z . . ESCUELA DE INGENIERIAS
Universidad deValladolid INDUSTRIALES

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingenieria Electronica Industrial y Automatica

Estacion robética musical con Multi-Robots
ABB controlada desde Matlab

Autor:
Sanchez Calvo, Juana Li

Tutor:
Herreros Lopez, Alberto

Departamento de Ingenieria de Sistemas y Automatica

Valladolid, octubre 2025

RESUMEN

La robdtica industrial se ha convertido en un pilar de la automatizacién gracias a su precision,
rapidez y capacidad de integracion. Este Trabajo de Fin de Grado presenta la simulacién de una
estacidon robdtica en RobotStudio, compuesta por dos ABB IRB 120 y un IRB 14000 YuMi. Los IRB
120 ejecutan secuencias musicales en un teclado de piano programadas en RAPID, mientras el
IRB 14000 acompafia con movimientos sincronizados. La comunicacion entre controladores se
gestiona mediante Socket Messaging, y el control externo se realiza a través de una HMI en
MATLAB conectada mediante OPC UA. El proyecto tiene un enfoque educativo, al integrar
programacién, coordinacion multi-robot y disefio de interfaces, mostrando ademds una
aplicacion innovadora al vincular la robdtica con la musica.

Palabras clave: RobotStudio, RAPID, OPC UA, Socket Messaging, IRB.

ABSTRACT

Industrial robotics has become a cornerstone of automation thanks to its precision, speed, and
integration capabilities. This Final Degree Project presents the simulation of a robotic
workstation in RobotStudio, consisting of three ABB IRB 120 and an IRB 14000 YuMi. The IRB
120 units perform musical sequences on a piano keyboard programmed in RAPID, while the IRB
14000 accompanies with synchronized movements. Communication between controllers is
managed through Socket Messaging, and external control is carried out via a MATLAB HMI
connected using OPC UA. The project has an educational purpose, combining programming,
multi-robot coordination, and interface design, while exploring an innovative application by
linking robotics with music.

Keywords: RobotStudio, RAPID, OPC UA, Socket Messaging, IRB.

INDICE DE CONTENIDO

1. INTRODUCCION Y OBJETIVOS ...oveuviurieteitieteeteete vt etie et eteete ettt seaaeeveensens s, 16
1.1 INTRODUGCCION. ..ottt ettt e e e e e eeen s e e eeees 16
1.2 JUSTIFICACION DEL PROYECTO ...cvivietieuienieeieieeteete et eneeteete et eae et ere v eae e 16
1.3 OBJETIVOS ..ttt ettt et s e e e e e e e ee e s e e e e e enennnes 17
1.4 ESTRUCTURA DE LA MEMORIA ...ttt 18

2. MARCO TEORICO Y ESTADO DEL ARTEuiiiuieuiiitieiteenieeteeeieeeteeaeereeeteesesneesreeseeseennens 21
2.1 MARCO TEORICOviiutieiiecteeete ettt ettt ettt et eeteeae et e steebeeaeesve e 21

2.1.1 COMPONENEES DASICOS .. iiiuiiiii it e et et e e e et e et e e e e et e et e e et e e eaaaaeeas 25
2.1.1.1 (6eT 011 ¢o] Yo [o] SO OO PSP PP USUPPPPPPRTN 27
2.1.1.2 Esqueleto del roboto 27
2.1.1.3 ACLUROIES ettt e et e ettt s e e e e e e ettt s e e eeeeeeeneaaanes 27
2.1.1.4 Y=T 0 Ko] =L S PP PPTP PP 28
2.1.15 1Y/ =Y a1 o101 = Yo o oS 29
2.1.16 Sistema de CONIOl ...ccoivieiiiiii e 29

2.1.2 Clasificacion de 105 robOtS.......coeuiriiiiiiie e 30

2.2 ESTADO DEL ARTE ..ttt e eeeeeeettiiie e e e ettt e e e ettt s e e e e e ettt e e e e e e eeeenrbaa e eeeeas 33

3. METODOLOGIAY SOFTWARE UTILIZADOccoviiuieitieieeeieeteeeie ettt eve e eeve e 35

3.1 [20e] o o] A (Ve [o N TP PO PPPPPP PR UPPPPPPR 35
3.1.1 Proposito Y APlICACIONES civvvvuniiiiiiieeeiiiee ettt et e e e e e e e et eeaa e e aaaa s 35
3.1.2 Caracteristicas PriNCiPales........ccuuuiiiiiiiiiii i 36
3.1.3 Versionesy Compatibilidad........cccoeevuiiiiiiiiiiii 37
3.1.4 Beneficios del Uso de RODOtStUIOuuumuimimiiiiiiiiiiiiii 37
3.1.5 Limitaciones ¥ DESafiOSuiiiuiiii et 38

3.2 MALIAD e 38
3.2.1 PropOsito Y APliICACIONES «.uuiieeiii i eaas 39
3.2.2 Caracteristicas PrinCipales.....ci i 40
3.2.3 Versionesy Compatibilidad.........cccoeiiiiiiiiiiiiiiii e 41
3.2.4 Beneficios del Uso de MATLABiiiiiiiiieiiiiiiie ettt e ettt eeeeeeeneeas 41
3.2.5 Limitaciones ¥ DeSafios....ccuuuiiiiiiiii et e 42
3,26 CONCIUSION ..t 42

3.3 ABB IRCS5 OPC ...ttt 43

3.3.1 PropOsito Y APliICACIONES ...uivveiiii e 43
3.3.2 Caracteristicas PrinCipales.....ccocuuiiiiii i 44
3.3.3 Versionesy Compatibilidad........ccccouuiiiiiiiiiii e 44
3.3.4 Beneficios del Uso de ABB IRC5 OPC Configuration.........ccccceuuveiviieeiiineiineennnn. 45
3.3.5 Limitaciones ¥ DeSafios...ccuuuuiiiiiiiiii it 46
DESARROLLO DEL PROYECTO ... cciiiiiiiiiiieeeeiiieeiiii ettt e e e s e e e e e e e e 48
4.1 PRIMERA FASE: RODOTSEUTIO wevvvviiiiieeiiiiiiiiie e 48
4.1.1 CONFIGURACION Y MODELADO DE LAESTACIONcceeviiiiiiieieciieeiee e 49
4.1.1.1 Modelado de 12 @Stacion........ceuuuuuiiiiiiiiiiiii e 49
4.1.1.2 Controladores Virtualesoeieeeiiiiiiiiiiie e 58
4.1.1.3 Componentes INtElIZENTESeviuieiii e e 65
SENSOT e COLISTON ...ttt et e e e e e et e e e e eeeeeeees 66
Y= o T oYl o] - 1 o TP 66
LINEAI IMIOVE ...ttt ettt e e e e ta e e e an e 67
oY= { (ol CF- | { < B PP PP PP UPTPPPIN 69

[1 Y YU Lo PP UPRRPPRRR 69

Y= A 6o o] OO TROPPPPION 70
POSE IMIOVET .ottt 78
4.1.1.4 LOgica de 1a @STaCiON.....ccvuiiiiiie e 80
4.1.2 TrayeCtorias Y PUNTOS ovuuiiuiiiiiiiiii ettt et e et e e e aieeaa e et s aanseaseansaanseaneeaneees 82
LV 0T ¢ o] o 1=Tox AU 82
20e] o1 =T =4 SOOI 85

o] (a1 - 1 1= £ T T PP PP PP UPTPPI 86

2)1 o P OO UPPPRR 88
B.1.3 RAPID it 90
4.1.3.1 Importacion de 105 datosSeeeuiiiniiieii e 91
4.1.3.2 Generacion de MOAUIOSccouuiuiiiiiiiiiiiiiiii e 92
4.1.3.3 Definicion de variablescoouumiiiiiiiiiiiii 94
Variables BloDalesi i e 94
Variables l0CaleScoiiiiiiiiii e 94
Variables CONSTANTES ...uvvuiiiee it 95
Variables NOIMAlES....oeuureeiii e e e 96
4.1.3.4 Creacion de 1as interrUpPCiONESccuuuiiiiieii e e e e e e e e e aens 96

NUM RGN . et e e e e e e e e e e e reeee e es 101

NOTAS AlRATOIIAS . eeeiiiiiie ettt e e et e e e ettt e e e e e e e eeeb e e 102

Leer Partituraoiieiiiiiiii e 103

TOCAr NOTA coieeiiiii et 106

ToCas NOtas ASCENAENTEMENTE ..uuuuuieeeeiiieiiiiiee e ee e ettt e e re ettt e e e e et s 107

Tocar Notas DescendentemMeNnte........ccouiveuiiiiiiiiieiiiii e 108

Bailar NOTA ...eue e 109

Bailar NOIrmal ... e 110

Leer Nota de IRBL20iieeiiieiiiiiee ettt ettt e e et e e e e e ene e e e 110

4.1.3.6 Diagrama de flujo de las funciones maincccoviieiiiiiiiiin e 111

4.2 ABB IRC5 OPC CONFIGURATION ...euiiiieeeeiiieiiii ettt et e e e eee s 115
4.3 IMIATLAB ..ttt ettt e e e e ettt s e e e e e e e tb b s e e e e et eeebb b e e e eereenebaa e ees 118
5. COMUNICACIONES ...ttt ettt ettt e e e e e e et ettt s s e et eeetbba e s e eaeeeeeebbannsaeaaees 125
5.1 MOAUIOS A8 RAPID ...ttt ettt ettt e ettt e e e e et ebbb e e e e e e eeeaeenaa s 125
I A 6o T4 (o] F=To (o] ¢ = OO OPPPTTPPPPNN 126
5.3 RObOtStUdio ¥ SIStEMAs EXEEINOS. .. ittt e s e e e s eaias 126

6. SIMULACION ...ttt ettt ettt ettt es 129
7. RESULTADOS ...ttt ettt e et e e e e e eebt e e eeeees 138
8. CONCLUSIONES ...ttt e et e e e e e e e 141
Lineas de trabajo fULUIO ...ccuuiii e e 143

L T = 11 o1 1o -4 = i - ISP 145
0] LT =Y o Lol - T O PP PP O P UPPPPPPPTRRR 145

INDIC

llustracion 1:
llustracion 2:
llustracion 3:
llustracion 4:
llustracion 5:
llustracion 6:
llustracion 7:
[lustracion 8:
llustracion 9:

[lustracion 10:
[lustracion 11:
[lustracion 12:
[lustracion 13:
[lustracion 14:
[lustracion 15:
llustracion 16:
llustracion 17:
llustracion 18:
llustracion 19:
[lustracion 20:
[lustracion 21:
[lustracion 22:
[lustracion 23:
[lustracion 24:
[lustracion 25:
[lustracion 26:
llustracion 27:
llustracion 28:
llustracion 29:
[lustracién 30:
[lustracion 31:
[lustracion 32:
[lustracion 33:
[lustracion 34:
[lustracion 35:
[lustracion 36:
[lustracion 37:
[lustracion 39:
llustracion 40:
llustracion 41:
llustracion 42:
llustracion 43:

E DE [LUSTRACIONES

[20e] o o] Al 242 0t oA 0 ISP OPPTUPPUTR 17
Robot IRB 1400 YUMI DUGI A c.eeeiiiiieeiiii ettt et e e e 18
La Paloma de Arquitas: primer autdémata mecanico documentado (s. IV a.C) 21
La eolipila de Herén de Alejandria: primera maquina de vapor (10-70 a.C) 22
Torre de reloj astrondmica de Su SUNG (1088)cviveivuiieiiiiieeieiiiie e eeeien 22
Autématas musicales programables de Al-Jazari (1206)........ccceeevevviveereiineenennnn. 23
Smart Art Componentes de UNrobot......ccoouviiiiiiiiiiiin e 26
oY= Lol Vo] ool] ¥ e [To .Y 2] - 35
Beneficio del uso de RobotStudio segliin ABB (ABB, 2025)cccvvvvvevinnevnnnnnnnn. 38
LOZO Matlabh..ceu i 39
Pagina inicio RODOTSTUIOuuiiiiiiiiii e 49
Robots articulados de la biblioteca de ABBc..coovviiiiiiiiiiiiiiiiiiieeeei e, 50
Fijar posicidn de un robot en RobotStudioccevviiiiiiiiiiiiiiiiecce e 50
Robots IRB 1200 duplicado en estacionccceevvueeiiiiiiiiiiiei e eaies 51
Robots articulados de la biblioteca de ABBoovviiiiiiiiiiiiieiiiiieeeeiie e, 51
Robot IRB 1400 YuMi en la estacion de modeladocccvvevviviiiinniiiinnneeennnnn. 51
Creacion de un tetraedro "Nota Blanca"cccuuevviiiiiiniiiiiin e, 52
Creacion de un tetraedro "Nota Negra"ccouvuiiiiiiiiiiiiiiiiie e 52
Primera escala del teclado de nuestra estacion de RobotStudio 53
Teclado en la estacion de modelado de RobotStudiocccvvvviiiiiiniiiiiinennn. 53
Creacién base de la pinza inteligentecccoeeueiiiiiiiii e, 54
Creacién brida de la pinza inteligenteccevvviiiiiiii e, 54
Posicidn fija de una pieza en RobotStUdIOcvuviviiniiiiiiiiie e, 54
Definicién de posiciones en RObOtStUdIOcuvvvviiiniiiiiiciecice e 55
Cuerpo de nuestra pinza inteligenteccuvviviiiiiiiiiii s 55
Creacién de unidn de dos cuerpos en RobotStudiocceevvviiiiiiiiiniiiininin, 56
Unidn del cuerpo de nuestra pinza inteligenteccuvvvvviiiiiniiiiiinn e, 56
Seleccion de color en RODOTSTUIO w.vuuiiiiiieiiiiiie e 56
Colores basicos para nuestro cuerpo de la pinza inteligente...........cccoeeeevennnn.n. 57
Modelado de nuestra Pinza Inteligente en RobotStudio............cceevvviinniinnnnin. 57
Estacion modelada en ROBOtSTUTIO ...ccevvuniiiiiiiiiiiiiieccc e 58
Creacién de un controlador virtual en RobotStudioc.cccviviiiiiiiieiiineinn, 59
Caracteristicas de la creacién de un nuevo controlador virtual en RobotStudio 59
Configuracién de un controlador virtual para dos IRB 1200 en RobotStudio 61
Sefales de entrada y salida del controlador IRB 1200 de RobotStudio 61
Configuracidén de un controlador virtual para un IRB 1400 en RobotStudio 64
Sefales de entrada y salida del controlador IRB 1200 de RobotStudio 64
Propiedades del componente sensor de colisidn de RobotStudio 66
Propiedades del componente inteligente sensor plano de RobotStudio........... 67
Propiedades del componente movimiento linear de RobotStudio 68
Propiedades del componente movimiento linear de RobotStudio 68

Propiedades del componente inteligente puerta I6gica NOT de RobotStudio ... 69

10

llustracion 44:
[lustracion 45:
RobotStudio..
[lustracion 46:
llustracion 47:
llustracion 48:
llustracion 49:
[lustracion 50:
[lustracion 51:
llustracion 52:
[lustracién 53:
[lustracion 54:
[lustracién 55:
llustracion 56:
[lustracion 57:
[lustracion 58:
[lustracion 59:
[lustracion 60:
[lustracion 61:
[lustracion 62:
[lustracién 63:
[lustracion 64:
[lustracién 65:
[lustracion 66:
[lustracion 68:
[lustracion 69:
llustracion 70:
[lustracion 71:
[lustracion 72:
[lustracion 73:
llustracion 74:
llustracion 75:
llustracion 76:
[lustracion 77:
[lustracion 78:
llustracion 79:
[lustracion 80:
llustracion 81:
llustracion 82:
[lustracion 83:
Controlador_Robots_IRB120 de RAPID
[lustracion 84:

