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La creciente generacion global de residuos de frutas y verduras (RFV) representa un
desafio ambiental, econémico y social significativo. Debido a su alto contenido de
humedad y azucares, estos residuos son altamente susceptibles a la descomposicion
microbiana y a procesos de acidificacion incontrolada si no se gestionan de forma
adecuada, lo que dificulta su tratamiento. En la Union Europea, se estima una
produccién de aproximadamente 21 kg per capita al afio de RFV inevitables a lo largo
de la cadena agroalimentaria. A pesar de su riqueza en materia organica biodegradable,
estos residuos suelen estar infrautilizados, siendo comunmente depositados en
vertederos o incinerados, lo que contribuye a la emision de gases de efecto invernadero
y a la pérdida de recursos valiosos. En este contexto, y en concordancia con la
Estrategia de Bioeconomia Circular y los Objetivos de Desarrollo Sostenible al 2030, la
valorizacion integrada de los RFV para la obtencién de bioenergia renovable y productos
de valor anadido se posiciona como una prioridad estratégica para una gestion

sostenible de los residuos.

En este marco, la fermentacion oscura (FO) y la digestion anaerobia (DA)
emergen como procesos biotecnoldgicos clave para la conversion de RFV en hidrogeno
(Hz2) y metano (CHas), respectivamente. La FO es particularmente prometedora debido a
su bajo requerimiento energético y su capacidad para generar H> en condiciones
anaerobias. Sin embargo, su aplicacion a escala industrial enfrenta obstaculos
importantes, como la inestabilidad operativa en sistemas continuos, la acumulacién de
metabolitos inhibidores como el acido lactico (HLac) y una baja reproducibilidad. Estos

problemas se ven agravados por la alta biodegradabilidad y el contenido en



carbohidratos de los RFV, que aceleran la acidificacion del medio y comprometen la
eficiencia del proceso. Una alternativa emergente es la fermentacion oscura impulsada
por lactato (FOIL), en la cual el HLac es aprovechado como intermediario fermentable
en lugar de considerarse un inhibidor, lo que permite una produccion de H, mas estable
y eficiente. No obstante, los efectos de parametros operativos como el pH, los sélidos
totales (ST), la concentracion de biomasa, el tiempo de retencion hidraulica (TRH) y la
carga organica (CO) sobre el rendimiento de la FOIL aun no se comprenden
completamente. La integracion de la FOIL con la DA en sistemas de dos etapas puede
generar sinergias significativas, al facilitar la especializacion metabdlica, mejorar la
eficiencia de acidificacion del sustrato y aumentar la produccion de CHs mediante la
conversiéon completa del HLac durante la fase metanogénica. Dada la limitada madurez
tecnologica de la LDDF y la escasa exploracion de su integracion con la AD, es esencial
investigar y comparar las ventajas y mejoras que puede presentar este enfoque con
respecto a la operacion tradicional, asi como evaluar el rendimiento de los sistemas en

dos etapas bajo condiciones controladas.

Esta tesis aborda estas brechas cientificas y tecnoldgicas mediante la evaluacion
sistematica del efecto del pH, ST, concentracion de biomasa, TRH, CO cémo
parametros clave en sistemas FOIL operados en modo discontinuo y continuo. En
condiciones mesodfilas, los ensayos discontinuos mostraron que la produccion de H, se
optimiza a pH neutro (7,0), con bajos solidos totales (5%) y alta concentracion de indculo
(1800 mg VSS/L), alcanzando un rendimiento de 49,5 NmL H/g VSaiimentado Y UNA
productividad maxima de 976,4 mL Ha/L-h. Estas condiciones redujeron la acumulacion
de HLac y favorecieron la coproduccion de acetato y butirato, evidenciando un delicado
equilibrio entre las rutas metabdlicas y la necesidad de un control preciso de las

condiciones operativas.



En sistemas en continuo, la reduccién progresiva del TRH de 24 a 6 horas
(correspondiente a una CO de 47-188 g VS/L-d) revel6 un TRH 6ptimo de 9 horas, en
el que se alcanz6 una tasa de produccion de H- sin precedentes de 11,8 NL Ho/L-d y un
rendimiento de 95,6 NmL/g VSaimentado- EStos resultados destacan la importancia critica
del tiempo de residencia y consolidan el papel del HLac como impulsor clave en la

produccion de Ho.

Con el fin de ampliar la valorizacién energética, se compararon la DA
convencional en una sola etapa y un sistema de dos etapas con generacion previa de
HLac. Este ultimo, conformado por una fase acidogénica inicial seguida de una etapa
metanogénica, superd al sistema tradicional con un aumento del 32% en la
productividad de CH4 (959 NmL CH4/L-d) y un 36% en el rendimiento de CH, (398 NmL
CHa/g VSaiimentado). Si bien ambos sistemas mostraron perfiles similares de contenido y
estabilidad de CHs, la configuracion en dos etapas logré una conversién mas eficiente
del sustrato y una mayor especializacion microbiana. La fase acidogénica estuvo
dominada por Lactobacillus, mientras que en la fase metanogénica prevalecieron
Methanobacterium y Methanothrix, lo que sugiere que la separacion de fases promueve

un funcionamiento microbiano mas eficiente.

Asimismo, se abordé la problematica de la reproducibilidad en procesos de FO,
un aspecto crucial para su escalado. Utilizando reactores paralelos operados de forma
idéntica durante seis fases experimentales, se logré una productividad de H» consistente
(6,7 £ 0,7 NL H2/L-d), un contenido medio de H, del 65 + 5% y perfiles estables de acidos
organicos, validando la viabilidad y reproducibilidad de la FOIL bajo condiciones
controladas. Estrategias como la bio-aumentacién y la suplementacién de nutrientes
solo generaron mejoras temporales, lo que resalta la necesidad de enfoques de

optimizacion adaptativa a largo plazo para mitigar la variabilidad biologica.



En conjunto, esta investigacion aporta conocimiento relevante para la
optimizacion e integracion de procesos de FO y DA en la valorizacion de RFV. Los
resultados demuestran que, con un ajuste adecuado, la FOIL puede consolidarse como
una plataforma confiable para la produccién de H», y que los sistemas de DA en dos
etapas basados en HLac ofrecen una alternativa superior para la generacion de CHa.
Desde una perspectiva integral, la combinacion de FOIL y DA permite transformar
residuos organicos en dos biocombustibles de alto valor como el H, y CH4, promoviendo
asi la recuperacion de recursos, la economia circular y la mitigacion del cambio
climatico. Los hallazgos de esta tesis sientan las bases para el disefio de biorrefinerias
robustas, escalables y sostenibles que contribuyan a enfrentar los desafios ambientales

y energéticos actuales mediante el aprovechamiento eficiente de residuos organicos.



The growing global generation of fruit and vegetable waste (FVW) poses a significant
environmental, economic, social problem. The high moisture and sugar content in FVW,
which promote a rapid microbial decomposition and uncontrolled acidification when
unmanaged, entails significant technical challenges. In the European Union alone,
approximately 21 kg of unavoidable FVW is generated per capita annually across the
agri-food chain. This biomass, though rich in biodegradable organic matter, is frequently
underutilized (disposed of in landfills or incinerated) contributing to greenhouse gas
emissions and the loss of valuable resources. In alignment with the Circular Bioeconomy
Strategy and the 2030 Sustainable Development Goals, the integrated valorisation of
FVW into renewable bioenergy and value-added products is a strategic priority for

achieving sustainable waste management.

Dark fermentation (DF) and anaerobic digestion (AD) are two key biological
processes capable of converting FVW into hydrogen (Hz) and methane (CHs),
respectively. DF is particularly attractive for its low energy demand and ability to produce
H. under anaerobic conditions. However, DF scale-up to commercial scale remains
limited by several bottlenecks namely, operational instability under continuous
conditions, accumulation of inhibitory metabolites such as lactic acid (HLac), and low
reproducibility. These issues are further exacerbated by the high biodegradability and
carbohydrate content of FVW, which accelerate acidification and system inhibition. A
promising alternative is lactate-driven dark fermentation (LDDF), in which HLac is no
longer viewed as a mere inhibitor but as a fermentable intermediate, enabling more
robust and energetically favourable H, production. Despite its potential, the effects of

operational parameters such as pH, total solids (TS), biomass concentration, hydraulic



retention time (HRT), and organic loading rate (OLR) on LDDF performance remain
poorly understood. On the other hand, integrating HLac fermentation with AD in a two-
stage configuration provides synergistic benefits by enhancing substrate solubilization
and acidification efficiency, promoting metabolic specialization, and significantly
increasing CH4 production through the complete conversion of HLac during the
methanogenic phase. Given the limited technological maturity of LDDF and the scarce
exploration of its integration with AD, it is essential to investigate and compare the
advantages and improvements this approach may offer over traditional operation, as well

as to evaluate the performance of two-stage systems under controlled conditions.

This thesis addresses these scientific and technological gaps by systematically
evaluating the influence of pH, TS, biomass concentration, HRT, OLR as key operational
parameters in batch and continuous LDDF systems. Results from mesophilic batch
experiments demonstrated that H, production was optimized at neutral pH (7.0), low TS
(5%), and high inoculum concentrations (1800 mg VSS/L), yielding 49.5 NmL Hz/g VSrep
and reaching maximum volumetric H. productivities of 976.4 mL H./L-h. These
conditions minimized HLac accumulation and favoured acetate and butyrate co-
production. Such metabolic shifts highlight the delicate balance between fermentative
pathways and the importance of precise operational control. In continuous LDDF
systems, the stepwise reduction of HRT from 24 to 6 hours (with corresponding OLRs of
47-188 g VS/L-d) revealed an optimal HRT of 9 hours, at which an unprecedented H:
production rate of 11.8 NL Hx/L-d and a yield of 95.6 NmL/g VSrep were achieved. These
results confirmed that LDDF performance is strongly dependent on residence time, and

underscored HLac’s central role as a driver of H, production.

To extend the valorisation chain and enhance energy recovery, a comparative
evaluation between conventional single-stage AD and a lactate-type two-stage AD

configuration was performed. The two-stage system, which included an initial acidogenic

Vi



phase focused on HLac generation followed by a methanogenic reactor, outperformed
the single-stage setup by achieving a 32% increase in CH4 productivity (959 NmL CHo./L-
d) and a 36% increase in CH. yield (398 NmL CH4/g VSrep). Both systems showed
comparable CH4 content and stability, yet the two-stage process enabled better
substrate conversion and more defined microbial specialization. The acidogenic phase
was dominated by Lactobacillus, while Methanobacterium and Methanothrix were
prevalent in the methanogenic stage, suggesting that phase separation facilitated

optimized microbial community performance.

The thesis also tackled the challenge of process reproducibility in DF, which is
crucial for scaling bioprocesses. A parallel reactor setup operating three identical
continuous systems over six operational phases demonstrated consistent H, productivity
(6.7 £ 0.7 NL H2/L-d), H> content (65 + 5%), and organic acid profiles, validating the
reproducibility of LDDF under controlled conditions. Process enhancement strategies
such as bioaugmentation and nutrient supplementation produced only temporary
improvements, reinforcing the need for longer-term, adaptive optimization strategies to

mitigate biological variability.

Collectively, this work advances the understanding of how to optimize and integrate
DF and AD technologies for the valorisation of FVW. It demonstrates that LDDF, when
fine-tuned, can serve as a reliable Hz production platform, and that two-stage AD
systems leveraging HLac metabolism offer superior CH, yields over conventional setups.
From a systems perspective, the integration of LDDF and two-phase AD enables the
conversion of food waste into two valuable biofuels (H2 and CH4) supporting resource
recovery, circular economy principles, and greenhouse gas mitigation. The findings of
this research provided valuable insights towards the development of robust, scalable,
and sustainable biorefinery models capable of addressing both environmental and

energy challenges through organic waste valorisation.
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Introduction

1.1 Organic Waste Valorization: A Key Step Towards a Circular Bioeconomy

Organic waste management represents a critical global challenge with profound
environmental, social, and economic implications. Each year, approximately 1.3 billion
tons of food are wasted globally, with fruits and vegetables accounting for nearly 50% of
that figure (Piwowarek et al., 2023; Diaz et al., 2017). This waste not only reflects
inefficiencies in the food supply chain but also contributes significantly to greenhouse
gas (GHG) emissions, resource depletion, and financial losses. Addressing Fruit-
Vegetable Waste (FVW) is therefore essential for achieving a sustainable, equitable, and
circular food system. From an environmental point of view, the decomposition of organic
waste such as FVW in landfills leads to the release of methane (CH4), a GHG
approximately 25 times more potent than carbon dioxide (COz) (Khalid et al., 2011).
Organic waste has become the largest component of municipal solid waste globally (Diaz
et al., 2017), and its mismanagement results in soil and water contamination, as well as
avoidable GHG emissions from transportation and treatment (Wikandari et al., 2014).
These impacts underscore the urgent need to integrate FVW management into climate
change mitigation strategies, as well as resource recovery roadmaps (Stoknes et al.,

2016).

