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A procedure to find optimal regimes for quantum thermal engines (QTMs) is described and demonstrated. The

QTMs are modelled as the periodically-driven non-equilibrium steady states of open quantum systems, whose
dynamics is approximated in this work with Markovian master equations. The action of the external agent and
the couplings to the heat reservoirs can be modulated with control functions, and it is the time-dependent shape
of these control functions the object of optimisation. Those functions can be freely parameterised, which permits
to constrain the solutions according to experimental or physical requirements.

1. Introduction

Thermal machines are devices composed of a working fluid (or work-
ing medium), one or more heat reservoirs, and an external agent. The heat
reservoirs or baths are macroscopic systems, typically at thermal equi-
librium, and normally they are considered to be large enough to assume
that they are not altered by their interaction with the working fluid.
The working fluid itself may be any substance capable of exchanging
energy with the reservoirs in the form of heat. Furthermore, the work-
ing fluid exchanges energy with the external agent in the form of work
- either performed on or by the working fluid. Depending on the sign
and relative values of those heats and works, the thermal machine is a
heat engine, a refrigerator, a heat pump, etc. The basic setup is sketched
in Fig. 1.

Historically, the theory of thermodynamics was developed around
the analysis of the thermal machine. It was well established way before
quantum mechanics, but the laws of equilibrium thermodynamics can-
not be considered “classical” or “quantum”, as the theory is by definition
agnostic about the microscopic dynamics of the constituents of the sys-
tem that it studies. It is however normally assumed that the systems are
macroscopic in size: it is a theory about systems “in the thermodynamic
limit”.

But this need not be the case for thermal machines, and Scovil and
Schulz-Dubois showed as early as in 1959 [1] how a three-level maser
can be analysed as a quantum thermal machine (QTM) [2,3]. Later on,

the road toward the miniaturisation of all kinds of devices that has
been followed in the last decades has raised the interest in analysing
micro and mesoscopic systems as tentative working mediums. Numer-
ous proposals for QTMs have been put forward, often only as theoretical
proposals, but also as experimental realisations [4-10].

A fairly large body of literature on the topic of QTMs and, in gen-
eral, of quantum thermodynamics [11-13] has been produced in the last
decades. Unsurprisingly, the topic of the theoretical optimal efficiencies
and bounds or limits for output powers and performances has often been
investigated, given that the bound for the efficiency of a heat engine es-
tablished by Sadi Carnot is perhaps the most popular formulation of the
II law of thermodynamics [14]. In fact, the seminal paper of Scovil and
Schulz-Dubois [1] found that the maser efficiency is also bound by the
value predicted by Carnot.

The theoretical absolute limits for the performance of these machines
are however unattainable in practice and, moreover, they may require
useless operation modes. For example, the paradigmatic limit of classi-
cal thermodynamics, Carnot’s efficiency, can only be reached assuming
that the thermal machine is evolving quasistatically, i.e. staying at all
time in equilibrium, which essentially means infinitely slow. Therefore,
the output power per unit time of a heat engine performing Carnot’s cy-
cle is zero. This regime is both unattainable and useless from a practical
perspective, hence the need for working with finite time thermodynam-
ics. In this realm, the dynamics of the microscopic constituents of the
systems cannot be ignored any more - such as it is in the pure field
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Fig. 1. Basic diagram of a QTM: a hot bath (HB) at temperature 7, and a cold batch (CB) at temperature 7, exchange heat with the working medium (WM). This
can also exchange work with an external agent (EA). The equations are the expressions for the heats and work assuming a Markovian master equation (see text).
The directions of the arrows suggest a heat engine operation mode: Q; > 0 (the WM receives heat from the hot bath), O, <0 (the WM gives away part of that heat
to the cold bath), and W > 0 (the remaining heat is transformed into output work on the EA).

of equilibrium thermodynamics —, and one can start to wonder about
differences between the quantum and classical cases.

Erdman et al. [15] also found that the Carnot efficiency limit can be
reached for QTM machines modelled as two-level-systems (TLS) with
tunable gap: they demonstrated how the optimal regime is in this case
found with infinitely fast two-stroke Otto cycles (switching very rapidly
from a large gap when the system is coupled to the hot bath, to a smaller
gap when the system is coupled to the cold bath). It is clear how the
Carnot limit is only achieved (or, one should say, approached to arbi-
trary precision) with experimentally impossible requirements: infinites-
imally short strokes, and sudden, discontinuous Hamiltonian changes.

The research on the theoretical absolute bounds for the performances
of QTMs has been extensive over the last decades. However, it is also
important to develop techniques for the more mundane computational
task of finding optimal protocols when using experimentally realistic
external agents and control handles. A number of works have addressed
this more practical issue: for example, reinforcement learning has very
recently been used for this task [16-18]. Machine learning (in this case,
deep learning) was also proposed by Khait et al. [19]. Normally, these
methods based on machine learning are gradient-free: they do not employ
the gradient of the merit function that is to be optimised with respect to
the control variables.

