Muñoz R. Integral (VOCs, CO₂, mercaptans and H₂S) photosynthetic biogas upgrading using innovative biogas and digestate supply strategies. *Chem Eng J* 2018;354:363–9. doi:10.1016/j.cej.2018.08.026.

[21] Marín D, Posadas E, Cano P, Pérez V, Blanco S, Lebrero R, et al. Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor. *Bioresour Technol* 2018;263:58–66. doi:10.1016/j.biortech.2018.04.117.

[22] Rodero M del R, Carvajal A, Castro V, Navia D, de Prada C, Lebrero R, et al. Development of a control strategy to cope with biogas flowrate variations during photosynthetic biogas upgrading. *Biomass and Bioenergy* 2019;131. doi:10.1016/j.biombioe.2019.105414.

[23] De Farias Silva CE, Gris B, Sforza E, La Rocca N, Bertucco A. Effects of Sodium Bicarbonate on Biomass and Carbohydrate Production in *Synechococcus* PCC 7002 2016;49:241–6. doi:10.3303/CET1649041.

[24] Li J, Li C, Lan CQ, Liao D. Effects of sodium bicarbonate on cell growth , lipid accumulation , and morphology of *Chlorella vulgaris*. *Microb Cell Fact* 2018;1–10. doi:10.1186/s12934-018-0953-4.

[25] He H, Chen Y, Li X, Cheng Y, Yang C, Zeng G. Influence of salinity on microorganisms in activated sludge processes : A review. *Int Biodeterior Biodegradation* 2017;119:520–7. doi:10.1016/j.ibiod.2016.10.007.

[26] Manjrekar ON. Hydrodynamics and Mass Transfer in Bubble Columns. Engineering and Applied Science Theses & Dissertations, 2016.

[27] Pringsheim EW, Koch W. Maintenance of Cultures- Spirulina Medium Recipe-Vers. 10. 2008. Sammlung von Algenkulturen Göttingen Cult Collect Algae 2008;10–2.

[28] Toledo-Cervantes A, Madrid-Chirinos C, Cantera S, Lebrero R, Muñoz R. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors. *Bioresour Technol* 2017;225:336–42. doi:10.1016/j.biortech.2016.11.087.

[29] Estrada JM, Dudek A, Muñoz R, Quijano G. Fundamental study on gas-liquid mass transfer in a biotrickling filter packed with polyurethane foam. *J Chem Technol Biotechnol* 2014;89:1419–24. doi:10.1002/jctb.4226.

[30] Wilke CR, Chang P. Correlation of diffusion coefficients in dilute solutions. *AIChE J* 1955;1:264–70. doi:10.1002/aic.690010222.

[31] Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E., & Franson MAH. APHA: standard methods for the examination of water and wastewater. Centen Ed APHA, AWWA, WEF, Washington, DC 2005.

[32] Posadas E, Marín D, Blanco S, Lebrero R, Muñoz R. Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond. *Bioresour Technol* 2017;232:133–41. doi:10.1016/j.biortech.2017.01.071.

[33] Latifi A, Ruiz M, Zhang C. Oxidative stress in cyanobacteria. *FEMS Microbiol Rev* 2009;33:258–78. doi:10.1111/j.1574-6976.2008.00134.x.

[34] Roselet F, Vandamme D, Roselet M, Muylaert K, Abreu PC. Effects of pH , Salinity , Biomass Concentration , and Algal Organic Matter on Flocculant Efficiency of Synthetic Versus Natural Polymers for Harvesting Microalgae Biomass 2017:427–37. doi:10.1007/s12155-016-9806-3.

[35] Ananyev G, Gates C, Dismukes GC. The Oxygen quantum yield in diverse algae and cyanobacteria is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II. *Biochim Biophys Acta - Bioenerg* 2016;1857:1380–91. doi:10.1016/j.bbabi.2016.04.056.

[36] Li S, Wang P, Zhang C, Zhou X, Yin Z, Hu T, et al. Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae *Chlamydomonas reinhardtii*. *Sci Total Environ* 2020;714:136767. doi:10.1016/j.scitotenv.2020.136767.

[37] Gong H, Tang Y, Wang J, Wen X, Zhang L, Lu C. Characterization of photosystem II in salt-stressed cyanobacterial *Spirulina platensis* cells. *Biochim Biophys Acta - Bioenerg* 2008;1777:488–95. doi:10.1016/j.bbabi.2008.03.018.

[38] Metcalf, Eddy. *Wastewater Engineering: Treatment and Reuse*. Fifth Edit. New York: McGraw-Hill; 2014.

[39] González-Sánchez A, Revah S. The effect of chemical oxidation on the biological sulfide oxidation by an alkaliphilic sulfoxidizing bacterial consortium 2007;40:292–8. doi:10.1016/j.enzmictec.2006.04.017.

[40] Marazzi F, Bellucci M, Rossi S, Fornaroli R, Ficara E, Mezzanotte V. Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. *Algal Res* 2019;39:101430. doi:10.1016/j.algal.2019.101430.

[41] Jeong D, Cho K, Lee CH, Lee S, Bae H. Effects of salinity on nitrification efficiency and bacterial community structure in a nitrifying osmotic membrane bioreactor. *Process Biochem* 2018;73:132–41. doi:10.1016/j.procbio.2018.08.008.

[42] González-Camejo J, Montero P, Aparicio S, Ruano M V, Borrás L, Seco A, et al. Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria. *Water Res* 2020;172. doi:10.1016/j.watres.2020.115499.

[43] Rodero R, Carvajal A, Arbib Z, Lara E, Prada C De. Performance evaluation of a control strategy for photosynthetic biogas upgrading in a semi-industrial scale photobioreactor. *Bioresour Technol* 2020;307:123207. doi:10.1016/j.biortech.2020.123207.

[44] Sander R. Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential importance in Environmental Chemistry 1999.

[45] Meier L, Stará D, Bartacek J, Jeison D. Removal of H₂S by a continuous microalgae-based photosynthetic biogas upgrading process. *Process Saf Environ Prot* 2018;119:65–8. doi:10.1016/j.psep.2018.07.014.

[46] Toledo-Cervantes A, Serejo ML, Blanco S, Pérez R, Lebrero R, Muñoz R. Photosynthetic biogas upgrading to bio-methane: Boosting nutrient recovery via biomass productivity control. *Algal Res* 2016;17:46–52. doi:10.1016/j.algal.2016.04.017.

[47] Grobbelaar JU, Soeder CJ. Respiration losses in planktonic green algae cultivated in raceway ponds. *J Plankton Res* 1985;7:497–506. doi:10.1093/plankt/7.4.497.

[48] Sánchez-Zurano A, Gómez-Serrano C, Acién-Fernández FG, Fernández-Sevilla JM, Molina-Grima E. A novel photo-respirometry method to characterize consortia in microalgae-related wastewater treatment processes. *Algal Res* 2020;47:101858. doi:10.1016/j.algal.2020.101858.

[49] Sforza E, Pastore M, Spagni A, Bertucco A. Microalgae-bacteria gas exchange in wastewater: how mixotrophy may reduce the oxygen supply for bacteria. *Environ Sci Pollut Res* 2018;25:28004–14. doi:10.1007/s11356-018-2834-0.

[50] El Ouarghi H, Boumansour BE, Dufayt O, El Hamouri B, Vasel JL. Hydrodynamics and oxygen balance in a high-rate algal pond. *Water Sci Technol* 2000;42:349–56. doi:10.2166/wst.2000.0678.

[51] Pham LA, Laurent J, Bois P, Wanko A. Impacts of operational conditions on oxygen transfer rate , mixing characteristics and residence time distribution in a pilot scale high rate algal pond 2018:1782–91. doi:10.2166/wst.2018.461.

[52] Toro-Huertas EI, Franco-Morgado M, de los Cobos Vasconcelos D, González-Sánchez A. Photorespiration in an outdoor alkaline open-photobioreactor used for biogas upgrading. *Sci Total Environ* 2019;667:613–21. doi:10.1016/j.scitotenv.2019.02.374.

Supplementary Material

Long-term influence of high alkalinity on the performance of photosynthetic biogas upgrading

María del Rosario Rodero^{a,b}, Cristian Alfredo Severi^{a,b}, Ricardo Rocher-Rivas^{a,c}, Guillermo Quijano^c, Raúl Muñoz^{a,b}

^a Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.

^b Institute of Sustainable Processes, University of Valladolid, 47011, Valladolid, Spain.

^c Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, México.

Content:

- Table S1
- Figure S1

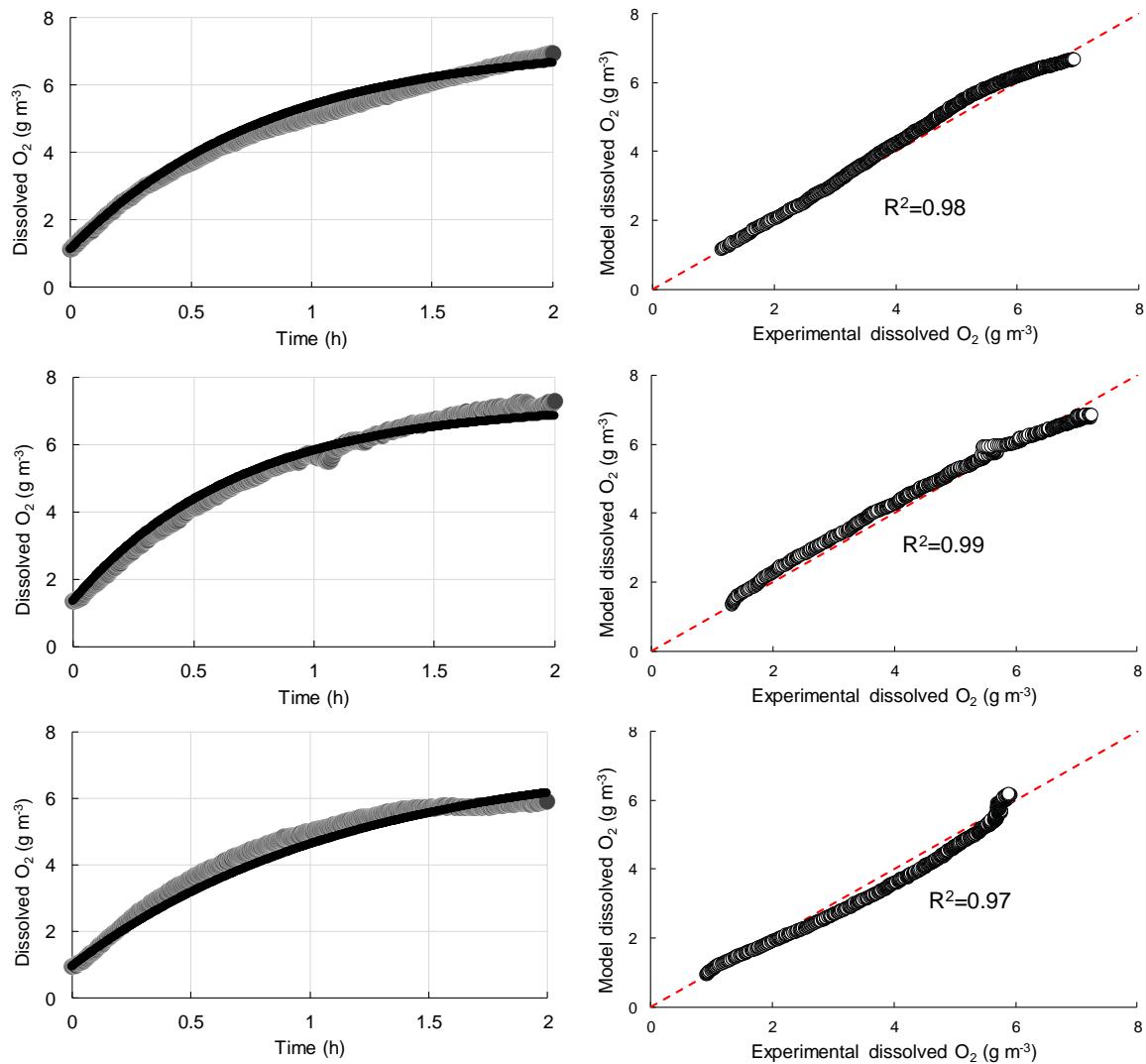
Table S1. Nitrogen mass balance during the three operational stages tested.

STAGE	N initial (g)	N inlet MSM (g)	N biomass (g)	N final (g)	N volatilized (g)
A	164.5	104.0	94.4	125.4	48.8
B	125.4	76.8	69.7	105.8	26.7
C-I*	105.8	19.2	15.4	112.6	0
C-II*	112.6	12.8	3.9	119.7	1.8

Where:

Initial N was the total concentration of dissolved nitrogen in the culture broth at the beginning of each stage multiplied by the total volume.

N inlet MSM was the total amount of nitrogen added as N-NH₄⁺ in the mineral salt medium (MSM) during each stage calculated as: N concentration in the MSM (g L⁻¹) × flowrate inlet MSM (L d⁻¹) × duration stage (d)


N biomass was the nitrogen assimilated into microalgae biomass considering a nitrogen content in the microalgal biomass of 8% calculated as: productivity of biomass (g SSV m⁻² d⁻¹) × N content biomass (0.08 g N g⁻¹ SSV) × surface illuminated (m²) × duration stage (d).

Final N was the total concentration of dissolved nitrogen in the culture broth at the end of each stage multiplied by the total volume.

N volatilized as N-NH₄⁺ was estimated from the mass balance as:

Initial N + N inlet MSM - N biomass - Final N

*Stage C was divided into two parts since the biomass productivity was different along this period.

Fig. S1. Fitting of Equation 2 (solid black line) to the experimental dissolved O₂ data (circles) measured in the pond coupled to the absorption unit and the corresponding correlation curve.

Chapter 5

Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor

Rodero, M.del R., Lebrero, R., Serrano, E., Lara, E.,
Arbib, Z., García-Encina, P.A., Muñoz, R., 2019.

Bioresour. Technol. 279, 43–49.

doi:10.1016/j.biortech.2019.01.110

Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor

María del Rosario Rodero^{a,c}, Raquel Lebrero^{a,c}, Esteban Serrano^b, Enrique Lara^b, Zouhayr Arbib^b, Pedro A. García-Encina^{a,c}, Raúl Muñoz^{a,c}

^a Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.

^b FCC Servicios Ciudadanos, Av. del Camino de Santiago, 40, edificio 3, 4^a planta, 28050 Madrid, Spain

^c Institute of Sustainable Processes, University of Valladolid, 47011, Valladolid, Spain

ABSTRACT

The performance of photosynthetic biogas upgrading coupled to wastewater treatment was evaluated in an outdoors high rate algal pond (HRAP) interconnected to an absorption column at semi-industrial scale. The influence of biogas flowrate (274, 370 and 459 L h⁻¹), liquid to biogas ratio (L/G = 1.2, 2.1 and 3.5), type of wastewater (domestic *versus* centrate) and hydraulic retention time in the HRAP (HRT) on the quality of the biomethane produced was assessed. The highest CO₂ and H₂S removal efficiencies (REs) were recorded at the largest L/G due to the higher biogas-liquid mass transfer at increasing liquid flowrates. No significant influence of the biogas flowrate on process performance was observed, while the type of wastewater was identified as a key operational parameter. CO₂ and H₂S-REs of 99% and 100% at a L/G_{max}=3.5 were recorded using centrate. The maximum CH₄ content in the biomethane (90%) was limited by N₂ and O₂ desorption.

Keywords: algal-bacterial photobioreactor; biogas upgrading; microalgae; semi-industrial scale HRAP; wastewater treatment.

1. Introduction

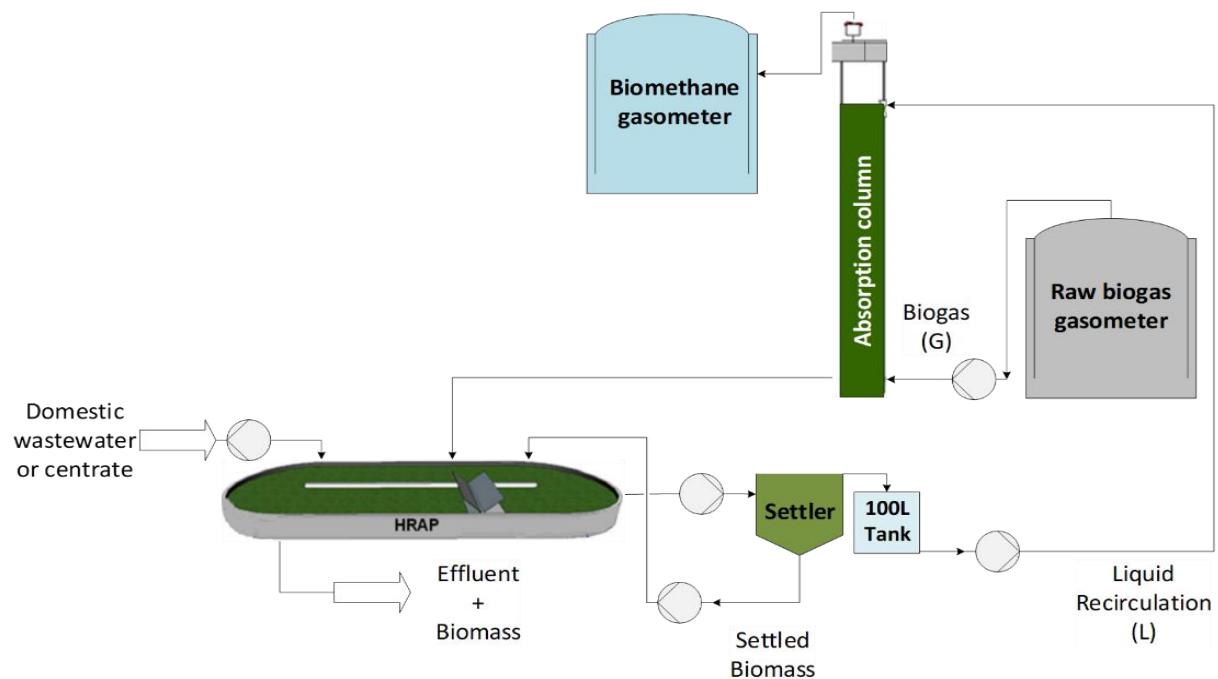
Biogas from the anaerobic digestion of organic waste, such as sludge from wastewater treatment plants (WWTPs), constitutes a valuable bioenergy vector able to reduce our current dependence on fossil fuels. Biogas from WWTPs is typically composed of CH₄ (60-75%), CO₂ (30-40%) and other pollutants at trace level concentrations such as H₂S (0.02-2%), O₂ (0-1%), N₂ (0-2%), NH₃ (<1%) and siloxanes (0-0.2%) (Ryckebosch et al., 2011). The high concentration of CO₂ increases hydrocarbon and carbon monoxide emissions during biogas combustion, reduces its specific calorific value and increases its transportation cost. On the other hand, H₂S is a malodorous and toxic gas contaminant that generates corrosion and mechanical wear in pipelines and internal combustion engines (Lebrero et al., 2016).

Several technologies are nowadays commercially available to remove these contaminants from biogas in order to generate a high quality biomethane similar to natural gas. Physical-chemical technologies for CO₂ separation such as pressure swing adsorption, membrane separation and water/organic/chemical scrubbing often need a previous H₂S cleaning step (i.e. adsorption on activated carbon or metal ions-based *in situ* precipitation) and a high energy input (0.2-0.7 kWh/m³_{biogas}), with the associated increase in operational costs. Thus, the high energy and chemical requirements of conventional biogas upgrading processes, among other factors such as the cost of acquisition of the organic substrate and the type of digestion process, limit the cost-effective use of biomethane as a renewable substitute of natural gas (Rodero et al., 2018a). On the other hand, biological technologies such as biofiltration or *in situ* microaerobic anaerobic digestion for H₂S removal followed by hydrogenotrophic biogas upgrading (*power to gas*) for CO₂ bioconversion into CH₄ entail the need of a two-stage process and can be only applied in locations with a sustained surplus of renewable electricity (Angelidaki et al., 2018; Muñoz et al., 2015a).

In this context, biogas upgrading using algal-bacterial processes has emerged as a cost-competitive and environmentally friendly platform capable of removing CO₂ and H₂S in a single step process (Bahr et al., 2014). Photosynthetic biogas upgrading is based on the concomitant CO₂ fixation by microalgae using solar energy and oxidation of H₂S to S⁰/SO₄²⁻ by sulfur-oxidizing bacteria using the oxygen photosynthetically produced (Sun et al., 2016). Moreover, this biotechnology simultaneously supports wastewater

treatment since residual nutrients can sustain algal-bacterial growth, which contributes to improve its environmental and economic sustainability (Posadas et al., 2015a; Zhang et al., 2017). Biogas upgrading combined with wastewater treatment in algal-bacterial photobioreactors has been successfully validated indoors at lab-pilot scale (Bahr et al., 2014; Meier et al., 2017; Ouyang et al., 2015; Posadas et al., 2016; Rodero et al., 2018b; Serejo et al., 2015; Toledo-Cervantes et al., 2017a, 2016; Yan et al., 2016). Likewise, promising results in terms of biogas upgrading (CH_4 contents of 85.2-97.9%) and centrate treatment (total nitrogen removal efficiencies (REs) of 80-87% and P-PO_4^{3-} REs of 85-92%) were obtained in an outdoors 180 L high rate algal pond (HRAP) interconnected to an absorption column (Marín et al., 2018; Posadas et al., 2017a). However, this innovative biogas upgrading technology has not been yet validated at semi-industrial scale, which is a must in order to foster its acceptance by the industrial sector.

This work investigated for the first time the influence of biogas flow rate and the liquid to biogas ratio (L/G) on biomethane quality in an outdoors algal-bacterial photobioreactor treating real biogas at semi-industrial scale. Moreover, the influence of the type of wastewater (domestic *versus* centrate) and the hydraulic retention time (HRT) in the HRAP on biogas upgrading and nutrient recovery efficiency was also assessed.


2. Materials and methods

2.1. Biogas and wastewaters

Biogas was produced in a semi-industrial 20 m^3 anaerobic digester treating sewage sludge at Chiclana de la Frontera WWTP (Spain). Biogas composition averaged $69.2 \pm 5.7\%$ CH_4 , $32.7 \pm 2.8\%$ CO_2 and 1183 ± 1006 ppm H_2S . Fresh domestic wastewater was pumped into the HRAP directly after screening and degreasing of the influent raw wastewater. The average composition of the domestic wastewater was (mg L^{-1}): chemical oxygen demand (COD) = 496 ± 145 , inorganic carbon (IC) = 46 ± 11 , total nitrogen (TN) = 41 ± 11 , ammonium (N-NH_4^+) = 44 ± 9 , phosphate (P-PO_4^{3-}) = 6 ± 2 and total suspended solids (TSS) = 140 ± 40 . Urea, H_3PO_4 , NaHCO_3 and Na_2CO_3 were added to the raw domestic wastewater to achieve a final IC, TN and P-PO_4^{3-} concentration of 500, 500 and 75 mg L^{-1} , respectively, in order to simulate a medium-strength centrate composition.

2.2. Experimental set-up

The experimental set-up was located outdoors at Chiclana de la Frontera WWTP (36.42 N; 6.15 W) (Spain). The set-up consisted of a 9.6 m³ HRAP made of concrete blocks with an illuminated surface of 32 m², 0.3 m of depth, two water channels divided by a central wall and two flow rectifiers in each side of the curvature. The cultivation broth in the HRAP was continuously agitated by a 6-blade paddlewheel operated at 7 rpm, resulting in an internal liquid velocity of 0.30 m s⁻¹. The HRAP was interconnected to a 150 L absorption column provided with a polypropylene fine bubble biogas diffuser (Ecotec AFD 270) via an external liquid recirculation of the supernatant from a 7 m³ conical settler (Figure 1). The algal-bacterial biomass accumulated at the bottom of the settler was continuously recirculated to the HRAP to avoid an excessive biomass accumulation in the settler. The algal-bacterial biomass was wasted from an overflow located in the HRAP in order to maintain the depth of the photobioreactor at 0.3 m.

Figure 1. Schematic diagram of the experimental set-up.

2.3. Operational conditions and sampling procedures

The HRAP was inoculated with a consortium of cyanobacteria/microalgae and bacteria from an outdoors HRAP treating domestic wastewater at Chiclana de la Frontera WWTP prior to the experiment start-up. Three different operational conditions were

tested to assess the influence of the HRT and the type of wastewater used as a nutrient source (domestic wastewater *vs* centrate) in the HRAP on biogas upgrading efficiency. During stages I and II, the HRAP was fed with domestic wastewater at a HRT of 3.5 and 8 days, respectively, which correspond to typical values used during wastewater treatment in HRAPs (Arbib et al., 2013; Posadas et al., 2015b). In stage III, simulated centrate was used as a nutrient source at a high HRT (\approx 73 days) in order to avoid inhibition of microalgae growth by its high NH_4^+ concentration. The high nutrient content of centrate entailed lower wastewater flowrates to satisfy nutrient requirements. L/G ratios of 1.2 and 2.1 were tested under counter-current flow operation at different biogas flowrates (274 ± 12 , 370 ± 7 and 459 ± 36 L h^{-1}) under steady state in the three operational stages. Moreover, a L/G ratio of 3.5 was tested only at the lowest biogas flow rate of 274 L h^{-1} since the maximum flow rate of the recycling liquid pump was 1000 L h^{-1} .

The temperature, dissolved oxygen concentration (DO) and pH in the cultivation broth of the HRAP were monitored every five minutes. Liquid samples of 1 L from the influent wastewater (obtained along 24 hours) and 500 mL from the clarified effluent were withdrawn twice a week to monitor the concentration of COD, N- NH_4^+ , P- PO_4^{3-} , N- NO_2^- , N- NO_3^- , IC and TN. Liquid samples were also drawn from the cultivation broth of the HRAP to monitor algal-bacterial TSS and volatile suspended solids (VSS) concentration. The algal-bacterial biomass was dried for 24 h at 105 °C to determine its elemental composition (C, N and S) under steady state in each operational stage.

2.4. Analytical procedures

The pH, DO concentration and temperature were monitored and recorded using Crison pH 4603 and DO 6050 probes coupled to a Crison Multimeter 44 display (Spain). CH_4 , CO_2 , H_2S and O_2 were measured using a COMBIMASS® Portable Gas-analyzer GA-m5. The concentrations of dissolved TN and IC were determined by means of a Shimadzu TOC-VCSH analyzer (Japan) equipped with a TNM-1 chemiluminescence module. NH_4^+ was analyzed using a selective electrode (Thermo Scientific Orion, USA). COD, P- PO_4^{3-} , N- NO_2^- , N- NO_3^- , TSS and VSS were measured using Standard Methods (Eaton et al., 2005). The elemental composition of the algal-bacterial biomass (C, N and S content) was determined using a LECO CHNS-932 analyzer (LECO, Italy).

2.5. Statistical analysis

The results here presented were provided as the average values along with their standard deviation from replicate measurements. An analysis of variance (ANOVA) was performed to determine the influence of the biogas flowrate, HRT and L/G ratio on the quality of biomethane.

3. Results and discussion

3.1. Environmental parameters

The ambient temperature and the diurnal solar radiation cycle seasonally varied along the three experimental stages, with the subsequent variations in the cultivation broth temperatures (23.5 ± 2.5 , 12.4 ± 2.3 and 18.8 ± 3.0 °C during stages I, II and III, respectively) (Table 1). These variations in environmental conditions are inherent to any outdoors experimentation. In this context, Rodero et al. (2018b) found a negligible impact of the temperature on biogas upgrading performance when using a moderate alkalinity cultivation broth (i.e. centrate), while at low alkalinity (i.e. domestic wastewater) the CH_4 content of the biomethane increased by 3.3% when the temperature decreased from 35 °C to 12 °C. The average pH of the cultivation broth under steady state during stages I, II and III was 7.3 ± 0.2 , 7.1 ± 0.5 and 8.9 ± 0.3 , respectively. The higher pH recorded in the latter stage was attributed to the higher pH and alkalinity of the centrate fed to the HRAP in comparison with the domestic wastewater used during stages I and II. The maximum DO concentrations in the cultivation broth (8.3 ± 2.8 , 6.6 ± 1.3 and 9.4 ± 1.4 mg L⁻¹ in stages I, II and III, respectively) (Table 1) were recorded during the daytime, and never exceeded inhibitory levels for microalgae activity (<25 mg O₂ L⁻¹) (Jiménez et al., 2003). On the other hand, minimum daily DO concentrations of 0.3 ± 0.2 , 2.8 ± 1.4 and 4.3 ± 0.7 were recorded in stages I, II and III, respectively, during the nighttime due to absence of photosynthetic activity and the occurrence of an active organic matter oxidation and NH₄⁺ nitrification (Posadas et al., 2013). It is worth noticing that the lowest DO concentration was observed during the treatment of domestic wastewater at a HRT of 3.5 days due to the higher biological oxygen consumption resulting from the higher organic loading rates mediated by the shorter HRT (Arbib et al., 2017).

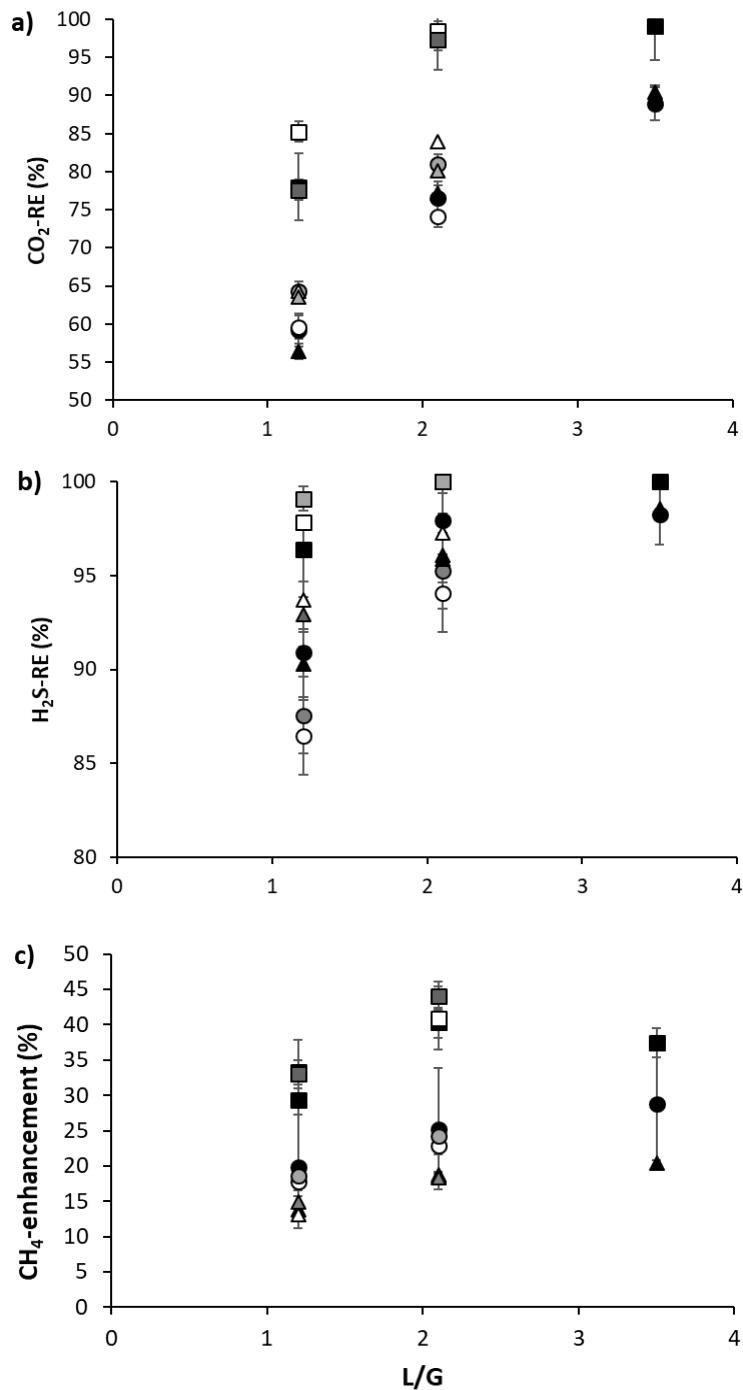
Finally, the average water losses by evaporation during stages I, II and III accounted for 14.7 ± 18.7 , 4.3 ± 3.2 and -0.1 ± 0.6 L m⁻² d⁻¹ (Table 1). The highest evaporation rate herein

recorded was ~ 2.2 times higher than the maximum values reported by Marín et al. (2018) in a 180 L outdoors HRAP located at Valladolid (Spain) during one year operation. This high value was attributed to the higher temperatures of the cultivation broth and the high turbulence at the HRAP surface caused by the wind in Chiclana de la Frontera. On the other hand, the negative value obtained during stage III was caused by the higher average rain recorded ($4.4 \text{ L m}^{-2} \text{ d}^{-1}$) during steady state in this period compared to $1.0 \text{ L m}^{-2} \text{ d}^{-1}$ recorded during state II and the absence of rain during stage I. This value agreed with the observations of Posadas et al. (2014), who reported negative evaporation rates in an outdoors HRAP.

Table 2. Average environmental parameters in the HRAP during the three operational stages tested under steady state conditions.

Parameter	Stage		
	I	II	III
Average ambient temperature ($^{\circ}\text{C}$)	25.3 ± 1.3	12.3 ± 2.0	15.3 ± 2.0
Average cultivation broth temperature ($^{\circ}\text{C}$)	23.5 ± 2.5	12.4 ± 2.3	18.8 ± 3.0
Average pH	7.3 ± 0.2	7.1 ± 0.5	8.9 ± 0.3
Average maximum daily DO ($\text{mg O}_2 \text{ L}^{-1}$)	8.3 ± 2.8	6.6 ± 1.3	9.4 ± 1.4
Average minimum daily DO ($\text{mg O}_2 \text{ L}^{-1}$)	0.3 ± 0.2	2.8 ± 1.4	4.3 ± 0.7
Average evaporation rate ($\text{L m}^{-2} \text{ d}^{-1}$)	14.7 ± 18.7	4.3 ± 3.2	-0.1 ± 0.6

3.2. Biogas upgrading performance


3.2.1. CO₂ removal

CO₂ removal efficiency was a function of the gas-liquid mass transfer in the absorption column, which itself was influenced by CO₂ consumption by microalgae in the HRAP. During stage I, CO₂-REs of 59.2 ± 3.2 , 76.6 ± 1.8 and $88.9 \pm 1.5\%$, which corresponded to CO₂ concentrations of 17.3 ± 2.2 , 11.8 ± 1.4 and $5.8 \pm 1.0\%$ in the upgraded biogas, were recorded at L/G ratios of 1.2, 2.1 and 3.5, respectively, at a biogas flowrate of 274 L h^{-1} . CO₂-REs increased with the L/G ratio due to the increase in the overall gas-liquid mass transfer coefficient and the lower CO₂ transferred per volume of recirculating medium, which prevented the acidification of the recycling cultivation broth along the absorption column as a result of the acidic nature of biogas (Anbalagan et al., 2017; Posadas et al., 2017a). Indeed, a lower decrease in pH between the top and the bottom of the absorption column was observed with the increase in the L/G ratio (ΔpH of 1.7, 1.5 and 1.2 at a L/G ratio of 1.2, 2.1 and 3.5, respectively) during stage I. Similarly, CO₂-REs varied from 59.6 ± 2.5 to $74.2 \pm 0.5\%$ and from 64.4 ± 2.2 to $81.0 \pm 0.3\%$ when the L/G

increased from 1.2 to 2.1 at a biogas flowrate of 370 and 459 L/h, respectively (Figure 2a). In this context, a slight increase in CO₂-RE was recorded at the highest biogas flowrate as a result of the higher turbulence in the absorption column, which enhanced the gas-liquid mass transfer coefficient in this unit.

During stage II, CO₂-REs of 56.4±2.5, 77.2±1.5 and 90.4±0.4% were recorded at a L/G ratio of 1.2, 2.1 and 3.5, respectively, and a biogas flowrate of 274 L h⁻¹ (Figure 2a). No significant differences ($p > 0.05$) were observed in CO₂-RE values compared to stage I, which revealed a negligible influence of the HRT on CO₂ removal efficiency when domestic wastewater was used to support algal-bacterial growth. In fact, although higher pH values were expected at longer HRTs based on the lower acidification caused by the reduction in CO₂ production due to the lower organic matter load, a similar pH of the cultivation broth was recorded in the HRAP in both stages as a result of the higher nitrifying activity during stage II (as discussed in section 3.3) (de Godos et al., 2016; Posadas et al., 2017b). The decrease in pH along the absorption column in stage II was similar to that recorded in stage I (Δ pH of 2.1, 1.7 and 1.5 at a L/G ratio of 1.2, 2.1 and 3.5, respectively), which was attributed to the similar IC concentration of the cultivation broth in both stages (25.6±5.5 and 29.5±9.4 mg L⁻¹ during stage I and II, respectively, under steady state conditions). Similarly, CO₂-REs varied from 64.3±4.7 to 84.0±1.4% and from 63.6±0.4 to 80.1±0.4% when the L/G increased from 1.2 to 2.1 at biogas flowrates of 370 and 459 L h⁻¹, respectively. These results were in accordance to Anbalagan et al. (2017), who observed an increase in CO₂-RE from 45 to 79% when increasing the L/G ratio from 1 to 15 regardless the HRT.

