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A R T I C L E I N F O A B S T R A C T 

Communicated by M.G.A. Paris A procedure to find optimal regimes for quantum thermal engines (QTMs) is described and demonstrated. The 
QTMs are modelled as the periodically-driven non-equilibrium steady states of open quantum systems, whose 
dynamics is approximated in this work with Markovian master equations. The action of the external agent and 
the couplings to the heat reservoirs can be modulated with control functions, and it is the time-dependent shape 
of these control functions the object of optimisation. Those functions can be freely parameterised, which permits 
to constrain the solutions according to experimental or physical requirements.

1. Introduction

Thermal machines are devices composed of a working fluid (or work
ing medium), one or more heat reservoirs, and an external agent. The heat 
reservoirs or baths are macroscopic systems, typically at thermal equi
librium, and normally they are considered to be large enough to assume 
that they are not altered by their interaction with the working fluid. 
The working fluid itself may be any substance capable of exchanging 
energy with the reservoirs in the form of heat. Furthermore, the work
ing fluid exchanges energy with the external agent in the form of work 
– either performed on or by the working fluid. Depending on the sign 
and relative values of those heats and works, the thermal machine is a 
heat engine, a refrigerator, a heat pump, etc. The basic setup is sketched 
in Fig. 1.

Historically, the theory of thermodynamics was developed around 
the analysis of the thermal machine. It was well established way before 
quantum mechanics, but the laws of equilibrium thermodynamics can
not be considered ``classical'' or ``quantum'', as the theory is by definition 
agnostic about the microscopic dynamics of the constituents of the sys
tem that it studies. It is however normally assumed that the systems are 
macroscopic in size: it is a theory about systems ``in the thermodynamic 
limit''.

But this need not be the case for thermal machines, and Scovil and 
Schulz-Dubois showed as early as in 1959 [1] how a three-level maser 
can be analysed as a quantum thermal machine (QTM) [2,3]. Later on, 
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the road toward the miniaturisation of all kinds of devices that has 
been followed in the last decades has raised the interest in analysing 
micro and mesoscopic systems as tentative working mediums. Numer
ous proposals for QTMs have been put forward, often only as theoretical 
proposals, but also as experimental realisations [4--10].

A fairly large body of literature on the topic of QTMs and, in gen
eral, of quantum thermodynamics [11--13] has been produced in the last 
decades. Unsurprisingly, the topic of the theoretical optimal efficiencies 
and bounds or limits for output powers and performances has often been 
investigated, given that the bound for the efficiency of a heat engine es
tablished by Sadi Carnot is perhaps the most popular formulation of the 
II law of thermodynamics [14]. In fact, the seminal paper of Scovil and 
Schulz-Dubois [1] found that the maser efficiency is also bound by the 
value predicted by Carnot.

The theoretical absolute limits for the performance of these machines 
are however unattainable in practice and, moreover, they may require 
useless operation modes. For example, the paradigmatic limit of classi
cal thermodynamics, Carnot’s efficiency, can only be reached assuming 
that the thermal machine is evolving quasistatically, i.e. staying at all 
time in equilibrium, which essentially means ifinitely slow. Therefore, 
the output power per unit time of a heat engine performing Carnot’s cy
cle is zero. This regime is both unattainable and useless from a practical 
perspective, hence the need for working with finite time thermodynam
ics. In this realm, the dynamics of the microscopic constituents of the 
systems cannot be ignored any more -- such as it is in the pure field 

https://doi.org/10.1016/j.physleta.2025.130309
Received 29 October 2024; Received in revised form 24 January 2025; Accepted 27 January 2025 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
http://orcid.org/0000-0002-9253-7926
mailto:alberto.castro.barrigon@gmail.com
https://acastro.uva.es/
https://doi.org/10.1016/j.physleta.2025.130309
https://doi.org/10.1016/j.physleta.2025.130309
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2025.130309&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Physics Letters A 536 (2025) 130309

2

A. Castro 

Fig. 1. Basic diagram of a QTM: a hot bath (HB) at temperature 𝑇1 and a cold batch (CB) at temperature 𝑇2 exchange heat with the working medium (WM). This 
can also exchange work with an external agent (EA). The equations are the expressions for the heats and work assuming a Markovian master equation (see text). 
The directions of the arrows suggest a heat engine operation mode: 𝑄1 > 0 (the WM receives heat from the hot bath), 𝑄2 < 0 (the WM gives away part of that heat 
to the cold bath), and 𝑊 > 0 (the remaining heat is transformed into output work on the EA).

of equilibrium thermodynamics --, and one can start to wonder about 
differences between the quantum and classical cases.

Erdman et al. [15] also found that the Carnot efficiency limit can be 
reached for QTM machines modelled as two-level-systems (TLS) with 
tunable gap: they demonstrated how the optimal regime is in this case 
found with ifinitely fast two-stroke Otto cycles (switching very rapidly 
from a large gap when the system is coupled to the hot bath, to a smaller 
gap when the system is coupled to the cold bath). It is clear how the 
Carnot limit is only achieved (or, one should say, approached to arbi
trary precision) with experimentally impossible requirements: ifinites
imally short strokes, and sudden, discontinuous Hamiltonian changes.

The research on the theoretical absolute bounds for the performances 
of QTMs has been extensive over the last decades. However, it is also 
important to develop techniques for the more mundane computational 
task of finding optimal protocols when using experimentally realistic 
external agents and control handles. A number of works have addressed 
this more practical issue: for example, reinforcement learning has very 
recently been used for this task [16--18]. Machine learning (in this case, 
deep learning) was also proposed by Khait et al. [19]. Normally, these 
methods based on machine learning are gradient-free: they do not employ 
the gradient of the merit function that is to be optimised with respect to 
the control variables.

However, this type of optimization problem also belongs to the 
class of problems addressed by (quantum) optimal control theory 
(Q)OCT [20--23]: finding the control functions that maximise a merit 
function of the evolution of the state. Surprisingly, only a few works 
have used this method: perhaps the most remarkable is the work of 
Cavina and collaborators [24,25], who made an explicit use of Pon
tryagin’s maximum principle (PMP) [26,27], the standard workhorse of 
OCT.

In contrast to the methods based on machine learning mentioned 
above, QOCT based on the PMP approaches the problem examining the 
gradient -- although, most often, the gradient is properly speaking a func
tional derivative, as the control variables are normally control functions. 
The functional derivative of the merit function with respect to the con
trol functions has to be zero at an optimal control -- a condition that 
can be formulated as a set of nonlinear equations, as stated by the PMP. 
Those equations can sometimes be solved directly, or the gradient of 
functional derivative can be used to feed an optimization algorithm lead
ing to its nullfication.

Notice that, in purity, the optimization of QTMs working in cycles, 
i.e. periodically, should be addressed by periodic optimal control, a sub
class of OCT that has received less attention. One technique for dealing 
with periodic systems and working on their optimisation with also pe
riodic control functions is the pseudospectral Fourier approach (see for 
example Ref. [28]).