However, this type of optimization problem also belongs to the
class of problems addressed by (quantum) optimal control theory
(Q)OCT [20-23]: finding the control functions that maximise a merit
function of the evolution of the state. Surprisingly, only a few works
have used this method: perhaps the most remarkable is the work of
Cavina and collaborators [24,25], who made an explicit use of Pon-
tryagin’s maximum principle (PMP) [26,27], the standard workhorse of
OCT.

In contrast to the methods based on machine learning mentioned
above, QOCT based on the PMP approaches the problem examining the
gradient — although, most often, the gradient is properly speaking a func-
tional derivative, as the control variables are normally control functions.
The functional derivative of the merit function with respect to the con-
trol functions has to be zero at an optimal control — a condition that
can be formulated as a set of nonlinear equations, as stated by the PMP.
Those equations can sometimes be solved directly, or the gradient of
functional derivative can be used to feed an optimization algorithm lead-
ing to its nullification.

Notice that, in purity, the optimization of QTMs working in cycles,
i.e. periodically, should be addressed by periodic optimal control, a sub-
class of OCT that has received less attention. One technique for dealing
with periodic systems and working on their optimisation with also pe-
riodic control functions is the pseudospectral Fourier approach (see for
example Ref. [28]).

In this work, I propose to explore that path: to develop a method
to perform optimisations on QTMs by recasting the master equations
that describe their evolution, assumed to be Markovian, in the Fourier
domain. It builds on the method already described in Ref. [29] to opti-
mise averaged values of observables for driven periodic non-equilibrium

steady states of open quantum systems. However, it needs to be gener-
alised to account for more general observables (transferred heats and
averaged output powers). In Ref. [29] we used the term “Floquet engi-
neering” [30], which has been coined in the last decades to refer to the
manipulation of materials through the use of periodic perturbations. Re-
cently, this author and collaborators have shown one possible method to
couple this concept with OCT (see, for example [31,32]; other methods
have been proposed, see for example [33-35] in the field of quantum
simulators). The work described below extends this concept to QTMs
modelled as open quantum systems, and therefore it can be termed as
Floquet engineering of QTMs. The method essentially consists in param-
eterising the control functions according to the experimental or physical
requirements, and working out a computationally feasible expression
for the gradient of the target or merit function with respect to those
parameters. This gradient may then be used to feed any maximisation
algorithm.

Section 2 summarises some key concepts about QTMs in order to
set the frame and notation used in this article. Section 3 describes the
technique used to optimise their performance. Section 4 describes some
examples of optimisations and, finally, Section 5 presents the conclu-
sions of the work. Hereafter, we will assume 72 =1 and kg = 1.

2. Quantum thermal machines as periodically driven
non-equilibrium steady states

A suitable framework to describe the operation of QTMs is the theory
of open quantum systems [36,37]. In this framework, the first step is to
split the universe into a “system” (in the language of QTMs, this is the
working fluid, but of course it need not be a fluid), and an environment,
that is typically a set of “baths”). The full Hamiltonian is therefore split
as:

HO=HO+ Y, (Hy+ Hyy(0)) , ¢b)
b

where H (¢) is the system Hamiltonian, H, are the baths Hamiltonians,
and H,(?) are the system-bath interaction terms. The time-dependence
allows to include the action of an external agent that may modify the
system Hamiltonian and its interaction with the baths. Both possibili-
ties may be used in the control scheme described below. Open quantum
system theory then permits to, approximately, “factor out” the baths;
the working fluid is the only piece of a QTM that is explicitly accounted
for; the heat reservoirs constitute the environment that is factored out,
whereas the external agent that gives or receives work is only included
as a normally time-dependent part of the Hamiltonian of the working
fluid. Hereafter, we will furthermore assume the Markovian approxima-
tion, which can be used if certain conditions are met: essentially, the
reservoir correlation times must be much shorter than the relaxation
time of the system, and the system-bath interactions must be weak.
The most general form for the equation of motion of an open system
— the so-called master equation — in the Markovian approximation was
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demonstrated to be the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
form [38,39]. In its original formulation, it accounted only for static
Hamiltonians, but it can be extended to the time-dependent case. Here,
we are concerned with time-periodic GKSL equations:

A1) = LS D)p(D). (2)
The Lindbladian time-dependence is assumed to be determined by the
functions £ (1), a set of m time-periodic functions of time,

[t +T)= fo@), (k=0,1,...,m—1), ®)

with period T', that permit to control the precise form of the Lindbla-
dian L. The system is in contact with a number (normally, two) of heat
reservoirs at different temperatures, and therefore we split £ as:

LYO) =Ly (fO)+ Y, £,(L D), @
b

where

Lu(f @)X =i [H(F@). X] ®)

is the unitary or coherent part of the time-evolution generator, whereas
each L£,(f(?)) is an incoherent operator that determines the interaction
of the system with reservoir b.