Propiedades del componente inteligente reproducir sonido de RobotStudio ... 70
Ajuste de propiedades del componente inteligente reproducir sonido de

... 70
Propiedades del componente inteligente configurar color de RobotStudio 71
Logica del componente inteligente nota do del teclado del RobotStudio 71
Estructuracién y componentes del piano de RobotStudioccccevvvvvvennennnnn. 72

Creacion de un mecanismo dentro de la ventana de modelado de RobotStudio

... 72
Creacion de un mecanismo en RobotStudioceeveviiiiiiiiiniiiiiiiiii e, 73
SmartArt de las partes que conforman un mecanismo en RobotStudio............ 73
Creacion de un eslabdn de un mecanismo en RobotStudioccccevvveeevennnnn.. 73
Propiedades para la definicion de un eslabdn en RobotStudioceeeuneee. 74
Eslabones que conforman una pinza inteligente en RobotStudio..................... 74
Eje 1 del mecanismo pinza de RobotStudioc.cevviiiiiiiiiiiiiiie 74
Eje 2 del mecanismo pinza de RobotStudiocoevvviiiiiiiiiiiiiiie e 75
Ejes del mecanismo pinza de RObotStudiocccuvviiiiiiiiiiiiiiiiieeeecce e, 75

Propiedades de los datos de herramienta del mecanismo pinza de RobotStudio

... 76
Compilacién mecanismo pinza de RobotStudioccoevvveviiiiiiiiiiiiiinieeeie, 76
Herramienta pinza de RObotStudio.......c.covuiviiiiiiiiiii e 77
Creacién Pose de la posicidn pinza abierta de RobotStudioccccevvvnvennnnnenn. 77
Composicidn pinza de RobotStudioc.uovvviiiiiiiiiiii e, 77
PoserMovers del mecanismo pinza de RobotStudio........ccceevviiiiiiiiiniiiniinennnen, 78
LogicSRLatch del mecanismo pinza de RobotStudioccceevviiiiiiiiiiniinennnen. 78
Puerta légica NOT del mecanismo pinza en RobotStudiocoeevvvnvevvnnennn. 79
DigitalOutputs del mecanismo pinza de RobotStudio..........ccccevvieiiiiiiiinennnnnen. 79
Entrada digital pulsador del mecanismo pinza de RobotStudio............c.c..c....... 80
Disefio y légica del mecanismo pinza de RobotStudiocceevveeiiiiiiinennnnnen. 80
Disefio de la légica de la estacion de modelado de RobotStudio 82
Creacién de un objeto de trabajo en RobotStudioccoevvviiiiiiiiiniiiiiin, 83
Workobjects de la estacién de modelado de RobotStudio...........ccoeevvvneennnnnene. 84
Definicién del Workobject Teclado del médulo ModulePiano de RAPID 84
Robtargets del objeto teclado de la estacién de RobotStudio..........c.ccevneennnees 85
Definicion de Robtargets del médulo ModulePiano de RAPIDcccueevuneees 85
Robot IRB 1200 en posicidn del robtargetccceeveveiiieereiiiieeciiiee e, 86
Robot 1400 YuMi en posicidn del jointtarget.......cooevveniiiiiiiiiiiiieeeeeea 87
Definicién de los jointargets de nuestro médulo Dancel de RAPID 87
Path mostrado en nuestra estacion de RobotStudioccceevevvviineiiiiinneennnnn. 89
Formas de sincronizacién con estacion y RAPID en RobotStudio...................... 91
Desglose de los médulos de RAPID de nuestro Controlador3cccceveeenneees 93

Desglose de los médulos de RAPID de nuestro Controlador_Robots_IRB120....93
Variables globales empleadas en el médulo ModulePiano del

Variable Local del médulo ModulePiano del Controlador_Robots_IRB120 de

llustracion 85: Variables CONST del médulo ModulePiano del Controlador_Robots IRB120 de

RAPID ..ttt ettt ettt e e ettt e e e e e e et e bbb e e e e et e bbb e e e e e eeeetbbaaan s 95
llustracion 86: Variables no persistentes del médulo ModulePiano del
Controlador_Robots IRB120 de RAPIDccvuiiiiii et e e e e e e e e e e v e e e e e e e aaaaas 96
llustracion 87: Funcidn Init del médulo ModulePiano del Controlador_Robots IRB120 de RAPID
... 97
[lustracion 88: Rutina TRAP de la nota DO del médulo ModulePiano del
Controlador_Robots_IRB120 de RAPIDcevuiiiiiieiii et e e e e e e e e e ea e e eaa s 98
[lustracion 89: Interrupcion TRAP para activacidon/desactivacidn del robot YuMi 98
llustracion 90: Interrupcidn TRAP para tocar una o dos notas en el teclado a través de los
Modos de la Pinza herramienta.......ovviuiiiiiii e 99
llustracion 91: Interrupciones TRAP de la activacidn/desactivacion de los robots IRB120......... 99
llustracion 92: Interrupcion TRAP de activacion del modo Escala Ascendentec.......... 100
llustracion 93: Interrupcion TRAP de activacion del modo Escala Descendente 100
llustracion 94: Interrupcidon TRAP de activacion del modo Leer Partituracceeevvnneennnnnes 100
llustracion 95: Interrupcidon TRAP de activacion del modo Aleatoriocceevvvvivieeiinneiinnnen. 100
llustracion 96: Interrupcidon TRAP de finalizacion del programacccovevviieiiiiiiiiieeciieeei, 101
llustracion 97: Funcién num rand para la generacion de un numero aleatorio...........ccc........ 102
[lustracion 98: Funcion de RAPID NOtasAIEatorias . ..c.uuveeiiiuieiiiiiiie et 102
llustracién 99: Fichero partitura Sonrisas y LArimas.tXtcoeeevuiiiiiiiiiiiieiiie e e 103
[lustracion 100: Funcidn de RAPID Leer Partitura........uvveeiiiinieiiiiieeieie e 105
llustracion 101: Relacién entre la nomenclatura de las notas de un piano..........ccccceeveeeennnes 105
llustracion 102: Funcidn de RAPID TOCAr NOTa ...uuuiiiiiiieeiiiieeeiiiiie e et eeeevs e eevn e e eeaeeeaeee 106
[lustracion 103: Funcién de RAPID Tocar Notas Ascendentescceuuveeeeieiieeeiiineeeiinneeeens 107
[lustracidn 104: Funcidn de RAPID Tocar notas ascendentes enintervalosccccceevvvnnnnn. 107
[lustracion 105: Funcién de RAPID Tocar Notas Descendentes.......oceeuvuvveveiiineeieiineeeiinnnennnns 108
llustracion 106: Funcién Tocar Notas descendentes en Intervalosccooeevveevveveiiineieiiinnennnn. 108
llustracion 107: Funcién de RAPID Bailar NOta.......ocvuvuiiiiiiiineiiiiis et 109
[lustracion 108: Funcién de RAPID Bailar NOrmal.........coveviiiiiiiiiiiiiiiiiei e 110
[lustracion 109: Funcién de RAPID Leer nota de IRB120oeevevuuieeiiiinneeiiiieeeeiiineeeeiineeees 111
llustracion 110: Diagrama de flujo de la funcidon main de ModulePiano de RAPID 112
llustracion 111: Diagrama de flujo de la funcién main de DancelL de RAPIDc.eeeuneees 113
llustracion 112: Diagrama de flujo de la relacién entre los modulosccoeevvveiiiieeiineinnnnen. 114
llustracion 113: Interfaz inicial del programa ABB IRC5 OPC Configuration..........cc.cceeeeennnnns 116
[lustracion 114: Creacion de un nuevo alias para un controlador.........cccceeeeiiiiiiiineiiineninn, 116
llustracion 115: Dispositivos escaneados por ABB IRC5 OPC Configuration..........cccceevueeennnnes 117
llustracion 116: Creacion de un controlador y sus criterios de conexidon en ABB IRC5 OPC

(0o o1 1= =Y o o PP 117
llustracién 117: Activacion y desactivacidn del Server Control de los dispositivos de ABB IRC5
(0] O 0o o1 7= U= 4 (oY o P 117
[lustracion 118: APPs de Matlabcoouuiiiiiiiiiiii e 118
llustracion 119: Interfaz OPC Data Explorer de Matlab........ccoooivviiiiiiiiiniiiii i 119
llustracion 120: Definicién del hostname de un host en OPC Data Explorer.......c.ccccccvvvunens 119
llustracion 121: Creacion de un cliente en OPC Data explorer de Matlabcccoevvvneennnnios 120

llustracion 122: Conexidn al servidor de OPCccevuiiiiiiiiii e e e e eaan e eeae 120
llustracion 123: Creacion de un grupo de variables en OPC Data Explorer de Matlab............ 121
llustracion 124: Aiadir Items en un grupo del localhost en OPC Data Explorer de Matlab 121
llustracion 125: Items disponibles de nuestros controladoresc..ccevevviieeiiiieiiieeiiieeeie, 122
llustracion 126: Explorador de variables del Server Control a través de OPC Data Explorer de

llustracion 127: PIANO DASHBOARDccittuiieiiii e ettt e e et e e e ettt e e e e et s e e eeta s e e e tbseesesnaneaeees 124
llustracion 128: Ruta para la creacidon de un estado inicial en la estacién de RobotStudio 130
llustracion 129: Configuracidn final del estado inicial POS_INIT de nuestra estacién de

(200 oTo) iy (T | o H PP TPPPRTRRPPPIN 130
[lustracidn 130: Estacion de RobotStudio en modo escala ascendente con un IRB 120 activado
BN MOVIMIENTO ettt ittt ettt ettt e e et e et e et e et e it e et s et e eaeenetasesasenaanesneeranns 131
[lustracidn 131: Estacion de RobotStudio en modo escala ascendente con dos IRB 120
ACtiVAdOS €N MOVIMIENTO .. ciiitiieiiiii ettt e et e ettt e e e et e e e e etn e e eeena e eeeennes 131
llustracion 132: Estacion de RobotStudio en modo escala ascendente con dos IRB 120
activados en movimiento y el YUMi 1400 bailando (1) ...cccoveveiiriiiieiiiieiieeeieee e, 132
[lustracion 133 : Estacién de RobotStudio en modo escala ascendente con dos IRB 120
activados en movimiento y el YUMi 1400 bailando (2)oveveieneiiiiiinieieiineeee e, 132
[lustracion 134 : Estacién de RobotStudio en modo escala ascendente con dos IRB 120
activados en movimiento y el YUMi 1400 bailando (3)oeeeeiiieeiiiiiieeeeeceeeee e, 133
llustracion 135: Start del programa de la comunicacién de comunicaciones OPC UA de ABB. 134
llustracion 136: Lectura/Escritura de sefiales y variables de RobotStudio a través de ABB IRC5

(0] o O) Y oY o) =40 T - | Te N (1) PSP 135
llustracion 137: Lectura/Escritura de sefales y variables de RobotStudio a través de ABB IRC5

OPC UA CONFIUIATION (2).iruniiiiniiiiieiiiee ettt e e e e et e et e e et e e e b e e st e e st eeaens 135
llustracion 138: Ejecucion de la pantalla HMi disenada desde App Designer de Matlab 136

llustracion 139: Representacion real de la ejecucién de la funcién escala ascendente con un
robot IRB 120 activado y el YuMi 1400 de la estacién a través de la activacién de sefales desde
el HMI disefiado €n Matlab (1) ..coeuuuiiiiiiieiieiii e e e e e e e s 136
llustracion 140: Representacidn real de la ejecucién de la funcidén escala ascendente con dos
robots IRB 120 activados y el YuMi 1400 de la estacién a través de la activacién de sefiales
desde el HMI disefiado @n Matlab (2) «..cuueiieniiiiiiiie e 137
llustracion 141: Representacion real de la ejecucién de la funcién escala ascendente con un
robot IRB 120 activado y el YuMi 1400 de la estacidn a través de la activacidon de sefales desde
el HMI disefiado €N Matlab (3) ..ceeuueiiiiiiie e e et e e e e e e e s 137

13

INDICE DE TABLAS

Tabla 1: Smart Art de las leyes de 1a robOtiCaccuivniiiiiii s 24
Tabla 2: Smart Art de hechos relevantes en la robdtica cronolégicamentecccevevevneenneenn. 25
Tabla 3: Categorias principales de actUadoresvviveiiiiiiiiiiecie e e 28
Tabla 4: TiPOS 08 SENSOIES ..evuuiiiiieeii et ettt et e et e et e e et e e et e et e et e eaaneeanneeetnsaeanerraneeen 29
Tabla 5: Tipos de programacion de los sistemas de controlccceevvieeiiiiiiiiiiiiin e, 29
Tabla 6: Generaciones de robots seguin su cronologia........ccuuviiiiiiiiiiiiiiii e 31
Tabla 7: Clasificacion de robots segun propositoeviiiiiiiieiiiiiineeiiier e 32
Tabla 8: 1/0 del controlador IRB 1200ceuniieuieieeeeee ettt e e e e r et e et e eenereraeesans 62
Tabla 9: 1/0 del controlador IRB 1400 YUMI....cuuiiuneeieeeiee et eeee et et e et e et s e e e e eaeesaaneees 65
Tabla 10: SmartArt de las funciones de los componentes inteligentesccoeevviiieeieerinnnnn. 65

14

15

Capitulo 1

1. INTRODUCCION Y OBJETIVOS

La robdtica ha experimentado con los afios unagran evolucion, transformandose en una
disciplina esencial en la ingenieria y la industria moderna. Los grandes avances se han
impulsado en la electrdnica, la informatica, el control automatico, permitiendo un

desarrollo donde los robots son cada vez mas sofisticados y eficientes.

Si nosadentramos en la robdtica industrial podemos decir que ha tenido un impacto en
la manufacturay produccion, siendo capaz de optimizar procesos, mejorar la calidad de
productos obteniendo unos costes operativos mas reducidos. Robots como el IRB 120
con su capacidad para realizar movimientos mas precisos y rapidos en espacios

reducidos, son un ejemplo perfecto de esta transformacién tecnoldgica.

El proyecto que vamos a realizar a continuacién consiste en el desarrollo de una estacién
de trabajo virtual utilizando el software de RobotStudio, que consistird en una
programacion y simulacién de un robot industrial IRB 120 de ABB capaz de tocar un
instrumento musical, concretamente. Acompafiado de un IRB 1400 YuMi, que realizara
un bailey serd controlado con un controladorindependiente. Las 6rdenes recibidas por
ambos serdn enviadas a través de una interfaz disefiada con MATLAB y conectada a
través de OPC UA con las sefiales digitales y variables necesarias del lenguaje propio de
RobotStudio, RAPID.

La justificacion del proyecto radica en varios aspectos tanto técnicos como educativos,
gue prueban la relevancia de desarrollar estaciones de trabajo virtual en un entorno
educativo que permitatantoa estudiantes como a profesionales adquirir conocimientos
practicos y avanzados en robdtica y en programacion de robots industriales.

La simulacidon de una tarea como es tocar un piano fomenta la innovacién y la
creatividad, promoviendo nuevas aplicaciones y soluciones dentro del campo de la
robotica, vinculado a el area musical.

16

La programaciény simulacion del robot IRB 120 requiere de una comprension de los
principios de la robética, asi como del control automatico. Conocimientos que hemos
ido adquiriendo durante el estudio de asignaturas tales como Sistemas robotizados,
donde abordamos cinematica, dindmicay algoritmos de control de robots, asi como su
implementacion en esto entornos simulados y reales.

