

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingeniería Electrónica Industrial y Automática

Estación robótica musical con Multi-Robots

ABB controlada desde Matlab

Autor:

Sánchez Calvo, Juana Li

 Tutor:

Herreros López, Alberto

Departamento de Ingeniería de Sistemas y Automática

Valladolid, octubre 2025

2

3

RESUMEN

La robótica industrial se ha convertido en un pilar de la automatización gracias a su precisión,

rapidez y capacidad de integración. Este Trabajo de Fin de Grado presenta la simulación de una

estación robótica en RobotStudio, compuesta por dos ABB IRB 120 y un IRB 14000 YuMi. Los IRB

120 ejecutan secuencias musicales en un teclado de piano programadas en RAPID, mientras el

IRB 14000 acompaña con movimientos sincronizados. La comunicación entre controladores se

gestiona mediante Socket Messaging, y el control externo se realiza a través de una HMI en

MATLAB conectada mediante OPC UA. El proyecto tiene un enfoque educativo, al integrar

programación, coordinación multi-robot y diseño de interfaces, mostrando además una

aplicación innovadora al vincular la robótica con la música.

Palabras clave: RobotStudio, RAPID, OPC UA, Socket Messaging, IRB.

4

5

ABSTRACT

Industrial robotics has become a cornerstone of automation thanks to its precision, speed, and

integration capabilities. This Final Degree Project presents the simulation of a robotic

workstation in RobotStudio, consisting of three ABB IRB 120 and an IRB 14000 YuMi. The IRB

120 units perform musical sequences on a piano keyboard programmed in RAPID, while the IRB

14000 accompanies with synchronized movements. Communication between controllers is

managed through Socket Messaging, and external control is carried out via a MATLAB HMI

connected using OPC UA. The project has an educational purpose, combining programming,

multi-robot coordination, and interface design, while exploring an innovative application by

linking robotics with music.

Keywords: RobotStudio, RAPID, OPC UA, Socket Messaging, IRB.

6

7

ÍNDICE DE CONTENIDO

1. INTRODUCCIÓN Y OBJETIVOS .. 16

1.1 INTRODUCCION ... 16

1.2 JUSTIFICACIÓN DEL PROYECTO ... 16

1.3 OBJETIVOS .. 17

1.4 ESTRUCTURA DE LA MEMORIA ... 18

2. MARCO TEÓRICO Y ESTADO DEL ARTE.. 21

2.1 MARCO TEÓRICO ... 21

2.1.1 Componentes básicos... 25

2.1.1.1 Controlador ... 27

2.1.1.2 Esqueleto del robot .. 27

2.1.1.3 Actuadores .. 27

2.1.1.4 Sensores .. 28

2.1.1.5 Manipulador .. 29

2.1.1.6 Sistema de control ... 29

2.1.2 Clasificación de los robots... 30

2.2 ESTADO DEL ARTE.. 33

3. METODOLOGÍA Y SOFTWARE UTILIZADO.. 35

3.1 RobotStudio .. 35

3.1.1 Propósito y Aplicaciones ... 35

3.1.2 Características Principales... 36

3.1.3 Versiones y Compatibilidad... 37

3.1.4 Beneficios del Uso de RobotStudio .. 37

3.1.5 Limitaciones y Desafíos... 38

3.2 Matlab .. 38

3.2.1 Propósito y Aplicaciones ... 39

3.2.2 Características Principales... 40

3.2.3 Versiones y Compatibilidad... 41

3.2.4 Beneficios del Uso de MATLAB .. 41

3.2.5 Limitaciones y Desafíos... 42

3.2.6 Conclusión ... 42

8

3.3 ABB IRC5 OPC .. 43

3.3.1 Propósito y Aplicaciones ... 43

3.3.2 Características Principales... 44

3.3.3 Versiones y Compatibilidad... 44

3.3.4 Beneficios del Uso de ABB IRC5 OPC Configuration... 45

3.3.5 Limitaciones y Desafíos... 46

4. DESARROLLO DEL PROYECTO ... 48

4.1 PRIMERA FASE: RobotStudio .. 48

4.1.1 CONFIGURACIÓN Y MODELADO DE LA ESTACIÓN ... 49

4.1.1.1 Modelado de la estación... 49

4.1.1.2 Controladores virtuales .. 58

4.1.1.3 Componentes Inteligentes .. 65

Sensor de colisión .. 66

Sensor plano ... 66

Linear Move .. 67

Logic Gate ... 69

Play Sound .. 69

Set Color ... 70

Pose Mover ... 78

4.1.1.4 Lógica de la estación... 80

4.1.2 Trayectorias y puntos ... 82

Workobject ... 82

Robtarget .. 85

Joint tarjets ... 86

Path .. 88

4.1.3 RAPID .. 90

4.1.3.1 Importación de los datos .. 91

4.1.3.2 Generación de módulos ... 92

4.1.3.3 Definición de variables ... 94

Variables globales .. 94

Variables locales .. 94

Variables Constantes ... 95

Variables Normales.. 96

4.1.3.4 Creación de las interrupciones .. 96

9

4.1.3.5 Creación de las distintas funciones.. 101

Num Rand ... 101

Notas Aleatorias .. 102

Leer Partitura .. 103

Tocar Nota .. 106

Tocas notas Ascendentemente ... 107

Tocar Notas Descendentemente... 108

Bailar Nota .. 109

Bailar Normal .. 110

Leer Nota de IRB120 .. 110

4.1.3.6 Diagrama de flujo de las funciones main ... 111

4.2 ABB IRC5 OPC CONFIGURATION ... 115

4.3 MATLAB .. 118

5. COMUNICACIONES ... 125

5.1 Módulos de RAPID .. 125

5.2 Controladores ... 126

5.3 RobotStudio y sistemas externos.. 126

6. SIMULACIÓN .. 129

7. RESULTADOS .. 138

8. CONCLUSIONES .. 141

Líneas de trabajo futuro ... 143

9. Bibliografía ... 145

Referencias .. 145

10

ÍNDICE DE ILUSTRACIONES

Ilustración 1: Robot IRB 1200 .. 17

Ilustración 2: Robot IRB 1400 YuMi Dual Arm ... 18

Ilustración 3: La Paloma de Arquitas: primer autómata mecánico documentado (s. IV a.C) 21

Ilustración 4: La eolípila de Herón de Alejandría: primera máquina de vapor (10-70 a.C) 22

Ilustración 5: Torre de reloj astronómica de Su Sung (1088) .. 22

Ilustración 6: Autómatas musicales programables de Al-Jazari (1206) 23

Ilustración 7: Smart Art Componentes de un robot... 26
Ilustración 8: Logo RobotStudio ABB.. 35

Ilustración 9: Beneficio del uso de RobotStudio según ABB (ABB, 2025) 38

Ilustración 10: Logo Matlab... 39

Ilustración 11: Página inicio RobotStudio ... 49

Ilustración 12: Robots articulados de la biblioteca de ABB .. 50

Ilustración 13: Fijar posición de un robot en RobotStudio ... 50

Ilustración 14: Robots IRB 1200 duplicado en estación ... 51

Ilustración 15: Robots articulados de la biblioteca de ABB .. 51
Ilustración 16: Robot IRB 1400 YuMi en la estación de modelado .. 51

Ilustración 17: Creación de un tetraedro "Nota Blanca" .. 52

Ilustración 18: Creación de un tetraedro "Nota Negra" ... 52

Ilustración 19: Primera escala del teclado de nuestra estación de RobotStudio 53
Ilustración 20: Teclado en la estación de modelado de RobotStudio 53

Ilustración 21: Creación base de la pinza inteligente ... 54

Ilustración 22: Creación brida de la pinza inteligente .. 54

Ilustración 23: Posición fija de una pieza en RobotStudio .. 54
Ilustración 24: Definición de posiciones en RobotStudio ... 55

Ilustración 25: Cuerpo de nuestra pinza inteligente .. 55

Ilustración 26: Creación de unión de dos cuerpos en RobotStudio ... 56
Ilustración 27: Unión del cuerpo de nuestra pinza inteligente ... 56

Ilustración 28: Selección de color en RobotStudio .. 56

Ilustración 29: Colores básicos para nuestro cuerpo de la pinza inteligente 57

Ilustración 30: Modelado de nuestra Pinza Inteligente en RobotStudio 57
Ilustración 31: Estación modelada en RobotStudio ... 58

Ilustración 32: Creación de un controlador virtual en RobotStudio .. 59

Ilustración 33: Características de la creación de un nuevo controlador virtual en RobotStudio 59

Ilustración 34: Configuración de un controlador virtual para dos IRB 1200 en RobotStudio 61

Ilustración 35: Señales de entrada y salida del controlador IRB 1200 de RobotStudio 61

Ilustración 36: Configuración de un controlador virtual para un IRB 1400 en RobotStudio 64

Ilustración 37: Señales de entrada y salida del controlador IRB 1200 de RobotStudio 64

Ilustración 39: Propiedades del componente sensor de colisión de RobotStudio 66

Ilustración 40: Propiedades del componente inteligente sensor plano de RobotStudio 67

Ilustración 41: Propiedades del componente movimiento linear de RobotStudio 68

Ilustración 42: Propiedades del componente movimiento linear de RobotStudio 68

Ilustración 43: Propiedades del componente inteligente puerta lógica NOT de RobotStudio ... 69

11

Ilustración 44: Propiedades del componente inteligente reproducir sonido de RobotStudio ... 70

Ilustración 45: Ajuste de propiedades del componente inteligente reproducir sonido de

RobotStudio... 70

Ilustración 46: Propiedades del componente inteligente configurar color de RobotStudio 71

Ilustración 47: Lógica del componente inteligente nota do del teclado del RobotStudio 71

Ilustración 48: Estructuración y componentes del piano de RobotStudio 72

Ilustración 49: Creación de un mecanismo dentro de la ventana de modelado de RobotStudio

 ... 72

Ilustración 50: Creación de un mecanismo en RobotStudio ... 73

Ilustración 51: SmartArt de las partes que conforman un mecanismo en RobotStudio 73

Ilustración 52: Creación de un eslabón de un mecanismo en RobotStudio 73

Ilustración 53: Propiedades para la definición de un eslabón en RobotStudio 74

Ilustración 54: Eslabones que conforman una pinza inteligente en RobotStudio 74

Ilustración 55: Eje 1 del mecanismo pinza de RobotStudio .. 74

Ilustración 56: Eje 2 del mecanismo pinza de RobotStudio .. 75

Ilustración 57: Ejes del mecanismo pinza de RobotStudio ... 75

Ilustración 58: Propiedades de los datos de herramienta del mecanismo pinza de RobotStudio

 ... 76
Ilustración 59: Compilación mecanismo pinza de RobotStudio .. 76

Ilustración 60: Herramienta pinza de RobotStudio .. 77

Ilustración 61: Creación Pose de la posición pinza abierta de RobotStudio 77

Ilustración 62: Composición pinza de RobotStudio ... 77
Ilustración 63: PoserMovers del mecanismo pinza de RobotStudio.. 78

Ilustración 64: LogicSRLatch del mecanismo pinza de RobotStudio .. 78

Ilustración 65: Puerta lógica NOT del mecanismo pinza en RobotStudio 79

Ilustración 66: DigitalOutputs del mecanismo pinza de RobotStudio 79

Ilustración 68: Entrada digital pulsador del mecanismo pinza de RobotStudio 80

Ilustración 69: Diseño y lógica del mecanismo pinza de RobotStudio 80

Ilustración 70: Diseño de la lógica de la estación de modelado de RobotStudio 82
Ilustración 71: Creación de un objeto de trabajo en RobotStudio .. 83

Ilustración 72: Workobjects de la estación de modelado de RobotStudio............................... 84

Ilustración 73: Definición del Workobject Teclado del módulo ModulePiano de RAPID 84

Ilustración 74: Robtargets del objeto teclado de la estación de RobotStudio 85
Ilustración 75: Definición de Robtargets del módulo ModulePiano de RAPID 85

Ilustración 76: Robot IRB 1200 en posición del robtarget .. 86

Ilustración 77: Robot 1400 YuMi en posición del jointtarget .. 87

Ilustración 78: Definición de los jointargets de nuestro módulo DanceL de RAPID 87

Ilustración 79: Path mostrado en nuestra estación de RobotStudio 89

Ilustración 80: Formas de sincronización con estación y RAPID en RobotStudio 91

Ilustración 81: Desglose de los módulos de RAPID de nuestro Controlador3 93

Ilustración 82: Desglose de los módulos de RAPID de nuestro Controlador_Robots_IRB120 93

Ilustración 83: Variables globales empleadas en el módulo ModulePiano del

Controlador_Robots_IRB120 de RAPID .. 94

Ilustración 84: Variable Local del módulo ModulePiano del Controlador_Robots_IRB120 de

RAPID .. 95

12

Ilustración 85: Variables CONST del módulo ModulePiano del Controlador_Robots_IRB120 de

RAPID .. 95

Ilustración 86: Variables no persistentes del módulo ModulePiano del

Controlador_Robots_IRB120 de RAPID .. 96

Ilustración 87: Función Init del módulo ModulePiano del Controlador_Robots_IRB120 de RAPID

 ... 97

Ilustración 88: Rutina TRAP de la nota DO del módulo ModulePiano del

Controlador_Robots_IRB120 de RAPID .. 98

Ilustración 89: Interrupción TRAP para activación/desactivación del robot YuMi 98

Ilustración 90: Interrupción TRAP para tocar una o dos notas en el teclado a través de los

modos de la pinza herramienta ... 99

Ilustración 91: Interrupciones TRAP de la activación/desactivación de los robots IRB120 99

Ilustración 92: Interrupción TRAP de activación del modo Escala Ascendente 100

Ilustración 93: Interrupción TRAP de activación del modo Escala Descendente 100

Ilustración 94: Interrupción TRAP de activación del modo Leer Partitura 100

Ilustración 95: Interrupción TRAP de activación del modo Aleatorio 100

Ilustración 96: Interrupción TRAP de finalización del programa ... 101

Ilustración 97: Función num rand para la generación de un numero aleatorio 102
Ilustración 98: Función de RAPID NotasAleatorias .. 102

Ilustración 99: Fichero partitura Sonrisas y Lágrimas.txt ... 103

Ilustración 100: Función de RAPID Leer Partitura .. 105

Ilustración 101: Relación entre la nomenclatura de las notas de un piano 105
Ilustración 102: Función de RAPID Tocar Nota .. 106

Ilustración 103: Función de RAPID Tocar Notas Ascendentes .. 107

Ilustración 104: Función de RAPID Tocar notas ascendentes en intervalos 107

Ilustración 105: Función de RAPID Tocar Notas Descendentes ... 108

Ilustración 106: Función Tocar Notas descendentes en Intervalos 108

Ilustración 107: Función de RAPID Bailar Nota.. 109

Ilustración 108: Función de RAPID Bailar Normal .. 110
Ilustración 109: Función de RAPID Leer nota de IRB120 .. 111

Ilustración 110: Diagrama de flujo de la función main de ModulePiano de RAPID 112

Ilustración 111: Diagrama de flujo de la función main de DanceL de RAPID 113

Ilustración 112: Diagrama de flujo de la relación entre los módulos 114
Ilustración 113: Interfaz inicial del programa ABB IRC5 OPC Configuration 116

Ilustración 114: Creación de un nuevo alias para un controlador ... 116

Ilustración 115: Dispositivos escaneados por ABB IRC5 OPC Configuration........................... 117

Ilustración 116: Creación de un controlador y sus criterios de conexión en ABB IRC5 OPC

Configuration ... 117

Ilustración 117: Activación y desactivación del Server Control de los dispositivos de ABB IRC5

OPC Configuration .. 117

Ilustración 118: APPs de Matlab .. 118

Ilustración 119: Interfaz OPC Data Explorer de Matlab.. 119

Ilustración 120: Definición del hostname de un host en OPC Data Explorer 119

Ilustración 121: Creación de un cliente en OPC Data explorer de Matlab 120

13

Ilustración 122: Conexión al servidor de OPC ... 120

Ilustración 123: Creación de un grupo de variables en OPC Data Explorer de Matlab 121

Ilustración 124: Añadir Items en un grupo del localhost en OPC Data Explorer de Matlab 121

Ilustración 125: Items disponibles de nuestros controladores ... 122

Ilustración 126: Explorador de variables del Server Control a través de OPC Data Explorer de

Matlab... 122

Ilustración 127: PIANO DASHBOARD.. 124
Ilustración 128: Ruta para la creación de un estado inicial en la estación de RobotStudio 130

Ilustración 129: Configuración final del estado inicial POS_INIT de nuestra estación de

RobotStudio... 130

Ilustración 130: Estación de RobotStudio en modo escala ascendente con un IRB 120 activado

en movimiento... 131

Ilustración 131: Estación de RobotStudio en modo escala ascendente con dos IRB 120

activados en movimiento.. 131

Ilustración 132: Estación de RobotStudio en modo escala ascendente con dos IRB 120

activados en movimiento y el YuMi 1400 bailando (1) .. 132

Ilustración 133 : Estación de RobotStudio en modo escala ascendente con dos IRB 120

activados en movimiento y el YuMi 1400 bailando (2) .. 132
Ilustración 134 : Estación de RobotStudio en modo escala ascendente con dos IRB 120

activados en movimiento y el YuMi 1400 bailando (3) .. 133

Ilustración 135: Start del programa de la comunicación de comunicaciones OPC UA de ABB . 134

Ilustración 136: Lectura/Escritura de señales y variables de RobotStudio a través de ABB IRC5

OPC UA Configuration (1).. 135

Ilustración 137: Lectura/Escritura de señales y variables de RobotStudio a través de ABB IRC5

OPC UA Configuration (2).. 135

Ilustración 138: Ejecución de la pantalla HMi diseñada desde App Designer de Matlab 136

Ilustración 139: Representación real de la ejecución de la función escala ascendente con un

robot IRB 120 activado y el YuMi 1400 de la estación a través de la activación de señales desde

el HMI diseñado en Matlab (1) .. 136
Ilustración 140: Representación real de la ejecución de la función escala ascendente con dos

robots IRB 120 activados y el YuMi 1400 de la estación a través de la activación de señales

desde el HMI diseñado en Matlab (2) .. 137

Ilustración 141: Representación real de la ejecución de la función escala ascendente con un

robot IRB 120 activado y el YuMi 1400 de la estación a través de la activación de señales desde

el HMI diseñado en Matlab (3) .. 137

14

ÍNDICE DE TABLAS

Tabla 1: Smart Art de las leyes de la robótica ... 24

Tabla 2: Smart Art de hechos relevantes en la robótica cronológicamente 25

Tabla 3: Categorías principales de actuadores .. 28

Tabla 4: Tipos de Sensores .. 29

Tabla 5: Tipos de programación de los sistemas de control ... 29

Tabla 6: Generaciones de robots según su cronología ... 31

Tabla 7: Clasificación de robots según propósito .. 32
Tabla 8: I/O del controlador IRB 1200 .. 62

Tabla 9: I/O del controlador IRB 1400 YuMi.. 65

Tabla 10: SmartArt de las funciones de los componentes inteligentes 65

15

16

Capítulo 1

1. INTRODUCCIÓN Y OBJETIVOS

1.1 INTRODUCCION

La robótica ha experimentado con los años una gran evolución, transformándose en una

disciplina esencial en la ingeniería y la industria moderna. Los grandes avances se han

impulsado en la electrónica, la informática, el control automático, permitiendo un

desarrollo donde los robots son cada vez más sofisticados y eficientes.