In this work, I propose to explore that path: to develop a method 
to perform optimisations on QTMs by recasting the master equations 
that describe their evolution, assumed to be Markovian, in the Fourier 
domain. It builds on the method already described in Ref. [29] to opti
mise averaged values of observables for driven periodic non-equilibrium 

steady states of open quantum systems. However, it needs to be gener
alised to account for more general observables (transferred heats and 
averaged output powers). In Ref. [29] we used the term ``Floquet engi
neering'' [30], which has been coined in the last decades to refer to the 
manipulation of materials through the use of periodic perturbations. Re
cently, this author and collaborators have shown one possible method to 
couple this concept with OCT (see, for example [31,32]; other methods 
have been proposed, see for example [33--35] in the field of quantum 
simulators). The work described below extends this concept to QTMs 
modelled as open quantum systems, and therefore it can be termed as 
Floquet engineering of QTMs. The method essentially consists in param
eterising the control functions according to the experimental or physical 
requirements, and working out a computationally feasible expression 
for the gradient of the target or merit function with respect to those 
parameters. This gradient may then be used to feed any maximisation 
algorithm.

Section 2 summarises some key concepts about QTMs in order to 
set the frame and notation used in this article. Section 3 describes the 
technique used to optimise their performance. Section 4 describes some 
examples of optimisations and, finally, Section 5 presents the conclu
sions of the work. Hereafter, we will assume ℏ = 1 and 𝑘B = 1.

2. Quantum thermal machines as periodically driven 
non-equilibrium steady states

A suitable framework to describe the operation of QTMs is the theory 
of open quantum systems [36,37]. In this framework, the first step is to 
split the universe into a ``system'' (in the language of QTMs, this is the 
working fluid, but of course it need not be a fluid), and an environment, 
that is typically a set of ``baths''). The full Hamiltonian is therefore split 
as:

(𝑡) =𝐻(𝑡) +
∑
𝑏 

(
𝐻𝑏 +𝐻0𝑏(𝑡)

)
, (1)

where 𝐻(𝑡) is the system Hamiltonian, 𝐻𝑏 are the baths Hamiltonians, 
and 𝐻0𝑏(𝑡) are the system-bath interaction terms. The time-dependence 
allows to include the action of an external agent that may modify the 
system Hamiltonian and its interaction with the baths. Both possibili
ties may be used in the control scheme described below. Open quantum 
system theory then permits to, approximately, ``factor out'' the baths; 
the working fluid is the only piece of a QTM that is explicitly accounted 
for; the heat reservoirs constitute the environment that is factored out, 
whereas the external agent that gives or receives work is only included 
as a normally time-dependent part of the Hamiltonian of the working 
fluid. Hereafter, we will furthermore assume the Markovian approxima
tion, which can be used if certain conditions are met: essentially, the 
reservoir correlation times must be much shorter than the relaxation 
time of the system, and the system-bath interactions must be weak. 
The most general form for the equation of motion of an open system 
– the so-called master equation -- in the Markovian approximation was 
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demonstrated to be the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) 
form [38,39]. In its original formulation, it accounted only for static 
Hamiltonians, but it can be extended to the time-dependent case. Here, 
we are concerned with time-periodic GKSL equations:

𝜌̇(𝑡) =(𝑓 (𝑡))𝜌(𝑡) . (2)

The Lindbladian time-dependence is assumed to be determined by the 
functions 𝑓 (𝑡), a set of 𝑚 time-periodic functions of time,

𝑓𝑘(𝑡+ 𝑇 ) = 𝑓𝑘(𝑡), (𝑘 = 0,1,… ,𝑚− 1) , (3)

with period 𝑇 , that permit to control the precise form of the Lindbla
dian . The system is in contact with a number (normally, two) of heat 
reservoirs at different temperatures, and therefore we split  as:

(𝑓 (𝑡)) =𝐻 (𝑓 (𝑡)) +
∑
𝑏 
𝑏(𝑓 (𝑡)) , (4)

where

𝐻 (𝑓 (𝑡))𝑋 = −𝑖
[
𝐻(𝑓 (𝑡)),𝑋

]
(5)

is the unitary or coherent part of the time-evolution generator, whereas 
each 𝑏(𝑓 (𝑡)) is an incoherent operator that determines the interaction 
of the system with reservoir 𝑏.

The Hamiltonian 𝐻(𝑓 ((𝑡)) may include a Lamb shift; otherwise, it 
is simply equal to the system Hamiltonian 𝐻(𝑡) present in Eq. (1), that 
would generate the isolated evolution (see [40] for a recent discussion 
on the necessity of including Lamb shift and renormalization terms when 
deriving Markovian master equations). Some of the terms of 𝐻(𝑓 (𝑡))
may be time-dependent, controlled by some of the functions 𝑓 (𝑡): those 
are the drivings originated by the external agent. Likewise, the interac
tion between the system and the reservoirs, represented by the terms 
𝑏(𝑓 (𝑡)), may also depend on some of the functions 𝑓 (𝑡). This possible 
dependence may allow for example to exercise control on the process 
by switching on and off of cold or hot baths, etc.

In the presence of both the periodic drivings and of the baths, under 
rather general assumptions [41], the system will eventually decay into 
a periodic non-equilibrium steady state (NESS):

𝜌NESS(𝑡+ 𝑇 ) = 𝜌NESS(𝑡) (6)

(in the following, the ``NESS'' label will not be explicitly used, as all 
density matrix trajectories 𝜌(𝑡) will correspond to a NESS). This can then 
be viewed as a quantum thermal machine that performs a cycle of period 
𝑇 , giving and receiving energy into and from the baths (heat), and giving 
or receiving energy into and from the source of the external driving 
(work).