Similarly, the lowest CO₂-REs during stage III were obtained at a L/G ratio of 1.2 (78.0±12.1, 85.3±1.3 and 77.6±1.0%, which corresponded to CO₂ concentrations of 10.1±4.4, 7.2±1.0 and 11.1±1.1 % in the upgraded biogas at 274, 370 and 459 L h⁻¹, respectively) (Figure 2a). An increase in CO₂-REs up to 97.8±0.8, 98.4±1.4 and 97.3±0.5% at 274, 370 and 459 L h⁻¹, respectively, was obtained at a L/G ratio of 2.1. Finally, the highest CO₂-REs (99.1±0.3%) were recorded at a L/G ratio of 3.5 (Figure 2a). The superior CO₂-REs obtained during this stage compared to stages I and II was likely due to the higher pH and alkalinity of the cultivation broth, which ultimately increased CO₂ and H₂S mass transfer in the absorption column as a result of the lower decreases in pH (Δ pH of 1.9, 1.3 and 0.8 at a L/G ratio of 1.2, 2.1 and 3.5, respectively, in the assays conducted at a biogas flowrate of 274 L h⁻¹ of biogas flowrate).

Figure 2. Influence of the L/G ratio on the (a) removal efficiency of CO₂, (b) removal efficiency of H₂S and (c) CH₄ enhancement factor at a biogas flowrate of 274 (black), 370 (white) and 459 (grey) L h⁻¹ during stage I (○), stage II (Δ) and stage III (□).

3.2.2. H₂S removal

H₂S-REs of 90.9±0.7, 97.9±0.1 and 98.2±0.2% were achieved during photosynthetic biogas upgrading at a L/G ratio of 1.2, 2.1 and 3.5, respectively, when operating at a biogas flowrate of 274 L h⁻¹ during stage I (Figure 2b). Similarly, H₂S-REs increased

from 86.4 ± 1.3 to $94.0\pm2.8\%$ and from 87.6 ± 2.9 to $95.2\pm1.2\%$ when the L/G increased from 1.2 to 2.1 at biogas flowrates of 370 and 459 L h⁻¹, respectively, under process operation with domestic wastewater at 3.5 days of HRT. The highest H₂S removals were achieved at the highest L/G ratio as a result of the higher volumetric mass transfer coefficients and higher concentrations gradients (the latter supported by the higher pH in the absorption column mediated by the increased fresh recycling liquid flowrate). In addition, the significantly higher H₂S-REs compared to the elimination of CO₂ were attributed to the higher aqueous solubility of H₂S (dimensionless Henry's Law constant = C_L/C_G three times higher than that of CO₂) (Sander, 1999).

During stage II, H₂S-REs of 90.3 ± 4.9 , 95.9 ± 5.4 and $98.5\pm0.4\%$ were recorded at a L/G ratio of 1.2, 2.1 and 3.5, respectively, at a biogas flowrate of 274 L h⁻¹ (Figure 2b). No significant influence of the HRT ($p > 0.05$) on H₂S-RE was observed when feeding the HRAP with domestic wastewater. On the other hand, H₂S-REs increased from 93.7 ± 1.4 to $97.3\pm0.1\%$ and from 92.9 ± 1.0 to $96.1\pm0.8\%$ when the L/G increased from 1.2 to 2.1 at a biogas flowrate of 370 and 459 L h⁻¹, respectively, under process operation with domestic wastewater at a HRT of 8 days.

Finally, H₂S-REs of 96.4 ± 5.1 , 97.8 ± 0.3 and $99.1\pm1.3\%$ were recorded at a L/G ratio of 1.2 and biogas flowrates of 274, 370 and 459 L h⁻¹, respectively, during stage III, while a complete removal was obtained when the L/G ratio was increased to 2.1 and 3.5 (Figure 2b). The increase in H₂S-REs observed during this stage, when centrate was used as a water and nutrient source, in comparison with those of stages I and II, was attributed to the higher pH and buffer capacity of the recirculating cultivation broth, which increased the gas-liquid mass transfer of H₂S due to its acidic nature. These results agreed with the observations of Rodero et al. (2018b), who recorded an increase in H₂S removal from 80.3 to 94.7% when the IC concentration of the cultivation broth increased from 100 to 500 mg L⁻¹ at 12°C and L/G ratio of 0.5 in a 180 L HRAP operated indoors.

3.2.3. Enhancement in the CH₄ content of the upgraded biogas

The CH₄ enhancement factor, defined as the ratio between the increase in CH₄ content (%CH₄ in biomethane - %CH₄ in raw biogas) and the CH₄ content (%) in raw biogas, was used to comparatively assess the influence of the L/G, biogas flow rate, type of wastewater and HRT. CH₄ enhancement factors of 19.9 ± 8.4 , 25.3 ± 8.8 and $28.8\pm8.7\%$, which corresponded to CH₄ concentrations of 79.3 ± 2.8 , 83.7 ± 1.8 and $86.8\pm1.8\%$ in the

upgraded biogas, were recorded at L/G ratios of 1.2, 2.1 and 3.5, respectively, at a biogas flowrate of 274 L h⁻¹ during stage I. Similarly, CH₄ concentration in the upgraded biogas increased from 81.2±0.1 to 84.7±0.6% (CH₄ enhancement factors of 17.8±1.6 and 22.8±0.9%) and from 81.6±0.6 to 85.6±0.2% (CH₄ enhancement factors of 18.6±0.1 and 24.3±0.6%) when L/G increased from 1.2 to 2.1 at biogas flowrates of 370 and 459 L h⁻¹, respectively (Figure 2c). The increase in L/G ratio played a key role on the CH₄ enhancement factor mediated by CO₂ and H₂S removals, while a negligible influence ($p>0.05$) of the biogas flowrate was recorded on CH₄ concentration in the upgraded biogas. However, the increase in L/G ratio also induced a higher desorption of the N₂ and O₂ dissolved in the cultivation broth to the biogas in the absorption column, thus decreasing the CH₄ concentration in the upgraded biogas (Posadas et al., 2017a). Indeed, the O₂ + N₂ concentration in the upgraded biogas increased up to 7.4±0.4% at a L/G ratio of 3.5 under process operation with domestic wastewater at a HRT = 3.5 days. The higher stripping of N₂ and O₂ at higher L/G ratios was due to the higher turbulence in the absorption column, which increased the overall liquid-gas mass transfer coefficients, and to the increase in the mass flow rate of these gases potentially stripped out to the biomethane (Serejo et al., 2015). In this context, O₂ and N₂ stripping could be limited by operating under low L/G ratios and conditions that selectively enhance CO₂ and H₂S gas-liquid mass transfer.

During stage II, CH₄ enhancement factors of 13.8±0, 13.2±0.6 and 15.0±1.3%, which corresponded to final CH₄ concentrations of 85.4±0.3, 85.1±0.7 and 87.0±0.9 were recorded at a L/G ratio of 1.2 and biogas flowrates of 274, 370 and 459 L h⁻¹, respectively (Figure 2c). An increase in CH₄ concentration up to ~89% was recorded at a L/G ratio of 2.1 regardless of the biogas flowrate and only a slight increase in CH₄ concentration up to 90.4±0.6% was obtained when the L/G ratio was increased to 3.5 (Table 2). Despite higher CH₄ concentrations in the upgraded biogas were recorded when the HRT of the domestic wastewater in the HRAP was increased from 3.5 to 8 days, lower CH₄ enhancement factors were achieved as a result of the higher CH₄ concentrations in the raw biogas in this stage (75.3±0.3 % in stage II vs 68.4±1.7 % in stage I).

During stage III, CH₄ enhancement factors of 29.4±5.0, 40.3±1.3 and 37.4±0%, which corresponded to CH₄ concentrations of 83.3±2.0, 90.3±2.2 and 88.2±2.2 in the upgraded biogas, were recorded at L/G ratios of 1.2, 2.1 and 3.5, respectively, at a biogas flowrate

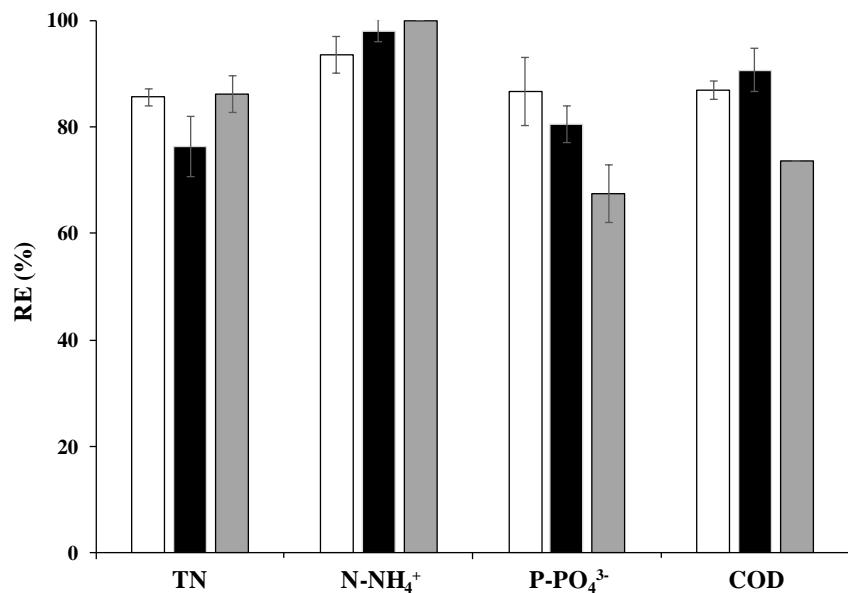

of 274 L h⁻¹ (Table 2). The increase in L/G ratio from 2.1 to 3.5 under process operation with centrate also resulted in lower final CH₄ concentrations due to the higher N₂ and O₂ desorption from the recycling liquid to the biomethane. Interestingly, higher N₂ + O₂ concentrations in the upgraded biogas (up to 11.4±2.0%) were recorded as a result of the increase in the overall mass transfer coefficients mediated by the higher ionic strength of the recycling liquid in stage III, which prevented the coalescence of the fine bubbles produced by the biogas diffuser (Sovechles and Waters, 2015). In our particular study, the maximum CH₄ content in the upgraded biogas (90.3%) remained below the minimum limit required for biogas injection in natural gas grid in the Spanish standard (95%) or the limit imposed by some car manufactures for use as a vehicle fuel. Nevertheless, an increase of the alkalinity in the cultivation broth would improve CO₂ and H₂S absorption, which would ultimately allow operating at lower L/G ratios (with the subsequent decrease in the O₂ content and increase in CH₄ content).

Table 2. Average composition of the upgraded biogas in the different operational stages

Stage	G (L h ⁻¹)	L/G	Upgraded biogas			N ₂ +O ₂ (%)
			CH ₄ (%)	CO ₂ (%)	H ₂ S (ppm _v)	
I	274	1.2	79.3±2.8	17.3±2.2	167±119	3.3±1.5
	274	2.1	83.7±1.8	11.8±1.4	65±49	4.5±0.4
	274	3.5	86.8±1.4	5.8±1.0	40±42	7.4±0.4
	370	1.2	81.2±0.1	17.1±0.1	442±25	1.7±0.2
	370	2.1	84.7±0.6	11.6±1.1	205±92	3.7±0.5
	459	1.2	81.6±0.6	16.6±1.1	440±63	1.7±0.6
	459	2.1	85.6±0.6	10.0±0.9	190±42	4.5±0.7
II	274	1.2	85.4±0.3	15.8±0.8	18±12	-
	274	2.1	89.2±0.2	9.0±0.4	8±3	1.9±0.3
	274	3.5	90.4±0.6	4.3±0.2	3±0	5.3±0.8
	370	1.2	85.1±0.7	13.6±0.6	10±1	1.3±0.2
	370	2.1	89.1±0.4	7.0±0.1	5±0	3.9±0.3
	459	1.2	87.0±0.9	12.8±0.1	11±1	0.2±0.8
	459	2.1	89.5±0.0	7.3±0.2	6±0	3.2±0.2
III	274	1.2	83.3±2.0	10.1±4.4	65±92	6.6±2.5
	274	2.1	90.3±2.2	1.2±0.6	0±0	8.5±1.6
	274	3.5	88.2±2.2	0.5±0.2	0±0	11.4±2.0
	370	1.2	87.2±2.2	7.2±1.0	43±11	5.7±1.2
	370	2.1	90.6±0.7	0.9±0.8	0±0	8.6±0.1
	459	1.2	82.5±0.3	11.1±1.1	15±21	6.5±0.8
	459	2.1	89.3±0.7	1.8±0.3	0±0	8.9±0.5

3.3. Wastewater treatment performance

The COD-REs recorded in the HRAP accounted for 86.9 ± 1.8 , 90.7 ± 4.1 and 73.6 ± 0 %, which resulted in effluent COD concentrations of 85.8 ± 10.3 , 49.6 ± 16.2 and 123.8 ± 0 mg O₂ L⁻¹ during stages I, II and III, respectively (Figure 3). The higher effluent COD concentrations in stage III compared to the previous stages were likely mediated by the higher HRT (process operation without effluent), which supported a higher biomass decay. However, effluent COD concentrations always complied with the Directive 98/15/CEE (125 mg O₂ L⁻¹ maximum COD concentration for wastewater discharge into the environment) regardless of the type of wastewater or HRT (“Directive 98_15_CEE,” 1998).

Figure 3. Steady state removal efficiencies of total nitrogen (TN), ammonium (N-NH₄⁺), phosphate (P-PO₄³⁻) and chemical oxygen demand (COD) during stage I (white), II (black) and III (grey).

High N-NH₄⁺ REs were achieved during the three stages (93.6 ± 3.5 , 98.1 ± 2.1 and 100 ± 0 % in stages I, II and III, respectively). However, the removals of TN under steady state were lower and averaged 85.6 ± 1.6 , 76.4 ± 5.7 and 86.2 ± 3.4 % during stages I, II and III respectively (Figure 3). This mismatch between TN and N-NH₄⁺ eliminations was caused by the active nitrification of a fraction of the inlet nitrogen to NO₂⁻ and NO₃⁻. In this context, N-NO₃⁻ was the dominant form of oxidized nitrogen since N-NO₃⁻ effluent concentrations averaged 2.0 ± 1.2 , 9.6 ± 0.5 and 38.1 ± 7.4 mg L⁻¹, while N-NO₂⁻ effluent concentrations averaged 0.8 ± 0.5 , 0.4 ± 0.2 and 13.3 ± 11.7 mg L⁻¹ in stages I, II and III, respectively. The maximum fraction of the inlet nitrogen converted into N-NO₂⁻+N-NO₃⁻ was recorded during stage II (18.5%). These results agreed with Arcila and

Buitrón (2016), who recorded an incomplete nitrification or no nitrification when the HRT decreased from 10 to 6 days as a result of a nitrifying biomass wash-out. On the other hand, the lower share of nitrification during stage III compared to stage II was attributed to a high NH_4^+ volatilization mediated by the high pH (~9) under operation with centrate.

Finally, P- PO_4^{3-} -REs of 86.7 ± 6.3 , 80.6 ± 3.5 and $67.6 \pm 5.4\%$, which entailed P- PO_4^{3-} effluent concentrations of 1.0 ± 0.5 , 1.3 ± 0.3 and $19.9 \pm 5.4 \text{ mg L}^{-1}$ during stages I, II and III, respectively, were recorded (Figure 3). In this regard, these P- PO_4^{3-} -REs agreed with values previously reported in literature and highlighted the high bioremediation efficiency of HRAPs devoted to biogas upgrading (García et al., 2017; Toledo-Cervantes et al., 2016).

3.4. Concentration and elemental composition of the algal-bacterial biomass

TSS concentrations in the HRAP cultivation broth of 0.33 ± 0.10 , 0.37 ± 0.08 and $0.56 \pm 0.05 \text{ g L}^{-1}$ were recorded during stages I, II and III, respectively, with a similar VSS/TSS ratio of ~ 0.74. These TSS values were similar to those reported by Posadas et al. (2015b) ($321\text{-}494 \text{ mg L}^{-1}$) in three outdoors HRAP treating domestic wastewater at 2.7-6 days of HRT under different pHs. The higher TSS concentration in the HRAP during stage III was attributed to the higher nutrient concentrations of the centrate compared to domestic wastewater.

The C and N content of the harvested biomass (on a dry weight basis) remained constant at 32.1 ± 1.7 and $5.6 \pm 0.6\%$, respectively, regardless the operational stage. Despite this C content was lower compared to the typical range reported in literature for different microalgae strains (40-60 wt.%) (Teles et al., 2013), this value was in agreement with Muñoz et al. (2015b) who recorded a C content of 32.2% and 30.4% in the biomass of the strains *Botryococcus Braunii* and *Nannochloropsis gaditana*, respectively. Similarly, Harman-ware et al. (2013) reported a C content of 32.1% in *Scenedesmus sp.* biomass. The N content and the C/N ratio (5.7) in the harvested biomass remained within the range of previously reported data (Ward et al., 2014). The main differences were recorded in S content, which varied from $0.68 \pm 0.08\%$ during stages I and II to $0.30 \pm 0.05\%$ during stage III. These results agreed with those reported by Posadas et al. (2017a), who observed a decrease in S content in the biomass from 0.4% to 0.2% concomitantly with the increase in the IC concentration of the cultivation broth. The decrease in the S content of the algal-bacterial biomass recorded could be

attributed to the lower SO_4^{2-} loading rate during stage III (mediated by process operation at a higher hydraulic retention time). However, this phenomenon requires further investigation.

3.5. Biogas upgrading technology costs

Despite the fact the investment cost of photosynthetic biogas upgrading is ~1.5-2.2 times higher than that of conventional-physical chemical technologies, and a larger footprint is required (a total HRAP surface of ~13.4 ha is needed to treat $300 \text{ Nm}^3 \text{ h}^{-1}$ of biogas considering a water depth of 0.2 m) (Toledo-Cervantes et al., 2017b), the environmental sustainability (CO_2 trapped in form of algal bacterial biomass and wastewater treatment), the simultaneous H_2S removal and the lower energy requirements and operating costs, make this technology an attractive alternative for biogas upgrading (Table 3). Moreover, algal-bacterial biomass valorization as a bio-fertilizer can outbalance the high investment costs of this innovative process.

Table 3. Biogas upgrading technology costs (Angelidaki et al. 2018, Marín et al. 2018; Muñoz et al. 2015, Toledo-Cervantes et al. 2017b)

	Water scrubbing	Chemical scrubbing	Organic scrubbing	PSA	Membrane separation	Cryogenic separation	HRAP-AC
Investment costs ($\text{€} (\text{Nm}^3 \text{ h}^{-1})^{-1}$)	3500	3200	4000	2700	2800	-	6000
Operating costs (€ Nm^{-3})	0.13	-	-	0.18	0.2	-	0.03
Energy requirements (kW·h Nm^{-3})	0.25-0.3	0.67-0.7	0.4-0.51	0.24-0.6	0.2-0.38	0.42-1	0.08-0.14
CH ₄ content (%)	>96	96-99	96-98.5	96-98	96-98	>97	90
H ₂ S pretreatment	Recommended	Yes	Recommended	Yes	Recommended	Yes	No

4. Conclusions

This work constitutes, to the best of our knowledge, the first demo-scale validation of the simultaneous photosynthetic biogas upgrading and wastewater treatment under outdoor conditions. The type of wastewater played a key role on biogas upgrading (with higher CO_2 and H_2S removals using centrate due to its higher pH and alkalinity), while the influence of the HRT and biogas flowrate on biogas upgrading performance was negligible. Despite higher L/G ratios supported higher CO_2 and H_2S removals, the associated N_2 and O_2 stripping resulted in a lower biomethane quality. Finally, an efficient wastewater treatment was achieved regardless of the operational conditions.

Acknowledgements

This work was supported by the INCOVER project. The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 689242. Maikel Fernández, Juan José Rueda, Almudena Barea, Jose Antonio Macías and Jonatan Prieto are gratefully acknowledged for their practical assistance.

References

Anbalagan, A., Toledo-cervantes, A., Posadas, E., María, E., Lebrero, R., González-Sánchez, A., Nehrenheim, E., Muñoz, R., 2017. Continuous photosynthetic abatement of CO₂ and volatile organic compounds from exhaust gas coupled to wastewater treatment : Evaluation of tubular algal-bacterial photobioreactor. *J. CO₂ Util.* 21, 353–359. <https://doi.org/10.1016/j.jcou.2017.07.016>

Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., Kougias, P.G., 2018. Biogas upgrading and utilization: Current status and perspectives. *Biotechnol. Adv.* <https://doi.org/10.1016/j.biotechadv.2018.01.011>

Arribi, Z., Godos, I. De, Corona, E.L., 2017. Understanding the biological activity of high rate algae ponds through the calculation of oxygen balances. *Enviromental Biotechnol.* 101, 5189–5198. <https://doi.org/10.1007/s00253-017-8235-3>

Arribi, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., Perales, J.A., 2013. Effect of pH control by means of flue gas addition on three different photo-bioreactors treating urban wastewater in long-term operation. *Ecol. Eng.* 57, 226–235. <https://doi.org/10.1016/j.ecoleng.2013.04.040>

Arcila, J.S., Buitrón, G., 2016. Microalgae – bacteria aggregates : effect of the hydraulic retention time on the municipal wastewater treatment , biomass settleability and methane potential. <https://doi.org/10.1002/jctb.4901>

Bahr, M., Díaz, I., Dominguez, A., González Sánchez, A., Muñoz, R., 2014. Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. *Environ. Sci. Technol.* 48, 573–581. <https://doi.org/10.1021/es403596m>

de Godos, I., Arribi, Z., Lara, E., Rogalla, F., 2016. Evaluation of High Rate Algae Ponds for treatment of anaerobically digested wastewater: Effect of CO₂ addition and modification of dilution rate. *Bioresour. Technol.* 220, 253–261. <https://doi.org/10.1016/j.biortech.2016.08.056>

Directive 98_15_CEE [WWW Document], 1998. URL <https://www.boe.es/DOUE/1998/067/L00029-00030.pdf> (accessed 11.3.18).

Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E., & Franson, M.A.H., 2005. APHA: standard methods for the examination of water and wastewater. Centen. Ed. APHA, AWWA, WEF, Washington, DC.

García, D., Alcántara, C., Blanco, S., Pérez, R., Bolado, S., Muñoz, R., 2017. Enhanced carbon, nitrogen and phosphorus removal from domestic wastewater in a novel anoxic-aerobic photobioreactor coupled with biogas upgrading. *Chem. Eng. J.* 313, 424–434. <https://doi.org/10.1016/j.cej.2016.12.054>

Harman-ware, A.E., Morgan, T., Wilson, M., Crocker, M., Zhang, J., Liu, K., Stork, J., Debolt, S., 2013. Microalgae as a renewable fuel source : Fast pyrolysis of. *Renew. Energy* 60, 625–632. <https://doi.org/10.1016/j.renene.2013.06.016>

Jiménez, C., Cossío, B.R., Niell, F.X., 2003. Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: A predictive model of algal yield. *Aquaculture* 221, 331–345. [https://doi.org/10.1016/S0044-8486\(03\)00123-6](https://doi.org/10.1016/S0044-8486(03)00123-6)

Lebrero, R., Toledo-Cervantes, A., Muñoz, R., del Nery, V., Foresti, E., 2016. Biogas upgrading from vinasse digesters: a comparison between an anoxic biotrickling filter and an algal-bacterial photobioreactor. *J. Chem. Technol. Biotechnol.* 91, 2488–2495. <https://doi.org/10.1002/jctb.4843>

Marín, D., Posadas, E., Cano, P., Pérez, V., Blanco, S., Lebrero, R., Muñoz, R., 2018. Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor. *Bioresour. Technol.* <https://doi.org/10.1016/j.biortech.2018.04.117>

Meier, L., Barros, P., Torres, A., Vilchez, C., Jeison, D., 2017. Photosynthetic biogas upgrading using microalgae: Effect of light/dark photoperiod. *Renew. Energy* 106, 17–23. <https://doi.org/10.1016/j.renene.2017.01.009>

Muñoz, R., Meier, L., Diaz, I., Jeison, D., 2015. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. *Rev. Environ. Sci. Biotechnol.* 14, 727–759. <https://doi.org/10.1007/s11157-015-9379-1>

Muñoz, R., Navia, R., Ciudad, G., Tessini, C., Jeison, D., Mella, R., Rabert, C., Azócar, L., 2015. Preliminary biorefinery process proposal for protein and biofuels recovery from microalgae. *Fuel* 150, 425–433. <https://doi.org/10.1016/j.fuel.2015.02.004>

Ouyang, Y., Zhao, Y., Sun, S., Hu, C., Ping, L., 2015. Effect of light intensity on the capability of different microalgae species for simultaneous biogas upgrading and biogas slurry nutrient reduction. *Int. Biodeterior. Biodegradation* 104, 157–163. <https://doi.org/10.1016/j.ibiod.2015.05.027>

Posadas, E., Alcántara, C., García-Encina, P.A., Gouveia, L., Guiyesse, B., Norvill, Z., Acién, F.G., Markou, G., Congestri, R., Koreiviene, J., Muñoz, R., 2017. Microalgae cultivation in wastewater, in: *Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products*. pp. 67–91. <https://doi.org/10.1016/B978-0-08-101023-5.00003-0>

Posadas, E., García-Encina, P.-A., Soltau, A., Domínguez, A., Díaz, I., Muñoz, R., 2013. Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. *Bioresour. Technol.* 139, 50–58. <https://doi.org/10.1016/j.biortech.2013.04.008>

Posadas, E., Marín, D., Blanco, S., Lebrero, R., Muñoz, R., 2017. Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond. *Bioresour. Technol.* 232, 133–141. <https://doi.org/10.1016/j.biortech.2017.01.071>

Posadas, E., Morales, M., Gomez, C., Acién, F.G., Muñoz, R., 2015. Influence of pH and CO₂ source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. *Chem. Eng. J.* 265, 239–248. <https://doi.org/10.1016/j.cej.2014.12.059>

Posadas, E., Muñoz, A., García-gonzález, M., García-encina, P.A., 2014. A case study of a pilot high rate algal pond for the treatment of fish farm and domestic wastewaters. <https://doi.org/10.1002/jctb.4417>

Posadas, E., Serejo, M.L., Blanco, S., Pérez, R., García-Encina, P.A., Muñoz, R., 2015. Minimization of biomethane oxygen concentration during biogas upgrading in algal-bacterial photobioreactors. *Algal Res.* 12, 221–229. <https://doi.org/10.1016/j.algal.2015.09.002>

Posadas, E., Szpak, D., Lombó, F., Domínguez, A., Díaz, I., Blanco, S., García-Encina, P.A., Muñoz, R., 2016. Feasibility study of biogas upgrading coupled with nutrient removal from anaerobic effluents using microalgae-based processes. *J. Appl. Phycol.* 28, 2147–2157. <https://doi.org/10.1007/s10811-015-0758-3>

Rodero, M. del R., Ángeles, R., Marín, D., Díaz, I., Colzi, A., Posadas, E., Lebrero, R., Muñoz, R., 2018a. Biogas Purification and Upgrading Technologies, in: Biogas: Fundamentals, Process, and Operation. Springer. <https://doi.org/10.1007/978-3-319-77335-3>

Rodero, M. del R., Posadas, E., Toledo-Cervantes, A., Lebrero, R., Muñoz, R., 2018b. Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds. *Algal Res.* 33, 284–290. <https://doi.org/10.1016/j.algal.2018.06.001>

Ryckebosch, E., Drouillon, M., Vervaeren, H., 2011. Techniques for transformation of biogas to biomethane. *Biomass and Bioenergy* 35, 1633–1645. <https://doi.org/10.1016/j.biombioe.2011.02.033>

Sander, R., 1999. Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential importance in Environmental Chemistry.

Serejo, M.L., Posadas, E., Boncz, M.A., Blanco, S., García-Encina, P., Muñoz, R., 2015. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. *Environ. Sci. Technol.* 49, 3228–3236. <https://doi.org/10.1021/es5056116>

Sovechles, J.M., Waters, K.E., 2015. Effect of ionic strength on bubble coalescence in inorganic salt and seawater solutions. *AIChE J.* 61, 2489–2496. <https://doi.org/10.1002/aic.14851>

Sun, S., Ge, Z., Zhao, Y., Hu, C., Zhang, H., Ping, L., 2016. Performance of CO₂ concentrations on nutrient removal and biogas upgrading by integrating microalgal strains cultivation with activated sludge. *Energy* 97, 229–237. <https://doi.org/10.1016/j.energy.2015.12.126>

Teles, I., Cabanelas, D., Ruiz, J., Arribí, Z., Alexandre, F., Garrido-pérez, C., Rogalla, F., Andrade, I., Perales, J.A., 2013. Bioresource Technology Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. *Bioresour. Technol.* 131, 429–436. <https://doi.org/10.1016/j.biortech.2012.12.152>

Toledo-Cervantes, A., Estrada, J.M., Lebrero, R., Muñoz, R., 2017b. A comparative analysis of biogas upgrading technologies: Photosynthetic vs physical/chemical processes. *Algal Res.* 25, 237–243. <https://doi.org/10.1016/j.algal.2017.05.006>

Toledo-Cervantes, A., Madrid-Chirinos, C., Cantera, S., Lebrero, R., Muñoz, R., 2017a. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors. *Bioresour. Technol.* 225, 336–342. <https://doi.org/10.1016/j.biortech.2016.11.087>

Toledo-Cervantes, A., Serejo, M.L., Blanco, S., Pérez, R., Lebrero, R., Muñoz, R., 2016. Photosynthetic biogas upgrading to bio-methane: Boosting nutrient recovery via biomass productivity control. *Algal Res.* 17, 46–52. <https://doi.org/10.1016/j.algal.2016.04.017>

Ward, A.J., Lewis, D.M., Green, F.B., 2014. Anaerobic digestion of algae biomass : A review. *Algal Res.* 5, 204–214. <https://doi.org/10.1016/j.algal.2014.02.001>

Yan, C., Muñoz, R., Zhu, L., Wang, Y., 2016. The effects of various LED (light emitting diode) lighting strategies on simultaneous biogas upgrading and biogas slurry nutrient reduction by using of microalgae Chlorella sp. *Energy* 106, 554–561. <https://doi.org/https://doi.org/10.1016/j.energy.2016.03.033>

Zhang, Y., Bao, K., Wang, J., Prof, Y.Z., Hu, C., 2017. Performance of mixed LED light wavelengths on nutrient removal and biogas upgrading by different microalgal-based treatment technologies. *Energy* 130, 392–401. <https://doi.org/10.1016/j.energy.2017.04.157>

Chapter 6

Development of a control strategy to cope with biogas flowrate variations during photosynthetic biogas upgrading

Rodero, M.del R., Carvajal, A., Castro, V., Navia, D., de Prada, C., Lebrero, R., Muñoz, R., 2019. Biomass and Bioenergy 131, 105414.

doi:10.1016/j.biombioe.2019.105414.

Development of a control strategy to cope with biogas flowrate variations during photosynthetic biogas upgrading

María del Rosario Rodero^{1,2}, Andrea Carvajal^{1,3}, Víctor Castro¹, Daniel Navia³, César de Prada², Raquel Lebrero^{1,2}, Raúl Muñoz^{1,2*}

¹ Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.

² Institute of Sustainable Processes, University of Valladolid, 47011, Valladolid, Spain.

³ Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. España 1680 Valparaíso (Chile)

ABSTRACT

The design and evaluation of a control system for a photosynthetic biogas upgrading unit was successfully carried out in this study. This control system ensured a specific biomethane quality under any disturbance in the biogas flowrate. The recycling liquid flowrate, and indirectly the liquid to biogas (L/G) ratio, was selected as the manipulated variable in order to maintain the CO₂ and O₂ content of biomethane, and therefore comply with the requirements for its use as natural gas substitute ($\leq 2.5\%$ and $\leq 1.0\%$, respectively). The control system was able to maintain the biomethane CO₂ content below the set point value under a stepwise increase in the biogas flowrate from 60 to 150 ml min⁻¹, together with negligible H₂S concentrations and an O₂ stripping from the recycling liquid to the biomethane lower than 1%, thus obtaining a consistent biomethane quality over time. On the contrary, the biomethane CO₂ content increased up to 13.2% under this stepwise increase in the biogas flowrate without control system. Successful results were also obtained when the control system was challenged with stepwise surges in the biogas flowrate between 60 and 120 ml min⁻¹ under different temperatures (15 and 35°C) and inorganic carbon concentrations (1500, 500 and 100 mg L⁻¹) when the recycling liquid entering the absorption column presented a pH=10. However, the high liquid flowrates required at a cultivation broth pH of 8.5 as a result of the low CO₂ mass transfer led to an excessive O₂ desorption to the biomethane, resulting in biomethane O₂ contents $> 1\%$.

Keywords: Algal-bacterial processes; biogas upgrading; biomethane; photobioreactor; process control.

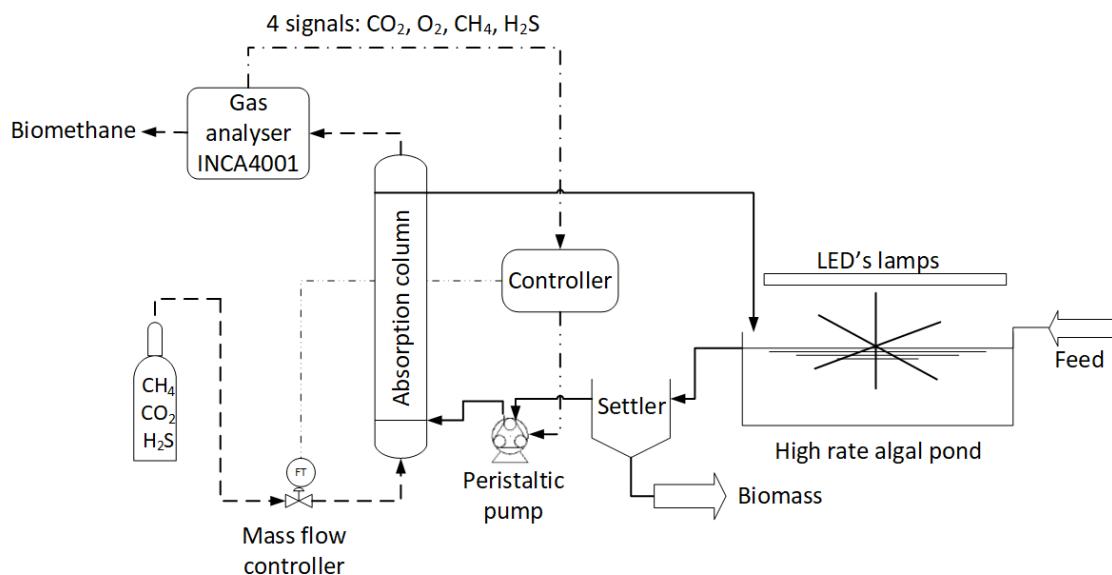
1. Introduction

Biogas is a byproduct obtained from the anaerobic digestion of organic waste and wastewater. It is typically composed of CH₄ (40-75%), CO₂ (30-50%), H₂S (0.005-2%) and other pollutants at trace level concentrations, such as oxygen, nitrogen, ammonia, siloxanes and volatile organic compounds [1]. The high CH₄ content has encouraged the use of biogas as a bioenergy vector for the production of heat and power, and even as a substitute of natural gas. However, the presence of other components apart from CH₄ hinders its direct injection into the natural gas grids or its use as a vehicle fuel. For instance, CO₂ results in higher greenhouse gas emission during biogas combustion, increases biogas transportation costs and reduces its specific calorific value. Similarly, H₂S reduction is highly recommended due to its corrosive, malodorous and pernicious nature [2]. In this context, biogas upgrading prior use as a vehicle fuel or its injection into natural gas grids is a compulsory step which must ensure concentrations of CH₄ \geq 90%, CO₂ \leq 2-4%, O₂ \leq 1% and trace levels of H₂S according to most international regulations [3,4].

Physical/chemical technologies for CO₂ removal often need a preliminary H₂S abatement stage and exhibit high energy and chemical requirements that jeopardize the economic viability of biomethane as a renewable substitute of natural gas. On the other hand, biological technologies such as biofiltration or *in situ* microaerobic digestion for H₂S removal coupled to hydrogenotrophic biogas upgrading for CO₂ removal always involve a two-stage process [5]. In this regard, photosynthetic biogas upgrading through algal-bacterial processes represents a cost-effective and environmentally sustainable alternative for the simultaneous CO₂ and H₂S removal [6]. During photosynthetic biogas upgrading, microalgae use solar light energy to capture the CO₂ present in biogas, while H₂S is oxidized to S⁰/SO₄²⁻ by sulfur-oxidizing bacteria using the oxygen photosynthetically produced [7]. In addition, the nutrients required to support microalgal and bacterial growth in this technology can be obtained from wastewaters from different sources, which contributes to enhance its environmental sustainability [8]. Photosynthetic biogas upgrading is typically implemented in two interconnected units consisting of a bubble absorption column (AC) that removes the unwanted pollutants from the biogas and a high rate algal pond (HRAP) where the biological processes above described occur.

Several works have evaluated the performance of photosynthetic biogas upgrading coupled to wastewater treatment under indoor conditions at a constant biogas flowrate [9–14]. However, the performance of anaerobic digestion is affected by multiple variables such as temperature, mixing regime, or feedstock composition and load, whose fluctuations could lead to changes in the daily biogas production and composition. These changes impact on the subsequent upgrading process and can compromise the quality of the biomethane produced [15–18]. Moreover, a recent study in an outdoors HRAP interconnected to an AC showed that the photosynthetic biogas upgrading performance is influenced by the environmental conditions prevailing throughout the year. Therefore, variations in the temperature, pH or alkalinity of the cultivation broth (i.e. associated to rain or evaporation) ultimately impact on the CO₂ and H₂S mass transfer in the AC and consequently on the biomethane quality [19]. Thus, the development of a control system for the photosynthetic biogas upgrading process is necessary in order to make the process more robust towards environmental or operational fluctuations, and to ensure a biomethane complying with most regulations for its use as a natural gas substitute.