The Hamiltonian H (f((t)) may include a Lamb shift; otherwise, it
is simply equal to the system Hamiltonian H(¢) present in Eq. (1), that
would generate the isolated evolution (see [40] for a recent discussion
on the necessity of including Lamb shift and renormalization terms when
deriving Markovian master equations). Some of the terms of H(f(¢))
may be time-dependent, controlled by some of the functions f(r): those
are the drivings originated by the external agent. Likewise, the interac-
tion between the system and the reservoirs, represented by the terms
L,(f(1)), may also depend on some of the functions f(¢). This possible
dependence may allow for example to exercise control on the process
by switching on and off of cold or hot baths, etc.

In the presence of both the periodic drivings and of the baths, under
rather general assumptions [41], the system will eventually decay into
a periodic non-equilibrium steady state (NESS):

pNEss(t +T) = pNgss () (6)

(in the following, the “NESS” label will not be explicitly used, as all
density matrix trajectories p(¢) will correspond to a NESS). This can then
be viewed as a quantum thermal machine that performs a cycle of period
T, giving and receiving energy into and from the baths (heat), and giving
or receiving energy into and from the source of the external driving
(work).

The energy balance can be understood in terms of those concepts.
Defining the instantaneous energy function as:

E@=Tr [p0H(L@)] | @)

we must have, in the NESS, E(T) = E(0). Following Alicki [42], the
variation of this energy can be broken down as:

dE .

5 =P+ Zb‘,n,m, ®)

where:

) =Tr [ﬁ,,(g(z»p(z) H(g(z))] : ©
oH

P ==Tr [0S (7 0)] - 10)

These are the energy flows transferred to the system, per unit time, from
the baths and to the external agent, i.e. the transferred heats and work,
respectively (or, if the sign is negative, energies per unit time trans-
ferred to the baths or from the external agent). One may then define the
amounts of heats and work over one cycle:
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T
sz/dtjb(t), an
0
T
W:/dzp(t). 12)
0

These terms are sketched in Fig. 1. We will use these energies per unit
time (i.e. with dimensions of power), J, = Q, /T, and P = W /T . Given
the periodic behaviour of our system,

T

/dt %(I):E(T)—E(O):O, 13)
0

we must have an energy balance that is usually presented as the formu-
lation of the I Law of thermodynamics for QTMs:

P=Y"J,. (14)
b

3. Floquet-engineering QTMs

The goal now is to find those control functions f that lead the QTM to
work in an optimal regime. The definition of what “optimal” means may
of course vary. For example, one may wish to maximise the power out-
put of a quantum engine, its efficiency, or the coefficient of performance
of a refrigerator. In general, the goals would probably be functions of
the energy terms J, and P defined above.

Rather than working with unconstrained functions of time, it is more
convenient to parameterise these functions,

fi=f@®,n (k=0,...,m-1), (15)

where each u® is a set of control parameters, that we collectively group
into u to ease the notation, as we collectively group all f; into the multi-
dimensional function f. In this way, it is much easier to constrain the
functions to experimentally or physically meaningful forms (in terms of
frequencies, amplitudes, etc.) Therefore, the task is to find the optimal
set of control parameters u°?" that lead to forms for the functions f that
optimise the machine behaviour. -

We will hereafter denote p(u, t) to the periodic solution (NESS) of the
master equation:

A1) = L(f (u,0))pu.1). (16)
pu,t+T)=p(u,1) an

The optimisation problem must be formulated by first establishing
the goal: a functional of the behaviour of the system during one cycle,

F=F(,u), (18)

where the p dependence refers to the full periodic trajectories in the
cycle. The extra dependence on u may be used to add penalties over
undesirable regions of parameter space (an example of this will be given
later).

The goal is therefore to maximise function

Gw) = F(p(u,"),u), 19)

where now p(u,-) denotes the particular periodic trajectory that is the
NESS solution to Egs. (16) and (17).

In order to solve this optimisation problem, the first ingredient is
therefore a computational procedure to obtain the NESS p(u,-), and
function G(u) from it. Numerous optimisation methods exist that permit
to obtain optimal values for functions with only that ingredient. How-
ever, more effective methods can be used if one also has a procedure
to compute the gradient of G. By applying the chain rule for functional
derivatives in order to get an expression for this gradient,
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9 = 5F i (2.
a—ur(z)— 7 (p(u,-), u) ( ou, (u, )>

(%)

ou,

it becomes clear that the second necessary ingredient for the optimisa-
tion of G involves the computation of the gradient of p(u, -) with respect
to the control parameters u.

In Ref. [29], we demonstrated the feasibility of a computational pro-
cedure to obtain these derivatives, and consequently, the feasibility of a
procedure for the optimisation of function G. In that work, it was lim-
ited to functionals F defined as averages of observables, i.e.:

T

F(p,g):% / dr Tr [Ap(u,1)] 21
0

although it can be extended to more general cases — for example, func-
tions of the heats and power flowing to and from a QTM, as it will shown
below.