Este proyecto permite a los estudiantes aplicar sus conocimientos en la integracion de
sistemas electrénicos y de automatizacién, complementando con la tarea de tocar un
piano que requiere de la implementaciénde sensores en el entorno a disefiar. También
reflejala innovacidny creatividad fomentados para emplear un robot capazdetocarun

instrumento musical.

En conclusién, este proyecto no solo valida y aplica los conocimientos tedricos y
practicos adquiridos en la carrera de ingenieria electrdnica y automatica industrial, sino
gue también proporciona una plataforma para lainnovacion, el anélisisy la solucion de
problemas complejos.

El objetivo principal de este proyecto serd disefiar un programa en RAPID capaz de
ejecutar una secuencia de movimientos que le permitan al robot tocar un instrumento
musical, en concreto un teclado de piano, pudiendo demostrar asi los conocimientos
adquiridos durante el paso por el grado de Ingenieria de Electrénica y Automatizacion
Industrial en la Escuela de Ingenieros Industriales de la Universidad de Valladolid.

Para ello vamos a crear una estacion virtual en RobotStudio, donde emplearemos tres
robots:

+ Dos IRB 120, ambos controlados por un mismo controlador virtual (/lustracion
1).

17

4 Un Robot IRB14000 YuMi (/lustracidn 2).

llustracion 2: Robot IRB 1400 YuMi Dual Arm

Con todos estos elementos seremos capaces de simular una estacion donde los robots
IRB1200 se encargaran de tocar distintas escalas en el teclado, mientras el IRB14000
YuMi le acompaiard con movimientos al ritmo de las notas y velocidades determinadas
previamente para asi darle al proyecto un entorno musical y de aprendizaje para
aquellos que los deseen.

1.4 ESTRUCTURA DE LA MEMORIA

El proyecto se ha organizado en seis capitulos, que son los que se presentan a
continuacion:

Capitulo 1
Introduccién y objetivos.

En este capitulo se detallan los objetivos principales del proyecto y se justifica la
importancia de su realizacion.

18

Capitulo 2
Marco teodrico y estado del arte

Este capitulo recoge informacidn relevante sobre la robdtica, proporcionando un marco
de referencia que permite comprender el contexto actual del tema tratado.

Capitulo 3
Metodologia y softwares empleados

Aqui se describen las diferentes dreas de la ingenieria involucradas en el desarrollo del
proyecto y se explican las herramientas de software utilizadas de cada una.

Capitulo 4
Desarrollo del proyecto

Este capitulo detalla las distintas fases por las que ha pasado el proyecto durante su

ejecucion.

Capitulo 5
Simulacién y Resultados

Se presentan los resultados obtenidos, incluyendo la simulacién realizada en
RobotStudio y la interfaz creada a través de MATLAB.

Capitulo 6
Conclusiones y futuras lineas de trabajo

En este capitulo se evallan los resultados alcanzados, se analiza el grado en que se
cumplieron los objetivos y se sugieren posibles direcciones para trabajos futuros
relacionados con el proyecto.

19

20

Capitulo 2

2. MARCO TEORICO Y ESTADO DEL ARTE

El marco tedrico, asi como el estado del arte de este trabajo se enfocara en un campo
multidisciplinario como es la robdtica, empezando por los conceptos fundamentales,
teorias y desarrollos tecnoldgicos que nos han permitido evolucionar en los distintos
aspectos de este ambito. De esta manera seremos capaces de entender el contexto
actual sobre el tema a tratar.

2.1MARCO TEORICO

Un robot es una entidad virtual o mecanica artificial, un sistema electromecanico que,
por su apariencia o sus movimientos es capaz de ofrecer una sensacién de tener un
propdsito propio. La propiaindependenciade sus acciones son el motivo porel que son
un estudio razonable.

La propia palabrapuede referirse tanto a mecanismos fisicos como a sistemas virtuales
de software, aunque el segundo término suele aludirse a los segundos con el término
de bots. (Wikipedia, 2024).

A continuacidn, les introduciremos algunos antecedentes en la historia:

#+ En elsiglo IV antesde Cristo, el matematico griego Arquitas de Trento construyé

un ave mecanicaa laque llamé “La Paloma” (/lustracion 3) y que funcionaba con
vapor.

llustracion 3: La Paloma de Arquitas: primer autdmata mecanico documentado (s. IV a.C)

21

4 En el afio 10 — 70 antes de Cristo el ingeniero Herén de Alejandria cred
numerosos dispositivos modificables por los usuarios y que las describié como
magquinas accionadas a través de presion de aire, vaporyagua. Entre unade ellas
se encontraba la eolipila (/lustracidn 4).

llustracion 4: La eolipila de Herén de Alejandria: primera maquina de vapor (10-70 a.C)

#+ En 1088, el chino Su Sung levanté la torre de reloj (/lustracién 5) formado por
figuras mecanicas que tocaban las campanadas de las horas.

llustracion 5: Torre de reloj astronémica de Su Sung (1088)

+ En1136-1206 el musulman Artuqid fue capaz de disefiary construir una serie de
maguinas automatizadas, donde nos encontramos desde autdmatas musicales
gue funcionaban con agua hasta utiles de cocina.

En 1206 cred los primeros robots humanoides programables. La forma de estas
maquinas se asemejaba al aspecto fisico de cuatro musicos navegando en un
bote sobre unlago. Dicho mecanismo contenia untambor que era programable
a través de unas clavijas que se chocaban con pequefas palancas capaces de
accionarlosinstrumentos de percusidn. Gracias a laincorporaciénde las clavijas

22

en el mecanismo, el usuario, en este caso se trataba de dos tamborileros, era
posible cambiarlosritmosy patrones delinstrumento. La barca estaba formada
por dostamborileros, un arpistay un flautista (Jorge Elices, 2020) (/lustracidn 6).

llustracion 6: Automatas musicales programables de Al-Jazari (1206)

La palabra “robética” proviene del término “robot”, que a su vez tiene su origen en la
palabra checa “robota”, que significa “trabajo forzado” o “servidumbre”.

El término “robot” fue utilizado por primera vez en 1920 por el escritor checho Karel
Capek en su obrade teatro “R.U.R” (Rossum’s Universal Robots). En la obra, los robots
eran seres artificiales creados para realizarlos trabajos de los humanos, pero durante el
desarrollo de la obra, estos se relevan contra sus creadores.

El término “robdtica” fue popularizada por el escritor de ciencia ficcidn Isaac Asimoven
1941. Asimov empled el término en su cuento “Liar!” y mds tarde en su obra
“Runaround” en 1942, donde también introdujo las tres famosas Leyes de la Robética
definidas en la siguiente tabla (Tabla 1) . Desde entonces el término que se ha
establecido como estandar para tratar del campo que estudia los robots, su disefio,
construccién, operacién y aplicacion se ha convertido en “robética” (Kak, 2011).

23

—|_ Primera

e Un robot nunca debe de perjudicara un ser humano ni permitir
que este sufra dafio con su inaccidn.

—| Segunda

* Un robot hade cumplirlas érdenesimpartidas porun ser humano
a excepcion de aquellas que tengan consecuencias perjudiciales
como se describe en la primera ley.

—{ Tercera

* Un robot esta obligado a proteger su existencia, a excepcién de
aquellas casuisticas en las que se incumplen la primeray la
segunda ley.

Estos datos proporcionados previamente nos dan una base sélida para entender el
origen del término, asi como su evolucion en el contexto histdérico y literario.

La robdtica moderna comienza en la década de 1950, aunque el concepto de autdmatas
ha existido desde la antigliedad, los hitos importantes en la evolucidn de la robdtica
incluyen los mostrados a continuacion (Tabla 2):

24

® George Devol patenta el primer robotindustrial programable, que
mas tarde seria conocido como Unimate.

e Conel desarrollode la microelectrénicay la informatica, los robots
comienzanaincorporarsistemas de control mas avanzados,
permitiendo mayor precision y autonomia.

—)

e La robdtica se expande mas alla dela manufactura hacialas
aplicacionesen medicina, exploracidon espacial, y entretenimiento. Se
desarrollanlos primeros robots movilesy robots humanoides
basicos.

—

e Se popularizanlos robots auténomosy los sistemas de inteligencia
artificial, lo que lleva al desarrollode robots capaces deaprendery
Ly adaptarseaentornosdinamicos

—

e .Elaugede la inteligencia artificial y la robdtica colaborativamarca

unanuevaeraen la quelos robots no solo asumen tareas repetitivas,
2010s en sino que tambifien colaboran con los humanos en entornos
adelante compartidos

—

Tabla 2: Smart Art de hechos relevantes en la robética cronolégicamente

2.1.1 Componentes basicos

La robdtica es la rama de la ingenieria mecanica, electrénica y de las ciencias de la
computacién, que disefia, construya y opera robots (Robdtica, 2023).

Un robot es unamaquinaoingenio electrénico programable que es capaz de manipular
objetosyrealizar diversas operaciones. Graciasa la robética los humanos somos capaces

25

de realizar diversas que nos permiten recopilar informacién, procesarla y tomar

decisiones. Estos son los componentes (/lustracion 7) basicos que lo forman:

Controlador:
Cebrero del
robot

Esqueleto
del robot

Acturadores

Manipulador

Sistemade
Control

llustracion 7: Smart Art Componentes de un robot

26

El controlador es el nucleo central que gobierna todas las operaciones de un robot,
incluyendo sus movimientos, cadlculos y procesamiento de datos. Funciona a través de
un microordenador equipado con una unidad central de procesamiento (CPU),
memoria, sistemas de alimentacion e interfaces que le permiten comunicarse con
comando externos. Este sistema es esencialmente el “cerebro” del robot, coordinadoy
ejecutando las drdenes necesarias para que el robot realice sus tareas.

La funcidn del controlador puede variar dependiendo de los pardmetros que gestione.
Por lo general, los controladores se clasifican en diferentes tipos, como controladores
de posicidn, cinematicos, dindmicos o adaptativos, cada uno especializado en gestionar
aspectos especificos del movimiento y comportamiento del robot.

El esqueleto del robot, al igual que en el cuerpo humano, tiene la funcién crucial de
sostenery darestructura a todas las demas partes del sistema robético. Su disefio debe
estaradaptado alas necesidadesespecificas del robot, ya sea para proporcionarfuerza,
velocidad, ligereza o maniobrabilidad.

La eleccidon del material para el esqueleto es otro factor fundamental. Dependiendo de
la funcién del robot, el esqueleto puede ser fabricado con materiales duros, pesados,
flexibles, o una combinacidn de estos. Algunos robots pueden tener un esqueleto que
sirve como base para sus componentes, mientras que otros pueden estar hechos de
materiales mas inusuales como cartén, madera, hierro o pldstico, dependiendo de las
necesidades de su disefio y aplicacion.

Los actuadores son esenciales paralos robots industriales, ya que proporcionan la fuerza

|ll

necesaria para sus movimientos. Actian como el “corazén” del robot, transformando
sefiales eléctricas en acciones fisicas que permiten a la maquina interactuar con su

entorno.

27

Los actuadores se dividen en dos categorias principales:

e Fundamentales para el funcionamiento Ademas de los motores, existen otros
del robot, permitiendo que se desplace, actuadores, que permiten al robot
mueva sus brazos o manipule objetos a comunicarse y presentar informacién a
través de pinzas u otros mecanismos. su entorno.

Sin los motores, el robot seria incapaz de LCD, displays, altavoces, sincronizados de
realizar cualquier movimiento fisico. vVoz

Tabla 3: Categorias principales de actuadores

2.1.1.4 Sensores

Para que el robot funcione de manera auténomay pueda interactuar eficazmente con
su entorno, es indispensable que esté equipado con sensores. Estos dispositivos
permiten al robot percibir su entornoy responder a él de manera adecuada, ajustando
su comportamiento segun las condiciones que detecta.

Los sensores varian en funcion de latareayel entorno del robot. Entre los mas comunes
se encuentran los sensores de luz, sonido, gravedad, temperatura, humedad, presion,
velocidad, magnetismo y ubicaciéon. También se utilizan sensores de proximidad,
distancia, cdmaras devideo, y muchos otros, cada uno colocado estratégicamente para
maximizar su efectividad en la funcidon que debe cumplir.

La percepcion es esencial para que los robots interactien con su entorno. Los robots
utilizan una variedad de sensores para recopilar datos sobre su entorno y su propio
estado interno, lo que les permite tomar decisiones informadas.

28

Sensores de

Sensores de Fuerza

Sensores de

Proximidad y Visidon y Tacto Posicion y Velocidad
* Permiten detectar e Utilizados en ® Proveen
obstaculos y robots que informacion
reconocer objetos requieren crucial para el
de entorno manipulacion control de
delicada o movimiento del

interaccion precisa

robot

con objetos

Tabla 4: Tipos de Sensores

2.1.1.5 Manipulador

El manipulador es la parte mecdnica central del robot, compuesta por una serie de
elementos soélidos o eslabones unidos mediante articulaciones que permiten el
movimiento. Esta estructura, que se asemeja a un brazo humano con secciones con
cuerpo brazo, mufieca y un actuador final, es crucial para la manipulacion de objetos y
la realizacién de tareas especificas.

2.1.1.6 Sistema de control

El sistema de control de un robot, integrado por software y hardware, es responsable
de dirigir y coordinar sus movimientos. Este sistema puede ser programado para
ejecutar tareas especificas de manera positiva o para adaptarse a cambios en el entorno
mediante el uso de sensores, lo que permite al robot operar de forma auténoma.

Robots Pre-programados Robots Auténomos

* Robots que siguen un conjunto de * Robots capaces demodificarsu
intrusccionesfijasy realizan comportamientoen respuestaala
tareas repetitivassin cambios variaciones del entorno, utilizando

datos obtenidos de sus sensores.

Tabla 5: Tipos de programacion de los sistemas de control

29

Para que un robot funcione eficazmente, es crucial una coordinacidn precisa entre su

Ill

esqueleto, sensores y actuadores. Ademas, el “cerebro” del robot, o su sistema de
control, debe estar programado de manera que permita al robot cumplir con su funcién
principal. Cada componente tiene un propdsito especifico y es esencial para el correcto
funcionamiento de la maquina, haciendo que el robot sea una herramienta integral y

altamente funcional.

Segun la Asociacién Francesa de Robdtica Industrial — AFRI, fueron clasificados en
generaciones segun su cronologia.

30

Primera Generacion

¢ Robots manipuladores

e Repiten unaovariastareas de manera programada bajo un software, en
secuencia.

Segunda Generacion

¢ Robots en aprendizaje

e Aprenden los movimientos a realizar através de los movimientos que
ejecutan los operadores humanos.

Tercerca Generacion

¢ Robots con sensores

¢ Son aquellos programables desde ordenadores, normalmente cuentan con
sensores artificiales y otras piezas que permiten la visién y el tacto
empleando lenguajes de programacion

Cuarta Generacion

* Robots moviles

e Aquellos queson capaces de tomar parte en diversos procesos graciasa la
inteligencia artificial, también poseen sensores como la generacién anterior
pero se diferencian que pueden tomar decisiones y realizar mas
movimientos

Quinta Generacion

¢ Robotsinteligentes
¢ Son aquellas maquinas dotadas de inteligencia artificial

Tabla 6: Generaciones de robots segun su cronologia

Los robots se pueden clasificar de diversas maneras, dependiendo del criterio utilizado.
Una clasificacién comun es la siguiente:

31

Robot Industriales

Utilizados principalmente en la manufatura
para tareas como ensamblaje, soldadura,
pintura y manipulacion de materiales. Son
tipicamente manipuladores con multiples
grados de libertad.

Robots de Servicio

Disefiados para interactuar con personasy
ayudar en tareas diarias, como robots de
limpieza o asistentes personales.