The energy balance can be understood in terms of those concepts. 
Defining the instantaneous energy function as:

𝐸(𝑡) = Tr
[
𝜌(𝑡)𝐻(𝑓 (𝑡))

]
, (7)

we must have, in the NESS, 𝐸(𝑇 ) = 𝐸(0). Following Alicki [42], the 
variation of this energy can be broken down as:

d𝐸
d𝑡 

(𝑡) = −𝑝(𝑡) +
∑
𝑏 
𝑗𝑏(𝑡) , (8)

where:

𝑗𝑏(𝑡) = Tr
[𝑏(𝑓 (𝑡))𝜌(𝑡) 𝐻(𝑓 (𝑡))

]
, (9)

𝑝(𝑡) = −Tr
[
𝜌(𝑡)𝜕𝐻

𝜕𝑡 
(𝑓 (𝑡))

]
. (10)

These are the energy flows transferred to the system, per unit time, from 
the baths and to the external agent, i.e. the transferred heats and work, 
respectively (or, if the sign is negative, energies per unit time trans
ferred to the baths or from the external agent). One may then dfine the 
amounts of heats and work over one cycle:

𝑄𝑏 =

𝑇

∫
0 

d𝑡 𝑗𝑏(𝑡) , (11)

𝑊 =

𝑇

∫
0 

d𝑡 𝑝(𝑡) . (12)

These terms are sketched in Fig. 1. We will use these energies per unit 
time (i.e. with dimensions of power), 𝐽𝑏 =𝑄𝑏∕𝑇 , and 𝑃 =𝑊 ∕𝑇 . Given 
the periodic behaviour of our system,

𝑇

∫
0 

d𝑡 d𝐸
d𝑡 

(𝑡) =𝐸(𝑇 ) −𝐸(0) = 0 , (13)

we must have an energy balance that is usually presented as the formu
lation of the I Law of thermodynamics for QTMs:

𝑃 =
∑
𝑏 
𝐽𝑏 . (14)

3. Floquet-engineering QTMs

The goal now is to find those control functions 𝑓 that lead the QTM to 
work in an optimal regime. The definition of what ``optimal'' means may 
of course vary. For example, one may wish to maximise the power out
put of a quantum engine, its efficiency, or the coefficient of performance 
of a refrigerator. In general, the goals would probably be functions of 
the energy terms 𝐽𝑏 and 𝑃 dfined above.

Rather than working with unconstrained functions of time, it is more 
convenient to parameterise these functions,

𝑓𝑘 = 𝑓𝑘(𝑢(𝑘), 𝑡) (𝑘 = 0,… ,𝑚− 1) , (15)

where each 𝑢(𝑘) is a set of control parameters, that we collectively group 
into 𝑢 to ease the notation, as we collectively group all 𝑓𝑘 into the multi
dimensional function 𝑓 . In this way, it is much easier to constrain the 
functions to experimentally or physically meaningful forms (in terms of 
frequencies, amplitudes, etc.) Therefore, the task is to find the optimal 
set of control parameters 𝑢opt that lead to forms for the functions 𝑓 that 
optimise the machine behaviour.

We will hereafter denote 𝜌(𝑢, 𝑡) to the periodic solution (NESS) of the 
master equation:

𝜌̇(𝑢, 𝑡) =(𝑓 (𝑢, 𝑡))𝜌(𝑢, 𝑡) . (16)

𝜌(𝑢, 𝑡+ 𝑇 ) = 𝜌(𝑢, 𝑡) (17)

The optimisation problem must be formulated by first establishing 
the goal: a functional of the behaviour of the system during one cycle,

𝐹 = 𝐹 (𝜌, 𝑢) , (18)

where the 𝜌 dependence refers to the full periodic trajectories in the 
cycle. The extra dependence on 𝑢 may be used to add penalties over 
undesirable regions of parameter space (an example of this will be given 
later).

The goal is therefore to maximise function

𝐺(𝑢) = 𝐹 (𝜌(𝑢, ⋅), 𝑢) , (19)

where now 𝜌(𝑢, ⋅) denotes the particular periodic trajectory that is the 
NESS solution to Eqs. (16) and (17).

In order to solve this optimisation problem, the first ingredient is 
therefore a computational procedure to obtain the NESS 𝜌(𝑢, ⋅), and 
function 𝐺(𝑢) from it. Numerous optimisation methods exist that permit 
to obtain optimal values for functions with only that ingredient. How
ever, more effective methods can be used if one also has a procedure 
to compute the gradient of 𝐺. By applying the chain rule for functional 
derivatives in order to get an expression for this gradient,
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𝜕𝐺

𝜕𝑢𝑟
(𝑢) = 𝛿𝐹

𝛿𝜌 
(𝜌(𝑢, ⋅), 𝑢)

(
𝜕𝜌 
𝜕𝑢𝑟

(𝑢, ⋅)
)

+ 𝛿𝐹

𝛿𝜌∗
(𝜌(𝑢, ⋅), 𝑢)

(
𝜕𝜌∗

𝜕𝑢𝑟
(𝑢, ⋅)

)

+ 𝜕𝐹

𝜕𝑢𝑟
(𝜌(𝑢, ⋅), 𝑢) , (20)

it becomes clear that the second necessary ingredient for the optimisa
tion of 𝐺 involves the computation of the gradient of 𝜌(𝑢, ⋅) with respect 
to the control parameters 𝑢.

In Ref. [29], we demonstrated the feasibility of a computational pro
cedure to obtain these derivatives, and consequently, the feasibility of a 
procedure for the optimisation of function 𝐺. In that work, it was lim
ited to functionals 𝐹 dfined as averages of observables, i.e.:

𝐹 (𝜌, 𝑢) = 1 
𝑇

𝑇

∫
0 

d𝑡 Tr
[
𝐴𝜌(𝑢, 𝑡)

]
, (21)

although it can be extended to more general cases -- for example, func
tions of the heats and power flowing to and from a QTM, as it will shown 
below.

Let us start by briefly summarising the procedure used in [29] to 
obtain the NESS and its gradient with respect to the control parame
ters. The starting point are the periodic Lindblad equations (16)-(17) in 
the frequency domain -- a transformation using Fourier series that will 
automatically imply the periodicity of all the objects:

∑
𝛽

𝑁−1∑
𝑝=0 

[𝛼𝛽,𝑞−𝑝(𝑢) − 𝑖𝛿𝑝𝑞𝛿𝛼𝛽𝜔𝑝] 𝜌̃𝛽,𝑝(𝑢) = 0 (𝑞 = 0,1,… ,𝑁 − 1). (22)

Here, 𝜔𝑝 =
2𝜋
𝑇
𝑝 (𝑝 ∈ℤ) are the Fourier expansion frequencies, 𝑁 is the 

integer that sets a cutoff for the Fourier expansion, and

𝜌̃𝛽,𝑝(𝑢) =
1 
𝑇

𝑇

∫
0 

d𝑡 𝑒−𝑖𝜔𝑝𝑡𝜌𝛼(𝑢, 𝑡), (23)

𝛼𝛽,𝑞(𝑢) = 1 
𝑇

𝑇

∫
0 

d𝑡 𝑒−𝑖𝜔𝑞𝑡𝛼𝛽 (𝑢, 𝑡), (24)

are the Fourier coefficients of the elements of the density matrix and 
Lindbladian. Note that we are using here a vectorized representation 
of the density (a vector in Liouville space): the indices 𝛼 or 𝛽 run over 
the 𝑑2 elements of the density matrix (𝑑 being the dimension of the 
underlying Hilbert space of the working fluid). The Lindbladian is then 
a rank two operator in Liouville space or superoperator and requires two 
indices, 𝛼𝛽.