Let us start by briefly summarising the procedure used in [29] to
obtain the NESS and its gradient with respect to the control parame-
ters. The starting point are the periodic Lindblad equations (16)-(17) in
the frequency domain - a transformation using Fourier series that will
automatically imply the periodicity of all the objects:

N-1
[Lapgmp@) = i6,,8,50,] g,w)=0 (g=0,1,....N—1). (22)
B 0
=

Here, w, = 2?” p (p € Z) are the Fourier expansion frequencies, N is the

integer that sets a cutoff for the Fourier expansion, and

T
Pppw) = % / dt e p, (u, 1), (23)
0
T
Lopa@ = % / dt ¢4 £ (u, 1), 24
0

are the Fourier coefficients of the elements of the density matrix and
Lindbladian. Note that we are using here a vectorized representation
of the density (a vector in Liouville space): the indices a or f run over
the d? elements of the density matrix (d being the dimension of the
underlying Hilbert space of the working fluid). The Lindbladian is then
a rank two operator in Liouville space or superoperator and requires two
indices, af.
By further defining

Zaq,ﬁp(ﬂ) = Lypg—pW) — 6,850, (25)

we finally arrive to:

2 2 ugpp @5, 0 =0, 6
p p=0

or

L@pu)=0, o

in matrix form. Note that the dimension of vector 5 is d2N, and the
operator £(u) is a d>N X d2N matrix.

This is a linear homogeneous equation; the solution (the nullspace or
kernel, assuming that it has dimension one), will be the periodic solution
that we are after, the NESS. We now need some procedure to find ki)

Uy

Taking variations of Eq. (26) with respect to the parameters u, we get:
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2w 3 @ =25 Wiw. @8)
u, ou,

This is a linear equation that would provide ;7‘7. However, note that
r

since Z(g) has a non-empty kernel (given precisely by j(u)), it cannot
be solved straightforwardly. In fact, it does not have a unique solution:
If x is a solution of

Lwx == 2= Witw, (29)
ur

x + pup(u) is also a solution for any u. To remove this arbitrariness, we
impose the normalisation condition, Trp(u) = 1 for any u, and therefore:

0

™2 —o. (30)
du,

To find ;l—f in practice, one may then take the following two steps:

First, compute a solution of the linear equation, Eq. (29), with the least-
squares method by imposing that the solution x is perpendicular to the
kernel, i.e.: x - p(u) = 0. Then, update the solution with the condition,
Eq. (30). The requ1red solution is obtained as:

9

. = X0~ (Trxg)p(u). (31)

r

9py
u,
this procedure to compute this gradient, one can perform the optimisa-

tion of function G(u) with many efficient algorithms. This method has
been implemented in the qocttools code [43], publicly available, and
all the necessary scripts and data necessary to replicate the following
results are also available upon request from the authors.

As for possible choices for the function G(u), for the purposes of
this work, we are concerned with target goals defined in terms of either
the averaged power P or the heats J, (or combinations of those). For
example, if the goal is to maximise the output power of a heat engine,

Once we have

, we can evaluate the gradient in Eq. (20). Armed with

T

Gw =P =1 / arTr [ 2 (£ o)
0

=_% ;/dt fk(ﬂ’t)Tr [Vk(i(ﬂ,t))p(g,l)] . (32)
0

Note the negative sign due to the convention used for the definition of
the power P. Here, we use the notation f «(u,1) for the time derivative
of function f(u,t), and

0H
VvV, = —. 33
“= 95 (33)
One must now work out the gradient of this function, for example
making use of the chain rule (20), plugging the gradient ;7” calculated

with the procedure described above. But, rather than working out explic-
itly the functional derivatives, one may directly work out the gradient
components of function P(u) from Eq. (32):

g—‘i(ﬂ) =—= Z / dr {—(M HTr I:Vk(i(ﬂ, t))p(z’ [)] +

ka(u t)—(u HTr [—(f(u D)o, z)]

i, 0Tr [Vk(z@ z»%’@, z>] } : (34

Despite the length of the equation, in fact the only difficulty lies in com-
puting the NESS p(u,?) and its derivatives ;7".

A similar procedure can be followed for the case in which function
G(u) = Jy(u), the heat transferred from one of the reservoir. In the most
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general case, function G would be a function of all the energy terms,
G(u) = g(P(u), J (), ...), a function of the power output and of all the
heats (such as the efficiency of a heat engine or the coefficient of per-
formance of a refrigerator), and then one would have:

0 dg 9J,
0G _ 08 0P 5 08 0y
ou, 0P ou. 44 0dJ, ou,

(35)

In this way, one can define and optimize a merit function that combines
both the output power and the performance, since normally one would
not like to have a very high power at the cost of a very low performance,
or viceversa, but rather have a compromise (see for example [44], a
recent work that studies the Pareto front defined in terms of those two
quantities).

However, perhaps one also wishes to include another key quantity,
the fluctuations of the output power, as an ingredient of the figure of
merit — normally, one would like a heat engine to work with low fluc-
tuations. A combined study of the optimisation of power, efficiency and
fluctuations is for example described in Ref. [17]; see also [45,46]. The
present scheme can also be extended to include the fluctuations in the
definition of the target; see Appendix B.