Robots Moéviles

Incluyen vehiculos auténomos y drones, que
pueden desplazarse por el entorno. Estos
robots son ampliamente utilizados en
exploracidn, logistica, y agricultura.

Robots humanoides

Imitan la forma y movimientos del cuerpo
humano, con aplicaciones en la investigacion
de bidnica, inteligencia artificial, y asistencia
personal.

Robots Colaborativos (Cobots)

Trabajan junto a humanos en entornos
compartidos, disefiados para ser seguros y
faciles de programar.

Tabla 7: Clasificacion de robots seguin propdsito

32

Tras haber expuesto el marco tedrico que sustenta este proyecto, en este apartado se recopilan
algunos de los trabajos previos realizados en la Universidad de Valladolid que guardan relacién
con el ambito de la robética y la simulacidn en entornos industriales.

En el afio 2015, Gonzalo Muinelo Garrido presenté un Trabajo de Fin de Grado centrado en la
simulacion de una célula robotizada destinada al tratamiento de piezas de aluminio. El propdsito
principal de su estudio fue desarrollar la programacion del robot para gestionar de forma
auténoma las piezas, las cuales debian atravesar tres procesos distintos, cada uno asociado a
una maquina especifica (Garrido, 2015).

Ese mismo afio, Juan Antonio Avila Herrero llevd a cabo el disefio de otra célula robética,
orientada en este caso al ambito educativo. Su proyecto consistié en la creacién de diversas
practicas formativas para la ensefianza del manejo del software RobotStudio, programando el
robot con el fin de realizar tareas interactivas como jugar al tres en raya o escribir sobre una
mesa inclinada. Este trabajo perseguia facilitar el aprendizaje de la programacién y el control de
robots industriales ABB (Herrero, 2015).

En 2019, Carlos Jiménez Jiménez desarrolld un sistema robdtico educativo cuyo objetivo era
permitir a un usuario jugar al ajedrez contra un robot industrial. El sistema incluia una interfaz
grafica que permitia al jugador introducir sus movimientos, mientras que el robot ejecutaba las
jugadas desplazando las piezas sobre el tablero. Este proyecto integraba tanto la parte mecanica
como la ldogica de control y comunicacidon entre el robot y la interfaz, dando lugar a una
experiencia interactiva y didactica (Jiménez, 2019).

Finalmente, en 2022, Elena Pozas Mata desarrollé un proyecto en el que un robot YuMi
interactuaba con un xilé6fono controlado mediante MATLAB, utilizando el protocolo OPC UA para
la comunicacidn en tiempo real. Este trabajo destaco por la integracidn de la programacion del
robot en RAPID, la simulacién en RobotStudio y el control externo a través de una interfaz HMI,
combinando aspectos de coordinacién multi-robot, ejecucién musical e interaccién educativa
(Mata, 2022).

En conjunto, estos proyectos reflejan la evolucidn y el interés continuo de la Universidad de
Valladolid en la integracion de la robdtica industrial, la simulacién mediante RobotStudio y el
desarrollo de aplicaciones educativas que favorecen el aprendizaje prdctico en este campo.

33

34

Capitulo 3

3. METODOLOGIA Y SOFTWARE UTILIZADO

En este proyecto, se ha seguido una metodologia sistematica que abarca desde la
conceptualizaciéon y diseifio de un sistema robdtico hasta la simulacidn, control y analisis
de resultados. El enfoque metodoldgico se ha dividido en varias etapas clave, cada una
respaldada por el uso de herramientas de software especializadas que permiten un
desarrollo eficiente y preciso del trabajo. A continuacidn, se describen las principales
etapas de la metodologiay los tres softwares fundamentales utilizados: RobotStudio,
MATLAB y ABB IRC5 OPC.

RobotStudio es un software desarrollado por ABB Robotics, una de las principales empresas en
el dambito de la automatizacion industrial y robética. Este entorno de simulacidén y programacion
offline es ampliamente utilizado en la industria para disefiar, simular, programar y optimizar
sistemas robodticos antes de su implementacion en un entorno real. RobotStudio es una
herramienta poderosa que permite a los ingenieros y programadores trabajar en un entorno

virtual, lo que reduce costos, minimiza riesgos y aumenta la eficiencia de los proyectos robdticos
(ABB, 2025).

R

AL D HD
FAPpPD

RobotStudio estd disefiado para permitir a los usuarios crear modelos virtuales de células
robdticas y simular su funcionamiento en un entorno tridimensional. Esta capacidad es
fundamental en la fase de disefio, ya que permite identificar y resolver posibles problemas antes
de que el sistema sea implementado fisicamente. Ademads, la posibilidad de programar los

35

robots offline, es decir, sin interrumpir la produccion en la planta, proporciona una gran ventaja
en términos de eficiencia operativa.

Las aplicaciones de RobotStudio son diversas, abarcando desde la programacion y simulaciéon de
robots industriales en fabricas de automdviles hasta su uso en lineas de producciéon de
electrénica, ensamblaje, soldadura, pintura y manejo de materiales. Ademds, RobotStudio es
utilizado en la formaciény capacitacion de ingenieros y operadores, dado que ofrece un entorno
seguro y controlado para el aprendizaje.

RobotStudio incluye una amplia gama de caracteristicas y herramientas que facilitan la creacion,
simulacion y optimizacion de células robéticas. Entre las caracteristicas mas destacadas se
encuentran:

+ Simulaciéon en 3D

Permite crear modelos tridimensionales detallados de células de trabajo que replican
fielmente el entorno de produccidn real, incluyendo robots, cintas transportadoras,
herramientas y sensores. Esta capacidad es crucial para visualizar y optimizar la
disposicidén y los movimientos dentro del espacio de trabajo.

+ Programacién Offline

Una de las mayores ventajas de RobotStudio es la capacidad de programar robots sin
detener la produccion en la planta. Esto se traduce en una reduccién significativa de
tiempos de inactividad y una mejora en la productividad. La programacién offline
permite a los usuarios escribir, probar y depurar cédigo en un entorno virtual antes de
transferirlo al robot real.

+ Virtual Commissioning

Este médulo permite validar la légica de control en un entorno virtual antes de
implementarla fisicamente. Es una herramienta vital para identificar y corregir errores
de programacion que podrian resultar costosos si no se detectan antes de la
implementacion.

+ Path Optimization

Esta herramienta optimiza las trayectorias de los robots, reduciendo el tiempo de ciclo
y mejorando la eficiencia de los movimientos. El algoritmo de optimizacion ajusta las
trayectorias para minimizar el tiempo de desplazamiento y evitar colisiones, lo que
resulta en un sistema mas rapido y seguro.

36

+ [nterfaz de Usuario Intuitiva

RobotStudio cuenta con una interfaz grafica de usuario (GUI) que es tanto potente como
facil de usar. La GUI permite alos usuarios arrastrar y soltar componentes en el espacio
de trabajo virtual, facilitando la creacidén de modelos y la programacién de los robots.

+ Bibliotecas y Mddulos Adicionales

El software incluye una extensa biblioteca de componentes y médulos adicionales que
permiten a los usuarios afiadir robots, herramientas y equipos especificos a sus
simulaciones. Ademds, ofrece soporte para la personalizacion y creacion de
componentes especificos segln las necesidades del proyecto.

La versidn utilizada en este proyecto es RobotStudio 2023.1, una de las mas recientes vy
avanzadas del software. Esta versidon incorpora mejoras en la precision de las simulaciones,
nuevas herramientas de optimizacion y una interfaz de usuario mejorada que facilita aun mas el
uso del software.

RobotStudio es compatible con una amplia gama de controladores de robots ABB, incluyendo
los controladores IRC5, que son uno de los mas avanzados del mercado. Esta compatibilidad
garantiza que las simulaciones y programaciones realizadas en RobotStudio se puedan transferir
de manera efectiva a los robots reales sin problemas de integracidn.

El uso de RobotStudio ofrece multiples beneficios para los ingenieros y las empresas que
implementan sistemas robdticos:

+ Reduccidon de Costos

Al permitir la programacion y simulacion offline, RobotStudio reduce los costos
asociados con el tiempo de inactividad de la produccidn y los errores de programacion.

+ Mejora de la Eficiencia

Las herramientas de optimizacion de trayectorias y simulacidon permiten a los usuarios
mejorar la eficiencia operativa de los robots, reduciendo el tiempo de ciclo y
aumentando la productividad.

37

+ Reduccién de Riesgos

La capacidad de realizar pruebas y validaciones en un entorno virtual minimiza los
riesgos asociados con la implementacién de nuevos sistemas robdticos, lo que resulta
en una transicion mas suave a la produccién en vivo.

+ Flexibilidad

RobotStudio ofrece un alto grado de flexibilidad, permitiendo a los usuarios adaptar las
simulaciones y programaciones a una amplia variedad de aplicaciones industriales.

+ Formacion y Capacitacion

El entorno seguro y controlado de RobotStudio es ideal para la formacidén de nuevos
operadores y la capacitacidon continua de los ingenieros, permitiendo el desarrollo de
habilidades sin riesgos para la produccion real.

/f

Maximiza la
productividad

Potencia la flexibilidad Acelerar la Sostenible desde el

. e L comercializacién inicio
Flanifica y disefia rapidamente

Programay prusba en un
entorno 3D una copia exacta de
tu célula de produccién sin
afectar la produccidn en curso.

nuevas soluciones robdticas
para reutilizar las instalaciones
en modificaciones de
productos.

Reduce los tiempos de
inactividad a cero y los de
puesta en marcha de dias a
horas.

La simulacion robdticay la
optimizacidn del proceso
permiten reducir al minimo el
consumo de energia y los

residuos.

A pesar de sus numerosas ventajas, RobotStudio también presenta algunas limitaciones. Por
ejemplo, aunque la simulacién en 3D es altamente precisa, no siempre puede replicar con
exactitud todos los aspectos de la fisica del mundo real, como la friccidon o el desgaste de los
materiales. Ademas, el software requiere una curva de aprendizaje, especialmente para aquellos
que son nuevos en la programacion de robots o en el uso de entornos de simulacién avanzada.

MATLAB (abreviatura de Matrix Laboratory) es un entorno de programacion y una plataforma
de calculo numérico desarrollado por MathWorks. Es ampliamente utilizado en la ingenieria, la

38

ciencia y la economia para la resolucidn de problemas matematicos, simulaciones, analisis de
datos, visualizacién y desarrollo de algoritmos.

MATLAB es especialmente conocido por su capacidad de manipular matrices y realizar calculos
en gran escala con alta eficiencia y precisidon, lo que lo convierte en una herramienta
imprescindible en diversas areas de investigacion y desarrollo.

&\ MATIAB

MATLAB esta disefiado para facilitar el trabajo con matrices, que son la base de muchas
operaciones matematicas en ingenieria y ciencia. Su principal propdsito es proporcionar un
entorno en el que los usuarios puedan realizar cdlculos numéricos, desarrollar algoritmos,
analizar datos y crear modelos y simulaciones de sistemas complejos.

MATLAB es utilizado en una amplia variedad de aplicaciones, que incluyen, pero no se limitan a:

+ Procesamiento de Sefales y Comunicaciones

MATLAB se utiliza para el disefio, andlisis y simulacidn de sistemas de comunicacion y
procesamiento de sefiales, como filtros, moduladores y demoduladores, andlisis de
espectros, etc.

+ Control de Sistemas

En ingenieria de control, MATLAB es una herramienta esencial para el disefio y analisis
de sistemas de control. Los ingenieros utilizan MATLAB para modelar sistemas
dindmicos, diseiiar controladores y simular su comportamiento en un entorno virtual.

+ Procesamiento de Imdgenes y Visidn Artificial

MATLAB es ampliamente utilizado para el procesamiento de imagenes y el desarrollo de
algoritmos de vision artificial, permitiendo la manipulacién, mejora y analisis de
imagenes y videos.

39

+ Finanzas Computacionales

MATLAB es utilizado en el ambito financiero para la modelizacion de riesgos, analisis de
mercados, y la simulacidon de estrategias de inversidn y otros procesos financieros.

+ Robodtica y Automatizacion

MATLAB, en combinacidon con otros productos de MathWorks, como Simulink, se utiliza
para el modelado, simulacién y control de sistemas robdticos, permitiendo a los
ingenieros desarrollar algoritmos complejos y probarlos en un entorno de simulacién
antes de su implementacion real.

MATLAB es un software extremadamente versatil, con una amplia gama de caracteristicas y
herramientas que lo hacen adecuado para un gran nimero de aplicaciones técnicas. Algunas de
las caracteristicas mas destacadas incluyen:

+ Manipulacidn de Matrices y Algebra Lineal

MATLAB ofrece una potente capacidad para la manipulacion de matrices y el algebra
lineal, permitiendo realizar operaciones complejas con matrices de manera eficiente.
Estas capacidades son fundamentales en areas como la ingenieria de control, el
procesamiento de sefales y la modelizacién matematica.

+ Lenguaje de Programacion de Alto Nivel

El lenguaje de programacién de MATLAB es sencillo y facil de aprender, con una sintaxis
intuitiva que permite escribir cddigo de manera eficiente. Ademas, MATLAB soporta
programacion orientada a objetos, lo que facilita la creacién de estructuras de datos
complejas y algoritmos personalizados.

+ Toolboxes Especializados

MATLAB ofrece una serie de toolboxes o conjuntos de herramientas especializados para
diferentes disciplinas, como el procesamiento de sefiales, control de sistemas, redes
neuronales, optimizacién, y mucho mas. Estos toolboxes permiten a los usuarios aplicar
técnicas avanzadas y resolver problemas especificos de sus campos de estudio o trabajo.

+ Visualizacién de Datos

MATLAB incluye herramientas avanzadas para la visualizacién de datos, que permiten a
los usuarios crear graficos en 2D y 3D, asi como animaciones para representar sus datos
de manera clara y efectiva. La capacidad de personalizar y exportar graficos hace que
MATLAB sea una herramienta poderosa para la presentacion de resultados.

40

+ Simulink

Simulink es una extension de MATLAB que proporciona un entorno para la simulacién y
modelado de sistemas dindmicos. Es especialmente util para el disefio de sistemas de
control, procesamiento de sefiales y sistemas embebidos, permitiendo a los usuarios
construir modelos graficos que simulan el comportamiento de sistemas reales.

+ |Interfaz Grafica de Usuario (GUI)

MATLAB permite a los usuarios disefiar y desarrollar interfaces graficas de usuario
personalizadas para sus aplicaciones, facilitando la creacion de herramientas
interactivas que pueden ser utilizadas por otros usuarios.

La version de MATLAB utilizada en este proyecto es MATLAB R2023a, la cual incluye las ultimas
actualizaciones y mejoras en términos de funcionalidad, eficiencia y compatibilidad. MATLAB
R2023a introduce mejoras en el rendimiento, nuevas funciones matematicas y graficas, asi como
actualizaciones en los toolboxes especializados.

MATLAB es compatible con una amplia variedad de plataformas, incluyendo Windows, macOSy
Linux, lo que facilita su integracion en diferentes entornos de trabajo. Ademas, MATLAB es
altamente compatible con otros lenguajes de programacion como C, C++, Java y Python, lo que
permite a los usuarios integrar MATLAB en flujos de trabajo mds amplios y complejos.

MATLAB ofrece multiples beneficios para ingenieros, cientificos y profesionales de diferentes
disciplinas:

+ Eficiencia en el Cdlculo

La capacidad de MATLAB para manejar grandes volUmenes de datos y realizar cdlculos
complejos de manera rapida y precisa es uno de sus mayores beneficios. Esto permite a
los usuarios abordar problemas complejos y obtener resultados de manera eficiente.