By further defining

𝛼𝑞,𝛽𝑝(𝑢) =𝛼𝛽,𝑞−𝑝(𝑢) − 𝑖𝛿𝑞𝑝𝛿𝛼𝛽𝜔𝑝 , (25)

we finally arrive to:

∑
𝛽

𝑁−1∑
𝑝=0 

𝛼𝑞,𝛽𝑝(𝑢)𝜌̃𝛽,𝑝(𝑢) = 0 , (26)

or

(𝑢)𝜌̃(𝑢) = 0 , (27)

in matrix form. Note that the dimension of vector 𝜌̃ is 𝑑2𝑁 , and the 
operator (𝑢) is a 𝑑2𝑁 × 𝑑2𝑁 matrix.

This is a linear homogeneous equation; the solution (the nullspace or 
kernel, assuming that it has dimension one), will be the periodic solution 
that we are after, the NESS. We now need some procedure to find 𝜕𝜌 

𝜕𝑢𝑟
. 

Taking variations of Eq. (26) with respect to the parameters 𝑢, we get:

(𝑢) 𝜕𝜌̃
𝜕𝑢𝑟

(𝑢) = − 𝜕
𝜕𝑢𝑟

(𝑢)𝜌̃(𝑢). (28)

This is a linear equation that would provide 𝜕𝜌̃
𝜕𝑢𝑟

. However, note that 

since (𝑢) has a non-empty kernel (given precisely by 𝜌̃(𝑢)), it cannot 
be solved straightforwardly. In fact, it does not have a unique solution: 
If 𝑥 is a solution of

(𝑢)𝑥 = − 𝜕
𝜕𝑢𝑟

(𝑢)𝜌̃(𝑢), (29)

𝑥 + 𝜇𝜌̃(𝑢) is also a solution for any 𝜇. To remove this arbitrariness, we 
impose the normalisation condition, Tr𝜌(𝑢) = 1 for any 𝑢, and therefore:

Tr 𝜕𝜌 
𝜕𝑢𝑟

= 0. (30)

To find 𝜕𝜌 
𝜕𝑢𝑟

in practice, one may then take the following two steps: 
First, compute a solution of the linear equation, Eq. (29), with the least
squares method, by imposing that the solution 𝑥0 is perpendicular to the 
kernel, i.e.: 𝑥†0 ⋅ 𝜌̃(𝑢) = 0. Then, update the solution with the condition, 
Eq. (30). The required solution is obtained as:

𝜕𝜌 
𝜕𝑢𝑟

= 𝑥0 − (Tr𝑥0)𝜌(𝑢). (31)

Once we have 𝜕𝜌𝑢
𝜕𝑢𝑟

, we can evaluate the gradient in Eq. (20). Armed with 
this procedure to compute this gradient, one can perform the optimisa
tion of function 𝐺(𝑢) with many efficient algorithms. This method has 
been implemented in the qocttools code [43], publicly available, and 
all the necessary scripts and data necessary to replicate the following 
results are also available upon request from the authors.

As for possible choices for the function 𝐺(𝑢), for the purposes of 
this work, we are concerned with target goals dfined in terms of either 
the averaged power 𝑃 or the heats 𝐽𝑏 (or combinations of those). For 
example, if the goal is to maximise the output power of a heat engine,

𝐺(𝑢) = 𝑃 (𝑢) = − 1 
𝑇

𝑇

∫
0 

d𝑡 Tr
[
𝜕𝐻

𝜕𝑡 
(𝑓 (𝑢, 𝑡))𝜌(𝑢, 𝑡)

]
,

= − 1 
𝑇

∑
𝑘 

𝑇

∫
0 

d𝑡 ̇𝑓𝑘(𝑢, 𝑡)Tr
[
𝑉𝑘(𝑓 (𝑢, 𝑡))𝜌(𝑢, 𝑡)

]
. (32)

Note the negative sign due to the convention used for the definition of 
the power 𝑃 . Here, we use the notation ̇𝑓𝑘(𝑢, 𝑡) for the time derivative 
of function 𝑓𝑘(𝑢, 𝑡), and

𝑉𝑘 =
𝜕𝐻

𝜕𝑓𝑘
. (33)

One must now work out the gradient of this function, for example 
making use of the chain rule (20), plugging the gradient 𝜕𝜌 

𝜕𝑢𝑟
calculated 

with the procedure described above. But, rather than working out explic
itly the functional derivatives, one may directly work out the gradient 
components of function 𝑃 (𝑢) from Eq. (32):

𝜕𝑃

𝜕𝑢𝑟
(𝑢) = − 1 

𝑇

∑
𝑘 

𝑇

∫
0 

d𝑡 
{
𝜕 ̇𝑓𝑘

𝜕𝑢𝑟
(𝑢, 𝑡)Tr

[
𝑉𝑘(𝑓 (𝑢, 𝑡))𝜌(𝑢, 𝑡)

]
+

∑
𝑙

̇𝑓𝑘(𝑢, 𝑡)
𝜕𝑓𝑙

𝜕𝑢𝑟
(𝑢, 𝑡)Tr

[
𝜕𝑉𝑘

𝜕𝑓𝑙
(𝑓 (𝑢, 𝑡))𝜌(𝑢, 𝑡)

]
+

̇𝑓𝑘(𝑢, 𝑡)Tr
[
𝑉𝑘(𝑓 (𝑢, 𝑡))

𝜕𝜌 
𝜕𝑢𝑟

(𝑢, 𝑡)
]}

. (34)

Despite the length of the equation, in fact the only difficulty lies in com
puting the NESS 𝜌(𝑢, 𝑡) and its derivatives 𝜕𝜌 

𝜕𝑢𝑟
.

A similar procedure can be followed for the case in which function 
𝐺(𝑢) = 𝐽𝑏(𝑢), the heat transferred from one of the reservoir. In the most 
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general case, function 𝐺 would be a function of all the energy terms, 
𝐺(𝑢) = 𝑔(𝑃 (𝑢), 𝐽1(𝑢),… ), a function of the power output and of all the 
heats (such as the efficiency of a heat engine or the coefficient of per
formance of a refrigerator), and then one would have:

𝜕𝐺

𝜕𝑢𝑟
= 𝜕𝑔

𝜕𝑃

𝜕𝑃

𝜕𝑢𝑟
+
∑
𝑏 

𝜕𝑔

𝜕𝐽𝑏

𝜕𝐽𝑏

𝜕𝑢𝑟
. (35)

In this way, one can dfine and optimize a merit function that combines 
both the output power and the performance, since normally one would 
not like to have a very high power at the cost of a very low performance, 
or viceversa, but rather have a compromise (see for example [44], a 
recent work that studies the Pareto front dfined in terms of those two 
quantities).

However, perhaps one also wishes to include another key quantity, 
the fluctuations of the output power, as an ingredient of the figure of 
merit -- normally, one would like a heat engine to work with low fluc
tuations. A combined study of the optimisation of power, efficiency and 
fluctuations is for example described in Ref. [17]; see also [45,46]. The 
present scheme can also be extended to include the fluctuations in the 
definition of the target; see Appendix B.