Si nos adentramos en la robótica industrial podemos decir que ha tenido un impacto en

la manufactura y producción, siendo capaz de optimizar procesos, mejorar la calidad de

productos obteniendo unos costes operativos más reducidos. Robots como el IRB 120

con su capacidad para realizar movimientos más precisos y rápidos en espacios

reducidos, son un ejemplo perfecto de esta transformación tecnológica.

El proyecto que vamos a realizar a continuación consiste en el desarrollo de una estación

de trabajo virtual utilizando el software de RobotStudio, que consistirá en una

programación y simulación de un robot industrial IRB 120 de ABB capaz de tocar un

instrumento musical, concretamente. Acompañado de un IRB 1400 YuMi, que realizará

un baile y será controlado con un controlador independiente. Las órdenes recibidas por

ambos serán enviadas a través de una interfaz diseñada con MATLAB y conectada a

través de OPC UA con las señales digitales y variables necesarias del lenguaje propio de

RobotStudio, RAPID.

1.2 JUSTIFICACIÓN DEL PROYECTO

La justificación del proyecto radica en varios aspectos tanto técnicos como educativos,

que prueban la relevancia de desarrollar estaciones de trabajo virtual en un entorno

educativo que permita tanto a estudiantes como a profesionales adquirir conocimientos

prácticos y avanzados en robótica y en programación de robots industriales.

La simulación de una tarea como es tocar un piano fomenta la innovación y la

creatividad, promoviendo nuevas aplicaciones y soluciones dentro del campo de la

robótica, vinculado a el área musical.

17

La programación y simulación del robot IRB 120 requiere de una comprensión de los

principios de la robótica, así como del control automático. Conocimientos que hemos

ido adquiriendo durante el estudio de asignaturas tales como Sistemas robotizados,

donde abordamos cinemática, dinámica y algoritmos de control de robots, así como su

implementación en esto entornos simulados y reales.

Este proyecto permite a los estudiantes aplicar sus conocimientos en la integración de

sistemas electrónicos y de automatización, complementando con la tarea de tocar un

piano que requiere de la implementación de sensores en el entorno a diseñar. También

refleja la innovación y creatividad fomentados para emplear un robot capaz de tocar un

instrumento musical.

En conclusión, este proyecto no solo valida y aplica los conocimientos teóricos y

prácticos adquiridos en la carrera de ingeniería electrónica y automática industrial, sino

que también proporciona una plataforma para la innovación, el análisis y la solución de

problemas complejos.

1.3 OBJETIVOS

El objetivo principal de este proyecto será diseñar un programa en RAPID capaz de

ejecutar una secuencia de movimientos que le permitan al robot tocar un instrumento

musical, en concreto un teclado de piano, pudiendo demostrar así los conocimientos

adquiridos durante el paso por el grado de Ingeniería de Electrónica y Automatización

Industrial en la Escuela de Ingenieros Industriales de la Universidad de Valladolid.

Para ello vamos a crear una estación virtual en RobotStudio, donde emplearemos tres

robots:

 Dos IRB 120, ambos controlados por un mismo controlador virtual (Ilustración

1).

Ilustración 1: Robot IRB 1200

18

 Un Robot IRB14000 YuMi (Ilustración 2).

Ilustración 2: Robot IRB 1400 YuMi Dual Arm

Con todos estos elementos seremos capaces de simular una estación donde los robots

IRB1200 se encargarán de tocar distintas escalas en el teclado, mientras el IRB14000

YuMi le acompañará con movimientos al ritmo de las notas y velocidades determinadas

previamente para así darle al proyecto un entorno musical y de aprendizaje para

aquellos que los deseen.

1.4 ESTRUCTURA DE LA MEMORIA

El proyecto se ha organizado en seis capítulos, que son los que se presentan a

continuación:

Capítulo 1

Introducción y objetivos.

En este capítulo se detallan los objetivos principales del proyecto y se justifica la

importancia de su realización.

19

Capítulo 2

Marco teórico y estado del arte

Este capítulo recoge información relevante sobre la robótica, proporcionando un marco

de referencia que permite comprender el contexto actual del tema tratado.

Capítulo 3

Metodología y softwares empleados

Aquí se describen las diferentes áreas de la ingeniería involucradas en el desarrollo del

proyecto y se explican las herramientas de software utilizadas de cada una.

Capítulo 4

Desarrollo del proyecto

Este capítulo detalla las distintas fases por las que ha pasado el proyecto durante su

ejecución.

Capítulo 5

Simulación y Resultados

Se presentan los resultados obtenidos, incluyendo la simulación realizada en

RobotStudio y la interfaz creada a través de MATLAB.

Capítulo 6

Conclusiones y futuras líneas de trabajo

En este capítulo se evalúan los resultados alcanzados, se analiza el grado en que se

cumplieron los objetivos y se sugieren posibles direcciones para trabajos futuros

relacionados con el proyecto.

20

21

Capítulo 2

2. MARCO TEÓRICO Y ESTADO DEL ARTE

El marco teórico, así como el estado del arte de este trabajo se enfocará en un campo

multidisciplinario como es la robótica, empezando por los conceptos fundamentales,

teorías y desarrollos tecnológicos que nos han permitido evolucionar en los distintos

aspectos de este ámbito. De esta manera seremos capaces de entender el contexto

actual sobre el tema a tratar.

2.1 MARCO TEÓRICO

Un robot es una entidad virtual o mecánica artificial, un sistema electromecánico que,

por su apariencia o sus movimientos es capaz de ofrecer una sensación de tener un

propósito propio. La propia independencia de sus acciones son el motivo por el que son

un estudio razonable.

La propia palabra puede referirse tanto a mecanismos físicos como a sistemas virtuales

de software, aunque el segundo término suele aludirse a los segundos con el término

de bots. (Wikipedia, 2024).

A continuación, les introduciremos algunos antecedentes en la historia:

 En el siglo IV antes de Cristo, el matemático griego Arquitas de Trento construyó

un ave mecánica a la que llamó “La Paloma” (Ilustración 3) y que funcionaba con

vapor.

Ilustración 3: La Paloma de Arquitas: primer autómata mecánico documentado (s. IV a.C)

22

 En el año 10 – 70 antes de Cristo el ingeniero Herón de Alejandría creó

numerosos dispositivos modificables por los usuarios y que las describió como

máquinas accionadas a través de presión de aire, vapor y agua. Entre una de ellas

se encontraba la eolípila (Ilustración 4).

Ilustración 4: La eolípila de Herón de Alejandría: primera máquina de vapor (10-70 a.C)

 En 1088, el chino Su Sung levantó la torre de reloj (Ilustración 5) formado por

figuras mecánicas que tocaban las campanadas de las horas.

Ilustración 5: Torre de reloj astronómica de Su Sung (1088)

 En 1136-1206 el musulmán Artuqid fue capaz de diseñar y construir una serie de

máquinas automatizadas, donde nos encontramos desde autómatas musicales

que funcionaban con agua hasta útiles de cocina.

En 1206 creó los primeros robots humanoides programables. La forma de estas

máquinas se asemejaba al aspecto físico de cuatro músicos navegando en un

bote sobre un lago. Dicho mecanismo contenía un tambor que era programable

a través de unas clavijas que se chocaban con pequeñas palancas capaces de

accionar los instrumentos de percusión. Gracias a la incorporación de las clavijas

23

en el mecanismo, el usuario, en este caso se trataba de dos tamborileros, era

posible cambiar los ritmos y patrones del instrumento. La barca estaba formada

por dos tamborileros, un arpista y un flautista (Jorge Elices, 2020) (Ilustración 6).

Ilustración 6: Autómatas musicales programables de Al-Jazari (1206)

La palabra “robótica” proviene del término “robot”, que a su vez tiene su origen en la

palabra checa “robota”, que significa “trabajo forzado” o “servidumbre”.

El término “robot” fue utilizado por primera vez en 1920 por el escritor checho Karel

Capek en su obra de teatro “R.U.R” (Rossum´s Universal Robots). En la obra, los robots

eran seres artificiales creados para realizar los trabajos de los humanos, pero durante el

desarrollo de la obra, estos se relevan contra sus creadores.

El término “robótica” fue popularizada por el escritor de ciencia ficción Isaac Asimov en

1941. Asimov empleó el término en su cuento “Liar!” y más tarde en su obra

“Runaround” en 1942, donde también introdujo las tres famosas Leyes de la Robótica

definidas en la siguiente tabla (Tabla 1) . Desde entonces el término que se ha

establecido como estándar para tratar del campo que estudia los robots, su diseño,

construcción, operación y aplicación se ha convertido en “robótica” (Kak, 2011).

24

Tabla 1: Smart Art de las leyes de la robótica

Estos datos proporcionados previamente nos dan una base sólida para entender el

origen del término, así como su evolución en el contexto histórico y literario.

La robótica moderna comienza en la década de 1950, aunque el concepto de autómatas

ha existido desde la antigüedad, los hitos importantes en la evolución de la robótica

incluyen los mostrados a continuación (Tabla 2):

• Un robot nunca debe de perjudicar a un ser humano ni permitir
que este sufra daño con su inacción.

Primera

• Un robot ha de cumplir las órdenes impartidas por un ser humano
a excepción de aquellas que tengan consecuencias perjudiciales
como se describe en la primera ley.

Segunda

• Un robot esta obligado a proteger su existencia, a excepción de
aquellas casuisticas en las que se incumplen la primera y la
segunda ley.

Tercera

25

Tabla 2: Smart Art de hechos relevantes en la robótica cronológicamente

2.1.1 Componentes básicos

La robótica es la rama de la ingeniería mecánica, electrónica y de las ciencias de la

computación, que diseña, construya y opera robots (Robótica, 2023).

Un robot es una máquina o ingenio electrónico programable que es capaz de manipular

objetos y realizar diversas operaciones. Gracias a la robótica los humanos somos capaces

1954

• George Devol patenta el primer robot industrial programable, que
más tarde sería conocido como Unimate.

1970s

• Con el desarrollo de la microelectrónica y la informática, los robots
comienzan a incorporar sistemas de control más avanzados,
permitiendo mayor precisión y autonomía.

1980s

• La robótica se expande más allá de la manufactura hacia las
aplicaciones en medicina, exploración espacial, y entretenimiento. Se
desarrollan los primeros robots móviles y robots humanoides
básicos.

1990s-2000s

• Se popularizan los robots autónomos y los sistemas de inteligencia
artificial, lo que lleva al desarrollo de robots capaces de aprender y
adaptarse a entornos dinámicos

2010s en
adelante

• .El auge de la inteligencia artificial y la robótica colaborativa marca
una nueva era en la que los robots no solo asumen tareas repetitivas,
sino que tambiñen colaboran con los humanos en entornos
compartidos

26

de realizar diversas que nos permiten recopilar información, procesarla y tomar

decisiones. Estos son los componentes (Ilustración 7) básicos que lo forman:

Ilustración 7: Smart Art Componentes de un robot

Controlador:
Cebrero del

robot

Esqueleto
del robot

Acturadores

Sensores

Manipulador

Sistema de
Control

27

2.1.1.1 Controlador

El controlador es el núcleo central que gobierna todas las operaciones de un robot,

incluyendo sus movimientos, cálculos y procesamiento de datos. Funciona a través de

un microordenador equipado con una unidad central de procesamiento (CPU),

memoria, sistemas de alimentación e interfaces que le permiten comunicarse con

comando externos. Este sistema es esencialmente el “cerebro” del robot, coordinado y

ejecutando las órdenes necesarias para que el robot realice sus tareas.

La función del controlador puede variar dependiendo de los parámetros que gestione.

Por lo general, los controladores se clasifican en diferentes tipos, como controladores

de posición, cinemáticos, dinámicos o adaptativos, cada uno especializado en gestionar

aspectos específicos del movimiento y comportamiento del robot.

2.1.1.2 Esqueleto del robot

El esqueleto del robot, al igual que en el cuerpo humano, tiene la función crucial de

sostener y dar estructura a todas las demás partes del sistema robótico. Su diseño debe

estar adaptado a las necesidades específicas del robot, ya sea para proporcionar fuerza,

velocidad, ligereza o maniobrabilidad.

La elección del material para el esqueleto es otro factor fundamental. Dependiendo de

la función del robot, el esqueleto puede ser fabricado con materiales duros, pesados,

flexibles, o una combinación de estos. Algunos robots pueden tener un esqueleto que

sirve como base para sus componentes, mientras que otros pueden estar hechos de

materiales más inusuales como cartón, madera, hierro o plástico, dependiendo de las

necesidades de su diseño y aplicación.

2.1.1.3 Actuadores

Los actuadores son esenciales para los robots industriales, ya que proporcionan la fuerza

necesaria para sus movimientos. Actúan como el “corazón” del robot, transformando

señales eléctricas en acciones físicas que permiten a la máquina interactuar con su

entorno.

28

Los actuadores se dividen en dos categorías principales:

Tabla 3: Categorías principales de actuadores

2.1.1.4 Sensores

Para que el robot funcione de manera autónoma y pueda interactuar eficazmente con

su entorno, es indispensable que esté equipado con sensores. Estos dispositivos

permiten al robot percibir su entorno y responder a él de manera adecuada, ajustando

su comportamiento según las condiciones que detecta.

Los sensores varían en función de la tarea y el entorno del robot. Entre los más comunes

se encuentran los sensores de luz, sonido, gravedad, temperatura, humedad, presión,

velocidad, magnetismo y ubicación. También se utilizan sensores de proximidad,

distancia, cámaras de video, y muchos otros, cada uno colocado estratégicamente para

maximizar su efectividad en la función que debe cumplir.

La percepción es esencial para que los robots interactúen con su entorno. Los robots

utilizan una variedad de sensores para recopilar datos sobre su entorno y su propio

estado interno, lo que les permite tomar decisiones informadas.

Motores

• Fundamentales para el funcionamiento
del robot, permitiendo que se desplace,
mueva sus brazos o manipule objetos a
través de pinzas u otros mecanismos.

Sin los motores, el robot sería incapaz de
realizar cualquier movimiento físico.

Otros Actuadores

Además de los motores, existen otros
actuadores, que permiten al robot
comunicarse y presentar información a
su entorno.

LCD, displays, altavoces, sincronizados de
voz

29

Tabla 4: Tipos de Sensores

2.1.1.5 Manipulador

El manipulador es la parte mecánica central del robot, compuesta por una serie de

elementos sólidos o eslabones unidos mediante articulaciones que permiten el

movimiento. Esta estructura, que se asemeja a un brazo humano con secciones con

cuerpo brazo, muñeca y un actuador final, es crucial para la manipulación de objetos y

la realización de tareas específicas.

2.1.1.6 Sistema de control

El sistema de control de un robot, integrado por software y hardware, es responsable

de dirigir y coordinar sus movimientos. Este sistema puede ser programado para

ejecutar tareas específicas de manera positiva o para adaptarse a cambios en el entorno

mediante el uso de sensores, lo que permite al robot operar de forma autónoma.

Tabla 5: Tipos de programación de los sistemas de control

Sensores de
Proximidad y Visión

• Permiten detectar
obstáculos y
reconocer objetos
de entorno

Sensores de Fuerza
y Tacto

• Utilizados en
robots que
requieren
manipulación
delicada o
interacción precisa
con objetos

Sensores de
Posición y Velocidad

• Proveen
información
crucial para el
control de
movimiento del
robot

Robots Pre-programados

• Robots que siguen un conjunto de
intruscciones fijas y realizan
tareas repetitivas sin cambios

Robots Autónomos

• Robots capaces demodificar su
comportamiento en respuesta a la
variaciones del entorno, utilizando
datos obtenidos de sus sensores.

30

Para que un robot funcione eficazmente, es crucial una coordinación precisa entre su

esqueleto, sensores y actuadores. Además, el “cerebro” del robot, o su sistema de

control, debe estar programado de manera que permita al robot cumplir con su función

principal. Cada componente tiene un propósito específico y es esencial para el correcto

funcionamiento de la máquina, haciendo que el robot sea una herramienta integral y

altamente funcional.

2.1.2 Clasificación de los robots

Según la Asociación Francesa de Robótica Industrial – AFRI, fueron clasificados en

generaciones según su cronología.

31

Tabla 6: Generaciones de robots según su cronología

Los robots se pueden clasificar de diversas maneras, dependiendo del criterio utilizado.

Una clasificación común es la siguiente:

Primera Generación

• Robots manipuladores

• Repiten una o varias tareas de manera programada bajo un software, en
secuencia.

Segunda Generación

• Robots en aprendizaje

• Aprenden los movimientos a realizar a través de los movimientos que
ejecutan los operadores humanos.

Tercerca Generación

• Robots con sensores

• Son aquellos programables desde ordenadores, normalmente cuentan con
sensores artificiales y otras piezas que permiten la visión y el tacto
empleando lenguajes de programación

Cuarta Generación

• Robots móviles

• Aquellos que son capaces de tomar parte en diversos procesos gracias a la
inteligencia artificial, también poseen sensores como la generación anterior
pero se diferencian que pueden tomar decisiones y realizar mas
movimientos

Quinta Generación

• Robots inteligentes

• Son aquellas máquinas dotadas de inteligencia artificial

32

Tabla 7: Clasificación de robots según propósito

Robot Industriales

Utilizados principalmente en la manufatura
para tareas como ensamblaje, soldadura,
pintura y manipulación de materiales. Son
típicamente manipuladores con múltiples
grados de libertad.

Robots de Servicio

Diseñados para interactuar con personas y
ayudar en tareas diarias, como robots de
limpieza o asistentes personales.

Robots Móviles

Incluyen vehículos autónomos y drones, que
pueden desplazarse por el entorno. Estos
robots son ampliamente utilizados en
exploración, logística, y agricultura.

Robots humanoides

Imitan la forma y movimientos del cuerpo
humano, con aplicaciones en la investigación
de biónica, inteligencia artificial, y asistencia
personal.