From a social point of view, the paradox of widespread food waste (FW) alongside
global hunger is stark. Indeed, an estimated 1.3 billion people could be fed with the
calories lost in FW (Piwowarek et al., 2023). The loss of nutrient-rich FVW particularly
exacerbates food insecurity and nutritional deficiencies, especially in vulnerable
populations (De Laurentiis et al., 2018; De Moraes et al., 2022). Reducing FVW is thus
not merely a logistical issue, it is a moral imperative linked to health and social equity.
Economically, the costs of FVW are staggering. In addition to the economic value of the
wasted products, there are associated costs in terms of land use, energy, water, and

labor (Okoro et al., 2022). Tens of billions of dollars are lost annually due to inefficiencies



Chapter 1

in the production, distribution, and disposal of FVW (Piwowarek et al., 2023). However,
a better FVW management (through valorization strategies such as composting and
anaerobic digestion (AD)) can generate renewable energy, improve soil fertility, and
reduce dependence on synthetic inputs (Jiang et al., 2012; Gbmez-Romero et al., 2014).
The valorization of FVW aligns with the principles of the circular economy (Fig. 1.1),
aiming at converting waste into value-added products such as biofuels, biodegradable
plastics, bioactive compounds, animal feed, and organic fertilizers (Bayram et al., 2021;
Bas-Bellver et al., 2020; Sagar et al., 2018). Economically, this transformation fosters
the development of green industries and job creation, while environmentally, it
contributes to GHG mitigation and improved resource efficiency (Cassani and Gémez-

Zavaglia, 2022; Duque-Acevedo et al., 2020; Zulkifli et al., 2023; Btaszczyk et al., 2024).

Circular economy

Valorization
B,

of FVW &

Value-added products

B Biofuels

# Biodegradable plastics
%% Bioactive compounds
= Animal feed

A Organic fertilizers

Economic Environmental

* Development of *  GHG mitigation
green industries * Improved resource

* Job creation efficiency

Figure 1.1 Overview of circular valorization of fruit and vegetable waste (FVW).
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In addition to its intrinsic value, FVW valorization supports the achievement of
several United Nations Sustainable Development Goals (SDG). It contributes to SDG 12
(Responsible Consumption and Production) by reducing food loss and waste, and
promoting resource efficiency (Looveren et al., 2023). It supports SDG 13 (Climate
Action) through biogas production and CH4 emission reductions (Mazareli et al., 2016;
Kiran et al., 2014). From an economic point of view, it drives SDG 8 (Decent Work and
Economic Growth) through the creation of bioeconomy-related jobs (Gémez-Romero et
al., 2014; Shokrollahi et al., 2024). Socially, it enhances SDG 2 (Zero Hunger) and SDG
1 (No Poverty) by increasing agricultural productivity and providing economic

opportunities in low-income communities (Stoknes et al., 2016; Tsapekos et al., 2018).

From a technological perspective, FVW valorisation stimulates innovation in
bioprocessing, nutrient recycling, and resource recovery models such as biorefineries
(Ebrahimian et al., 2022; Papa et al., 2020). These advancements enable closed-loop
systems that minimize environmental footprints and maximize economic returns (Foggia
and Beccarello, 2020; Vanierschot et al., 2023). Moreover, the extraction of bioactive
compounds from FVW opens new markets in food, cosmetics, and pharmaceuticals
sectors (Yaashikaa et al.,, 2022). Lastly, FVW valorization fosters a culture of
sustainability through education and public awareness (Wilson et al., 2015; Liikanen et
al., 2016). It encourages more responsible consumption, supports research and
academic engagement, and empowers communities to take part in transformative
environmental solutions. In conclusion, FVW is not merely a byproduct of inefficiency but
a resource of immense potential. Its proper management and valorisation by means of
physicochemical and biological treatments are key to addressing global challenges
related to climate change, food insecurity, economic resilience, and sustainable

development. Moving forward, interdisciplinary efforts and integrated policies will be
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essential to harness the full potential of FVW in building a more circular and sustainable
future.

1.2 Physicochemical Treatments for Organic Waste Valorization

Physicochemical treatments represent powerful tools to transform organic waste into
valuable resources. These technologies not only help reducing environmental burdens
but also open the door to innovative solutions in energy recovery, sustainable agriculture,

and material reuse, making them central to circular economy strategies.

1.2.1 Hydrothermal Carbonization

Hydrothermal carbonization (HTC) (Fig. 1.2) stands out for its ability to convert wet
biomass into energy-dense hydrochar without prior drying, offering both energy savings
and reduced environmental pollution (Lucian et al., 2018; Nobre et al., 2021; Mannarino
et al., 2022; Su et al., 2023; Javid et al., 2022). Studies such as Suarez et al. (2020),
who evaluated the feasibility of applying HTC to transform industrial apple waste into
value-added products, achieving a retention of 80-93% of the carbon and 82-96% of
the original biomass energy content in the hydrochar. This demonstrates that the process

is highly efficient in preserving the energy value of the waste.

Further highlight its role in zero-waste strategies, particularly when integrated with
AD for combined energy recovery (Rubia et al., 2018). This technology is currently at a
Technology Readiness Level (TRL) of 5-6, indicating that it has been validated in
relevant environments and is approaching demonstration at pilot scale. However, key
technical limitations remain, including the high energy demand for water handling,
scaling challenges, and the need for efficient separation and recovery of valuable
compounds from the liquid phase. Addressing these issues is essential to advance

towards full-scale industrial implementation.
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Hydrothermal carbonization
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Figure 1.2. Schematic representation of hydrothermal carbonization of biomass.

1.2.2 Hydrothermal Liquefaction

Hydrothermal liquefaction (HTL) stands out as a particularly attractive option for treating
wet organic waste, as it avoids the energy-intensive drying step required by many other
technologies (Fig. 1.3). By processing biomass in hot, pressurized water (280-380 °C),
HTL produces a bio-crude oil that can later be upgraded into fuels or specialty chemicals
(Rao et al., 2018). Despite its promise, HTL exhibit severe challenges. In this context,
issues such as complex system control, equipment wear, wastewater generation, and
energy demand currently limit its scalability (Anastasakis and Ross, 2015; Nelson et al.,
2013). However, HTL could play a key role in future sustainable waste management

systems with further technological refinements.

Hot,
Pressurized

Bio-Crude CO,, CH,4, H,, CO, H, VOC,
Substrate Qil and light hydrocarbons

Wet
Organic Waste

Figure 1.3. Schematic representation of hydrothermal liquefaction of organic waste.
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1.2.3 Pyrolysis and Gasification

Both processes are thermochemical methodologies that can convert organic waste into
useful products like biochar, syngas, and bio-oil. Pyrolysis focuses on thermal
decomposition in the absence of oxygen, while gasification operates at higher

temperatures and in limited oxygen conditions to generate syngas (Hervy et al., 2018).

These methods (Fig. 1.4) not only reduce waste volume but also create pathways
for energy recovery. However, their viability depends heavily on economic and
operational factors, including energy efficiency, system complexity, and the cost of
implementation (Zeng et al., 2015; Liu et al., 2021). Both pyrolysis and gasification
require pre-treatment of organic residues, including drying to reduce moisture content,
size reduction, and sometimes homogenization, to ensure efficient thermal conversion
and consistent product quality. These technologies are generally considered to be at a
TRL between 6 and 8, with several pilot and demonstration-scale projects in operation
worldwide. However, their industrial deployment still faces challenges related to

feedstock variability, tar management, and integration with downstream valorization

methodologies g
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Figure 1.4. Comparative diagram of pyrolysis and gasification as thermochemical

methodologies.
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1.2.4 Incineration

Incineration (Fig. 1.5) is a well-established thermal treatment for organic waste that
significantly reduces volume and enables energy recovery through high-temperature
combustion (Liu et al., 2020; Nikku et al., 2019). Although effective in destroying
pathogens and minimizing residual organics, incineration can produce harmful gas
pollutants like dioxins and Poly-Chlorinated Biphenyls (PCBs), requiring advanced

emission control systems (Caneghem et al., 2010; Nzihou et al., 2012).

The resulting ash residues also demand further treatment to prevent heavy metal
leaching (Rocca et al., 2012). While incineration offers lower GHG emissions, its high
costs and environmental concerns remain key challenges for implementation at full scale

(Mdnster and Lund, 2010; Chen et al., 2016).

emissions residues

Figure 1.5. Incineration as a high-temperature thermal treatment for organic waste.
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1.2.5 Landfilling

Landfilling is still widely used for organic waste disposal, where anaerobic microbial
degradation produces landfill gas; mainly composed of 50-60% CH, and 40-50% CO,,
along with trace organic compounds (Duan et al., 2021; Pantini et al., 2015; Scheutz et
al., 2008). CH, generation in landfills depends heavily on waste composition, landfill age,

and microbial activity (Frank et al., 2017; Fei et al., 2016; Ishii and Furuichi, 2013).

Although modeling CH, production remains difficult due to the heterogeneous nature
of landfill materials, recent advances have enhanced prediction accuracy and gas
recovery methods (Emkes et al., 2015). Environmental variables such as moisture,
temperature and air intrusion also influence CH, yield and can increase impacts like
leachate formation and GHG emissions (Fig. 1.6). Understanding these dynamics is
essential to improve CH, recovery and reduce the environmental footprint of landfilling

(Duan et al., 2021; Pantini et al., 2015).

Moisture Temperature Air o
Intrusion
Landfill Gas
, Components

t 1t
.@

50 60% 50%
COz

Greenhouse

Leachate

Gas Emissions

Figure 1.6. Schematic of landfill process for organic waste management and methane

formation.
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1.3 Biological Treatments for Organic Waste Valorization

Biological treatments offer a promising and environmentally friendly approach to
transforming organic waste into valuable resources. These processes are based on the
natural capabilities of the microorganisms to break down complex organic matter and
generate products such as biofertilizers, biogas, organic acids (OA), and Hz. Techniques
like composting, AD, and dark fermentation (DF) not only help reducing the
environmental impact of organic waste but also contribute to the creation of a circular
economy by giving new life to discarded materials. These biological strategies are
especially well-suited for valorizing diverse and variable organic waste streams, such as

FW including FVW, based on their flexibility and adaptability.

1.3.1. Enzymatic Treatment

Enzymes can mediate a biological and environmental friendly route to enhancing waste
valorization (Fig. 1.7). By breaking down complex organic molecules into simpler, more
digestible forms, enzymes such as lipases can boost biogas production from FVW during
anaerobic digestion and improve the overall efficiency of fermentation processes (Meng
etal., 2017). Yet, their broader application faces obstacles such as high costs, sensitivity
to operating conditions, and variable effectiveness across different types of waste (Costa

et al., 2012; Wagland and Tyrrel, 2010).

Even so, ongoing innovations in enzyme engineering and process optimization
continue to expand their potential (Meng et al., 2017). These treatments can maximize
the efficiency of subsequent fermentation processes, making them a valuable addition
to waste-to-energy technologies. The challenges related to cost, environmental
sensitivity, feedstock variability, inhibitory compounds, efficiency limitations, and
handling difficulties must be addressed prior full-scale implementation (Costa et al.,

2012; Wagland and Tyrrel 2010).

11
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Figure 1.7. Diagram of enzymatic treatment of FVW and principal challenges.

1.3.2. Composting

Although often categorized under biological treatments, composting processes can also
incorporate physicochemical aspects, particularly in how materials are pre-processed
and the management of operational conditions (e.g., temperature, moisture, and
aeration). Composting involves the aerobic decomposition of organic waste materials
(such as food scraps, yard trimmings, and agricultural residues) into a stable, nutrient-
rich soil amendment known as compost (Vargas-Estrada et al., 2025). This
transformation is mediated by microorganisms (Fig. 1.8), including bacteria and fungi,
and invertebrates like earthworms, which collectively degrade organic matter (Shrestha

etal., 2011).

Composting contributes to sustainable waste management by significantly reducing
the volume of organic waste devoted for landfills, thus alleviating pressure on municipal
systems and lowering disposal costs (Batool and Chuadhry, 2009). The resulting
compost enhances soil structure, water retention, and nutrient content, promoting higher
crop productivity and reducing the need for chemical fertilizers (Barrena et al., 2014;

Shrestha et al., 2011).
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Figure 1.8. Visual representation of composting as anaerobic biological process for

organic waste management.

From an environmental point of view, composting emits fewer GHG than landfilling
or incineration, particularly CH4, thus contributing to climate mitigation strategies
(Edjabou et al., 2016; Walker et al., 2009). Composting also aligns with circular economy
principles by recycling nutrients back into agricultural systems (Jiang et al., 2015).
However, composting is time-consuming, often requiring weeks to months, and demands
significant space; posing implementation challenges in urban environments (Begum et
al., 2007; Lopez-Gonzalez et al., 2015). Odor and dust emissions may arise from poorly
managed piles, affecting surrounding communities (Galgani et al., 2014), while the
inclusion of unsuitable feedstocks, such as meat or plastics, can lead to contamination
risks and reduced compost quality (Kim and Oh, 2011). Moreover, compost quality can
be inconsistent due to feedstock variability and operational conditions, influencing its

agronomic effectiveness (Cerda et al., 2018; Jiang et al., 2015).

Despite these limitations, when properly implemented, composting offers substantial
environmental, agronomic, and economic benefits, making it a cornerstone of
sustainable organic waste management. Composting is a mature technology (TRL 9),
widely implemented at commercial scale, though it presents limitations such as long

processing times, odor generation, and limited control over end-product quality.
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1.3.3. Anaerobic Digestion

1.3.3.1. Anaerobic Digestion Pathways

CHys is recognized not only as a potent GHG but also as a valuable renewable energy
source and the main component of biogas. It is primarily generated through AD, a natural
biological process in which complex organic matter is degraded in the absence of oxygen
by a syntrophic microbial consortium composed of bacteria and methanogenic archaea.
This multi-stage process is essential for converting organic substrates into CH4, with
methanogenic archaea playing a key role during the final step (Steinmetz et al., 2016;
Poirier et al., 2020; Lansing et al., 2016). Expanding on the foundational role of CH4 as
a renewable energy vector in anaerobic systems, AD remains the most common and
efficient biological route for converting organic materials (such as FVW) into CHs-rich

biogas.