Finally, a note about the computational complexity of the method: 
the bottlenecks are the solution of the linear systems (27) and (28). The 
preparation of the matrices and vectors involved in those equations take 
a comparatively small amount and time. The dimension of the linear 
problem is 𝐷 = 𝑑2𝑁 , where 𝑑 is the dimension of the Hilbert space 
of the system (a two-level system in this work), and 𝑁 is the Fourier 
decomposition dimension (given by the choice of cutoff). The scaling of 
a dense linear problem is 𝐷3 with standard methods, and ≈𝐷2.3 with 
more sophisticated methods.

4. Examples of application

4.1. GKSL equations

Until now, the form of the master equation has remained rather 
general -- although we are always assuming here an important simplfi
cation: the open quantum system is Markovian. Therefore, the equation 
must be of the GKSL form [38,39]. The optimisation method described 
above may be used for any equation of that family. However, it has only 
been implemented and tested for a subclass of GKSL equations: here
after, in order to exemplify the method, we will restrict the analysis to 
those GKSL equations that verify:

1. The decoherence terms have the form:

𝑏(𝑓 (𝑢, 𝑡)) =
∑
𝑖 
𝑔𝑏𝑖(𝑓 (𝑢, 𝑡))𝐿𝐷(𝛾𝑏𝑖,𝐿𝑏𝑖) , (36)

where we dfine the super-operator 𝐿𝐷(𝛾,𝑋) (for any positive con
stant 𝛾 and operator 𝑋) as:

𝐿𝐷(𝛾,𝑋)𝜌 = 𝛾
(
𝑋𝜌𝑋† − 1

2
{
𝑋†𝑋,𝜌

})
. (37)

Therefore, in this setup, we restrict the Lindblad operators 𝐿𝑏𝑖 to 
be constant in time, but they may be modulated by time-dependent 
functions (the so-called ``rates'' may depend on time).

2. We have two reservoirs at thermal equilibrium (as it is almost al
ways the case): one hot bath (𝑏 = 1) and one cold bath (𝑏 = 2).

3. The dependence of 𝐻 on the control functions is linear, i.e.:

𝐻(𝑓 (𝑢, 𝑡)) =𝐻0 +
∑
𝑘 
𝑓𝑘(𝑢, 𝑡)𝑉𝑘 , (38)

and therefore the terms 𝑉𝑘 are constant operators, independent of 
𝑢 or time.

This is the type of model that has been implemented in the qoct
tools code [43] to demonstrate the feasibility of the optimisation scheme 

explained above. The key equations are two: on the on hand, the expres
sion for the gradient, that in this case reduces to:

𝜕𝑃

𝜕𝑢𝑟
(𝑢)

= − 1 
𝑇

∑
𝑘 

𝑇

∫
0 

d𝑡 
{
𝜕 ̇𝑓𝑘

𝜕𝑢𝑟
(𝑢, 𝑡)Tr

[
𝑉𝑘𝜌(𝑢, 𝑡)

]
+ ̇𝑓𝑘(𝑢, 𝑡)Tr

[
𝑉𝑘
𝜕𝜌 
𝜕𝑢𝑟

(𝑢, 𝑡)
]}

.

(39)

And, in order to find the gradient of 𝜌 [Eq. (28)], since

𝜕
𝜕𝑢𝑟

=
∑
𝑘 

𝜕
𝜕𝑓𝑘

𝜕𝑓𝑘

𝜕𝑢𝑟
, (40)

the key equation is:

𝜕 
𝜕𝑓𝑘

= −𝑖
[
𝑉𝑘, ⋅

]
+
∑
𝑏 

∑
𝑖 

𝜕𝑔𝑏𝑖

𝜕𝑓𝑘
(𝑓 (𝑢, 𝑡))𝐿𝐷(𝛾𝑏𝑖,𝐿𝑏𝑖) . (41)

4.2. Model

Let us now present the model used for the sample optimisations 
shown below. We consider the model used by Erdman et al. [15] to 
study the optimal Otto cycles (see also [47,16,17]): a two level system 
with a controlled energy gap, i.e.:

𝐻(𝑓 (𝑡)) = 1
2
(Δ + 𝑓0(𝑡))𝜎𝑧 . (42)

Note that in this subsection 4.2 we are dropping the dependence on 𝑢
to ease the notation. The GKSL equation then reads:

𝜌̇(𝑡) = −𝑖
[
𝐻(𝑓 (𝑡)), 𝜌(𝑡)

]
+
∑
𝑏 

∑
𝑖=+,−

𝑔bi(𝑓 (𝑡))𝐿𝐷(𝛾𝑏𝑖,𝐿𝑏𝑖) . (43)

Regarding the decoherence terms on the right hand side, there are 
two terms per bath, indexed as 𝑖 = +,−, and

𝐿𝑏+ = 𝜎+ , 𝐿𝑏− = 𝜎− , (44)

for both the hot and cold bath (𝑏 = 1,2). All rate constants 𝛾𝑏𝑖 are set to 
be equal (𝛾𝑏𝑖 = Γ), but they are then modulated by the time-dependent 
functions

𝑔𝑏𝑖(𝑓 (𝑡)) = 𝑓𝑏(𝑡)𝐹 (𝑖𝛽𝑏(Δ + 𝑓0(𝑡))) , (45)

where 𝛽𝑏 is the (inverse) temperature of bath 𝑏, and

𝐹 (𝑥) = 1 
1 + 𝑒𝑥

. (46)

This choice ensures the fufillment of the detailed balance condition. 
Finally, the 𝐿𝐷 superoperators are dfined in Eq. (37).

Note that we have three control functions: 𝑓0(𝑡) is responsible for 
modifying the TLS gap, whereas 𝑓1(𝑡) and 𝑓2(𝑡) tune the coupling of 
the system to the hot and cold bath, respectively.