In this context, the liquid to gas ratio (L/G) has been identified as an important operating parameter in gas-liquid mass transfer units [20,21]. An increase in the gas flow rate reduces the mass transfer between the two phases, which is attributed to both the lower gas residence time and bubble coalescence. Conversely, an increase in the liquid flow rate entails a higher gas absorption in the liquid phase due to the higher the contact area, but an enhanced stripping of compounds from the liquid to the gas phase [22]. For instance, Serejo et al. [23] observed an increase in CO₂ removal efficiency at increasing L/G ratios up to 15; while a complete H₂S removal was achieved regardless of the tested L/G ratio due to the higher H₂S aqueous solubility. Nevertheless, an increase in the L/G ratio in the biogas absorption column also resulted in a higher O₂ concentration in the upgraded biogas, due to an enhanced desorption of the dissolved oxygen from the microalgae cultivation broth [24]. In this regard, the L/G ratio in the AC is a key operational parameter that must be optimized during photosynthetic biogas upgrading in order to guarantee consistent CO₂ and O₂ concentration in the biomethane.


This study aimed at designing and evaluating the performance of a control system for biogas upgrading in a HRAP interconnected to an AC to cope with fluctuations in biogas production over time. The process response against variations in biogas flowrate

under different environmental conditions (alkalinity, pH and temperature) was assessed with and without control system.

2. Materials and methods

2.1. Experimental set-up

The experimental set-up was composed of an indoor 180 L HRAP interconnected to a 2.5 L AC via external liquid recirculation of the supernatant from a 10 L settler (Fig.1). The HRAP was continuously fed at 3 L d^{-1} with a mineral synthetic medium (pH 10) that simulated the composition of a high strength digestate from the anaerobic digestion process. The mineral medium had the following composition (g L^{-1}): 7.60 NaHCO_3 , 3.70 Na_2CO_3 , 0.58 K_2HPO_4 , 1.91 NH_4Cl , 0.10 $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 0.02 $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$, 0.005 $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$ and 5 mL of a trace element solution prepared according to the *Spirulina* mineral salt medium recommended by the SAG Culture Collection [25]. The HRAP was continuously illuminated at $\sim 1350 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ and agitated at an internal recirculation velocity of $\sim 20 \text{ cm s}^{-1}$. Synthetic biogas composed of 70% CH_4 , 29.5% CO_2 and 0.5% H_2S (which is a typical composition of biogas obtained from the anaerobic digestion of sewage sludge or agro-industrial bio-waste [5,26]) was sparged co-currently with the recycling liquid into the AC via a metallic gas diffuser of 2 μm pore size located at the bottom of the AC.

Fig. 1. Experimental set-up and control layout for photosynthetic biogas upgrading

The biogas flow rate variations were conducted using a mass flow controller (Aalborg, USA) connected to a synthetic biogas cylinder (Fig.1). The recycling liquid flow rate in the AC was pumped using a variable flow peristaltic pump DINKO D-25Vplus (Spain).

The system was operated under steady state at an initial L/G ratio of 0.5 based on previous studies and at a constant liquid flow rate of 30 ml min⁻¹ [27]. The upgraded biogas was accumulated in a Tedlar bag prior measuring its composition (CH₄, CO₂, H₂S and O₂ content) in an online gas analyzer INCA 4001 (UNION Instruments GmbH, Germany). The control unit was composed of a field-programmable gate array (FPGA) «myRio 1900» via an interface developed in LabVIEW 2014 (National Instruments). The pH of the cultivation medium was determined using a pH meter Eutech Cyberscan pH 510 (Eutech instruments, The Netherlands).

2.2. Control system design

A rule-based control method aiming at maintaining a biomethane quality over time under biogas flow rate fluctuations was developed. The control rules were designed based on previous observations. This type of control was selected because of the constraints imposed by the analyzer (with a sampling time of 1-2 hours), which prevented the use of standard control methods such as PID. Moreover, a rule-based control allowed taking advantage of the practical experience accumulated by the research team in the operation of this type of plants. In addition, the system was non-linear and time-varying, which would require the use of some type of gain-scheduling with the associated problems of tuning under different operating conditions. The CO₂ content in the upgraded biogas was chosen as one of the controlled variables since H₂S removal efficiency (RE) is typically higher than CO₂-RE due to the ~3 times higher H₂S Henry's Law constant (C_L/C_G), while CH₄ losses in the absorption column are negligible due to its low aqueous solubility [28]. Additionally, the O₂ content in the upgraded biogas resulting from the desorption of dissolved O₂ in the AC was the other controlled variable taken into account since a high concentration of O₂ in biomethane can result in explosive mixtures [29]. O₂ and CO₂ concentrations in the biomethane were fixed at a set point of 1% and 2.5%, respectively, in order to comply with most international regulations. The manipulated variable was the recycling liquid flow rate, which determines the L/G ratio in the AC (Fig.2).

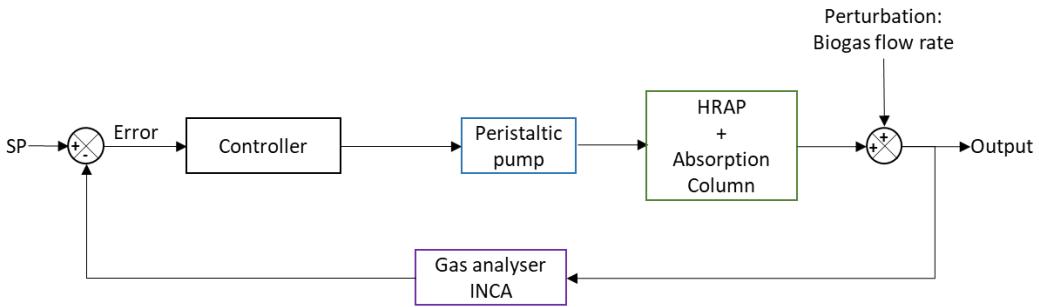


Fig. 2. Block diagram of the control system

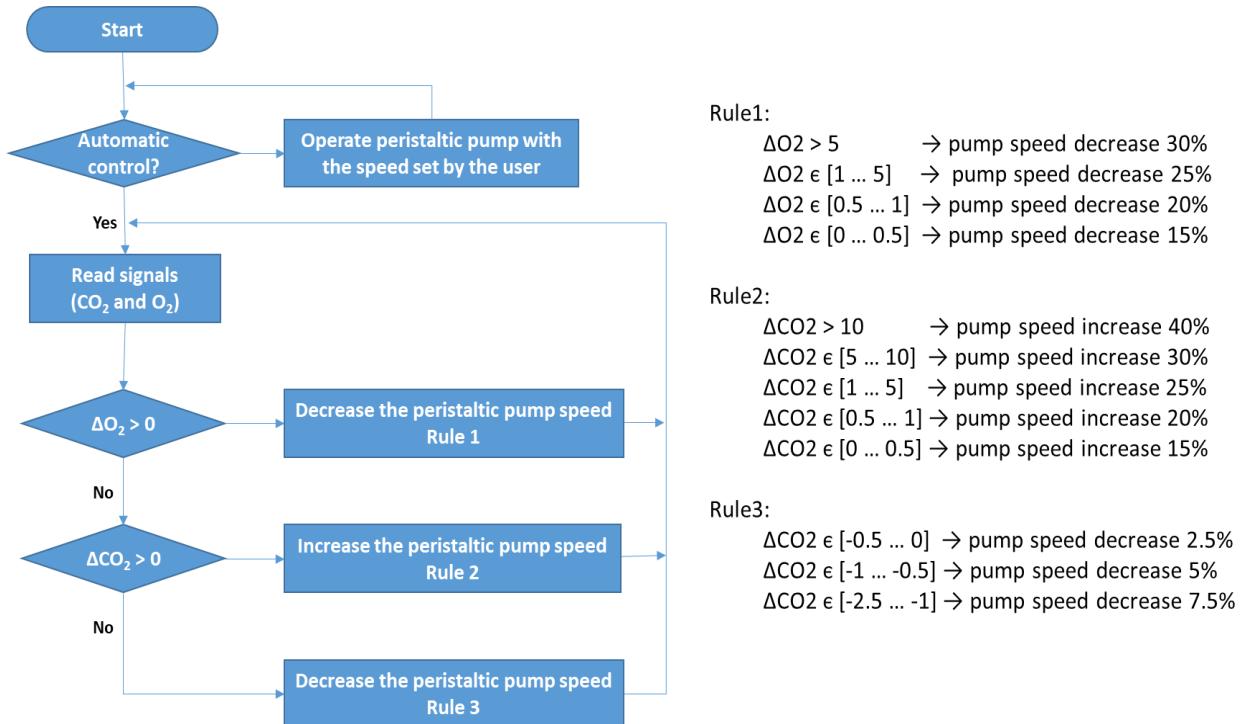


Fig. 3. Flow diagram of the ruled-based control system and rule values

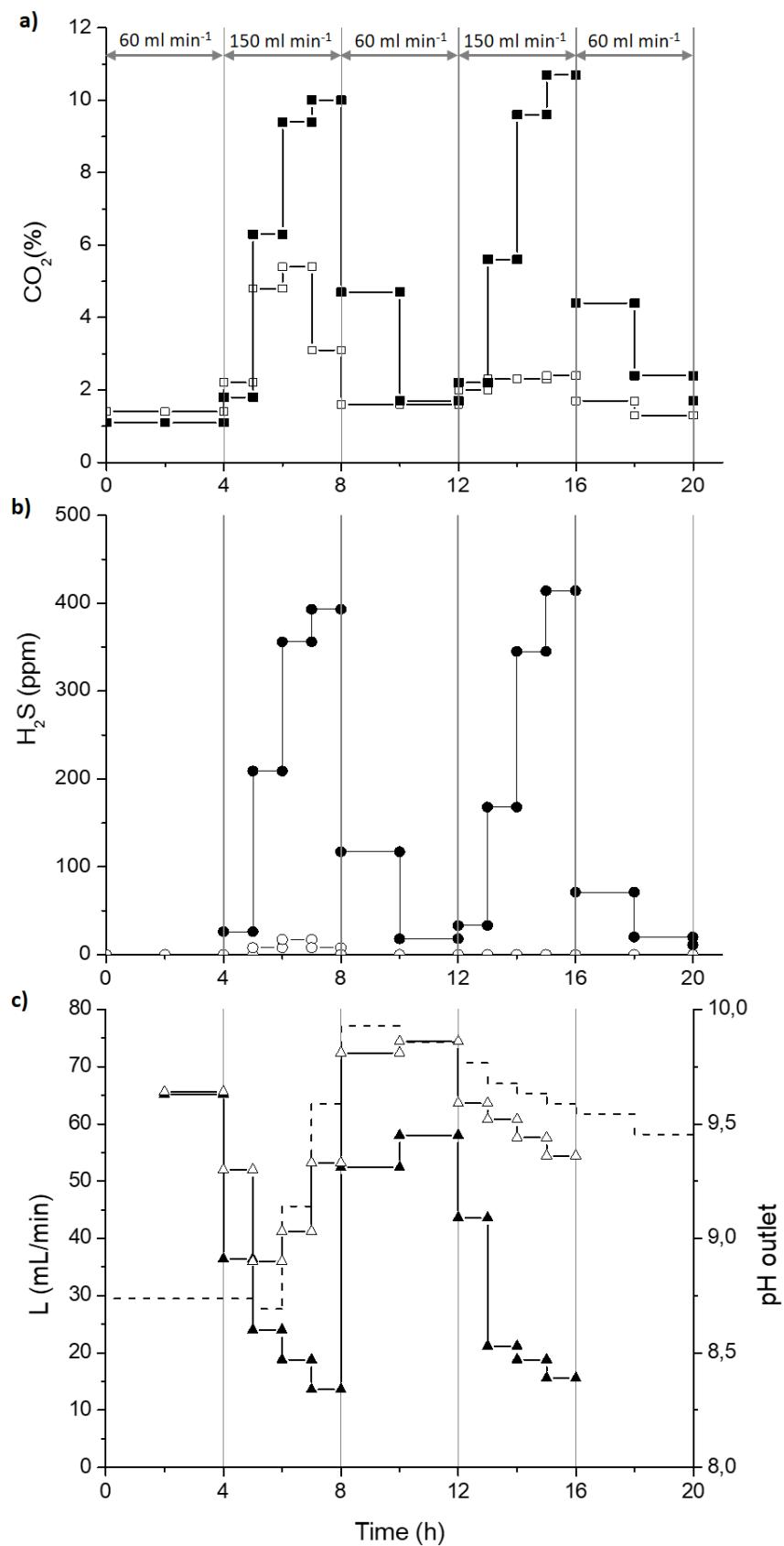
Fig. 3 shows the rules of the control system where $\Delta CO_2 = [CO_2]_{\text{measured}} - [CO_2]_{\text{sp}}$, $\Delta O_2 = [O_2]_{\text{measured}} - [O_2]_{\text{sp}}$; the value “measured” being the one obtained from the gas analyser and the set point (sp) the value fixed based on the target values of most international regulations. When the O₂ content in the biomethane was higher than 1% (set point value) (rule 1), the flow rate of the liquid pump was decreased even if the CO₂ content in the upgraded biogas was higher than the set point CO₂ concentration due to safety reasons. When O₂ content in the biomethane was < 1% and CO₂ content > 2.5%, the control system increased the flow rate of the recycling liquid pump in order to enhance CO₂ absorption (rule 2). In the case of rule 3, when CO₂ and O₂ concentration in the upgraded biogas complied with the set-point, the flow rate of the recycling liquid pump was decreased in order to save energy. In this context, the amount of change in

the recycling liquid flow rate was variable depending on the values of the variables involved (O_2 and CO_2 concentration in the upgraded biogas) as shown in Fig.3.

2.3. Step response of the control system interconnected to a HRAP

The proposed control system was evaluated under different perturbations in the biogas flow rate in order to test its effectiveness and robustness. First, a 4 h step increase from $G = 60$ to 150 ml min^{-1} and back to 60 ml min^{-1} was carried out to test the response of the system under biogas flow rate surges. Secondly, a similar step with a higher duration was implemented in order to ensure that the control system was able to maintain the steady state. Finally, the biogas flow rate was stepwise increased by 10 ml min^{-1} every 2 hours from 60 to 120 ml min^{-1} in the first 12 h and decreased to 60 ml min^{-1} within the next 12 h. This simulated real fluctuations in a biogas production process. The composition of the upgraded biogas accumulated in the Tedlar bag was measured every two hours prior actuation of the control system, except in the case of the biogas flowrate of 150 ml min^{-1} where measurements were conducted every hour. These sampling times were selected based on the sampling volume requirements by the biogas analyzer and the low value of the biogas flows used in this laboratory scale set-up. All the experiments consisted of two similar consecutive biogas flowrate cycles under controlled and uncontrolled (without any change in the recycling liquid flowrate) conditions, in order to evaluate the effectiveness and significance of the control system. The values of the changes implemented in the liquid flowrate depending on the CO_2 and O_2 concentrations are summarized in Table S1 (Supplementary data).

2.4. Validation of the control system at varying biogas flowrates under different environmental conditions


Process response to the stepwise variations in biogas flowrate (stepwise variations from 60 to 120 ml min^{-1} for 12 h and from 120 to 60 ml min^{-1} for the next 12 h) was validated under controlled and uncontrolled conditions at different temperatures (15 and $35^\circ C$), pH (10 and 8.5) and inorganic carbon (IC) concentrations (1500 , 500 and 100 mg L^{-1}) in the recycling liquid. The experiments were carried out in duplicate. For this purpose, a similar mineral medium, with different concentrations of $NaHCO_3$ and Na_2CO_3 to achieve the desired IC concentration and pH, was used as recycling liquid in the absorption column. The temperature of the recycling liquid before entering the absorption column was adjusted using an external heat exchanger (FisherbrandTM PolystatTM Immersion Circulator, Germany) and the temperature in the absorption

column was maintained using an external coil connected to a heat exchanger (Huber CC1-E Immersion-Thermostat Control, Germany). A different set of variations in the recycling liquid flowrate (power pump changes) were used during these experiments due to the necessity of changing the pipe of the peristaltic liquid pump for the highest flowrate requested during some of these assays (Table S2 Supplementary data).

3. Results and discussion

3.1. Step response of the control system

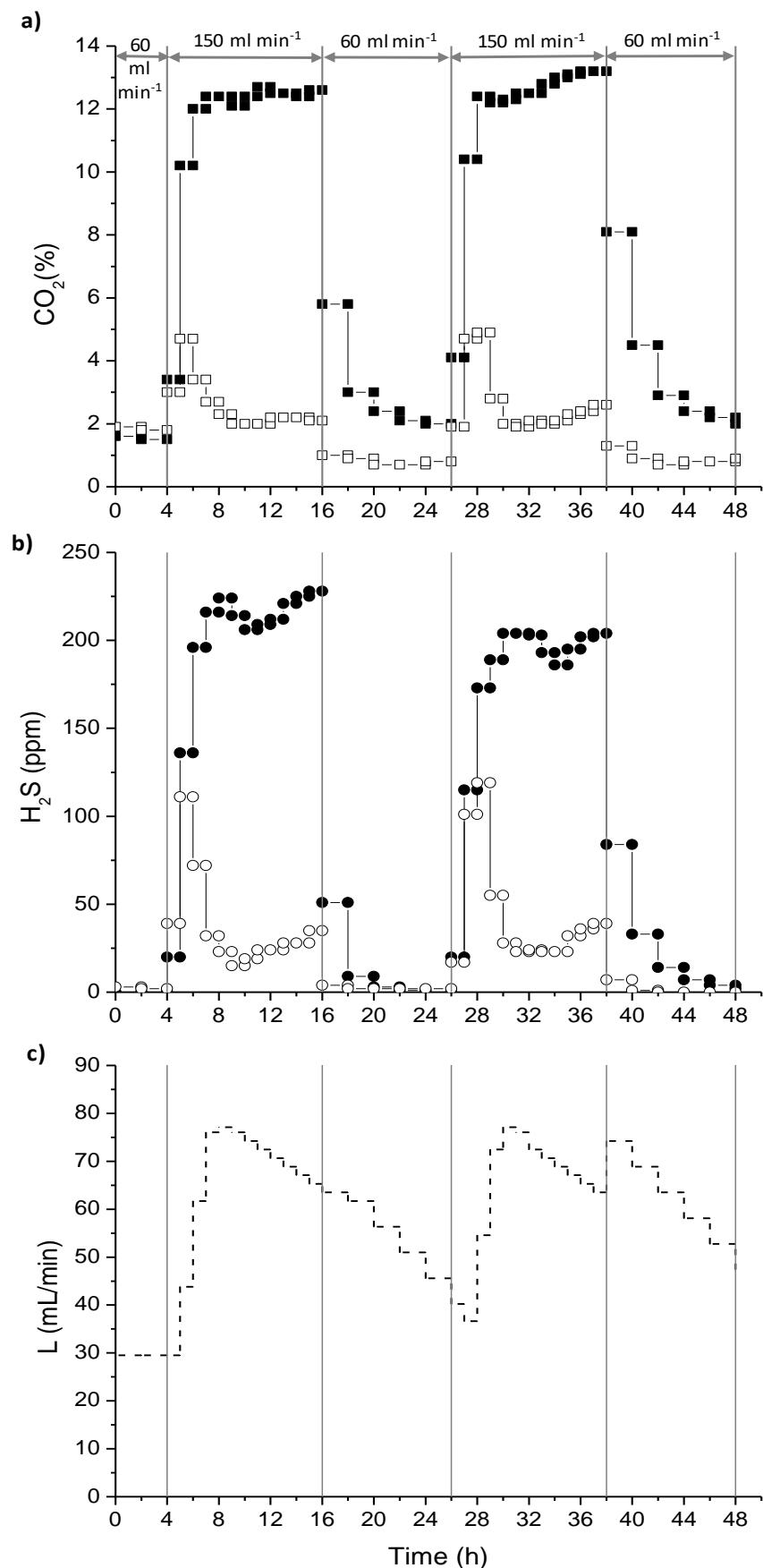

Figure 4 shows the response of CO₂ and H₂S concentration in the upgraded biogas and pH in the recirculating broth at the outlet of the absorption column under controlled and uncontrolled conditions during a 4 hours biogas flowrate step increase from 60 to 150 ml min⁻¹, and back to 60 ml min⁻¹, along with the liquid flow rate during the control period. The performance of the experimental system was significantly affected when biogas flow rate was increased from 60 to 150 ml min⁻¹ for 4-h. Hence, CO₂ concentration in the upgraded biogas increased from 1.5 to 10.7%, which corresponded to a CO₂-RE decrease from 95 to 64%, concomitantly with the 4-h step increase in the biogas flowrate when the control system was not running (Fig. 4a). Similarly, an increase in the H₂S content from zero to 400 ppm_v in the upgraded biogas (which corresponded to a H₂S-RE decrease from 100 to 92%) was observed as a result of the surge in biogas flow rate (Fig. 4b). This deterioration of the system performance was recorded in spite of the high alkalinity of the cultivation broth (~2500-3000 mg IC L⁻¹), which was associated to an IC accumulation mediated by water evaporation and the high strength medium used as nutrient source in the HRAP. The increase in the biogas flowrate ($\times 2.5$) at a constant liquid flowrate resulted in a decrease in the L/G ratio from 0.5 to 0.2, which likely mediated CO₂ and H₂S saturation of the recycling cultivation broth with the subsequent decrease in the pH along the AC. In this context, the pH decreased from a value of 10 at the bottom of the AC to 9.6 and 8.4 at the top of the AC at biogas flowrates of 60 and 150 ml min⁻¹, respectively (Fig. 4c). This drop in the pH along the AC resulted in a lower CO₂ and H₂S gas-liquid mass transfer due to the decrease in the concentration gradient of these acidic gases in the liquid phase. The O₂ content in the upgraded biogas remained almost constant at ~0.2%, as a result of the constant liquid flowrate and the low L/G ratios. Likewise, Toledo-Cervantes et al. [14] reported O₂ concentrations in the biomethane below 0.1% in a similar indoor system at L/G ratios ranging from 0.3 and 0.5.

Fig. 4. Time course of a) CO₂ content, b) H₂S content of the upgraded biogas and c) liquid flow rate (dashed line) and pH at the outlet of the absorption column under controlled (open) and uncontrolled (solid) conditions during the 4-h biogas flowrate step increase experiment.

When the control system was initiated, CO₂ content of the upgraded biogas increased up to 5.4% (~2 times less than that without control) during the first surge in biogas flowrate to 150 ml min⁻¹, and remained under the set point value during the duration of the second flowrate step (Fig. 4a). The lower CO₂ content recorded in the upgraded biogas during the latter step could be explained by the higher liquid flowrate (L) imposed by the control system prior to the second surge in biogas flowrate. The H₂S content of the upgraded biogas during this experiment was negligible regardless of the biogas flowrate, due to its high solubility in water and the effectiveness of the proposed control system (Fig. 4b). The higher CO₂ and H₂S-REs achieved when the control system was active could be attributed to the lower acidification of the cultivation broth between the bottom and the top of the AC as a result of the lower amount of CO₂ and H₂S transferred per volume of recycling liquid when the liquid flow rate in the AC was actively controlled. Moreover, the O₂ content in the upgraded biogas remained under the set point value along the entire period. Overall, the maximum L/G ratio recorded was 1.3 at a liquid flowrate of 77 ml min⁻¹ (Fig. 4c), which ensured a good biomethane quality (CH₄ content >95%) during most of the experiment.

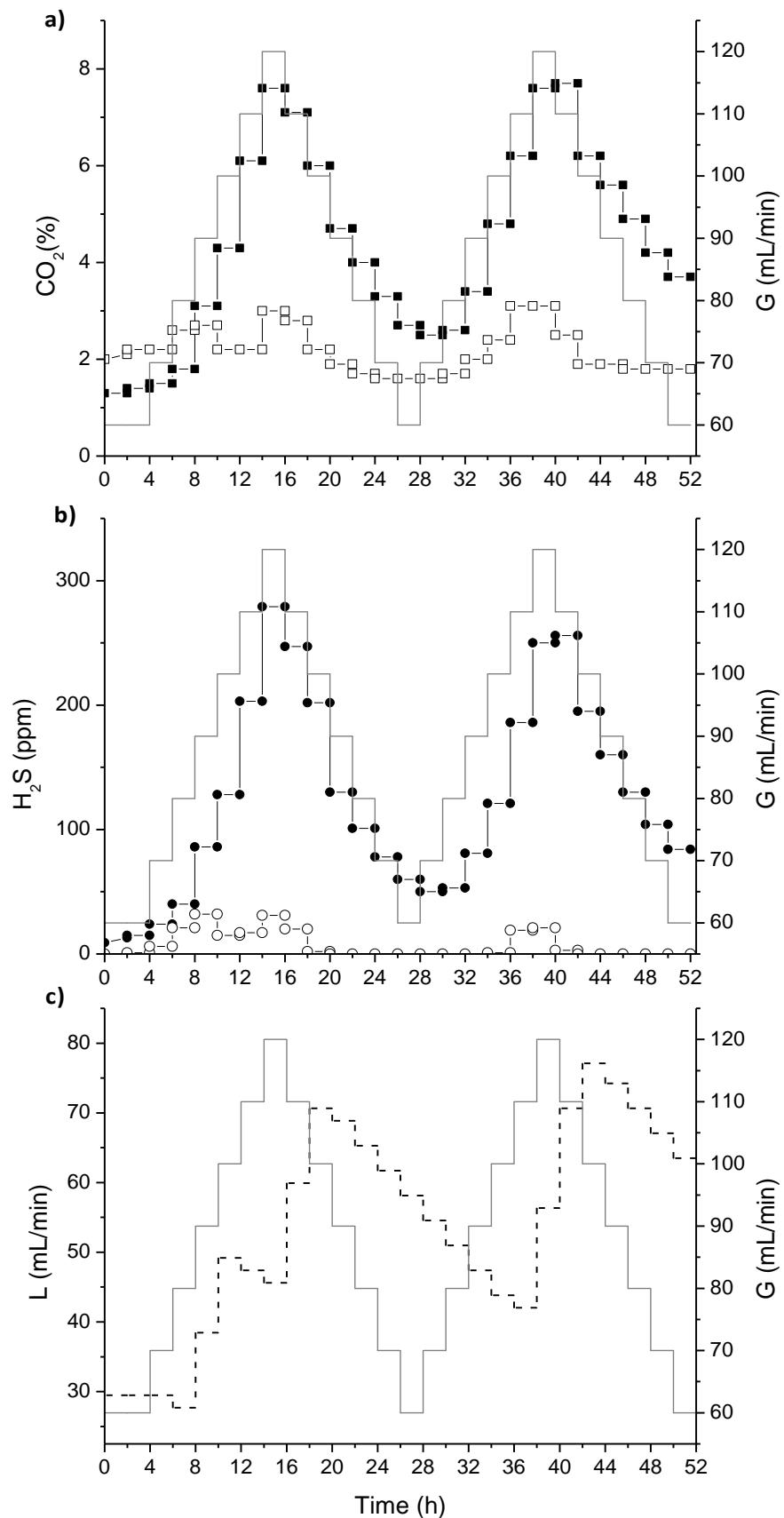

When the step increase in biogas flowrate was maintained for 12 h in order to confirm the ability of the system to maintain a steady state over time, the CO₂ content in the upgraded biogas increased up to 13.2% when the control system was not active (Fig. 5a). The lower CO₂ content in the upgraded biogas observed during the 4-h step test confirmed that the system was not able to reach steady state at a biogas flowrate of 150 ml min⁻¹. In this context, only ~4-5 h after the step increase in the biogas flowrate, the CO₂ content in the upgraded biogas remained almost constant. On the contrary, the maximum H₂S content obtained in this experiment was 230 ppm_v lower than during the 4-h step test (Fig. 5b). The increase in H₂S removal during this experiment could be attributed to a higher dissolved oxygen (DO) concentration in the cultivation broth and/or bacteria activity during these days, which ultimately enhanced H₂S oxidation. Unfortunately, data of DO or pH in the cultivation broth of the HRAP was not continuously recorded and this hypothesis could not be fully confirmed.

Fig. 5. Time course of a) CO_2 , b) H_2S content of the upgraded biogas under controlled (open) and uncontrolled (solid) conditions and c) liquid flowrate during the 12-h biogas flowrate increase step experiment.

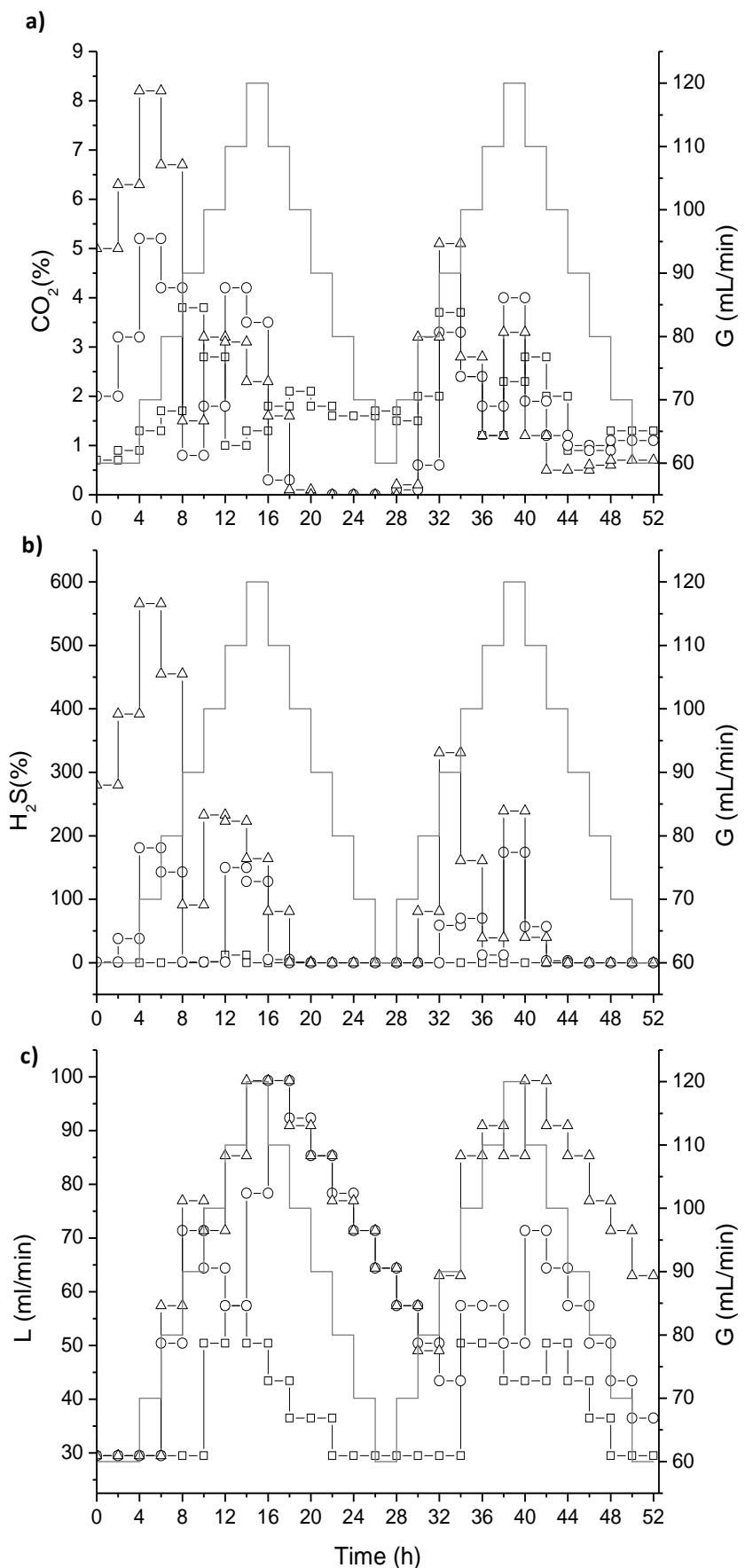
The control system showed a similar performance regardless of the duration of the biogas flowrate step increase: a maximum CO₂ content of 4.9% in the upgraded biogas (~2.7 times lower than that without control) was achieved in both step increases from 60 to 150 ml min⁻¹ (Fig. 5a), which correlated with the similar L/G ratios recorded when increasing the biogas flowrate. In addition, the H₂S content in the upgraded biogas reached 120 ppm_v with the increase in the biogas flowrate, obtaining a nearly complete removal afterwards (H₂S-RE >99%) (Fig. 5b). Likewise, the O₂ concentration remained under the set point value during both experiments with and without control system. Moreover, identical maximum liquid flowrate values (77 ml min⁻¹) and consequently L/G ratios (1.3) were obtained in both step increase experiments (Fig. 5c). The lower CH₄ concentration recorded during the step increase was 93.4% and approximately three hours after the step (the control system had acted 3 times), a suitable biomethane quality (CH₄ content >95%) was achieved. The results revealed that the implementation of a control system in a large-scale biogas upgrading unit would entail a faster and even more accurate process response as a result of the shorter time between measurements.

The biogas flowrate was also stepwise increased by 10 ml min⁻¹ every 2 h from 60 to 120 ml min⁻¹. Without the control system, the CO₂ concentration in the upgraded biogas increased up to 7.8%, already exceeding the CO₂ set point (2.5%) at a biogas flowrate of 90 ml min⁻¹ (corresponding to L/G ratios < 0.33) (Fig. 6a). These results were in accordance with Toledo-Cervantes et al. [14], who recorded CO₂-REs of 70.3 and 97.3% at L/G ratios of 0.3 and 0.5, respectively, operating under co-current mode under a similar high pH and alkalinity of the cultivation broth than those tested in this study. When the biogas flowrate stepwise decreased from 150 to 60 ml min⁻¹, the CO₂-RE slowly increased due to the previous acidification of the cultivation broth, and the system was not able to recover the initial biomethane quality (CO₂ content ≤ 2.5%) even at the lowest biogas flowrate of 60 ml min⁻¹. In addition, the H₂S content in the upgraded biogas increased up to 280 ppm_v (Fig. 6b), while the O₂ remained lower than the set point value (1%) as in the previous experiments.

Fig. 6. Time course of a) CO_2 , b) H_2S content of the upgraded biogas under controlled (open) and uncontrolled (solid) conditions and c) liquid flow rate (dashed line) during the stepwise biogas flowrate increase (continuous line) by 10 ml min^{-1} from 60 to 120 ml min^{-1} .

The maximum CO₂ concentration in the upgraded biogas when the control system was active was 3.1% (~2.5 times lower than that without control). A value lower than the set point was obtained after two control actions (Fig. 6a). The lowest CO₂-RE recorded was 89.5%, compared to the lowest value of 73.6% observed without control. In accordance with the results obtained without control, the CO₂ content in the upgraded biogas exceeded the set point value when the L/G ratio was lower than 0.38. Furthermore, the H₂S content in the biomethane was negligible regardless the biogas flowrate, which confirmed the robustness of the control system for H₂S removal using the CO₂ content in upgraded biogas as controlled variable. O₂ content in the biomethane remained below 1% with a maximum liquid flowrate and L/G ratio of 77 ml min⁻¹ and 1.1, respectively (Fig. 6c). Finally, CH₄ concentration in the upgraded biogas was >94 % during the complete experimentation period, thus demonstrating the effectiveness of the control system even if the biogas flowrate variations occurred as sequential steps of lower magnitude.

Overall, the control strategy implemented in the experimental set-up consisting of a HRAP interconnected with an AC was able to maintain the operational variables below the set-points under multiple biogas flowrate surges, thus providing the required biomethane quality during most of the experimental period. However, the response of the system when operating under different environmental conditions (mediated by seasonal changes) could be different. Therefore, a further validation of the control system was carried out by assessing the upgrading performance at different alkalinites, pHs and temperature values.


3.2. Validation of the control system under different environmental conditions

3.2.1. Alkalinity

The alkalinity of the cultivation broth has been previously identified as a key parameter on CO₂ and H₂S removal in photosynthetic biogas upgrading. A high alkalinity medium results in a high buffer capacity and; consequently, in improved CO₂ and H₂S mass transfer rates as a result of the low decrease in the pH along the absorption column [13]. In this context, high strength digestates or agroindustrial wastewaters (i.e. piggery wastewaters) could be used to achieve an effective photosynthetic biogas upgrading since they usually contain high inorganic carbon concentrations (~1500 mg L⁻¹) [30,31]. For instance, Marin et al. [24] supplemented a carbonate solution to the AC in order to increase the alkalinity of the recycling liquid, and improved the CO₂ and H₂S-REs when

the photobioreactor was fed with an agricultural wastewater with a low IC concentration (36 mg L^{-1}). However, carbonate dilution might occur due to rainfall or no carbonate addition in outdoor systems. Then, the use of medium strength digestates ($\sim 500 \text{ mg IC L}^{-1}$) or domestic wastewaters ($\sim 100 \text{ mg IC L}^{-1}$), which are typically found in wastewater treatment plants, is the most common operating alternative. Under these scenarios, a decrease in the upgrading process efficiency could occur, the validation of the control system under different alkalinity conditions being necessary [19].