+ Flexibilidad

MATLAB es extremadamente flexible, permitiendo a los usuarios personalizar y
extender su funcionalidad segun las necesidades especificas del proyecto. Los toolboxes
especializados y la posibilidad de crear funciones personalizadas amplian
significativamente el alcance de lo que se puede lograr con MATLAB.

41

+ Integracion con Otros Sistemas

MATLAB se integra facilmente con otros sistemas y lenguajes de programacion, lo que
facilita su incorporacién en flujos de trabajo existentes y la colaboracién con otros
profesionales que utilizan diferentes herramientas.

+ Facilidad de Uso

La interfaz intuitiva y el lenguaje de programacion de alto nivel de MATLAB hacen que
sea accesible para usuarios con diferentes niveles de experiencia en programacion,
desde principiantes hasta expertos.

+ Amplio Soporte y Comunidad

MATLAB cuenta con una extensa documentacion y una activa comunidad de usuarios,
lo que facilita el aprendizaje y la resolucidon de problemas. Ademas, MathWorks ofrece
soporte técnico y formacion para ayudar a los usuarios a maximizar el uso del software.

A pesar de sus muchas ventajas, MATLAB también presenta algunas limitaciones. Una de las
principales es su coste, que puede ser elevado, especialmente para usuarios individuales o
pequefias empresas. Ademads, aunque MATLAB es extremadamente versatil, algunos usuarios
pueden encontrar que el rendimiento disminuye cuando se manejan conjuntos de datos
extremadamente grandes o se ejecutan simulaciones muy complejas.

Otra limitacién es que, aunque MATLAB es potente para el calculo numérico y el andlisis de
datos, no estd tan optimizado para el desarrollo de software a gran escala o para la integracion
en sistemas embebidos, donde otros lenguajes de programacién, como C o Python, pueden ser
mas apropiados.

MATLAB es una herramienta integral que ha demostrado ser indispensable en muchas areas de
la ingenieria, la ciencia y la industria. Su capacidad para manejar calculos complejos, junto con
su flexibilidad, eficiencia y facilidad de uso, lo convierten en una opcién preferida para muchos
profesionales. En este proyecto, MATLAB ha sido crucial para el andlisis de datos, el desarrollo
de algoritmos y la simulacidn de sistemas, contribuyendo significativamente al éxito del
proyecto.

42

ABB IRC5 OPC Configuration es una herramienta esencial utilizada en la configuraciény gestion
de comunicaciones entre el controlador de robots IRC5 de ABB y otros sistemas a través del
protocolo OPC (OLE for Process Control). Esta herramienta facilita la integracion de robots
industriales en un entorno automatizado, permitiendo el intercambio de datos en tiempo real
entre el controlador y sistemas SCADA, PLCs u otros dispositivos de automatizacién.

El controlador IRC5 de ABB es uno de los controladores de robots mas avanzados y ampliamente
utilizados en la industria. Es el cerebro detras de los robots industriales ABB, gestionando sus
movimientos, operaciones y la interaccién con otros sistemas. Para facilitar esta interaccion,
especialmente en entornos de automatizacién complejos, se utiliza la configuracién OPC.

El propdsito principal de la configuracion OPC en el IRC5 es permitir la comunicacion estandar y
la interoperabilidad entre diferentes dispositivos y sistemas de software en una planta de
produccion. OPC es un protocolo abierto que facilita el intercambio de informacién entre
dispositivos de diferentes fabricantes, lo que es crucial para la integracion de robots ABB en un
entorno de produccion heterogéneo.

Las aplicaciones de ABB IRC5 OPC Configuration son diversas y abarcan multiples industrias
donde se requiere la integracién de robots con sistemas de control de procesos, monitoreo y
adquisicion de datos. Algunos ejemplos incluyen:

+ Automocidn

Integracidn de robots en lineas de ensamblaje donde la comunicacién en tiempo real
con sistemas SCADA es critica para el control y monitoreo del proceso.

+ Manufactura

En plantas de manufactura, donde es necesario que los robots interactien con otros
equipos y sistemas de control para realizar tareas sincronizadas y garantizar la calidad
del producto.

*+ |Industria Farmacéutica

Integracién de robots en entornos controlados para la manipulacién de materiales
sensibles, donde la comunicacién y el monitoreo en tiempo real son esenciales para
cumplir con las normativas.

43

ABB IRC5 OPC Configuration proporciona una serie de caracteristicas que facilitan la
configuraciéon, monitoreo y gestion de la comunicacidn entre el controlador IRC5 y otros
sistemas. Algunas de las caracteristicas mas importantes incluyen:

+ |Interoperabilidad Estdndar

Utilizando el protocolo OPC, la herramienta asegura que el controlador IRC5 pueda
comunicarse de manera efectiva con una amplia gama de dispositivos y sistemas,
independientemente del fabricante. Esto es esencial para la integracién en plantas con
equipos heterogéneos.

+ Configuracion Sencilla y Flexible

La herramienta permite configurar de manera intuitiva los puntos de datos que se
compartiran entre el IRC5 y otros sistemas. Los usuarios pueden definir y mapear
sefiales especificas del robot, como posiciones, velocidades, estados de herramientas, y
otros parametros operativos.

+ Monitoreo en Tiempo Real

Una vez configurada, la herramienta facilita el monitoreo en tiempo real de los datos
del robot, lo que permite a los operadores y sistemas SCADA recibir y procesar datos
instantdneamente. Esto es crucial para la toma de decisiones y el control en tiempo real
de procesos automatizados.

+ Compatibilidad con Multiples Protocolos OPC

ABB IRC5 OPC Configuration soporta varios estandares de OPC, incluyendo OPC DA
(Data Access) y OPC UA (Unified Architecture), lo que ofrece flexibilidad en la integracién
con diferentes tipos de sistemas de automatizacion.

+ Seguridad vy Fiabilidad

La herramienta estd disefiada para garantizar la seguridad en la comunicacién de datos,
protegiendo la informacién critica del robot contra accesos no autorizados y
garantizando la integridad de los datos durante la transmisién.

La herramienta de configuraciéon OPC para IRC5 ha evolucionado a lo largo de los afios, concada
nueva versién proporcionando mejoras en la funcionalidad, seguridad y facilidad de uso. La

44

version utilizada en este proyecto es ABB IRC5 OPC Configuration 2023, que incluye soporte
completo para OPC UA, mejorando la compatibilidad y la seguridad de las comunicaciones.

Esta versién es compatible con los controladores IRC5 mds recientes y estd disefiada para

integrarse sin problemas con los sistemas SCADA y PLC mas utilizados en la industria. Ademas,

es compatible con las versiones anteriores de OPC, lo que facilita la integracién en plantas que
operan con diferentes generaciones de tecnologia de automatizacion.

El uso de ABB IRC5 OPC Configuration ofrece multiples beneficios, tanto en términos de

integracion como de operacion:

*

Integracion Simplificada

La herramienta simplifica la tarea de integrar los robots ABB en sistemas de
automatizacién existentes, lo que reduce el tiempo de implementacién y los costos
asociados.

Comunicacion Eficiente y en Tiempo Real

Al utilizar el protocolo OPC, la herramienta garantiza que los datos del robot se
transmitan de manera eficiente y confiable, lo que es crucial para el control en tiempo
real y la toma de decisiones.

Flexibilidad en la Configuracidon

Los usuarios pueden personalizar la configuracién para adaptarse a las necesidades

especificas de su aplicacién, lo que permite una mayor flexibilidad y control sobre el
sistema robético.

Mejora en la Productividad

Al facilitar una comunicacidn fluida y en tiempo real, la herramienta ayuda a mejorar la
productividad de la planta, ya que los sistemas de control pueden reaccionar
rdpidamente a los cambios en las operaciones del robot.

Reduccién de Errores

La capacidad de monitorear y ajustar la configuracién OPC de manera precisa reduce la
posibilidad de errores en la comunicacion, lo que a su vez mejora la fiabilidad del sistema
en general.

45

Aunque ABB IRC5 OPC Configuration ofrece muchas ventajas, también presenta algunos
desafios y limitaciones. Uno de los principales desafios es la complejidad en la configuracién
inicial, especialmente en entornos con una gran cantidad de sefales y dispositivos que deben
ser integrados. La curva de aprendizaje puede ser empinada para los usuarios que no estan
familiarizados con el protocolo OPC o con la arquitectura del sistema IRCS.

Otra limitacién es que, aunque OPC UA ofrece mejoras significativas en términos de seguridad y
escalabilidad en comparacion con OPC DA, su implementacion puede requerir una
infraestructura de red mas robusta y un mayor conocimiento técnico.

46

47

Capitulo 4

4. DESARROLLO DEL PROYECTO

En este capitulo se detallan todas las etapas del desarrollo del proyecto, desde la fase
de planificacién hasta la implementacidn final. El propdsito de esta seccion es ofrecer
una descripcion exhaustiva del proceso llevado a cabo para alcanzar los objetivos
establecidos en la fase inicial del proyecto.

El desarrollo del proyecto se ha estructurado en varias fases clave, que incluyen el disefio
conceptual, lasimulacién y modelado, la programaciény control del sistema robdtico, y
finalmente, la validaciony pruebas del sistema en un entorno controlado. Cada una de
estas fases ha sido fundamental para garantizar que el proyecto no solo cumple con los
requisitos técnicos, sino que también se adapte alas necesidades practicasy operativas
del entorno de aplicacién.

En este apartado detallaremos las secciones donde se explican los pasos realizados,
comenzamos con el modelado de la estacidn, luego continuaremos con la programacion
de los mdédulos de la estacidn, la definicion de puntos y trayectorias y su légica.

Finalmente programaremos la interfaz con el usuario en Matlab y configuraremos la

comunicaciéon OPC UA necesaria para poder realizarla conexién entre estacion y HMI.

En esta primera fase vamos a explicar detalladamente como se ha disefiado la estacion
sobre la que se trabajard en este proyecto, contando con que previamente han sido
definidas las caracteristicas deseadas. Durante este proceso primero hemos generado
una estacién, hemos afiadido nuestros robots virtuales, les hemos ido posicionando en
las posiciones dptimas para un mejor desarrollo, hemos creado los controladores
correspondientes y finalmente generado los componentes inteligentes y las
trayectorias. Todas estas tareas definidas previamente son las que conformaran el
modelado de nuestra estacion.

48

411

CONFIGURACION Y MODELADO DE LA ESTACION

Como hemos indicado previamente lo primero que vamos a hacer es abrir el software

RobotStudio y vamos a crear una nueva estacion vacia.

BEoyc-Q~ =

=D rocen i
Guarda

Abrir

Info
Imprimir
Compartir
En linea

Ayuda

i1} Opciones
() salida

Modelado Simulacion Controlador RAPID Complementos

Proyecto

Proyecio
Crea un Proyecto con un Controlador virtual opcienal

Archivo

EE Estacion
Crea una eslacion vacia

. Archivo de médulo de RAPID
Pl Grea un archive de médulo RAPID y lo abre en el editor.

E Archivo de configuracion de conirolador
Crear un archivo de configuracion independiente y lo abre en el editor.

Robotstudio

Proyecto

Nombre:

Project]

Ubicacién:
Ci\Users\User\Documents\RobotStudio\Projects

[J Incluir un Roboty un Controlader virtual

E

Crear

llustracion 11: Pagina inicio RobotStudio

Una vez ya tenemos creada la estacion vacia comenzaremos con el modelado

materia.

4.1.1.1 Modelado de la estacion

en

Primero vamos a afiadir el robot que vamos a emplear. Accedemos a la biblioteca ABB
donde tendremos acceso a todos los robots proporcionados por el propio software. La
oferta entre los distintos tipos es muy amplia: Articulados, Colaborativos, Paralelos,

SCARA, etc. Como ya hemos dicho antes, afiadiremos el robot IRB 120.

49

. : .
:-'7 :_"k
: g
3

g |
&
-

1
:7 !

giiT
L
P
._7
o
g
\\

llustracion 12: Robots articulados de la biblioteca de ABB

Colocamos el robot en la posicidn fija deseada y lo duplicamos.

BEovc-Q- =

Posicién inicial | Modelado Simulacién Controlador RAPID Complementas Modificar

i A © . S Programar posicién | Tarea (Default) v Referenda |Mundo
X M B & bk OfH | X

53 Programar instruccién | Objeto de trabajo |wobj0 Pivotar punto |Punto sel

[Estacién ni

Biblioteca Importar | Controlador | Importar Basede Punto Ruta Ofos | gy o0 0 oo e toolD v SINCrONzar | ey otar
ABB~ biblioteca~ _ virtualv geometriav coordenadasv = ¥ v o ' P v b ¥
Construir estacion Programacion de trayectorias [Pardmetros Controlador

[Diseiie [Trayectorias y puntos | etquetas | v x || Verl x|

[#] [Estaciénno guardadal”

L]

. %&Eﬂ, %€ | Cortar Cirl+X
» ST RB120.3.58_ Copiar Crl+C
% | Duplicar..
[Z) | Guardar como biblioteca.
© | Desconectar biblioteca
(2 | Exportar geometria...
v | Visible Ctrl+D
Q| Examinar
Q| No examinar
£ | Seleccionar como UCS
£ Posicion » |2 Fijar posicién
3% | Sustituir Robot. @ | Posir=
& | Modificar mecanismo.. © | Girg Flarposicién
il | Efiminar geometria de CAD Q Establece la posicion de un objeto
con respecto al sistema de
* | Detectable por sensores coordenadas espedificado.
& | Planificacién de trayectoria »
& | Fisica »
B | anlicar nlann de carte » ’

llustracion 13: Fijar posicion de un robot en RobotStudio

Una vez importados al proyecto nuestro robot, vamos a darles una posicion fija respecto a la

referencia mundo.

50

llustracion 14: Robots IRB 1200 duplicado en estacion

Una vez ya tenemos colocados nuestros robots manipuladores, afiadiremos nuestro YuMi 1400

)

llustracion 16: Robot IRB 1400 YuMi en la estacion de modelado

A continuacién, creamos el piano, estard conformado por varios grupos de solidos con

correspondientes componentes inteligentes.

Ssus

51

Comenzaremos generando un tetraedro para simular nuestras teclas blancas que tendran las
siguientes medidas: Nota blanca (100, 800, 30).

B Q- s Trabajo_Fin_De_Grado - RobotStudio
m Posicéninicial | Modelado | Simulacion Controlador RAPD Complementos
a v Séido v Borde pos
R ® = s ® v
dimensiones o
5 x || Trabajo_Fin_De_Grado:Ve| Tetraedro con 3 puntos
Define tres p

@ S

Punto de esquina (mm)

] Slooo [2loso 2
Orientacion (deg))
000 oo (Zloco 3

Longitud (mm)
000

Anchura (mm)
000

Alura (mm)

Borar Cemar

[8) Trabaio_Fin_De_Grado" X
o RB120358_01 ’L.X

o RB120.3 58_02

llustracion 17: Creacién de un tetraedro "Nota Blanca"

Luego repetiremos el proceso para crear las teclas blancas de nuestro teclado, pero condistintas
dimensiones: Nota negra (100, 600, 30).

an Q- s Trabajo_Fin_De_Grado - RobotStudio
DI roscooricn | vooksdo | smmiscin comrosdor o Complemertos
@ ® = o ELL

{
[Crear tetraedro. | = x| Trabsjo_Fin De_Grade:Ve| @ T

P -

Punto ds esquia (mm)
slooo Tlooo <

Onantacién (deg) -
000 looo oo <

Longitud (mm)
000

Anchura (mm)
000

At (mm)
000

[®) Trabap_Fin_De_Grado"

&7 IRB120.3.58_01 .[—ox

& RB120.358_2

llustracion 18: Creacion de un tetraedro "Nota Negra"

Generamos tantos tetraedros como sean necesarios para poder formar nuestra primera escala,
obteniendo la una parte de nuestro teclado.