Finally, a note about the computational complexity of the method:
the bottlenecks are the solution of the linear systems (27) and (28). The
preparation of the matrices and vectors involved in those equations take
a comparatively small amount and time. The dimension of the linear
problem is D = d2N, where d is the dimension of the Hilbert space
of the system (a two-level system in this work), and N is the Fourier
decomposition dimension (given by the choice of cutoff). The scaling of
a dense linear problem is D3 with standard methods, and ~ D*3 with
more sophisticated methods.

4. Examples of application
4.1. GKSL equations

Until now, the form of the master equation has remained rather
general — although we are always assuming here an important simplifi-
cation: the open quantum system is Markovian. Therefore, the equation
must be of the GKSL form [38,39]. The optimisation method described
above may be used for any equation of that family. However, it has only
been implemented and tested for a subclass of GKSL equations: here-
after, in order to exemplify the method, we will restrict the analysis to
those GKSL equations that verify:

1. The decoherence terms have the form:
Ly(f @)=Y en(f @ Lp(y. Ly), (36)

where we define the super-operator L (¥, X) (for any positive con-
stant y and operator X) as:

Lo Xop=7 (XpX" = 2 {X"X.p}). @7

Therefore, in this setup, we restrict the Lindblad operators L,; to
be constant in time, but they may be modulated by time-dependent
functions (the so-called “rates” may depend on time).

2. We have two reservoirs at thermal equilibrium (as it is almost al-
ways the case): one hot bath (b = 1) and one cold bath (b = 2).

3. The dependence of H on the control functions is linear, i.e.:

H(fw)=Hy+ Y frwnVy, (38)
k

and therefore the terms V) are constant operators, independent of
u or time.

This is the type of model that has been implemented in the qoct-
tools code [43] to demonstrate the feasibility of the optimisation scheme
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explained above. The key equations are two: on the on hand, the expres-
sion for the gradient, that in this case reduces to:

JoP
a_u, ()]

T
:—l /dt{
T
0

Vi, D] + fi (w0 Tr [Vk—(u z)] }

(39)
And, in order to find the gradient of p [Eq. (28)], since
r 0
0[1 E ﬁ , (40)
()u 0fy ou,
the key equation is:
0£ 08
o =i+ Z 2 a7, L@DLp(or Ly)- “4n
4.2. Model

Let us now present the model used for the sample optimisations
shown below. We consider the model used by Erdman et al. [15] to
study the optimal Otto cycles (see also [47,16,17]): a two level system
with a controlled energy gap, i.e.:

H0)= 28+ fy(®)o. “2)

Note that in this subsection 4.2 we are dropping the dependence on u
to ease the notation. The GKSL equation then reads:

o0 =i [HE@. 0] + T 3 el O Lo Lo): (43)
i=+,—

Regarding the decoherence terms on the right hand side, there are
two terms per bath, indexed as i =+, —, and

Ly, =0,, L,_=o0_, (44)
for both the hot and cold bath (b = 1,2). All rate constants y,; are set to
be equal (y,; =I"), but they are then modulated by the time-dependent
functions

85i(f (D) = [ FUPy(A + fo (D)), (45)

where f,, is the (inverse) temperature of bath b, and

F(x) = (46)

1+ex’
This choice ensures the fulfillment of the detailed balance condition.
Finally, the L} superoperators are defined in Eq. (37).

Note that we have three control functions: f,(t) is responsible for
modifying the TLS gap, whereas f|(¢) and f,(¢) tune the coupling of
the system to the hot and cold bath, respectively.

This model has been used to describe a quantum dot with only one
relevant resonance, coupled to metallic leads with flat densities of states,
that act as reservoirs [48,47,15,16]. Erdman et al. [15], in particular,
solved exactly and analytically the following optimisation problem: sup-
pose that we can vary at will the TLS gap by modulating f,, as long as
a maximum and a minimum are not surpassed: | f,(f)| < é. This means
there exists a minimum and a maximum TLS gap:

6min:A_53A+f0(t)sfmax:A+5~ (47)

Suppose that we can also vary at will the system-bath coupling functions
f1 and f,, as long as 0 < |f,(#)] < 1. All these control functions are
periodic, with a period T that can also be varied. Suppose now that we
want to optimize the output power of the QTM operating as heat engine
(other possible performance measures were also considered in [15]).
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The solution was demonstrated to be the following (see the dis-
cussion around the Eq. (8) of [15]): the maximum is achieved with
infinitesimally short (T" — 0) periods, consisting of coupling the system
for equal periods of time (7"/2) to the hot and the cold baths:

fi®)=1and f,(1)=0if 0<t< g (coupling to the hot bath), (48)

f1()=0 and f,(r)=1 if % <t<T (coupling to the cold bath). (49)

During each of those strokes, the TLS gap has some constant values, ¢,
and ¢,, respectively. In this setup, the output power is given by:

1

P(T.e).e))= ————
¢ Teoth(l L)

(F(g18)) — F(g,6)))(e| — €7), (50)

where the subindex ¢ stands for “constant”, to stress the fact that the
function f((¢) is constant during each time of contact with the bath:
fo(t) = €, — A when in contact with bath b, and it changes value instan-
taneously when the bath changes. The value of this output power grows
with decreasing periods T'; in the limit 7" — 0,

Perse) = (FE1f) = Feap)e) — &), (51

The absolute maximum output power for this type of machine is then
found at the maximum of this function:

P = max
Emin<€1,62<Emax

P.(g1,€)). (52)

This can be viewed as a two-strokes engine cycle, that switches dis-
continuously from the cold to the hot bath, with no adiabatic segments.
The expansion and compressions (modifications of the TLS gap, in this
case), are instantaneous. Therefore, even at finite T, the operation re-
quires discontinuous jumps in the control functions.