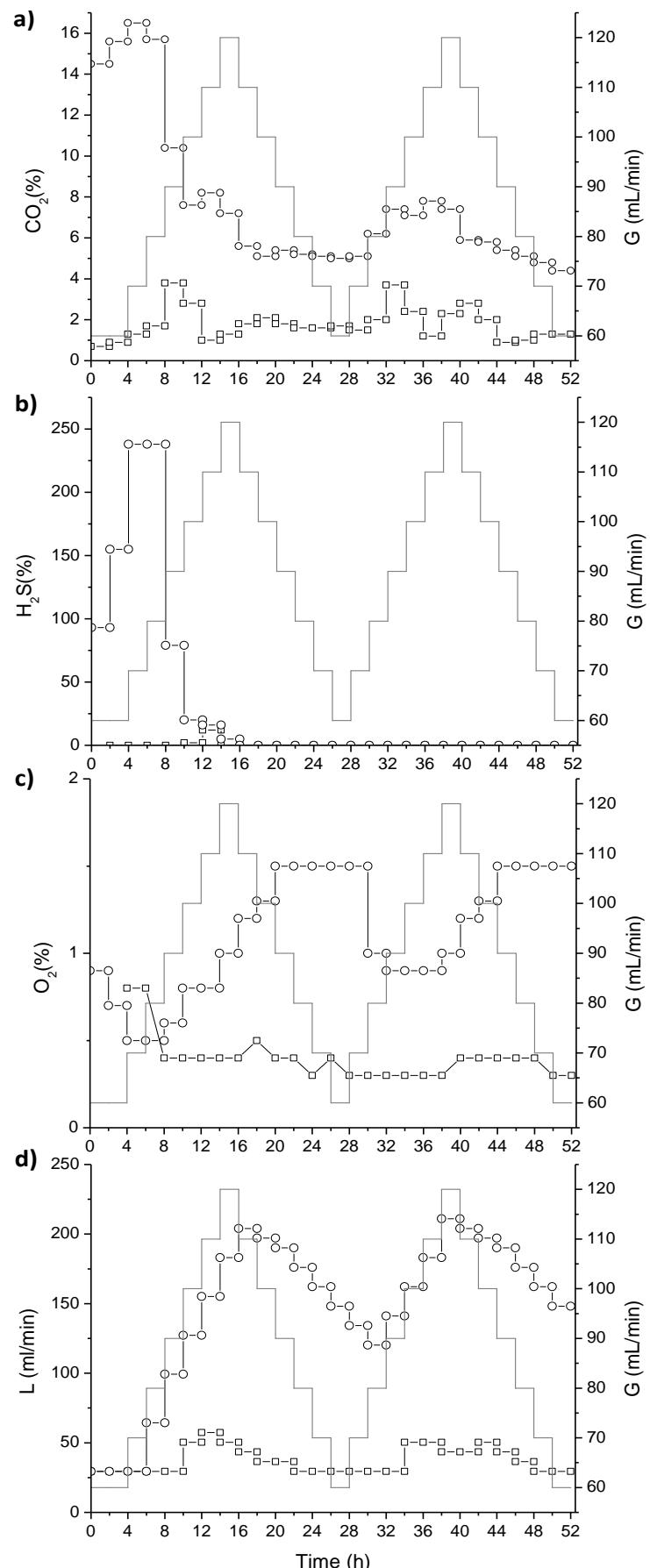
The stepwise increase in biogas flowrate from 60 to 120 ml min^{-1} without control system resulted in maximum CO_2 contents in the upgraded biogas of 13.4, 18.0 and 19.6%, while H_2S concentration reached 552, 1440 and 2033 ppm_v at a pH of 10 and IC concentrations of 1500, 500 and 100 mg L^{-1} , respectively (Fig. S1 – Supplementary Material). The highest CO_2 and H_2S removals were obtained at the highest alkalinity content ($1500 \text{ mg IC L}^{-1}$), while the CO_2 content in the upgraded biogas at lower alkalinities was higher than the set point value even at the lowest biogas flowrate. The system performance was significantly improved when the control system was turned on. Immediately after the increase in biogas flowrate to 70 ml min^{-1} , the CO_2 content in the upgraded biogas exceeded the set point except for the experiment at $1500 \text{ mg IC L}^{-1}$. In the assays at IC concentrations of 500 and 100 mg L^{-1} , the control system increased the recycling liquid flowrate to 50 and 57 ml min^{-1} , respectively, based on the values of the previously established rules (Table S1). As a consequence, the highest CO_2 concentrations recorded in the upgraded biogas were 3.7, 4.2 and 5.1% at IC concentrations of 1500, 500 and 100 mg L^{-1} , respectively. These results demonstrated that when the control system was active, the influence of the alkalinity on the upgrading performance was significantly reduced (Fig. 7a). Similarly, the maximum H_2S content in the upgraded biogas was 12, 184 and 331 ppm_v at 1500, 500 and 100 mg IC L^{-1} , respectively (Fig. 7b). On the other hand, no significant O_2 concentration was measured in the upgraded biogas ($<1\%$) even at 100 mg IC L^{-1} . Maximum liquid flowrates of 57, 99 and 99 ml min^{-1} , corresponding to maximum L/G ratios of 0.5, 1.1 and 1.1, were recorded at 1500, 500 and 100 mg IC L^{-1} , respectively. It is important to notice that, although similar maximum liquid flowrates were set at 500 and 100 mg IC L^{-1} , the highest flowrate was maintained during longer periods of time at the lowest alkalinity (Fig. 7c). These results agreed with Bahr et al. [6], who recorded an O_2 content in the biomethane below 1% at a L/G 1.2 regardless of the pH.

Fig. 7. Time course of a) CO_2 , b) H_2S content in the upgraded biogas and c) liquid flow rate under controlled conditions at IC concentration of 1500 (square), 500 (circle) and 100 mg L^{-1} (triangle).

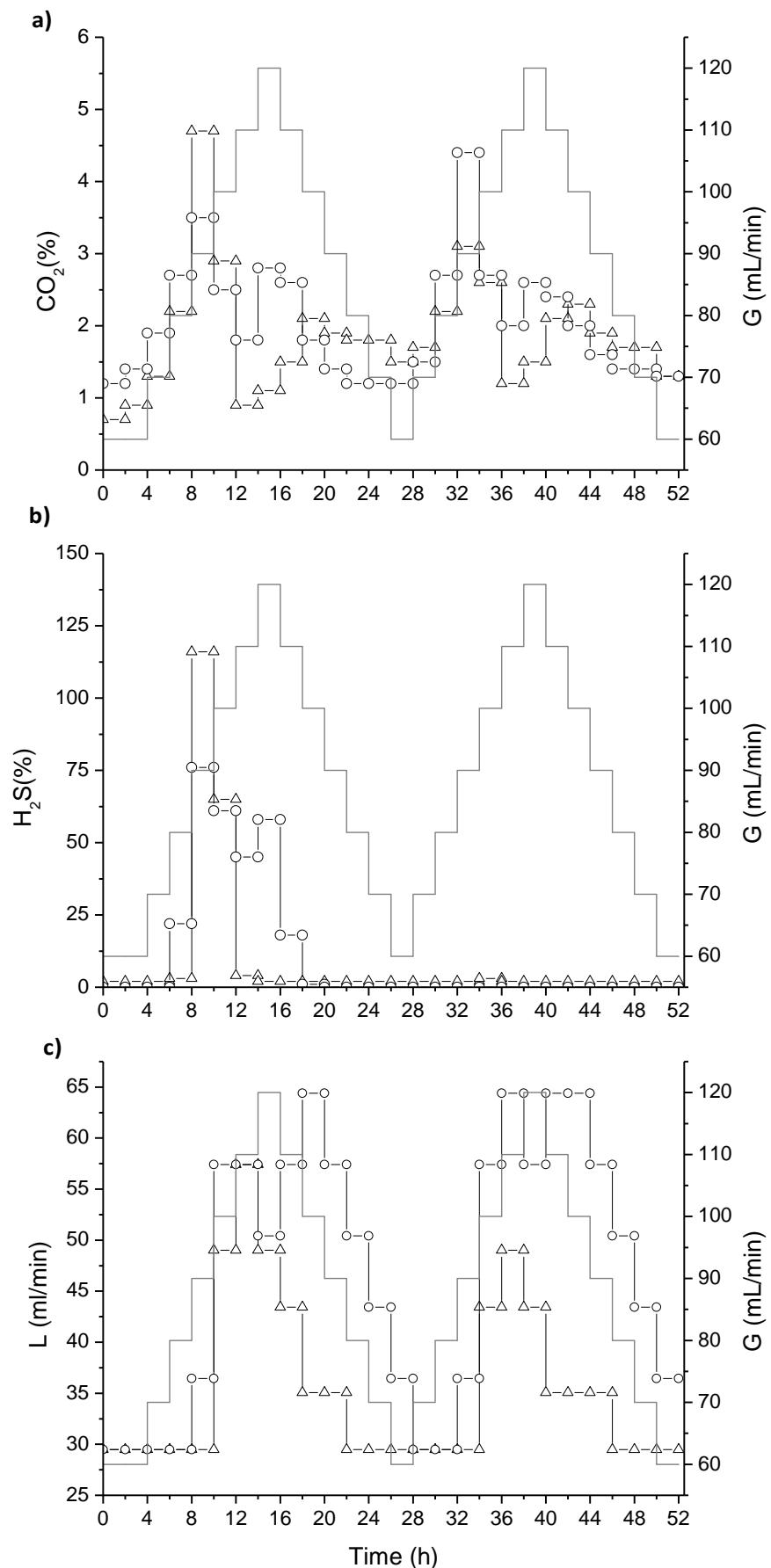
3.2.2. pH

pH also exerts a high influence on CO₂ and H₂S removal in the absorption process due to the significant improvement of the solubility of these gases at high pH values. Under optimal conditions of alkalinity in the cultivation broth, typically encountered in high strength digestates (pH>9, 1500 mg IC L⁻¹), a high pH value (up to 11) is expected in the cultivation broth of a photosynthetic biogas upgrading unit as a result of the pH increase mediated by CO₂ uptake during microalgal photosynthesis [30,32,33]. Nevertheless, a continuous, long-term exposition to high biogas flowrates could lead to the acidification of the cultivation broth even at this high alkalinity. In this sense, the performance of the control system was assessed under high alkalinity at two different pH values (10 and 8.5).

In spite of the high alkalinity of the recycling liquid, CO₂ content in the upgraded biogas under uncontrolled conditions increased up to 21.9% at pH 8.5, corresponding to CO₂-RE of 25.8%, while the maximum CO₂ concentration recorded at a pH 10 was 13.4% (Fig. S2). Indeed, the minimum CO₂ concentration recorded under these conditions and pH 8.5 was 16% (greater than the highest CO₂ value during the experiment at pH 10). In the case of H₂S, the highest concentration recorded was 941 ppm_v at pH 8.5 versus 12 ppm_v at pH 10 (Fig. S2). These results highlight the key role of the operational pH in the absorption process of these acidic gases, and were in agreement with Bahr et al. [6], who recorded CO₂ removals lower than 20% at pH 7 and almost a complete CO₂ removal at pH 10 regardless of the liquid flowrate.


As a result of the lower CO₂-REs at pH 8.5 and, consequently, the high difference between the CO₂ measured and CO₂ set point when the control system was turned on, the increase in the flowrate of the recycling liquid pump was higher compared to other assays, reaching 204 and 211 ml min⁻¹ during the first and second biogas surges, respectively (Fig. 8d). Therefore, at L/G ratios > 1.5, the O₂ content in the upgraded biogas increased over the O₂ set point value (1%). Hence, the recycling liquid flowrate was reduced by the control system during the next step, regardless of the CO₂ concentration in the upgraded biogas due to the priority of the established rules. As a result, the CO₂ content during these assays did not comply with the established set point value since the O₂ content increased when increasing the liquid flowrate (Fig. 8c). These results were in accordance with Marin et al. [24], who recorded an increase in the content of N₂+O₂ in the upgraded biogas from ~5 to ~12% at increasing the L/G ratio

from 1 to 2. Nevertheless, the control system mediated a decrease in the CO₂ content to 4.4% (CO₂-RE of 85%), which was 3.5 times lower than the lowest value recorded without the control system (Fig. 8a). Moreover, the maximum H₂S concentration in the upgraded biogas under these conditions was 238 ppm_v, H₂S being completely removed during most of the time (Fig. 8b).


3.2.3. Temperature

Temperature is an important environmental variable, which has to be taken into account specially when operating outdoor systems. This variable has a significant influence on gas solubility (decreasing with the increase in the temperature), the ionic equilibria, and consequently, the pH [34]. Moreover, temperature affects microalgae and bacteria growth, the optimal temperature for microalgae activity being between 15 and 35°C, depending on the strain [35]. Therefore, the control system was evaluated under two representative temperatures typically found during autumn-spring and summer in mild climates.

Under uncontrolled conditions, the CO₂ and H₂S concentrations in the upgraded biogas reached values of 11.4 and 11.7% and 393 and 305 ppm_v at 15 and 35°C, respectively (Fig. S3). The similarity between the values recorded at both temperatures was attributed to the high alkalinity of the cultivation broth. These results were in agreement with Rodero et al. [13], who demonstrated the negligible influence of the temperature at high alkalinity of the cultivation broth, while at low alkalinity, lower temperatures enhanced CO₂-REs. Similarly, when the control system was turned on, the highest CO₂ content in the upgraded biogas was 4.7 and 4.4% at 15 and 35°C, respectively, while almost a complete H₂S removal was obtained regardless of the liquid flowrate and temperature (Fig. 9a, b). Finally, similar liquid flowrates were needed during the experiments (highest liquid flowrate of 64 ml min⁻¹ at 35°C vs. 57 ml min⁻¹ at 15°C), resulting in low O₂ concentrations <1% consistent with the low L/G ratios (<0.6) (Fig. 9c).

Fig.8. Time course of a) CO_2 , b) H_2S c) O_2 content in the upgraded biogas and d) liquid flow rate under controlled conditions at pH 10 (square) and 8.5 (circle).

Fig. 9. Time course of a) CO_2 , b) H_2S content in the upgraded biogas and c) liquid flow rate under controlled conditions at 35 (circle) and 15 °C (triangle).

4. Conclusions

The recycling liquid flowrate was identified as a key operational variable in the control of the CO₂ and O₂ content in the upgraded biogas during photosynthetic biogas upgrading. The control system developed was capable of guaranteeing a CO₂ content lower than 2.5% during most of the experimental period regardless of the temperature and the alkalinity of the cultivation broth. Moreover, the O₂ remained lower than 1% and negligible concentrations of H₂S were recorded, obtaining a CH₄ concentration in the upgraded biogas >94%. On the contrary, the target biomethane quality was not achieved at a pH 8.5 due to the concomitant increase of both the O₂ and CO₂ concentrations in the upgraded biogas requiring opposite control strategies, confirming that pH was a critical operating parameter in these systems. In summary, the control system was effective under most tested laboratory conditions assuring an optimal liquid flowrate over time at low investment costs, although further optimization and validation under outdoor conditions and demo scale is still required.

Acknowledgements

This work was supported by the INCOVER project. The project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 689242. Esther Arnáiz and Ángel Rodríguez are gratefully acknowledged for their practical assistance. The financial support of the Regional Government of Castilla y León and the EU-FEDER (CLU 2017-09 and UIC 071) is also gratefully acknowledged.

References

- [1] E. Ryckebosch, M. Drouillon, H. Vervaeren, Techniques for transformation of biogas to biomethane, *Biomass and Bioenergy*. 35 (2011) 1633–1645.
doi:10.1016/j.biombioe.2011.02.033.
- [2] J. Brito, F. Almenglo, M. Ramírez, J.M. Gómez, PID control system for biogas desulfurization under anoxic conditions, *J Chem Technol Biotechnol*. 92 (2017) 2369–2375.
doi:10.1002/jctb.5243.
- [3] S. Srinuanpan, B. Cheirsilp, P. Prasertsan, Effective biogas upgrading and production of biodiesel feedstocks by strategic cultivation of oleaginous microalgae, *Energy*. 148 (2018) 766–774. doi:10.1016/j.energy.2018.02.010.
- [4] L. Meier, R. Pérez, L. Azócar, M. Rivas, D. Jeison, Photosynthetic CO₂ uptake by microalgae: An attractive tool for biogas upgrading, *Biomass and Bioenergy*. 73 (2015) 102–109. doi:10.1016/j.biombioe.2014.10.032.
- [5] A. Wesley Olumide, Z. Yaqian, N. Ange, M. Doam Pham, L. Nathalie, A Review of Biogas Utilisation , Purification and Upgrading Technologies, *Waste and Biomass Valorization*. 8 (2017) 267–283. doi:10.1007/s12649-016-9826-4.

[6] M. Bahr, I. Díaz, A. Dominguez, A. González Sánchez, R. Muñoz, Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents, *Environ. Sci. Technol.* 48 (2014) 573–581. doi:10.1021/es403596m.

[7] S. Sun, Z. Ge, Y. Zhao, C. Hu, H. Zhang, L. Ping, Performance of CO₂ concentrations on nutrient removal and biogas upgrading by integrating microalgal strains cultivation with activated sludge, *Energy*. 97 (2016) 229–237. doi:10.1016/j.energy.2015.12.126.

[8] C. Yan, L. Zhu, Y. Wang, Photosynthetic CO₂ uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods, *Appl. Energy*. 178 (2016) 9–18. doi:<https://doi.org/10.1016/j.apenergy.2016.06.012>.

[9] A. Anbalagan, A. Toledo-Cervantes, E. Posadas, E. María, R. Lebrero, A. González-sánchez, E. Nehrenheim, R. Muñoz, Continuous photosynthetic abatement of CO₂ and volatile organic compounds from exhaust gas coupled to wastewater treatment : Evaluation of tubular algal-bacterial photobioreactor, *J. CO₂ Util.* 21 (2017) 353–359. doi:10.1016/j.jcou.2017.07.016.

[10] M. Franco-Morgado, C. Alcántara, A. Noyola, R. Muñoz, A. González-Sánchez, A study of photosynthetic biogas upgrading based on a high rate algal pond under alkaline conditions: Influence of the illumination regime, *Sci. Total Environ.* 592 (2017) 419–425. doi:10.1016/j.scitotenv.2017.03.077.

[11] L. Meier, P. Barros, A. Torres, C. Vilchez, D. Jeison, Photosynthetic biogas upgrading using microalgae: Effect of light/dark photoperiod, *Renew. Energy*. 106 (2017) 17–23. doi:10.1016/j.renene.2017.01.009.

[12] E. Posadas, M.L. Serejo, S. Blanco, R. Pérez, P.A. García-Encina, R. Muñoz, Minimization of biomethane oxygen concentration during biogas upgrading in algal-bacterial photobioreactors, *Algal Res.* 12 (2015) 221–229. doi:10.1016/j.algal.2015.09.002.

[13] M. del R. Rodero, E. Posadas, A. Toledo-Cervantes, R. Lebrero, R. Muñoz, Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds, *Algal Res.* 33 (2018) 284–290. doi:10.1016/j.algal.2018.06.001.

[14] A. Toledo-Cervantes, C. Madrid-Chirinos, S. Cantera, R. Lebrero, R. Muñoz, Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors, *Bioresour. Technol.* 225 (2017) 336–342. doi:10.1016/j.biortech.2016.11.087.

[15] S. Theuerl, J. Klang, A. Prochnow, Process Disturbances in Agricultural Biogas Production — Causes , Mechanisms and Effects on the Biogas Microbiome : A Review, *Energies*. 12 (2019). doi:10.3390/en12030365.

[16] J. Kim, C. Lee, Response of a continuous anaerobic digester to temperature transitions : A critical range for restructuring the microbial community structure and function, *Water Res.* 89 (2016) 241–251. doi:10.1016/j.watres.2015.11.060.

[17] J. Lindmark, E. Thorin, R. Bel, E. Dahlquist, Effects of mixing on the result of anaerobic digestion : Review, *Renew. Sustain. Energy Rev.* 40 (2014) 1030–1047. doi:10.1016/j.rser.2014.07.182.

[18] P.S. Santos, C.A. Grande, E. Rodrigues, Dynamic Study of the Pressure Swing Adsorption Process for Biogas Upgrading and Its Responses to Feed Disturbances, *Ind. Eng. Chem. Res.* 52 (2013) 5445–5454. doi:10.1021/ie303606v.

[19] D. Marín, E. Posadas, P. Cano, V. Pérez, S. Blanco, R. Lebrero, R. Muñoz, Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor, *Bioresour. Technol.* (2018). doi:10.1016/j.biortech.2018.04.117.

[20] S. Darake, A. Rahimi, M.S. Hatamipour, P. Hamzeloui, SO₂ Removal by Seawater in a Packed-Bed Tower: Experimental Study and Mathematical Modeling, *Sep. Sci. Technol.* 49 (2014) 988–998. doi:10.1080/01496395.2013.872660.

[21] G. Qi, S. Wang, Experimental study and rate-based modeling on combined CO₂ and SO₂ absorption using aqueous NH₃ in packed column, *Appl. Energy.* 206 (2017) 1532–1543. doi:10.1016/j.apenergy.2017.09.110.

[22] A. Bandyopadhyaya, M.N. Biswasa, Prediction of the Removal Efficiency of a Novel Two-Stage Hybrid Scrubber for Flue Gas Desulfurization, *Chem. Eng. Technol.* 29 (2006) 130–145. doi:10.1002/ceat.200500160.

[23] M.L. Serejo, E. Posadas, M.A. Boncz, S. Blanco, P. García-Encina, R. Muñoz, Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes, *Environ. Sci. Technol.* 49 (2015) 3228–3236. doi:10.1021/es5056116.

[24] D. Marín, A. Ortíz, R. Díez-Montero, E. Uggetti, J. García, R. Lebrero, R. Muñoz, Influence of liquid-to-biogas ratio and alkalinity on the biogas upgrading performance in a demo scale algal-bacterial photobioreactor, *Bioresour. Technol.* 280 (2019) 112–117. doi:10.1016/j.biortech.2019.02.029.

[25] Sammlung von Algenkulturen Göttingen Culture Collection of Algae Medium Recipe, (n.d.). http://sagdb.uni-goettingen.de/culture_media/02_Spirulina_Medium.pdf (accessed April 1, 2019).

[26] V. Paolini, F. Petracchini, M. Carnevale, F. Gallucci, M. Perilli, G. Esposito, M. Segreto, L.G. Occulti, D. Scaglione, A. Ianniello, M. Frattoni, Characterisation and cleaning of biogas from sewage sludge for biomethane production, *J. Environ. Manage.* 217 (2018) 288–296. doi:10.1016/j.jenvman.2018.03.113.

[27] A. Toledo-Cervantes, C. Madrid-Chirinos, S. Cantera, R. Lebrero, R. Muñoz, Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors, *Bioresour. Technol.* 225 (2017) 336–342. doi:10.1016/j.biortech.2016.11.087.

[28] R. Sander, Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential importance in Environmental Chemistry, (1999).

[29] A. Di Benedetto, F. Cammarota, V. Di Sarli, E. Salzano, G. Russo, Anomalous behavior during explosions of CH₄ in oxygen-enriched air, *Combust. Flame.* 158 (2011) 2214–2219. doi:10.1016/j.combustflame.2011.03.015.

[30] E. Posadas, S. Bochon, M. Coca, Microalgae-based agro-industrial wastewater treatment : a preliminary screening of biodegradability, *J Appl Phycol.* 26 (2014) 2335. doi:10.1007/s10811-014-0263-0.

[31] D. García, E. Posadas, C. Grajeda, S. Blanco, S. Martínez-Páramo, G. Acién, P. García-Encina, S. Bolado, R. Muñoz, Comparative evaluation of piggery wastewater treatment in algal-bacterial photobioreactors under indoor and outdoor conditions, *Bioresour. Technol.* 245 (2017) 483–490. doi:10.1016/j.biortech.2017.08.135.

[32] F. Ji, Y. Liu, R. Hao, G. Li, Y. Zhou, R. Dong, Biomass production and nutrients removal by a new microalgae strain *Desmodesmus* sp. in anaerobic digestion wastewater, *Bioresour. Technol.* 161 (2014) 200–207. doi:10.1016/j.biortech.2014.03.034.

[33] P. Foladori, S. Petrini, G. Andreottola, Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters, *Chem. Eng. J.* 345 (2018) 507–516. doi:10.1016/j.cej.2018.03.178.

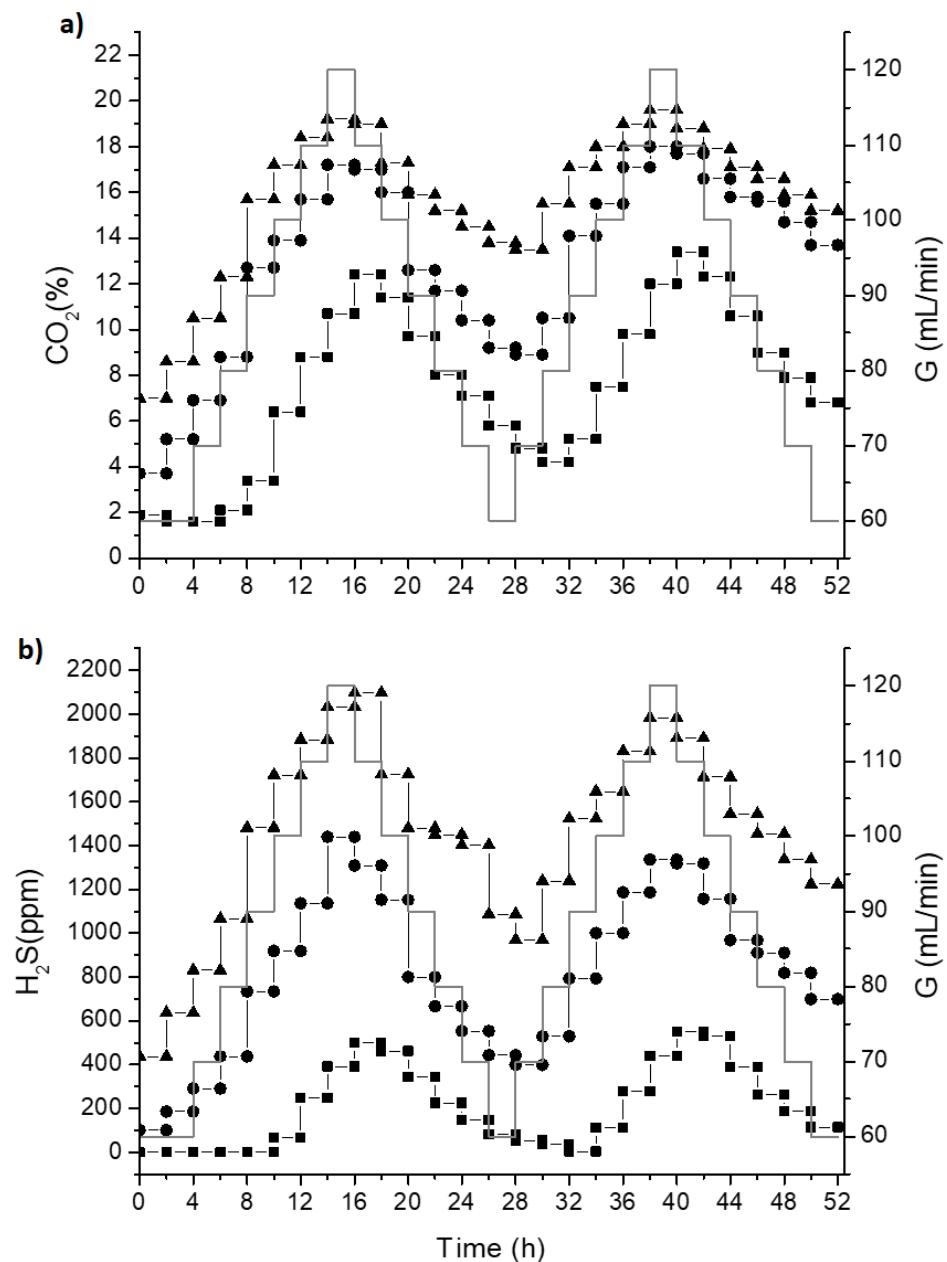
[34] R. Bouterfas, M. Belkoura, A. Dauta, Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake, *Hydrobiologia.* 489 (2002) 207–217. doi:10.1023/A:1023241006464.

[35] W. Zhou, J. Wang, P. Chen, C. Ji, Q. Kang, B. Lu, K. Li, J. Liu, R. Ruan, Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives, *Renew. Sustain. Energy Rev.* 76 (2017) 1163–1175. doi:10.1016/j.rser.2017.03.065.

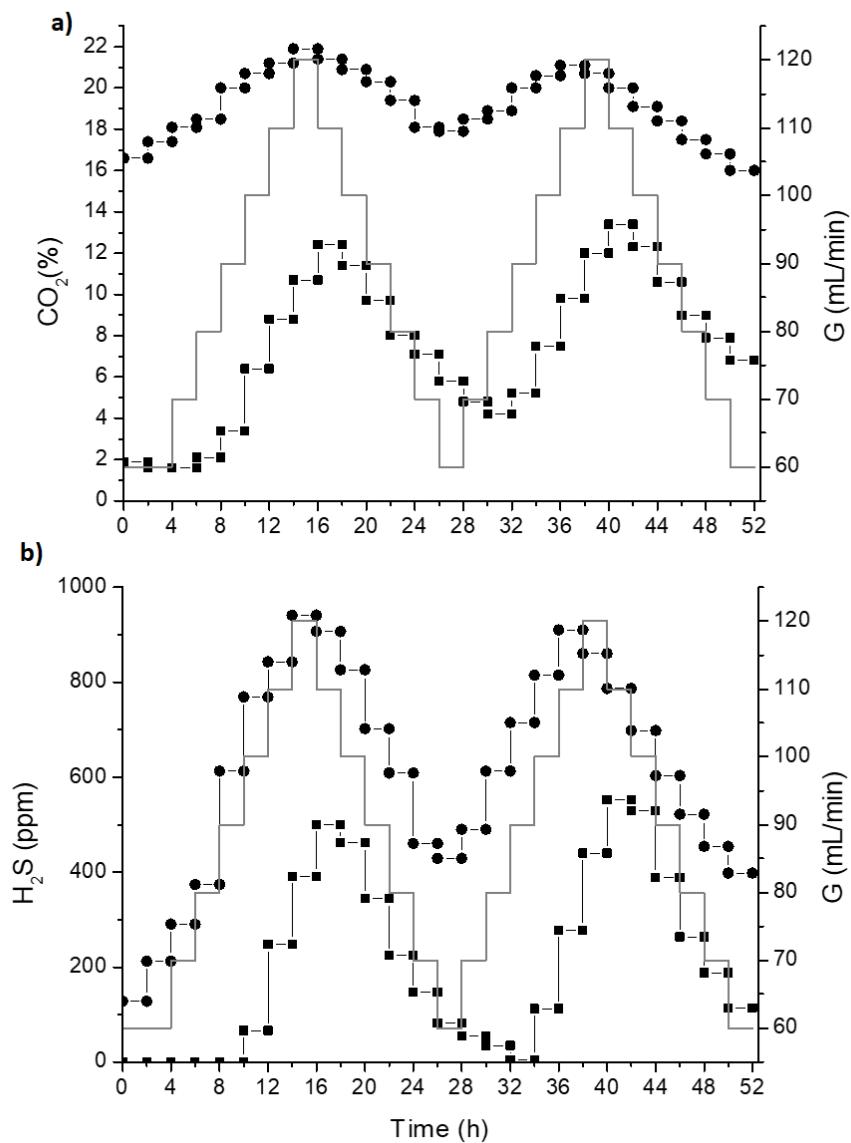
Supplementary Material

Development of a control strategy to cope with biogas flowrate variations during photosynthetic biogas upgrading

María del Rosario Rodero^{1,2}, Andrea Carvajal^{1,3}, Víctor Castro¹, Daniel Navia³, César de Prada², Raquel Lebrero^{1,2}, Raúl Muñoz^{1,2}


¹ Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.

² Institute of Sustainable Processes, University of Valladolid, 47011, Valladolid, Spain.


³ Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. España 1680 Valparaíso (Chile)

Content:

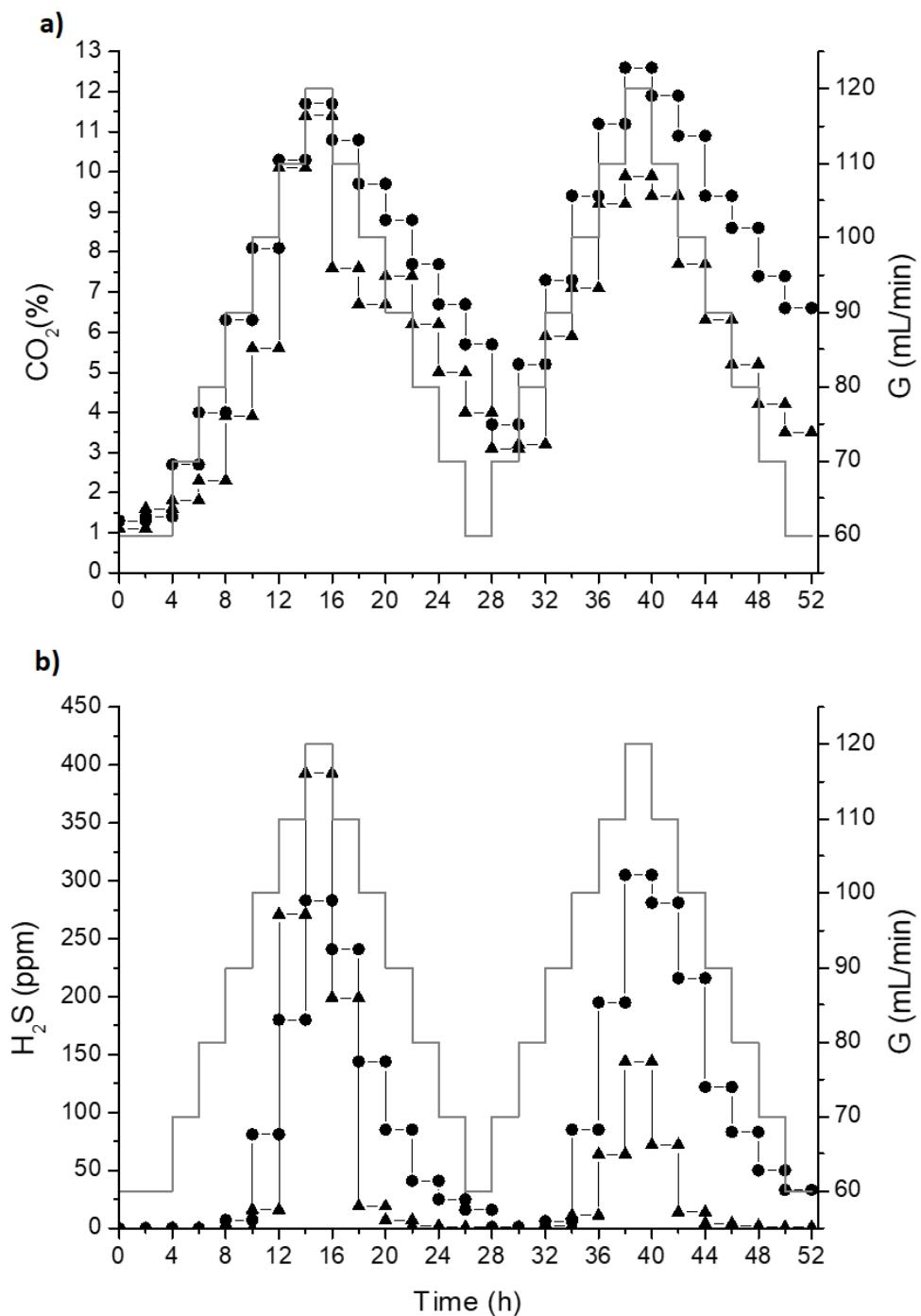

- Figure S1
- Figure S2
- Figure S3
- Table S1
- Table S2

Figure S1. Step response of a) CO_2 and b) H_2S content in the upgraded biogas under uncontrolled conditions at IC concentration of 1500 (square), 500 (circle) and 100 mg L^{-1} (triangle). The continuous line represents the biogas flowrate (G).

Figure S2. Step response of a) CO_2 and b) H_2S content in the upgraded biogas under uncontrolled conditions at pH 10 (square) and 8.5 (circle). The continuous line represents the biogas flowrate (G).

Figure S3. Step response of a) CO₂ and b) H₂S content in the upgraded biogas under uncontrolled conditions at 35 (circle) and 15 °C (triangle). The continuous line represents the biogas flowrate (G).

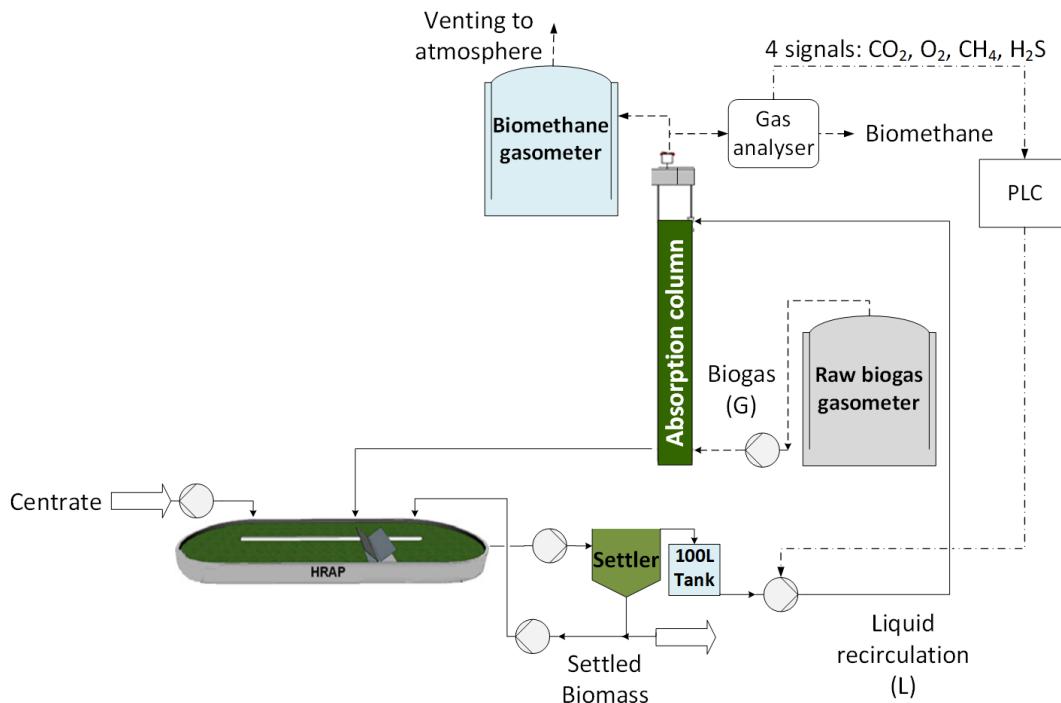
Table S1. Variations in the recycling liquid flowrate under different concentrations of CO₂ and O₂ in the outlet biomethane during the step response of the control system.