52

Trabajo Fin De Grado:Verl x| do.0_

]

.

llustracion 19: Primera escala del teclado de nuestra estacion de RobotStudio

Normalmente los pianos estan formados de ocho escalas, pero en nuestro caso estara
compuesto por un total de tres. La primera definida para uno de los robots, la Ultima para el

otro y una comun en el medio para ambas, donde tanto el primer IRB 1200 como el segundo
tendra acceso a ella.

Una vez ya tenemos la composicion completa del teclado, le afiadiremos otro sélido tetraedro
con color negro, que sera la base de nuestro instrumento.

Trab Fin e G RobwiStudia

s T

™

BeRCE

) zoom) AETE) Simr 757 Cesplaar menualmene

Eopd

27938282828 36E 3080 ¢ 1
GERE

I

28

N 3 smecren © wose gz © 4G Bt PR ORREE | el o vion © e © Zene © ot s+ RN

llustracion 20: Teclado en la estacion de modelado de RobotStudio

Ahora vamos a modelar la herramienta que vamos a emplear con nuestros IRB 1200. Se trata de
una pinza inteligente con doble posicion, encargada de pulsar las notas del teclado, nota a nota
de manera individual (Posicidon cerrada) y tocar dos notas a la vez en un intervalo de segunda
(Posicidn abierta). En este caso vamos a partir de primero hacer la geometria.

Primero crearemos la base de la pinza y para ello vamos a crear otro solido tetraedro de 80 mm
de largo, 30 mm de ancho y 110 mm de alto.

53

@E5-c-Q- s Trabajo_Ffin_De_Grado - RobotStudio
Archivo Posicion inicial Modelado Simulacion Controlador RAPID Complementos

@ 0P [Hirvorwownes - OT Do srecedor decerpos | I Cave ® intersecsén c

5 i 5 1 Base de coorgenadas ~ Tetracdro |5° Fisica del eje ~ OB Restar = o
Grupo de Pieza Componente (5 g r. (@ e unpuro o exqina y s Fisa s 1.t rmal Modiic
companentes vads inteigente < EaUetas soesrtin v s Fisica del suelo © Unitr 1 Linea desde la normal o0

Operaciones de CAD

| Crear tetracdro = x || Trabajo_Fin De Grado:Ve(@ Tetraedro con 3 puntos

Define res puntos de esquina.

Cono
Rederancia & Defina ¢l punto certral de I base, el
Worid v fadoy s shurs

Cilindro
Defina el

J
|

Punto de esquina (mm) central de la base, el

000 Sloso Sloso 3 radio y a ahtura.

Oenscniden Dok i SR
000 So00 slop0 O oentro a la esqui 1y ta attura,
Longitud (mem) % &

80,00 s | Defina ol punto cantral y of radio.
Anchura (mm)

3000 <

Altura (mm)

11000 ¢

[®) Trabajo_Fin_De_Grado”

' g IRB120.3.58_01
&7 IRB120.3.68_02

llustracion 21: Creacion base de la pinza inteligente

Ahora vamos a generar lo que es la brida creando un cilindro de radio 30 mm y altura 8 mm.

BEo-c-Qy = Trabajo_Fin_De_Grado - RobotStudio

Pasicion incial | Modelado | Simulacién Cortrolador RAPD Complementos
f@ IJ@ =} b importar geometria ~ | @ S6lide ~ @ Borde alrededor de cuerpos | §7 Cable @ interseccién kel Extrudic superfie
. e 1. Base de coordenadas Tetrasdro 57 Fisica del e ~ | CRestar I Extrudic aunva
Gusade b :‘7;:;;:;:9 O Erauetas « Define un punts de esquina y sus 2 Fisica del suelo | 3 Unién 1 Linea desce fa norma

dimensiones

Operaciones de CAD

Crear cilindro Trabajo_Fin_De Grado:Ve|

Mundo v

Tetraedro con 3 puntes
Define tres puntos de esquina.

Cone
Defina &l punta central de la base. &
radio y la attura,

Punto centil de I3 base (mm) @ ¢l punmo central de la base, el

L e P Q9

ogo [tooo oo 2 radio y la aftura,
Ovientacidn (deg) - Pirimide
o0 oo ot 2 Defina el punta central de la base, el

- ki) contro a la esquina/lateral y |a altura.
Radio (mm)

> Defina el punto central el radio.

Didmetro (mm)
6000 =
Atuea (me) 3

s 3 N

() Crearcapsula

Borar Cemar Crear

llustracion 22: Creacion brida de la pinza inteligente

Ya creadas la base y la brida vamos a modificar sus posiciones fijando nuevas coordenadas.

@oo-c-Q- - —— Trabajo._Fin_De_Grad

Poscionnicel | Modekdo | Swaston Comroleder WD Comglementos Morcar
% 0 BF iotwommera - @S - BBorce sadaor cocusros | F e @ rtcsacitn S specin A
s - @ Superice - 1 Bors or e superice | ° Fiica el e ~ | BRestar S Brmudir e B
Gupode Pe G . o e S " Mogticr punio
e e < Evauenas Ehcunav 5 Boroe con ns pumis Sunen L el ()
Crese Operacones de CAD. e
T [etaes | = || Trbsorin e Sradevent x | dos. | ao0. | Lbyes e evacon
Corgerlody Susear

[E] Trabs Fin DGt L]

IRBI20358_12
E000.05.05
Smart Griper Serva

mat_Grpper_Senvo_fing

. Pian 3 | Corar
P IRBE | Copr
BEE | pega

R | o

x
£ | seecuonar come UGS
2 e B2 [e oin] @ zoam D
@ | moaincar * @ | Poscion de offset
@ Fijar pesicién
2 | puntasin gevayisra 30 | Giar
[—
B | Fivcs *| @ s con resseco 3l sstema de
ol (3] m— - h——————
B e cor
& L T———
& * pereado (Fiezn_2)
B | s supn
| = | Cambiar nambre

[ie ge s

llustracion 23: Posicion fija de una pieza en RobotStudio

54

Vamos a fijar una posicidon respecto de la referencia mundo a la altura de la brida de 8 mm y
luego vamos a centrandolo, desplazandolo —40 mm en el eje X y =15 mm en el eje Y.

BRo-c-Q- = Herramientas de piezss Trabajo_Fin_De_G
EEDI rosconiical | wodeade | simdacon comooder RoD conplemenios o
% U@ {BF dbimportar geometria + | @Soido B Borde alrededor de cuerpos | I Cable @ Intersecoén [Extrudir superfice o d
1. Base de coordenadas ~ | @ Superfice v) Borde alrededor de superfice | §° Fisica del eje v CBRestar o *
Grupode Pieza Componente e D Cuva ~ 1 Borde con ks punto ey (T ; Modificar Pu
componentes vada inteligente & Eriguera: Qcuva 5 Borde con los puntos &a Fisica del suelo €O Unidn 1t M e [ap
Crear Operaciones de CAD]
Definir posicién: Pieza 1 | || Trabajo_Fin De GradoVerl x| do0_ | do0_ | Logica de estacion |
Referencia
Mundo ~ @

Posicin X.Y.Z (mm)
4000 2fs00 [2fd
Qrientacién (deg)
000 Zlooo [Zlooo

TOEEs

Aplicai | Cerrar

Disefio | Fisica | Etiquetas | = x

2 Conimertodo

[#] Trabsjo_Fin_De_Grado®

o RBI1203.56_M
" g7 IRB120.3 56_02
o IRBI4000_05_05
o Smart_Gipper_Sevo
I' @) Sman_Gripper_Servo_Fingers

4 [Piano

" WD Base_Piano zY
@ Escala_t t
& Escala_2 X

llustracion 24: Definicion de posiciones en RobotStudio

Aplicamos y podemos observar la forma de la base de nuestra pinza inteligente.

Boo-c-Q- = rmeiime s sene
m Posicion inicial | Modelado | Simulacion Controlador RAPD Complementos Modificar
f@ ﬂ@ {G} dhImportar geometria v @Sélido~ B Borde alrededor de cuerpos | §7 Cable @ Intersecdién lal Extrt
1, Base de coordenadas v | @ Superfice v @ Borde alrededor de superficie | §° Fisica del gje v OB Restar Slean
Crupode Pleza Componente 5y ot @ Curva~ 3 Borde con los puntos & Fisica del suelo | CUnién 1 tines

componentes vaca inteligente
Crear Operacic

| Definir posicien: Pieza 1 = || Trabajo_Fin De Grado:Verl x|do0_ | do0_ | L6gica de estacion |
Referencia

Mundo

Posicion X.Y.Z (mm)

4000 {1500 (Tfso0 T
Orientacién (deg) =)
o0 ooo 2ooo 2

<

5%

Aplicar | Cerrar

Disefio Etiquetas | T x

2 Contraertodo Buscar

[#] Trabajo_Fin_De_Grado®
Mecanismos

I g7 IRB120_3.58_01

b g7 IRB120_3 5802

b g7 IRB14000_05_05

I g1 Smart_Gripper_Servo

I & Smar_Gripper_Servo_Fingers
Componentes

4 ! Piano
I 4 Base Piano rav

llustracion 25: Cuerpo de nuestra pinza inteligente

Una vez ya tenemos la posicion deseada, crearemos la union a la que vamos a definir como
cuerpo. Generamos una unién y definimos qué figuras son las que queremos que lo formen,
quitando la opcidn de conservar.

55

‘ Unién | ¥ X

[:] Conservar
Unidn...
Pieza_1-Body
Y
Pieza_2 - Body
Borrar Crear Cerrar

llustracion 26: Creacion de union de dos cuerpos en RobotStudio

Ya tenemos la base completa de nuestra herramienta, a lo que llamaremos cuerpo.

k]
L

Trabajo_Fin_De_Grado:Verl xl do_0_

| do_0_ | Logica de estacion ‘

POORDG -

llustracion 27: Unidn del cuerpo de nuestra pinza inteligente

Ahora vamos a definir un color para

a

la pinza y seleccionar un color.

®

Grupo d
componen:

Unién
-Body

Borrar

Disefio | Fi

2 Coniraer

[#] Trabaj

Mecanis!

rn
"m
b g RE
rﬂ
b

b o® Cu

Unién

g B mR

Cortar Crl+X
Copiar Ctri+C
Pegar CtrlsV
Duplicar...

Guardar como biblioteca.
Desconectar biblioteca
Exportar geometria.,

Geometria vinculada

Visible Ctrl+D

Examinar
No examinar

Seleccionar como UCS
Posicion

Modificar

Planificacién de trayectoria
Fisica

Espejo

Aplicar plano de corte
Conectar a

Etiquetas

Efjminar Supr

Cambiar nombre

geometria ~ | @ Sélido ~ By Borde alrededor de cuerpos | §” Cable @ Interseccié

oordenadas v | @ Superficie v €@ Borde alrededor de superficie | § Fisica del eje v | OB Restar

v € Curva v s Fisica del suelo | €3 Unién
Crear

in De Grado:Ver] x| do0. | do.0_

@

%3 Borde con los puntos

[Légica de estacion |

Seleccionar color.

Apariendia de graficos...
Seleccionar color
Establecer origen local

Afiade color a los graficos.

Escala

Eliminar geometria de CAD
Eliminar caracteristicas
Eliminar geometrfa interna

Recrear gréficos

cOEUDaEEeOa

Detectable por sensores

llustracion

v -

28: Seleccion de color en RobotStudio

56

Escogemos un color y damos a aceptar y guardar.

Color X
Colores bésicos:
| I e il [
ey a1 0
I ..
ENEEEEEN
EEEEEEEN
HEEEN .
Colores personalizados:
l—l—l_l—l—l_l—l— Matiz: 0 Rojo: 247
e e o
Sat: 240 Verde: 0
Definir colores personalizados >> ColorSsiido (176 P
= Cancelar Agregar a los colores personalizados ¥

llustracion 29: Colores basicos para nuestro cuerpo de la pinza inteligente

Ya tenemos la base, pero nos falta crear las pinzas de nuestra herramienta. Creamos dos soélidos
tetraedros de 6 mm de largo, 30 mm de ancho y 90 de alto.

Una vez creada la primera, la tendremos que subir en altura 118 mm (8 mm de la base y 110
mm de la pinza) y la desplazaremos 40 mm a la derecha y para centrarla la llevaremos a =5 mm.

Para la otra garra de la pinza generamos un duplicado de esta ultima, la damos un offsetrespecto
de la anterior de —80 mm.

Ya tenemos nuestra herramienta modelada al completo.

llustracion 30: Modelado de nuestra Pinza Inteligente en RobotStudio

Una vez ya tenemos la herramienta disefiada en nuestra estacion, y nuestra estacion modelada
tendrd la siguiente apariencia.

57

llustracion 31: Estacion modelada en RobotStudio

4,1.1.2 Controladores virtuales

Para crear el controlador virtual tendremos que ir a la pestafia Controlador que contiene los
controles utilizados para gestionar un controlador real y los controles necesarios para la
sincronizacién, configuracidn y tareas asignadas al controlador virtual. RobotStudio le permite
trabajar con un controlador fuera de linea, que constituye un controlador IRC5 virtual que se
ejecuta localmente en su PC. Este controlador fuera de linea también se conoce como el
controlador virtual (VC) (ABB, 2025).

RobotStudio también le permite trabajar con un controlador IRC5 fisico real, que simplemente
se conoce como el controlador real. Las funciones de la pestafia Controlador pueden clasificarse
de la siguiente forma:

%+ Funciones para controladores tanto virtuales como reales
#+ Funciones para controladores reales

+ Funciones para controladores virtuales

La programaciéon offline es la mejor forma de maximizar la rentabilidad de la inversién en
sistemas robotizados. El software de simulacién y programacion offline de ABB, RobotStudio,
permite programar los robots en un PC de la oficina sin necesidad de parar la produccion, lo que
permite realizar tareas como formacion, programacién y optimizacién.

La herramienta se basa en el controlador virtual de ABB, una copia exacta del software real que
hace funcionar sus robots en la produccion. Esto permite realizar simulaciones muy realistas,
utilizando programas de robot reales y archivos de configuracion idénticos a los que se utilizan
en el taller (ABB, 2025).

58

Para llevar a cabo el proyecto necesitaremos crear dos controladores virtuales, uno para los dos

robots IRB 1200 y otro para el robot IRB 1400 YuMi.

N N VAN C

Controlador Importar Base de
virtual » geometria~ coordenadas~ w

—;i:-l Desde disefio...
"=} Cree uncontroladeor virtual en funcicn
de un disefo existente,

1

—----l Nuevo controlador...
Cree unnuevo controlador virtual y
L= afadalo a la estacion.