This multi-stage biochemical process involves four interrelated phases (Fig. 1.9):
hydrolysis, acidogenesis, acetogenesis, and methanogenesis, each driven by specific
microbial communities responsible for the stepwise degradation of complex organic
matter (Ruffino et al., 2015; Nguyen et al., 2019). During the initial hydrolysis phase,
hydrolytic bacteria secrete extracellular enzymes that break down particulate
macromolecules like carbohydrates, proteins, and lipids into simpler compounds such as
sugars, amino acids, and volatile fatty acids (VFAs). The efficiency of this stage is crucial,
as it determines the availability of soluble substrates for downstream microbial
metabolism (Nguyen et al., 2019). In the subsequent acidogenesis phase, these soluble
products are fermented by acidogenic bacteria into VFAs (Dahiya et al., 2015; Kandylis
et al., 2016; Khan et al., 2016), H2, and CO2, which serve as key intermediates in CH4
formation (Vargas-Estrada et al., 2025; Meng et al., 2017; Lin et al., 2016). Acetogenesis
then further converts these VFA intermediates into acetic acid (HAc), Hz, and CO- via
acetogenic bacteria, effectively preparing substrates for the final step of methanogenesis

(Ruffino et al., 2015; Nguyen et al., 2019).
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Figure 1.9. Overview of AD steps from organic matter to CH4. Adapted from Torres-

Lozada & Pérez, 2010.

This final phase is performed by methanogenic archaea, a group of microorganisms
within the domain archaea, which convert HAc, Hz, and CO: into CH4. Depending on the
metabolic pathway, some methanogens (acetoclastic) produce CHs directly from HAc,
while others (hydrogenotrophic) reduce CO; using Hz as electron donor (Nguyen et al.,
2019; Arias et al., 2018). Therefore, methanogenic archaea are central to the success of
this process, especially under high-loading rates like those associated with FVW

treatment, which rapidly ferments and may acidify the digester cultivation broth. These
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archaea are well-adapted to strictly anaerobic conditions and play a stabilizing role in the
digestion system by effectively transforming intermediary products into CH4 (Nguyen et
al., 2019; Oliveira et al., 2015; Ahamed et al., 2015). Therefore, the microbial pathways
underlying AD are essential for turning organic waste into valuable energy, while
simultaneously mitigating environmental impacts and supporting circular economy
initiatives. In addition, Figure 1.9 illustrates the conversion pathways of organic matter
during AD. The percentages indicate the relative distribution of each metabolic route:
40% of carbohydrates, 39% of lipids, and 21% of proteins are initially transformed into
simple sugars, amino acids, or fatty acids. Subsequently, about 66% of these
compounds are directed towards intermediate products (propionate, butyrate, succinate,
lactate, or ethanol), while 35% are directly converted into acetate. At the acetogenesis
and methanogenesis stages, acetate contributes 70% to the final CH4 production,
whereas the remaining 30% derives from H, and CO,, highlighting the predominance of

the acetoclastic over the hydrogenotrophic pathway.

Beyond its contribution to waste stabilization, AD provides a sustainable pathway
for organic waste valorization, transforming residues into biogas that can be used for
electricity generation, heating, and as a transportation fuel (Poirier et al., 2020;
Youngsukkasem et al., 2015; Crocamo et al., 2015). The use of CH4 as an energy vector
contributes to a reduction in fossil fuel dependency and supports the transition toward
low-carbon energy systems, particularly when its production is integrated into circular
economy concepts (Youngsukkasem et al., 2015). However, due to its high global
warming potential (up to 28 times more impactful than CO; over a 100-year period) its
controlled production, capture, and use are crucial to minimize negative environmental
consequences (Crocamo et al., 2015; Strong et al., 2016). Thus, the biological
generation of CH4 represents both a challenge and an opportunity, making it a central

topic in sustainable waste management and renewable energy research.

16



Introduction

1.3.3.2. Fruit-Vegetable Waste as a Feedstock for Methane Production

Building on CH4 central role as a renewable energy carrier, FVW has emerged as a cost-
effective feedstock for biogas production through AD. Its high biodegradability, moisture
content (70-95%), and sugar-rich composition promote microbial activity and an efficient
breakdown of organic matter into CH4 (Quiroga et al., 2014; Meng et al., 2015; Capson-
Tojo et al., 2017; Haider et al., 2015; Zhang et al., 2016). Table 1.1 summarizes reported
CHs yields and biodegradability values for FVW under AD. The abundance of simple
carbon sources supports methanogenic archaea, enhancing gas yields and minimizing
residual waste (Meng et al., 2017; Owamah and Izinyon, 2015). Economically, FVW is
low-cost and widely available, making it a viable substrate for large-scale biogas systems
(Xie et al., 2016). Its use also reduces CH4 and CO; emissions from landfills, supporting

circular economy models and sustainable waste management (Haider et al., 2015).

Table 1.1. Summary of CH4 productivity and biodegradability from FVW under AD.

Methane productivity /

Substrate Biodearadabilit Reference
Organic waste . : . .
(Including FVYW) High biodegradability Khalid et al. (2011)
FVW + fish waste + 0.38 L CH,/g VS Eiroa et al. (2012)
cattle slurry
FVW + cattle manure 230-450 L CH,/kg VS Quiroga et al. (2014)
FVW + sewage 0.97-2.40 L CH,/L-d; .
sludge 56-57% Mazareli et al. (2016)
Food waste 421 £ 15 mL CH,/g VS; -
(including FVW) 73% biodegradability Hone el (2076)

0.96 NL/L-d and

398 NmL/g VSrep Chapter 6 of this thesis

Food waste

However, despite its benefits, the AD of FVW presents operational challenges. One
of the most common is process acidification caused by excessive accumulation of VFAs,
which can inhibit methanogens and reduce the overall system performance (Meng et al.,
2017; Zhong et al., 2015). Furthermore, the low carbon-to-nitrogen (C/N) ratio of FVW
can lead to ammonia inhibition, necessitating adjustments through co-digestion with

nitrogen-rich substrates or external nutrient addition to ensure microbial balance and

17



Chapter 1

optimal CH4 yields (Peces et al., 2016; Razaviarani and Buchanan, 2015). Various
strategies have been developed to overcome these limitations. Co-digestion with
complementary feedstocks in terms of elemental composition has proven effective in
improving nutrient balance and microbial stability (Strong et al., 2016; Ahamed et al.,
2015). Pretreatment techniques (such as thermal, enzymatic, ultrasound, or chemical
treatments) can enhance substrate accessibility and hydrolysis efficiency, often leading
to improved CHs yields (Patinvoh et al., 2017; Yahmed et al., 2021). Additionally, a
careful control of operational conditions such as temperature (mesophilic 25-40°C or
thermophilic 50-65°C) and pH (7-8) helps creating an optimal environment for microbial

communities, particularly methanogens (Lin et al., 2016; Zahedi et al., 2018).

1.3.3.3. Operational Parameters

Building on the relevance of microbial pathways and substrate characteristics in CH4
generation, the AD of FVW is highly sensitive to a series of operational, compositional,
and inhibitory factors that influence process performance. pH plays a central role in
maintaining microbial balance. Methanogens generally thrive at pH 6.5-7.5, while
acidogenic bacteria prefer slightly more acidic conditions. Deviations from optimal pH
can lead to VFA accumulation and methanogenic inhibition, reducing CHs yields and

destabilizing the process (Tampio et al., 2016).

Temperature impacts both microbial metabolism and process kinetics. Mesophilic
conditions (25-40°C) offer stable microbial performance, while thermophilic digestion
(50-65°C) can increase reaction rates and CH4 output but demands tighter control to
avoid microbial inhibition and ammonia toxicity (Cavinato et al., 2012; Li et al., 2016).
HRT determines the time available for microbial communities to metabolize the
substrates. Too low HRTs can cause biomass washout, particularly of slow-growing
methanogens, while excessively long HRTs may reduce system efficiency because of

an extended endogenous metabolism (Young et al., 2013; Zahedi et al., 2017). An
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optimal HRT ensures adequate digestion and CH4 production without overloading the
system. Finally, the OLR, which reflects the daily mass input of organic matter per reactor
volume, also influences microbial activity and CH, yield. Moderate OLR supports biogas
generation, but organic overloading may result in acid accumulation and microbial
inhibition, especially under suboptimal HRT or pH conditions (Orzi et al., 2010; Ruile et
al., 2015). Together, these parameters must be carefully optimized and balanced to
sustain a high CH4 productivity and ensure long-term operational stability of AD systems

treating FVW.

1.3.3.4. Strategies to Enhance Methane Yields

Maintaining an appropriate pH range is essential, as methanogenic archaea are
particularly vulnerable to acidification. The rapid fermentation of FVW (rich in simple
carbohydrates) can lead to the accumulation of VFAs, triggering a drop in buffering
capacity and ultimately in pH that compromises methanogenic activity (Shin et al., 2015).
Thus, stabilizing pH through buffer capacity or co-digestion is key to balancing acid
production and consumption. Temperature is another determining factor: thermophilic
conditions (around 55 °C) can accelerate reaction rates and enhance hydrolysis, but they
require strict control, as microbial consortia can become unstable under thermal stress
(Ruile et al., 2015). Similarly, while increasing the OLR may improve volumetric CH4
production, this must be matched with an adequate HRT to avoid acid accumulation and

incomplete substrate degradation (Tampio et al., 2016; Mazareli et al., 2016).

In AD of organic waste, typical HRT ranges from 15-30 days and OLR from 2.4-6.0
g VS/L-day, ensuring stable CH4 production and avoiding VFA inhibition (Mazareli et al.,
2016; Cardona et al., 2019; Tampio et al., 2016). The nature of the substrate also plays
a pivotal role. Although mono-digestion of FVW can yield high CH4 outputs due to its
high biodegradability and sugar content, co-digestion with substrates like animal manure
or sludge often leads to greater process stability. This synergistic approach enhances
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nutrient balance and dilutes potential inhibitors, fostering favorable conditions for
microbial consortia and CH4 generation (Kiran et al., 2014). In contrast, relying solely on
FVW may expose the system to nutrient deficiencies or imbalances that impair
performance. In this context, inhibitory compounds remain one of the major bottlenecks
in AD. Accumulation of VFAs and elevated ammonia concentrations (often resulting from
nitrogen-rich or proteinaceous waste) can severely inhibit methanogens by disrupting
their metabolic functions (Liu et al., 2015; Lerm et al., 2012). Additionally, competition for
substrates between sulfate-reducing bacteria and methanogens may further constrain
CH4 production pathways (Lerm et al., 2012). Therefore, anticipating and managing
these risks through adequate process monitoring and control is crucial for maintaining

functional microbial ecosystems.

The availability of micronutrients and trace elements is essential for enzymatic
activity and microbial resilience. In many cases, especially when using FVW as a primary
substrate of AD, essential elements such as cobalt, nickel, or selenium may be present
in suboptimal concentrations. Supplementing these micronutrients has been shown to
stabilize methanogenic populations and enhance methane yields, particularly in co-
digestion setups where nutrient variability is common (Moestedt et al., 2016). Addressing
nutrient limitations through tailored supplementation is thus critical to support a robust
microbial performance and unlock the full potential of FVW as a feedstock for sustainable

CHy4 production.

Two-phase AD (Fig. 1.10) enhances biogas production and process stability by
separating hydrolytic-acidogenic processes from acetogenic-methanogenic ones. In the
first stage, hydrolytic and fermentative bacteria (e.g., Clostridium, Bacteroides) convert
complex particulate organics into VFAs, Hz, and CO: (Xiao et al., 2015). In the second

stage, acetogenic bacteria (e.g., Syntrophomonas) and methanogens (e.g.,
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Methanosarcina) convert these intermediates into CH4 (Zhang et al., 2019; Cavinato et

al., 2011). This phase separation allows for tailored conditions.

Thus, acidogenesis benefits from slightly acidic pH (5.5-6.5), while methanogenesis
thrives near neutrality (6.5-8.0), which enhances microbial efficiency (Grimberg et al.,
2015). As a result, two-phase systems demonstrate greater process stability, reduce
inhibition risks (Nasr et al., 2012; Wang et al., 2024), and often produce higher biogas
yields (Da Silva Junior et al., 2025; Garcia-Depraect et al., 2023; Garcia-Depraect et al.,
2022; Amodeo et al., 2021; Alonso et al., 2016; Yeung et al., 2017). Additionally, they
offer operational flexibility for treating complex or variable waste streams (Wang et al.,
2012; Fagbohungbe et al., 2017; Ohdoi et al., 2024; Akimoto et al., 2025; Chatterjee and

Mazumder 2024).
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Figure 1.10. Schematic representation of the two-phase AD process, separating
hydrolytic-acidogenic and acetogenic-methanogenic stages for enhanced biogas

production.

1.3.3.5. The Role of Methane in Integrated Biorefinery Systems
Building on the growing relevance of anaerobic digestion for CH4 generation, integrated

models for organic waste valorization increasingly place CH4 production at the core of
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multistage treatment systems aimed at improving efficiency and sustainability (Garcia-
Depraect et al., 2023; Garcia-Depraect et al., 2022). In these multistage configurations,
CHas not only serves as a renewable energy carrier but also plays a stabilizing role in the
overall treatment of complex waste streams, enabling the recovery of nutrients and the
integration of downstream biorefinery processes (Poirier et al., 2020; Khalid et al., 2011).
Notably, two-phase systems that couple DF for H, production with subsequent CH.
generation through AD have demonstrated enhanced bioenergy recovery, particularly
under cascade setups that maximize substrate conversion (Hou et al., 2025; Jariyaboon

et al., 2015; Quémeéneur et al., 2011).