This model has been used to describe a quantum dot with only one 
relevant resonance, coupled to metallic leads with flat densities of states, 
that act as reservoirs [48,47,15,16]. Erdman et al. [15], in particular, 
solved exactly and analytically the following optimisation problem: sup
pose that we can vary at will the TLS gap by modulating 𝑓0 , as long as 
a maximum and a minimum are not surpassed: |𝑓0(𝑡)| ≤ 𝛿. This means 
there exists a minimum and a maximum TLS gap:

𝜀min = Δ− 𝛿 ≤Δ+ 𝑓0(𝑡) ≤ 𝜀max = Δ+ 𝛿 . (47)

Suppose that we can also vary at will the system-bath coupling functions 
𝑓1 and 𝑓2, as long as 0 ≤ |𝑓𝑏(𝑡)| ≤ 1. All these control functions are 
periodic, with a period 𝑇 that can also be varied. Suppose now that we 
want to optimize the output power of the QTM operating as heat engine 
(other possible performance measures were also considered in [15]).
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The solution was demonstrated to be the following (see the dis
cussion around the Eq. (8) of [15]): the maximum is achieved with 
ifinitesimally short (𝑇 → 0) periods, consisting of coupling the system 
for equal periods of time (𝑇 ∕2) to the hot and the cold baths:

𝑓1(𝑡) = 1 and 𝑓2(𝑡) = 0 if 0 ≤ 𝑡 ≤ 𝑇

2 
(coupling to the hot bath) , (48)

𝑓1(𝑡) = 0 and 𝑓2(𝑡) = 1 if 𝑇
2 
≤ 𝑡 ≤ 𝑇 (coupling to the cold bath) . (49)

During each of those strokes, the TLS gap has some constant values, 𝜀1
and 𝜀2, respectively. In this setup, the output power is given by:

𝑃c(𝑇 , 𝜀1, 𝜀2) =
1 

Γcoth(Γ 𝑇4 )
(𝐹 (𝜀1𝛽1) − 𝐹 (𝜀2𝛽2))(𝜀1 − 𝜀2) , (50)

where the subindex c stands for ``constant'', to stress the fact that the 
function 𝑓0(𝑡) is constant during each time of contact with the bath: 
𝑓0(𝑡) = 𝜖𝑏 −Δ when in contact with bath 𝑏, and it changes value instan
taneously when the bath changes. The value of this output power grows 
with decreasing periods 𝑇 ; in the limit 𝑇 → 0,

𝑃c(𝜀1, 𝜀2) =
Γ
4 
(𝐹 (𝜀1𝛽1) − 𝐹 (𝜀2𝛽2))(𝜀1 − 𝜀2) . (51)

The absolute maximum output power for this type of machine is then 
found at the maximum of this function:

𝑃max
c = max 

𝜀min≤𝜀1 ,𝜀2≤𝜀max
𝑃c(𝜀1, 𝜀2) . (52)

This can be viewed as a two-strokes engine cycle, that switches dis
continuously from the cold to the hot bath, with no adiabatic segments. 
The expansion and compressions (modfications of the TLS gap, in this 
case), are instantaneous. Therefore, even at finite 𝑇 , the operation re
quires discontinuous jumps in the control functions.

4.3. Examples of optimizations

Let us now modify the nature of the problem described above: sup
pose that we are not allowed to use a non-smooth control function 𝑓0: 
the change in time of the TLS gap cannot be sudden, which implies 
a continuous and differentiable function 𝑓0 . We still ask of 𝑓0 to be 
constrained in amplitude, |𝑓0(𝑢, 𝑡)| ≤ 𝛿, as mentioned above, but also 
demand that it has no frequency components beyond a cutoff 𝜔max. This 
cutoff forbids, of course, a sudden discontinuous change when the sys
tem decouples from one bath and couples to the other one. Furthermore, 
we fix the cycle period 𝑇 , which in a realistic setup cannot be taken to 
arbitrarily close-to-zero values.

The rest of the setup remains unchanged: 𝑓1 and 𝑓2 are given by 
Eqs. (48) and (49), which means that once again we have a two-stroke 
cycle that switches the contact from the hot bath to the cold bath. We 
therefore consider these functions to be fixed: they do not depend on 
any control parameters 𝑢 and are not, in purity, control functions. The 
optimisation is only done with respect to the shape of 𝑓0 = 𝑓0(𝑢, 𝑡) (this 
is of course not a requirement of the method, but merely a choice for 
the examples shown here).

Regarding the parameterisation of 𝑓0, it is chosen in such a way that, 
by definition, |𝑓0(𝑢, 𝑡)| ≤ 𝛿 as in the problem described above. Further
more, the function is periodic, continuous and differentiable, and has 
low frequencies. The detailed description of the parameterised form of 
𝑓0 is given in Appendix A.

It remains to dfine the merit function 𝐺 for this example, which is:

𝐺(𝑢) = 𝑃 (𝑢) − 𝛼
∑

𝜔𝑘>𝜔max

|𝑓0𝑘(𝑢)|2 . (53)

The goal is therefore to maximise the output power 𝑃 (𝑢) as given by 
Eq. (32); but note that we add an extra term: it is a penalty term for high 
frequencies in the control function (𝑓0𝑘(𝑢) are the Fourier components 
of 𝑓0). As discussed in Appendix A, the parameterisation forbids ampli
tudes higher than 𝛿, and favours frequencies lower than 𝜔max, but does 

not forbid them. Therefore, in the optimisation we add this extra term 
to make them negligible. The constant 𝛼 > 0 determines how important 
this penalty is, and therefore how large those frequencies can be in the 
resulting optimised function.

Then, the function 𝑃 and its gradient are computed according to the 
formulas described in the previous section, and this information is fed 
into an optimisation algorithm. We have chosen the sequential quadratic 
programming algorithm for nonlinearly constrained gradient-based op
timisation (SLSQP) [49], as implemented in the NLopt library [50]. This 
is a versatile choice that permits to include linear and non-linear bounds 
and constraints. However, it is a local algorithm, that will only find the 
local optimum corresponding to the basin where the starting guess re
sides. In order to attempt to find the global optimum, one can either 
(1) do many runs, starting from a random sample of starting sets of pa
rameters, or (2) use a global optimizer. I have used both options: first, 
a set of 10 local optimizations were started from random initial points; 
and then a global optimizer was launched. The choice for this latter one 
was the ``multi-level single linkage'' (MLSL) algorithm [51]; in essence, 
it consists of a sequence of local optimizations (and, in order to perform 
each of those, the SLSQP was used as described above). The sequence is 
however not random, and as described in [51], a ``clustering'' heuristic 
is used to avoid repeated searches of the same local optima.

For all the calculations shown below, the amplitude constraint is set 
as 𝛿 = (1∕5)Δ and the temperatures for the reservoirs are set to 𝛽1 =
1∕Δ, 𝛽2 = 2∕Δ, and the rate Γ = Δ, equal for all the dissipation terms.

Fig. 2 displays the first calculation examples. It is a series of optimisa
tions for varying values of the cycle period 𝑇 , ranging from (1∕8)𝜏 to 2𝜏 , 
where 𝜏 = 2𝜋

Δ . The goal is to optimise the output power obtained with a 
protocol 𝑓0(𝑢, 𝑡) for each of those cycle periods, and compare that output 
power with the one that results of using constant TLS gaps during each 
contact with the hot and cold bath, with a sudden, instantaneous change 
in between. The output power obtained with those constant gaps is the 
one obtained by maximising Eq. (50) with respect to 𝜀1 and 𝜀2 (within 
the allowed range [Δ− 𝛿,Δ+ 𝛿]). The results are shown in the left panel 
of Fig. 2. The green line displays the output power obtained with the 
constant gaps; it can be seen how it increases with decreasing 𝑇 , and it 
tends to the maximum predicted by Eq. (52), as expected.