Robots Colaborativos (Cobots)

Trabajan junto a humanos en entornos
compartidos, diseñados para ser seguros y
fáciles de programar.

33

2.2 ESTADO DEL ARTE

Tras haber expuesto el marco teórico que sustenta este proyecto, en este apartado se recopilan

algunos de los trabajos previos realizados en la Universidad de Valladolid que guardan relación

con el ámbito de la robótica y la simulación en entornos industriales.

En el año 2015, Gonzalo Muinelo Garrido presentó un Trabajo de Fin de Grado centrado en la

simulación de una célula robotizada destinada al tratamiento de piezas de aluminio. El propósito

principal de su estudio fue desarrollar la programación del robot para gestionar de forma

autónoma las piezas, las cuales debían atravesar tres procesos distintos, cada uno asociado a

una máquina específica (Garrido, 2015).

Ese mismo año, Juan Antonio Ávila Herrero llevó a cabo el diseño de otra célula robótica,

orientada en este caso al ámbito educativo. Su proyecto consistió en la creación de diversas

prácticas formativas para la enseñanza del manejo del software RobotStudio, programando el

robot con el fin de realizar tareas interactivas como jugar al tres en raya o escribir sobre una

mesa inclinada. Este trabajo perseguía facilitar el aprendizaje de la programación y el control de

robots industriales ABB (Herrero, 2015).

En 2019, Carlos Jiménez Jiménez desarrolló un sistema robótico educativo cuyo objetivo era

permitir a un usuario jugar al ajedrez contra un robot industrial. El sistema incluía una interfaz

gráfica que permitía al jugador introducir sus movimientos, mientras que el robot ejecutaba las

jugadas desplazando las piezas sobre el tablero. Este proyecto integraba tanto la parte mecánica

como la lógica de control y comunicación entre el robot y la interfaz, dando lugar a una

experiencia interactiva y didáctica (Jiménez, 2019).

Finalmente, en 2022, Elena Pozas Mata desarrolló un proyecto en el que un robot YuMi

interactuaba con un xilófono controlado mediante MATLAB, utilizando el protocolo OPC UA para

la comunicación en tiempo real. Este trabajo destacó por la integración de la programación del

robot en RAPID, la simulación en RobotStudio y el control externo a través de una interfaz HMI,

combinando aspectos de coordinación multi-robot, ejecución musical e interacción educativa

(Mata, 2022).

En conjunto, estos proyectos reflejan la evolución y el interés continuo de la Universidad de

Valladolid en la integración de la robótica industrial, la simulación mediante RobotStudio y el

desarrollo de aplicaciones educativas que favorecen el aprendizaje práctico en este campo.

34

35

Capítulo 3

3. METODOLOGÍA Y SOFTWARE UTILIZADO

En este proyecto, se ha seguido una metodología sistemática que abarca desde la

conceptualización y diseño de un sistema robótico hasta la simulación, control y análisis

de resultados. El enfoque metodológico se ha dividido en varias etapas clave, cada una

respaldada por el uso de herramientas de software especializadas que permiten un

desarrollo eficiente y preciso del trabajo. A continuación, se describen las principales

etapas de la metodología y los tres softwares fundamentales utilizados: RobotStudio,

MATLAB y ABB IRC5 OPC.

3.1 RobotStudio

RobotStudio es un software desarrollado por ABB Robotics, una de las principales empresas en

el ámbito de la automatización industrial y robótica. Este entorno de simulación y programación

offline es ampliamente utilizado en la industria para diseñar, simular, programar y optimizar

sistemas robóticos antes de su implementación en un entorno real. RobotStudio es una

herramienta poderosa que permite a los ingenieros y programadores trabajar en un entorno

virtual, lo que reduce costos, minimiza riesgos y aumenta la eficiencia de los proyectos robóticos

(ABB, 2025).

Ilustración 8: Logo RobotStudio ABB

3.1.1 Propósito y Aplicaciones

RobotStudio está diseñado para permitir a los usuarios crear modelos virtuales de células

robóticas y simular su funcionamiento en un entorno tridimensional. Esta capacidad es

fundamental en la fase de diseño, ya que permite identificar y resolver posibles problemas antes

de que el sistema sea implementado físicamente. Además, la posibilidad de programar los

36

robots offline, es decir, sin interrumpir la producción en la planta, proporciona una gran ventaja

en términos de eficiencia operativa.

Las aplicaciones de RobotStudio son diversas, abarcando desde la programación y simulación de

robots industriales en fábricas de automóviles hasta su uso en líneas de producción de

electrónica, ensamblaje, soldadura, pintura y manejo de materiales. Además, RobotStudio es

utilizado en la formación y capacitación de ingenieros y operadores, dado que ofrece un entorno

seguro y controlado para el aprendizaje.

3.1.2 Características Principales

RobotStudio incluye una amplia gama de características y herramientas que facilitan la creación,

simulación y optimización de células robóticas. Entre las características más destacadas se

encuentran:

 Simulación en 3D

 Permite crear modelos tridimensionales detallados de células de trabajo que replican

fielmente el entorno de producción real, incluyendo robots, cintas transportadoras,

herramientas y sensores. Esta capacidad es crucial para visualizar y optimizar la

disposición y los movimientos dentro del espacio de trabajo.

 Programación Offline

 Una de las mayores ventajas de RobotStudio es la capacidad de programar robots sin

detener la producción en la planta. Esto se traduce en una reducción significativa de

tiempos de inactividad y una mejora en la productividad. La programación offline

permite a los usuarios escribir, probar y depurar código en un entorno virtual antes de

transferirlo al robot real.

 Virtual Commissioning

Este módulo permite validar la lógica de control en un entorno virtual antes de

implementarla físicamente. Es una herramienta vital para identificar y corregir errores

de programación que podrían resultar costosos si no se detectan antes de la

implementación.

 Path Optimization

Esta herramienta optimiza las trayectorias de los robots, reduciendo el tiempo de ciclo

y mejorando la eficiencia de los movimientos. El algoritmo de optimización ajusta las

trayectorias para minimizar el tiempo de desplazamiento y evitar colisiones, lo que

resulta en un sistema más rápido y seguro.

37

 Interfaz de Usuario Intuitiva

RobotStudio cuenta con una interfaz gráfica de usuario (GUI) que es tanto potente como

fácil de usar. La GUI permite a los usuarios arrastrar y soltar componentes en el espacio

de trabajo virtual, facilitando la creación de modelos y la programación de los robots.

 Bibliotecas y Módulos Adicionales

El software incluye una extensa biblioteca de componentes y módulos adicionales que

permiten a los usuarios añadir robots, herramientas y equipos específicos a sus

simulaciones. Además, ofrece soporte para la personalización y creación de

componentes específicos según las necesidades del proyecto.

3.1.3 Versiones y Compatibilidad

La versión utilizada en este proyecto es RobotStudio 2023.1, una de las más recientes y

avanzadas del software. Esta versión incorpora mejoras en la precisión de las simulaciones,

nuevas herramientas de optimización y una interfaz de usuario mejorada que facilita aún más el

uso del software.

RobotStudio es compatible con una amplia gama de controladores de robots ABB, incluyendo

los controladores IRC5, que son uno de los más avanzados del mercado. Esta compatibilidad

garantiza que las simulaciones y programaciones realizadas en RobotStudio se puedan transferir

de manera efectiva a los robots reales sin problemas de integración.

3.1.4 Beneficios del Uso de RobotStudio

El uso de RobotStudio ofrece múltiples beneficios para los ingenieros y las empresas que

implementan sistemas robóticos:

 Reducción de Costos

Al permitir la programación y simulación offline, RobotStudio reduce los costos

asociados con el tiempo de inactividad de la producción y los errores de programación.

 Mejora de la Eficiencia

Las herramientas de optimización de trayectorias y simulación permiten a los usuarios

mejorar la eficiencia operativa de los robots, reduciendo el tiempo de ciclo y

aumentando la productividad.

38

 Reducción de Riesgos

La capacidad de realizar pruebas y validaciones en un entorno virtual minimiza los

riesgos asociados con la implementación de nuevos sistemas robóticos, lo que resulta

en una transición más suave a la producción en vivo.

 Flexibilidad

RobotStudio ofrece un alto grado de flexibilidad, permitiendo a los usuarios adaptar las

simulaciones y programaciones a una amplia variedad de aplicaciones industriales.

 Formación y Capacitación

El entorno seguro y controlado de RobotStudio es ideal para la formación de nuevos

operadores y la capacitación continua de los ingenieros, permitiendo el desarrollo de

habilidades sin riesgos para la producción real.

Ilustración 9: Beneficio del uso de RobotStudio según ABB (ABB, 2025)

3.1.5 Limitaciones y Desafíos

A pesar de sus numerosas ventajas, RobotStudio también presenta algunas limitaciones. Por

ejemplo, aunque la simulación en 3D es altamente precisa, no siempre puede replicar con

exactitud todos los aspectos de la física del mundo real, como la fricción o el desgaste de los

materiales. Además, el software requiere una curva de aprendizaje, especialmente para aquellos

que son nuevos en la programación de robots o en el uso de entornos de simulación avanzada.

3.2 Matlab

MATLAB (abreviatura de Matrix Laboratory) es un entorno de programación y una plataforma

de cálculo numérico desarrollado por MathWorks. Es ampliamente utilizado en la ingeniería, la

39

ciencia y la economía para la resolución de problemas matemáticos, simulaciones, análisis de

datos, visualización y desarrollo de algoritmos.

MATLAB es especialmente conocido por su capacidad de manipular matrices y realizar cálculos

en gran escala con alta eficiencia y precisión, lo que lo convierte en una herramienta

imprescindible en diversas áreas de investigación y desarrollo.

Ilustración 10: Logo Matlab

3.2.1 Propósito y Aplicaciones

MATLAB está diseñado para facilitar el trabajo con matrices, que son la base de muchas

operaciones matemáticas en ingeniería y ciencia. Su principal propósito es proporcionar un

entorno en el que los usuarios puedan realizar cálculos numéricos, desarrollar algoritmos,

analizar datos y crear modelos y simulaciones de sistemas complejos.

MATLAB es utilizado en una amplia variedad de aplicaciones, que incluyen, pero no se limitan a:

 Procesamiento de Señales y Comunicaciones

MATLAB se utiliza para el diseño, análisis y simulación de sistemas de comunicación y

procesamiento de señales, como filtros, moduladores y demoduladores, análisis de

espectros, etc.

 Control de Sistemas

En ingeniería de control, MATLAB es una herramienta esencial para el diseño y análisis

de sistemas de control. Los ingenieros utilizan MATLAB para modelar sistemas

dinámicos, diseñar controladores y simular su comportamiento en un entorno virtual.

 Procesamiento de Imágenes y Visión Artificial

MATLAB es ampliamente utilizado para el procesamiento de imágenes y el desarrollo de

algoritmos de visión artificial, permitiendo la manipulación, mejora y análisis de

imágenes y videos.

40

 Finanzas Computacionales

MATLAB es utilizado en el ámbito financiero para la modelización de riesgos, análisis de

mercados, y la simulación de estrategias de inversión y otros procesos financieros.

 Robótica y Automatización

MATLAB, en combinación con otros productos de MathWorks, como Simulink, se utiliza

para el modelado, simulación y control de sistemas robóticos, permitiendo a los

ingenieros desarrollar algoritmos complejos y probarlos en un entorno de simulación

antes de su implementación real.

3.2.2 Características Principales

MATLAB es un software extremadamente versátil, con una amplia gama de características y

herramientas que lo hacen adecuado para un gran número de aplicaciones técnicas. Algunas de

las características más destacadas incluyen:

 Manipulación de Matrices y Álgebra Lineal

MATLAB ofrece una potente capacidad para la manipulación de matrices y el álgebra

lineal, permitiendo realizar operaciones complejas con matrices de manera eficiente.

Estas capacidades son fundamentales en áreas como la ingeniería de control, el

procesamiento de señales y la modelización matemática.

 Lenguaje de Programación de Alto Nivel

El lenguaje de programación de MATLAB es sencillo y fácil de aprender, con una sintaxis

intuitiva que permite escribir código de manera eficiente. Además, MATLAB soporta

programación orientada a objetos, lo que facilita la creación de estructuras de datos

complejas y algoritmos personalizados.

 Toolboxes Especializados

MATLAB ofrece una serie de toolboxes o conjuntos de herramientas especializados para

diferentes disciplinas, como el procesamiento de señales, control de sistemas, redes

neuronales, optimización, y mucho más. Estos toolboxes permiten a los usuarios aplicar

técnicas avanzadas y resolver problemas específicos de sus campos de estudio o trabajo.

 Visualización de Datos

MATLAB incluye herramientas avanzadas para la visualización de datos, que permiten a

los usuarios crear gráficos en 2D y 3D, así como animaciones para representar sus datos

de manera clara y efectiva. La capacidad de personalizar y exportar gráficos hace que

MATLAB sea una herramienta poderosa para la presentación de resultados.

41

 Simulink

Simulink es una extensión de MATLAB que proporciona un entorno para la simulación y

modelado de sistemas dinámicos. Es especialmente útil para el diseño de sistemas de

control, procesamiento de señales y sistemas embebidos, permitiendo a los usuarios

construir modelos gráficos que simulan el comportamiento de sistemas reales.

 Interfaz Gráfica de Usuario (GUI)

MATLAB permite a los usuarios diseñar y desarrollar interfaces gráficas de usuario

personalizadas para sus aplicaciones, facilitando la creación de herramientas

interactivas que pueden ser utilizadas por otros usuarios.

3.2.3 Versiones y Compatibilidad

La versión de MATLAB utilizada en este proyecto es MATLAB R2023a, la cual incluye las últimas

actualizaciones y mejoras en términos de funcionalidad, eficiencia y compatibilidad. MATLAB

R2023a introduce mejoras en el rendimiento, nuevas funciones matemáticas y gráficas, así como

actualizaciones en los toolboxes especializados.

MATLAB es compatible con una amplia variedad de plataformas, incluyendo Windows, macOS y

Linux, lo que facilita su integración en diferentes entornos de trabajo. Además, MATLAB es

altamente compatible con otros lenguajes de programación como C, C++, Java y Python, lo que

permite a los usuarios integrar MATLAB en flujos de trabajo más amplios y complejos.

3.2.4 Beneficios del Uso de MATLAB

MATLAB ofrece múltiples beneficios para ingenieros, científicos y profesionales de diferentes

disciplinas:

 Eficiencia en el Cálculo

La capacidad de MATLAB para manejar grandes volúmenes de datos y realizar cálculos

complejos de manera rápida y precisa es uno de sus mayores beneficios. Esto permite a

los usuarios abordar problemas complejos y obtener resultados de manera eficiente.

 Flexibilidad

MATLAB es extremadamente flexible, permitiendo a los usuarios personalizar y

extender su funcionalidad según las necesidades específicas del proyecto. Los toolboxes

especializados y la posibilidad de crear funciones personalizadas amplían

significativamente el alcance de lo que se puede lograr con MATLAB.

42

 Integración con Otros Sistemas

MATLAB se integra fácilmente con otros sistemas y lenguajes de programación, lo que

facilita su incorporación en flujos de trabajo existentes y la colaboración con otros

profesionales que utilizan diferentes herramientas.

 Facilidad de Uso

La interfaz intuitiva y el lenguaje de programación de alto nivel de MATLAB hacen que

sea accesible para usuarios con diferentes niveles de experiencia en programación,

desde principiantes hasta expertos.

 Amplio Soporte y Comunidad

MATLAB cuenta con una extensa documentación y una activa comunidad de usuarios,

lo que facilita el aprendizaje y la resolución de problemas. Además, MathWorks ofrece

soporte técnico y formación para ayudar a los usuarios a maximizar el uso del software.

3.2.5 Limitaciones y Desafíos

A pesar de sus muchas ventajas, MATLAB también presenta algunas limitaciones. Una de las

principales es su coste, que puede ser elevado, especialmente para usuarios individuales o

pequeñas empresas. Además, aunque MATLAB es extremadamente versátil, algunos usuarios

pueden encontrar que el rendimiento disminuye cuando se manejan conjuntos de datos

extremadamente grandes o se ejecutan simulaciones muy complejas.

Otra limitación es que, aunque MATLAB es potente para el cálculo numérico y el análisis de

datos, no está tan optimizado para el desarrollo de software a gran escala o para la integración

en sistemas embebidos, donde otros lenguajes de programación, como C o Python, pueden ser

más apropiados.

3.2.6 Conclusión

MATLAB es una herramienta integral que ha demostrado ser indispensable en muchas áreas de

la ingeniería, la ciencia y la industria. Su capacidad para manejar cálculos complejos, junto con

su flexibilidad, eficiencia y facilidad de uso, lo convierten en una opción preferida para muchos

profesionales. En este proyecto, MATLAB ha sido crucial para el análisis de datos, el desarrollo

de algoritmos y la simulación de sistemas, contribuyendo significativamente al éxito del

proyecto.

43

3.3 ABB IRC5 OPC

ABB IRC5 OPC Configuration es una herramienta esencial utilizada en la configuración y gestión

de comunicaciones entre el controlador de robots IRC5 de ABB y otros sistemas a través del

protocolo OPC (OLE for Process Control). Esta herramienta facilita la integración de robots

industriales en un entorno automatizado, permitiendo el intercambio de datos en tiempo real

entre el controlador y sistemas SCADA, PLCs u otros dispositivos de automatización.

3.3.1 Propósito y Aplicaciones

El controlador IRC5 de ABB es uno de los controladores de robots más avanzados y ampliamente

utilizados en la industria. Es el cerebro detrás de los robots industriales ABB, gestionando sus

movimientos, operaciones y la interacción con otros sistemas. Para facilitar esta interacción,

especialmente en entornos de automatización complejos, se utiliza la configuración OPC.

El propósito principal de la configuración OPC en el IRC5 es permitir la comunicación estándar y

la interoperabilidad entre diferentes dispositivos y sistemas de software en una planta de

producción. OPC es un protocolo abierto que facilita el intercambio de información entre

dispositivos de diferentes fabricantes, lo que es crucial para la integración de robots ABB en un

entorno de producción heterogéneo.

Las aplicaciones de ABB IRC5 OPC Configuration son diversas y abarcan múltiples industrias

donde se requiere la integración de robots con sistemas de control de procesos, monitoreo y

adquisición de datos. Algunos ejemplos incluyen:

 Automoción

Integración de robots en líneas de ensamblaje donde la comunicación en tiempo real

con sistemas SCADA es crítica para el control y monitoreo del proceso.

 Manufactura

En plantas de manufactura, donde es necesario que los robots interactúen con otros

equipos y sistemas de control para realizar tareas sincronizadas y garantizar la calidad

del producto.