Rule	ΔO ₂	ΔCO ₂	Power pump change (%)	Liquid flowrate change (mL min ⁻¹)
1	>5	-	-30	-21.6
	[1-5]		-25	-18.0
	[0.5-1]		-20	-14.4
	[0-0.5]		-15	-10.8
2	≤0	>10	40	28.8
		[5-10]	30	21.6
		[1-5]	25	18.0
		[0.5-1]	20	14.4
		[0-0.5]	15	10.8
3	≤0	[(-0.5)-0]	-2.5	-1.8
		[(-1)-(-0.5)]	-5	-3.6
		[(-2.5)-(-1)]	-7.5	-5.4

Table S2. Variations in the recycling liquid flowrate under different concentrations of CO₂ and O₂ in the outlet biomethane during the validation of the control system under different environmental conditions.

Rule	ΔO ₂	ΔCO ₂	Power pump change (%)	Liquid flowrate change (mL min ⁻¹)
1	>5	-	-10	-28
	[1-5]		-7.5	-21
	[0.5-1]		-5	-14
	[0-0.5]		-2.5	-7
2	≤0	>10	12.5	35
		[5-10]	10	28
		[1-5]	7.5	21
		[0.5-1]	5	14
		[0-0.5]	2.5	7
3	≤0	[(-0.5)-0]	0	0
		[(-1)-(-0.5)]	-2.5	-7
		[(-2.5)-(-1)]	-2.5	-7

Chapter 7



Performance evaluation of a control strategy for photosynthetic biogas upgrading in a semi-industrial scale photobioreactor

Rodero, M. del R., Carvajal, A., Arbib, Z., Lara, E.,
de Prada, C., Lebrero, R., Muñoz, R., 2020.

Bioresour. Technol. 307, 123207.

doi:10.1016/j.biortech.2020.123207

Performance evaluation of a control strategy for photosynthetic biogas upgrading in a semi-industrial scale photobioreactor

María del Rosario Rodero^{a,b}, Andrea Carvajal^{a,c}, Zouhayr Arbib^d, Enrique Lara^d, César de Prada^b, Raquel Lebrero^{a,b}, Raúl Muñoz^{a,b}

^a Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.

^b Institute of Sustainable Processes, University of Valladolid, 47011, Valladolid, Spain.

^c Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. España 1680 Valparaíso (Chile)

^d FCC Servicios Ciudadanos, Av. del Camino de Santiago, 40, edificio 3, 4^a planta, 28050 Madrid, Spain

ABSTRACT

The validation of a control strategy for biogas upgrading via light-driven CO₂ consumption by microalgae and H₂S oxidation by oxidizing bacteria using the oxygen photosynthetically generated was performed in a semi-industrial scale (9.6 m³) photobioreactor. The control system was able to support CO₂ concentrations lower than 2% with O₂ contents \leq 1% regardless of the pH in the cultivation broth (ranging from 9.05 to 9.50). Moreover, the control system was efficient to cope with variations in biogas flowrate from 143 to 420 L h⁻¹, resulting in a biomethane composition of CO₂ $<$ 2.4%, CH₄ $>$ 95.5%, O₂ $<$ 1% and no H₂S. Despite the poor robustness of this technology against failures in biogas and liquid supply (CH₄ concentration of 67.5 and 70.9% after 2 h of biogas or liquid stoppage, respectively), the control system was capable of restoring biomethane quality in less than 2 h when biogas or liquid supply was resumed.

Keywords: algal-bacterial processes; biogas upgrading; biomethane; process control; semi-industrial scale.

1. Introduction

Biogas from the anaerobic digestion of the organic matter present in solid waste, wastewater or energy crops constitutes a valuable source of renewable energy. This green gas can be used for heat and/or power generation due to its high CH₄ content (50-75%) (Surendra et al., 2014). Nevertheless, the presence of contaminants such as CO₂ (30-50%) and H₂S (0.005-2%) hinders the widespread use of this sustainable energy vector (Ryckebosch et al., 2011). In this regard, the removal of CO₂ reduces biogas transportation and compression costs and increases its specific calorific value (Yan et al., 2016). On the other hand, H₂S removal is required since it is a hazardous and corrosive gas that promotes emissions of sulfur oxides (SO_x) during combustion (Brito et al., 2017). In this context, biogas upgrading is a mandatory step to enable its use as vehicle fuel or its injection into natural gas grids, which requires concentrations in biogas of CH₄ ≥ 90%, CO₂ ≤ 2-4%, O₂ ≤ 1% and trace levels of H₂S according to most international regulations (Muñoz et al., 2015). The recast Renewable Energy Directive (RED II) sets an overall EU target to achieve at least a 32% consumption of energy from renewable sources by 2030, which includes an annual increase of 1.3% in the share of renewable energy in the heating sector and the use of a minimum of 14% renewable energy in the transport sector by 2030 (Directive (EU) 2018/2001, 2018). Therefore, biomethane has become increasingly attractive in Europe during the past years, where the number of biogas upgrading plants has increased from 187 to 540 in the 2011-2017 period, with a biomethane production up to 19352 GWh in 2017 (EBA, 2018). However, a cost-competitiveness and sustainable biogas upgrading technology is still necessary to boost the use of this promising energy source.

Nowadays, physicochemical methods such as water/organic/chemical scrubbing, pressure swing absorption and membrane separation for CO₂ removal are widely applied for biogas upgrading (EBA, 2018). However, these technologies often need a previous H₂S/siloxane/H₂O abatement step and exhibit a high energy and chemical demand that jeopardize the environmental and economic feasibility of biomethane (Awe et al., 2017). On the other hand, biological biogas upgrading require a two-step process (microaerobic digestion or biofiltration for H₂S removal followed by hydrogenotrophic CO₂ bioconversion into CH₄) and a surplus of electricity from renewable sources (to produce the H₂ required for microbial CO₂ reduction) (Angelidaki et al., 2018; Muñoz et al., 2015). In this context, photosynthetic biogas upgrading is an attractive alternative

for the concomitant and cost-competitive removal of CO₂ and H₂S from biogas (Nagarajan et al., 2019). This process is based on the fixation of CO₂ by microalgae in the presence of light and the oxidation of H₂S to S⁰/SO₄²⁻ by sulfur-oxidizing bacteria using the oxygen produced by microalgal photosynthesis (Sun et al., 2016). Moreover, digestate from anaerobic digestion, a nutrient-rich effluent from the process, can be used as N and P source to support microalgal/bacterial growth, which improves the environmental and economic sustainability of this green technology (Ouyang et al., 2015).

The optimization of photosynthetic biogas upgrading coupled with nutrient recovery from digestates, which is commonly implemented in a bubble biogas scrubbing column (AC) interconnected via culture broth recirculation to a photobioreactor where the absorbed CO₂ and H₂S uptake occurs, has been carried out under indoors conditions at lab scale (Bahr et al., 2014; Franco-Morgado et al., 2017; Meier et al., 2018; Rodero et al., 2018; Serejo et al., 2015). Nevertheless, the performance of outdoors systems is governed by the daily and seasonal variations in environmental conditions, the pH in the cultivation broth being a critical parameter that impacts on both H₂S and CO₂ gas-liquid mass transfer in the AC (Bose et al., 2019; Posadas et al., 2017). In addition, the efficiency of the upgrading process could be affected by variations in the daily production and composition of biogas, process shutdowns or technical failures in equipment. In this regard, Rodero et al. (2019) designed a control system to cope with possible disturbances during photosynthetic biogas upgrading based on the optimization of the liquid to biogas ratio (L/G), which is a key factor determining the CO₂ and H₂S absorption in the AC (Meier et al., 2019). The control system was systematically evaluated in a 180 L high rate algal pond (HRAP) interconnected to an AC under indoors conditions with promising results under most conditions tested (biomethane composition of O₂<1% and CO₂<2.5% and CH₄>94%) (Rodero et al., 2019). However, the validation of any control strategy at a demo scale under outdoors conditions is a requirement prior full-scale implementation of this technology.

This study constitutes, to the best of our knowledge, the first evaluation under outdoors conditions and semi-industrial scale of the performance of a control system devoted to maintain or restore biomethane quality under environmental variations (different pH of the cultivation broth, daily biogas production fluctuations) or operational failures during photosynthetic biogas upgrading.

2. Materials and methods

2.1. Experimental set-up

The experimental set-up was composed of a 9.6 m³ HRAP with an illuminated surface of 32 m² and a depth of 0.3 m, interconnected to a 7 m³ conical settler prior to a 150 L biogas AC via an external recirculation of the cultivation broth. The system was operated outdoors during summer conditions (average ambient temperature and light radiance of 24.2±2.0 °C and 25.5±1.3 MJ m⁻² d⁻¹, respectively) at Chiclana de la Frontera WWTP (36.42°N, 6.15°W) (Spain). The HRAP consisted of two water channels divided by a central wall made of concrete blocks and two flow rectifiers in each loop to avoid dead zones, backflow and eddies (de Godos et al., 2016). The HRAP was continuously agitated at an internal liquid recirculation velocity of ≈30 cm s⁻¹ by a 6-blade paddlewheel. The average composition of the real centrate, fed at a flow rate of 160 L d⁻¹, was (mg L⁻¹): alkalinity (CaCO₃) = 2420±192, chemical oxygen demand (COD) = 793±214, total nitrogen (TN) = 724±118, ammonium (N-NH₄⁺) = 579±27, phosphate (P-PO₄³⁻) = 60±17 and volatile suspended solids (VSS) = 320±248. The inorganic carbon (IC) concentration of the HRAP cultivation broth was adjusted to 1907±109 mg L⁻¹ by addition of NaHCO₃ and Na₂CO₃.

The algal-bacterial biomass was harvested from the bottom of the settler at a rate providing a fixed biomass productivity of 30 g m⁻² d⁻¹. The algal-bacterial biomass was continuously produced (from CO₂, H₂S and nutrient fixation) and harvested, with a fraction being recirculated. This process, and the stability of the algal-bacterial biomass, was confirmed during a recent one-year round evaluation of the technology conducted by the authors (Marín et al., 2018).

Biogas, obtained from the anaerobic digestion of sewage sludge in a 20 m³ digester located at Chiclana de la Frontera WWTP, was sparged into the AC using a polypropylene fine bubble diffuser (ECOTEC, Spain) under countercurrent flow configuration with the clarified cultivation broth (pumped from the top of the settler). Raw biogas composition was 70.5±1.7% CH₄, 31.5±1.1% CO₂ and 52±57 ppm H₂S. The low content of H₂S in the inlet biogas was mediated by the pretreatment performed to the sewage sludge prior anaerobic digestion. Biogas composition (CO₂, CH₄, O₂ and H₂S) was measured using an online gas analyzer INCA 4001 (UNION Instruments GmbH, Germany). The resolution of the sensors of the biogas analyzer was 0.1 vol.%

for CO₂, O₂ and CH₄ and 1 ppm_v in the case of H₂S. The range of measurement was 0-100 vol.% for CO₂ and CH₄, 0-25 vol.% for O₂ and 0-10000 ppm_v for H₂S, while the accuracy was $\pm 1\%$, $\pm 1\%$, $\pm 3\%$ and $\pm 10\%$ of the range for CO₂, CH₄, O₂ and H₂S, respectively. The control module was composed of a Programmable Logic Controller (PLC) “S7-315” via an interface developed using the software Human Machine Interface (HMI) Scada “WinCC Flexible 2008 SP4” (Siemens). The pH of the recycling liquid was measured using a Crison pH 4603 probe coupled to a Crison Multimeter 44 display (Barcelona, Spain). The concentration of dissolved IC in the cultivation broth was determined by means of a Shimadzu TOC-VCSH analyzer (Japan) equipped with a TNM-1 chemiluminescence module.

2.2. Control system strategy

A rule-based control system was implemented in order to maintain a biomethane quality over time according to the results reported by Rodero et al. (2019) during the evaluation of the control system under lab scale indoors conditions. The controlled variables were the O₂ and CO₂ concentration in the biomethane, while the manipulated variable was the recycling liquid flow rate, which consequently modified the L/G ratio in the AC. A set point value of 2% and 1% were set for CO₂ and O₂ concentrations, respectively, in order to comply with the target values for biomethane use as natural gas substitute in most international legislations (including the recent European Standard UNE-EN 16723). The O₂ content in biomethane was also selected as controlled variable since a high O₂ desorption in the AC can result in explosive gas mixtures (Di Benedetto et al., 2011). On the contrary, the CH₄ content in the upgraded biogas was not chosen as controlled variable since negligible losses are typically accounted as a result of its low aqueous solubility, while H₂S content was not considered either based on the higher H₂S removal efficiencies (REs) associated to the superior H₂S aqueous solubility compared to CO₂.

The control system operated based on the differences between the O₂ and CO₂ concentration measured in the upgraded biogas and the set point values fixed, the changes implemented in the recycling liquid flowrate being summarized in Table 1. When the O₂ content in the upgraded biogas was $> 1\%$, the pump flow rate was decreased due to safety reasons even if the CO₂ content in the upgraded biogas was $> 2\%$ (set point value). When the O₂ content in the biomethane was $< 1\%$ and CO₂ content $> 2\%$, the control system increased the flow rate of the recycling liquid pump in order to

enhance the CO₂ gas-liquid mass transfer. Finally, when the O₂ content in the biomethane was < 1% and CO₂ content < 2 %, thus complying with the standard values, the flow rate of the recycling liquid pump was also decreased in order to save energy.

Table 1. Variations in the recycling liquid flowrate as a function of the differences between the concentrations of CO₂ and O₂ in the biomethane and the set point values (ΔCO_2 and ΔO_2 , respectively).

ΔO_2	ΔCO_2	Power pump variation (%)	Liquid flow rate variation (L h ⁻¹)
≤ 0	[-2]-[-1]	-6	-45.2
	[-1]-[-0.5]	-4	-30.1
	[(-0.5)-0]	-2	-15.1
	[0-0.5]	5	37.6
	[0.5-1]	10	75.3
	[1-5]	15	112.9
	[5-10]	20	150.5
	[10-20]	25	188.2
	>20	30	225.8
[0-0.5]	-	-5	-37.6
[0.5-1]		-10	-75.3
[1-5]		-15	-112.9
>5		-20	-150.5

2.3. Validation of the control strategy

The performance of the proposed control strategy was evaluated under different pH values in the cultivation broth (9.05, 9.20, 9.35, 9.50) for 8 h when the system operated under steady state. The initial L/G ratio was 0.8 (corresponding to the lowest L/G ratio that could be reached in the demo experimental set-up).

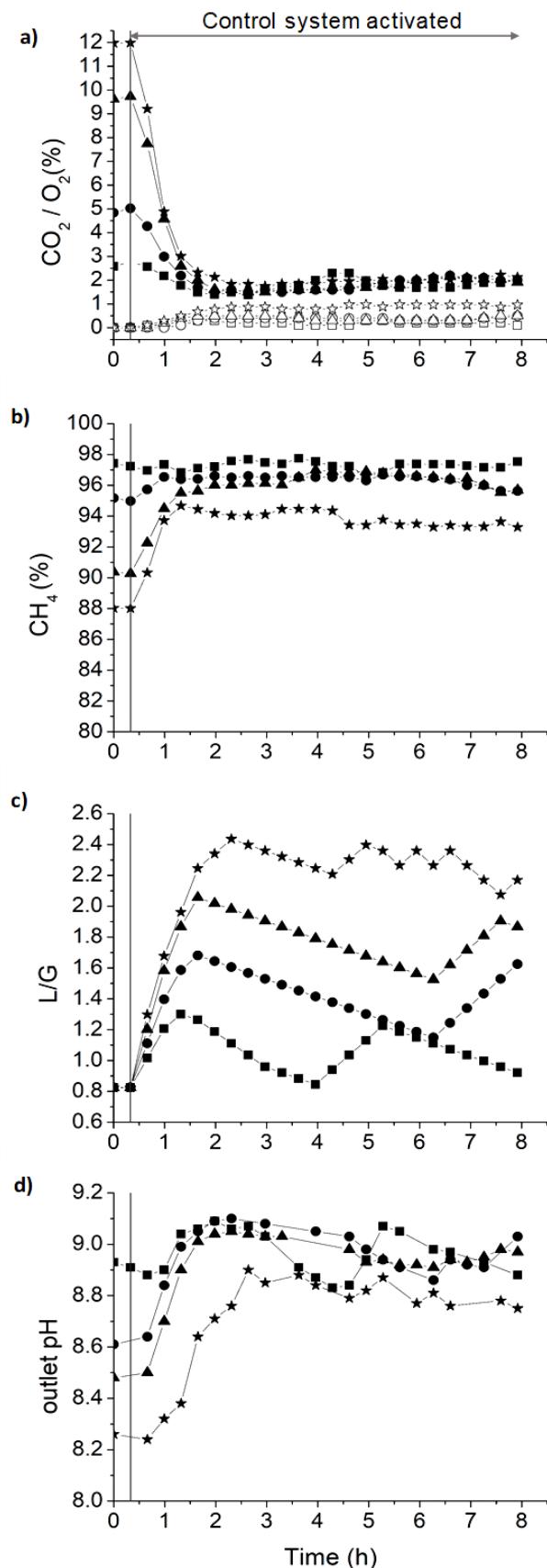
Process response to the stepwise variations in biogas flowrate (every 1 h and 20 min) from 143 L h⁻¹ to 218, 300 and 420, and back to 143 L h⁻¹, was tested under controlled and uncontrolled conditions. The inlet pH of the cultivation broth in the AC was 9.20 and the initial liquid flowrate was maintained at 327 L h⁻¹ (minimum value) during the uncontrolled conditions.

Finally, the robustness of the technology towards operational failures in biogas supply and in the liquid recirculation was assessed. After process monitoring for 4 h under

steady state, the biogas compressor or the recycling liquid pump were turned off for 2 h, and subsequently switched on again followed by process monitoring for the next 4 h under controlled and uncontrolled conditions. During the robustness test, the inlet pH of the cultivation broth in the AC was 9.35, the biogas flowrate was set at 420 L h^{-1} and the initial L/G was fixed based on the minimum L/G ratio able to provide a satisfactory biomethane quality (CO_2 content $\leq 2\%$) under these operational conditions ($\text{L/G} \approx 1.1\text{-}1.2$).

In all experiments, the composition of the upgraded biogas was measured every 20 min prior actuation of the control system.

3. Results and discussion


3.1. Evaluation of process performance under different pH in the cultivation broth

The effect of the pH of the cultivation broth on the performance of photosynthetic biogas upgrading was evaluated. The upgraded biogas composition, L/G ratios and recycling liquid pH at the outlet of the AC under uncontrolled (initial values) and controlled conditions at different pHs of the cultivation broth (9.5, 9.35, 9.2 and 9.05) are shown in Fig. 1. In this regard, a slight drop in the pH of the cultivation broth (~ 0.15) caused a remarkable decrease in the CO_2 gas-liquid mass transfer in the AC under uncontrolled conditions despite the high alkalinity of the cultivation broth ($1907\pm109 \text{ mg IC L}^{-1}$). The CO_2 concentration in the upgraded biogas increased from 2.7 ± 0.1 to 4.9 ± 0.1 , 9.7 ± 0.1 and $12.0\pm0.0\%$, which corresponded to $\text{CO}_2\text{-REs}$ of 93.4, 87.7, 77.9 and 68.5%, at a pH of 9.50, 9.35, 9.20 and 9.05, respectively, exceeding the CO_2 set point value (2%) at a L/G ratio of 0.8 (Fig. 1a). These results agreed with those reported in a pilot scale HRAP by Bahr et al. (2014), who obtained $\text{CO}_2\text{-REs} < 50\%$ at a pH of 9 and a L/G ratio of 0.4 and $\text{CO}_2\text{-REs} > 90\%$ at a pH of 10. Likewise, Rodero et al. (2019) recorded CO_2 concentrations in the upgraded biogas $< 2\%$ and 16% at a pH of 10 and 8.5, respectively, under similar conditions (L/G ratio of 0.5 and $1500 \text{ mg IC L}^{-1}$ in the cultivation broth). In this context, dissolved inorganic carbon in water is a mixture of CO_2 (aq), HCO_3^- and CO_3^{2-} , the dissociation constants being $\text{pka}_1 = 6.35$ and $\text{pka}_2 = 10.3$ at 25°C (Lee and Pirt, 1984). In our particular study, the dissolved inorganic carbon in the liquid phase was composed of HCO_3^- (main species) and CO_3^{2-} in the range of pH tested (9.05-9.50). In this specific range, a slight increase in pH of 0.15

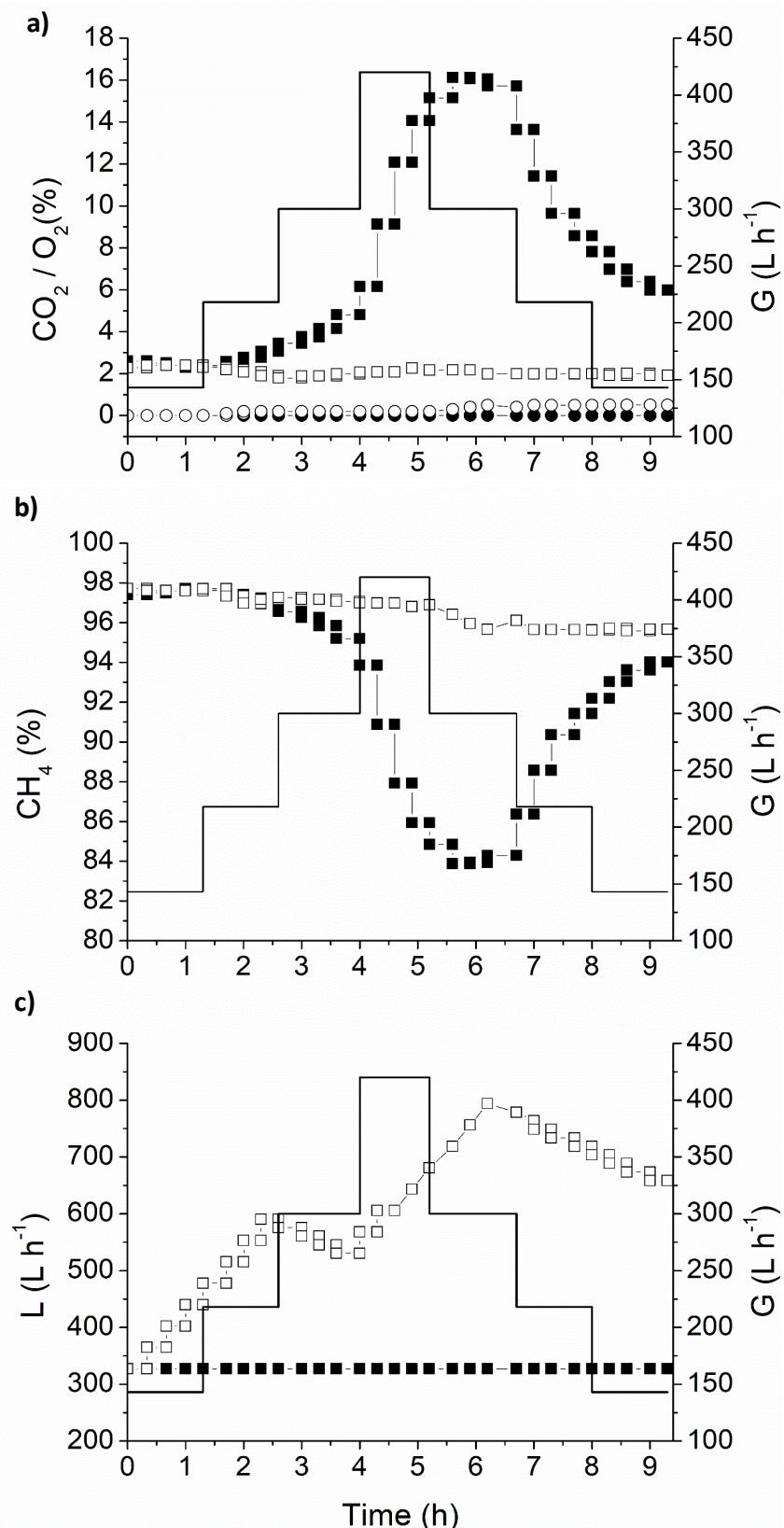
shifted the equilibrium towards more CO_3^{2-} formation, thus increasing the CO_2 gas-liquid concentration gradient, and consequently higher CO_2 removals were achieved.

On the other hand, a complete H_2S removal was achieved regardless of the pH of the cultivation broth as a result of its higher aqueous solubility compared to CO_2 (according to Henry's dimensionless constant) and low concentration in the inlet biogas (52 ± 57 ppm_v of H_2S) (Sander, 1999). Moreover, since the sulfide dissociation constants are $\text{pka}_1=7.04$ and $\text{pka}_2=11.95$ at 18°C (Smet et al., 1998), the predominant species in the liquid phase in the range of pH studied (9.05-9.50) was HS^- , thus increasing the H_2S gas-liquid concentration gradient and consequently the mass transfer. In this context, Kang et al. (2020) observed a rapid increase in the aqueous H_2S concentration at pH 10 due to the 100 times higher H_2S equilibrium aqueous concentration in comparison with that at pH 8. On the other hand, the oxidation of HS^- in the liquid phase can be chemical (supported by the high dissolved oxygen in the cultivation broth) and/or biological (by sulfur-oxidizing bacteria, i.e. *Thioalbus* genus) (Meier et al., 2018; Toledo-Cervantes et al., 2016). In this regard, although sulfur oxidation can result in different products (S^0 , $\text{S}_2\text{O}_3^{2-}$ and SO_4^{2-}), SO_4^{2-} is typically the major end-product due to the high dissolved oxygen (up to 21.6 mg O_2 L^{-1}) and pH in the cultivation broth of algal-bacterial photobioreactors (Kang et al., 2020; Meier et al., 2018).

Consequently, the CH_4 concentration in the upgraded biogas accounted for 97.3 ± 0.1 , 95.1 ± 0.1 , 90.3 ± 0.1 and $88.0\pm0.0\%$ at a pH of 9.50, 9.35, 9.20 and 9.05, respectively, under uncontrolled conditions, while O_2 concentration in the upgraded biogas was always negligible due to the low initial L/G ratio (0.8) (Fig. 1). In this regard, Toledo-Cervantes et al. (2017) recorded a slightly higher O_2 desorption in the upgraded biogas (O_2 content $\sim 0.8\%$) under counter-current operation at a L/G ratio of 0.8 (similar conditions to this study), while the O_2 content was almost zero under co-current operation.

Fig. 1. Time course of a) CO_2 (solid) and O_2 (open) concentrations in the upgraded biogas, b) CH_4 concentration in the upgraded biogas, c) liquid to biogas (L/G) ratio in the absorption column and d) outlet pH of the recycling liquid in the absorption column at a pH of the cultivation broth of 9.50 (square), 9.35 (circle), 9.20 (triangle) and 9.05 (star).

When the control system was initiated, the CO₂ concentration decreased to values lower than the set point (2%) after 1 h at the highest pH (9.50) and 2 h at the lowest (9.05), and remained stable afterwards (Fig. 1a). No H₂S concentration was detected in the upgraded biogas regardless of the pH. Interestingly, the O₂ concentrations in the biomethane were higher when the control was active compared to those without control as a result of the higher L/G ratios in the AC. However, these concentrations remained below the set point (O₂ concentration =1%) in most of the experiments except at a pH of 9.05, where a maximum O₂ concentration of 1% was achieved (Fig. 1b). Maximum L/G ratios of 1.3, 1.7, 2.1 and 2.4, which corresponded to liquid flowrates of 515, 681, 816 and 967 L h⁻¹, were recorded at a pH of 9.50, 9.35, 9.20 and 9.05, respectively (Fig. 1c). In fact, a lower decrease in the pH along the AC was obtained when the control system was active (0.2±0.1 vs 0.7±0.1) due to process operation at higher L/G ratios (Fig. 1d). This lower decrease in the pH at higher L/G ratios was associated to the lower mass of CO₂ transferred per recycling liquid volume (Table S1), which allowed to achieve higher CO₂-REs (Posadas et al., 2017). In this context, the limited acidification of the liquid along the AC due to the higher L/G ratios when the system was controlled resulted in higher CO₂-REs. This was mediated by the equilibrium shift from CO₂ to HCO₃⁻ and CO₃²⁻, which supported higher gas-liquid CO₂ concentration gradients.


3.2. Process response to stepwise variations in biogas flowrate

The daily production of biogas might vary as a result of changes in the feedstock mass flowrate or composition and temperature in the anaerobic digester, which directly impacts on the upgrading process (Kim and Lee, 2016; Theuerl et al., 2019). Fig. 2 shows the upgraded biogas composition and liquid flowrate in the AC under controlled and uncontrolled conditions during the stepwise variations in biogas flowrate from 143 L h⁻¹ to 218, 300 and 420, and back to 143 L h⁻¹.

The CO₂ concentration in the upgraded biogas increased from 2.5 to 14.1%, when the biogas flowrate was stepwise increased from 143 to 218, 300 and 420 L h⁻¹ under uncontrolled conditions (at a constant liquid flowrate of 327 L h⁻¹), which corresponded to a decrease in the L/G ratio from 2.3 to 0.8. These results were in accordance with Marín et al. (2019), who reported a decrease in the CO₂ content from 9.6% to negligible values when increasing the L/G ratio from 0.5 to 2.0. Subsequently, when the biogas flowrate was stepwise decreased from 420 to 300 L h⁻¹, the CO₂ concentration slightly increased up to 16.1% as a result of the previous acidification of the liquid remaining in

the AC. Then, the concentration of CO₂ gradually decreased to 6.0% at the lowest biogas flowrate of 143 L h⁻¹ (Fig. 2a). The O₂ and H₂S concentrations in the upgraded biogas were negligible in the absence of control strategy, while CH₄ concentration was correlated to CO₂ removal, with a maximum concentration of 97.6% at 143 L h⁻¹ (at the beginning of the assay) and a minimum CH₄ concentration in the upgraded biogas of 83.9% at 300 L h⁻¹ (after the decrease from 420 L h⁻¹) (Fig. 2b). Overall, the system was not able to achieve a biomethane quality complying with most international standards (CO₂ content \leq 2% and CH₄ content \geq 90%) without control system.

Biomethane quality improved significantly when the control system was active. Indeed, the CO₂ concentration recorded in the upgraded biogas reached a maximum of 2.4% (\sim 6.7 times lower than that without control) and remained almost constant at \sim 2% regardless the stepwise variations in biogas flowrate from 143 L h⁻¹ to 218, 300 and 420, and back to 143 L h⁻¹ (Fig. 2a). A complete H₂S removal was achieved, while low O₂ concentrations in the biomethane (\leq 0.5 %) were recorded even at the maximum L/G ratio of 4.9 (corresponding to a liquid flowrate of 703 L h⁻¹) (Fig. 2c). These high L/G ratios occurred during the stepwise decrease in the biogas flowrate, since the liquid flowrates imposed by the control system were still high due to the culture broth acidification caused by the previous biogas flowrates. In this context, the lower O₂ desorption recorded at higher L/G ratios compared to that reported in section 3.1, where the O₂ concentration in the biomethane was 1% at a pH of 9.05 and a L/G ratio of 2.3, could be attributed to the higher liquid flowrate reached in the previous section (967 L h⁻¹) and the lower biogas flowrate (143 or 218 L h⁻¹) in the present experiment, which supported a lower turbulence in the AC and a lower O₂ gas-liquid mass transfer in this unit. In this context, turbulence in the AC impacts on the average bubble size, which itself is inversely proportional to both components of the overall mass transfer coefficient (k_{la}): the specific area (a) and the liquid transport coefficient (k_l) (Bordel et al., 2008). Finally, it should be stressed that the CH₄ concentration in the upgraded biogas was $>95.5\%$ during the complete experimental period under controlled conditions (Fig. 2b). In brief, the control strategy implemented was effective to cope with variations in the biogas flowrate over time.

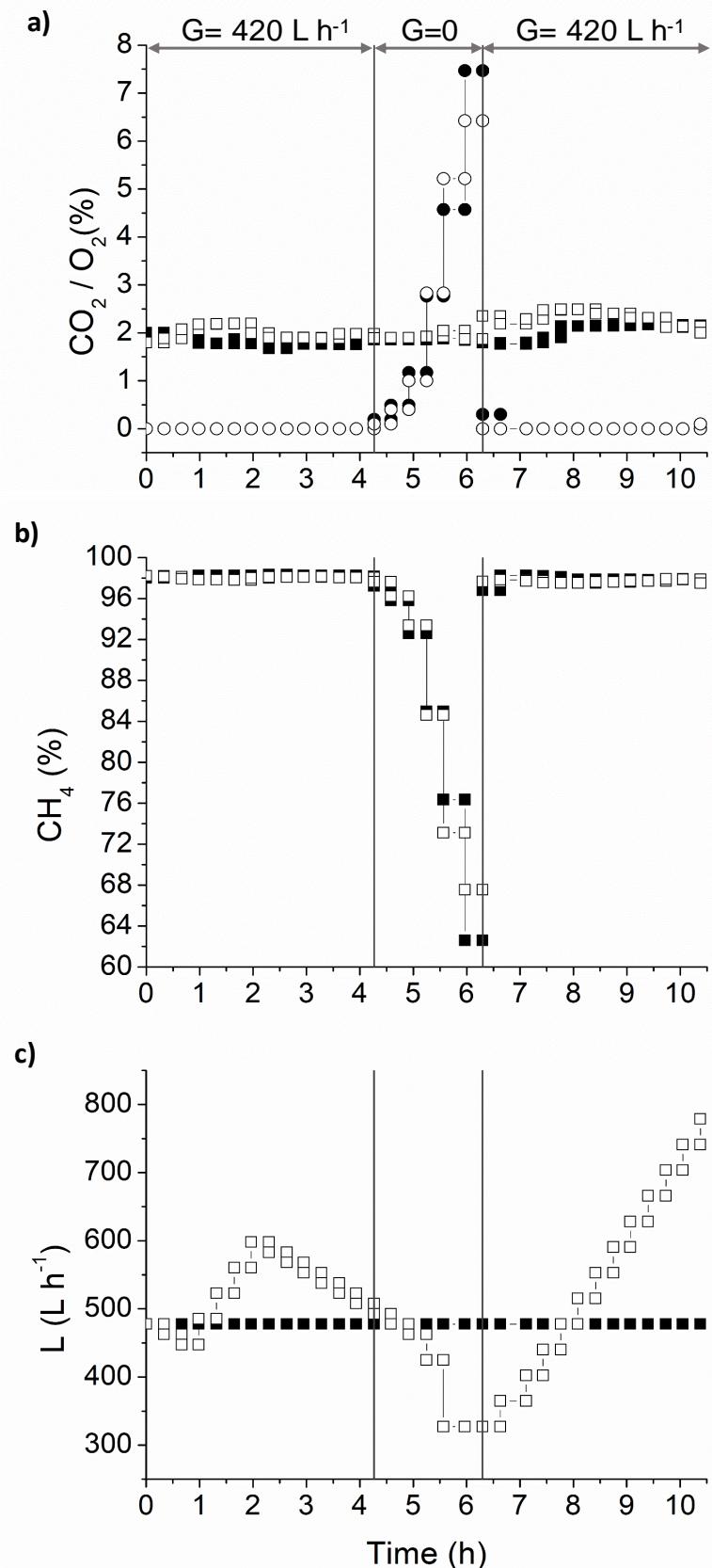


Fig. 2. Time course of a) CO_2 (square) and O_2 (circle) concentrations in the upgraded biogas, b) CH_4 concentration in the upgraded biogas and c) liquid flowrate (L) under controlled (open) and uncontrolled (solid) conditions during the stepwise variation in biogas flowrate (G) (continuous line).

3.3. Robustness under operational failures in biogas supply and in the liquid recirculation

Operational failures typically occur in biogas upgrading plants at full scale, which impacts on biomethane quality during the failure and/or afterwards when the system is restored. This requires the evaluation of the control system performance under the most relevant equipment failures in photosynthetic biogas upgrading (stoppage of biogas supply or liquid recirculation). The upgraded biogas composition and liquid flowrate in the AC under controlled and uncontrolled conditions during a 2h failure in biogas supply or liquid recirculation are shown in Fig. 3 and 4, respectively.