4.3. Examples of optimizations

Let us now modify the nature of the problem described above: sup-
pose that we are not allowed to use a non-smooth control function f:
the change in time of the TLS gap cannot be sudden, which implies
a continuous and differentiable function f,. We still ask of f;, to be
constrained in amplitude, |fy(u,?)| < 6, as mentioned above, but also
demand that it has no frequency components beyond a cutoff w,,,. This
cutoff forbids, of course, a sudden discontinuous change when the sys-
tem decouples from one bath and couples to the other one. Furthermore,
we fix the cycle period 7', which in a realistic setup cannot be taken to
arbitrarily close-to-zero values.

The rest of the setup remains unchanged: f; and f, are given by
Egs. (48) and (49), which means that once again we have a two-stroke
cycle that switches the contact from the hot bath to the cold bath. We
therefore consider these functions to be fixed: they do not depend on
any control parameters u and are not, in purity, control functions. The
optimisation is only done with respect to the shape of f, = f((u,?) (this
is of course not a requirement of the method, but merely a choice for
the examples shown here).

Regarding the parameterisation of f|, it is chosen in such a way that,
by definition, | f,(u,t)| <6 as in the problem described above. Further-
more, the function is periodic, continuous and differentiable, and has
low frequencies. The detailed description of the parameterised form of
fo is given in Appendix A.

It remains to define the merit function G for this example, which is:

Cw=Pw-a Y |fpwl (53)
@y >(A)max

The goal is therefore to maximise the output power P(u) as given by

Eq. (32); but note that we add an extra term: it is a penalty term for high

frequencies in the control function (f;,(«) are the Fourier components

of fy). As discussed in Appendix A, the parameterisation forbids ampli-

tudes higher than 6, and favours frequencies lower than w,,,,, but does
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not forbid them. Therefore, in the optimisation we add this extra term
to make them negligible. The constant @ > 0 determines how important
this penalty is, and therefore how large those frequencies can be in the
resulting optimised function.

Then, the function P and its gradient are computed according to the
formulas described in the previous section, and this information is fed
into an optimisation algorithm. We have chosen the sequential quadratic
programming algorithm for nonlinearly constrained gradient-based op-
timisation (SLSQP) [49], as implemented in the NLopt library [50]. This
is a versatile choice that permits to include linear and non-linear bounds
and constraints. However, it is a local algorithm, that will only find the
local optimum corresponding to the basin where the starting guess re-
sides. In order to attempt to find the global optimum, one can either
(1) do many runs, starting from a random sample of starting sets of pa-
rameters, or (2) use a global optimizer. I have used both options: first,
a set of 10 local optimizations were started from random initial points;
and then a global optimizer was launched. The choice for this latter one
was the “multi-level single linkage” (MLSL) algorithm [51]; in essence,
it consists of a sequence of local optimizations (and, in order to perform
each of those, the SLSQP was used as described above). The sequence is
however not random, and as described in [51], a “clustering” heuristic
is used to avoid repeated searches of the same local optima.

For all the calculations shown below, the amplitude constraint is set
as 6 = (1/5)A and the temperatures for the reservoirs are set to f; =
1/A, p, =2/A, and the rate I' = A, equal for all the dissipation terms.

Fig. 2 displays the first calculation examples. It is a series of optimisa-
tions for varying values of the cycle period T, ranging from (1/8)z to 27,
where 7 = 2. The goal is to optimise the output power obtained with a
protocol f,(u,t) for each of those cycle periods, and compare that output
power with the one that results of using constant TLS gaps during each
contact with the hot and cold bath, with a sudden, instantaneous change
in between. The output power obtained with those constant gaps is the
one obtained by maximising Eq. (50) with respect to £; and &, (within
the allowed range [A — &, A + 6]). The results are shown in the left panel
of Fig. 2. The green line displays the output power obtained with the
constant gaps; it can be seen how it increases with decreasing T, and it
tends to the maximum predicted by Eq. (52), as expected.

However, for a fixed and non-zero T, the values obtained with con-
stant gaps are not the largest output powers that one can get; in order to
find the optimal protocol, one must look in the space of non-constant,
varying TLS gaps, for which purpose one has to use a numerical proce-
dure such as the one proposed in this work. The results obtained in this
way are shown with the black line of the left panel of Fig. 2. It can be
seen how, for small T, the output powers are actually lower, and only
become larger at a certain crossing point. The reason is the fact that we
are demanding of the protocol to have frequencies lower than a certain
cutoff (which for these examples we have set to w,,, = 8A). It is there-
fore not surprising that, for very rapid cycles, the optimised f|, cannot
improve the constant-gap protocol, that approaches the predicted abso-
lute maximum as T — 0. For longer cycles, the black curve does show
higher output powers.