Furthermore, aligning CH4 production with biorefinery platforms and fertilizer recovery
systems supports circular economy principles by transforming digestate into a valuable
soil amendment, thereby strengthening the environmental and economic outcomes of
the process (Kuisma et al., 2013; Lee et al., 2024). Importantly, CH4 energy potential
makes it especially relevant in rural or high-waste-producing regions, where it can
contribute to decentralized energy generation while addressing broader challenges such

as energy access and climate mitigation (Marin et al., 2021; Omar et al., 2019).

The experimental findings presented in Chapter 6 of this thesis provide robust
validation of the conceptual basis discussed in Section 1.3.3, particularly concerning the
advantages of lactate-driven two-stage AD for enhancing CH. production. The
comparison between a single-stage AD system and a lactate-based two-stage AD
system using food waste as substrate revealed that the two-stage configuration achieved
significantly higher CH, yields (398.1 + 35.2 NmL CH4/g VSrep) and productivity (959.3
+ 75.3 NmL CH4/L-d), exceeding those of the conventional one-stage AD system by over

30%.
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These results confirm the thermodynamic advantage of lactic acid (HLac) as a
fermentative intermediate, which was predominantly produced during the acidogenic
phase (up to 6.5 £ 0.9 g/L) and almost completely oxidized during the methanogenic
stage. The efficient conversion of HLac to HAc and CH4 aligns with the predicted
energetic benefits and demonstrates the value of physically separating the acidogenic

and methanogenic stages to optimize microbial performance.

1.3.4. Dark Fermentation

H, is increasingly regarded as a clean and versatile energy carrier, essential in
transitioning towards low-carbon energy systems. The main merits of H, are its high
gravimetric energy content (= 142 kJ/g), rapid energy conversion kinetics, and its
harmless combustion yielding only water vapor, making it an environmentally benign fuel

(Haroun et al., 2016; Lopes et al., 2015).

In the context of climate change mitigation and energy diversification, H> stands out
as a strategic solution, especially when produced from renewable or waste-derived
sources (Sekoai et al., 2020). The integration of Hz into the global energy matrix holds
significant promise for decarbonizing hard-to-abate sectors such as transportation,

industry, and distributed power generation.

1.3.4.1. Fundamentals, Potential and Metabolic Pathways

Among the various methods available for Hz production, DF (Fig. 1.11) has recently
gained traction as a biological, low-energy alternative, capable of converting the
chemical energy contained in organic waste into H, under anaerobic and light-
independent conditions (Abreu et al., 2016). In contrast with thermochemical processes,
DF operates under mild conditions and relies on the metabolic activity of anaerobic

microbial consortia, primarily hydrolytic and acidogenic bacteria (Xiao et al., 2010).
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These microorganisms ferment carbohydrates, proteins, and lipids into OA,
alcohols, CO., and H.. The simplicity of this process, along with the use of naturally
occurring bacteria, makes it a viable option for decentralized H> production (Haroun et
al., 2016). In addition, the organic effluent generated during DF can be further valorized

to produce biogas, bioplastics, among others (Garcia-Depraect et al., 2025).
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Figure 1.11. Visual representation of dark fermentation process.

At a biochemical level, DF proceeds through a series of enzymatic pathways that
begin with the hydrolysis of complex organic compounds into monomeric sugars, which
then enters the glycolytic pathway. Here, the resulting pyruvate acts as a central
intermediate and is directed through various acidogenic routes. This metabolic
conversion results in the production of VFAs, mainly HAc, butyric (HBu), propionic (HPr),
and formic acids (HFor), and molecular H.. In this context, the HAc pathway is
considered the most hydrogen-efficient, as it facilitates a balanced release of electrons
that are captured by hydrogenase enzymes to generate H, (Guo et al., 2010; Mugnai et
al., 2021). However, when electrons are instead diverted toward the synthesis of other
VFAs like HPr, HAc (via homoacetogenesis), or toward HLac via Lactic Acid Bacteria

(LAB), the net H. yield is significantly reduced.
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FVW represents a promising substrate for DF due to its high-water content, high
fermentable sugars content (e.g., glucose, fructose, sucrose) (Ebrahimian et al., 2022).
These components not only support a rapid microbial proliferation but also trigger
enzymatic activities critical to H> production (Ebrahimian et al., 2022). Compared to
lignocellulosic biomass, which requires energy-intensive pretreatment, FVW is relatively
easy to hydrolyze, thereby accelerating the onset of glycolysis and acidogenesis.
Nonetheless, this rapid fermentation rate also makes FVW susceptible to metabolic
imbalances (especially the accumulation of HLac) which can disrupt the proton gradient,

reduce pH, and impair hydrogenase function (Gioannis et al., 2013).

The accumulation of HLac during fermentation is closely linked to the proliferation
of LAB, such as Lactobacillus, Weissella, and Enterococcus, which metabolize sugars
rapidly and favor HLac production over Hz. Under unregulated conditions (such as
excess sugar concentration, low buffer capacity, or suboptimal pH) LAB can dominate
the microbial consortium, leading to a metabolic redirection that suppresses
hydrogenogenesis. As HLac builds up, the medium becomes increasingly acidic, thereby
inhibiting key metabolic enzymes and collapsing the proton motive force required for
energy transduction in Hx-producing bacteria (HPB) (Mugnai et al., 2021). This disruption
limits ATP generation, nutrient transport, and electron transfer processes, ultimately
resulting in a dramatic decrease in H. yields. Effective control of HLac accumulation is
essential for the success of DF. Strategies to achieve this include the use of buffer
systems to stabilize pH, controlled feeding of FVW to prevent sugar overload, and
microbial management practices such as selective inoculation with hydrogenogenic
bacteria or the introduction of LAB inhibitors. Moreover, co-cultivation techniques and
the design of microbial consortia that promote metabolic balance, can help redirecting
fermentation pathways toward VFAs like HAc and HBu, acids more compatible with H,

production (Guo et al., 2010; Gioannis et al., 2013).
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From a biotechnological standpoint, integrating DF with other anaerobic processes,
such as methanogenesis, can also mitigate HLac-related inhibition. In two-stage or
cascade systems, HLac and other residual metabolites from DF are further processed
into CH4 by methanogenic archaea, thereby improving the overall energy recovery and
waste stabilization. This sequential configuration not only enhances the energy output
(H2 + CH4) but also promotes resource circularity by utilizing fermentation effluents
instead of discarding them (Ebrahimian et al., 2022). Maintaining the proton gradient
across microbial membranes is also central to the success of DF. This electrochemical
potential is responsible for ATP synthesis and influences the activity of hydrogenases,
particularly the FeFe-hydrogenases that catalyze the final step of H. evolution. When
HLac over accumulates, the elevated concentration of protons outside the cell disrupts
this gradient, undermining the energy economy of the microbial system. Consequently,
the loss of membrane integrity and decreased enzymatic activity become significant

barriers to efficient Hz production (Mugnai et al., 2021).

FVW’s high content of fermentable sugars also means that fermentation systems
must be equipped to handle fast acidogenesis without collapsing under acid stress.
Compared to more recalcitrant substrates, such as lignocellulosic residues, FVW
undergoes fermentation much more quickly, often leading to volatile shifts in microbial
activity. Therefore, while the energetic and operational potential of FVW is high, these
systems demand fine-tuned control mechanisms, including pH regulation, adaptive
microbial inocula, and possibly metabolic engineering approaches to limit the pathways

leading to HLac accumulation.

1.3.4.2. Fruit-Vegetable Waste as a Feedstock for Hydrogen Production
Table 1.2 summarizes the reported H, yields obtained from FVW under various DF
conditions, highlighting its effectiveness as a feedstock. Additionally, DF offers

advantages in terms of lower energy input and minimal equipment requirements
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compared to water electrolysis, and relatively short HRT compared AD, further

supporting its feasibility for on-site or small-scale applications (Xiao et al., 2010).

Table 1.2. Summary of H; yields from organic waste under DF.

Substrate H: yield / productivity Reference
FVW 14.0 £ 1.0 NL-H,/L-d Chapter 7 of this thesis
FW 9.6+09LH,/Ld Regueira-Marcos et al. (2024)
FW 701277 NmL-Ho/G- 1o tinez-Fraile et al. (2024)
VSrep
11.8 NL H,/L-d and 95.6 . .

FVW NmL H,/g VSreo Chapter 5 of this thesis
FW 4.2 £ 0.6 NL H,/L-d Regueira-Marcos et al. (2023)
FW 13 NL H,/L-d Regueira-Marcos et al. (2023)
FVW 50 mL H./g VS and Chapter 4 of this thesis

976.4 mL H,/L-h
FVW + corn stover hydrolysates 289 mL H,/g COD Rodriguez-Valderrama et al. (2020)

Garden and food waste 0.40-0.60 L H,/g VS Abreu et al. (2019)
FVW 45LH,/gVS Saidi et al. (2018)
Cheese whey + FVW 1.8 LH,/g VS Gomez-Romero et al. (2014)
Agricultural waste mix 2.6 L H,/L reactor Kumar et al. (2012)
FVW + sucrose adaptation 0.55-0.75 L H,/g VS Lietal. (2012)
Glucose (FVW model) 0.67 L H,/g COD Xiao et al. (2010)

Organic residues such as FVW, agro-industrial byproducts, and food scraps have
been widely explored as feedstocks for DF due to their high biodegradability and sugar
content (Arizzi et al., 2016; De Menezes et al., 2024). These substrates are metabolically
favorable for H,-producing bacteria and can serve a dual purpose: producing renewable
energy and reducing the environmental burden of waste accumulation. In fact, the
valorization of such organic wastes via DF supports circular economy principles by
recovering energy, carbon and nutrients from materials that would otherwise be landfilled

or incinerated (Abreu et al., 2016, Adamu et al., 2023).
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1.3.4.3. Operational Parameters

Key operational parameters such as HRT, OLR, pH, and temperature (Fig. 1.12) play a
critical role in DF processes. Among these, HRT, which reflects the average residence
time of the substrate within the reactor, is particularly influential in optimizing H:
Production Rate (HPR). While shorter HRTs are generally associated with enhanced
waste to Hz conversion efficiency, excessively low retention times may result in biomass

washout and system instability.
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Figure 1.12. Comprehensive overview of the variables requiring optimization to
enhance the efficiency of H, production in DF. WWTP: wastewater treatment plant;
CSTR: continuous stirred-tank reactor; EGSB: expanded granular sludge bed reactor;
UASB: up-flow anaerobic sludge blanket reactor; AFBR: anaerobic fluidized bed reactor;
HRT: hydraulic retention time; SRT: solid retention time; OLR: organic loading rate; and

ORP: oxidation-reduction potential adapted from Garcia-Depraect et al., 2025.

The OLR determines the amount of organic matter supplied to the reactor, where
moderate levels enhance microbial activity and H: yields, while excessive loading can
lead to acid accumulation and system inhibition (Ghimire et al., 2016). Maintaining an
optimal OLR range is thus essential for balancing substrate availability and reactor
stability (Groof et al., 2021). Similarly, pH regulation is crucial for microbial performance,
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as Hz-producing bacteria, particularly Clostridium, thrive in near-neutral to slightly
alkaline conditions. Deviations from this range affect both microbial growth and product
distribution, reducing H2 generation and increasing inhibitory metabolites (Mudhoo et al.,
2018; Yahmed et al., 2021). Temperature also influences metabolic rates and microbial
community structure. While mesophilic conditions (30—40°C) support diverse microbial
consortia, thermophilic settings (>45°C) may accelerate H. production. However,
fluctuations in temperature may compromise process efficiency, highlighting the

importance of thermal stability (Sivagurunathan et al., 2016; Okonkwo et al., 2019).

Despite its importance, limited research has systematically investigated these
parameters to maximize H. yields from organic waste. The conceptual framework
introduced in Section 1.3.4 is strongly validated by the experimental results detailed in
Chapter 5 of this thesis. In this study, the continuous DF of FVW was optimized by

modulating the HRT, achieving unprecedently high HRT and H: yields at a 9 h HRT.

1.3.4.4. Challenges: Lactate Accumulation and Process Inhibition

From a technological perspective, advancements in reactor design, such as upflow
anaerobic sludge blanket (UASB) or continuous stirred-tank reactors (CSTR) tailored for
DF, or dynamic membrane dark fermenters (Tang et al., 2017) have improved process
stability and microbial retention. Additionally, real-time monitoring and control systems
are being developed to track critical variables like pH, oxidation-reduction potential, and
metabolite concentration, allowing for rapid adjustments that prevent metabolic
imbalances and ensure steady H, production (Abreu et al., 2019). Substrate selection
also plays a crucial role in optimizing H- yields. Carbohydrate-rich wastes tend to favor
hydrogenogenic pathways, and excessive sugar concentrations can induce HLac
fermentation (Xiao et al., 2010). Therefore, pretreatment strategies (such as thermal
hydrolysis, enzymatic digestion, or acid/alkali treatments) are often applied to enhance
substrate bioavailability while minimizing pathway diversion (Arizzi et al., 2016).
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Furthermore, microbial strain engineering and adaptive evolution are being explored to
develop robust microbial consortia with higher resistance to inhibitors and improved H»

production capacities (Sekoai et al., 2020).

Building on the potential of Hz as a clean energy vector, DF has emerged as one of
the most promising biological routes for converting organic wastes into renewable H»
(Garcia-Depraect et al., 2022). This process involves the anaerobic metabolism of
carbohydrates, primarily derived from biomass such as FVW, and is carried out by
specialized microbial communities that operate under oxygen-free conditions. The core
advantage of DF lies in its ability to produce Hz at moderate temperatures (37-55 °C)
without the need for light or complex pretreatment stages, making it highly applicable for
decentralized waste-to-energy systems and circular economy models (Gioannis et al.,
2013). The experimental findings, discussed in Chapter 5 of this thesis, not only confirm
the inhibitory potential of HLac under suboptimal conditions but also highlight its
metabolic versatility when managed appropriately. In particular, the observed shifts in
metabolite profiles across varying HRTs demonstrated that the presence of HLac was
consistent among the predominant soluble by-products. Under optimal operational
conditions, its conversion was positively correlated with enhanced H. production,

reinforcing the theoretical premise introduced lately.