Under uncontrolled conditions at a L/G ratio of 1.1, the CO₂ concentration in the upgraded biogas accounted for 1.8±0.1% during the initial hours of the experiment assessing the robustness of the technology against a failure in biogas supply. The concentration of CO₂ remained constant at 1.9% for the next 2 h without biogas supply (Fig. 3a), which could be attributed to the biomethane accumulated in an open to atmosphere gasometer located immediately after the biogas analyzer. Interestingly, the CH₄ concentration was negatively impacted by the biogas compressor failure, decreasing from 98.1 to 62.6% after 2 h without biogas supply (Fig. 3b). This decrease can be explained by the entrance of air in the system, which was confirmed by the increase in O₂ concentration up to 7.5% after 2 h (Fig. 3a). When biogas supply was restarted, the O₂ concentration rapidly decreased to 0.3% within 20 minutes, with an associated increase in CH₄ concentration up to 96.8 %, CO₂ concentrations ~1.8% and no H₂S detected (Fig. 3a, b). This rapid increase in CH₄ content was mediated by the high biogas flowrate used during this experiment (420 L h⁻¹), which flushed the air out of the system. However, the CO₂ concentration slightly increased to ~2.2% following 1.5 h from the restoration of biogas supply (due to a slight decrease in the pH of the cultivation broth) and remained constant afterwards.

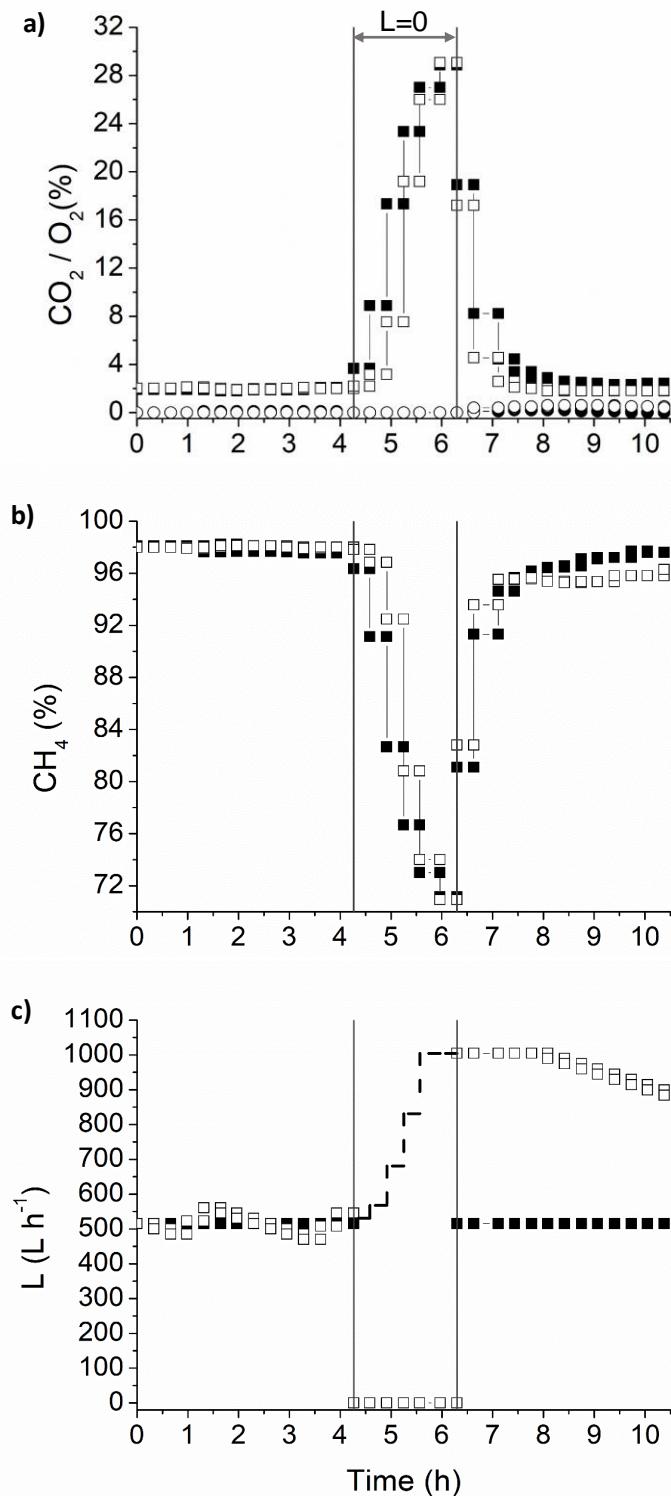


Fig. 3. Time course of a) CO_2 (square) and O_2 (circle) concentrations in the upgraded biogas, b) CH_4 concentration in the upgraded biogas and c) liquid flowrate (L) under controlled (open) and uncontrolled (solid) conditions during a failure in biogas supply (G).

When the control system was initiated, the liquid flowrate fluctuated between 448 and 598 L h⁻¹ during the first hours of experiment in order to maintain biomethane quality under optimal conditions in terms of energy consumption (Fig. 3a, c). The CO₂ content in the absence of biogas supply remained constant at ~ 1.9%, while an increase in the O₂ concentration from 0 to 6.4% was recorded as a result of air entrance, similar to that observed without control system (Fig. 3a). Thus, the control system decreased the liquid flowrate down to the minimum value (327 L h⁻¹) in order to prevent a high O₂ content in the upgraded biogas. In this context, when biogas supply was restarted, CO₂ concentration in the upgraded biogas increased up to 2.5% as a result of the low liquid flowrate. Nevertheless, the system was able to decrease the CO₂ concentration to 2% by the end of the experiment by imposing a liquid flowrate of 779 L h⁻¹ (Fig. 3a, c). The CH₄ concentration in the biomethane decreased from 98.0 to 67.5% in the absence of biogas supply, increasing to 97.7% within only 20 min after the resumption of biogas supply (Fig. 3b). No H₂S was detected in the upgraded biogas along the experiment under controlled conditions. Overall, similar results were obtained under controlled and uncontrolled conditions, the system without control being even more effective when biogas supply was restarted. However, in case of an eventual increase in the CO₂ content resulting from any variation in the cultivation broth, the system would not be able to recover the initial CO₂ concentration without control.

CO₂ content in the upgraded biogas remained constant at 1.9±0.1% during the first hours under uncontrolled conditions at a L/G of 1.2 in the experiment assessing the robustness of the technology against a shutdown in the liquid supply to the AC. When the recirculating liquid pump was turned off, CO₂ concentration in the upgraded biogas rapidly increased up to 28.9% within 2 h, which almost matched the CO₂ concentration of the raw biogas (31.5±1.1%). This poor CO₂-RE was due to the acidification and CO₂ saturation of the liquid present in the biogas AC. However, the CO₂ concentration in the upgraded biogas rapidly decreased when the liquid pump was turned on since the liquid retention time in the AC was only 17.5 min under the working liquid flowrate (515 L h⁻¹). Unfortunately, the system was not able to recover the initial biomethane quality, with CO₂ concentrations of 2.3% after approximately 2.5 h from liquid supply restoration (Fig. 4a). On the other hand, the CH₄ content in the upgraded biogas decreased from 97.9 to 71.1% and increased up to 97.7% when the liquid pump was restarted (Fig. 4b). Despite the acidification of the scrubbing solution during the period without liquid

renewal in the AC, negligible H₂S concentrations (1 ppm_v) were detected as a result of its low concentration in the raw biogas. Finally, no significant O₂ concentrations (<0.2%) were recorded in the upgraded biogas along this experiment.

Fig. 4. Time course of a) CO₂ (square) and O₂ (circle) concentrations in the upgraded biogas, b) CH₄ concentration in the upgraded biogas and c) liquid flowrate (L) under controlled (open) and uncontrolled (solid) conditions during a failure in liquid recirculation. The control system unit changes when the liquid pump was off are represented by a dashed line (c).

When the control system was active, minor variations in the liquid flowrate were recorded (470-560 L h⁻¹) and the CO₂ content remained below 2% (Fig. 4a, c). When the liquid recirculation was stopped, the CO₂ concentration in the upgraded biogas increased up to 29.1%, but no H₂S was detected as under uncontrolled conditions (Fig. 4a). The control system sent control actions of increasing the liquid flowrate (CO₂ measured > CO₂ set point and O₂≈0) during the period with no liquid supply since it was not able to detect the liquid pump failure. Therefore, when the liquid pump was switched on, the liquid flowrate imposed by the control system corresponded to the maximum pump flowrate (~1000 L h⁻¹). This entailed a decrease in the CO₂ content of the upgraded biogas faster than under uncontrolled conditions due to the higher L/G ratio (2.4 vs 1.2) (Fig. 4c). However, the decrease in the CO₂ content could have been even faster if higher pumping capacity would be available. On the other hand, the O₂ content in the upgraded biogas increased when the liquid pump was turned on as a result of the high liquid flowrate, but remained always below 1%. Finally, the CH₄ content in the upgraded biogas decreased from 98.0 to 70.9% due to the negligible CO₂-REs in the absence of liquid recirculation. Nevertheless, CH₄ content rapidly increased up to 95.8% when the liquid supply was restored although this value was lower compared to process operation without control system. This decrease was mediated by the higher O₂ and N₂ desorption from the recycling liquid to the biomethane as a result of the higher recycling liquid flowrate. Overall, the control system was able to provide a satisfactory biomethane quality in the event of a liquid supply stoppage, while in the absence of control system the CO₂ concentration remained >2% after liquid supply restoration.

4. Conclusions

The control system based on changes in the recycling liquid flowrate was able to meet the target biomethane quality (CO₂<2% and O₂<1%) regardless of the pH and biogas flowrate. Despite the poor robustness of this technology against failures in biogas and liquid supply was confirmed, the control system restored the biomethane quality satisfactorily after the event of a stoppage in biogas supply and liquid recirculation. This control strategy validated in an outdoors semi-industrial scale photobioreactor would overcome the negative effects of environmental variations or operational failures on photosynthetic biogas upgrading performance, ensuring a consistent biomethane quality.

Acknowledgements

This work was supported by the INCOVER project. The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 689242. Maikel Fernández, Esteban Serrano, Almudena Barea, Jose Antonio Macías, Ezequiel García and Esther Arnáiz are gratefully acknowledged for their practical assistance. The regional government of Castilla y León and the European FEDER Programme (CLU 2017-09 and UIC 071) is also gratefully acknowledged.

References

Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., Kougias, P.G., 2018. Biogas upgrading and utilization: Current status and perspectives. *Biotechnol. Adv.* <https://doi.org/10.1016/j.biotechadv.2018.01.011>

Awe, O.W., Yaqian, Z., Ange, N., Doam Pham, M., Nathalie, L., 2017. A Review of Biogas Utilisation , Purification and Upgrading Technologies. *Waste and Biomass Valorization* 8, 267–283. <https://doi.org/10.1007/s12649-016-9826-4>

Bahr, M., Díaz, I., Dominguez, A., González Sánchez, A., Muñoz, R., 2014. Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. *Environ. Sci. Technol.* 48, 573–581. <https://doi.org/10.1021/es403596m>

Bordel, S., Muñoz, R., Díaz, L.F., Villaverde, S., 2008. Mechanistic model for evaluating the performance of suspended growth bioreactors for the off-gas treatment of VOCs. *Biochem. Eng. J.* 38, 395–405. <https://doi.org/10.1016/j.bej.2007.08.004>

Bose, A., Lin, R., Rajendran, K., O'Shea, R., Xia, A., Murphy, J.D., 2019. How to optimise photosynthetic biogas upgrading: a perspective on system design and microalgae selection. *Biotechnol. Adv.* 107444. <https://doi.org/10.1016/j.biotechadv.2019.107444>

Brito, J., Almenglo, F., Ramírez, M., Gómez, J.M., 2017. PID control system for biogas desulfurization under anoxic conditions. *J Chem Technol Biotechnol* 92, 2369–2375. <https://doi.org/10.1002/jctb.5243>

de Godos, I., Arbib, Z., Lara, E., Rogalla, F., 2016. Evaluation of High Rate Algae Ponds for treatment of anaerobically digested wastewater: Effect of CO₂ addition and modification of dilution rate. *Bioresour. Technol.* 220, 253–261. <https://doi.org/10.1016/j.biortech.2016.08.056>

Di Benedetto, A., Cammarota, F., Di Sarli, V., Salzano, E., Russo, G., 2011. Anomalous behavior during explosions of CH₄ in oxygen-enriched air. *Combust. Flame* 158, 2214–2219. <https://doi.org/10.1016/j.combustflame.2011.03.015>

Directive (EU) 2018/2001, 2018. Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable sources, Official Journal of the European Union.

EBA, 2018. , European Biogas Association Statistical Report 2018.

Franco-Morgado, M., Alcántara, C., Noyola, A., Muñoz, R., González-Sánchez, A., 2017. A study of photosynthetic biogas upgrading based on a high rate algal pond under alkaline conditions: Influence of the illumination regime. *Sci. Total Environ.* 592, 419–425. <https://doi.org/10.1016/j.scitotenv.2017.03.077>

Kang, J., Yoon, Y., Song, J., 2020. Effects of pH on the simultaneous removal of hydrogen sulfide and ammonia in a combined absorption and electro-oxidation system. *J. Hazard. Mater.* 382, 121011. <https://doi.org/10.1016/j.jhazmat.2019.121011>

Kim, J., Lee, C., 2016. Response of a continuous anaerobic digester to temperature transitions : A critical range for restructuring the microbial community structure and function. *Water Res.* 89, 241–251. <https://doi.org/10.1016/j.watres.2015.11.060>

Lee, Y.K., Pirt, S.J., 1984. CO₂ ABSORPTION RATE IN AN ALGAL CULTURE: EFFECT OF pH. *J. Chem. Technol. Biotechnol. Biotechnol.* 34 B, 28–32. <https://doi.org/10.1002/jctb.280340105>

Marín, D., Ortíz, A., Díez-Montero, R., Uggetti, E., García, J., Lebrero, R., Muñoz, R., 2019. Influence of liquid-to-biogas ratio and alkalinity on the biogas upgrading performance in a demo scale algal-bacterial photobioreactor. *Bioresour. Technol.* 280, 112–117. <https://doi.org/10.1016/j.biortech.2019.02.029>

Marín, D., Posadas, E., Cano, P., Pérez, V., Blanco, S., Lebrero, R., Muñoz, R., 2018. Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor. *Bioresour. Technol.* <https://doi.org/10.1016/j.biortech.2018.04.117>

Meier, L., Martínez, C., Vílchez, C., Bernard, O., Jeison, D., 2019. Evaluation of the feasibility of photosynthetic biogas upgrading: Simulation of a large-scale system. *Energy* 116313. <https://doi.org/10.1016/j.energy.2019.116313>

Meier, L., Stará, D., Bartacek, J., Jeison, D., 2018. Removal of H₂S by a continuous microalgae-based photosynthetic biogas upgrading process. *Process Saf. Environ. Prot.* 119, 65–68. <https://doi.org/10.1016/j.psep.2018.07.014>

Muñoz, R., Meier, L., Díaz, I., Jeison, D., 2015. A review on the state-of-the-art of physical / chemical and biological technologies for biogas upgrading. *Rev. Environ. Sci. Bio/Technology* 727–759. <https://doi.org/10.1007/s11157-015-9379-1>

Nagarajan, D., Lee, D.-J., Chang, J.-S., 2019. Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. *Bioresour. Technol.* 290, 121804. <https://doi.org/10.1016/j.biortech.2019.121804>

Ouyang, Y., Zhao, Y., Sun, S., Hu, C., Ping, L., 2015. Effect of light intensity on the capability of different microalgae species for simultaneous biogas upgrading and biogas slurry nutrient reduction. *Int. Biodeterior. Biodegradation* 104, 157–163. [https://doi.org/https://doi.org/10.1016/j.ibiod.2015.05.027](https://doi.org/10.1016/j.ibiod.2015.05.027)

Posadas, E., Marín, D., Blanco, S., Lebrero, R., Muñoz, R., 2017. Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond. *Bioresour. Technol.* 232, 133–141. <https://doi.org/10.1016/j.biortech.2017.01.071>

Rodero, M. del R., Carvajal, A., Castro, V., Navia, D., de Prada, C., Lebrero, R., Muñoz, R., 2019. Development of a control strategy to cope with biogas flowrate variations during photosynthetic biogas upgrading. *Biomass and Bioenergy* 131. <https://doi.org/10.1016/j.biombioe.2019.105414>

Rodero, M. del R., Posadas, E., Toledo-Cervantes, A., Lebrero, R., Muñoz, R., 2018. Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds. *Algal Res.* 33, 284–290. <https://doi.org/10.1016/j.algal.2018.06.001>

Ryckebosch, E., Drouillon, M., Vervaeren, H., 2011. Techniques for transformation of biogas to biomethane. *Biomass and Bioenergy* 35, 1633–1645. <https://doi.org/10.1016/j.biombioe.2011.02.033>

Sander, R., 1999. Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential importance in Environmental Chemistry.

Serejo, M.L., Posadas, E., Boncz, M.A., Blanco, S., García-Encina, P., Muñoz, R., 2015. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. *Environ. Sci. Technol.* 49, 3228–3236. <https://doi.org/10.1021/es5056116>

Smet, E., Lens, P., Langenhove, H. Van, 1998. Treatment of Waste Gases Contaminated with Odorous Sulfur Compounds. *Crit. Rev. Environ. Sci. Technol.* 28, 89–117.

Sun, S., Ge, Z., Zhao, Y., Hu, C., Zhang, H., Ping, L., 2016. Performance of CO₂ concentrations on nutrient removal and biogas upgrading by integrating microalgal strains cultivation with activated sludge. *Energy* 97, 229–237. <https://doi.org/10.1016/j.energy.2015.12.126>

Surendra, K.C., Takara, D., Hashimoto, A.G., Khanal, S.K., 2014. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. *Renew. Sustain. Energy Rev.* 31, 846–859. <https://doi.org/10.1016/j.rser.2013.12.015>

Theuerl, S., Klang, J., Prochnow, A., 2019. Process Disturbances in Agricultural Biogas Production — Causes , Mechanisms and Effects on the Biogas Microbiome : A Review. *Energies* 12. <https://doi.org/10.3390/en12030365>

Toledo-Cervantes, A., Madrid-Chirinos, C., Cantera, S., Lebrero, R., Muñoz, R., 2017. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors. *Bioresour. Technol.* 225, 336–342. <https://doi.org/10.1016/j.biortech.2016.11.087>

Toledo-Cervantes, A., Serejo, M.L., Blanco, S., Pérez, R., Lebrero, R., Muñoz, R., 2016. Photosynthetic biogas upgrading to bio-methane: Boosting nutrient recovery via biomass productivity control. *Algal Res.* 17, 46–52. <https://doi.org/10.1016/j.algal.2016.04.017>

Yan, C., Zhu, L., Wang, Y., 2016. Photosynthetic CO₂ uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods. *Appl. Energy* 178, 9–18. <https://doi.org/https://doi.org/10.1016/j.apenergy.2016.06.012>

Supplementary Material

Performance evaluation of a control strategy for photosynthetic biogas upgrading in a semi-industrial scale photobioreactor

María del Rosario Rodero^{a,b}, Andrea Carvajal^{a,c}, Zouhayr Arbib^d, Enrique Lara^d, César de Prada^b, Raquel Lebrero^{a,b}, Raúl Muñoz^{a,b}

^a Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.

^b Institute of Sustainable Processes, University of Valladolid, 47011, Valladolid, Spain.

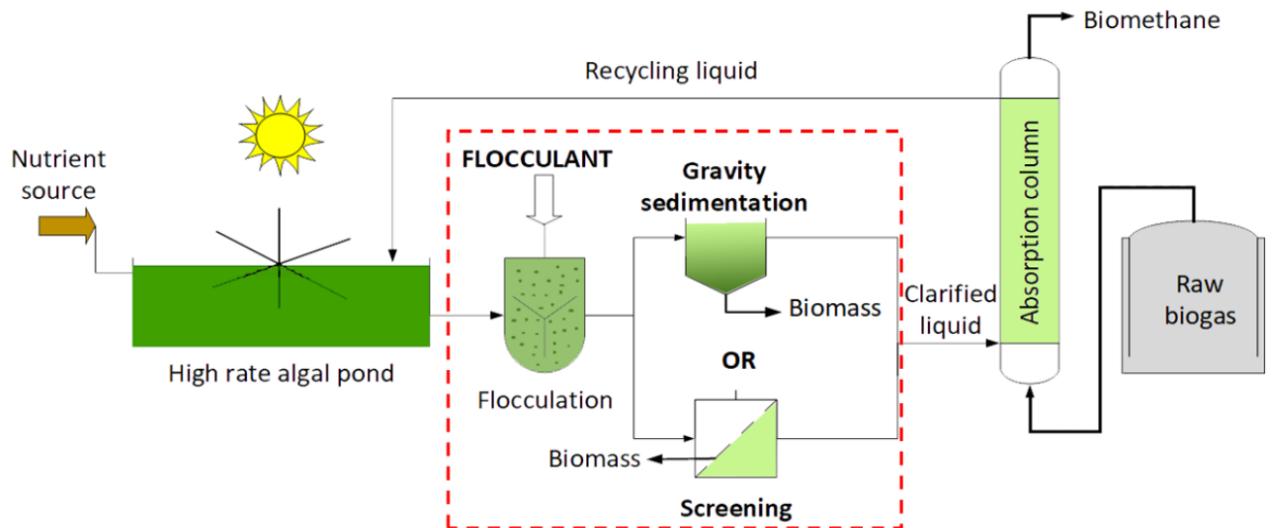
^c Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. España 1680 Valparaíso (Chile)

^d FCC Servicios Ciudadanos, Av. del Camino de Santiago, 40, edificio 3, 4^a planta, 28050 Madrid, Spain

Content:

- Table S1

Table S1. Liquid flowrate and CO₂ mass transferred per volume of recycling liquid during the experiment at different pHs.


pH = 9.50		pH = 9.35		pH = 9.20		pH = 9.05	
Liquid flowrate (L h ⁻¹)	CO ₂ transferred per volume of liquid (mg L ⁻¹)	Liquid flowrate (L h ⁻¹)	CO ₂ transferred per volume of liquid (mg L ⁻¹)	Liquid flowrate (L h ⁻¹)	CO ₂ transferred per volume of liquid (mg L ⁻¹)	Liquid flowrate (L h ⁻¹)	CO ₂ transferred per volume of liquid (mg L ⁻¹)
327	629	327	587	327	569	327	459
327	626	327	584	327	567	327	459
402	511	440	443	478	413	515	325
478	435	553	365	628	341	666	289
515	407	628	328	741	303	779	261
500	422	666	314	816	279	892	232
470	451	651	322	801	287	929	223
440	480	636	329	786	292	967	216
410	517	621	338	771	299	952	220
380	555	606	346	756	305	937	224
365	577	591	355	741	310	922	227
350	600	575	364	726	317	907	231
335	624	560	374	711	323	892	235
372	556	545	384	696	330	877	238
410	505	530	395	681	336	914	228
448	466	515	404	666	345	952	219
485	432	500	415	651	352	937	222
470	447	485	427	636	360	899	232
455	462	470	441	621	367	937	223
440	478	455	454	606	376	899	231
425	495	493	418	643	353	937	222
410	512	530	390	681	334	899	231
395	530	568	364	718	317	861	241
380	551	606	342	756	301	824	251
365	572	643	322	741	308	861	241

Chapter 8

Harvesting microalgal-bacterial biomass from biogas upgrading process and evaluating the impact of flocculants on their growth during repeated recycling of the spent medium

Rodero, M. del R., Muñoz, R., Lebrero, R., Verfaillie, A.,
Blockx, J., Thielemans, W., Muylaert, K.,
Praveenkumar, R., 2020. Algal Res. 48, 101915.
doi:10.1016/j.algal.2020.101915

Harvesting microalgal-bacterial biomass from biogas upgrading process and evaluating the impact of flocculants on their growth during repeated recycling of the spent medium

María del Rosario Rodero^{1,2,4}, Raúl Muñoz^{1,2}, Raquel Lebrero^{1,2}, An Verfaillie^{3,4}, Jonas Blockx^{3,4}, Wim Thielemans³, Koenraad Muylaert⁴, Ramasamy Praveenkumar^{3,4,5}

¹ Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.

² Institute of Sustainable Processes, University of Valladolid, 47011, Valladolid, Spain.

³ Sustainable Materials Lab, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53 box 7659, B-8500 Kortrijk, Belgium

⁴ Laboratory Aquatic Biology, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, box 7659, B-8500 Kortrijk, Belgium

⁵ Environmental Dynamics, Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark

ABSTRACT

Microalgal-bacterial consortium can be used to upgrade biogas by removing CO₂ and H₂S. Photosynthetic biogas upgrading requires harvesting microalgal-bacterial biomass in order to use the biomass-free cultivation medium as scrubbing liquid in the absorption column. In this study, the efficiency of different flocculants (Zetag 8125, cationically modified cellulose nanocrystals, Tanfloc, chitosan, and FeCl₃) to harvest microalgal-bacterial biomass used for biogas upgrading in alkaline medium (inorganic carbon concentration up to 1800 mg L⁻¹ and a pH ~10) was evaluated. Zetag and cationic cellulose nanocrystals resulted in maximum flocculation efficiencies of 95% (optimal dose 30 mg g⁻¹) and 93% (optimal dose 20 mg g⁻¹), respectively. Low flocculation was observed with other flocculants at doses as high as 200 mg g⁻¹, which can be ascribed to the high pH of the alkaline medium. Zetag and cationic cellulose nanocrystals were selected for harvesting the biomass during semi-continuous cultivation of the microalgal consortium. Both Zetag and cationic cellulose nanocrystals were effective in flocculating the biomass with efficiencies of over 90% during five successive harvesting cycles. Gravity settling of the flocs formed by Zetag and cationic cellulose nanocrystals resulted in low biomass concentration factors of 7.7 and 2.0, respectively. Screening of flocs using a nylon mesh screen (pore size of 180 µm) resulted in a biomass concentration factor as high as 19.8. Zetag and cationic cellulose nanocrystals could be useful in harvesting biomass under high alkaline conditions without detrimental effects on biomass growth.

Keywords: Microalgae; Harvesting; Flocculation; Cellulose nanocrystals; Zetag; Screening

1. Introduction

Biogas from the anaerobic digestion of organic waste or wastewater constitutes a promising renewable energy vector able to reduce our current dependence on fossil fuels due to its high CH₄ content (40-75%) [1]. In this context, the removal of biogas pollutants, mainly CO₂ and H₂S, is a mandatory step for its use as a natural gas substitute [2]. Photosynthetic biogas upgrading in high-rate algal ponds coupled with an external absorption column has recently emerged as a low cost (energy consumption of 0.08 kW·h (Nm³ treated biogas)⁻¹) and environmentally friendly (CO₂ emissions of 21 g-CO₂ (Nm³ treated biogas)⁻¹) alternative to conventional physical-chemical technologies to remove CO₂ and H₂S from biogas (energy consumption and CO₂ emissions of 0.30 kWh and 944 g-CO₂ to obtain 1 Nm³ of treated biogas, respectively, for an activated carbon filter combined with a water scrubbing) [3]. Maintaining a high alkalinity (inorganic carbon concentration >1500 mg L⁻¹) and pH ~10 of the cultivation medium is essential to increase the mass transfer of acidic gases like CO₂ and H₂S from the biogas to the cultivation medium [4]. Hence, the use of alkaliphilic microalgal-bacterial consortia able to withstand high inorganic carbon concentrations is essential to efficiently remove CO₂ and H₂S from the cultivation medium in high-rate algal ponds [5]. The biogas upgrading process is based on the use of part of the biomass-free cultivation medium as scrubbing liquid in the absorption column. In this sense, separating the microalgal-bacterial biomass generated in high-rate algal ponds from the scrubbing liquid constitutes a critical step. It also allows for control over microalgal productivity under operation with no effluent as a consequence of evaporation losses of water when using digestate as nutrient source (due to its high nutrient concentration, which consequently requires low digestate flowrates to sustain algal-bacterial growth)[6].

Several microalgae harvesting methods such as centrifugation, flotation, sedimentation, or filtration have been reported [7]. However, due to low biomass concentration of microalgae in high-rate algal ponds (0.2-1.2 g L⁻¹) and their small cell size (typically in micrometers), some of these technologies do not achieve an efficient solid-liquid separation or they are limited by high-energy requirements with associated increases in operational costs [8,9]. In this regard, flocculation followed by a solid-liquid separation step, such as gravity sedimentation or screening, is considered a rapid and cost-effective alternative for a large-scale harvesting of microalgal biomass [10]. During flocculation, the addition of chemicals leads to the aggregation of microalgal cells forming large

flocs [11]. Flocculation can be induced by neutralizing the surface charge of the cells (charge neutralization), by partially reversing the charge of the particle surface, resulting in the connection of particles through patches with opposite charge (electrostatic patch), by precipitation caused by an aggregating polymer network that entangles microalgal cells (sweeping mechanism), or by forming bridges between individual particles (bridging) [12,13].

The optimal dose of the flocculants depends on the characteristics of the microalgal species (i.e. cell size, culture age, and cell wall composition) and the flocculant (e.g. charge, rigidity, and morphology) [14]. Inorganic salts, such as FeCl_3 , which induce flocculation via charge neutralization, have been widely used as flocculants due to their low cost, in spite of needing higher dose compared to other flocculants [15,16]. Organic polymers such as Zetag, a synthetic copolymer of acrylamide and quaternized cationic monomers, which are able to interact with microalgal cells by charge neutralization and bridging, have been successfully applied in the flocculation of various microalgae [17,18].

Flocculants based on natural biopolymers are attracting interest as flocculants due to their biodegradability. Chitosan from chitin waste is a non-toxic and inexpensive biopolymer composed of linear poly-amino-saccharide chains that can agglomerate individual cells through different mechanisms such as charge neutralization, bridging, sweeping, and adsorption [19–21]. Tanfloc is a commercial biopolymer based on tannins extracted from bark of *Acacia mearnsii* that has also been used as a flocculant for microalgae [18,22]. More recently, cationically modified cellulose nanocrystals (CNCs) have been introduced as a flocculant for microalgae [23–26]. CNCs have a high aspect ratio and high external surface area ($\sim 300 \text{ m}^2 \text{ g}^{-1}$), which is favorable for flocculation. Moreover, they can be readily modified by addition of a wide range of polymer matrices to obtain a flocculant with desired surface characteristics [27,28].

The pH of the culture medium is one of the crucial factors for the performance of the flocculants. Many flocculants get protonated and become cationic only at low pH (<7) [29]. In an alkaline medium, flocculants that carry a pH-independent cationic charge should have a superior performance. Many polymer flocculants experience coiling in high ionic strength conditions and are expected to perform poorly in a medium with a high inorganic carbon concentration [30,31]. Hence, the selection of a flocculant that functions at high pH and at high inorganic carbon concentration is essential for

photosynthetic biogas upgrading. Another important feature while applying flocculants in biogas upgrading systems is to obtain a biomass-free medium that can be repeatedly recycled without any detrimental effect on the growth of microalgae and bacteria. Recycling of the spent medium from the absorption column to the photobioreactor is essential for the subsequent removal of CO₂ and H₂S from the medium. While CO₂ will be consumed by microalgae, H₂S will be oxidized to sulphate by sulphur oxidizing bacteria using the oxygen that is generated photosynthetically [32]. In this regard, it is important that accumulation of the flocculant and/or algal organic matter in the recycled culture medium should not lead to microalgal-bacterial growth inhibition [33,34]. Furthermore, the flocculant needs to be versatile in harvesting altogether different microalgal species present in the consortium. Otherwise, those species of microalgae that did not flocculate would eventually alter the microalgal community structure and ultimately make the flocculation process inefficient. So far, no studies have focused on the selection of a suitable flocculant and its dose for efficient use in a repeated recycling of cultivation medium, in spite of the crucial role of this separation step in photosynthetic biogas upgrading.

The aim of this study was to optimize harvesting of a microalgal-bacterial consortium using flocculation, followed by a solid-liquid separation for a photosynthetic biogas upgrading process which requires working under high pH (~10) and alkalinity (inorganic carbon concentration up to 1800 mg L⁻¹), and to evaluate the effect of flocculants on the biomass while recycling the culture medium. For this purpose, different flocculants such as, Zetag® 8125, cationic CNCs, Tanfloc, chitosan, and FeCl₃ were tested. Furthermore, the recyclability of the medium after flocculation for the effective flocculants (Zetag and cationic CNCs) was evaluated in a semi-continuous cultivation system. Finally, the feasibility of using screening instead of gravity settling to separate biomass flocs from the culture medium was also assessed.

2. Materials and methods

2.1. Cultivation of microalgal-bacterial consortium

Microalgal-bacterial consortium was obtained from an indoor high-rate algal pond used for biogas upgrading using a high alkalinity synthetic medium as nutrient source located at the Department of Chemical Engineering and Environmental Technology at University of Valladolid. The consortium was grown in 2 L bottles (diameter: 136 mm,

working volume: 1.5 L) as fed-batch cultures in a synthetic medium composed of (g L⁻¹): 7.60 NaHCO₃, 3.70 Na₂CO₃, 0.58 K₂HPO₄, 1.91 NH₄Cl, 0.10 MgSO₄·7H₂O, 0.02 CaCl₂·2H₂O and 1 mL of a trace metal solution prepared according to the Wright's cryptophyte medium [35]. The cultivation medium was maintained at pH ~10 and fed with 25 mL of fresh medium every day, based on the data on the hydraulic retention time used in the high rate algal pond for biogas upgrading [36]. The flasks were aerated by bubbling with 0.2-μm filtered air and mixed using magnetic stirrers. Cultures were continuously illuminated from front and backside of the flask, each at an intensity of ~100 μmol m⁻² s⁻¹ and maintained at 24 °C in a temperature-controlled room.

2.2. Selection of optimal flocculants for use in alkaline and high pH conditions

Flocculation efficiencies of five flocculants: Zetag® 8125 (BASF, Germany, hereinafter referred as Zetag), in-house developed CNCs grafted with methylimidazolium cationic group (MIM-g-CNCs) [25], FeCl₃·6H₂O (Chem-lab, >99%), Tanfloc® SG (Tanac, Brazil), and chitosan (Sigma-Aldrich 417963) were tested on the microalgal-bacterial consortium using standard jar tests. For each flocculant a stock solution of 5 g L⁻¹ was prepared in distilled water. The stock solution of chitosan (5 g L⁻¹) was prepared in a 0.04 M HCl solution due to its slow dissolution in distilled water [20].

To evaluate harvesting of microalgae-bacterial biomass using different flocculants, conditions for the jar test such as initial stirring speed (300 – 900 rpm), stirring time (5 – 30 min), floc settling time (15 – 120 min), and biomass concentration (0.2 – 2 g L⁻¹) were initially optimized with 30 mg g⁻¹ of Zetag or MIM-g-CNCs in order to achieve optimal flocculation efficiency and biomass concentration factor (Supplementary material, Fig. S1).

Dose-response curves for the flocculants were determined by adding different concentrations of flocculants (ranging from 0 to 200 mg g⁻¹) to 50 mL of microalgae-bacteria suspension (~1 g L⁻¹ TSS) while vigorously mixing at 700 rpm with a magnetic stirrer. Following the addition of flocculants, the suspension was gently mixed at 200 rpm for 5 min to promote flocculation. After this, the suspension was decanted in 50 mL plastic tubes and the flocs were allowed to settle for 60 min before measuring the volume and the optical density (750 nm) of the supernatant (Genesis 10S UV-Vis; Thermo Fisher, US). The flocculation efficiency (η_a) was calculated based on measurement of the optical density before flocculants addition (OD_i) and of the supernatant after settling (OD_f) according to the following equation:

$$\eta_a = \frac{OD_i - OD_f}{OD_i} \quad (1)$$

In addition, the biomass concentration factor was calculated as:

$$CF = \frac{C_f}{C_i} \quad (2)$$

where C_i and C_f were the initial biomass concentration before addition of flocculants and final biomass concentration in the volume containing the flocculated microalgae, respectively. The jar tests were carried out in duplicate and the results were represented as the average values along with their corresponding standard deviation.

2.3. Repeated recycling of spent medium

Based on the performance of the flocculants, Zetag and MIM-g-CNCs were chosen for experiments with repeated recycling of the spent medium in order to check the effectiveness of the flocculants in a semi-continuous cultivation system. In these experiments, three 2 L bottles (working volume 1.5 L) with synthetic medium were inoculated with the microalgal-bacterial consortium (initial biomass concentration of 0.2 g L⁻¹) and incubated under similar conditions as described in section 2.1. Following 4 days of incubation, 500 mL of the culture from each bottle were harvested either by centrifugation or by Zetag or MIM-g-CNCs-based flocculation, and the spent medium was recycled to the culture bottles. The working volume of the cultures was maintained at 1.5 L by addition of fresh medium (NH₄⁺ concentration of 100 mg L⁻¹ to avoid ammonia inhibition) after harvesting in order to compensate losses in the spent medium. The harvesting of the control cultures was performed by centrifugation at 6000 rpm for 10 min following 30 min settling to test autoflocculation. For Zetag or MIM-g-CNCs - based flocculation, the suspensions in a beaker were mixed intensively (250 rpm) with an overhead stirrer for 1 min following the addition of the flocculant. Then, the suspensions were gently mixed (50 rpm) for another 20 min, after which they were allowed to settle for 30 min in a 500 mL Imhoff cone. The recycling experiments were repeated for 5 cycles during 14 days with doses for Zetag and MIM-g-CNCs ranging from 25 – 49 and 20 – 40 mg L⁻¹, respectively.