The right panel of Fig. 2 presents the optimal function f,(u°", ) (top)
and the corresponding transferred heats and work (bottom) correspond-
ing to the heat engine working with a period of T' = 7. For comparison,
the protocol using the optimised constant gaps is also shown in the top
panel (green line). It can be seen how, as expected, the energy exchange
between system and external agent is higher around the times that the
baths are coupled and decoupled. The optimised function f, does fulfil
the required constraints regarding amplitude and frequency.

The results shown in Fig. 2 — in particular, how the optimised f,
cannot improve the constant gap protocol for very short 7' — point to
the relevance of the choice of the cutoff. To illustrate this fact, we will
show the effect of the cutoff in Fig. 3. In this case, the series of runs were
done fixing T = 17 but changing the value of the cutoff frequency, from
Wpax = 4A to o, = 18A. Increasing the cutoff frequency amounts to
enlarging the search space for the optimisation, and therefore it can be
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== fo(constant)

| — fo(optimal)

Fig. 2. Left panel: Averaged output power of the heat engine as a function of the period time T', shown as a fraction of the maximum possible power given in Eq. (52),
when using the: dashed green: constant TLS gaps with discontinuous fast switching when changing bath; and solid black: optimized smooth gap f,(u™,t). Top right
panel: Function f; with constant TLS gaps and sudden switching (dashed green), and optimized f,(u°",t) (solid black). The red and blue shadings mark the time
regions when the hot and blue baths are connected, respectively. Bottom right panel: Transferred heats and work for the heat engine when using f,(u°", 7).

= = (constant)

—— (optimal)

0.85 A

P(u)/ P

0.80 1

wmax/A

Fig. 3. Left panel: Optimized averaged output power of the heat engine as a function of the cutoff

seen on the left panel how the output power obtained with the optimised
fo increases with w,,.. For lower cutoffs, it cannot improve over the
value obtained with the constant gap protocol, but for larger cutoffs the
time-varying optimised f, permits to obtain a better number, reflecting
the fact that the value obtained with constant gaps is only a maximum
in the limit T — 0. Finally, on the right hand side of Fig. 3 we display
again function fo(g"f", t) (top), and the instantaneous heats and work
(bottom), in this case for the calculation with w,,, = 18A. Function f,
changes more rapidly as a function of time than in the case shown in
Fig. 2, but it still respects the constrains imposed on the amplitude and
the frequency.

5. Conclusion

This work describes and demonstrates a procedure for the optimisa-
tion of the working protocol of QTMs modelled with generic Markovian
master equations. Although there have been numerous works dealing
with the theoretical problem of establishing optimal performance limits
for these systems, there have been few practical, computational methods
proposed in the literature focused on finding realistic optimal protocols
for the action of the external agent or the couplings to the baths. Spe-
cially, if one assumes that ideal unconstrained modes or operation are
not feasible, and bounds on the smoothness or amplitudes of the con-
trol functions are to be considered, based on experimental or physical
considerations. This work intends to fill in that gap.

As a demonstration, we have computed optimised protocols for two-
level systems coupled to thermal reservoirs, that may be for example
used to model simple quantum dots coupled to metallic leads at vary-
ing temperatures. These can operate as minimal quantum heat engines,
producing output power through the intermittent switch from the cold
to the hot bath. The action of the external agent is given by the gap of

02y <
|
0.0 4 !
= = fo(constant) _
0.2 1 m— fo (optimal)
0.5

(solid black curve), shown as a fraction of the maximum

max
possible power given in Eq. (52). The value obtained when using constant TLS gaps with discontinuous fast switching is also shown in dashed-green. Top right panel:
Function f,, with constant TLS gaps and sudden switching (green), and optimized f,(u°",7). The red and blue shadings mark the time regions when the hot and blue
baths are connected, respectively. Bottom right panel: Transferred heats and work for the heat engine when using f,(u°", ).

the TLS, and it is the shape of this function the one that, in the example
shown, is controlled. It is shown how this function can be parameterised
respecting amplitude and frequency constraints, and how the value of
those parameters can be efficiently optimised using a gradient-based
algorithm. The method can also be used to optimise the functions con-
trolling the couplings to the baths, internal bath parameters such as their
temperatures if one considers them to be time-dependent, the duration
of the cycle or of each bath coupling, etc.