However, for a fixed and non-zero 𝑇 , the values obtained with con
stant gaps are not the largest output powers that one can get; in order to 
find the optimal protocol, one must look in the space of non-constant, 
varying TLS gaps, for which purpose one has to use a numerical proce
dure such as the one proposed in this work. The results obtained in this 
way are shown with the black line of the left panel of Fig. 2. It can be 
seen how, for small 𝑇 , the output powers are actually lower, and only 
become larger at a certain crossing point. The reason is the fact that we 
are demanding of the protocol to have frequencies lower than a certain 
cutoff (which for these examples we have set to 𝜔max = 8Δ). It is there
fore not surprising that, for very rapid cycles, the optimised 𝑓0 cannot 
improve the constant-gap protocol, that approaches the predicted abso
lute maximum as 𝑇 → 0. For longer cycles, the black curve does show 
higher output powers.

The right panel of Fig. 2 presents the optimal function 𝑓0(𝑢opt , 𝑡) (top) 
and the corresponding transferred heats and work (bottom) correspond
ing to the heat engine working with a period of 𝑇 = 𝜏 . For comparison, 
the protocol using the optimised constant gaps is also shown in the top 
panel (green line). It can be seen how, as expected, the energy exchange 
between system and external agent is higher around the times that the 
baths are coupled and decoupled. The optimised function 𝑓0 does fufil 
the required constraints regarding amplitude and frequency.

The results shown in Fig. 2 -- in particular, how the optimised 𝑓0
cannot improve the constant gap protocol for very short 𝑇 -- point to 
the relevance of the choice of the cutoff. To illustrate this fact, we will 
show the effect of the cutoff in Fig. 3. In this case, the series of runs were 
done fixing 𝑇 = 1

2 𝜏 , but changing the value of the cutoff frequency, from 
𝜔max = 4Δ to 𝜔max = 18Δ. Increasing the cutoff frequency amounts to 
enlarging the search space for the optimisation, and therefore it can be 
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Fig. 2. Left panel: Averaged output power of the heat engine as a function of the period time 𝑇 , shown as a fraction of the maximum possible power given in Eq. (52), 
when using the: dashed green: constant TLS gaps with discontinuous fast switching when changing bath; and solid black: optimized smooth gap 𝑓0(𝑢opt , 𝑡). Top right 
panel: Function 𝑓0 with constant TLS gaps and sudden switching (dashed green), and optimized 𝑓0(𝑢opt , 𝑡) (solid black). The red and blue shadings mark the time 
regions when the hot and blue baths are connected, respectively. Bottom right panel: Transferred heats and work for the heat engine when using 𝑓0(𝑢opt , 𝑡).

Fig. 3. Left panel: Optimized averaged output power of the heat engine as a function of the cutoff 𝜔max (solid black curve), shown as a fraction of the maximum 
possible power given in Eq. (52). The value obtained when using constant TLS gaps with discontinuous fast switching is also shown in dashed-green. Top right panel:
Function 𝑓0 with constant TLS gaps and sudden switching (green), and optimized 𝑓0(𝑢opt , 𝑡). The red and blue shadings mark the time regions when the hot and blue 
baths are connected, respectively. Bottom right panel: Transferred heats and work for the heat engine when using 𝑓0(𝑢opt , 𝑡).

seen on the left panel how the output power obtained with the optimised 
𝑓0 increases with 𝜔max. For lower cutoffs, it cannot improve over the 
value obtained with the constant gap protocol, but for larger cutoffs the 
time-varying optimised 𝑓0 permits to obtain a better number, rflecting 
the fact that the value obtained with constant gaps is only a maximum 
in the limit 𝑇 → 0. Finally, on the right hand side of Fig. 3 we display 
again function 𝑓0(𝑢opt , 𝑡) (top), and the instantaneous heats and work 
(bottom), in this case for the calculation with 𝜔max = 18Δ. Function 𝑓0
changes more rapidly as a function of time than in the case shown in 
Fig. 2, but it still respects the constrains imposed on the amplitude and 
the frequency.

5. Conclusion

This work describes and demonstrates a procedure for the optimisa
tion of the working protocol of QTMs modelled with generic Markovian 
master equations. Although there have been numerous works dealing 
with the theoretical problem of establishing optimal performance limits 
for these systems, there have been few practical, computational methods 
proposed in the literature focused on finding realistic optimal protocols 
for the action of the external agent or the couplings to the baths. Spe
cially, if one assumes that ideal unconstrained modes or operation are 
not feasible, and bounds on the smoothness or amplitudes of the con
trol functions are to be considered, based on experimental or physical 
considerations. This work intends to fill in that gap.

As a demonstration, we have computed optimised protocols for two
level systems coupled to thermal reservoirs, that may be for example 
used to model simple quantum dots coupled to metallic leads at vary
ing temperatures. These can operate as minimal quantum heat engines, 
producing output power through the intermittent switch from the cold 
to the hot bath. The action of the external agent is given by the gap of 

the TLS, and it is the shape of this function the one that, in the example 
shown, is controlled. It is shown how this function can be parameterised 
respecting amplitude and frequency constraints, and how the value of 
those parameters can be efficiently optimised using a gradient-based 
algorithm. The method can also be used to optimise the functions con
trolling the couplings to the baths, internal bath parameters such as their 
temperatures if one considers them to be time-dependent, the duration 
of the cycle or of each bath coupling, etc.

There has been a recent push in the research of QTMs, motivated 
by the technological and experimental trend towards the miniaturisa
tion of devices, and by the theoretical questions around the interplay 
of thermodynamics for mesoscopic systems and quantum mechanics. I 
expect that the method proposed here, and the code that implements it 
(published as open source), will be useful to analyse the performance of 
these systems.
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Appendix A. Parameterisation of the control function

Function 𝑓0(𝑢, 𝑡) should fufill two conditions that would normally be 
present in any experimental implementation of a QTM. First, it must be 
bound: |𝑓0(𝑢, 𝑡)| ≤ 𝛿. Second, it should be smooth, which we will enforce 
by also requiring a high-frequency cutoff. This suggests, for example, the 
following parametrization:

𝑓0(𝑢, 𝑡) = Φ(𝑓Fourier (𝑢, 𝑡)) . (A.1)

Here, the parameters 𝑢 are the coefficients of a Fourier series:

𝑓Fourier (𝑢, 𝑡) = 𝑢0 +
𝑀∑
𝑛=1 

(
𝑢2𝑛 cos(𝜔𝑛𝑡) + 𝑢2𝑛−1 sin(𝜔𝑛𝑡)

)
,

(𝜔𝑛 =
2𝜋
𝑇
𝑛) . (A.2)

The function Φ is chosen with the following properties: (i) for small 𝑥, 
Φ(𝑥) ≈ 𝑥. Therefore, if 𝑓Fourier (𝑢, 𝑡) is small, 𝑓0(𝑢, 𝑡) is simply equal to a 
Fourier series with a frequency cutoff, 𝑓Fourier (𝑢, 𝑡). (ii) as |𝑥| grows and 
approaches 𝛿, the growth of |Φ(𝑥)| is reduced, so that |Φ(𝑥)| ≤ 𝛿 for any 
𝑥, until it becomes a constant equal to 𝛿 for 𝑥 > 𝛿.