The specific growth rate (μ) was calculated as:

$$\mu = \frac{\ln(C_2/C_1)}{t_2 - t_1} \quad (3)$$

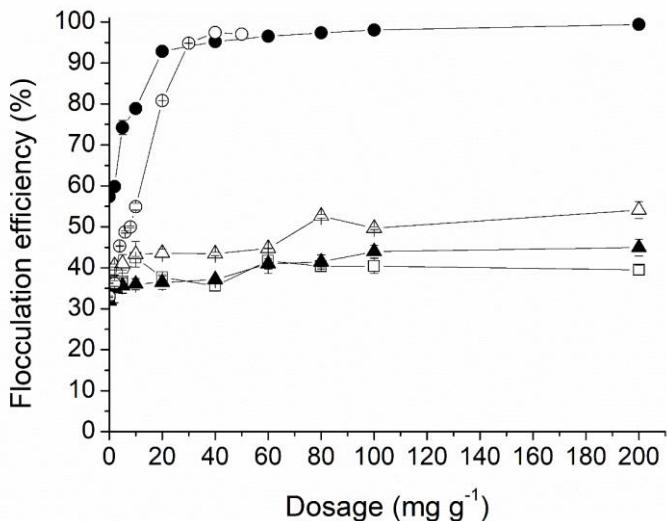
where c_1 and c_2 were the biomass concentration at times t_1 and t_2 .

The biomass concentration was measured as total suspended solids (TSS; g L⁻¹). TSS was determined gravimetrically based on GF/C filtration (Whatman, UK) and drying of biomass at 105 °C overnight after washing them 2 – 3 times with distilled water in order to remove the inorganic salt residue [37]. A linear correlation of optical density values of the culture at 750 nm against TSS (TSS g L⁻¹ = 0.7234 × OD_{750 nm} – 0.0699) was obtained. The pH of the culture medium was monitored every day (Consort C1010; Consort bvba, Belgium) and adjusted to ~10 before the harvesting by adding the necessary volume of 2 M HCl solution. ζ -Potential of the cultivation medium was measured (NanoBrook Omni; Brookhaven Instruments, US) in triplicate before and after flocculation to monitor the flocculant accumulation in the spent medium and the results were represented as the average values along with their corresponding standard deviation. The inorganic carbon concentration was measured before flocculation using a carbonate hardness test (Merck Millipore, Germany).

2.4. Separation of flocs by gravity sedimentation and screening

Screening using a nylon mesh screen with pore size of 180 µm (Elko filtering Co., Switzerland) was evaluated for solid-liquid separation following flocculation to increase the concentration factor. Biomass was flocculated with either Zetag (20 mg g⁻¹) or MIM-g-CNCs (40 mg g⁻¹) and allowed to settle for 30 min. Following settling, the entire volume of the suspension was screened through the nylon mesh screen. The flocculation efficiency and the concentration factor were calculated as described in section 2.2. These experiments were carried out in duplicate and the results were represented as the average values along with their corresponding standard deviation.

3. Results and discussion


3.1. Flocculation of microalgal-bacterial biomass from fed-batch cultures

The microalgal-bacterial consortium was mainly composed of *Chlorella* sp., *Oscillatoria* spp., and uncharacterized bacterial species. Microscopic observation at different time points of fed-batch cultivation confirmed the stable composition of the microalgal consortium.

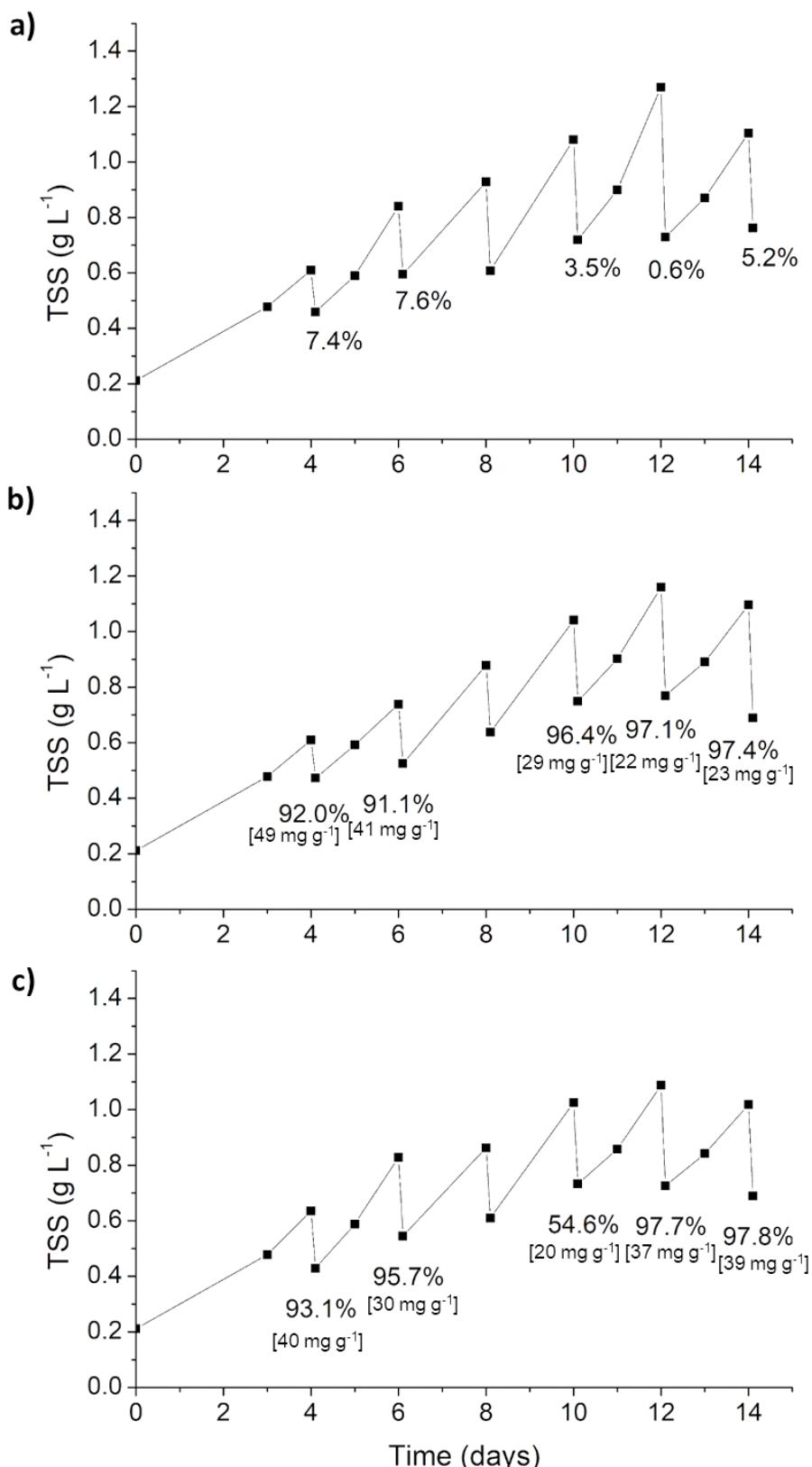
Among the five different flocculants tested, Zetag and MIM-g-CNCs resulted in efficient flocculation of the microalgal-bacterial consortium. While Zetag triggered a maximum flocculation efficiency of 95% with a dose of 30 mg g⁻¹ (g flocculant g⁻¹ dry

matter biomass concentration), MIM-g-CNCs resulted in a flocculation efficiency of 93% with 20 mg g⁻¹ (Fig. 1). Both are cationic polymeric flocculants carrying respectively quaternary ammonium and methyl imidazolium groups, i.e. cationic charges that are stable over a very wide pH range. Other synthetic cationic polymers have been reported for harvesting marine microalgae, such as Zetag 7557 and Synthofloc 5080H to harvest *Phaeodactylum tricornutum* and *Neochloris oleoabundans* at a pH 7.5 [17], and Magnafloc to harvest *Chaetoceros calcitrans* at a pH 10.2 [38]. With freshwater microalgae *C. vulgaris*, flocculation efficiency of 99% was reported with Zetag 8125 with a dose of 6.4 mg g⁻¹, whereas, with marine microalgae *Nannochloropsis oculata* a flocculation efficiency of ~44% with a dose of 155 mg g⁻¹ was reported [18]. In spite of the high pH (~10) and high inorganic carbon concentration (~1800 mg L⁻¹), a superior flocculation efficiency (95% with 30 mg g⁻¹) was achieved with Zetag 8125 in this study when compared to the flocculation of *Nannochloropsis oculata*. This could be attributed to the relatively low ion concentration in the alkaline medium used in this study compared to the marine culture medium.

In this study, in addition to Zetag, the efficiency of the methyl imidazolium-modified natural cellulose in the form of ribbon-like nanocrystals to harvest microalgal-bacterial consortium at high pH (~10) and inorganic carbon concentrations (up to 1800 mg L⁻¹) was demonstrated. Verfaillie *et al.* [26] reported a slight decrease in the flocculation efficiency (from 96% to 87%) with the increase of salinity from 0 to 50 g L⁻¹ when using 20 mg L⁻¹ of cationic CNCs to harvest *Nannochloropsis oculata*. With freshwater microalgae *C. vulgaris*, Blockx *et al.* [25] reported flocculation efficiencies >80% with 50 mg L⁻¹ cationic CNCs at a pH 6 and a biomass concentration of 0.28 g L⁻¹. Reportedly, cationically modified CNCs are efficient and versatile in the sense that they could be used to flocculate microalgae grown under a wide range of cultivation conditions due to their pH independent charge, crystalline nature that provides rigidity to avoid coiling of the polymer under high ionic strength medium, and finally, a high surface cationic charge density that results in high flocculation efficiency at low doses [25,26].

Fig.1. Flocculation dose-response curves (average values and standard deviation; n=2) of Zetag (○), cationic cellulose nanocrystals (●), FeCl₃ (Δ), Tanfloc (▲) and Chitosan (□).

Other flocculants such as FeCl₃, Tanfloc, and chitosan resulted in low flocculation efficiencies (maximum values of 54±2, 45±2 and 43±0%, respectively) for doses up to 200 mg g⁻¹ (Fig. 1). When compared to organic polymers, inorganic salts such as ferric chloride often requires higher doses to promote flocculation [39]. However, doses higher than 200 mg g⁻¹ could result in toxicity of the medium and, moreover, the presence of residual metal ions in the harvested biomass could pose problems during downstream processing [40].


Although Tanfloc has been demonstrated to flocculate marine microalgae [29], low flocculation was observed in this study as a consequence of the high pH (~10) of the medium. Likewise, Selesu *et al.* [41] achieved a flocculation efficiency of only 30% using Tanfloc for harvesting microalgae *Scenedesmus* sp. at pH 11. Having a point of zero charge of 8.17, Tanfloc assumes a neutral surface charge at higher pH and, consequently, loses its ability to flocculate either through charge neutralization or bridging [29]. Similarly, the conditions of the culture medium did not favor biomass flocculation using chitosan. At pH > 8, the amine groups on the surface of chitosan get deprotonated, which makes it impossible for chitosan to neutralize the microalgal surface charges to induce flocculation by charge neutralization or bridging. Moreover, the high ionic strength of the medium would result in coiling of the polymer [42,43]. Blockx *et al.* [20] reported that chitosan can also induce flocculation of microalgae at high pH (>7.5) and in seawater medium, but in that case flocculation occurs via sweeping mechanism and much higher doses of chitosan are needed than in freshwater

conditions (>75 mg L $^{-1}$). Similarly, Farid *et al.* [21] reported higher flocculation efficiencies of chitosan at high pH (9) when compared to neutral pH (7) with marine microalgae *Nannochloropsis* sp. However, no sweeping mechanism was observed in this study with chitosan doses up to 200 mg g $^{-1}$.

Another important parameter in flocculation is the biomass concentration factor. Less concentrated biomass flocs will require a secondary dewatering process. Maximizing the quantity of culture medium that can be recycled and managing lower volumes of biomass is essential in terms of process economics [44]. Flocculation with Zetag resulted in a maximum biomass concentration factor of 6.5 at a dose of 40 mg g $^{-1}$, while flocculation with MIM-g-CNCs exhibited a concentration factor of only 3.8 at a similar dose (Supplementary material, Fig. S2). Biomass concentration factors in the range of 3.5 – 14.1 have been reported for different cationic polymers while harvesting marine microalgae by flocculation followed by 2 hours gravity settling [17]. However, concentration factors obtained in this study were less than those reported by Eyley *et al.* [24] who achieved concentration factor as high as 49 with freshwater microalgae *C. vulgaris*, harvesting by cationic CNCs-based flocculation and 30 min of gravity settling.

3.2. Flocculation during semi-continuous cultivation and repeated recycling of spent medium

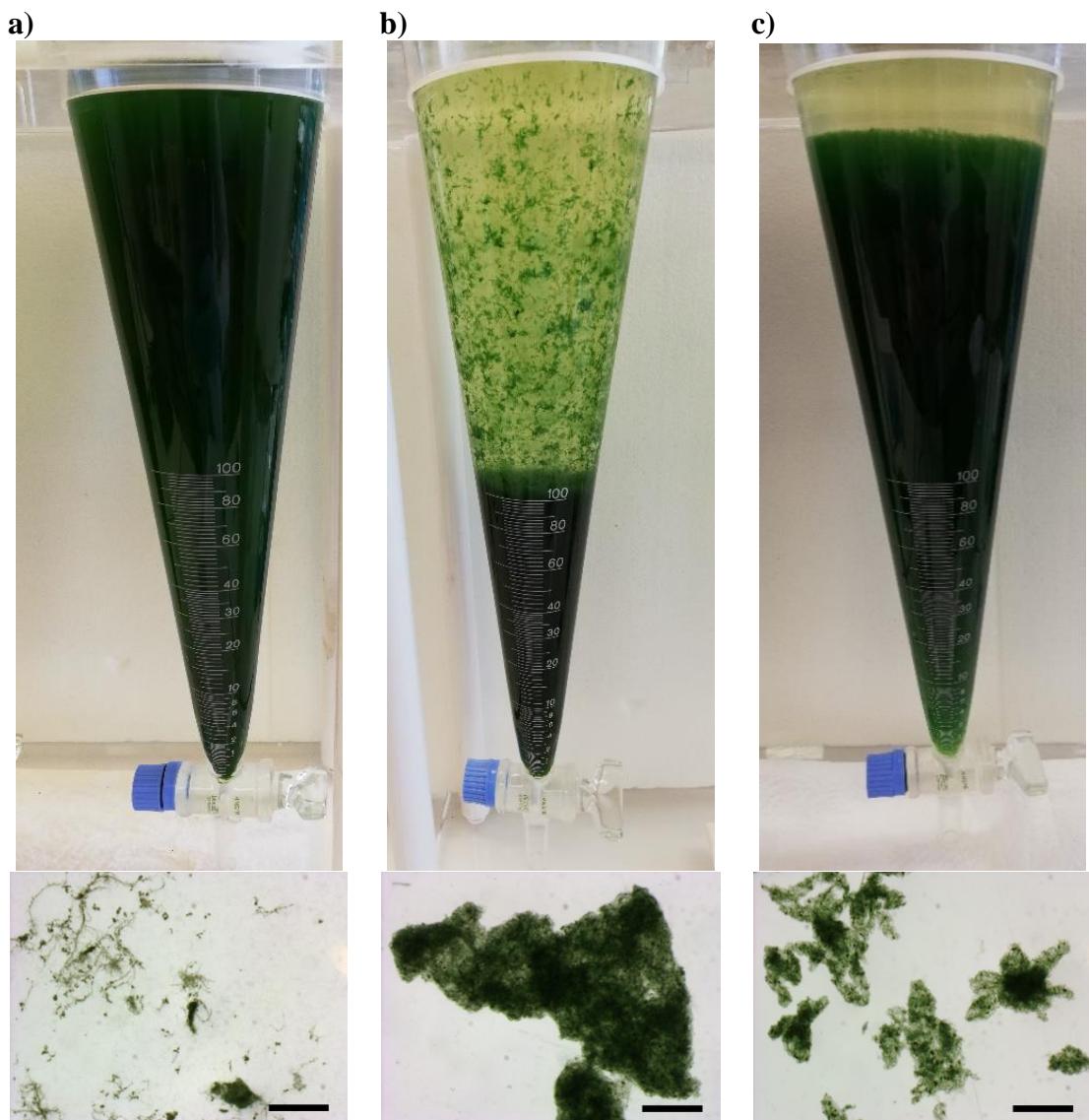
In a photosynthetic biogas upgrading process, the spent medium after biomass harvesting is recycled to the photobioreactor through an absorption column to remove the CO₂ and H₂S from the biogas. In this context, it is important to evaluate the impact of flocculation on biomass growth after recycling. Based on the previous results of this study, Zetag and MIM-g-CNCs were selected to study their effect during repeated recycling of spent medium. The impact of these flocculants on biomass growth was compared with that of centrifugation.

Fig. 2. Growth curve of the microalgal-bacterial consortium in the recycling medium with a) centrifugation (control) and flocculation with b) Zetag and c) cationic cellulose nanocrystals. The values below represent the flocculation efficiencies (%) and dose of flocculants (mg g^{-1}) during each harvesting cycle.

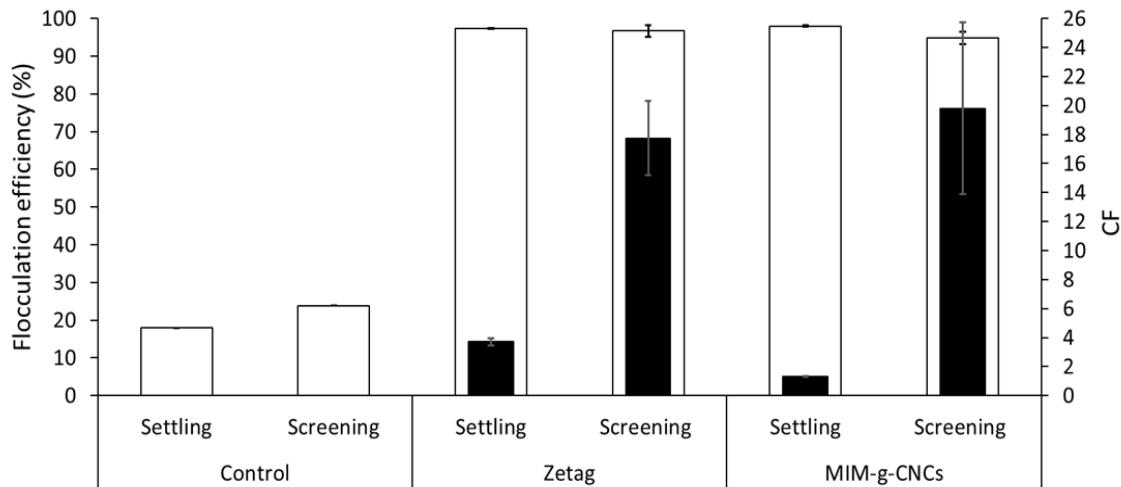
Spontaneous settling of microalgal-bacterial biomass (after 30 min) without flocculants was negligible, ranging between 1 – 8% over all harvesting cycles tested. Addition of Zetag and MIM-*g*-CNCs resulted in maximum flocculation efficiencies of ~97% at a dose of 23 mg g⁻¹ and ~98% at 39 mg g⁻¹, respectively. Different flocculant doses were tested in the subsequent harvesting cycles in order to determine the minimum dose of flocculant. Flocculation with Zetag resulted in a flocculation efficiency of 97% with doses as low as 22 mg g⁻¹, whereas, with MIM-*g*-CNCs, a dose of 20 mg g⁻¹ only achieved 55% of flocculation (Fig. 2).

A steady growth of microalgal-bacterial biomass was observed during semi-continuous cultivation using all three harvesting methods (centrifugation, Zetag, and MIM-*g*-CNCs-based flocculation), over 5 cycles of repeated recycling of 500 mL culture medium. Harvesting by centrifugation resulted in a 5 – 9% increased biomass growth when compared to flocculation-based harvesting (Fig. 2). Specific growth rates differed between the different harvesting treatments and along the time course of cultivation (Fig S3, supplementary material). Zetag being a synthetic polyacrylamide polymer and MIM-*g*-CNCs possessing an aromatically dislocated positive charge could be toxic to microalgae at high concentrations. In this regard, although slightly lower growth rates were observed in the last harvesting cycles using Zetag and MIM-*g*-CNCs in comparison with harvesting based on centrifugation, no detrimental effect on microalgae growth was observed along the 5 cycles. Moreover, concentrations of these flocculants were optimized to minimize the dose required to induce flocculation and to avoid the presence of free polymers in the recycled medium. This was verified through ζ -potential analysis of cell free supernatant before and after harvesting at each cycle (Supplementary material, Table S4). The presence of free flocculant in the spent medium should be evident from an increase in ζ -potential in the spent medium. In this study, no significant change in the ζ -potential of the spent medium was observed between centrifugation, Zetag, and MIM-*g*-CNCs -based flocculation, demonstrating that the quantity of flocculant that was returned to the cultivation system was minimal (Supplementary material, Table S4). During the recycling experiments, an increase in the pH of the culture medium (from 10 to 10.8) and a decrease in the inorganic carbon concentration (from 1798±0 to 913±69 mg L⁻¹) were observed as a result of the photosynthetic activity of the microalgae without CO₂ addition (Table S4,

supplementary material). Flocculation did not affect the pH, which is essential for effective biogas upgrading using microalgae.


Moreover, flocculation was uniform and was not selective to particular microalgal species of the consortium. As observed by microscopic analysis, no change in the microalgae community was found during any of the recycling experiments. *Chlorella* sp. and *Oscillatoria* sp. continuously dominated the consortium along with uncharacterized bacterial species.

3.3. Biomass separation after flocculation


Following flocculation, separation of biomass flocs from the culture medium is an important process step. The biomass concentration factor is an indicator of the efficiency of biomass separation. Separation was achieved by gravity sedimentation of the flocs for 30 min. The biomass concentration factor during repeated recycling experiments was lower than the ones observed during dose-response experiments (refer to section 3.2.). Zetag-based flocculation resulted in concentration factors in the range of 3.2 – 7.7, whereas MIM-g-CNCs-based flocculation resulted in a maximum concentration factor of only 2.0 (Fig. 3; supplementary material, Table S4). The higher concentration factors obtained for Zetag as the flocculant in comparison to MIM-g-CNCs could be attributed to a larger floc size and more compact structure as generated with the former (Fig. 3). In this context, Zhang *et al.* [45] proposed that not only the size of the flocs has influence on the settling velocity and the concentration factor of the microalgal biomass, but also the structure of these flocs, where microalgal flocs with large and compact structure should settle better under gravity.

In order to improve the concentration factor, screening was evaluated as a separation method. The biomass flocs obtained with Zetag and MIM-g-CNCs were allowed to settle for 30 min and screened through a nylon mesh screen with a pore size of 180 μm . Microalgal-bacterial culture without flocculants (acting as a control) resulted in harvesting efficiencies of 18% and 24% following 30 min settling and 180 μm screening, respectively. The cell size of microalgae in this consortium varied between 0.5-200 μm . Without flocculation, most of the cells crossed the 180 μm screen. In addition, a 30 μm pore size screen was also tested, but this was not efficient due to clogging of the mesh. On the other hand, Zetag-based flocculation resulted in harvesting efficiencies of 97% for both, settling and 180 μm screening. Similarly, MIM-g-CNCs-based flocculation resulted in harvesting efficiencies of 98% and 95% for settling and

180 μm screening, respectively (Fig. 4). The slight lower harvesting efficiency for MIM-*g*-CNCs with a 180 μm screen could be due to the fact that some smaller flocs or individual cells that were not flocculated passed through the screen. In this context, Verfaillie *et al.* [26] reported a low harvesting efficiency when using flocculation with cationically-modified CNCs followed by screening through a mesh with pore size of 180 μm due to unstable structural integrity of the flocs.

Fig. 3. Concentration of biomass flocs in Imhoff cone after 30 min settling during the repeated recycling experiments and microphotographs of flocs formed during a) gravity settling for 30 min, b) Zetag-based flocculation and c) cationic cellulose nanocrystals-based flocculation. Scale bar represents 250 μm .

Fig. 4. Comparison of the harvesting efficiency (white bars) and concentration factor (CF; black bar) (average and standard deviation; n=2) of control (without flocculant), Zetag and cationic cellulose nanocrystals (MIM-g-CNCs)-based flocculation under different solid-liquid separation methods (gravity settling and screening with nylon mesh screen of pore size 180 μ m).

Screening resulted in higher biomass concentration factors (up to 19.8; Fig. 4) compared to those for centrifugation (maximum value of 10; supplementary material, Table S4). With Zetag-based flocculation, concentration factors of 3.7 and 17.7 were obtained for 30 min settling and 180 μ m screening, respectively. With MIM-g-CNCs-based flocculation, a concentration factor of 19.8 was obtained with screening. This value is \sim 15 times higher than the concentration factors obtained with gravity settling (1.3; Fig. 4). Hwang *et al.* [46] reported a maximum concentration factor of 25 using a cross-flow membrane filtration system of polyethylene terephthalate with a pore size of 4 μ m using a 3% of polyvinyl alcohol as coating material for harvesting *Chlorella* sp. Monte *et al.* [47] obtained a concentration factor of 4.8 with a loss of integrity of 10% while harvesting *Dunaliella salina* using a microfiltration membrane with a nominal pore size of 0.1 μ m made of polyethersulfone.

In spite of demanding slightly higher energy costs (0.4 kWh/m³ for screening vs 0.1 kWh/m³ for gravity settling) [48], considering the advantages of achieving a high biomass concentration in a short time, screening using a 180 μ m nylon mesh could be a good alternative to gravity sedimentation after flocculation.

4. Conclusions

In this study, five different flocculants were tested to harvest microalgal-bacterial biomass from a photosynthetic biogas upgrading process. Zetag and MIM-g-CNCs resulted in flocculation efficiencies $>92\%$ at 30 and 20 mg g⁻¹, respectively. Both

flocculants were effective in harvesting biomass under semi-continuous cultivation with repeated recycling of spent medium. Moreover, both Zetag and MIM-*g*-CNCs did not result in any detrimental effect on either microalgal growth or pH of the spent medium during 5 cycles of harvesting. Finally, screening of the biomass flocs with a nylon mesh with 180 µm pore size was demonstrated to achieve high biomass concentration factors. This flocculation-based harvesting is rapid and efficient in solid-liquid separation and hence could be applied in current biogas upgrading processes to replace the traditional gravity settlers-based harvesting.

Acknowledgements

This work was supported by the COST Action ES1408 European network for algal-bioproducts (EUALGAE), the Regional Government of Castilla y León and the EU-FEDER programme (CLU 2017-09 and UIC 071), and FWO-NRF cooperation project (VS00218N). Praveen Ramasamy received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 751637. WT and KM thank FWO (grant G060816N) and Interreg Vlaanderen-Wallonie-France (ALPO project) for financial support.

References

- [1] E. Ryckebosch, M. Drouillon, H. Vervaeren, Techniques for transformation of biogas to biomethane, *Biomass and Bioenergy*. 35 (2011) 1633–1645. doi:10.1016/j.biombioe.2011.02.033.
- [2] R. Muñoz, L. Meier, I. Díaz, D. Jeison, A review on the state-of-the-art of physical / chemical and biological technologies for biogas upgrading, *Rev. Environ. Sci. Bio/Technology*. (2015) 727–759. doi:10.1007/s11157-015-9379-1.
- [3] A. Toledo-Cervantes, J.M. Estrada, R. Lebrero, R. Muñoz, A comparative analysis of biogas upgrading technologies: Photosynthetic vs physical/chemical processes, *Algal Res.* 25 (2017) 237–243. doi:10.1016/j.algal.2017.05.006.
- [4] M. del R. Rodero, E. Posadas, A. Toledo-Cervantes, R. Lebrero, R. Muñoz, Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds, *Algal Res.* 33 (2018) 284–290. doi:10.1016/j.algal.2018.06.001.
- [5] A. Bose, R. Lin, K. Rajendran, R. O'Shea, A. Xia, J.D. Murphy, How to optimise photosynthetic biogas upgrading: a perspective on system design and microalgae selection, *Biotechnol. Adv.* (2019) 107444. doi:10.1016/j.biotechadv.2019.107444.
- [6] E. Posadas, D. Marín, S. Blanco, R. Lebrero, R. Muñoz, Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond, *Bioresour. Technol.* 232 (2017) 133–141. doi:10.1016/j.biortech.2017.01.071.
- [7] G. Singh, S.K. Patidar, Microalgae harvesting techniques: A review, *J. Environ. Manage.* 217 (2018) 499–508. doi:10.1016/j.jenvman.2018.04.010.
- [8] D.H. Cho, R. Ramanan, J. Heo, Z. Kang, B.H. Kim, C.Y. Ahn, H.M. Oh, H.S. Kim, Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater, *Bioresour.*

Technol. 191 (2015) 481–487. doi:10.1016/j.biortech.2015.02.013.

[9] M.L. Gerardo, S. Van Den Hende, H. Vervaeren, T. Coward, S.C. Skill, Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants, *Algal Res.* 11 (2015) 248–262. doi:10.1016/j.algal.2015.06.019.

[10] R. Gutiérrez, F. Passos, I. Ferrer, E. Uggetti, J. García, Harvesting microalgae from wastewater treatment systems with natural flocculants: Effect on biomass settling and biogas production, *Algal Res.* 9 (2015) 204–211. doi:10.1016/j.algal.2015.03.010.

[11] L. Zhu, Z. Li, E. Hiltunen, Microalgae *Chlorella vulgaris* biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction, *Biotechnol. Biofuels.* 11 (2018) 1–10. doi:10.1186/s13068-018-1183-z.

[12] D. Vandamme, I. Foubert, K. Muylaert, Flocculation as a low-cost method for harvesting microalgae for bulk biomass production, *Trends Biotechnol.* 31 (2013) 233–239. doi:10.1016/j.tibtech.2012.12.005.

[13] F. Roselet, D. Vandamme, K. Muylaert, P.C. Abreu, Harvesting of Microalgae for Biomass Production, in: M.A. Alam, Z. Wang (Eds.), *Microalgae Biotechnol. Dev. Biofuel Wastewater Treat.*, Springer Singapore, Singapore, 2019: pp. 211–243. doi:10.1007/978-981-13-2264-8_10.

[14] A. Augustine, A. Tanwar, R. Tremblay, S. Kumar, Flocculation processes optimization for reuse of culture medium without pH neutralization, *Algal Res.* 39 (2019) 101437. doi:10.1016/j.algal.2019.101437.

[15] I. De Godos, H.O. Guzman, R. Soto, P.A. García-encina, E. Becares, R. Muñoz, V.A. Vargas, Coagulation / flocculation-based removal of algal – bacterial biomass from piggery wastewater treatment, *Bioresour. Technol.* 102 (2011) 923–927. doi:10.1016/j.biortech.2010.09.036.

[16] I.A. Matter, V.K. Hoang Bui, M. Jung, J.Y. Seo, Y.E. Kim, Y.C. Lee, Y.K. Oh, Flocculation harvesting techniques for microalgae: A review, *Appl. Sci.* 9 (2019). doi:10.3390/app9153069.

[17] G.P. 't Lam, M.H. Vermuë, G. Olivieri, L.A.M. van den Broek, M.J. Barbosa, M.H.M. Eppink, R.H. Wijffels, D.M.M. Kleinegris, Cationic polymers for successful flocculation of marine microalgae, *Bioresour. Technol.* 169 (2014) 804–807. doi:10.1016/j.biortech.2014.07.070.

[18] F. Roselet, D. Vandamme, M. Roselet, K. Muylaert, P.C. Abreu, Screening of commercial natural and synthetic cationic polymers for flocculation of freshwater and marine microalgae and effects of molecular weight and charge density, *Algal Res.* 10 (2015) 183–188. doi:10.1016/j.algal.2015.05.008.

[19] N. Rashid, S. Ur, J. Han, Rapid harvesting of freshwater microalgae using chitosan, *Process Biochem.* 48 (2013) 1107–1110. doi:10.1016/j.procbio.2013.04.018.

[20] J. Blockx, A. Verfaillie, W. Thielemans, K. Muylaert, Unravelling the Mechanism of Chitosan-Driven Flocculation of Microalgae in Seawater as a Function of pH, *ACS Sustain. Chem. Eng.* 6 (2018) 11273–11279. doi:10.1021/acssuschemeng.7b04802.

[21] M.S. Farid, A. Shariati, A. Badakhshan, B. Anvaripour, Using nano-chitosan for harvesting microalga *Nannochloropsis* sp., *Bioresour. Technol.* 131 (2013) 555–559. doi:10.1016/j.biortech.2013.01.058.

[22] M.M. Barrado-Moreno, J. Beltrán-Heredia, J. Martín-Gallardo, Microalgal removal with natural coagulants, *Phycologia.* 55 (2016) 688–695. doi:10.2216/15-113.1.

[23] D. Vandamme, S. Eyley, G. Van Den Mooter, K. Muylaert, W. Thielemans, Highly charged cellulose-based nanocrystals as flocculants for harvesting *Chlorella vulgaris*, *Bioresour. Technol.* 194 (2015) 270–275. doi:10.1016/j.biortech.2015.07.039.

[24] S. Eyley, D. Vandamme, S. Lama, G. Van Den Mooter, K. Muylaert, W. Thielemans,

Nanoscale pH responsive cellulose nanocrystals, (2015) 14413–14421. doi:10.1039/c5nr03853g.

[25] J. Blockx, A. Verfaillie, S. Eyley, O. Deschaume, C. Bartic, K. Muylaert, W. Thielemans, Cationic Cellulose Nanocrystals for Flocculation of Microalgae: Effect of Degree of Substitution and Crystallinity, *ACS Appl. Nano Mater.* 2 (2019) 3394–3403. doi:10.1021/acsanm.9b00315.

[26] A. Verfaillie, J. Blockx, W. Praveenkumar, Ramasamy, Thielemans, K. Muylaert, Harvesting of marine microalgae using cationic cellulose nanocrystals, *Carbohydr. Polym.* Accepted (2020).

[27] Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose Nanocrystals : Chemistry , Self-Assembly , and Applications, 110 (2010) 3479–3500.

[28] S. Eyley, W. Thielemans, Surface modification of cellulose nanocrystals, *Nanoscale*. 6 (2014) 7764–7779. doi:10.1039/C4NR01756K.

[29] F. Roselet, D. Vandamme, M. Roselet, K. Muylaert, P.C. Abreu, Effects of pH , Salinity , Biomass Concentration , and Algal Organic Matter on Flocculant Efficiency of Synthetic Versus Natural Polymers for Harvesting Microalgae Biomass, (2017) 427–437. doi:10.1007/s12155-016-9806-3.

[30] D. Bilanovic, G. Shelef, A. Sukenik, Flocculation of microalgae with cationic polymers — Effects of medium salinity, *Biomass.* 17 (1988) 65–76. doi:10.1016/0144-4565(88)90071-6.

[31] G.P. Lam, J.B. Giraldo, M.H. Vermuë, G. Olivieri, M.H.M. Eppink, R.H. Wijffels, Understanding the salinity effect on cationic polymers in inducing flocculation of the microalga *Neochloris oleoabundans*, *J. Biotechnol.* 225 (2016) 10–17. doi:10.1016/j.biotech.2016.03.009.

[32] D. Marín, E. Posadas, P. Cano, V. Pérez, S. Blanco, R. Lebrero, R. Muñoz, Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor, *Bioresour. Technol.* 263 (2018) 58–66. doi:10.1016/j.biortech.2018.04.117.

[33] L. Rodolfi, G.C. Zittelli, L. Barsanti, G. Rosati, M.R. Tredici, Growth medium recycling in *Nannochloropsis* sp. mass cultivation, *Biomol. Eng.* 20 (2003) 243–248. doi:10.1016/S1389-0344(03)00063-7.

[34] S. Fon Sing, A. Isdepsky, M.A. Borowitzka, D.M. Lewis, Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant *Tetraselmis* sp. in raceway ponds under increasing salinity: A novel protocol for commercial microalgal biomass production, *Bioresour. Technol.* 161 (2014) 47–54. doi:10.1016/j.biortech.2014.03.010.

[35] R.R.L. Guillard, C.J. Lorenzen, YELLOW-GREEN ALGAE WITH CHLOROPHYLLIDE C1,2, *J. Phycol.* 8 (1972) 10–14. doi:10.1111/j.1529-8817.1972.tb03995.x.

[36] M. del R. Rodero, A. Carvajal, V. Castro, D. Navia, C. de Prada, R. Lebrero, R. Muñoz, Development of a control strategy to cope with biogas flowrate variations during photosynthetic biogas upgrading, *Biomass and Bioenergy*. 131 (2019). doi:10.1016/j.biombioe.2019.105414.

[37] M.A.H. Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E., & Franson, APHA: standard methods for the examination of water and wastewater., Centen. Ed. APHA, AWWA, WEF, Washington, DC. (2005).

[38] Z.T. Harith, F.M. Yusoff, M.S. Mohamed, M. Shariff, M. Din, A.B. Ariff, Effect of different flocculants on the flocculation performance of microalgae , *Chaetoceros calcitrans* , cells, 8 (2009) 5971–5978.

[39] F. Delrue, Y. Imbert, G. Fleury, G. Peltier, J.-F. Sassi, Using coagulation–flocculation to

harvest *Chlamydomonas reinhardtii*: Coagulant and flocculant efficiencies, and reuse of the liquid phase as growth medium, *Algal Res.* 9 (2015) 283–290. doi:10.1016/j.algal.2015.04.004.