1.3.4.5. Lactate-Driven Dark Fermentation: A New Perspective

In recent years, lactate-driven DF (LDDF) has emerged as a transformative approach in
the field of H, production (Garcia-Depraect et al., 2022). Traditionally, HLac was
regarded as a by-product with inhibitory effects on H>-producing microorganisms due to
its role in acidifying the fermentation medium. However, new perspectives have
highlighted its potential as a fermentable intermediate capable of generating additional
H2> when metabolized by specialized microbial consortia under controlled conditions

(Jurgensen et al., 2015; Mudhoo et al., 2018; Garcia-Depraect et al., 2022; Pengadeth
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et al., 2024). This approach entails a reconfiguration of metabolic pathways, where HLac
formed during acidogenesis is not allowed to accumulate, but rather undergoes further
oxidation into butyrate and COg; liberating additional molecular H; in the process (Garcia-
Depraect et al., 2022). Rather than surpassing the yields of glucose-based DF, this
strategy contributes to mitigating the inhibitory effects associated with lactic acid
bacteria. The conversion of HLac, a relatively energy-dense molecule, represents a
strategy to enhance substrate conversion efficiency and overall energy recovery (Nasr

et al., 2015).

fr -, Lactate co, H
N d (HLac) 4 Xz 4’/\:\2
— {5 I 0

Organic Waste ( | ey

Lactic Acid Fermentation
Bacteria

Figure 1.13. Diagram of the lactate-driven dark fermentation (LDDF) process.

Biochemically, HLac results from pyruvate reduction by HLac dehydrogenase, an
essential process for NAD* regeneration in LAB, which does not directly contribute to H>
production. To overcome this bottleneck, HLac-oxidizing bacteria, often from the
Clostridium genus or other strict anaerobes, are introduced or enriched to metabolize
HLac into H> and HBu (Garcia-Depraect et al., 2022). These organisms utilize oxidative
enzymes and hydrogenases in syntrophic relationships with LAB, converting a
metabolite previously seen as inhibitory into an asset. The thermodynamics of HLac
oxidation are favorable when the H; partial pressure is kept low, achievable through
continuous gas removal or reactor optimization. This enables redirection of electron flow

through Fe-Fe hydrogenases, facilitating efficient H> production (Mudhoo et al., 2018).
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Lactate-based fermentation plays a central role in DF and subsequent AD, acting as
a key metabolic intermediate between primary acidogenic reactions and
methanogenesis. Mechanistically, HLac is oxidized to pyruvate by lactate
dehydrogenase, with the concomitant transfer of reducing equivalents (NADH/NAD*)
(Garvie, 1980). Pyruvate can then be further converted into acetyl-CoA, releasing CO,
and producing reduced cofactors that support H> generation (Detman et al., 2019).
Acetyl-CoA is ultimately metabolized into acetate, a major substrate for both
hydrogenogenic and acetoclastic pathways. This metabolic shift explains the observed
co-production of acetate, butyrate, and H. under lactate-driven conditions (Wu et al.,
2020; Kucek et al., 2016). In the methanogenic phase, acetate serves as the dominant
precursor for CH4 formation by Methanothrix (Smith & Ingram-Smith, 2007), while H2 and
CO- are consumed by hydrogenotrophic archaea such as Methanobacterium (Thauer et
al., 2008). Therefore, HLac functions not only as an intermediate derived from
carbohydrate fermentation but also as a bioenergetic substrate that enhances redox
balancing, stabilizes microbial interactions, and improves CHj yields in phase-separated

systems (Wang et al., 2009).

The strategy thereby turns metabolic competition into synergy by engineering co-
cultures where LAB produce HLac and HPB consume it, maximizing energy recovery
(Pérez-Rangel et al., 2021). Thus, LDDF is an attractive platform for sustainable H-
production. Firstly, it supports relatively high H, yields per mole of substrate, with
theoretical values consistent with the maximum of 4 mol Hz per mol of glucose reported
for conventional DF (Zagrodnik and taniecki, 2015). Secondly, it enables better pH
management. Whereas uncontrolled HLac accumulation leads to acidification and
microbial inhibition, converting HLac reduces proton buildup, thus protecting
hydrogenase activity and maintaining membrane potential (Zagrodnik and taniecki,

2015).
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1.3.4.5.1.Reactor Engineering & Control Tools in Lactate-Driven Dark Fermentation
Process stability and efficiency can be further enhanced through bioaugmentation,
introducing lactate-oxidizing strains into the fermentation system. These tailored
consortia rebalance the microbial population, outcompeting or cooperating with native
LAB to prevent excessive acidification and maintain H yields (Park et al., 2021; Pérez-

Rangel et al., 2021; Garcia-Depraect and Ledn-Becerril 2023).

Likewise, co-digestion with substrates rich in buffering capacity or complementary
nutrients helps moderate acid accumulation and improve community diversity (Silva et
al., 2023). Advanced process engineering also plays a central role in the success of
LDDF. Reactor configurations and the application of gas stripping enhance mass transfer
and remove inhibitory gases. Real-time monitoring of key parameters such as pH, HLac
levels, and H; yields allows for dynamic adjustments that stabilize and optimize the

process (Mudhoo et al., 2018).

From a biochemical standpoint, hydrogenogenesis from HLac relies on the oxidative
reversal of the HLac dehydrogenase pathway, producing pyruvate and releasing
electrons. These are subsequently used by hydrogenases to reduce protons into Hz. The
integration of this metabolic route into existing fermentation systems provides a pathway
to improve the energetic output while reducing system inhibition (Nasr et al., 2015). In
terms of microbial ecology, maintaining the balance between hydrogenogenic and HLac-
producing populations is essential. LAB such as Lactobacillus, Weissella, and
Enterococcus are competitive sugar fermenters, often dominating when sugar levels are
high. In contrast, HPB are more sensitive to pH and redox changes, requiring deliberate
management of environmental conditions and inoculum structure (Jurgensen et al.,

2015; Mudhoo et al., 2018).
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The proton motive force, crucial for ATP synthesis and metabolic homeostasis, is
also directly affected by HLac accumulation. High extracellular proton concentrations
collapse the gradient, disrupting hydrogenase activity and redirecting metabolic flux
toward non-productive pathways. By actively oxidizing HLac, microbial communities can
restore proton gradients and redirect energy toward H. generation (Zagrodnik and
taniecki, 2015). Recent research has emphasized the potential of integrating LDDF into
broader biorefinery frameworks, especially when coupled with systems like AD,
photofermentation, microalgae growth or microbial electrolysis (Silva et al., 2023). Such
hybrid processes enable the valorization of not just H, but also co-products like HAc or

CH4, making the approach economically attractive and environmentally sustainable.

Furthermore, the genetic and enzymatic underpinnings of LDDF are being explored
through omic-level studies, targeting overexpression of key enzymes, metabolic pathway
redirection, and strain optimization (Abreu et al., 2016). These insights are crucial for
tailoring consortia that efficiently channel electrons toward H; rather than competing end-
products. In summary, LDDF represents a compelling advancement in H, production. By
repositioning HLac from inhibitor to intermediate, it unlocks a new layer of substrate
conversion efficiency and system resilience. With the combined use of microbial
engineering, bioaugmentation, co-digestion, and precise pH and process control, LDDF
systems can play a vital role in transitioning toward renewable, waste-based H, energy

production (Abreu et al., 2016; Nasr et al., 2015; Mudhoo et al., 2018).

The strategy proposed in Section 1.3.4.5 is strongly supported by the experimental
findings presented in Chapter 4 of this Thesis. Notably, experiments conducted under
controlled conditions demonstrated that HLac is not merely an inhibitory by-product.
While HLac accumulation was indeed correlated with reduced hydrogen yields and
microbial inhibition (validating its role as a limiting metabolite in DF) the results also

revealed that HLac can serve as a fermentable intermediate capable of being further
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converted into molecular Hz. This conversion was particularly evident in fermentation

setups involving co-cultures enriched with lactate-oxidizing bacteria.

The metabolic dynamics observed throughout the fermentation process showed a
clear transformation of HLac into HAc and Hz, accompanied by a significant increase in
H> production. These findings underscore a syntrophic relationship between HLac-
producing bacteria (e.g., Lactobacillus) and hydrogenogenic species (e.g., Clostridium),
in line with thermodynamic predictions that HLac oxidation under low H partial pressure

releases electrons that fuel hydrogenase activity.

1.3.4.6. Scaling High-Performance Dark Fermentation

The next frontier in dark fermentative H, production lies in the incorporation of advanced
biotechnologies and predictive process management tools (Fig. 1.14). These innovations
are geared not only towards enhancing H- yield but also improving the energy and cost-
efficiency of the overall system. As the global energy landscape shifts towards more
sustainable solutions, the continued development of robust and responsive DF platforms
remains critical. In this context, the transition of DF technology from laboratory-scale
research to industrial application hinges on the development and implementation of

robust, reproducible, and scalable strategies.

Among the most promising complementary approaches are: bioaugmentation with
HLac-consuming bacterial cultures, rigorous pH control, precise nutrient and trace metal
supplementation, and advanced process automation, particularly through artificial
intelligence (Al) and digital twins. These strategies not only increase H: yields but,
crucially, enhance the long-term reproducibility of bioprocesses and create a solid

foundation for industrial deployment.
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Figure 1.14. Strategies to enhance dark fermentative hydrogen production.

1.3.4.6.1. Boosting Dark Fermentation Via Bioaugmentation and pH Control
A recurring bottleneck in DF, as previously mentioned, is the unpredictable accumulation
of HLac, a metabolic by-product that disrupts H> production by diverting electrons away
from hydrogenase enzymes. Bioaugmentation with HLac-oxidizing cultures, such as
Clostridium, has been proven to redirect metabolic fluxes toward acetate and H:
production (Marone et al., 2017). This method enhances redox balance and creates a
syntrophic microbial network where HLac-consuming and HPB support one another,
resulting in a more stable and reproducible microbial ecosystem (Quéméneur et al.,
2010). Specially in reactors treating carbohydrate-rich wastes such as FVW, the
integration of tailored bioaugmented cultures mitigates pH drops and enzymatic

inhibition, supporting steady H: yields over extended operational periods.

Additionally, in Chapter 4 the bioaugmentation of HLac-consuming bacterial cultures
significantly redirected metabolic fluxes toward HAc and H. formation. This syntrophic
restructuring of the microbial consortium directly reflects the mechanisms outlined in

Section 1.3.4.5 regarding LDDF and validates the hypothesis that HLac can be valorized
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as a beneficial intermediate rather than simply mitigated as an inhibitor. However,
bioaugmentation alone is insufficient to ensure system reproducibility. A precise pH
control (typically maintained between 5.5 and 6.5) is critical to preserving hydrogenase
activity and supporting stable electron transport across microbial membranes (Guo et
al., 2010). pH fluctuations can destabilize microbial communities, lower energy yields,

and increase the accumulation of inhibitory intermediates.

Automated buffering systems, guided by online pH sensors, allow for real-time
corrections that maintain optimal biochemical conditions. These are now frequently
integrated into digital twin architectures, which simulate reactor behavior and guide pH
regulation strategies based on predictive analytics (Tomczak et al., 2018). In addition,
the results obtained in Chapter 4 of this thesis confirmed the crucial role of pH regulation.
Optimal Hz production consistently occurred within the expected pH window of 5.5-6.5,
whereas deviations from this range led to acidification and suppressed hydrogenogenic
activity. These findings reinforce the importance of implementing effective buffering

systems and real-time monitoring tools to maintain favorable fermentation conditions.

Complementarily, the data presented in Chapter 5 further supported this conclusion
by showing that maintaining the pH near neutrality was essential for stimulating microbial
activity and sustaining metabolic equilibrium. Taken together, these insights underscore
that pH regulation is not only fundamental for process stability but also pivotal in
managing metabolite profiles, particularly in relation to HLac. While HLac has traditionally
been regarded as an inhibitory by-product in DF systems, both chapters demonstrate
that, under well-controlled conditions and with appropriate microbial management, it can
be transformed into a fermentable intermediate that significantly contributes to H2

generation.
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The automation of pH and nutrient regulation plays a pivotal role in maintaining
reproducibility, particularly under conditions of variable substrate input. FVW often vary
in composition and buffering capacity. Thus, supplementation of macronutrients (e.g.,
nitrogen and phosphorus) and trace metals (e.g., iron, cobalt, and nickel) is crucial for
maintaining enzymatic function and microbial growth (Hallenbeck and Liu, 2016). Trace
metals serve as cofactors for Fe-Fe- and Ni-Fe-hydrogenases (key enzymes in H-
metabolism). Optimizing their concentrations using real-time monitoring systems and
periodic spectrometric analyses (e.g., ICP-MS) ensures consistent enzyme activity and
minimizes the risk of nutrient-related inhibition or toxicity (Zhao et al., 2019; Adebo et al.,

2020).