 Industria Farmacéutica

Integración de robots en entornos controlados para la manipulación de materiales

sensibles, donde la comunicación y el monitoreo en tiempo real son esenciales para

cumplir con las normativas.

44

3.3.2 Características Principales

ABB IRC5 OPC Configuration proporciona una serie de características que facilitan la

configuración, monitoreo y gestión de la comunicación entre el controlador IRC5 y otros

sistemas. Algunas de las características más importantes incluyen:

 Interoperabilidad Estándar

Utilizando el protocolo OPC, la herramienta asegura que el controlador IRC5 pueda

comunicarse de manera efectiva con una amplia gama de dispositivos y sistemas,

independientemente del fabricante. Esto es esencial para la integración en plantas con

equipos heterogéneos.

 Configuración Sencilla y Flexible

La herramienta permite configurar de manera intuitiva los puntos de datos que se

compartirán entre el IRC5 y otros sistemas. Los usuarios pueden definir y mapear

señales específicas del robot, como posiciones, velocidades, estados de herramientas, y

otros parámetros operativos.

 Monitoreo en Tiempo Real

Una vez configurada, la herramienta facilita el monitoreo en tiempo real de los datos

del robot, lo que permite a los operadores y sistemas SCADA recibir y procesar datos

instantáneamente. Esto es crucial para la toma de decisiones y el control en tiempo real

de procesos automatizados.

 Compatibilidad con Múltiples Protocolos OPC

ABB IRC5 OPC Configuration soporta varios estándares de OPC, incluyendo OPC DA

(Data Access) y OPC UA (Unified Architecture), lo que ofrece flexibilidad en la integración

con diferentes tipos de sistemas de automatización.

 Seguridad y Fiabilidad

La herramienta está diseñada para garantizar la seguridad en la comunicación de datos,

protegiendo la información crítica del robot contra accesos no autorizados y

garantizando la integridad de los datos durante la transmisión.

3.3.3 Versiones y Compatibilidad

La herramienta de configuración OPC para IRC5 ha evolucionado a lo largo de los años, con cada

nueva versión proporcionando mejoras en la funcionalidad, seguridad y facilidad de uso. La

45

versión utilizada en este proyecto es ABB IRC5 OPC Configuration 2023, que incluye soporte

completo para OPC UA, mejorando la compatibilidad y la seguridad de las comunicaciones.

Esta versión es compatible con los controladores IRC5 más recientes y está diseñada para

integrarse sin problemas con los sistemas SCADA y PLC más utilizados en la industria. Además,

es compatible con las versiones anteriores de OPC, lo que facilita la integración en plantas que

operan con diferentes generaciones de tecnología de automatización.

3.3.4 Beneficios del Uso de ABB IRC5 OPC Configuration

El uso de ABB IRC5 OPC Configuration ofrece múltiples beneficios, tanto en términos de

integración como de operación:

 Integración Simplificada

La herramienta simplifica la tarea de integrar los robots ABB en sistemas de

automatización existentes, lo que reduce el tiempo de implementación y los costos

asociados.

 Comunicación Eficiente y en Tiempo Real

Al utilizar el protocolo OPC, la herramienta garantiza que los datos del robot se

transmitan de manera eficiente y confiable, lo que es crucial para el control en tiempo

real y la toma de decisiones.

 Flexibilidad en la Configuración

Los usuarios pueden personalizar la configuración para adaptarse a las necesidades

específicas de su aplicación, lo que permite una mayor flexibilidad y control sobre el

sistema robótico.

 Mejora en la Productividad

Al facilitar una comunicación fluida y en tiempo real, la herramienta ayuda a mejorar la

productividad de la planta, ya que los sistemas de control pueden reaccionar

rápidamente a los cambios en las operaciones del robot.

 Reducción de Errores

La capacidad de monitorear y ajustar la configuración OPC de manera precisa reduce la

posibilidad de errores en la comunicación, lo que a su vez mejora la fiabilidad del sistema

en general.

46

3.3.5 Limitaciones y Desafíos

Aunque ABB IRC5 OPC Configuration ofrece muchas ventajas, también presenta algunos

desafíos y limitaciones. Uno de los principales desafíos es la complejidad en la configuración

inicial, especialmente en entornos con una gran cantidad de señales y dispositivos que deben

ser integrados. La curva de aprendizaje puede ser empinada para los usuarios que no están

familiarizados con el protocolo OPC o con la arquitectura del sistema IRC5.

Otra limitación es que, aunque OPC UA ofrece mejoras significativas en términos de seguridad y

escalabilidad en comparación con OPC DA, su implementación puede requerir una

infraestructura de red más robusta y un mayor conocimiento técnico.

47

48

Capítulo 4

4. DESARROLLO DEL PROYECTO

En este capítulo se detallan todas las etapas del desarrollo del proyecto, desde la fase

de planificación hasta la implementación final. El propósito de esta sección es ofrecer

una descripción exhaustiva del proceso llevado a cabo para alcanzar los objetivos

establecidos en la fase inicial del proyecto.

El desarrollo del proyecto se ha estructurado en varias fases clave, que incluyen el diseño

conceptual, la simulación y modelado, la programación y control del sistema robótico, y

finalmente, la validación y pruebas del sistema en un entorno controlado. Cada una de

estas fases ha sido fundamental para garantizar que el proyecto no solo cumple con los

requisitos técnicos, sino que también se adapte a las necesidades prácticas y operativas

del entorno de aplicación.

En este apartado detallaremos las secciones donde se explican los pasos realizados,

comenzamos con el modelado de la estación, luego continuaremos con la programación

de los módulos de la estación, la definición de puntos y trayectorias y su lógica.

Finalmente programaremos la interfaz con el usuario en Matlab y configuraremos la

comunicación OPC UA necesaria para poder realizar la conexión entre estación y HMI.

4.1 PRIMERA FASE: RobotStudio

En esta primera fase vamos a explicar detalladamente como se ha diseñado la estación

sobre la que se trabajará en este proyecto, contando con que previamente han sido

definidas las características deseadas. Durante este proceso primero hemos generado

una estación, hemos añadido nuestros robots virtuales, les hemos ido posicionando en

las posiciones óptimas para un mejor desarrollo, hemos creado los controladores

correspondientes y finalmente generado los componentes inteligentes y las

trayectorias. Todas estas tareas definidas previamente son las que conformaran el

modelado de nuestra estación.

49

4.1.1 CONFIGURACIÓN Y MODELADO DE LA ESTACIÓN

Como hemos indicado previamente lo primero que vamos a hacer es abrir el software

RobotStudio y vamos a crear una nueva estación vacía.

Ilustración 11: Página inicio RobotStudio

Una vez ya tenemos creada la estación vacía comenzaremos con el modelado en

materia.

4.1.1.1 Modelado de la estación

Primero vamos a añadir el robot que vamos a emplear. Accedemos a la biblioteca ABB

donde tendremos acceso a todos los robots proporcionados por el propio software. La

oferta entre los distintos tipos es muy amplia: Articulados, Colaborativos, Paralelos,

SCARA, etc. Como ya hemos dicho antes, añadiremos el robot IRB 120.

50

Ilustración 12: Robots articulados de la biblioteca de ABB

Colocamos el robot en la posición fija deseada y lo duplicamos.

Ilustración 13: Fijar posición de un robot en RobotStudio

Una vez importados al proyecto nuestro robot, vamos a darles una posición fija respecto a la

referencia mundo.

51

Ilustración 14: Robots IRB 1200 duplicado en estación

Una vez ya tenemos colocados nuestros robots manipuladores, añadiremos nuestro YuMi 1400

Ilustración 15: Robots articulados de la biblioteca de ABB

Ilustración 16: Robot IRB 1400 YuMi en la estación de modelado

A continuación, creamos el piano, estará conformado por varios grupos de solidos con sus

correspondientes componentes inteligentes.

52

Comenzaremos generando un tetraedro para simular nuestras teclas blancas que tendrán las

siguientes medidas: Nota blanca (100, 800, 30).

Ilustración 17: Creación de un tetraedro "Nota Blanca"

Luego repetiremos el proceso para crear las teclas blancas de nuestro teclado, pero con distintas

dimensiones: Nota negra (100, 600, 30).

Ilustración 18: Creación de un tetraedro "Nota Negra"

Generamos tantos tetraedros como sean necesarios para poder formar nuestra primera escala,

obteniendo la una parte de nuestro teclado.

53

Ilustración 19: Primera escala del teclado de nuestra estación de RobotStudio

Normalmente los pianos están formados de ocho escalas, pero en nuestro caso estará

compuesto por un total de tres. La primera definida para uno de los robots, la última para el

otro y una común en el medio para ambas, donde tanto el primer IRB 1200 como el segundo

tendrá acceso a ella.

Una vez ya tenemos la composición completa del teclado, le añadiremos otro sólido tetraedro

con color negro, que será la base de nuestro instrumento.

Ilustración 20: Teclado en la estación de modelado de RobotStudio

Ahora vamos a modelar la herramienta que vamos a emplear con nuestros IRB 1200. Se trata de

una pinza inteligente con doble posición, encargada de pulsar las notas del teclado, nota a nota

de manera individual (Posición cerrada) y tocar dos notas a la vez en un intervalo de segunda

(Posición abierta). En este caso vamos a partir de primero hacer la geometría.

Primero crearemos la base de la pinza y para ello vamos a crear otro solido tetraedro de 80 mm

de largo, 30 mm de ancho y 110 mm de alto.

54

Ilustración 21: Creación base de la pinza inteligente

Ahora vamos a generar lo que es la brida creando un cilindro de radio 30 mm y altura 8 mm.

Ilustración 22: Creación brida de la pinza inteligente

Ya creadas la base y la brida vamos a modificar sus posiciones fijando nuevas coordenadas.

Ilustración 23: Posición fija de una pieza en RobotStudio

55

Vamos a fijar una posición respecto de la referencia mundo a la altura de la brida de 8 mm y

luego vamos a centrándolo, desplazándolo –40 mm en el eje X y –15 mm en el eje Y.

Ilustración 24: Definición de posiciones en RobotStudio

Aplicamos y podemos observar la forma de la base de nuestra pinza inteligente.

Ilustración 25: Cuerpo de nuestra pinza inteligente

Una vez ya tenemos la posición deseada, crearemos la unión a la que vamos a definir como

cuerpo. Generamos una unión y definimos qué figuras son las que queremos que lo formen,

quitando la opción de conservar.

56

Ilustración 26: Creación de unión de dos cuerpos en RobotStudio

Ya tenemos la base completa de nuestra herramienta, a lo que llamaremos cuerpo.

Ilustración 27: Unión del cuerpo de nuestra pinza inteligente

Ahora vamos a definir un color para la pinza y seleccionar un color.

Ilustración 28: Selección de color en RobotStudio

57

Escogemos un color y damos a aceptar y guardar.

Ilustración 29: Colores básicos para nuestro cuerpo de la pinza inteligente

Ya tenemos la base, pero nos falta crear las pinzas de nuestra herramienta. Creamos dos sólidos

tetraedros de 6 mm de largo, 30 mm de ancho y 90 de alto.

Una vez creada la primera, la tendremos que subir en altura 118 mm (8 mm de la base y 110

mm de la pinza) y la desplazaremos 40 mm a la derecha y para centrarla la llevaremos a –5 mm.

Para la otra garra de la pinza generamos un duplicado de esta última, la damos un offset respecto

de la anterior de –80 mm.

Ya tenemos nuestra herramienta modelada al completo.

Ilustración 30: Modelado de nuestra Pinza Inteligente en RobotStudio

Una vez ya tenemos la herramienta diseñada en nuestra estación, y nuestra estación modelada

tendrá la siguiente apariencia.

58

Ilustración 31: Estación modelada en RobotStudio

4.1.1.2 Controladores virtuales

Para crear el controlador virtual tendremos que ir a la pestaña Controlador que contiene los

controles utilizados para gestionar un controlador real y los controles necesarios para la

sincronización, configuración y tareas asignadas al controlador virtual. RobotStudio le permite

trabajar con un controlador fuera de línea, que constituye un controlador IRC5 virtual que se

ejecuta localmente en su PC. Este controlador fuera de línea también se conoce como el

controlador virtual (VC) (ABB, 2025).

RobotStudio también le permite trabajar con un controlador IRC5 físico real, que simplemente

se conoce como el controlador real. Las funciones de la pestaña Controlador pueden clasificarse

de la siguiente forma:

 Funciones para controladores tanto virtuales como reales

 Funciones para controladores reales

 Funciones para controladores virtuales

La programación offline es la mejor forma de maximizar la rentabilidad de la inversión en

sistemas robotizados. El software de simulación y programación offline de ABB, RobotStudio,

permite programar los robots en un PC de la oficina sin necesidad de parar la producción, lo que

permite realizar tareas como formación, programación y optimización.

La herramienta se basa en el controlador virtual de ABB, una copia exacta del software real que

hace funcionar sus robots en la producción. Esto permite realizar simulaciones muy realistas,

utilizando programas de robot reales y archivos de configuración idénticos a los que se utilizan

en el taller (ABB, 2025).

59

Para llevar a cabo el proyecto necesitaremos crear dos controladores virtuales, uno para los dos

robots IRB 1200 y otro para el robot IRB 1400 YuMi.

Ilustración 32: Creación de un controlador virtual en RobotStudio

Ilustración 33: Características de la creación de un nuevo controlador virtual en RobotStudio

60

El controlador lo crearemos con las siguientes características:

61

Ilustración 34: Configuración de un controlador virtual para dos IRB 1200 en RobotStudio

Podemos destacar la función 604-2 MultiMove Independent, función del sistema de RobotWare

que permite que varios robots y ejes externos trabajen de forma independiente y no simultánea,

aunque ambos estén vinculados a un mismo IRC5 o controlador virtual.

Una vez generado nuestro controlador, tendremos que crear nuestras señales de entrada y

salida, así como un dispositivo que será d645.

Ilustración 35: Señales de entrada y salida del controlador IRB 1200 de RobotStudio

El total de señale generadas para nuestro controlador donde son 16 entradas digitales y 13

salidas.

Nombre Tipo de señal Mapeo de
dispositivo

Categoría Nivel de
acceso

Función

DI_1_DO Digital Input 1 SCALE Todos Entrada digital para la nota do

DI_2_RE Digital Input 2 SCALE Todos Entrada digital para la nota re

DI_3_MI Digital Input 3 SCALE Todos Entrada digital para la nota mi

DI_4_FA Digital Input 4 SCALE Todos Entrada digital para la nota fa

DI_5_SOL Digital Input 5 SCALE Todos Entrada digital para la nota sol

DI_6_LA Digital Input 6 SCALE Todos Entrada digital para la nota la

62

DI_7_SI Digital Input 7 SCALE Todos Entrada digital para la nota si

DI_8_DanceON Digital Input 8 Function Todos Entrada digital que activa el YuMi

DI_9_Asc Digital Input 9 Function Todos Entrada digital para escala ascendente

DI_10_Desc Digital Input 10 Function Todos Entrada digital para escala descendente

DI_11_Fich Digital Input 11 Function Todos Entrada digital para tocar partitura

DI_12_Rand Digital Input 12 Function Todos Entrada digital para notas aleatorias

DI_13_NumN Digital Input 13 Function Todos Entrada digital para nota o intervalo

DI_14_Rob1 Digital Input 14 Function Todos Entrada digital para activar IRB 1200_1

DI_15_Rob2 Digital Input 15 Function Todos Entrada digital para activar IRB 1200_2

DI_16_Salir Digital Input 16 Exit Todos Entrada digital para salir de la simulación

DO_1_OneNote1 Digital Output 1 Tools Todos Salida digital al activar modo intervalo

DO_2_ActiveRobot1 Digital Output 2 Tools Todos Salida digital al activar IRB 1200_1

DO_3_OneNote2 Digital Output 3 Tools Todos Salida digital al activar modo intervalo

DO_4_ActiveRobot2 Digital Output 4 Tools Todos Salida digital al activar IRB 1200_2

DO_5_DanceON Digital Output 5 Funcion Todos Salida digital al activar IRB 1400 YuMi

DO_6_DO Digital Output 6 SCALE Todos Salida digital para la nota do

DO_7_RE Digital Output 7 SCALE Todos Salida digital para la nota re

DO_8_MI Digital Output 8 SCALE Todos Salida digital para la nota mi

DO_9_FA Digital Output 9 SCALE Todos Salida digital para la nota fa

DO_10_SOL Digital Output 10 SCALE Todos Salida digital para la nota sol

DO_11_LA Digital Output 11 SCALE Todos Salida digital para la nota la

DO_12_SI Digital Output 12 SCALE Todos Salida digital para la nota si

Tabla 8: I/O del controlador IRB 1200

Una vez ya tenemos agregado y configurado uno de los controladores, pasamos a configurar el

controlador encargado de los movimientos del IRB 1400, que tendrá las siguientes

características.

63

64

Ilustración 36: Configuración de un controlador virtual para un IRB 1400 en RobotStudio

Accedemos a las señales del dispositivo, con el fin de generar las entradas y salidas digitales y

así poder comunicarnos con otros dispositivos, ya sean controladores, módulos de RAPID u otros

softwares.

Ilustración 37: Señales de entrada y salida del controlador IRB 1200 de RobotStudio

En nuestro controlador para el YuMi el número de variables creadas es un total de ocho,

donde solo contaremos con entradas digitales.

65

Nombre Tipo de señal Mapeo de

dispositivo

Categoría Nivel de

acceso

Función

DI_0_ON Digital Input 0 Function Todos Entrada digital para activar baile

DI_1_DO Digital Input 1 SCALE Todos Entrada digital para la pose do

DI_2_RE Digital Input 2 SCALE Todos Entrada digital para la pose re

DI_3_MI Digital Input 3 SCALE Todos Entrada digital para la pose mi

DI_4_FA Digital Input 4 SCALE Todos Entrada digital para la pose fa

DI_5_SOL Digital Input 5 SCALE Todos Entrada digital para la pose sol

DI_6_LA Digital Input 6 SCALE Todos Entrada digital para la pose la

DI_7_SI Digital Input 7 SCALE Todos Entrada digital para la pose si

Tabla 9: I/O del controlador IRB 1400 YuMi

4.1.1.3 Componentes Inteligentes

Un componente inteligente es un objeto virtual que puede contener lógica interna, señales de

entrada/salida y comportamientos personalizados, utilizado para simular el funcionamiento de

equipos periféricos, mecanismos o procesos automatizados dentro de una celda robótica.