[40] J.-W. Yang, A. Shrivastav, W. Farooq, S.K. Mishra, W.I. Suh, B. Ryu, M. Moon, M.S. Park, Effect of harvesting methods on the reusability of water for cultivation of *Chlorella vulgaris*, its lipid productivity and biodiesel quality, *Algal Res.* 8 (2015) 1–7. doi:10.1016/j.algal.2014.12.007.

[41] N.F.H. Selesu, T. V. de Oliveira, D.O. Corrêa, B. Miyawaki, A.B. Mariano, J.V.C. Vargas, R.B. Vieira, Maximum microalgae biomass harvesting via flocculation in large scale photobioreactor cultivation, *Can. J. Chem. Eng.* 94 (2016) 304–309. doi:10.1002/cjce.22391.

[42] E. Molina Grima, E.H. Belarbi, F.G. Acién Fernández, A. Robles Medina, Y. Chisti, Recovery of microalgal biomass and metabolites: Process options and economics, *Biotechnol. Adv.* 20 (2003) 491–515. doi:10.1016/S0734-9750(02)00050-2.

[43] Y. Gerchman, B. Vasker, M. Tavasi, Y. Mishael, Y. Kinel-Tahan, Y. Yehoshua, Effective harvesting of microalgae: Comparison of different polymeric flocculants, *Bioresour. Technol.* 228 (2017) 141–146. doi:10.1016/j.biortech.2016.12.040.

[44] S. Lama, K. Muylaert, T. Bahadur, I. Foubert, R.K. Henderson, D. Vandamme, Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation, *Bioresour. Technol.* 220 (2016) 464–470. doi:10.1016/j.biortech.2016.08.080.

[45] H. Zhang, L. Yang, X. Zang, S. Cheng, X. Zhang, Effect of shear rate on floc characteristics and concentration factors for the harvesting of *Chlorella vulgaris* using coagulation-flocculation-sedimentation, *Sci. Total Environ.* 688 (2019) 811–817. doi:10.1016/j.scitotenv.2019.06.321.

[46] T. Hwang, S.J. Park, Y.K. Oh, N. Rashid, J.I. Han, Harvesting of *Chlorella* sp. KR-1 using a cross-flow membrane filtration system equipped with an anti-fouling membrane, *Bioresour. Technol.* 139 (2013) 379–382. doi:10.1016/j.biortech.2013.03.149.

[47] J. Monte, M. Sá, C.F. Galinha, L. Costa, H. Hoekstra, C. Brazinha, J.G. Crespo, Harvesting of *Dunaliella salina* by membrane filtration at pilot scale, *Sep. Purif. Technol.* 190 (2018) 252–260. doi:10.1016/j.seppur.2017.08.019.

[48] N. Uduman, Y. Qi, M.K. Danquah, G.M. Forde, A. Hoadley, Dewatering of microalgal cultures: A major bottleneck to algae-based fuels, *J. Renew. Sustain. Energy.* 2 (2010). doi:10.1063/1.3294480.

Supplementary Material

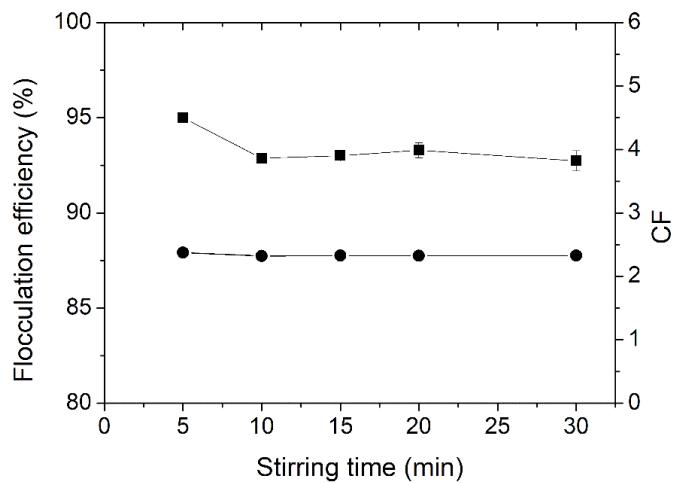
Harvesting microalgal-bacterial biomass from biogas upgrading process and evaluating the impact of flocculants on their growth during repeated recycling of the spent medium

María del Rosario Rodero^{1,2,4}, Raúl Muñoz^{1,2}, Raquel Lebrero^{1,2}, An Verfaillie^{3,4}, Jonas Blockx^{3,4}, Wim Thielemans³, Koenraad Muylaert⁴, Ramasamy Praveenkumar^{3,4,5}

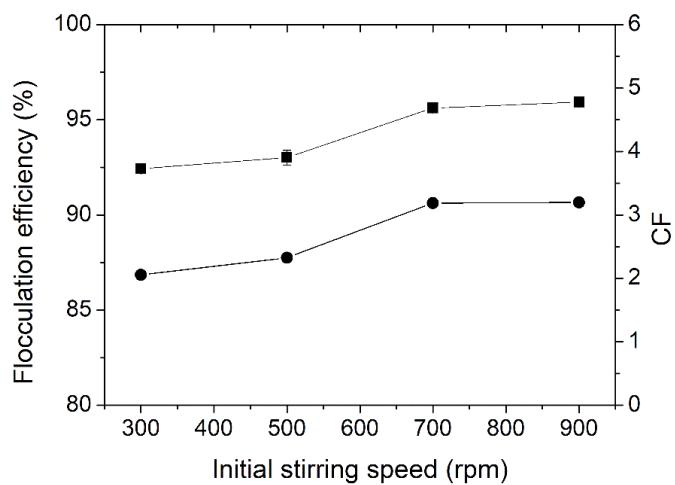
¹ Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain.

² Institute of Sustainable Processes, University of Valladolid, 47011, Valladolid, Spain.

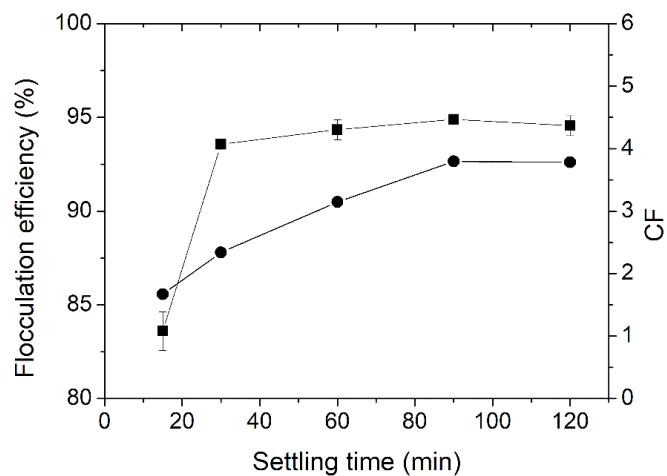
³ Sustainable Materials Lab, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53 box 7659, B-8500 Kortrijk, Belgium

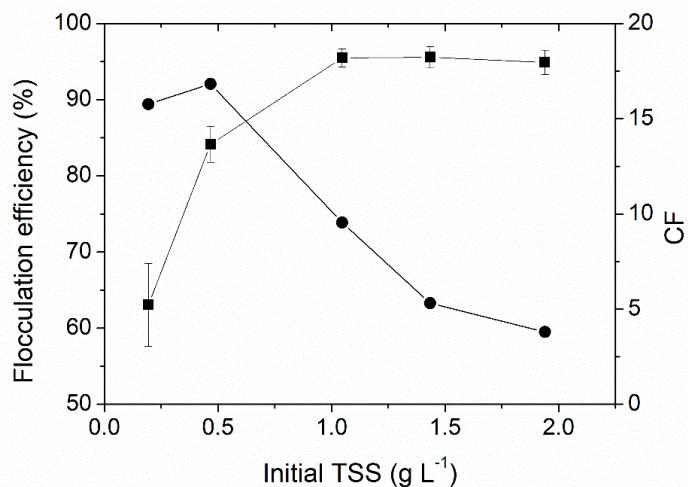

⁴ Laboratory of Aquatic Biology, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, box 7659, B-8500 Kortrijk, Belgium

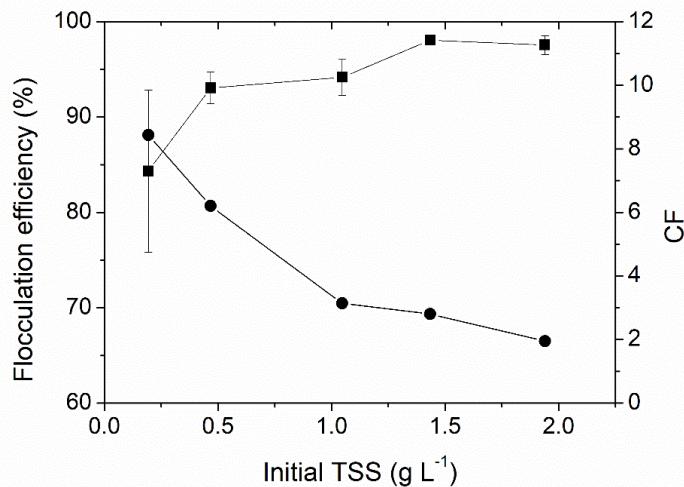
⁵ Environmental Dynamics, Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark

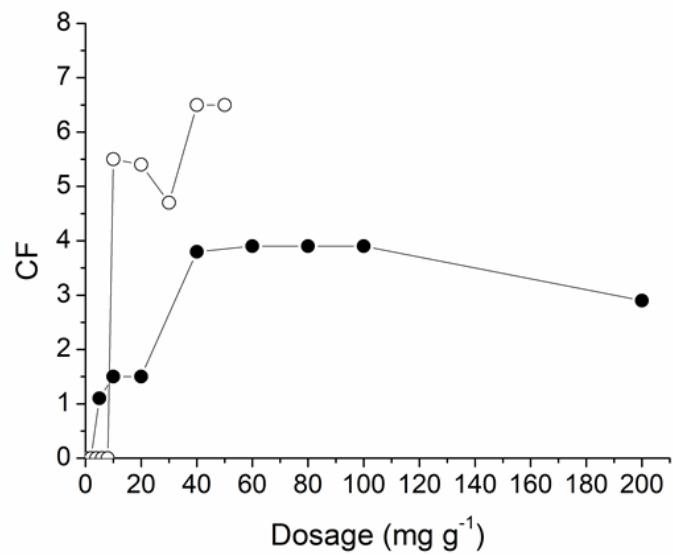

Content:

- Figure S1
- Figure S2
- Figure S3
- Table S4


a)


b)


c)


d)

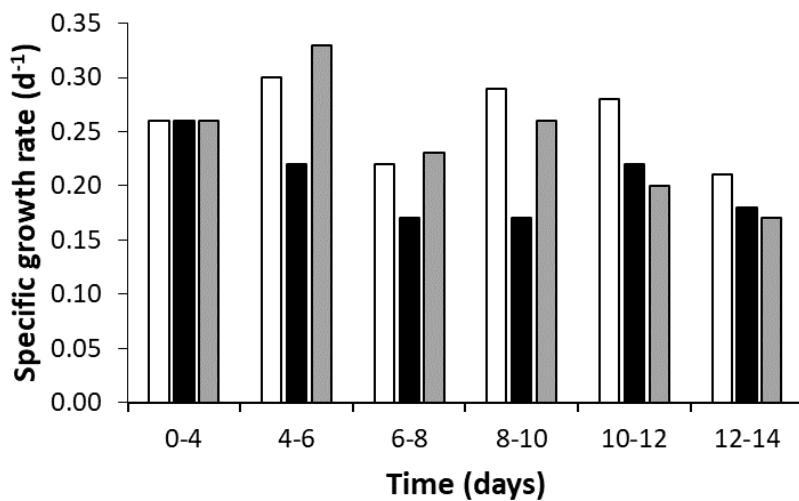

e)

Fig. S1. Influence of the different flocculation conditions: a) stirring time, b) initial stirring velocity, c) settling time, d) biomass concentration (Zetag) and e) biomass concentration (cationic cellulose nanocrystals) on the flocculation efficiency (■) and concentration factor, CF (●) (average values and their standard deviation; $n=2$).

Fig. S2 Concentration factor (CF) of dose-response curves of Zetag (○) and cationic cellulose nanocrystals (●).

Fig. S3 Specific growth rate of the microalga consortium during the repeated recycling experiments with centrifugation (white) and flocculation with Zetag (black) and cationic cellulose nanocrystals (grey).

Table S4 Parameters monitored during the repeated recycling experiments (pH, ζ -potential (average values and their standard deviation; n=3), inorganic carbon concentration (IC), concentration factor (CF) after 30 min of settling and volume of mineral medium added after harvesting).

	Recycling	Day	pH		ζ -potential		IC mg L⁻¹	CF	V, ml
			Before	After	Before	After			
Centrifugation	1st	4	10.00	10.06	-28.14±1.33	-31.09±0.79	1798	8.3	60
	2nd	6	10.20	10.12	-38.02±2.41	-31.85±1.60	1712	10	50
	3rd	10	10.80	10.42	-23.63±0.17	-31.1±0.19	1455	10	50
	4th	12	10.30	10.15	-27.17±1.84	-37.05±1.55	1070	7.1	70
	5th	14	10.25	10.20	-21.86±0.93	-30.31±3.58	835	10	50
Cationic cellulose nanocrystals (MIM-g-CNCs)	1st	4	10.04	10.06	-28.13±1.33	-28.15±1.66	1798	1.4	180
	2nd	6	10.24	10.12	-25.22±4.59	-28.03±2.82	1712	1.4	210
	3rd	10	10.77	10.40	-28.56±2.13	-32.07±1.99	1627	0.6	50
	4th	12	10.26	10.12	-27.17±1.84	-28.45±1.10	1027	1.5	180
	5th	14	10.12	10.10	-21.86±0.93	-31.26±1.17	963	2.0	160
Zetag	1st	4	10.04	10.02	-28.13±1.33	-25.90±1.18	1798	7.7	60
	2nd	6	10.24	10.14	-24.85±1.20	-29.93±1.19	1669	3.3	140
	3rd	10	10.77	10.34	-33.98±2.64	-24.77±1.62	1498	3.2	150
	4th	12	10.27	10.14	-29.42±1.80	-32.05±0.78	1070	3.2	150
	5th	14	10.21	10.17	-29.35±2.42	-24.23±0.63	942	5.7	85

Chapter 9

Conclusions and future work

The optimization of photosynthetic biogas upgrading to achieve a biomethane complying with national and international standards coupled to wastewater treatment in a HRAP interconnected to a biogas absorption column was successfully carried out in this thesis at pilot and semi-industrial scale.

The influence of the alkalinity and temperature of the cultivation broth was systematically evaluated in **Chapter 3** in order to improve the efficiency of the process. Alkalinity was here identified as a key environmental parameter exerting an impact on CO₂ removal from biogas. In this context, biomethane composition complied with most international standards for biogas injection into natural gas grids or use as a vehicle fuel only when photosynthetic biogas upgrading was carried out at high alkalinity (inorganic carbon concentrations of ~1500 mg C L⁻¹). Otherwise, low alkalinity media (~100 mg inorganic carbon L⁻¹) entailed a low CO₂ mass transfer from biogas due to the rapid acidification of the scrubbing liquid in the absorption column, which might induce inorganic carbon limitations in the culture broth. On the other hand, a negligible effect of the temperature in the range of 12-35°C on the quality of the upgraded biogas was recorded at high-medium alkalinity, while low temperatures favoured CO₂ removal at low alkalinity.

Since alkalinity in the cultivation medium played a key role on the efficiency of CO₂ removal in the biogas absorption column, the long-term impact of high alkalinity on CO₂ fixation by microalgae was evaluated in **Chapter 4**. Although biogas upgrading was more effective and robust at inorganic carbon concentrations in the cultivation broth higher than 2400 mg C L⁻¹, this high salt content negatively impacted on the photosynthetic activity of microalgae as a result of oxidative stress. Furthermore, higher alkalinitiess entailed a higher CO₂ stripping, thus lowering the environmental advantage of this biotechnology. Finally, the influence of biomass concentration (0.33-1.38 g SSV L⁻¹) on biomethane quality and microalgae growth was also assessed. High biomass concentrations mediated a slight decrease on the CO₂ gas-liquid mass transfer in the absorption column and decreased biomass productivities in the HRAP.

Chapter 5 was focused on the semi-industrial validation of the simultaneous photosynthetic biogas upgrading and wastewater treatment under outdoor conditions. The effectiveness of photosynthetic biogas upgrading was low when using domestic wastewater as a nutrient source regardless of the hydraulic retention time in the HRAP (3.5 and 8 days), while the use of centrate enhanced CO₂ and H₂S removals due to its

higher pH and alkalinity. The influence of biogas flowrate from 274 to 459 L h⁻¹ at similar liquid to biogas (L/G) ratio in the absorption column was negligible. Otherwise, higher L/G ratios supported higher CO₂ and H₂S removals along with higher N₂ and O₂ stripping from the cultivation broth to the biogas upgraded, which resulted in a lower biomethane quality. Finally, an efficient nutrient removal in the wastewaters was reached regardless of the operational conditions.

In **Chapter 6**, an innovative control strategy based on the regulation of the recycling liquid flowrate, and indirectly the L/G ratio, to meet the target biomethane quality during photosynthetic biogas upgrading was successfully developed. The control system implemented was able to assure a CO₂ and O₂ content lower than 2.5% and 1%, respectively, and negligible concentrations of H₂S under biogas flowrate fluctuations ranging from 60 to 120 ml min⁻¹ regardless of the temperature and the alkalinity of the cultivation broth at pH 10. On the contrary, the low CO₂ removal recorded at pH 8.5 together with the increase in O₂ concentrations in the upgraded biogas due to the high L/G ratios imposed by the control system, entailed opposite control responses. This confirmed that pH was a critical operating parameter in this technology. The control strategy was further evaluated at semi-industrial scale in **Chapter 7**. In this work the control system was able to maintain CO₂ concentrations <2% and O₂ concentrations <1% in the biomethane regardless of the pH (9.05-9.50) and fluctuations in the biogas flowrate between 143 and 420 L h⁻¹. Although this green biotechnology typically exhibits a poor robustness against failures in biogas and liquid supply, the control system provided a suitable biomethane quality after a shutdown and resumption of biogas supply or liquid recirculation in the absorption column. This control strategy validated at pilot and semi-industrial scale can provide a satisfactory biomethane quality and overcome the negative impact of operational failures or environmental variations on photosynthetic biogas upgrading performance.

A final investigation was carried out to achieve an efficient separation of the microalgal-bacterial biomass produced during photosynthetic biogas upgrading via flocculation (**Chapter 8**). In this context, only Zetag 8125 and cationically modified cellulose nanocrystals (CNCs) resulted in flocculation efficiencies >90% among the five flocculants tested. Moreover, these flocculants did not have a pernicious impact on the algal culture when the biomass-free cultivation broth was recycled. Moreover, screening with a nylon mesh of 180 µm pore size after flocculation was more efficient and less

time-consuming than gravity settling. This flocculation-based harvesting is a promising alternative to conventional gravity settling in photosynthetic biogas upgrading processes.

Based on the outcomes and limitations found in this thesis, further research on valorisation alternatives should focus on:

- The enrichment of high performance microalgae and bacteria consortia able to grow and effectively sequester CO₂ from biogas and nutrients from digestates under the extreme conditions of alkalinity and pH needed during photosynthetic biogas upgrading.
- The development of cost-effective strategies to reduce the desorption of N₂ and O₂ from the cultivation broth prior to the absorption column, which could allow operating at higher L/G ratios under unfavorable CO₂ absorption conditions (i.e. low pH or alkalinity) without an undesirable increase in the O₂ and N₂ content in the biomethane.
- Optimization of photobioreactor configuration in order to enhance CO₂ capture by the microalgae at low operational and investment costs.
- Research on manufacture of value-added products from the microalgal-bacterial biomass obtained as by-product in this process to further enhance its economic viability.
- Continuous implementation of flocculation followed by a separation step as harvesting method during photosynthetic biogas upgrading.
- One-year continuous evaluation of the full-optimized system at semi-industrial scale.

Chapter 10

About the author

Bibliography

María del Rosario Rodero Raya (Jaén, 1990) started a Chemical Engineering degree in 2008 at the University of Granada. In November 2013, she obtained a 8-months scholarship from the Spanish Ministry of Education, Culture and Sports as collaborating researcher at the Department of Analytic

Chemistry of the University of Granada. Then, she carried out (January-June 2015) a 6-months internship at the company Marquesado Solar S.L., owner of the Solar Thermal Power Plant Andasol 3 (Guadix, Spain).

In October 2016, M^a del Rosario joined the VOC & Microalgae Research Group headed by Associate Professor Raúl Muñoz in the Environmental Technology Research Group (Institute of Sustainable Processes – University of Valladolid). M^a del Rosario carried out her PhD research within the INCOVER project funded by European Union's Horizon 2020 research and innovation programme (689242). Her PhD studies focused on the optimization of an innovative biogas upgrading system in open algal-bacterial photobioreactors and its evaluation at large scale. The candidate carried out within her PhD studies 3 research stays (July 2017– February 2018, September 2018-December 2018, April 2019-September 2019) at Wastewater Treatment Plant “El Torno” belonging to the multinational company FCC Aqualia, where she operated a semi-industrial high rate algal pond interconnected to a biogas absorption column. Finally, she also carried out a 3-months research stay (January 2019 – March 2019) at the Department of Biology of KU Leuven, Campus Kulak (Kortrijk, Belgium) with the purpose of achieving an effective biomass harvesting during photosynthetic biogas upgrading under the supervision of Dr. Koenraad Muylaert and Dr. Ramasamy Praveenkumar.

Publications in international journals

1. Rodero, M. del R., Posadas, E., Toledo-Cervantes, A., Lebrero, R., Muñoz, R., 2018. Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds. *Algal Res.* 33, 284–290. doi:10.1016/j.algal.2018.06.001.
2. Rodero, M. del R., Lebrero, R., Serrano, E., Lara, E., Arbib, Z., García-Encina, P.A., Muñoz, R., 2019. Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor. *Bioresour. Technol.* 279, 43–49. doi:10.1016/j.biortech.2019.01.110.
3. Rodero, M. del R., Carvajal, A., Castro, V., Navia, D., de Prada, C., Lebrero, R., Muñoz, R., 2019. Development of a control strategy to cope with biogas flowrate variations during photosynthetic biogas upgrading. *Biomass and Bioenergy* 131, 105414. doi:10.1016/j.biombioe.2019.105414.
4. Rodero, M. del R., Carvajal, A., Arbib, Z., Lara, E., de Prada, C., Lebrero, R., Muñoz, R., 2020. Performance evaluation of a control strategy for photosynthetic biogas upgrading in a semi-industrial scale photobioreactor. *Bioresour. Technol.* 307, 123207. doi:10.1016/j.biortech.2020.123207.
5. Rodero, M. del R., Muñoz, R., Lebrero, R., Verfaillie, A., Blockx, J., Thielemans, W., Muylaert, K., Praveenkumar, R., 2020. Harvesting microalgal-bacterial biomass from biogas upgrading process and evaluating the impact of flocculants on their growth during repeated recycling of the spent medium. *Algal Res.* 48, 101915. doi:10.1016/j.algal.2020.101915.
6. Rodero, M. del R., Severi, C., Rocher-Rivas, R., Quijano, G., Muñoz, R. Long-term influence of high alkalinity on the performance of photosynthetic biogas upgrading. *Fuel* 281, 118804. doi:10.1016/j.fuel.2020.118804.

Book chapters

1. Rodero, M. del R., Ángeles, R., Marín, D., Díaz, I., Colzi, A., Posadas, E., Lebrero, R., Muñoz, R., 2018. Biogas Purification and Upgrading Technologies. In: *Biogas: Fundamentals, Process, and Operation*, pp. 239–276. doi:10.1007/978-3-319-77335-3_10.

2. Ángeles, R., Rodero, M. del R., Carvajal, A., Lebrero, R., Muñoz, R., 2019. Potential of Microalgae for Wastewater Treatment and Its Valorization into Added Value Products. In: Application of Microalgae in Wastewater Treatment, pp. 281-315. doi:10.1007/978-3-030-13909-4_13
3. Rodero, M. del R., Ángeles, R., Pérez, V., Gancedo, J., Bolado, S., Lebrero, R., Muñoz, R., 2020. Microalgae-Based Processes as an Energy Efficient Platform for Water Reclamation and Resource Recovery. In: Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability, pp 95-97. doi:10.1007/978-3-030-13068-8_23
4. Ángeles, R., Marín, D., Rodero, M. del R., Pascual, C., González-Sánchez, A., de Godos, I., Lebrero, R., Muñoz, R., 2020. Biogas treatment for H₂S, CO₂, and other contaminants removal. In: From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment. pp 153-176. doi:10.1016/B978-0-12-819064-7.00008-X

Contribution to conferences

1. Posadas, E., Rodero, M. del R., Marin, D., Lebrero, R., García-Encina, P.A., Muñoz, R. Revisiting Microalgae-based Processes for a Cost-effective and Integral Wastewater Treatment. Workshop Leading Edge Technologies for the Removal of Emerging Pollutants. 24 November 2016, Madrid, Spain. (**Oral Presentation**).
2. Rodero, M. del R., Toledo-Cervantes, A., Kumar, G., Lebrero, R., Muñoz, R. Biogas upgrading using algal-bacterial processes. 1st International Conference on Alternative Fuels: Future and Challenges. 2-4 December 2016, Kayseri, Turkey. (**Poster**).
3. Rodero, M. del R., Toledo-Cervantes, A., Lebrero, R., Muñoz, R. Influence of the temperature and alkalinity on biogas upgrading in algal-bacterial photobioreactors. 7th International Conference on Biotechniques for Air Pollution Control and Bioenergy. 19-21 July 2017, A Coruña, Spain. (**Oral presentation**).
4. Rodero, M. del R., Lebrero, R., Muñoz, R. Limpieza de biogás en fotobiorreactores con microalgas y bacterias. Ciclo de Conferencias de

Investigadoras de la Uva en La Aventura de la Ciencia y la Tecnología, 10 March 2017, Valladolid, Spain. **(Oral Presentation)**.

5. Rodero, M. del R., Ángeles, R., García, D., Lebrero, R., García, P., Muñoz, R. Procesos de microalgas como plataforma para la mejora de la eficiencia energética en EDARs. Jornada NOVEDAR. 3 April 2017, Madrid, Spain. **(Oral Presentation)**.
6. Rodero, M. del R., Toledo-Cervantes, A., Posadas, E., Lebrero, R., Muñoz, R. Influence of the alkalinity and temperature on biogas upgrading in algal-bacterial photobioreactors. EUALGAE Training School. Microalgae processes: from fundamentals to industrial scale. 13-15 September 2017, Almería, Spain. **(Poster)**.
7. Rodero, M. del R., Lebrero, R., Marín, D., Lara, E., Arbib, Z., Muñoz, R. Innovative technologies for a cost-effective biogas upgrading in wastewater treatment plants. AlgaEurope 2017 Conference. 5-7 December 2017, Berlin, Germany. **(Poster)**.
8. Rodero, M. del R., Posadas, E., Toledo-Cervantes, A., Lebrero, R., Muñoz, R. Influence of the alkalinity and temperature on biogas upgrading in algal-bacterial photobioreactors. 2nd EUALGAE Workshop of algae bioproducts for early career investigators. 6 March 2018, Thessaloniki, Greece. **(Oral presentation)**.
9. Rodero, M. del R., Lebrero, R., Cano, R., Serrano, E., Lara, E., Arbib, Z., Muñoz, R. Photosynthetic biogas upgrading in wastewater treatment plants. AlgaEurope 2018 Conference. 4-6 December 2018, Amsterdam, The Netherlands. **(Poster)**
10. Rodero, M. del R., Lebrero, R., Serrano, E., Lara, E., Arbib, Z., Muñoz, R. Biogas upgrading using algal-bacterial processes in wastewater treatment plants. 16th IWA World Conference on Anaerobic Digestion. 23-27 June 2019, Delft, The Netherlands. **(Poster + oral presentation)**.
11. Rodero, M. del R., Carvajal, A., Castro, V., Navia, D., de Prada, C., Lebrero, R., Muñoz, R. Development of a control strategy to cope with biogas flowrate variations during photosynthetic biogas upgrading. IWA Conference on Algal

Technologies and Stabilization Ponds for Wastewater Treatment and Resource Recovery. 1-2 July 2019, Valladolid, Spain. **(Oral presentation)**.

Long-term research stays

- WWTP “El Torno”, FCC Servicios Ciudadanos (AQUALIA), Chiclana de la Frontera (Spain). July 2017 - February 2018; September 2018 - December 2018; April 2019 - September 2019.
- Laboratory for Aquatic Biology, KU Leuven, Campus Kulak, Kortrijk (Belgium). January 2019 - March 2019. Supervisors: Professor Koenraad Muylaert and Dr. Ramasamy Praveenkumar.

Participation in Research Projects

- Innovative Eco-Technologies for Resource Recovery from Wastewater (INCOVER). European Union’s Horizon 2020 research and innovation programme (689242). P.I: Raúl Muñoz and Raquel Lebrero.

Fellowships

1. UVa-Predoctoral researcher Fellowship (2016).
2. Travel and accommodation grant for the participation in the 2nd EUALGAE Training School: “Microalgae processes: from fundamentals to industrial scale” (2017). COST Action ES1408 “European network for algal-bioproducts (EUALGAE)”.
3. Travel and accommodation grant for the participation in the 2nd EUALGAE workshop of algae bioproducts for early career investigators (2018). EUALGAE COST Action ES1408.
4. International Mentor Program 2018-19 of IMFAHE Foundation.
5. Short Term Scientific Mission Grant for research stay in KU Leuven-Campus Kulak, Kortrijk (2019). EUALGAE COST Action (ES1408-41358).
6. Travel, accommodation and registration grant for taking an English course in the European School of English Malta (2019). ERASMUS + programme (KA103).

Teaching

- Environmental and Process Technology. Assistant Professor, 2 ECTS. Chemical Engineering Degree. 1st course, academic year 2017/2018, University of Valladolid (Spain).

Conference committee

- Member of the Organizing Committee of: “IWA Conference on Algal Technologies and Stabilization Ponds for Wastewater Treatment and Resource Recovery”. 1-2 July 2019, Valladolid, Spain.

Peer-review in ISI Web of Knowledge journals

- Journal of Environmental Management
- Journal of Water Environment Research

Attended short-courses and seminars

1. Complementary subject “Technology for water treatment”. Environmental Engineering Master. University of Valladolid. 10/2016 – 01/2017. 6 ECTS.
2. Complementary subject “Prevention and treatment of atmospheric pollution”. Environmental Engineering Master. University of Valladolid. 10/2016 – 01/2017. 5 ECTS.
3. Course “Redacción de Artículos Científicos en Ingeniería”. University of Valladolid. 16/01/2017. 4 hours.
4. English Course. Level B2. University of Valladolid. 30/01/2017 – 05/04/2017. 50 hours.
5. Course “Coaching. El arte de ser profesional”. University of Valladolid. 29/02/2017 and 07/03/2017. 8 hours.
6. Course “Introducción a la edición de textos con LATEX Composición y presentaciones con Beamer”. University of Valladolid. 02/05/2017 – 24/05/2017. 30 hours.
7. Course “Biotecnología de microalgas”. University of Valladolid. 08/05/2017 – 12/05/2017. 10 hours.
8. English Course. Level B2. European School of English Malta. 16/09/2019 – 20/09/2019. 22.5 hours.
9. Course “Taller Práctico sobre Técnicas Analíticas Físico-Químicas e Instrumentales”. University of Valladolid. 06/11/2019 – 16/11/2019. 8 hours.

10. Course “Iniciación al análisis de secuencias 16 S Illumina® MiSeq para el estudio de comunidades bacterianas”. University of Valladolid. 16/12/2019 – 19/12/2019. 14 hours.
11. Course “Eficiencia y viabilidad de nuevas tecnologías en procesos de tratamiento de aguas residuales”. University of Valladolid. 09/03/2020 – 12/03/2020. 10 hours.
12. Course “Formación en Comunicación y Soft Skills”. University of Valladolid. 12/11/2020 - 20/11/2020. 8 hours.
13. Course “Introducción a las tecnologías de secuenciación y bases de datos genómicas”. University of Valladolid. 10/12/2020 –11/12/2020. 5 hours.

Agradecimientos/Acknowledgements

Podría escribir otra tesis solo con los agradecimientos... Son muchas las personas que he conocido en estos 4 años de doctorado (más de lo que pude imaginar), así que, aunque es imposible mencionar a todo el mundo, simplemente muchas gracias a todas las personas que han formado parte de mi vida en este camino, por haber compartido vuestro tiempo conmigo, por los tantísimos momentos de risa, pero también por ayudarme y enseñarme tanto. He aprendido mucho en todo este tiempo tanto profesional como personalmente y parte de esta tesis es también vuestra.

Concretamente me gustaría agradecer en primer lugar a Raúl, porque hace 4 años sin conocerme me dio la oportunidad de realizar esta tesis doctoral. Pero no sólo por eso, muchas gracias por todo el tiempo y esfuerzo que me has dedicado, por tus buenos consejos, por ayudar a superarme y confiar en mí cuando ni yo lo hacía, por estar ahí siempre buscando soluciones a los problemas que surgían por el camino, incluso cuando estaba en Chiclana. También quería agradecerle a Raquel toda su dedicación y esmero durante estos años, por darle otra visión a los trabajos, por sus consejos e ideas, por aportarme tranquilidad en momentos difíciles. Mil gracias a los dos porque sin vuestra ayuda esta tesis no sería la misma.

Muchas gracias a todos los técnicos y profesores del Departamento de Ingeniería Química y Tecnología del Medio Ambiente y del Instituto de Procesos Sostenibles por la inmensa ayuda que siempre nos prestan y por sus buenos consejos. Y como no, muchas gracias a todos esos compis de laboratorio y amigos que he tenido la suerte de conocer, por todos esos momentos estupendos vividos tanto dentro como fuera del laboratorio, por vuestro apoyo cuando más lo necesitaba. Especialmente agradecer a todos los compañeros que han colaborado conmigo mano a mano durante este periodo, por toda su ayuda, esfuerzo y enseñanza: Alma, Andrea, Ángel, Víctor, Cristian y Ricardo. A Roxana, Fanny, Vito, Tijana y Vesna con las que he tenido la suerte de compartir no sólo laboratorio sino también piso, muchas gracias por hacerme la convivencia tan fácil, por todos esos momentos juntas. A mi muchachita Zaineb, merci beaucoup pour ton amitié et ta gentillesse. A Yadira, Cristian, Octavio, David y Celia por estar siempre dispuestos a echarme una mano, por los buenos ratos en el lab. A las dos Esther porque he aprendido muchísimo de ellas, por toda la ayuda que me han prestado siempre con una sonrisa en la cara, por ser unas compañeras geniales.

Me gustaría agradecer a todas esas estupendas personas que he tenido el placer de conocer en la EDAR “El Torno”, porque si Valladolid ha sido mi casa durante todo este tiempo, en Chiclana ha estado sin duda mi segunda familia. Especialmente a los

investigadores Juanjo, Maikel y Esteban por sus buenos consejos, enseñanza y amistad. A Almudena por su amistad, por ser un gran apoyo todo este tiempo. Al manitas de Jose Antonio por estar siempre dispuesto a ayudar cuando algo fallaba. A Enrique y Arbib por darme la oportunidad de vivir esta experiencia. En general, muchas gracias a todos por enseñarme tanto, por hacerme sentir como una más del equipo Aqualia, por los momentos de risa, por haber hecho de Chiclana un lugar inolvidable.

Special thanks to Koenraad Muylaert and Ramasamy Praveenkumar for accepting me in the Aquatic Biology Lab at KU Leuven campus Kulak and giving me the opportunity to expand my knowledge in the field of microalgae harvesting. Also, I want to thank to all the members of the Aquatic Biology Lab and Chemical Engineering Department for their help and support, especially to An, Jonas, Sara and Bert. To all the amazing people of the group “Internationals at Kulak”, thank you for the time we spent together. To Fateme and Carolina for sharing with me this wonderful experience, for our days together at Kulak and our trips during the weekends, for being great friends.

Quiero agradecer enormemente a Juan José de Andasol 3, por haberme enseñado tanto en su día, por su recomendación, porque en parte gracias a él hoy estoy aquí. Así como a mi mentora Yaiza González de TU Delft por todos los buenos consejos que me ha dado en estos dos últimos años y por estar dispuesta a atender siempre mis dudas.

Muchas gracias a todos/as mis amigos/as de Villacarrillo así como a las grandes amistades que hice en Granada, porque aunque pase tiempo sin verlos siempre están ahí. Especialmente a Carmen y a Isa, por ser tan buenas consejeras, por estar siempre pendientes de mí y contar conmigo a pesar de la distancia.

Muchas gracias a toda mi familia. Sobretodo agradecer a mis padres y mi hermano por su cariño, porque siempre están ahí para ayudarme, por todas las mudanzas que les he hecho hacer (y las que quedan), por sus consejos, por su comprensión y apoyo en mis decisiones, aunque ello implique que no los pueda ver muy a menudo. A mi abuelo, por todo su cariño, sus anécdotas, por su alegría cada vez que su nieta mayor iba a visitarlo, porque sé que allá donde esté seguirá guiándome. Simplemente, muchas gracias por todo lo que me habéis enseñado en la vida y por lo que me queda por aprender.

Finalmente, me gustaría agradecer a Sergio. Por todos esos kilómetros que ha recorrido sólo para verme, porque siempre está en los momentos buenos y en los no tan buenos, por su cariño, ayuda y apoyo incondicional, por darme de vez en cuando ese empujón que necesito. Mil gracias.

Muchas gracias. Thank you very much. Dankuwel. Merci beaucoup.