Many possible functions can be imagined with those properties. For 
this work, we have chosen:

Φ(𝑥) =
⎧⎪⎨⎪⎩
𝑥 if 0 ≤ 𝑥 ≤ 3

4 𝛿

𝛿 if 𝑥 ≥ 𝛿 + 1
4𝛿

an Akima cubic spline interpolation if 𝑥 ∈ ( 34𝛿, 𝛿 +
1
4 𝛿)

(A.3)

For 𝑥 < 0, the function should be antisymmetric: Φ(𝑥) = −Φ(−𝑥).
This parameterisation strictly enforces the amplitude bound |Φ(𝑥)| ≤

𝛿, but it does not enforce the frequency cutoff; it only favours the fre
quencies lower then 𝜔max, as long as the value of the coefficients 𝑢 are 
not high. Because of this, we use a penalty for high frequencies in the 
definition of the merit functions.

Many other possible parameterisations of 𝑓0 can be imagined; a par
ticularly simple one would be to use directly 𝑓0(𝑢, 𝑡) = 𝑓Fourier (𝑢, 𝑡), and 
perform a bound optimisation setting 

∑|𝑢𝑘| ≤ 𝛿. This ensures both the 
amplitude and frequency bounds, and has the advantage of its simplic
ity -- although that simplicity does not imply a computational saving. 
I have also implemented this choice, but found that it frequently leads 
to worse local maxima (probably because the optimal functions found 
with this parameterisation do not have instantaneous amplitudes close 
to the bound 𝛿).

Appendix B. Fluctuations

A good heat engine should not only yield high power, but also oper
ate with high efficiency and with low power fluctuations. The method 
described in Section 3 permits to dfine merit functions that include the 
first two quantities (power and efficiency), but not the third one (fluc
tuations). The reason is that the previous method description has only 
considered observables in the form:

𝐴(𝑢) = 1 
𝑇

𝑇

∫
0 

d𝑡 Tr
[(𝑢, 𝑡)(𝜌(𝑢, 𝑡))𝑁(𝑢, 𝑡) .

]
, (B.1)

where  is a liner superoperator, and 𝑁 an operator. This includes 
the dissipated heats and the power. Therefore, one can dfine any merit 

function with the form 𝐺(𝑢) = 𝑔(𝑃 (𝑢), 𝐽1(𝑢),… , 𝐽𝐵(𝑢)), where 𝑃 is the 
output power and 𝐽𝑏 are the dissipated heats to bath 𝑏 (out of 𝐵 baths).

However, the form (B.1) does not allow for the calculation the power 
fluctuations. Following Refs. [52,17], this observable can be computed 
as:

Δ𝑃 (𝑢) = 1 
𝑇

𝑇

∫
0 

d𝑡 Tr
[
𝑠(𝑢, 𝑡)𝜕𝐻̂

𝜕𝑡 
(𝑢, 𝑡)

]
(B.2)

Here, 𝑠(𝑢, 𝑡) is a trace-less Hermitian operator that can be computed from 
the differential equation:

𝜕𝑠

𝜕𝑡 
(𝑢, 𝑡) =(𝑓 (𝑢, 𝑡))𝑠(𝑢, 𝑡)

+ {𝜌(𝑢, 𝑡), 𝜕𝐻
𝜕𝑡 

(𝑢, 𝑡)} − 2Tr
[
𝜌(𝑢, 𝑡)𝜕𝐻

𝜕𝑡 
(𝑢, 𝑡)

]
𝜌(𝑢, 𝑡) . (B.3)

This equation admits a periodic solution to which 𝑠(𝑢, 𝑡) converges 
asymptotically [17] -- the solution to be used in Eq. (B.2). Clearly, Δ𝑃
cannot be brought into the form given by Eq. (B.1).

In order to take into account power fluctuations, we consider now 
the possibility of defining a merit function including Δ𝑃 :

𝐺(𝑢) = 𝑔(𝑃 (𝑢), 𝐽1(𝑢),… , 𝐽𝐵(𝑢),Δ𝑃 (𝑢)) (B.4)

Therefore, we need to extend the method in order to be able to compute 
Δ𝑃 (𝑢) and its gradient,

𝜕Δ𝑃
𝜕𝑢𝑟

(𝑢) = 1 
𝑇

𝑇

∫
0 

d𝑡 Tr
[
𝜕𝑠 
𝜕𝑢𝑟

(𝑢, 𝑡)𝜕𝐻̂
𝜕𝑡 

(𝑢, 𝑡)
]
. (B.5)

Fortunately, the formalism can be easily extended for that purpose, al
though at the cost of adding some extra computational effort, as it will 
be shown now.

The necessary ingredients are 𝑠, and its gradient with respect to 𝑢. 
Note that the equation verfied by 𝑠, (B.3), is the same GKSL equation 
verfied by 𝜌, plus an inhomogeneous term, that depends non-linearly 
on 𝜌. Moving it to the spectral representation we get:

(𝑢)𝑠̃(𝑢) = ℎ(𝑢, 𝜌̃(𝑢)) , (B.6)

where ℎ is a quadratic function in the 𝜌̃ components, that results of the 
transformation of the inhomogeneous term in Eq. (B.3) to the Fourier 
series space. By solving this linear equation for 𝑠̃(𝑢), one may compute 
Δ𝑃 (𝑢), using Eq. (B.2).

Regarding the gradient, one may take derivatives in Eq. (B.6), which 
leads to the linear equation:

(𝑢) 𝜕𝑠̃
𝜕𝑢𝑟

(𝑢) = − 𝜕
𝜕𝑢𝑟

(𝑢)𝑠̃(𝑢) + 𝜕

𝜕𝑢𝑟
ℎ(𝑢, 𝜌̃(𝑢)) . (B.7)

This can be compared to Eq. (28): it is also a linear equation for the 
(super)operator (𝑢), although there is an extra term on the right hand 
side, that depends quadratically on 𝜌̃.

Summarising, by solving Eqs. (B.6) and then (B.7), one may obtain 
𝑠̃ and its gradient, that in turn permit to compute Δ𝑃 and its gradient. 
In this way, the fluctuations may be included in the definition of the 
merit function. Notice that these equations are similar to the ones used 
to obtain 𝜌̃ and its gradient; the extra computational cost is therefore of 
similar complexity and scaling.

Data availability

Data will be made available on request.
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