Ilustración 38: Componente inteligente en RobotStudio

Funciones de los componentes inteligentes:

Tabla 10: SmartArt de las funciones de los componentes inteligentes

• Se puedes agregar comportamientos como movimiento, animaciones o
respuestas a señales sin necesidad de programar directamente en RAPIDSimulación de lógica

• Se conectan mediante señales de entrada y salida vi rtuales con el controlador
del robotInteracción por señales

• Permite construir y reutilizar componentes personalizados en diferentes
proyectosDiseño modular

• Se pueden realizar basadas en condiciones o señales Animaciones y eventos

66

Para poder replicar el comportamiento lógico de nuestra estación, hemos creado varios

componentes inteligentes. Vamos a comenzar explicando todos los que componen las distintas

notas del piano.

Sensor de colisión

El sensor de colisión es un componente inteligente diseñado para simular la detección de

contacto entre un objeto (como una herramienta o el brazo de un robot) y otro elemento de la

celda virtual. Este componente se utiliza para detectar colisiones de forma visual o lógica,

permitiendo ejecutar respuestas programadas cuando se produce una interacción física no

deseada o intencional.

Características principales:

1. Detección automática de contacto físico entre el componente inteligente y otro

objeto 3D dentro del entorno en RobotStudio, nuestra pinza “Pieza1_Intervalos”.

2. Salida digital activada cuando se detecta una colisión.

Ilustración 38: Propiedades del componente sensor de colisión de RobotStudio

Sensor plano

Un sensor plano en RobotStudio es un componente inteligente diseñado para la detección de la

presencia o el paso de objetos dentro de un plano bidimensional específico dentro de nuestra

estación robótica. A través de la simulación de la activación de señales, el sensor plano nos

permitirá representar las interacciones en el entorno entre nuestro robot y nuestro

67

instrumento, considerando su posición en un plano, en este caso el sensor se encontrará

situación sobre la superficie de la tecla del piano en cuestión, en este primer caso de la nota Do.

Características principales:

1. Área de detección definida: El sensor plano tiene un área rectangular como nuestras

diferentes teclas, que será activado o desactivado según la presencia de objetos.

2. Señales de activación:

a. Entrada: ObjectDetected (si se detecta un objeto dentro del área del sensor)

b. Salida: Al activarse el sensor, puede enviar una señal como SensorActive = True,

la cual puede ser utilizada por el robot para tomar decisiones.

3. Configuración en el entorno virtual: El componente se posicione en un plano, y la

orientación del sensor puede ajustarse para que se alinee con la geometría de la celda

o el entorno del robot.

4. Uso de la lógica de detección: El sensor puede programarse para responder a eventos

específicos, como el paso de un objeto a través de su área de detección o la presencia

continua de un objeto dentro del área.

Ilustración 39: Propiedades del componente inteligente sensor plano de RobotStudio

Linear Move

Es una instrucción de movimiento que ordena al robot trasladar su herramienta desde un punto

a otro siguiendo una línea recta en el espacio tridimensional con una velocidad constante y sin

desviarse de esa trayectoria.

68

Características principales:

1. Mantiene la orientación de la herramienta constante (a menos que se especifique lo

contrario).

2. Ideal para operaciones donde es crucial mantener una trayectoria exacta.

3. Es más exigente en términos de cálculo que un movimiento punto a punto (MoveJ),

porque debe seguir el espacio cartesiano exacto.

Para ello emplearemos uno para mover linealmente hacia abajo la tecla al ser pulsada.

Ilustración 40: Propiedades del componente movimiento linear de RobotStudio

Una vez hemos desplazado el componente, lo devolvemos a su posición inicial.

Ilustración 41: Propiedades del componente movimiento linear de RobotStudio

69

Logic Gate

Para que se puedan realizar las dos trayectorias del objeto de forma consecutiva y no de

simultánea, le añadiremos una puerta lógica.

Es un bloque lógico virtual que se utiliza dentro del editor de comportamientos de un

componente inteligente para procesar señales de entrada y producir salidas basadas en

condiciones booleanas como AND, OR, NOT, entre otras.

Su función principal es permitir la construcción de lógicas condicionales internas, sin necesidad

de escribir código RAPID, facilitando el diseño de respuestas automáticas en la simulación.

Tipos de puerta:

1. AND: Solo da salida True si todas las entradas son True

2. OR: Da salida True si al menos una entrada es True

3. NOT: Invierte el valor lógico de la entrada

4. XOR: True si solo una de las entradas es True

Para poder devolver la tecla a su posición inicial, emplearemos una puerta lógica NOT que nos

permitirá saber cuando la nota puede volver a su posición inicial.

Ilustración 42: Propiedades del componente inteligente puerta lógica NOT de RobotStudio

Play Sound

Además de los movimientos vamos a añadirle sonido y color para una mayor iteración con la

estación usando un Sound Asset.

Es un archivo de sonido (normalmente .wav) que se puede importar y vincular a un componente

inteligente para que se reproduzca automáticamente en respuesta a una señal o evento

específico durante la simulación.

70

Características clave:

1. Formato compatible: Generalmente .wav, aunque puede aceptar otros formatos

básicos.

2. Reproducción controlada: Puedes vincular el sonido a eventos como una señal de

entrada, una colisión, una animación o una condición lógica.

3. Ubicación sonora: El sonido se puede reproducir desde la ubicación del componente,

simulando una fuente de sonido localizada.

4. No afecta el programa RAPID: El uso de sonidos es únicamente para efectos de

simulación visual y auditiva, no tiene.

Ilustración 43: Propiedades del componente inteligente reproducir sonido de RobotStudio

Para añadir el sonido correspondiente a cada nota, tendremos que ir a la pestaña componer, y

añadir el archivo manualmente, en este caso un .wav.

Para poder añadir el sonido en las propiedades del componente, tendremos que previamente

tener en nuestro dispositivo el sonido en formato.wav. En archivos añadiremos el sonido de la

nota.

Ilustración 44: Ajuste de propiedades del componente inteligente reproducir sonido de RobotStudio

Set Color

Es un bloque de acción en RobotStudio que se utiliza dentro del componente inteligente para

modificar dinámicamente el color de una parte del modelo, simulando cambios de estado

visuales, en nuestro caso le dará un color verde a la tecla que sea pulsada por el robot durante

la simulación.

71

Ilustración 45: Propiedades del componente inteligente configurar color de RobotStudio

En este caso solo tendremos una entrada ON y ninguna salida, y lo conformarán los elementos

mostrados en la imagen.

Ilustración 46: Lógica del componente inteligente nota do del teclado del RobotStudio

Ahora ya tenemos el teclado modelado, que estará formado por tres escalas en total.

72

Ilustración 47: Estructuración y componentes del piano de RobotStudio

Nuestro piano estará formado por la base y luego de sus tres escalas, donde cada escala

contará con siete notas blancas y cinco alteraciones, como se muestran en la imagen.

Configurado ya el teclado configuramos el componente pinza para convertirlo en un

mecanismo que podremos usar durante la simulación como herramienta.

Un mecanismo en RobotStudio es una entidad cinemática simulada compuesta por varias partes

conectadas mediante juntas (joints) que permiten movimientos definidos, como traslación o

rotación, en respuesta a señales, comandos o condiciones dentro del entorno virtual. Los

mecanismos se utilizan para representar y controlar componentes móviles de máquinas o

sistemas automatizados, como pistones, compuertas, prensas, etc.

Dentro de Modelado >> Mecanismo >> Crear mecanismo.

Ilustración 48: Creación de un mecanismo dentro de la ventana de modelado de RobotStudio

Primero le daremos nombre al mecanismo, en nuestro caso lo vamos a llamar pinza y definimos

el tipo de mecanismo como herramienta.

73

Ilustración 49: Creación de un mecanismo en RobotStudio

Definimos las distintas partes del mecanismo.

Ilustración 50: SmartArt de las partes que conforman un mecanismo en RobotStudio

Vamos a empezar por los eslabones.

Ilustración 51: Creación de un eslabón de un mecanismo en RobotStudio

Primero elegiremos el cuerpo, ya que será nuestro eslabón base.

Eslabones Ejes Datos de herramienta

74

Ilustración 52: Propiedades para la definición de un eslabón en RobotStudio

Realizaremos lo mismo con el resto de los eslabones que conforman nuestra pinza, la pinza

izquierda y la pinza derecha, y el cuerpo.

Ilustración 53: Eslabones que conforman una pinza inteligente en RobotStudio

Añadimos los ejes, el eje 1 donde el eslabón principal va a ser el eslabón base, nuestro cuerpo,

y como eslabón segundario va a ser la pinza izquierda. Queremos que dicha articulación sea

lineal, por lo que vamos a seleccionar tipo de eje prismático.

Como se trata del eslabón izquierdo, se tiene que mover a la derecha, por lo que los valores que

daremos a las posiciones serán 0 y 1 positivo.

Le tenemos que definir también el recorrido, por lo que lo fijaremos en 0 y 25 mm.

Ilustración 54: Eje 1 del mecanismo pinza de RobotStudio

75

Realizamos lo mismo con nuestro eslabón principal y el tercer eslabón (Pinza derecha) pero

cambiando los límites, donde nuestro límite inferior será -25 y el máximo será 0.

Ilustración 55: Eje 2 del mecanismo pinza de RobotStudio

Aplicados todos los cambios ya tendremos definidos todos los ejes de nuestro mecanismo

Ilustración 56: Ejes del mecanismo pinza de RobotStudio

Para configurar los datos generales de la herramienta Pinza le definiremos una masa de 1 Kg con

centro de gravedad en las siguientes coordenadas (0,0,50).

76

Ilustración 57: Propiedades de los datos de herramienta del mecanismo pinza de RobotStudio

Una vez la completada la configuración de nuestra pinza, compilamos nuestra herramienta.

Ilustración 58: Compilación mecanismo pinza de RobotStudio

Ya tenemos nuestra pinza definida y modelada como podemos ver en la imagen a continuación

con su TCP.

77

Ilustración 59: Herramienta pinza de RobotStudio

Ahora vamos a añadir dos posiciones: Pinza abierta y Pinza cerrada.

Para ello vamos a crear una pose Pinza_abierta y definimos valores de los ejes.

Ilustración 60: Creación Pose de la posición pinza abierta de RobotStudio

Cuando tenemos la primera posición, haremos lo mismo para la posición de pinza cerrada.

Ahora vamos a definir la lógica inteligente de la pinza.

Ilustración 61: Composición pinza de RobotStudio

78

Pose Mover

El Pose Mover es un componente inteligente (Smart Component) que permite que el TCP de un

robot se mueva a posición específica, en nuestro caso serán las poses definidas como

pinza_abierta y pinza_cerrada.

Ilustración 62: PoserMovers del mecanismo pinza de RobotStudio

Para poder completar la lógica de nuestro componente, vamos a añadir unas puertas lógicas.

Ilustración 63: LogicSRLatch del mecanismo pinza de RobotStudio

La puerta lógica usada es NOT

79

Ilustración 64: Puerta lógica NOT del mecanismo pinza en RobotStudio

El tipo de señal que emplearemos será un DigitalOutput funcionarán como nuestras dos salidas

de la pinza. Las llamaremos Dos_Notas y Una_Nota.

Ilustración 65: DigitalOutputs del mecanismo pinza de RobotStudio

Ilustración 67: Propiedades de los DigitalOutputs del mecanismo pinza de RobotStudio

La señal de entrada será única, y la vamos a denominar Pulsador. Mediante la activación de este

pulsador vamos a ser capaces de cambiar la posición de la pinza, a la deseada por el usuario .

80

Ilustración 668: Entrada digital pulsador del mecanismo pinza de RobotStudio

Finalmente obtendremos la siguiente Pinza de intervalos.

Ilustración 679: Diseño y lógica del mecanismo pinza de RobotStudio

4.1.1.4 Lógica de la estación

En RobotStudio, la lógica de la estación (Station Logic) es una herramienta que permite definir y

visualizar el comportamiento lógico de los dispositivos y elementos de una celda robótica virtual.

Funciona como un entorno de control basado en señales, en el que se establecen las relaciones

entre entradas, salidas, sensores, actuadores y el robot simulado.

El objetivo principal de esta herramienta es coordinar la interacción del robot con los periféricos

de la estación virtual, garantizando que la simulación represente fielmente las condiciones que

existirán en el entorno físico.

81

Elementos que se muestran en la lógica de una estación:

Señales digitales y analógicas

 Entradas digitales (DI) y analógicas (AI): simulan la información de sensores, finales de

carrera o detectores de pieza.

 Salidas digitales (DO) y analógicas (AO): controlan actuadores como pinzas, cilindros

neumáticos, bandas transportadoras o sistemas de iluminación.

Bloques lógicos y condiciones

 Se representan mediante diagramas de lógica (puertas AND, OR, NOT).

 Se utilizan temporizadores, comparadores y reglas condicionales (if/then).

Eventos y secuencias

 Se definen reglas que desencadenan acciones: por ejemplo, “si un sensor detecta pieza

→ activar pinza”.

 Permite sincronizar el ciclo de trabajo entre robot y periféricos.

Visualización del estado de la celda

 Se muestran animaciones en tiempo real, como la activación de un cilindro, la apertura

de una garra o el movimiento de una cinta transportadora.

Entradas digitales (DI) y
analógicas (AO)

Salidas digitales (DO) y
analogicas (AO)

Bloques lógicos y
condiciones

Eventos y secuencias Visualizacion del estado Controlador virtual

82

 Los cambios en las señales se reflejan con indicadores gráficos que facilitan la

depuración.

Interacción con el controlador virtual

 La lógica de la estación puede conectarse al controlador virtual del robot, lo que permite

que el programa RAPID y los periféricos funcionen en conjunto.

 Obtención de una simulación completa que reproduce el comportamiento del sistema

físico antes de su implementación.

Ilustración 68: Diseño de la lógica de la estación de modelado de RobotStudio

4.1.2 Trayectorias y puntos

Workobject

Un workObject define un sistema de coordenadas local (un marco de referencia) respecto al cual

se pueden programar las posiciones del robot

83

Ilustración 69: Creación de un objeto de trabajo en RobotStudio

Características:

 Representa un sistema de coordenadas móvil o fijo.

 Permite programas en términos relativos a una pieza, herramienta, otra estructura.

 Facilita la reutilización de programas sin modificar coordenadas absolutas.

 Incluye tanto la posición y orientación del origen del sistema, como una posible base

móvil.

Tipos:

 Fijo: Coordenadas relativas a la celda del robot.

 Móvil: Asociado a un objeto en movimiento .

Nuestros workobjects serán los distintos teclados sobre los que trabajarán los IRB 1200.

84

Ilustración 70: Workobjects de la estación de modelado de RobotStudio

Su definición en RAPID viene dada por los siguientes parámetros:

Ilustración 71: Definición del Workobject Teclado del módulo ModulePiano de RAPID

Los parámetros que lo definen son los siguientes:

 FALSE: El sistema de coordenadas del WorkObject está definido respecto al World

(Mundo, Sistema global del robot).

 TRUE: El objeto se mueve con la pieza.

 “ “: Nombre del userframe al que se referencia. Si está vacío el sistema de referencia

será el World.

 Posición y orientación del User Frame respecto al sistemta mundial (World). Se define

como un robtarget.

85

 Origen del objeto de trabajo (WorkObject Frame) dentro del uframe.

Robtarget

Un robtarget es una posición y orientación completa en el espacio caartesiano (X; Y, Z +

orientación del TCP), junto con información adicional necesaria para ejecutar movimientos

Suele ser el tipo de dato más empleado para la definición de posiciones que tiene como objetivo

el robot poder alcanzar.

Estos serán nuestros robtargets sobre el teclado_1.

Ilustración 72: Robtargets del objeto teclado de la estación de RobotStudio

Uno de los robtargets empleados posteriormente en RAPID:

Ilustración 73: Definición de Robtargets del módulo ModulePiano de RAPID

Consta de 4 partes [Pos, Orient, ConfJ, ConfL]:

1. Pos (posición):

Coordenadas cartesianas [X, Y, Z] en mm, respecto al sistema de referencia activo (por

ejemplo, World, Tool, o Workobject)

86

2. Orient (orientación):

Cuaterno que representa la orientación del TCP (herramienta). Se trata de un cuaterno

unitario, ya que es más estable que los ángulos de Euler.

3. ConfJ (Configuración articular):

Configuración del robot para alcanzar esa posición, con opción a múltiples

configuraciones posibles.

 Cf1 → Estado del eje 1 (frente/detrás)

 Cf4 → Orientación de la muñeca (arriba/abajo)

 Cf6 → Giro de la muñeca

 Cfx → Configuración externa (ejes externos o séptimo eje)

4. ConfL (Configuración de la orientación del eje 6 / posición externa)

Información adicional para movimientos con ejes externos o redundancia.

Ilustración 74: Robot IRB 1200 en posición del robtarget

Joint tarjets

Se define joint target como su propio nombre indica a la posición o target final queremos

alcanzar posicionan y definiendo las posiciones de las juntas o articulaciones del robot para

poder llegar a ella.

JointTarget es un tpo de posición definida por los ángulos individuales de cada eje del robot. En

lugar de especificar una posición en el espacio cartesiano (X; Y; Z) defines directamente la

configuración de las articulaciones del robot.

87

Características:

 Específica para un robot particular (ya que depende de su configuración de ejes).

 No se ve afectado por el sistema de coordenadas del WorkObject.

 Utilizado cuando se necesita precisión en las posiciones articulares, por ejemplo:

1. Posiciones de referencia de seguridad.

2. Movimiento de aproximación en espacios reducidos.

Estos son nuestros jointtargets:

Ilustración 75: Robot 1400 YuMi en posición del jointtarget

Algunos de nuestros jointtargets en nuestros módulos de RAPID:

Ilustración 76: Definición de los jointargets de nuestro módulo DanceL de RAPID

Está compuesto por dos listas de valores:

1. Ejes del robot principal (j1–j6):

 Representan los ángulos de cada articulación del robot, normalmente en

grados.

88

 El número depende del robot (los de 6 ejes tienen j1–j6).

2. Ejes externos (e1–e6):

 Representan los valores de los ejes adicionales que puedan estar conectados al

controlador (por ejemplo, un séptimo eje lineal, una posición de mesa rotativa

o un track).

 Si no hay ejes externos, estos valores suelen ser 0.

Path

Un path (camino o trayectoria) en robótica es la forma en que el robot se mueve de un punto A

a un punto B. Define el tipo de movimiento que el robot debe seguir para llegar a una posición

destino.

El path determinara cómo el robot se mueve entre dos robtarget o jointtarget, elementos

mencionados previamente, el tipo de movimiento que va a realizar, una línea o una curva, y el

nivel de precisión o suavidad del movimiento.

Tipos:

 MoveL (Lineal) --> Movimiento lineal del TCP, sigue una línea recta entre puntos. Es ideal

para aplicaciones que necesitan precisión en la trayectoria.