The results presented in Chapter 7 provide strong empirical support for the
conceptual framework outlined in Section 1.3.4.5 regarding LDDF, pH regulation, and
bioaugmentation. HLac emerged as one of the dominant metabolites throughout all
experimental stages. While its initial accumulation correlated with decreased H:
productivity, its subsequent conversion (particularly under conditions involving HLac-
oxidizing bacterial enrichment) led to notable increases in H> production. This pattern
reflects a syntrophic interaction between LAB and HPB. Furthermore, maintaining the
pH close to neutrality proved essential for preserving metabolic balance and microbial
performance, reinforcing the importance of real-time monitoring and automated control
systems. Bioaugmentation, although transient in effect, facilitated a favorable metabolic
shift toward HAc and H: production, further validating the potential of HLac as a
fermentable intermediate rather than merely an inhibitor. The empirical findings so far
obtained also reinforce the principles discussed in Section 1.3.4.6 concerning tailored
nutrient supply. Indeed, controlled supplementation of key nutrients enhanced both

microbial stability and H. output.
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Overall, these results obtained in this thesis emphasize that process reproducibility
(a cornerstone for industrial scalability) depends heavily on the integration of microbial
management, pH control, and nutrient optimization. The consistent trends observed
across different experimental phases confirm that when these strategies are properly

applied, DF systems can achieve stable and predictable H, production.

1.3.4.6.2. Bioprocess Automation and Microbial Tools
To optimize these complex systems, omics technologies have also emerged as
indispensable tools. Metagenomics enable the identification of dominant Hx-producing
and HLac-consuming species, providing insight into the structure of microbial consortia
under different operational conditions (Jung et al., 2020; Quéméneur et al., 2010).
Complementary transcriptomic and proteomic studies further reveal how gene and
protein expression respond to pH changes, nutrient availability, or metal
supplementation. For instance, hydrogenase gene expression has been shown to
decrease sharply under low pH or micronutrient-limited conditions. This knowledge
informs targeted nutrient interventions (Hallenbeck and Liu, 2016). These omics-driven
insights feed into Al-assisted control systems, enabling precise, data-informed

optimization of reactor parameters (Li et al., 2025).

Synthetic biology provides a powerful extension to the omics-guided strategies.
Genetic engineering of Clostridium and other hydrogenogenic strains has yielded
variants with increased tolerance to low pH, resistance to HLac accumulation, and
enhanced hydrogenase expression (Quéméneur et al., 2010). These strains, when
introduced through bioaugmentation, integrate into the reactor ecosystem and reinforce
performance even under suboptimal conditions. The potential to design strains with
programmable responses to environmental cues opens new pathways toward fully
controlled, self-regulating hydrogenogenic systems. Importantly, synthetic biology allows
the tailoring of microbial function in concert with digital process control, facilitating real-
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time adaptation and prolonged reactor stability. The scalability of DF is inextricably tied
to process reproducibility. Reactor systems that incorporate bioaugmentation, pH
regulation, and nutrient supplementation show markedly reduced variability in H> yields,
making them ideal for industrial expansion (Guo et al., 2010). Pilot-scale studies have
demonstrated that such systems experience shorter startup times, reduced lag phases,
and extended operational lifespans compared to traditional setups. Standardized reactor
designs that embed modular control components (pH regulation, nutrient dosing, and Al
decision layers) further promote scalability by allowing consistent performance

replication across different facilities.

Digital twins and Al-based automation are at the forefront of this scalability push.
Digital twins act as real-time, virtual models of the reactor, continuously updated with
sensor data and used to simulate responses to various control strategies (Tomczak et
al., 2018). Machine learning algorithms analyze these datasets to detect anomalies,
predict performance shifts, and recommend preemptive corrective actions (Pengadeth
etal., 2024). For example, if HLac accumulation is detected through real-time monitoring,
the Al system can suggest additional bioaugmentation, alter nutrient feed, or adjust the
pH buffer flow, all before inhibitory effects impair reactor performance. Such predictive
capabilities are vital for minimizing downtime, reducing human intervention, and ensuring
long-term reliability of Hz output (Jung et al., 2020; Pinu et al., 2019. Hybrid energy
systems, such as those coupling DF with microbial electrolysis cells (MECs), also benefit
from these reproducible upstream processes. In these systems, fermentation effluents
rich in VFAs or HLac are further converted to H» electrochemically. The stability of the
upstream DF stage is critical: only with consistent effluent composition can MECs
operate efficiently and predictably (Marone et al., 2017). Thus, reproducibility achieved
via complementary strategies directly contributes to the viability of integrated energy
recovery platforms, reinforcing DF’s role in the circular bioeconomy. In parallel, microbial

electrochemical technologies (METs) leverage microbial metabolism to produce
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electricity and biochemical products from waste, and when coupled with anaerobic
digestion, they enhance the breakdown of volatile fatty acids and methane yield (Rocha
et al., 2018; Alonso et al., 2020; Poirier et al., 2020; Chenebault et al., 2022). In this
context, residue valorization becomes an added benefit of system reproducibility. The
digestate left after fermentation, enriched with nutrients and low in inhibitory compounds,
can serve as a high-quality biofertilizer; another valuable product stream that supports
the economic case for DF (Marone et al., 2017). Ensuring the stability of H> yields and
by-product quality allows facilities to pursue integrated biorefinery models that align with

circular economy principles.

In conclusion, enhancing reproducibility and scalability in dark fermentative H»
production relies on a cohesive framework built upon microbial engineering, precision
control, and advanced data analytics. Bioaugmentation with HLac consumers, rigorous
pH and nutrient control, and trace metal supplementation together can stabilize microbial
activity. When enriched with omics-based insights, synthetic biology innovations, and Al-
driven digital twins, these strategies unlock a new generation of smart, self-regulating
hydrogenogenic systems. These developments not only improve process performance
but also pave the way towards industrial-scale, economically viable H, production from

organic residues.

1.4 Emerging Technologies for Organic Waste Valorization

The field of organic waste valorization is advancing rapidly, driven by the urgent need to
enhance environmental sustainability and resource recovery. A diverse range of
emerging technologies is reshaping how organic waste is managed, transforming it from
a burden into a valuable resource (Fig. 1.15). Among these innovations, the production
of bioplastics and biomaterials from food and agricultural waste reduces dependence on
fossil-based plastics and supports a circular production model (Ojha et al., 2020; Moretto
et al., 2019; Thomassen et al., 2018).
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Figure 1.15. Innovative pathways for organic waste valorization.

The use of black soldier fly larvae (BSFL) has also emerged as a promising
bioconversion method, converting organic residues into protein-rich biomass and organic
fertilizers, while simultaneously reducing pathogenic loads (Looveren et al., 2023; Ojha
et al., 2020). Another notable process, solid-state fermentation (SSF), utilizes minimal
water and high-solid substrates like agricultural waste to generate bioactive compounds

under energy-efficient conditions (Ebrahimian et al., 2022; Thomassen et al., 2018).

Advanced thermal technologies such as plasma gasification offer a route to convert
complex or non-biodegradable organic waste into syngas, with high energy efficiency
and potential for carbon capture, positioning it as a sustainable alternative to incineration
(Rocha et al., 2018; Tabu et al., 2022; Morena et al., 2023). Meanwhile, machine
learning-based precision AD brings data science into waste management by improving
process control and biogas productivity through predictive analytics (Said et al., 2023;
Vanierschot et al., 2023; Iglesias-Iglesias et al., 2019). On the frontier of biotechnology,
CRISPR-based microbial engineering is revolutionizing bioprocesses by enhancing

microbial degradation and metabolite synthesis for products like biofuels and bioplastics
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(Awasthi et al., 2022; Alonso et al., 2020; Chenebault et al., 2022; Moretto et al., 2019).
Together, these emerging technologies present a compelling vision for the future of
organic waste management one where innovation transforms environmental challenges
into circular economy opportunities, fostering cleaner, more resilient, and resource-

efficient societies.

In this context, the present thesis focuses on the study of complementary strategies
aimed at improving the efficiency, reproducibility, and resilience of H> production from
organic waste. Particular attention is given to the role of bioaugmentation, precise control
of pH and nutrients. These tools are essential for scaling fermentative processes in an

efficient, reliable manner, aligned with the principles of the circular bioeconomy.
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Aims and scope of the thesis

2.1. Justification of the Thesis

The growing generation of FVW represents a pressing environmental, economic, and
social challenge worldwide. In the European Union alone, approximately 21 kg of
unavoidable FVW are generated per capita annually, arising throughout the entire agri-
food chain. Although this biomass is rich in biodegradable compounds, its
underutilization contributes to resource inefficiencies and greenhouse gas emissions. In
line with the Circular Bioeconomy Strategy and the 2030 Sustainable Development
Goals, the valorization of FVW into bio-based products and renewable energy has

emerged as a key strategy for sustainable waste management.

Among the various technologies available, DF stands out as a low-energy biological
route for converting carbohydrate-rich residues into H, and short-chain organic acids. H-
is considered a promising clean energy vector due to its high energy content and zero-
emission profile upon combustion. However, the large-scale implementation of DF is
hindered by operational and biological bottlenecks, including instability under continuous
operation, accumulation of inhibitory metabolites such as HLac, and low process
reproducibility, particularly when using complex substrates like FVW. These challenges
are amplified by the rapid acidification potential of FVW, resulting from its high

biodegradability and sugar content.

Recent advances in LDDF propose HLac acts as a direct H, precursor, potentially
improving the overall energy recovery and systems robustness. However, the influence
of key operational parameters; including HRT, OLR, solid concentration, pH, and
temperature, on H, production in LDDF systems remains insufficiently explored.
Understanding these variables is essential for developing stable, high-rate DF processes
that are both scalable and resilient. At the same time, conventional single-stage AD for
CHa production from FVW has shown limitations in microbial efficiency and substrate
conversion. Two-phase AD systems, particularly those incorporating HLac-type
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fermentation in the acidogenic stage, offer enhanced thermodynamics and CHs yields.
Nevertheless, this configuration has yet to be systematically compared to traditional AD

systems under equivalent operational conditions.

This research will contribute to the development of robust and scalable fermentative
bioenergy platforms by addressing process reproducibility, biological variability, and
energy conversion efficiency. Ultimately, the integration of DF and AD into circular
biorefinery models can unlock the full potential of FVW as a renewable feedstock,
promoting cleaner energy production, reducing reliance on fossil fuels, and advancing

eco-innovative solutions aligned with circular economy principles.
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2.2. Main Objectives

This thesis work aimed at optimizing the valorization of FVW through innovative
configurations of DF and AD processes, with the goal of maximizing H> and biogas
production. The study specifically elucidated the key role of the main operational
parameters in LDDF and addressed key challenges related to process efficiency and

operational reproducibility under continuous operation.

1. To investigate the influence of critical operational parameters, including pH, total
solids concentration, and initial biomass concentration, on the metabolic
pathways involved in Hz production through LDDF.

2. To evaluate the effect of HRT on H: production from FVW via continuous DF, in
order to optimize substrate conversion and maximize the HPR, while analysing
the role of HLac metabolism in enhancing process efficiency.

3. To perform a comprehensive energy and mass balance analysis of the DF
process using FVW, in order to establish a baseline for the future design,
assessment, and optimization of next-generation biorefineries.

4. To perform a comparative assessment of energy yields and process stability in
single-stage and two-stage anaerobic digestion systems, with particular focus on
the role of HLac-type fermentation in the acidogenic phase.

5. To evaluate the efficiency and reproducibility of LDDF using FVW as a substrate
through continuous parallel reactor operation, assessing H. productivity, yield,
metabolite profiles, and microbial communities, while exploring bioaugmentation

and tailored nutrient supplementation as enhancement strategies.
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2.3. Development of the Thesis

In the present thesis, the production of H, and CH4 from FVW was investigated through
DF and AD, focusing on operational optimization and process reproducibility. The work
(Fig. 2.1) explores the potential of LDDF and two-stage AD systems as advanced
strategies for improving energy recovery and aligning with circular bioeconomy

principles.

Chapter I: | Introduction
Chapter II: | Objectives & scope

Chapter lll: | Material & methods

[ Batch DF — Influence of pH, TS, [Biomass]
(ol T (H I — Effect of HRT-OLR
LR EREY D —  CH, yield comparison

\ CETEUCINGE GG —>  Reproducibility

Chapter VIII: | Conclusions & Foward vision

Figure 2.1. Thesis structure highlighting the experimental chapters on FVW treatment

Organic waste
treatment process
A

through DF and AD processes.

Chapter 1 of this thesis provided the general introduction, while Chapter 2
presented the objectives and scope of the study, establishing the scientific and practical
motivations behind the work. Chapter 3 then described the general materials and
methods used throughout the thesis, serving as the methodological foundation for the

experimental work presented in the following chapters.
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Aims and scope of the thesis

Chapter 4 evaluates the effect of key operational parameters (such as pH, TS
content, and initial biomass concentration) on Hz production from FVW in DF systems.
Special attention was given to the role of HLac as both an inhibitory metabolite and a
fermentable intermediate under controlled conditions. Chapter 5 investigates the
influence of HRT and the progressively OLR increase, on the performance of continuous
DF in stirred tank reactors. A stepwise modulation of HRT was implemented to determine
its effect on HPR, metabolite profiles, and microbial dynamics. The findings contribute to
defining an optimal operational window for maximizing FVW-to-H. conversion efficiency.
Chapter 6 introduces a comparative study of single-stage versus HLac-based two-stage
AD configurations for FW treatment. The performance of both systems was assessed in
terms of CHj4 yield, substrate conversion, and system stability. Results highlighted the
thermodynamic benefits of HLac-type fermentation in enhancing CHs production.
Chapter 7 focuses on the reproducibility and stability of the DF process by operating
three parallel continuous reactors under identical conditions. The study analysed H»
yields, OA profiles, and microbial community structures across replicates. Strategies
such as nutrient supplementation and transient bioaugmentation were evaluated to

reduce biological variability.