There has been a recent push in the research of QTMs, motivated
by the technological and experimental trend towards the miniaturisa-
tion of devices, and by the theoretical questions around the interplay
of thermodynamics for mesoscopic systems and quantum mechanics. I
expect that the method proposed here, and the code that implements it
(published as open source), will be useful to analyse the performance of
these systems.
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Appendix A. Parameterisation of the control function

Function f((u, t) should fulfill two conditions that would normally be
present in any experimental implementation of a QTM. First, it must be
bound: | fo(u, )| < 6. Second, it should be smooth, which we will enforce
by also requiring a high-frequency cutoff. This suggests, for example, the
following parametrization:

Fow, 1) = P(frourier @, 1)) - (A.1D)
Here, the parameters u are the coefficients of a Fourier series:
M
Srourier(Us 1) = ug + Z (uz,, cos(w,t) + ty,,_ sin(w,,t)) ,
n=1
2z
(w, = ?n). (A.2)

The function @ is chosen with the following properties: (i) for small x,
®(x) ~ x. Therefore, if frqyer (4,1) is small, f,(u, ) is simply equal to a
Fourier series with a frequency cutoff, fgu.ie (1, 1). (ii) as |x| grows and
approaches §, the growth of |®(x)]| is reduced, so that |®(x)| < é for any
x, until it becomes a constant equal to 6 for x > 6.

Many possible functions can be imagined with those properties. For
this work, we have chosen:

x if0<x<35
D(x)=1 6 ifx>5+16 (A3)
an Akima cubic spline interpolation if x € (%5, o+ ié)

For x < 0, the function should be antisymmetric: ®(x) = —®(—x).

This parameterisation strictly enforces the amplitude bound |®(x)| <
8, but it does not enforce the frequency cutoff; it only favours the fre-
quencies lower then w,,,,, as long as the value of the coefficients u are
not high. Because of this, we use a penalty for high frequencies in the
definition of the merit functions.

Many other possible parameterisations of f;, can be imagined; a par-
ticularly simple one would be to use directly fo(u,?) = frourier 1), and
perform a bound optimisation setting Y’ |u;| < 6. This ensures both the
amplitude and frequency bounds, and has the advantage of its simplic-
ity — although that simplicity does not imply a computational saving.
I have also implemented this choice, but found that it frequently leads
to worse local maxima (probably because the optimal functions found
with this parameterisation do not have instantaneous amplitudes close
to the bound §).

Appendix B. Fluctuations

A good heat engine should not only yield high power, but also oper-
ate with high efficiency and with low power fluctuations. The method
described in Section 3 permits to define merit functions that include the
first two quantities (power and efficiency), but not the third one (fluc-
tuations). The reason is that the previous method description has only
considered observables in the form:

T
A(w) = % / dr Tr [M(u, )(p(u, )N (u,1) | , (B.1)
0

where M is a liner superoperator, and N an operator. This includes
the dissipated heats and the power. Therefore, one can define any merit
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function with the form G(u) = g(P(u), J1(u), ..., Jp(w)), where P is the
output power and J, are the dissipated heats to bath b (out of B baths).

However, the form (B.1) does not allow for the calculation the power
fluctuations. Following Refs. [52,17], this observable can be computed
as:

T
AP(u) = % / dr Tr [s(g, t)%(g, t)] (B.2)
0

Here, s(u, ) is a trace-less Hermitian operator that can be computed from
the differential equation:

ds _
5 @) =L/ W 1)s.1)

+ 0D S wn) =21 [pwn S wn|pwn.  ®3)

This equation admits a periodic solution to which s(u,f) converges
asymptotically [17] — the solution to be used in Eq. (B.2). Clearly, AP
cannot be brought into the form given by Eq. (B.1).

In order to take into account power fluctuations, we consider now
the possibility of defining a merit function including A P:

G(w) =g(PW). J (). ..., Jp(u), AP(w) (B.4)

Therefore, we need to extend the method in order to be able to compute
AP(u) and its gradient,

T

aaAuf) w) = % / dr Tr [da—;r(g, t)aa—il(g, t)] . (B.5)
0

Fortunately, the formalism can be easily extended for that purpose, al-

though at the cost of adding some extra computational effort, as it will

be shown now.

The necessary ingredients are s, and its gradient with respect to u.
Note that the equation verified by s, (B.3), is the same GKSL equation
verified by p, plus an inhomogeneous term, that depends non-linearly
on p. Moving it to the spectral representation we get:

L)) = h(u, pw). (B.6)

where & is a quadratic function in the 5 components, that results of the
transformation of the inhomogeneous term in Eq. (B.3) to the Fourier
series space. By solving this linear equation for 3(u), one may compute
AP(u), using Eq. (B.2).

Regarding the gradient, one may take derivatives in Eq. (B.6), which
leads to the linear equation:

2w 2% @) = - 25 s + - h(w, 5w). 3.7)
Ju, du, du,

This can be compared to Eq. (28): it is also a linear equation for the
(super)operator E(g), although there is an extra term on the right hand
side, that depends quadratically on 5.

Summarising, by solving Egs. (B.6) and then (B.7), one may obtain
§ and its gradient, that in turn permit to compute AP and its gradient.
In this way, the fluctuations may be included in the definition of the
merit function. Notice that these equations are similar to the ones used
to obtain p and its gradient; the extra computational cost is therefore of
similar complexity and scaling.

Data availability

Data will be made available on request.
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