 MoveJ (Articular) --> El robot mueve sus articulaciones para llegar rápido a la posición

destino, no garantiza trayectoria lineal en el espacio. Es más rápido y eficiente para

moverse entre posiciones distantes.

 MoveC (Circular) --> El robot sigue un arco o curva circular, usando un punto intermedio

para definir la curva.

Nosotros lo hemos empleado para alcanzar las siguientes posiciones:

89

Ilustración 77: Path mostrado en nuestra estación de RobotStudio

90

4.1.3 RAPID

RAPID es el lenguaje de programación propietario desarrollado por ABB Robotics para sus

controladores de robots industriales. Se introdujo junto con el controlador S4 en 1994 y desde

entonces se ha consolidado como el estándar de programación en los sistemas de ABB (ABB,

2004-2017).

Se trata de un lenguaje de programación de alto nivel, diseñado específicamente para:

 Controlar la cinemática y el movimiento de robots industriales ABB.

 Gestionar entradas/salidas digitales y analógicas.

 Coordinar rutinas, ciclos y tareas complejas de producción.

 Integrar periféricos y sistemas externos dentro de una celda robótica.

Características principales:

 Sintaxis estructurada similar a lenguajes como Pascal o BASIC, lo que lo hace accesible

para programadores.

 Estructuración modular, con procedimientos, funciones y rutinas.

 Manejo de movimientos robóticos, mediante instrucciones predefinidas como MoveJ

(movimiento articular), MoveL (movimiento lineal) o MoveC (movimiento circular).

 Soporte de multitarea, lo que permite ejecutar rutinas paralelas para manejar

periféricos o procesos en segundo plano.

 Compatibilidad con simulación y control real, ya que el mismo código se puede ejecutar

en un controlador virtual (RobotStudio) o en un controlador físico del robot.

91

Usos principales:

 Programación de trayectorias y movimientos: definir la forma en que el robot se

desplaza en el espacio de trabajo.

 Control de dispositivos externos: como pinzas, sensores, cintas transportadoras,

mediante señales de E/S.

 Automatización de procesos: soldadura, ensamblaje, pintura, paletizado, entre otros.

 Simulación offline: probar y validar programas en RobotStudio sin necesidad de detener

la producción real.

 Interacción con sistemas externos: a través de comunicación por buses de campo

(Ethernet/IP, DeviceNet, Profibus, etc.).

4.1.3.1 Importación de los datos

Para poder emplear los puntos y trayectorias, definidas previamente, en nuestros módulos de

RAPID tendremos que realizar la importación de estas

Ilustración 78: Formas de sincronización con estación y RAPID en RobotStudio

92

Sincronización con RAPID

La opción Sincronizar con RAPID en RobotStudio se utiliza cuando se requiere mantener

actualizado el código RAPID entre el proyecto de simulación y el controlador virtual o físico. Esta

sincronización garantiza que los módulos, procedimientos y variables RAPID cargados en el

controlador se reflejen fielmente en el entorno de RobotStudio. Resulta especialmente útil

cuando se realizan modificaciones directamente desde el FlexPendant o desde el propio

controlador, como ajustes de rutinas, depuración de programas o cambios en variables

persistentes, y posteriormente se desea que dichos cambios queden registrados en el proyecto

de simulación. De esta forma se asegura la coherencia del programa entre el entorno de

desarrollo y el controlador que ejecuta el robot (ABB, 2019).

Sincronización con estación

Por otro lado, la opción Sincronizar con Estación está orientada a la coherencia entre el modelo

3D de la celda virtual en RobotStudio y el controlador virtual asociado. Con este método se

sincronizan aspectos físicos y de configuración, tales como los datos de herramientas (ToolData),

marcos de referencia (WObjData), trayectorias, posiciones y configuraciones de los robots

dentro del entorno de simulación. Es la opción adecuada cuando se realizan modificaciones en

la estación 3D, como mover un objeto de trabajo, crear una nueva herramienta o reconfigurar

la disposición de la celda, y se quiere garantizar que el controlador refleje exactamente la misma

configuración. De esta forma, la simulación y la realidad virtual del sistema se mantienen

consistentes, minimizando discrepancias durante la ejecución real (Kihlman, 2017; ABB, 2020).

4.1.3.2 Generación de módulos

En RAPID, un módulo es un archivo o bloque de código que agrupa funciones, rutinas,

procedimientos y declaraciones de datos relacionadas, con el objetivo de organizar el programa

y facilitar la reutilización del código en diferentes partes del programa o en distintos proyectos.

Cada módulo puede contener procedimientos (PROC), que son bloques de instrucciones

ejecutables, funciones (FUNC), que devuelven un valor, así como variables y constantes.

Además, los módulos se pueden llamar desde otros módulos, lo que permite estructurar

programas complejos y facilita el mantenimiento y la lectura del código al dividir un programa

grande en partes más manejables.

93

Módulos del Controlador 3

Ilustración 79: Desglose de los módulos de RAPID de nuestro Controlador3

Módulos del Controlador Irb120

Ilustración 80: Desglose de los módulos de RAPID de nuestro Controlador_Robots_IRB120

94

4.1.3.3 Definición de variables

Variables globales

Una variable global es una variable que puede ser accedida y modificada desde cualquier rutina,

procedimiento o módulo del programa, siempre y cuando se haya declarado con ese alcance

(ABB, 2004-2017) .

Características principales de las variables globales en RAPID:

 Se declaran fuera de procedimientos o funciones, normalmente al inicio de un módulo

o en un sistema de datos común.

 Están disponibles en todo el módulo donde fueron declaradas (y en otros, si se definen

como PERS o mediante módulos de sistema compartidos).

 Su valor puede permanecer constante entre ejecuciones si se declaran con la palabra

clave PERS (persistent).

 Si no son PERS, su valor se reinicia cada vez que se inicia el programa o se reinicia el

controlador.

 Son útiles para almacenar estados, configuraciones o parámetros que se necesitan en

varios lugares del programa.

Ilustración 81: Variables globales empleadas en el módulo ModulePiano del Controlador_Robots_IRB120 de
RAPID

Variables locales

Las variables locales son aquellas que Oslo existen dentro un de un procedimiento (PROC), o

función (FUNC).

Características de las variables locales en RAPID:

 Se declaran dentro de una rutina (PROC o FUNC).

95

 Solo pueden ser usadas dentro de esa rutina; no son visibles fuera de ella.

 Su valor se pierde cuando la rutina termina.

 Se utilizan para cálculos internos o datos temporales que no es necesario guardar ni

compartir.

 Ocupan menos memoria y evitan conflictos con variables globales.

Ilustración 82: Variable Local del módulo ModulePiano del Controlador_Robots_IRB120 de RAPID

Variables Constantes

Las variables constantes son aquellas que se definen con la palabra clave CONST.

Características de las constantes (CONST) en RAPID:

 Su valor no puede cambiar durante la ejecución del programa.

 Se usan cuando un dato es fijo y no debe modificarse.

 Mejoran la legibilidad y la seguridad del código, evitando cambios accidentales.

 Se pueden usar en expresiones, movimientos o cálculos.

 Pueden declararse a nivel global, general o incluso local dentro de un procedimiento.

Ilustración 83: Variables CONST del módulo ModulePiano del Controlador_Robots_IRB120 de RAPID

96

Variables Normales

Las variables declaradas con VAR son las más comunes y se consideran variables normales (no

persistentes).

Características de las variables VAR en RAPID:

 Se pueden modificar libremente durante la ejecución del programa.

 Se reinician a su valor inicial (o 0 si no se les asigna nada) cada vez que se reinicia el

programa o el controlador.

 Pueden declararse como:

o Locales → dentro de un procedimiento (PROC) o función (FUNC), visibles solo

ahí.

o Globales → fuera de procedimientos, accesibles desde todo el módulo.

o Generales → en un módulo de datos compartido, accesibles desde cualquier

módulo.

 Son útiles para cálculos temporales, estados momentáneos o datos que no necesitan

guardarse permanentemente.

Ilustración 84: Variables no persistentes del módulo ModulePiano del Controlador_Robots_IRB120 de RAPID

4.1.3.4 Creación de las interrupciones

El procedimiento Init en RAPID se encarga de preparar las interrupciones que va a usar el robot.

Primero borra cualquier configuración previa con IDelete para empezar desde cero. Luego

conecta cada interrupción con una rutina especial llamada TRAP, que es el bloque de código que

se ejecutará automáticamente cuando ocurra un evento. Finalmente, asigna cada entrada digital

del robot (DI_1 a DI_16) a su interrupción correspondiente mediante ISignalDI, de manera que,

cuando una de esas entradas se active, se dispare la rutina asociada.

97

Ilustración 85: Función Init del módulo ModulePiano del Controlador_Robots_IRB120 de RAPID

Las rutinas TRAP son diferentes a los procedimientos normales porque no se llaman

directamente dentro del programa, sino que se lanzan solas en cuanto sucede el evento que las

activa. Esto permite que el robot responda al instante, interrumpiendo lo que estaba haciendo

para ejecutar la acción indicada y, después, volver al punto donde lo dejó. Gracias a esto, el

sistema puede reaccionar a señales externas en tiempo real, como un sensor, un pulsador o una

orden de seguridad, sin necesidad de estar comprobando esas condiciones dentro del ciclo

principal. Los TRAPs empleados son los siguientes:

98

Para las distintas notas musicales del teclado, hemos creado un TRAP para cada uno de los

sonidos de la escala.

Ilustración 86: Rutina TRAP de la nota DO del módulo ModulePiano del Controlador_Robots_IRB120 de RAPID

Descripción del funcionamiento

1. Asignación de la nota: Cada TRAP establece el valor de la variable Nota_a_tocar con la

nota correspondiente (DO, RE, MI, FA, SOL, LA, SI). Esta variable es utilizada

posteriormente por el sistema para reproducir el sonido asociado.

2. Control de opciones: La variable opción se asigna con el valor 5, indicando al sistema

que se debe ejecutar la acción de reproducción de la nota seleccionada.

3. Activación de TRAPs: Cada TRAP se activa de forma independiente, generalmente

como respuesta a la interacción del usuario, ya sea a través de un teclado o un interfaz

gráfico, permitiendo un control preciso sobre qué nota se reproducirá en cada

momento.

Además de usar TRAPs para la gestión de notas musicales, se han implementado para

controlar distintas activaciones y desactivaciones de ciertas funciones:

 Activación del Robot IRB 1400 YuMi

Ilustración 87: Interrupción TRAP para activación/desactivación del robot YuMi

99

 Modo de empleo de la pinza instrumento

Ilustración 88: Interrupción TRAP para tocar una o dos notas en el teclado a través de los modos de la pinza
herramienta

 Activación de los distintos Robots IRB 120

Ilustración 89: Interrupciones TRAP de la activación/desactivación de los robots IRB120

Para mejorar la interacción del usuario y la dinámica del sistema, se implementaron TRAPs que

permiten seleccionar distintos modos de ejecución musical y controlar la finalización del

programa. Cada TRAP modifica la variable opción o nosalir según la acción deseada.

100

Estas variables función serán las que empleamos como los distintos CASE en nuestro menú

principal main.

 Activación del modo Escala Ascendente.

Ilustración 90: Interrupción TRAP de activación del modo Escala Ascendente

 Activación del modo Escala Descendente.

Ilustración 91: Interrupción TRAP de activación del modo Escala Descendente

 Activación del modo Lectura de Partitura.

Ilustración 92: Interrupción TRAP de activación del modo Leer Partitura

 Activación de modo Aleatorio.

Ilustración 93: Interrupción TRAP de activación del modo Aleatorio

101

 Activación de Finalización de Programa.

Ilustración 94: Interrupción TRAP de finalización del programa

4.1.3.5 Creación de las distintas funciones

Primero vamos a explicar las funciones principales usadas en los módulos del

Controlador_Robots_IRB120.

Num Rand

Descripción del funcionamiento

1. Semilla y generación de número aleatorio:

 La variable seed se actualiza mediante la fórmula (171 * seed) MOD 30269 para

garantizar un flujo pseudoaleatorio.

 random almacena un valor decimal entre 0 y 1, calculado a partir de la semilla.

2. Escalado al rango deseado:

 Se multiplica el valor decimal random por posibilidad (el límite superior del

rango) y se suma 1, para obtener un número entre 1 y posibilidad.

 La función Trunc elimina la parte decimal, asegurando que el resultado sea un

número entero.

3. Retorno del valor:

 La función devuelve el número entero generado, que puede ser utilizado para

seleccionar notas aleatorias u otras acciones dentro del sistema.

102

Ilustración 95: Función num rand para la generación de un numero aleatorio

Notas Aleatorias

Descripción del funcionamiento

1. Generación de nota aleatoria:

 Se utiliza la función rand(6) para generar un valor aleatorio entre 0 y 6,

correspondiente a las siete notas de la escala (DO, RE, MI, FA, SOL, LA, SI).

 El valor generado se asigna a la variable Nota_a_tocar, que indica la nota que se

reproducirá.

2. Reproducción de la nota:

 La función TocarNota(Nota_a_tocar) recibe la nota seleccionada

aleatoriamente y la reproduce en el sistema, permitiendo al usuario escuchar

una nota diferente cada vez que se ejecuta el procedimiento.

Ilustración 96: Función de RAPID NotasAleatorias

103

Leer Partitura

Descripción del funcionamiento

1. Apertura y lectura del fichero:

 Se utiliza Open para abrir el fichero de texto ubicado en "HOME:" y ReadStr para

leer cada línea del fichero.

 La variable saltodelinea controla si se debe avanzar a la siguiente línea de la

partitura.

2. Interpretación de las notas:

 Cada línea del fichero se analiza carácter por carácter mediante la estructura

TEST ... CASE.

 Según el carácter leído (C, D, E, F, G, A, B), se asigna la nota correspondiente a

la variable Nota_a_tocar.

3. Reproducción de las notas:

 La función TocarNota(Nota_a_tocar) se invoca tras determinar la nota,

permitiendo su reproducción inmediata.

4. Control de finalización:

 Si opción = 0 o la línea está vacía, el procedimiento finaliza mediante GOTO last.

 La estructura WHILE línea <> EOF garantiza que se procesen todas las líneas del

fichero hasta llegar al final.

Ruta del fichero:

C:\Users\User\Documents\RobotStudio\VirtualControllers\Controlador_Rob

ots_IRB120\HOME

Ilustración 97: Fichero partitura Sonrisas y Lágrimas.txt

104

Para trabajar con partituras almacenadas en ficheros de texto, se utiliza Open para abrir el

fichero en modo lectura y Close para cerrarlo al finalizar, garantizando que los recursos del

sistema se gestionen correctamente. La función ReadStr se emplea para leer el contenido línea

por línea o hasta un delimitador específico, lo que permite procesar cada nota de la partitura de

manera secuencial y asignarla directamente a la variable correspondiente. Estas funciones se

usan porque facilitan la lectura controlada del fichero, permiten recorrer todas las notas de

manera ordenada y aseguran que el fichero se cierre correctamente al terminar, evitando

errores o bloqueos de recursos.

105

Ilustración 98: Función de RAPID Leer Partitura

Se usan caracteres en lugar de strings completos porque cada nota de la escala (C, D, E, F, G, A,

B) se puede representar con un solo símbolo, lo que hace que el código sea más simple y rápido

de procesar. Con caracteres, podemos comparar directamente cada uno usando un CASE o un

IF sin tener que hacer operaciones de parsing de strings más largas, lo que también ahorra

memoria y tiempo de ejecución, algo importante en sistemas con recursos limitados. Además,

al leer la partitura línea por línea, procesar los caracteres uno a uno permite tocar las notas en

secuencia de manera directa y manejar mejor los espacios o saltos de línea. En resumen, usar

caracteres hace que todo sea más eficiente, sencillo y fácil de entender.

Ilustración 99: Relación entre la nomenclatura de las notas de un piano

106

Tocar Nota

Descripción del funcionamiento

1. Movimiento del robot:

 MoveJ mueve el robot a la posición de la tecla correspondiente según la nota

pulsada (notaPulsada) multiplicando la distancia base DistNota.

 Una vez pulsada la tecla, MoveL devuelve la pinza a la posición inicial

(Target_30).

2. Asignación de la nota:

 Según el valor de notaPulsada, se asigna el nombre de la nota ("Do", "Re", etc.)

a la variable nota y se activa la salida digital correspondiente (DO_6_DO,

DO_7_RE, etc.) para indicar que la nota se ha pulsado.

3. Comunicación con el servidor:

 SocketSend envía la nota reproducida al cliente o servidor conectado,

permitiendo registrar o mostrar la nota en tiempo real.

Ilustración 100: Función de RAPID Tocar Nota

107

Tocas notas Ascendentemente

Descripción del funcionamien

1. Escala ascendente completa (Tocar_Notas_Asc):

 Se recorre un bucle desde 0 hasta 6, correspondiente a las siete notas de la

escala (Do a Si).

 MoveJ desplaza la pinza a la tecla correspondiente según el índice cont y la

distancia entre notas DistNota.

 MoveL devuelve la pinza a la posición inicial después de pulsar cada tecla.

 Este procedimiento permite tocar la escala de manera secuencial y continua.

2. Escala ascendente por intervalos (Tocar_Notas_Asc_Intervalos):

 Similar al anterior, pero se saltan teclas de manera que el robot toca cada

segunda nota de la escala, generando intervalos.

 El bucle recorre un rango menor (0 a 3) y multiplica la distancia entre notas por

2 (DistNota*2).

Ilustración 101: Función de RAPID Tocar Notas Ascendentes

Ilustración 102: Función de RAPID Tocar notas ascendentes en intervalos

108

Tocar Notas Descendentemente

Descripción del funcionamiento

1. Escala descendente completa (Tocar_Notas_Desc):

 Se recorre un bucle desde 6 hasta 0, correspondiente a las notas de la escala de

Si a Do.

 Se invoca el procedimiento TocarNota(cont) para pulsar cada nota en orden

descendente.

2. Escala descendente por intervalos (Tocar_Notas_Desc_Intervalos):

 El procedimiento toca cada segunda nota descendente, generando intervalos

dentro de la escala.

 El bucle recorre un rango menor (3 a 0) y multiplica la distancia entre notas por

2 (DistNota*2) para saltar teclas.

Ilustración 103: Función de RAPID Tocar Notas Descendentes

Ilustración 104: Función Tocar Notas descendentes en Intervalos

109

A continuación, vamos a explicar las distintas funciones principales usadas en los módulos del

Controlador3.

Bailar Nota

Descripción del funcionamiento

1. Configuración inicial:

 ConfL\Off y ConfJ\Off desactivan configuraciones de seguridad o limitaciones de

eje, permitiendo movimientos libres del robot.