Controlador existente...
Afada uncontroladorvirtual existente
ala estacion,

i

llustracion 32: Creacién de un controlador virtual en RobotStudio

'Aﬁadir un controlador nuevo >

Controladar
MNombre:
IRB120_3_58_3 |

Ubicacion:
|C:\Users‘\U5er\.Documenis\.RubotStudl'u‘l.Virtual Controllers | |

@ Crear nueve

() Crear a partir de backup

Modelo de robot: EI
r IRE 120 ¥
wy

Variante;

| IRB 120 3kg 0.58m v|
RobotWare:

| 6.05.00.00 v|

[] Personalizar opcicnes

Mecanismos
@) Importar desde biblioteca

Usar mecanizmos de estaciones existentes

| ok || cancel |
—

llustracion 33: Caracteristicas de la creacidn de un nuevo controlador virtual en RobotStudio

59

El controlador lo crearemos con las siguientes caracteristicas:

Default Language

Spanish

Industrial Networks

700-1 DeviceMet Master/Slave
841-1 EtherNet/IP Scanner/Adapter

Motion Performance

603-1 Absolute Accuracy

RobotWare Add-In

988-1 RW Add-In Prepared

Motion Coordination

Multimove Options

604-2 MultiMove Independent

Motion Functions

611-1 Path Recovery
£12-1 Path Offset

Motion Supervision

£13-1 Collision Detectian

Communication

616-1 PC Interface
683-1 RobotStudio App Connect
617-1 FlexPendant Interface

Engineering Tools
623-1 Multitasking
Vision

1341-1/1520-1 Integrated Vision Interface

Robot

IRE 120

IRB 120-3/0.6

60

Drive Module

Drive System

Drive System IRB 120/140/260/360,/9105C/1200,/1400/1520/1600,/16601D

Additional Drive Units

IRB 120/140/260/360/1200/1400/1520/1600/166010/52/580/5300/5350

ADU-T90A in positian X3
ADU-790A in position ¥3
ADU-7904 in position Z3

llustracion 34: Configuracion de un controlador virtual para dos IRB 1200 en RobotStudio

Podemos destacar la funcion 604-2 MultiMove Independent, funcidn del sistema de RobotWare
que permite que varios robots y ejes externos trabajen de forma independiente y no simultdnea,
aunque ambos estén vinculados a un mismo IRC5 o controlador virtual.

Una vez generado nuestro controlador, tendremos que crear nuestras sefiales de entrada vy
salida, asi como un dispositivo que serd d645.

Estacion_TFG - RobotStudio a

= &

e
4 [Controlador_Robots_IRB120
£ HomE

llustracion 35: Sefiales de entrada y salida del controlador IRB 1200 de RobotStudio

El total de sefiale generadas para nuestro controlador donde son 16 entradas digitales y 13
salidas.

Nombre Tipo de sefial Mapeo de Categoria Nivel de Funcion
dispositivo acceso
DI_1_DO Digital Input 1 SCALE Todos Entrada digital parala nota do
DI_2_RE Digital Input 2 SCALE Todos Entrada digital para la notare
DI_3_Mi Digital Input 3 SCALE Todos Entrada digital parala nota mi
DI_4_FA Digital Input 4 SCALE Todos Entrada digital para la nota fa
DI_5_SOL Digital Input 5 SCALE Todos Entrada digital para la nota sol
DI_6_LA Digital Input 6 SCALE Todos Entrada digital parala notala

61

DI_7_SI
DI_8_DanceON
DI_9_Asc
DI_10_Desc
DI_11_Fich
DI_12_Rand
DI_13_NumN
DI_14_Robl
DI_15_Rob2
DI_16_Salir
DO_1_OneNotel
DO_2_ActiveRobotl
DO_3_OneNote2
DO_4_ActiveRobot2
DO_5_DanceON
DO_6_DO
DO_7_RE
DO_8_MI
DO_9_FA
DO_10_SOL
DO_11_LA
DO_12_5SI

Digital Input
Digital Input
Digital Input
Digital Input
Digital Input
Digital Input
Digital Input
Digital Input
Digital Input
Digital Input
Digital Output
Digital Output
Digital Output
Digital Output
Digital Output
Digital Output
Digital Output
Digital Output
Digital Output
Digital Output
Digital Output
Digital Output

7 SCALE
8 Function
9 Function
10 Function
11 Function
12 Function
13 Function
14 Function
15 Function
16 Exit

1 Tools
2 Tools
3 Tools
4 Tools
5 Funcion
6 SCALE
7 SCALE
8 SCALE
9 SCALE
10 SCALE
11 SCALE
12 SCALE

Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos
Todos

Entrada digital para la nota si

Entrada digital que activa el YuMi
Entrada digital para escala ascendente
Entrada digital para escala descendente
Entrada digital para tocar partitura
Entrada digital para notas aleatorias
Entrada digital para nota o intervalo
Entrada digital para activar IRB 1200_1
Entrada digital para activar IRB 1200_2
Entrada digital para salir de la simulacién
Salida digital al activar modo intervalo
Salida digital al activar IRB 1200_1
Salida digital al activar modo intervalo
Salida digital al activar IRB 1200_2
Salida digital al activar IRB 1400 YuMi
Salida digital para la nota do

Salida digital para la nota re

Salida digital para la nota mi

Salida digital para la nota fa

Salida digital para la nota sol

Salida digital para la nota la

Salida digital para la nota si

Una vez ya tenemos agregado y configurado uno de los controladores, pasamos a configurar el

controlador encargado de

caracteristicas.

los movimientos del

IRB 1400, que tendrd las siguientes

62

System Options

Default Language

Spanish

Industrial Networks

T09-1 DeviceMet Master/Slave
841-1 EtherNet/IP Scanner/Adapter

Motion Perfarmance

603-1 Absolute Accuracy

RobotWare Add-In

988-1 RW Add-In Prepared

Motion Coordination

Multimowve Options

604-1 MultiMove Coordinated

Maotion Events

608-1 World Zones

Motion Functions

811-1 Path Recovery
§12-1 Path Offset

Motion Supervision

613-1 Collision Detection

Communication

£16-1 PC Interface
688-1 RobotStudio App Connect
617-1 FlexPendant Interface

Engineering Tools

£23-1 Multitasking

Vision

1341-1/1520-1 Integrated Vision Interface

63

Robots

Robot

IRE 14000 (Dual arm YuMi)

IRB 14000-0.5/0.5

Left Arm configuration

IRB 14000-0.5/0.5 Type A

Right Arm configuration

IRB 14000-0.5/0.5 Type A

Drive Module

Drive System

Drive System IRE 14000

llustracion 36: Configuracion de un controlador virtual para un IRB 1400 en RobotStudio

Accedemos a las seiiales del dispositivo, con el fin de generar las entradas y salidas digitales y

asi poder comunicarnos con otros dispositivos, ya sean controladores, médulos de RAPID u otros

softwares.

[controtador <
2 Contrertodo
Estacién actual
4 B Controlador3
[HoME
4 {8} Corfiguracién
Commurication
Controler
1/0 System
[Man-Machine Communication
Motion
PROC
(5] Regitro de evertos
a Sistema de E/S
[Devicstet
[F EtherNetlP
(B Local
4 [A RAPID
[T_ROB_L
= T_ROBR
90 Sistema de visién
4 [Controlader_Rebats_IRB120
[Home
4 {8} Corfiguracién
Commurication
Cortrolier
1/0 System
Man-Machine Commurication
Bl Motion
PROC.
[T] Registro de eventos
Sistema de E/S
RAPID

©O

llustracion 37: Seiales de entrada y salida del controlador IRB 1200 de RobotStudio

En nuestro controlador para el YuMi el nimero de variables creadas es un total de ocho,

Estacion_TFGiVer] | Controladors (Estacién) | Controlador_Robots_IRE120 (Estadén)
[1/0 System x —a %
Tipo Name Type of Signal Assigned to Device Signal Identifcation Label Device Mapping Category AcoessLevel DefaultValue Filier Time Passive (ms) Fiter Time Active (ms) |
Access Level As1 Digiel Input | PANEL Automatic Stop chain(X5:11 10 X5:6) and (X5:3to X5:1) 13 safety ReadOnly |0 0 0 N
Cross Conneciion A2 Digitel Input | PANEL Automatic Siop chain backup((55 to X5:6) and 045310 X5:1) safety ReadOnly |0 0 0 N
Devce Tnis Lovel AUTOT Digitel Input | PANEL Automatic Mode(<3.6) safety ReadOnly |0 0 0 N
AUTO2 Digial Input | PANEL Automatic Mode backup(X9:2) [safety ReadOnly |0 0 0 n
DeviceNet Command CHI Digital Input | PANEL Run Chain 1 2 safety ReadOnly 0 0 0 [
DeviceNet Device Digital Input | PANEL Run Chain 2 2 safety ReadOnly |0 0 0 N
DeviceNet Intemal Device _ Collsion_Avoidance Digital Output ND A 1 ND ND N
] custom_DO_ Digitel Output DB52_10 17 Default 0 ND ND N
EtheietlP Command custom_DO_1 Digitel Quiput DG52_10 1 Default 0 nD ND n
Etherhlet/P Device custom_DO_2 Digitel Output D852_10 2 Default 0 ND ND N
EtherNetIP Internal Device Digitel Output DB52_10 3 Default 0 ND ND N
Industrial Network Digitel Output DE52_10 4 Default 0 ND ND N
Digitel Output DE52_10 5 Default 0 ND ND N
Route Digitel Output DE52_10 5 Default 0 ND ND N
Signal Digitel Output DB52_10 7 Default 0 ND ND N
Signal Safe Level Digital lnput D652_10 0 Funcion Al 0 0 0 N
Systemn npat Digital input D652_10 1 SCALE a1 0 0 0 N
i Digital Input DE52_10 2 SCALE a1 0 0 0 N
ystem Output Digital Input DB52_10 3 SCALE AN 0 0 0 N
Digitl Input DE52_10 4 SCALE Al 0 0 0 N
Digitl Input D852_10 5 SCALE Al 0 0 0 N
Digitl Input DB52_10 6 SCALE Al 0 0 0 N
Digiel Input DB52_10 7 SCALE Al 0 0 0 N
Digitl Output | DRV 1 Broke-release coll 2 salety ReadOnly |0 ND ND N
Digiol Input | DRV_1 Brake Feedback(X36) at Contactor Board i safety ReadOnly |0 0 0 N
Digitl Input | DRV_1 Brake Votage OK 15 safety ReadOnly |0 0 0 N
Digitl Output | DRV_T Chain 1 Interlocking Circuit 0 safety ReadOnly |0 ND ND N
Digiel Output | DRV_T Chain 2 Interlocking Circuit 1 safety ReadOnly |0 ND ND N
Digial Input | DRV_T Extermal customer contactor (Xad) at Contactor Board 4 safety ReadOnly |0 0 0 N
Digital Input | DRV_1 e U 3 safety ReadOnly |0 0 0 N
Digital Input | DRV_1T 10 safety ReadOnly |0 0 0 N
Digital Input | DRV_T 2 safety | ReadOnly |0 0 0 N
Digital Input | DRV 3 safety ReadOnly |0 0 0 N
Digitl Input DRV_1 0 safety ReadOnly |0 0 0 N
Digital Input | DRV_1 1 safety ReadOnly |0 0 0 N
Digitl Input DRV 5 safety ReadOnly |0 0 0 N
Digil Input | DRV_{ ve Vohage contactor cail 2 [safety ReadOnly |0 [} [} N
Digial Input | DRV_1 Extemal Motor temperature(X2d:1 to X242) 3 safety ReadOnly |0 0 0 N
Digil Input__ DRV 1 Motor temperature warming(X5:1 10 X5.3) at Contactor Board |7 safety ReadOnly |0 0 0 Ny
>

donde solo contaremos con entradas digitales.

64

Nombre Tipo de seiial Mapeo de Categoria Nivel de Funcién
dispositivo acceso

DI_0_ON Digital Input 0 Function | Todos Entrada digital para activar baile
DI_1_DO Digital Input 1 SCALE Todos Entrada digital parala pose do
DI_2_RE Digital Input 2 SCALE Todos Entrada digital para la pose re
DI_3_MlI Digital Input 3 SCALE Todos Entrada digital parala pose mi
DI_4_FA Digital Input 4 SCALE Todos Entrada digital parala pose fa
DI_5_SOL Digital Input 5 SCALE Todos Entrada digital para la pose sol
DI_6_LA Digital Input 6 SCALE Todos Entrada digital para la pose la
DI_7_SI Digital Input 7 SCALE Todos Entrada digital para la pose si

Tabla 9: 1/0 del controlador IRB 1400 YuMi

4.1.1.3 Componentes Inteligentes

Un componente inteligente es un objeto virtual que puede contener ldgica interna, sefiales de
entrada/salida y comportamientos personalizados, utilizado para simular el funcionamiento de
equipos periféricos, mecanismos o procesos automatizados dentro de una celda robdtica.

{ok &b Importar geometria v
1, Base de coordenadas

Componente
inteligente | < Etiauetas v

Componente inteligente

Crea objetos que permiten a los
componentes de su estacién un
compoartamienta mas complejo,
como un movimiento de pinza,

< objetos moviéndose en

| transportadores, I6gica, etc

Puede crear, editar y afiadir
compaonentes inteligentes en el
editor de componentes inteligentes.

llustracion 38: Componente inteligente en RobotStudio

Funciones de los componentes inteligentes:

* Se puedesagregar comportamientos como movimiento, animaciones o
respuestasa sefialessin necesidad de programar directamente en RAPID

Simulacidn de ldgica

* Se conectan mediante sefialesde entrada y salidavirtuales con el controlador

Interaccién por sefiales ol i

* Permite construiry re utilizar componentes personalizados en diferentes

Disefio modular proye ctos

Animaciones y eventos « Se pueden realizar basadas e n condiciones o sefiales

Tabla 10: SmartArt de las funciones de los componentes inteligentes

65

Para poder replicar el comportamiento légico de nuestra estacion, hemos creado varios
componentes inteligentes. Vamos a comenzar explicando todos los que componen las distintas
notas del piano.

Sensor de colisidon

El sensor de colision es un componente inteligente disefiado para simular la deteccion de
contacto entre un objeto (como una herramienta o el brazo de un robot) y otro elemento de la
celda virtual. Este componente se utiliza para detectar colisiones de forma visual o légica,
permitiendo ejecutar respuestas programadas cuando se produce una interaccidn fisica no
deseada o intencional.

Caracteristicas principales:

1. Deteccion automatica de contacto fisico entre el componente inteligente y otro
objeto 3D dentro del entorno en RobotStudio, nuestra pinza “Piezal_Intervalos”.

2. Salida digital activada cuando se detecta una colision.

| Propiedades: CollisionSen... | v X

Propiedades =
Objectl
|Pinza1_Intervalos |
Object2
|DO_0 (Piano/Escala_1) |

NearMiss (mm)
0.00

Partl

¥ CollisionSensor_do_ | |
Propisdades Part2
Object1 (Finza1_Intervalos) | v
Object2 (DO_{) T
NearMiss (0,00 mm) None
il Senales =
Part2 () :
CollisionType (None) | Active [
Sefizles de E/S | SensorQut ©|
Active (1) SensorOut () R
Aplica Cerrar

Sensor plano

Un sensor plano en RobotStudio es un componente inteligente disefiado para la deteccién de la
presencia o el paso de objetos dentro de un plano bidimensional especifico dentro de nuestra
estacion robdtica. A través de la simulacién de la activacién de sefiales, el sensor plano nos
permitirda representar las interacciones en el entorno entre nuestro robot y nuestro

66

instrumento, considerando su posicidn en un plano, en este caso el sensor se encontrara
situacién sobre la superficie de la tecla del piano en cuestion, en este primer caso de la nota Do.

Caracteristicas principales:

1. Area de deteccién definida: El sensor plano tiene un drea rectangular como nuestras
diferentes teclas, que serd activado o desactivado segun la presencia de objetos.

2. Sefales de activacién:

a.

3. Configuracion en el entorno virtual: El componente se posicione en un plano, y la

Entrada: ObjectDetected (si se detecta un objeto dentro del drea del sensor)
b. Salida: Al activarse el sensor, puede enviar una sefal como SensorActive = True,

la cual puede ser utilizada por el robot para tomar decisiones.

orientacién del sensor puede ajustarse para que se alinee con la geometria de la celda

o el entorno del robot.

4. Uso de la légica de deteccidn: El sensor puede programarse para responder a eventos
especificos, como el paso de un objeto a través de su drea de deteccion o la presencia

continua de un objeto dentro del area.