Finally, Chapter 8 summarizes the major conclusions and provides
recommendations for future research aimed at scaling up LDDF and two-phase AD
technologies. The integration of these processes into biorefinery platforms is proposed
as a sustainable solution for valorising FVW, enhancing bioenergy production, and

advancing circular economy objectives.
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Materials and methods

3.1. Materials

3.1.1. Inoculum

A mesophilic anaerobic digestate derived from a 100 L pilot-scale reactor treating
restaurant food waste was used as the primary inoculum source across Chapters IV, V,
VI, and VII. This digestate underwent heat-shock pretreatment (90 °C for 20 min) to
irreversibly inactivate methanogenic populations (Garcia-Depraect et al., 2022). For the
H. production experiments (Chapters 1V, V, and VII), the enrichment of hydrolytic and
acidogenic bacteria was achieved through successive culture transfers using an aliquot
of the preserved inoculum. The inoculum (Fig. 3.1) was reactivated at 37 +1 °C for 19
hours in a 2.1-L fermenter operated in batch mode without pH control, resulting in an
active hydrogenogenic culture with a concentration of 180 mg VSS/L (Martinez-Mendoza
et al., 2022). A mineral medium was used, containing (g/L): lactose 10.0, NH4Cl 2.4,
K2HPO4 2.4, MgCl2-:6H20 2.5, KH2PO4 0.6, CaCl2-2H20 0.15, and FeCl2-4H20 0.035
(Garcia-Depraect et al., 2019a). The resulting microbial consortium, mainly composed
of lactic acid bacteria and lactate-utilizing, hydrogen-producing bacteria, was capable of

carrying out LDDF (Garcia-Depraect et al., 2022).

Figure 3.1. Representation of the batch fermentation setup and microbial culture

conditions for LDDF development.
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In Chapter VI, a dual-inoculum strategy was adopted. The acidogenic phase used
the same pretreated culture described above, while the methanogenic phase employed
fresh anaerobic sludge obtained from the municipal WWTP of Valladolid, Spain. The
methanogenic inoculum was preincubated for 7 days at 37 °C and presented typical
characteristics: pH 7.5, total solids 29.7 g/L, and volatile solids 14.9 g/L. In Chapter VII,
in addition to the hydrogenogenic culture described, a bioaugmentation strategy was
implemented. This involved sourcing inoculum from a stable, continuously operated 1.4-
L reactor treating powdered cheese whey (Sueromancha S. L., Spain) with an H,
productivity of 11.5+1.1 NLH,/L-d and a volatile suspended solids concentration of
2.6g/L. The reactor featured automatic pH regulation (EvopH-P5), gas and liquid

sampling ports, and was maintained at 37 + 1 °C by a thermostatic bath.

3.1.2. Substrate

The substrates used throughout this thesis consisted mainly of simulated and
representative FVW or food waste, blended and preserved to ensure uniformity and
prevent degradation. The preparation procedures were standardized across all

experiments, with slight variations tailored to the objectives of each chapter.

For Chapters IV, V, and VII, simulated FVW was prepared based on the formulation
described by Martinez-Mendoza et al. (2022), which was adapted from Abubackar et al.
(2019). The formulation included (% w/w): banana (14.5), eggplant (12.8), carrot (9.7),
tomato (8.4), cucumber (7.5), onion (7.1), radish (6.5), potato (6.2), capsicum (5.7), apple
(5.3), cabbage (4.7), grape (3.1), orange (3.1), lemon (2.7), and pumpkin (2.4). All
ingredients were purchased fresh from a local marketplace, blended (Fig. 3.2) without
added water using a semi-industrial blender (Sammic, XM-32, Azkoitia, Spain), and

stored in 1 L plastic bags at —20 °C to prevent degradation.
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Figure 3.2. Representation of FVW preparation.

In Chapter VI, a food waste substrate simulating restaurant waste was prepared
following the recipe described in Regueira-Marcos et al. (2020), consisting of (% w/w):
potato (78), chicken breast (14), white cabbage (4), and pork lard (4). This mixture was
homogenized using a blender and stored at -20 °C until use. The physicochemical
properties of each substrate used are described in Table 3.1. Prior to use, the substrate
was diluted with tap water to the desired final TS content (Martinez-Mendoza et al.,

2022).

Table 3.1. Summary of physicochemical properties of the substrates used in this thesis.

Parameter FVW ACL
waste
pH 4601 6.3
Total chemical oxygen demand, g/L 111.4+0.1 295
Total solids, g/L 100.7+7.8 211
Volatile solids, g/L 94774 189
Total carbohydrates, g/L 809+28 102
Lipid content, % 1.2+0.0 20.03
Total Kjeldahl nitrogen, g/L 28+0.5 4.1
Protein, % 17.3+2.5 254
Phosphorus, g/L 3.7+0.0 0.3
Ash content, % 6.0+ 0.1 4.7
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3.2. Experimental Set-Up

All experimental procedures described in this thesis were conducted in custom-built
laboratory-scale systems designed to evaluate the fermentative and AD performance of
FVW under varying operational conditions. The experiments included both batch and
continuous operations, as well as single-stage and two-stage configurations, depending

on the objectives of each chapter.

3.21. Reactor Designs

Custom-built fermenters were employed, with working volumes ranging from 0.7 to 5.0
L. Reactors were fabricated from transparent polyvinyl chloride and were equipped with
the following standard components: gas-tight sealing systems to ensure anaerobic
conditions; liquid and gas sampling ports for periodic monitoring; custom-made biogas
flow meters, based on the liquid displacement principle; magnetic stirrer, typically
operated at ~300 rpm to ensure homogeneity; and temperature-controlled rooms,

maintaining mesophilic conditions (37 °C).

3.2.2. pH Control and Monitoring
When required, fermenters were equipped with automated pH control systems (EvopH-
P5, BSV Electronic, Spain) and pH electrodes (HO35-BSV01, BSV Electronic, Spain) to
maintain stable operational pH values. pH setpoints varied depending on experimental
goals (e.g., 5.5-7.0 for dark fermentation, or unregulated in acidogenic/methanogenic

phases), and were adjusted using NaOH (3—-6 M) or HCI (3 N) solutions.

3.2.3. Operating Modes and Conditions
A brief overview (Fig. 3.3) of the experimental setups for Chapters IV to VIl is presented
below. Detailed descriptions of the experimental designs, including operational setpoints

and specific configurations, are provided in their respective sections.

80



Materials and methods

( N N N [ )
Chapter IV Chapter V Chapter Vi Chapter Vii

E One-Stage TwrcEES_’tage

Batch LDDF Continuous DF Two-stage AD Parallel LDDF
« pH: 55-7.0, « HRT: 24 to 6 h . ‘H)R$f32tgg§ys « HRT:9h
uncontrolled e OLR: 47 t0 1881 ' ¢ pH adjustment
! Two-Stage HRT: .
« Total Solids: 5:9% g Vs/Ld " 4116 daye) « TS reduction
* Biomass: * Total Solids; 5% « Total Solids: 5% * Bioaugmentation

18-1800mg VSS/L * No pH control * Supplementation

¢ No pH control
N\ J . VRN VRN J

Figure 3.3. Summary of operational conditions and modes of fermentation applied in

Chapters IV-VII, including batch, continuous, and anaerobic digestion configurations.

Figure 3.4. Photograph (A) and scheme (B) of the batch dark fermentation set-up.
Magnetic stirrer (1), fermenter (2), gas outlet (3), gas sampling port (4), water column
(5), gas counter (6), liquid sampling port (7), pH probe (8), pH controller (9), NaOH
solution (10).
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In Chapter IV (Fig. 3.4), batch fermentations were conducted at 37 +1 °C in 1.25-L
reactors (0.7 L working volume) to evaluate the effects of pH (5.5-7.0 and uncontrolled),
total solids (5-9%), and biomass concentration (18-1800 mg VSS/L) on hydrogen
production from simulated FVW. In Chapter V (Fig. 3.5), continuous fermentation was

performed in a 1.25-L PVC reactor over 47 days, with HRT reduced from 24 to 6 h and

OLR increased from 47 to 188 g VS/L-d.

Effluent

Room temperature37 °C+ 1

Figure 3.5. Photograph (A) and scheme (B) of the continuous dark fermentation set-up
used to investigate the effect of hydraulic retention time on the FVW-to-hydrogen
biotransformation. Peristaltic pump (1 and 11), magnetic stirrer (2), dark fermenter (3),
gas outlet (4), gas sampling port (5), water column (6), gas counter (7), pH probe (8), pH

controller (9), 6 N NaOH solution (10).

In Chapter VI (Fig. 3.6), one- and two-stage AD systems were operated continuously
for 40 days at 37 + 1 °C. The one-stage was operated at an HRT of 20 days, while the
two-stage exhibited 4 days for acidogenesis and 16 days for methanogenesis. TS was

kept at 5%, OLR at 2.3 g VS/L-d, and no pH control was applied.
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Temperature-controlled room at 37°C+ 1
g - - - - - - - - - - -

Figure 3.6. Photograph (A) and scheme (B) of the anaerobic digestion set-up used to
systematically compare the one vs two-stage systems of food waste treatment.
Peristaltic pump (1 and 11), magnetic stirrer (2), digester (3), gas outlet (4), gas sampling

port (5), water column (6), gas counter (7).

In Chapter VII (Fig. 3.7), three parallel 0.8-L CSTRs were operated for 90 days. The
HRT was shortened from 18 to 9 h during de first two operational periods. Strategies to
enhance hydrogen production were explored, which included pH adjustment (7 to 6.5),
TS reduction (5% to 3%), bioaugmentation (20% broth replaced), and supplementation

with micronutrients and cheese whey (25 g COD/L).
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&

emperature-controlled roomat37°C =1

Figure 3.7. Photograph (A) and scheme (B) of the continuous dark fermentation set-up
used to investigate the reproducibility of the effect of the hydraulic retention time on the
FVW to hydrogen biotransformation. Peristaltic pump (1 and 11), magnetic stirrer (2),
dark fermenter (3), gas outlet (4), gas sampling port (5), water column (6), gas counter

(7), pH probe (8), pH controller (9), 6 N NaOH solution (10).

3.2.4. Process Monitoring and Performance Indicators
Liquid and gas samples were collected periodically and analysed for biogas composition,
volumetric production rates for hydrogen, and methane productivity, H> and CHs yields,

organic acids profile, volatile solids removal, and total carbohydrate consumption.
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3.3. Analytical Techniques

All physicochemical and biological analyses performed throughout this thesis followed
internationally recognized protocols and were consistent across all experimental
chapters unless otherwise specified. The physicochemical characterization according to
Standard methods described by APHA (2005) were used for the determination of: pH,
total solids, volatile solids, and chemical oxygen demand, total Kjeldahl nitrogen for
estimating protein content (N-to-protein factor: 6.25), total carbohydrates via the phenol—

sulfuric acid method, lipid content following the PNTNAG-006 SERIDA protocol.

The concentrations of H,, CO,, and CH, in the gas phase were determined using a
Varian CP-3800 gas chromatograph (Varian, USA), equipped with a thermal conductivity
detector and two connected capillary columns: a CP-Molsieve 5A (15 m x 0.53 mm x 15
pum) and a CP-PoraBOND Q (25 m x 0.53 mm x 10 ym). The system was calibrated
using certified gas standards with known compositions (e.g., 70.0% H,/30.0% CO, and
70.53% CH,/24.0% CO0,/2.99% N,/2.0% H,S/0.49% O,). High-purity helium was

employed as the carrier gas at a flow rate of 13 mL/min.

Methane production was quantified using both manometric and chromatographic
approaches, following the methodology described by Garcia-Depraect et al. (2022). The
analysis of organic acids (such as formate, acetate, isobutyrate, butyrate, propionate,
lactate, isovalerate, valerate, isocaproate, hexanoate, and heptanoate) was carried out
using high-performance liquid chromatography (HPLC). A Waters Alliance €2695 system
(Massachusetts, USA) equipped with a Waters 2998 PDA UV-vis detector (operating at
210 nm), an infrared detector for ethanol quantification, and a HyperREZ XP
Carbohydrate H* 8 um column (Thermo Scientific, UK) was employed. The column was
maintained at 75 °C, and the eluent consisted of 25 mM H,SO, delivered at a flow rate
of 0.7 mL/min. Quantification was performed using standards of sodium L-lactate

(Sigma-Aldrich, 71718, USA) and a mixed organic acid solution (Sigma-Aldrich
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CRM46975, USA). In parallel, the composition of the gaseous phase was determined by
gas chromatography using a Varian CP-3800 GC-TCD (Palo Alto, USA), following the
procedure described by Garcia-Depraect et al. (2022). Gas volumes were standardized

to conditions of 0 °C and 1 atm.

The structure of the microbial community was assessed by amplifying the V3-V4
region of the 16S rRNA gene using the primer pair 341F-805R, following the lllumina
16S Metagenomic Sequencing Library protocol (lllumina15044223 B) as described by
Klindworth et al. (2013). The resulting sequencing data were processed using the
QIIME2 bioinformatics pipeline (Bolyen et al., 2019). Amplicon sequencing variants
(ASVs) were initially annotated against the NCBI 16S rRNA database (version 2021) at
a 97% identity threshold; for ASVs with lower identity (<97%), the SILVA database

version 138 was used for taxonomic classification.

To ensure data consistency for diversity analysis, rarefaction was applied using the
Phyloseq package in R, following the approach proposed by Weiss et al. (2017). Alpha
diversity was evaluated using the Shannon-Wiener and Simpson (1-D) indices,
calculated with PAST software (version 4.09). Furthermore, to characterize archaeal
diversity in the methanogenic reactors, the hypervariable V4 region of the 16S rRNA

gene was sequenced according to the protocol outlined by Pausan et al. (2019).