2. Movimientos según la nota:

 Se evalúa la variable nota y se ejecuta un movimiento absoluto (MoveAbsJ)

hacia una posición específica (target_do o target_2).

 Esto provoca que la pinza del robot se desplace de forma coordinada con la nota

que se está tocando, creando un efecto visual de baile.

3. Velocidad y precisión:

 La velocidad se ajusta con v100 y la precisión con fine, asegurando movimientos

suaves y sincronizados.

 La pinza utilizada es Pinza_Yumi_L, indicando que el brazo izquierdo del robot

realiza los movimientos.

Ilustración 105: Función de RAPID Bailar Nota

110

Bailar Normal

Descripción del funcionamiento

1. Configuración inicial:

 ConfL\Off y ConfJ\Off desactivan restricciones de seguridad o limitaciones de

eje, permitiendo movimientos libres y fluidos del robot.

2. Patrón de movimiento:

 El robot se desplaza alternativamente entre las posiciones target_do y target_2.

 Cada movimiento se realiza con velocidad v100 y precisión fine, asegurando

desplazamientos suaves.

3. Efecto visual:

 Este patrón repetitivo genera un “baile” sencillo del brazo izquierdo

(Pinza_Yumi_L) del robot, agregando dinamismo a la presentación musical.

Ilustración 106: Función de RAPID Bailar Normal

Leer Nota de IRB120

Descripción del funcionamiento

1. Recepción de datos:

 SocketReceive se utiliza para recibir información desde el socket sock,

asignando el valor recibido a la variable notaSocket.

 Esta variable contiene el nombre de la nota que el robot IRB1200 ha pulsado o

enviado.

111

2. Retorno de la nota:

 La función devuelve notaSocket, permitiendo que otros procedimientos del

sistema conozcan qué nota fue recibida y puedan procesarla, tocarla con el

robot Yumi o activar movimientos de baile.

Ilustración 107: Función de RAPID Leer nota de IRB120

4.1.3.6 Diagrama de flujo de las funciones main

La función mainPiano se encarga de controlar el piano robótico y de recibir comandos para

ejecutar distintas acciones musicales. Primero, inicializa variables y hardware mediante la

llamada a Init, y establece un bucle controlado por la variable nosalir que determina cuándo salir

de la rutina. A continuación, configura un socket servidor en la IP local y puerto 5000, lo que

permite que otros programas o robots se conecten y envíen órdenes. Dentro del bucle principal,

la función verifica si ActiveRobot1 está activo y, según el valor de la variable opcion, ejecuta

diferentes acciones: tocar escalas ascendentes o descendentes, leer partituras desde un archivo,

tocar notas aleatorias o tocar una nota específica. Tras cada acción, opcion se reinicia, y el bucle

espera medio segundo antes de continuar, asegurando un ciclo continuo de recepción de

órdenes y ejecución musical.

112

MODULEPIANO

Sel

Sel

Ilustración 108: Diagrama de flujo de la función main de ModulePiano de RAPID

INICIO

Inicialización Interrupciones

Opción = 0 && NoSalir = False

Creación Socket

NoSalir == true

= true

Opción

ActiveRobot == true

Salir

Una nota o Dos

notas

Notas Aleatorias Leer Partitura Escala Descendente Escala Ascendente

Leer Fichero
Rand

Tocar dos notas

(Pinza Abierta)

Tocar una nota

(Pinza Cerrada)

Tocar nota Rand

Parar Simulación

FIN

1 2 3 4 5

true

false

true

false

Una Dos

(Do, Re, Mi ,Fa,

Sol, La, Si)

0

113

Por su parte, la función mainL controla el robot bailarín y actúa como cliente que se conecta al

servidor creado por mainPiano. Al inicio, también inicializa variables y hardware, y establece un

socket cliente que se conecta a la IP y puerto donde corre mainPiano. Su bucle principal se activa

cuando un sensor (DI_0_ON) o una variable de control (dance_ON) indica que el robot debe

bailar. En cada iteración, muestra en pantalla un mensaje con la nota correspondiente y, según

la variable opcion, decide si debe leer la nota proveniente del piano y ejecutar un baile

específico, o si debe realizar un patrón de baile normal. Cada iteración del bucle espera 0.1

segundos, y al finalizar, el socket se cierra para liberar la conexión.

MODULEDANCE

Sel

Sel

Ilustración 109: Diagrama de flujo de la función main de DanceL de RAPID

Inicialización Interrupciones

Opción = 0 && NoSalir = False

Creación Socket

INICIO

Opción

DanceON == true

Salir BailarNormal LeerNotadeIRB120

1 2

true

false

true

false

NoSalir == true

= true

FIN

Parar Simulación

0

114

La relación entre ambas funciones se da a través del socket TCP/IP: mainPiano funciona como

servidor que toca notas y envía información, mientras que mainL actúa como cliente que recibe

las notas y realiza los movimientos de baile correspondientes. La variable opcion es el

mecanismo que coordina qué acción se ejecuta en cada robot, asegurando que el piano y el

bailarín trabajen de forma sincronizada. En conjunto, este sistema permite que las acciones del

piano robótico influyan directamente en los movimientos del robot bailarín, creando una

interacción musical y coreográfica entre ambos.

Ilustración 110: Diagrama de flujo de la relación entre los módulos

115

4.2 ABB IRC5 OPC CONFIGURATION

La arquitectura OPC UA (OPC Unified Architecture) es un estándar de comunicación para

entornos industriales que proporciona un modelo seguro, independiente del fabricante y de la

plataforma para el intercambio de información. A diferencia de los antiguos OPC basados en

COM/DCOM, OPC UA define según manual (ABB, 2020-2022):

 Un modelo de información orientado a objetos: los datos se exponen como un espacio

de direccionamiento jerárquico de nodos (Nodes). Cada nodo puede representar una

variable, un objeto, un método, un tipo de dato o una referencia.

 Namespaces y NodeIds: cada servidor organiza sus nodos en namespaces y cada nodo

tiene un identificador único (NodeId) que el cliente puede explorar.

 Mecanismos de acceso flexibles: lectura/escritura puntual (Read/Write), subscriptions

(publicación de cambios) y llamada a métodos (Method Call).

 Seguridad integrada: canales cifrados, firmas, certificados para autenticar

servidor/cliente y políticas de seguridad configurables.

 Portabilidad: funciona sobre TCP/UA Binary, WebSockets, HTTPS, etc., y no depende del

sistema operativo ni del lenguaje.

Gracias a este enfoque, OPC UA se usa tanto como pasarela de datos entre sistemas

heterogéneos (PLC, robots, SCADA, MES) como modelo de información que permite describir

estructura, tipos y comportamiento de los datos de forma explícita y autodescriptiva.

ABB proporciona un servidor OPC (IRC5 OPC) que puede ejecutarse en el controlador IRC5 real

o en el Controlador Virtual dentro de RobotStudio. Este servidor expone nodos que representan:

 Señales digitales y analógicas (I/O).

 Variables RAPID (numeric, bool, string, robtargets, wobjdata, ...).

 Estados del controlador y del robot (estados de seguridad, alarmas, posición, programa

en ejecución).

 Eventos y alarmas.

116

En RobotStudio se dispone de una herramienta de OPC Configuration que permite seleccionar

qué variables y señales del controlador se exportan (mapearlas) al espacio OPC UA.

Abriremos el programa ABB IRC5 OPC Configuration.

Ilustración 111: Interfaz inicial del programa ABB IRC5 OPC Configuration

Escaneamos para ver los controladores disponibles en nuestro PC para generar un nuevo alias.

Ilustración 112: Creación de un nuevo alias para un controlador

Observamos a continuación los dispositivos encontrados por el programa.

117

Ilustración 113: Dispositivos escaneados por ABB IRC5 OPC Configuration

Seleccionamos uno de ellos, y sus criterios de conexión, y lo creamos.

Ilustración 114: Creación de un controlador y sus criterios de conexión en ABB IRC5 OPC Configuration

Iniciamos el OPC Server

Ilustración 115: Activación y desactivación del Server Control de los dispositivos de ABB IRC5 OPC Configuration

118

4.3 MATLAB

OPC DA (Data Access) es uno de los estándares de la familia OPC Clásico, pensado

principalmente para el acceso a variables en tiempo real de controladores, PLCs, SCADA o

sistemas de simulación como RobotStudio.

En el caso de MATLAB, la comunicación con un servidor OPC DA se realiza mediante el OPC

Toolbox, que actúa como cliente OPC. Esto permite:

1. Conectarse a un servidor OPC DA (en este caso, el ABB OPC Server de RobotStudio).

2. Leer variables en tiempo real (tags, señales de sensores, estados del robot).

3. Escribir variables (enviar consignas, activar flags, modificar parámetros de control).

4. Monitorizar la calidad de la comunicación (estado bueno, malo o incierto).

Ilustración 116: APPs de Matlab

Ventajas de usar OPC DA en MATLAB

 Integración sencilla con RobotStudio (ya que ABB incluye un servidor OPC DA).

 No requiere configuraciones complejas de seguridad (a diferencia de OPC UA).

 Permite trabajar en tiempo real con los robots (ej. enviar consignas desde MATLAB y

recibir estados instantáneamente).

 MATLAB puede procesar datos en paralelo (filtrado, control avanzado, análisis

matemático).

119

Abrimos la aplicación y generamos un nuevo Host.

Ilustración 117: Interfaz OPC Data Explorer de Matlab

Le damos un nombre como ‘localhost’.

Ilustración 118: Definición del hostname de un host en OPC Data Explorer

Creamos un Cliente en el local host previamente definido.

120

Ilustración 119: Creación de un cliente en OPC Data explorer de Matlab

Ya conectado, lo conectamos con el servidor.

Ilustración 120: Conexión al servidor de OPC

Creamos el Grupo, que posteriormente emplearemos para la conexión OPC.

121

Ilustración 121: Creación de un grupo de variables en OPC Data Explorer de Matlab

Con el grupo ya creado, añadiremos las variables (Items).

Ilustración 122: Añadir Items en un grupo del localhost en OPC Data Explorer de Matlab

Seleccionamos las variables que vamos a modificar a través de la conexión creada con el

servidor de ABB IRC5 OPC.

122

Ilustración 123: Items disponibles de nuestros controladores

Ya seleccionados los Items elegidos, podremos comenzar con la simulación.

Ilustración 124: Explorador de variables del Server Control a través de OPC Data Explorer de Matlab

La definición y nombre de las variables e Items añadidos los emplearemos en el diseño de

nuestra pantalla de iteracción con App Designer.

123

App Designer es la herramienta integrada de MATLAB para crear aplicaciones gráficas

interactivas (GUIs), combinando diseño visual con programación en MATLAB para definir el

comportamiento de la aplicación. Permite diseñar interfaces mediante un editor visual (arrastrar

y soltar componentes) y luego añadir lógica mediante callbacks, clases, propiedades y métodos

(MathWorks, 2025a).

Características principales

1. Diseño visual de la interfaz: Se pueden arrastrar y soltar componentes como botones,

menús, controles deslizantes, tablas, gráficos, paneles y pestañas (MathWorks, 2025a).

2. Vistas de desarrollo:

 Design View para organizar visualmente la interfaz.

 Code View para programar el comportamiento de la aplicación (Matworks,

2025).

3. Programación orientada a objetos: Las aplicaciones creadas en App Designer son clases

que heredan de matlab.apps.AppBase. Se utilizan propiedades para los componentes

de la interfaz y métodos o callbacks para la lógica de interacción (MathWorks, 2025a).

4. Biblioteca de componentes modernos: Incluye componentes como botones, listas

desplegables, paneles, pestañas, indicadores, lámparas, interruptores y ejes para

gráficos 2D/3D (MathWorks, 2025c).

5. Componentes personalizados: El usuario puede crear y configurar sus propios

componentes para integrarlos en la biblioteca de App Designer (MathWorks, 2025d).

6. Propiedades y organización de datos: Se pueden definir propiedades privadas para

datos internos, públicas para accesibilidad y constantes para valores inmutables. Esto

facilita la organización de aplicaciones complejas (MathWorks, 2025e).

7. Compartir y desplegar aplicaciones: Las aplicaciones se pueden empaquetar en archivos

.mlappinstall, exportar como aplicaciones web o compilarlas en ejecutables con

MATLAB Compiler o Web App Server (MathWorks, 2025a).

En App Designer de MATLAB, la Code View es la vista en la que se escribe y organiza el código

asociado a la aplicación.

La Code View es el entorno donde se define la lógica funcional de la aplicación. En esta vista, el

usuario programa el comportamiento de los componentes a través de callbacks, funciones y

propiedades, que determinan cómo responde la aplicación ante acciones del usuario o eventos

internos del sistema (MathWorks, 2025a).

124

Los callbacks son bloques de código o métodos que se ejecutan automáticamente cuando ocurre

un evento asociado a un componente, como presionar un botón o mover un control deslizante;

son el vínculo entre la interfaz visual y la lógica de la aplicación. Las funciones son secciones de

código reutilizables que realizan tareas específicas dentro de la aplicación, ayudando a

estructurar y modular el programa. Por último, las propiedades son variables definidas dentro

de la clase de la aplicación que almacenan datos o estados de los componentes, pudiendo ser

públicas (accesibles desde otros scripts o apps) o privadas (solo disponibles dentro de la propia

aplicación). Esta organización orientada a objetos facilita el desarrollo de aplicaciones

complejas, robustas y mantenibles en MATLAB (MathWorks, 2025b).

Ilustración 125: PIANO DASHBOARD

125

5. COMUNICACIONES

La comunicación dentro de un entorno ABB puede darse en tres niveles principales:

1. Entre módulos de RAPID dentro de un mismo controlador.

2. Entre varios controladores o con dispositivos externos mediante sockets.

3. Con plataformas externas de supervisión e integración industrial a través de OPC UA.

5.1 Módulos de RAPID

Dentro de un mismo controlador IRC5, el software RAPID organiza los programas en módulos.

Cada módulo es una unidad que contiene:

 Procedimientos (PROCs): instrucciones ejecutables.

 Funciones (FUNCs): bloques que devuelven un valor.

 Datos locales (VAR, PERS, CONST).

Cuando varios módulos necesitan compartir información, se usan variables globales.

Características de las variables globales:

 Si una variable se declara con el modificador GLOBAL, puede ser accedida desde

cualquier otro módulo del sistema RAPID.

 Pueden ser de tipo VAR (volátil, se reinicia con cada ciclo) o PERS (persistente, mantiene

su valor incluso después de reinicios del programa).

 Esto permite que distintos módulos trabajen de manera coordinada sin necesidad de

duplicar información.

Aplicaciones típicas:

 Compartir estados de máquina (ej. "Robot en espera", "Ciclo iniciado").

 Implementar contadores globales (ej. piezas producidas, ciclos completados).

 Guardar parámetros de proceso (velocidades, límites de tolerancia, banderas de

seguridad).

En resumen, las variables globales facilitan la comunicación interna dentro de un mismo sistema

RAPID, mejorando el modularidad y el mantenimiento del programa.

126

5.2 Controladores

Cuando se necesita que dos o más controladores IRC5 trabajen juntos, o bien que un robot

intercambie datos con un PC u otro dispositivo, se utiliza la tecnología Socket Messaging de

RAPID.

Características del Socket Messaging:

 Basado en el estándar TCP/IP (red Ethernet).

 Uno de los equipos asume el rol de servidor y el otro de cliente.

o El servidor abre un puerto y espera conexiones.

o El cliente inicia la comunicación y envía/recibe datos.

 Los datos pueden ser:

o Cadenas de texto (mensajes, instrucciones simples).

o Números (coordenadas, estados).

o Mensajes estructurados (tablas de datos con un formato acordado).

Ejemplo de uso:

 Coordinación de robots en una celda:

o Un robot actúa como servidor, informando su estado de producción.

o Otro robot, como cliente, consulta ese estado y decide cuándo iniciar su tarea.

 Comunicación con un PC:

o El PC envía comandos de proceso al robot.

o El robot responde con estados, alarmas o resultados de producción.

Esto permite crear celdas robotizadas distribuidas sin necesidad de un PLC central, reduciendo

costos

5.3 RobotStudio y sistemas externos

En entornos de automatización industrial más amplios, se requiere que los robots se integren

con sistemas de supervisión y control como SCADA, MES o aplicaciones de Industria 4.0. Para

esto, se utiliza el estándar OPC UA (Open Platform Communications Unified Architecture).

127

Características de OPC UA en ABB:

 Es un protocolo cliente-servidor usado ampliamente en la industria.

 ABB RobotStudio (o directamente un IRC5 real) puede actuar como servidor OPC UA,

exponiendo variables y estados del robot.

 Los sistemas externos actúan como clientes OPC UA, leyendo y escribiendo datos en

tiempo real.

 Permite intercambiar información como:

o Entradas y salidas digitales/analógicas.

o Estados del robot (en movimiento, parado, en error).

o Variables RAPID (parámetros de proceso, valores de sensores, contadores).

Ejemplo de uso:

 Un SCADA puede leer en tiempo real las posiciones y estados de un robot en

RobotStudio.

 Un sistema MES puede recibir datos de producción simulados para validar flujos antes

de la puesta en marcha real.

 Una fábrica digital puede simular el comportamiento de toda una celda robotizada

conectada a un sistema central.

Esto convierte al robot ABB en un componente integrado dentro de un ecosistema digital,

facilitando la transición hacia Industria 4.0.

128

129

Capítulo 5

6. SIMULACIÓN

Para controlar las funciones de los robots se ha desarrollado un menú programado en RAPID,

empleando interrupciones que permiten al usuario seleccionar diferentes modos de ejecución

en tiempo real. Este menú constituye la base de la lógica de la estación, gestionando la

interacción musical de los IRB 120 y el acompañamiento del IRB 1400.

Las funciones implementadas fueron las siguientes:

1. Escala ascendente: los robots recorren las teclas del piano en orden ascendente, de

notas graves a agudas.

2. Escala descendente: ejecución en sentido contrario, de agudos a graves.

3. Lectura de partitura: interpretación de una secuencia de notas predefinidas en RAPID,

emulando una melodía.

4. Notas aleatorias: los robots ejecutan notas al azar, generando un patrón impredecible.

Las primeras pruebas del menú se realizaron utilizando el simulador de señales de E/S digitales

de RobotStudio. Este entorno permitió verificar de manera controlada que cada entrada

activaba correctamente la función correspondiente en el programa RAPID.

 Se comprobó la correspondencia entre entradas digitales y funciones musicales.

 Se validó el correcto funcionamiento de las interrupciones.

 Se garantizó que la lógica del menú respondía de manera inmediata a los cambios de

estado en las señales.

Para nuestra simulación en RobotStudio usaremos un estado inicial. El estado inicial hace

referencia a la condición o configuración del robot y su entorno de simulación antes de iniciar la

ejecución de un programa o ciclo de trabajo. Este estado es esencial para garantizar que las

simulaciones y pruebas se realicen de manera coherente, repetible y segura, ya que define la

posición, orientación y estado de los distintos elementos del sistema (robots, herramientas,

piezas, transportadores, etc.) al comienzo de una operación.

De manera general, el estado inicial incluye:

1. Posición y configuración del robot: El robot parte de una postura o posición conocida,

normalmente definida mediante un robtarget o una instrucción MoveJ hacia una

posición de “home” o “inicio”. Esto asegura que todas las trayectorias comiencen desde

un punto seguro y controlado.

130

2. Configuración de ejes y herramientas: Se especifican las herramientas activas (ToolData)

y los sistemas de referencia (WObjData) que se usarán al iniciar la simulación.

3. Estado de las señales y dispositivos externos: Las señales digitales o analógicas que

comunican el robot con otros sistemas (como PLCs o sensores) pueden tener valores

iniciales predefinidos mediante la configuración de Device Mapping o directamente

desde el entorno virtual.

4. Restablecimiento del entorno: En simulaciones complejas, el estado inicial puede incluir

la posición de piezas, mesas o cintas transportadoras, asegurando que el entorno virtual

esté en condiciones idénticas a las del comienzo del proceso real.

En la práctica, establecer un estado inicial correcto permite que la simulación sea reproducible,

que las trayectorias no generen colisiones inesperadas y que la ejecución en el controlador físico

coincida con lo ensayado en RobotStudio. Nosotros vamos a crear nuestro estado inicial que

llamaremos POS_INIT (Ilustración 128).

Ilustración 126: Ruta para la creación de un estado inicial en la estación de RobotStudio

Ilustración 127: Configuración final del estado inicial POS_INIT de nuestra estación de RobotStudio

131

A continuación, se muestran la correspondencia y coherencia de la lógica entre algunas de las

señales durante las primeras pruebas.

Señales de entrada activas: Escala ascendente Activación un IRB 120.

Señales de salida activas: Robot1 Activado.

Ilustración 128: Estación de RobotStudio en modo escala ascendente con un IRB 120 activado en movimiento

Señales de entrada activas: Escala ascendente, Activación ambos IRB 120 con Pinza cerrada.

Señales de salida activas: Ambos robots (ABB, 2025) IRB 120 activados y ambas pinzas

cerradas.

Ilustración 129: Estación de RobotStudio en modo escala ascendente con dos IRB 120 activados en movimiento

132

Señales de entrada activas: Nota Re , Activación ambos IRB 120 con Pinza cerrada.

Señales de salida activas: Ambos robots (ABB, 2025) IRB 120 activados y ambas pinzas

cerradas, Nota Re y Dance del YuMi 1400 que hemos activado mediando pulsador.

Ilustración 130: Estación de RobotStudio en modo escala ascendente con dos IRB 120 activados en movimiento y
el YuMi 1400 bailando (1)

Señales de entrada activas: Nota Re , Activación ambos IRB 120 con Pinza cerrada.

Señales de salida activas: Ambos robots (ABB, 2025) IRB 120 activados y ambas pinzas

cerradas, Nota Re y Dance del YuMi 1400 que hemos activado mediando pulsador.

Ilustración 131 : Estación de RobotStudio en modo escala ascendente con dos IRB 120 activados en movimiento y
el YuMi 1400 bailando (2)

133

Señales de entrada activas: Nota Sol , Activación ambos IRB 120 con Pinza cerrada.

Señales de salida activas: Ambos robots (ABB, 2025) IRB 120 activados y ambas pinzas

cerradas, Nota Sol y Dance del YuMi 1400 que hemos activado mediando pulsador.

Ilustración 132 : Estación de RobotStudio en modo escala ascendente con dos IRB 120 activados en movimiento y

el YuMi 1400 bailando (3)

Este paso resultó esencial para depurar el código RAPID y asegurar la estabilidad del sistema

antes de la integración con sistemas externos.

La simulación en RobotStudio permitió comprobar la integración completa del sistema:

 Ejecución precisa de las trayectorias de los IRB 120 en cada modo de funcionamiento.

 Sincronización entre los robots mediante comunicación por socket.

 Respuesta del IRB 1400, que ejecuta movimientos de baile coordinados con la música

generada.

 Activación correcta de funciones desde la HMI, confirmando la comunicación fluida vía

OPC UA.

 Ausencia de colisiones y correcta coordinación en la estación virtual.

Una vez validado el menú con el simulador de E/S digitales, se procedió a su integración con una

pantalla HMI desarrollada en MATLAB App Designer, conectada mediante OPC UA al controlador

IRC5.

 El usuario puede elegir desde la pantalla el tipo de ejecución deseada (ascendente,

descendente, partitura o aleatoria).

134

 También puede activar o desactivar el movimiento de los robots.

 Cada selección en la HMI se traduce en señales enviadas al controlador, que RAPID

interpreta en tiempo real.

Este avance permitió disponer de una interfaz gráfica intuitiva para interactuar con el sistema,

aumentando la usabilidad y acercando el proyecto a un contexto real de supervisión industrial.

Primero iniciamos el programa ABB IRC5 OPC UA Configuration, y confirmamos que somos

capaces de leer y escribir tanto variables de nuestro programa de RAPID como entradas y salidas

de nuestros controladores.

Ilustración 133: Start del programa de la comunicación de comunicaciones OPC UA de ABB

Como se muestra en la Ilustración, desde el programa somos capaces de modificar los valores y

visualizarlos.

135

Ilustración 134: Lectura/Escritura de señales y variables de RobotStudio a través de ABB IRC5 OPC UA
Configuration (1)

Ilustración 135: Lectura/Escritura de señales y variables de RobotStudio a través de ABB IRC5 OPC UA
Configuration (2)

Una vez verificado el correcto funcionamiento de las comunicaciones, ejecutaremos nuestra

HMI desde Matlab.

136

Ilustración 136: Ejecución de la pantalla HMi diseñada desde App Designer de Matlab

Demostración del correcto funcionamiento de nuestra interfaz.

Ilustración 137: Representación real de la ejecución de la función escala ascendente con un robot IRB 120

activado y el YuMi 1400 de la estación a través de la activación de señales desde el HMI diseñado en Matlab (1)

137

Ilustración 138: Representación real de la ejecución de la función escala ascendente con dos robots IRB 120
activados y el YuMi 1400 de la estación a través de la activación de señales desde el HMI diseñado en Matlab (2)

Ilustración 139: Representación real de la ejecución de la función escala ascendente con un robot IRB 120
activado y el YuMi 1400 de la estación a través de la activación de señales desde el HMI diseñado en Matlab (3)

138

7. RESULTADOS

El proyecto ha permitido desarrollar y validar una estación robótica completa en RobotStudio,

integrada por dos robots IRB 120 y un IRB 1400, destacando varios resultados relevantes desde

el punto de vista técnico, educativo y de simulación industrial.

En primer lugar, se ha demostrado la eficacia de la comunicación por socket entre los

controladores IRC5, logrando un intercambio de datos confiable y de baja latencia. Esta

arquitectura permitió coordinar las acciones de los IRB 120 encargados de tocar el teclado de

piano y del IRB 1400 encargado de realizar movimientos de baile, sin necesidad de un PLC

intermediario. La independencia de la comunicación socket asegura una arquitectura más

flexible y escalable, apta para futuras ampliaciones de la estación con más robots o dispositivos

externos.

El menú programado en RAPID se ha validado mediante un proceso en dos etapas: inicialmente

con el simulador de señales de E/S digitales de RobotStudio, y posteriormente integrando la HMI

desarrollada en MATLAB. Esto garantizó que todas las funciones —escala ascendente, escala

descendente, lectura de partitura, notas aleatorias y control de pinza abierta/cerrada, así como

la activación y desactivación de los distintos robots que componen la estación, respondieran

correctamente a las órdenes del usuario en tiempo real. La implementación de interrupciones

en RAPID permitió cambios inmediatos entre modos, asegurando un comportamiento

predecible y confiable de los robots en todas las situaciones.

El IRB 1400 se integró exitosamente como robot acompañante, mostrando que es posible

asignar tareas diferenciadas dentro de la misma celda robótica. Este robot interpreta las señales

enviadas por los IRB 120 y genera movimientos sincronizados con la música, demostrando la

eficacia de la coordinación entre múltiples robots en tiempo real. La simulación confirmó la

correcta sincronización y la ausencia de conflictos o colisiones, asegurando la seguridad y

eficiencia de la operación conjunta.

Por otro lado, la interfaz HMI en MATLAB, conectada a los controladores mediante OPC UA,

permitió una gestión remota e intuitiva del sistema. A través de esta interfaz, el usuario puede

monitorizar el estado de los robots, activar o desactivar funciones del menú y controlar la pinza

de cada robot. Esto no solo valida la integración de sistemas externos con los controladores

IRC5, sino que también evidencia la aplicabilidad de OPC UA como estándar industrial para

comunicación en tiempo real.

139

La simulación en RobotStudio se mostró altamente fiable, permitiendo validar trayectorias,

tiempos de ciclo, secuencias de movimiento y sincronización de todos los robots antes de

cualquier implementación física. Esto asegura que el sistema puede trasladarse posteriormente

a un entorno real sin modificaciones estructurales significativas, reduciendo riesgos y costos de

puesta en marcha.

Finalmente, desde el punto de vista educativo, el proyecto constituye una herramienta didáctica

de alto valor, permitiendo a los estudiantes comprender de manera práctica conceptos

avanzados de programación en RAPID, comunicación entre controladores y diseño de interfaces

HMI. La combinación de interacción musical y movimiento robótico genera un entorno

motivador, facilitando el aprendizaje aplicado y fomentando la creatividad en la resolución de

problemas industriales.

En conjunto, los resultados muestran que el sistema desarrollado es robusto, escalable y

pedagógicamente valioso, capaz de integrarse tanto en contextos educativos como en proyectos

de automatización industrial, demostrando su potencial como base para futuras ampliaciones y

aplicaciones en entornos de fábrica digital o Industria 4.0.

140

141

Capítulo 6

8. CONCLUSIONES

El desarrollo de la estación robótica en RobotStudio con dos manipuladores IRB 120 y un IRB

1400 ha permitido demostrar la viabilidad de integrar múltiples robots ABB en un mismo

entorno colaborativo, coordinados tanto a nivel de programación como de comunicaciones

industriales.

En primer lugar, se ha validado el uso de Socket Messaging como mecanismo de intercambio de

información entre los distintos controladores, estableciendo una arquitectura distribuida sin

necesidad de un PLC intermedio. Este enfoque ha permitido que los IRB 120 ejecuten la

interacción con el componente inteligente diseñado —el teclado de piano—, mientras que el

IRB 1400 adapta su comportamiento a modo de baile en función de la información recibida. La

utilización de interrupciones y menús programados en RAPID ha facilitado la creación de un

sistema flexible y modular, capaz de responder en tiempo real a las distintas entradas del

proceso.

En segundo lugar, la integración de la estación con un entorno externo de supervisión a través

del estándar OPC UA ha ampliado las capacidades del sistema, posibilitando la comunicación

entre los controladores IRC5 y una interfaz gráfica desarrollada en MATLAB App Designer. Esto

ha permitido dotar al usuario de una herramienta intuitiva y práctica, desde la cual puede

monitorizar el estado de los robots y enviar órdenes directamente al programa, acercando el

proyecto a un contexto real de Industria 4.0.

Desde una perspectiva educativa, el proyecto persigue como propósito fundamental familiarizar

a los estudiantes con las tecnologías y metodologías propias de la robótica industrial, utilizando

RobotStudio como entorno de diseño, simulación y validación. La estación creada constituye un

recurso didáctico innovador que permite comprender de manera práctica conceptos clave como

la programación en RAPID, la comunicación entre controladores, la integración de interfaces

externas y el diseño de aplicaciones robóticas interactivas. De este modo, se potencia el

aprendizaje aplicado y se fomenta la creatividad en la resolución de problemas complejos.

El uso combinado de RobotStudio como plataforma de simulación y programación, junto con las

tecnologías de comunicación implementadas, ha demostrado el potencial de los entornos

virtuales para validar celdas robóticas antes de su implementación física. Asimismo, este trabajo

142

pone de manifiesto la importancia de la interoperabilidad entre robots, controladores y sistemas

externos, condición indispensable en entornos productivos actuales y futuros.

En conclusión, el proyecto ha logrado no solo la simulación de un sistema innovador que

combina interacción musical y movimiento robótico, sino también la creación de una

infraestructura de comunicación robusta y escalable. Este enfoque abre la puerta a futuras

aplicaciones en ámbitos educativos, de entretenimiento e industriales, en los que la

colaboración entre múltiples robots y la interacción hombre-máquina son cada vez más

relevantes.

143

Líneas de trabajo futuro

Con el objetivo de ampliar y mejorar el sistema desarrollado, se plantean diversas líneas de

evolución:

1. Implementación física de la estación: trasladar la simulación a un entorno real con

robots ABB, validando el comportamiento de las comunicaciones y la interfaz en un

escenario productivo.

2. Optimización de la interacción musical: perfeccionar el reconocimiento y traducción de

notas musicales hacia movimientos robóticos más complejos y sincronizados.

3. Incorporación de visión artificial: integrar sistemas de visión y algoritmos de

procesamiento de imagen para que los robots puedan reaccionar a estímulos visuales o

gestuales, además de los sonoros.

4. Ampliación de la interfaz de usuario: evolucionar la aplicación desarrollada en MATLAB

hacia plataformas más accesibles, como HMI industriales, aplicaciones web o móviles.

5. Orientación hacia entornos educativos: consolidar el sistema como herramienta

didáctica en laboratorios universitarios o de formación profesional, permitiendo a los

estudiantes experimentar con programación, simulación y control de robots.

144

145

9. Bibliografía

Referencias

ABB. (2004-2017). Tecnichal reference manual, RAPID Instructions, Functions and Data types.

Obtenido de chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://library.e.abb.com/public/b227

fcd260204c4dbeb8a58f8002fe64/Rapid_instructions.pdf

ABB. (2020-2022). Application manual - IRC5 OPC UA Server. Obtenido de chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://library.e.abb.com/public/68db

219ad97b4119b1d42170a2872a5a/3HAC074394%20AM%20IRC5%20OPC%20UA%20S

erver-en.pdf?x-

sign=buiuR9xHIrMxYsX2rUUIBdfycerHrvQXxlrOEBDhcwJnJEPuRrdVD/MjSEMi7Wuv

ABB. (2022). Technical reference manual - RAPID kernel. Obtenido de

https://library.e.abb.com/public/f23f1c3e506a4383b635cff165cc6993/3HAC050946%

20TRM%20RAPID%20Kernel%20RW%206-en.pdf?x-

sign=Pshy8WRY3W/ZXxWomdcYd7x/zaMRc8NYHY5S/ybBrKSUa638uSsiKt1Rlq27VeH9

ABB. (2025). Manual del operador - RobotStudio. Obtenido de

https://search.abb.com/library/Download.aspx?DocumentID=3HAC032104-

005&LanguageCode=es&DocumentPartId=&Action=Launch

ABB. (2025). Operating manual. Obtenido de RobotStudio:

https://search.abb.com/library/Download.aspx?Action=Launch&DocumentID=3HAC03

2104-001&DocumentPartId=&LanguageCode=en&utm_source=chatgpt.com

ABB. (2025). RobotStudio Desktop. Obtenido de RobotStudio Desktop:

https://new.abb.com/products/robotics/es/software-y-

digital/robotstudio/robotstudio

Bruno Siciliano, L. S. (2010). Robotics Modelling, Planning and Control. Springer.

Garrido, G. M. (2015). TFG-P-252. Obtenido de En conjunto, estos proyectos reflejan la

evolución y el interés continuo de la Universidad de Valladolid en la integración de la

robótica industrial, la simulación mediante RobotStudio y el desarrollo de aplicaciones

educativas que favorecen el aprendizaj: https://uvadoc.uva.es/handle/10324/852

Herrero, J. A. (Septiembre de 2015). Modelado de una célula robótica con fines educativos

usando el programa Robot-Studio. Obtenido de chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://uvadoc.uva.es/bitstream/hand

le/10324/14441/TFG-P-

309.pdf;jsessionid=E92FCB1651F6A4CC177887374BDD91FA?sequence=1

Jiménez, C. J. (1 de Julio de 2019). DISEÑO DE UN SISTEMA ROBÓTICO EDUCATIVO PARA JUGAR

AL AJEDREZ CON ROBOTS INDUSTRIALES . Obtenido de chrome-

146

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://uvadoc.uva.es/bitstream/hand

le/10324/36877/TFG-I-1168.pdf?sequence=1&isAllowed=y

Jorge Elices. (30 de Julio de 2020). National Geographic. Obtenido de

https://www.nationalgeographic.com/history/history-magazine/article/ismail-al-

jazari-muslim-inventor-called-father-robotics

Kak, S. (2011). En The Beginning of Robotics. (págs. 142 - 146). IEEE Access.

Mata, E. P. (2022). Simulación de un Robot Colaborativo YuMi (ABB) en entorno RobotStudio

comandado desde MATLAB mediante protocolo OPC UA para tocar un Xilófono.

Obtenido de

https://www.bing.com/ck/a?!&&p=bda7e830a913214ed0a157038b87c285354ce983f

35b0bf14084ba0839b2fcfbJmltdHM9MTc2MTE3NzYwMA&ptn=3&ver=2&hsh=4&fclid

=0411548b-ddd3-6dbc-15c2-

4138dc676c93&psq=elena+pozas+mata+tfg&u=a1aHR0cHM6Ly91dmFkb2MudXZhLm

VzL2hhbmRsZS8xMDMyNC8

MathWorks. (2025). Code view in App Designer. Obtenido de MATLAB & Simulink

Documentation: https://es.mathworks.com/help/matlab/creating_guis/about-app-

designer.html

Mathworks. (2025). Create and edit apps in App Designer. Obtenido de MATLAB & Simulink

Documentation: https://es.mathworks.com/help/matlab/creating_guis/code-

view.html

Matworks. (2025). Mathworks. Obtenido de

https://es.mathworks.com/help/matlab/index.html?s_tid=CRUX_lftnav

Robótica. (5 de Septiembre de 2023). ¿Cúales son las partes de un robot? Obtenido de

https://www.esneca.lat/blog/partes-robot-caracteristicas/

Wikipedia. (27 de Agosto de 2024). Wikipedia . Obtenido de

https://es.wikipedia.org/wiki/Robot