3.4. Data Analysis
In chapter IV, hydrogen production kinetics were analyzed using the modified Gompertz
model (Eq. 1) previously described by Ramos et al. (2012), where, H () represents the
total amount of hydrogen (in NmL) produced at time t (h), Hmax represents the maximal
amount (in NmL) of hydrogen produced, Rmax is the maximum hydrogen production rate
(in mL/h), and A stands for the lag time (in h). Each experimental condition was tested in

duplicate, and the plotted data corresponds to the average and standard deviation
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recorded. The acidification degree was calculated according to Eq. 2, where COD eq. is
the net sum of COD equivalent (in g/L) of all the organic acids measured at the end of
fermentation and TCODrvw is the total COD concentration (in g/L) of the FVW fed.
Finally, a COD mass balance analysis was performed according to Eq. 3. COD
equivalent for biomass was estimated as 5% of the total COD of the influent (Garcia-

Depraect et al., 2019b).

2.71828*Rpqx(A—t)
H(t) = Hpqay * €xp [—exp ( T + 1)] (1)
.y . COD eq.
Acidification degree (%) = reon—_ X 100 (2)
Fvw

Total initial COD = CODorganic acids t CODresidual sugars + CODHZ + CODbiomass +

CODNot determined (3)

In chapter V, the hydrogen production stability index (HPSI) was calculated as
reported by Garcia-Depraect et al. (2020) using Eq. (4). The HPSI calculation considers
variations in HPR during each operational stage (not including results from the first 3
HRTs in each operational stage). A stability index equals to 1 means a constant HPR,
while a deviation value in HPR as large as the average HPR represents a stability index
equals to 0. Thus, the higher the HPSI index, the lower the dispersion of hydrogen

production.

HPSI =1 — Standard deviation HPR (4)

Average HPR

The energy analysis was estimated in terms of energy production rate (EPR) (kJ/L-

d) and energy yield (EY) (kJ/g VS), calculated using Eq. (5), (6), respectively, where HPR

87



Chapter 3

is expressed in NL H./L-d, HV4y, is the hydrogen heating value (286 kJ/mol), and HY

stands for the hydrogen yield (NL H2/g VS fed) (Kumar et al., 2016).

Average HPR

EPR = X HVy, (5)

__ Average HY
T 224

EY X HVy, (6)

Analysis of variance (ANOVA) followed by Tukey’s post hoc test (p < 0.05) was
performed to assess significant differences across experimental conditions. The
Shapiro-Wilk test was applied to confirm the normality of data distributions prior to
variance analysis. All statistical tests were conducted using Statgraphics Centurion
version 19.2.01. Additional data modeling and chapter-specific indices, such as the HPSI
and homoacetogenic contributions, are detailed in the respective experimental chapters

(IV=VII).
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Abstract

This study aims at investigating the influence of operational parameters on
biohydrogen production from fruit-vegetable waste (FVW) via lactate-driven dark
fermentation. Mesophilic batch fermentations were conducted at different pH
(5.5, 6.0, 6.5, 7.0, and non-controlled), total solids (TS) contents (5, 7, and 9%)
and initial cell biomass concentrations (18, 180, and 1800 mg VSS/L). Higher
hydrogen yields and rates were attained with more neutral pH values and low TS
concentrations, whereas higher biomass densities enabled higher production
rates and avoided wide variations in hydrogen production. A marked lactate
accumulation (still at neutral pH) in the fermentation broth was closely associated
with hydrogen inhibition. In contrast, enhanced hydrogen productions matched
with much lower lactate accumulations (even it was negligible in some
fermentations) along with the acetate and butyrate co-production but not with
carbohydrates removal. At pH 7, 5% TS, and 1800 mg VSS/L, 49.5 NmL-H2/g

VSkep and 976.4 NmL-H,/L-h were attained.

Fruit & vegetable waste Lactate-driven dark fermentation High pH and
IBC & low TS
F Culture pH:
NC, 5.5,6.0,6.5& 7.0

23.4 NL Hy/L-d

< Total solids (TS) content: | & 1
= 5,7 & 9% H .
' - | Low pH and
W, Initial biomass ~ - IBC & high TS
L ] [ ]

concentration (IBC):

Acidogenic inoculum 18, 180 & 1800 mg SSV/L
“workhorse” \ 2.5 NL Hy/L-d
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Highlights

*HRT determined H» productivity and yield and the profile of soluble end-products.

*H, productivity of 11.8 NL/L-d and H. yield of 95.6 NmL/g VSrep achieved at 9 h HRT.
*The major organic acids were lactate (key to metabolism), acetate and butyrate.

*Max energy recovery from fruit-vegetable waste (FVW): 1.2 kJ/g VSreo and 150 kJ/L-d.

*Source-separated FVW is a good feedstock to produce H. via dark fermentation.
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Abstract

Harnessing fruit-vegetable waste (FVW) as a resource to produce hydrogen via
dark fermentation (DF) embraces the circular economy concept. However, there
is still a need to upgrade continuous FVW-DF bioprocessing to enhance
hydrogen production rates (HPR). This study aims to investigate the influence of
the hydraulic retention time (HRT) on the DF of FVW by mixed culture. A stirred
tank reactor under continuous mesophilic conditions was operated for 47 days
with HRT stepwise reductions from 24 to 6 h, leading to organic loading rates
between 47 and 188 g volatile solids (VS)/L-d. The optimum HRT of 9 h resulted
in an unprecedented HPR from FVW of 11.8 NL/L-d, with a hydrogen yield of
95.6 NmL/g VSrep. Based on an overarching inspection of hydrogen production
in conjunction with organic acids and carbohydrates analyses, it was
hypothesized that the high FVW-to-biohydrogen conversion rate achieved was

powered by lactate metabolism.
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One-stage AD

Abstract

The increasing generation of food waste (FW) poses significant environmental
and management challenges, requiring efficient and sustainable treatment
methods. This study presents the first systematic comparison between a
conventional single-stage anaerobic digestion (AD) process and a lactate-based
two-stage AD process using food waste (FW) as the substrate. Both AD
configurations were operated in parallel under identical operating conditions, i.e.,
37 °C, 20 days hydraulic retention time, 2.3 g volatile solids (VS)/L-d organic
loading rate, and pH 8. The two-stage AD system exhibited a methane
productivity of 959 NmL CH4/L-d and a methane yield of 398 NmL CHa4/g VSkep,
which were 32.0 £ 5.6 % and 35.9 + 0.6 % higher than those of the single-stage
AD process, respectively. The two-stage AD system also showed significant
lactate accumulation in the acidogenic stage, which was almost completely
oxidized in the methanogenic stage. Furthermore, molecular analysis of the
acidogenic stage revealed diverse bacterial communities, with a prevalence of
lactate-producing bacteria such as Lactobacillus. In the methanogenic stage,
various bacteria and archaea, including Methanobacterium and Methanothrix,
were identified as major contributors to methane production. The enhanced
methane production performance of the two-stage AD system was attributed to
the physical separation of the acidogenic stage from methanogenesis and the

occurrence of lactate-type fermentation in the acidogenic stage.
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Abstract

Dark fermentation (DF) has gained increasing interest over the past two decades
as a sustainable route for biohydrogen production; however, understanding how
reproducible the process can be, both from macro- and microbiological
perspectives, remains limited. This study assessed the reproducibility of a
parallel continuous DF system using fruit- vegetable waste as a substrate under
strictly controlled operational conditions. Three stirred-tank reactors were
operated in parallel for 90 days, monitoring key process performance indicators.
In addition to baseline operation, different process enhancement strategies were
tested, including bioaugmentation, supplementation with nutrients and/or
additional fermentable carbohydrates, and modification of key operational
parameters such as pH and hydraulic retention time, all widely used in the field
to improve DF performance. Microbial community structure was also analyzed to
evaluate its reproducibility and potential relationship with process performance
and metabolic patterns. Under these conditions, key performance indicators and
core microbial features were reproducible to a large extent, yet full consistency
across reactors was not achieved. During operation, unforeseen operational
issues such as feed line clogging, pH control failures, and mixing interruptions
were encountered. Despite these disturbances, the system maintained an
average hydrogen productivity of 3.2 NL H./L-d, with peak values exceeding 6
NL H2/L- d under optimal conditions. The dominant microbial core included
Bacteroides, Lactobacillus, Veillonella, Enterococcus, Eubacterium, and
Clostridium, though their relative abundances varied notably over time and
between reactors. An inverse correlation was observed between lactate
concentration in the fermentation broth and the amount of hydrogen produced,
suggesting it can serve as a precursor for hydrogen. Overall, the findings
presented here demonstrate that DF processes can be resilient and broadly
reproducible. However, they also emphasize the sensitivity of these processes to
operational disturbances and microbial shifts. This underscores the necessity for
refined control strategies and further systematic research to translate these

insights into stable, high-performance real-world systems.
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From waste to value: Lessons and next steps

This doctoral thesis has advanced the valorisation of FVW through LDDF and lactate-
based two-stage AD, addressing both technical feasibility and environmental relevance.
The research outcomes are the result of a systematic exploration of operational
parameters, process configurations, and reproducibility assessments, which together
build a comprehensive framework for the integration of fermentative and methanogenic

platforms.

The influence of key operational conditions was first examined, revealing that pH,
total solids concentration, and inoculum density govern the metabolic dynamics of H.-
producing microbial consortia. Under neutral pH (7.0), low TS (5%), and elevated
inoculum concentrations (1800 mg VSS/L), LDDF achieved its maximum performance,
with volumetric Hz productivity reaching 976 NmL H,/L-h and yields of 49.5 NmL H./g
VS. Importantly, H> generation was not directly associated with carbohydrate
degradation, but rather with HLac consumption coupled to the co-production of HAc and
HBu, which reflects a metabolic redirection toward HLac-dependent pathways. Building
on this, the evaluation of HRT under continuous conditions confirmed its pivotal role in
stabilizing microbial activity and maximizing gas production. A gradual reduction of HRT
demonstrated that 9 h represented the optimal value, delivering the highest H, production
rate (11.8 NL H./L-d) and yield (95.6 NmL/g VSrep). These findings underscore the need
for finely tuned HRT control when operating LDDF in continuous mode.
Complementarily, the establishment of a detailed energy and mass balance
demonstrated that the management of 1000 kg of FVW per day would require a reactor
volume of ~0.8 m®, producing up to 9.4 m® H, daily. This provides a practical baseline for

the future design and techno-economic evaluation of biorefineries integrating DF.
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A comparative analysis of process configurations further elucidated the benefits of
HLac-based two-stage AD. In contrast to the single-stage system, the phase-separated
configuration improved CH. productivity and yield by 32% and 36%, respectively, while
maintaining comparable process stability and CH4 purity. The superior efficiency of the
two-stage setup derived from enhanced substrate conversion and microbial
specialization, with HLac emerging as a key bioenergetic intermediate. The acidogenic
phase fostered the proliferation of HLac-producing bacteria, whereas the methanogenic
phase supported stable populations of Methanobacterium and Methanothrix, central to

efficient CH4 generation.

Finally, reproducibility and enhancement strategies were assessed through the
parallel operation of three continuous bioreactors. The results confirmed that LDDF
delivers consistent H, content (65 + 5%), production rates, and metabolite profiles under
stable conditions. Temporary improvements were observed following bioaugmentation
and micronutrient supplementation, with productivity peaking at 7.4 NL Hz/L-d. However,
these enhancements were not sustained, reflecting the inherent complexity of microbial

interactions and the need for adaptive operational strategies to secure long-term stability.

In summary, this thesis validates LDDF and HLac-based two-stage AD as robust
and sustainable biotechnological platforms for converting organic waste into clean
energy carriers, namely bioH, and biogas. The sensitivity of LDDF to operational
parameters, the central role of HRT, the reproducibility demonstrated under parallel
operation, and the superior performance of the two-stage configuration all provide critical
insights into process optimization and scalability. Beyond the specific experimental
findings, the work contributes to the broader development of reproducible, efficient, and
scalable fermentative bioenergy systems that align with circular economy principles and

global climate mitigation goals.
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From waste to value: Lessons and next steps

While the current findings entailed important advancements in the field of DF and AD,
several research directions remain open to further improve the robustness,

environmental performance, and industrial applicability of this biotechnological platform:

* Life Cycle Assessment (LCA): Conduct a comprehensive LCA to evaluate the
environmental impact, energy efficiency, and carbon footprint of the integrated LDDF
and AD processes under different configurations and scales. This is essential for

benchmarking against conventional waste management and energy recovery systems.

* Process Scale-Up: Transition from laboratory-scale systems to pilot- and full-
scale reactors to assess process performance under real operational conditions. Scaling
up will enable a better understanding of microbial dynamics, system stability, and

energy/product recovery efficiency at higher loads.

* Process Automation: Implement fully automated process control systems to
maintain stable conditions in long-term operations. This includes adaptive pH control,
feedstock monitoring, crucial for minimizing process variability and enhancing

operational reliability.

* Advanced Microbial Characterization: Employ metagenomics and
transcriptomics to better understand the functional roles of microbial communities,
particularly under variable operating conditions and in response to enhancement
strategies. This will inform the design of more targeted bioaugmentation or selective

enrichment protocols.
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* Integration with other bioproduct recovery technologies: Explore the coupling of
LDDF and AD systems with downstream processes for the recovery of value-added
biochemicals (e.g., VFA, bioplastics precursors) or CO, capture technologies,

contributing to a more holistic biorefinery approach.

Through these future efforts, the technology platform presented in this thesis can
evolve into a highly adaptable, economically viable, and ecologically sound solution for
organic waste valorisation, reinforcing its role within the global transition toward

sustainable energy systems and circular resource management.
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