Linear Move

{4 PlaneSensor_do_0_

Fropiedades
Origin ([0.00 0.00 40.00] mm)
Axis1 ([60.00 0.00 0.00] mm)
Axis2 ([0.00400.00 0.00] m...)
Tag ()
SensedPart (1#_0)
Sefiales de E/S
Active (0) SensorOut (0)

| Propiedades: PlaneSensor... | ¥ X

Propiedades =
Origin (mm})
27000 (534000 516000 5
Axis1 (mm) -
6000 /000 (5000 =~
Axis2 (mm) =
000 ={40000 51000 =~
Tag
| >
SensedPart
[1#_0 (Piano/Escala_1) ~|
Senales E
| Active ©|
| SensorOut ©|
Aplica Cerrar

Es una instruccion de movimiento que ordena al robot trasladar su herramienta desde un punto
a otro siguiendo una linea recta en el espacio tridimensional con una velocidad constante y sin

desviarse de esa trayectoria.

67

Caracteristicas principales:

1. Mantiene la orientacidon de la herramienta constante (a menos que se especifique lo

contrario).
Ideal para operaciones donde es crucial mantener una trayectoria exacta.

Es mas exigente en términos de calculo que un movimiento punto a punto (Movel),

porque debe seguir el espacio cartesiano exacto.

Para ello emplearemos uno para mover linealmente hacia abajo la tecla al ser pulsada.

J Propiedades: Pulsar do 0_ ¥ x
Propiedades =

Object

|DO_0 (Piano/Escala_1) |

Direction (mm)
000 F000 5000 %

- Pulsar_do_0 Distance (mm)

- - = 20,00 s

Propiedades Duration (s}
Object (DO_D) 20 <

Direction ([0.00 0,00 -10.00] m...) Reference
Distance (20,00 mm) focal hd

Duration (2,0 s) Senales =

Reference (Local) ‘ Erarm |
Sefiales de E/S \ Executed |
Execute (0) ~.__ Executed (0) | | Executing @)
- Execu“ng {D) Aplicar Cerrar

llustracion 40: Propiedades del componente movimiento linear de RobotStudio

Una vez hemos desplazado el componente, lo devolvemos a su posicion inicial.

Propiedades: Posicionlnit_...| ¥ X
Propiedades =

Object
[Do_0 (Piano/Escala_1) “

Direction (mm)
000 51000 31000 5

;"’ PDSiCiDnlnit_dﬂ‘_D_ Distance (mm}

Fropi=dades 2000 -

Duration (s)
Ohject (DO_0) 20 =

Direction {[0,00 0,00 10,00] mm) Reference
Dizzance (20,00 mmi) Local h

Durztion (2,0 5) Senales =

Pimference (Local) [Execule |
Zefizles de £/ [Executed |
+| Execute {0} -._ Executed (0] | | By [@)
- Emecuting (1) Aplicar Cerrar

llustracion 41: Propiedades del componente movimiento linear de RobotStudio

68

Logic Gate

Para que se puedan realizar las dos trayectorias del objeto de forma consecutiva y no de
simultdnea, le anadiremos una puerta légica.

Es un bloque ldgico virtual que se utiliza dentro del editor de comportamientos de un
componente inteligente para procesar sefales de entrada y producir salidas basadas en
condiciones booleanas como AND, OR, NOT, entre otras.

Su funcidn principal es permitir la construccién de ldgicas condicionales internas, sin necesidad
de escribir cddigo RAPID, facilitando el disefio de respuestas automaticas en la simulacion.

Tipos de puerta:

AND: Solo da salida True si todas las entradas son True
OR: Da salida True si al menos una entrada es True
NOT: Invierte el valor légico de la entrada

XOR: True si solo una de las entradas es True

Ll G

Para poder devolver la tecla a su posicion inicial, emplearemos una puerta légica NOT que nos
permitira saber cuando la nota puede volver a su posicion inicial.

Propiedades: LogicGate [... |+ X
Propiedades B

Operator
NOT ~
[LogicGate [NOT] | by
Fropiedades 20 =
Operator (WOT) Senales =
Delay (2,0 5) | InputA @‘
Sefizles de E/S | Output g
InpurA {00 Cusput (1) Alicar Cerrar

Play Sound

Ademads de los movimientos vamos a afiadirle sonido y color para una mayor iteracién con la
estacion usando un Sound Asset.

Es un archivo de sonido (normalmente .wav) que se puede importar y vincular a un componente
inteligente para que se reproduzca automdaticamente en respuesta a una sefial o evento
especifico durante la simulacidn.

69

Caracteristicas clave:

1. Formato compatible: Generalmente .wav, aunque puede aceptar otros formatos
basicos.

2. Reproduccidon controlada: Puedes vincular el sonido a eventos como una senal de
entrada, una colisién, una animacién o una condicidn légica.

3. Ubicacién sonora: El sonido se puede reproducir desde la ubicacion del componente,
simulando una fuente de sonido localizada.

4. No afecta el programa RAPID: El uso de sonidos es Unicamente para efectos de
simulacion visual y auditiva, no tiene.

it @) Sonido_do_0_ [316899__jaz_the_man_2__do-stretched.wav]
Propiedades
SoundAsset (316899 jaz_the_man_...)
Loop (False)
Sefiales de E/S
Execute (0)
Stop (0)

Para afadir el sonido correspondiente a cada nota, tendremos que ir a la pestafia componer, y
afadir el archivo manualmente, en este caso un .wav.

Para poder afiadir el sonido en las propiedades del componente, tendremos que previamente

tener en nuestro dispositivo el sonido en formato.wav. En archivos afiadiremos el sonido de la
nota.

| Propiedades: Sonido do 0...|+ X
Propiedades =

SoundAsset
| 316899_jaz_the_man_2_ do-s -~ |

[Loop

Senales =

| Execute |

| Stap |

Aplicar Cerrar

Set Color

Es un bloque de accidn en RobotStudio que se utiliza dentro del componente inteligente para
modificar dindmicamente el color de una parte del modelo, simulando cambios de estado

visuales, en nuestro caso le dard un color verde a la tecla que sea pulsada por el robot durante
la simulacidn.

70

‘ Propiedades: Luz do 0_ ¥ X

Propiedades E
Object
|DO_0 (Piano/Escala_1) |
Color
@ Luz_do_0_ 000 225500 2loon =
Propiedades Opacity
Object (DO_0) 255 =
Color ([0 255 O]) Sefiales =
Cpacity (255)
Sefales de E/S HETE ©
| Active (0) Aplicar Cerrar

llustracion 45: Propiedades del componente inteligente configurar color de RobotStudio

En este caso solo tendremos una entrada ON y ninguna salida, y lo conformardn los elementos
mostrados en la imagen.

v Qv s rabajo_Fin_De
B Eo Q Trabajo_Fin_D
m Posicidn inicial Modelado Simulacion Contralador RAPID Complementos Modificar
f@ ﬂ@ {&F dolmportar geometria v | (@Sélido v B Borde alrededor de cuerpos | § Cable @ Interseccién =i Extrudir superficie I
= (W
1. Base de coordenadas ~ | @ Superficie v & Borde alrededor de superficie | §~ Fisica del eje v | CB Restar = Extrudir curva °
Cunolde P\ez'a Sompopents 0 Etiquetas v @Curva ~ & Borde con los puntos ZaFisica del suela | © Unién 1 Linea desde la normal (lerirel
componentes vacia inteligente curva v
Crear Operaciones de CAD
| Disefio [Fisica | Etiquetas | % x || Trabajo Fin De Gradoiver! | do0_ x [do0 | Légica de estacion |
2 Contraertodo Buscar @ do 0 ‘Descnpcm’n
@ Trabajo_Fin_De_Grado* ~ A . = =
" Componer Disefio Propiedades y enlazamientos Sefiales y conexiones
ecanismos ;
I g IRB120_3_56_01 Propiedades
Entradas [+
b gt RB1203 56 (02 #PlaneSensor_do_0_ @ Lido0.
I §% IRB14000_05 05 ON (1) - Presisdades Propiedodes
(P CallisianSensar_do_ rigin (1002 8,00 40.00] mr) Ctimet @0L0)
3 o Smart_Gripper_Seno Propiedades Ao (50,00 0.00 0,09 mm) Comr2ss 0]
pais2 (0,00 400,00 0,00] m..) -
P g Smar Gripper_Servo_Fing oot 'su:i‘:;;;;;s‘m‘ ' P et ——
Componentes Nezihiz= (0.00 mm) SerassPer (14.0) Aztve (0)
Bani () Sefsies de £8 d
4 f@ Piano Far2 () Acive (0) SensarDut ()
4 4@ Base_Pi GolisianType (ane) Ag)Senido_do_0_[316889_jaz_the_man_2_do-stretched wav]
ase_Fiano Sefslez 22 25 Fropiedades
@ Cuerpo iz (1) Sensordus (0 ‘SoundAzszt (313858 ez he_man_..)
Laog (Folse)
4 6 Escala_1 Soteles e E15
—
L@ 10 Stop 0
P D280 #- Pulsardo 0 @ Posicionlnit_da_0_
Fropiecades
b @30 ey =]
b 480 D LogicGate [NOT] Birecien (100500 10.36])
b 580 v Frapiedades Distance (20,00 me)
) ’2 gl et o oy i
[. Sensiesde £ Ll
X T
uerpo - Exscing 0] = == i
b {8} do_0_

llustracion 46: Logica del componente inteligente nota do del teclado del RobotStudio

Ahora ya tenemos el teclado modelado, que estara formado por tres escalas en total.

71

Fl f@ Escala_1
I gD 150
I g 280
I g 340
I g 450
I o 540
I gfp DO_D
I {8} do_0_
I g2 FA_D
I+ {oF fa_0_
I g LA_D
I+ {8k la_0_ -
b @ MO / s
[foF mi_0_ =
b @ RE_D e
[~ {8k re_0_
I g Base_Piano b IS0
b Ge Escala_1 P {oF si 0_
! % Escala_2 I g SOL_0
B Qe Escala_3 I+ {&F sol_0_

llustracion 47: Estructuracion y componentes del piano de RobotStudio

Nuestro piano estara formado por la base y luego de sus tres escalas, donde cada escala
contard con siete notas blancas y cinco alteraciones, como se muestran en la imagen.

Configurado ya el teclado configuramos el componente pinza para convertirlo en un
mecanismo que podremos usar durante la simulacion como herramienta.

Un mecanismo en RobotStudio es una entidad cinemdtica simulada compuesta por varias partes
conectadas mediante juntas (joints) que permiten movimientos definidos, como traslacién o
rotacion, en respuesta a senales, comandos o condiciones dentro del entorno virtual. Los
mecanismos se utilizan para representar y controlar componentes moviles de maquinas o
sistemas automatizados, como pistones, compuertas, prensas, etc.

Dentro de Modelado >> Mecanismo >> Crear mecanismo.

R©®®H L IO
et b B s Bt S ol Rzl ot

omplement

8 & G

Beede

llustracion 48: Creaciéon de un mecanismo dentro de la ventana de modelado de RobotStudio

Primero le daremos nombre al mecanismo, en nuestro caso lo vamos a llamar pinza y definimos
el tipo de mecanismo como herramienta.

72

Crear Mecanismo ¥ x
Nombre de modelo de mecanismo
Pinza
Tipo de mecanismo
Herramienta ~
Tipo de cinematica

Otros ~

[=} ﬁ] Pinza
{T) Eslabones
(D Ejes
{T) Datos de heramienta
~~ Calibracion
-~/ Dependencias

Compilar mecanismo Cerrar

llustracion 49: Creacion de un mecanismo en RobotStudio

Definimos las distintas partes del mecanismo.

llustracion 50: SmartArt de las partes que conforman un mecanismo en RobotStudio
Vamos a empezar por los eslabones.

=- iﬁ Pinza

DFEj (@ Afadir Eslabon..

-(T) Datos de herramienta

~ Calibracién

w/ Dependencias

llustracion 51: Creacion de un eslabon de un mecanismo en RobotStudio

Primero elegiremos el cuerpo, ya que serd nuestro eslabdn base.

73

Crear Eslabon

Nombre de eslabon Componentes afiad

L1 Cuerpo

Componente seleccionado
<Seleccionar componentes> v|

llustracion 52: Propiedades para la definicion de un eslabén en RobotStudio

Realizaremos lo mismo con el resto de los eslabones que conforman nuestra pinza, la pinza
izquierda y la pinza derecha, y el cuerpo.

E|/ Eslabones

E| @) L1 (eslabon base) Componentes afiad...
[Cuerpo

lzq
Derch

L. Derch

llustracion 53: Eslabones que conforman una pinza inteligente en RobotStudio

Anadimos los ejes, el eje 1 donde el eslabdn principal va a ser el eslabdn base, nuestro cuerpo,
y como eslabén segundario va a ser la pinza izquierda. Queremos que dicha articulacidn sea
lineal, por lo que vamos a seleccionar tipo de eje prismatico.

Como se trata del eslabdn izquierdo, se tiene que mover a la derecha, por lo que los valores que
daremos a las posiciones seran 0 y 1 positivo.

Le tenemos que definir también el recorrido, por lo que lo fijaremos en 0y 25 mm.

Crear Eje

Nombre de eje Eslabén principal
J1 L1 (eslabdn base)
T Eslabén secundario
() De rotacién L2 >

© Piismitico Activo

Eje de articulacion
Primera posicion (mm)
000 2]o.00 2lo00

20

Segunda posicién (mm)

1.00 210,00 $10.00
Auis Direction (mm)

1.00 210,00 2000 2.

CH

Mover eje

0.00 25.00

Tipo de limite
Constante w

Limites de articulaciones

Limite min. (mm) Limite max. (mm)
0.00 G S

= =

llustracion 54: Eje 1 del mecanismo pinza de RobotStudio

74

Realizamos lo mismo con nuestro eslabdn principal y el tercer eslabén (Pinza

derecha) pero
cambiando los limites, donde nuestro limite inferior sera -25 y el maximo sera 0.

Crear Eje

Nombre de eje Eslabén principal

J2 L1 (eslabon base) v
Tadae Eslabon secundario

() De rotacién B ~

© Prismético Activo

Eje de articulacion
Primera posicién (mm)
0,00 =0,00 %000

r

Segunda posicién (mm)

1.00 <1000 10,00
Axis Direction (mm}

100 =000 %000 =

N

Mover eje
[25.00

0.00 0.00|

Tipo de limite

Constante v

Limites de articulaciones
Limite min. (mm)

Limite max. (mm)
-25.00

0.00

|

Aceptar Cancelar

llustracion 55: Eje 2 del mecanismo pinza de RobotStudio

Aplicados todos los cambios ya tendremos definidos todos los ejes de nuestro mecanismo

E;j-\/ Ejes

L1 (eslabdn principal)

L2 (eslabdn secundario)
B 02

L1 (eslabon principal)

L3 (eslabon secundaria)

llustracion 56: Ejes del mecanismo pinza de RobotStudio

Para configurar los datos generales de la herramienta Pinza le definiremos una masa de 1 Kg con
centro de gravedad en las siguientes coordenadas (0,0,50).

75

Crear Datos de herramienta

Nombre de datos de herramienta:

Pinza_1

Pertenece al eslabén

L1 {eslabdn base) o

Paosicidn (mm)

0.00 <1000 sli7so0 2
Orientacién (deg) A
0.00 +0.00 +{0.00 2

0 Seleccionar valores de los
puntos/sistema de coordenadas

<Seleccionar sistema de coordena

Datos de herramienta
Masa (Kg)
1,00 S

Centro de gravedad (mm)
0.00 =000 =L =

Momento de inercia Ix. ly. [z (kgm?)
0.00 310,00 21000

v

llustracion 57: Propiedades de los datos de herramienta del mecanismo pinza de RobotStudio

Una vez la completada la configuracidn de nuestra pinza, compilamos nuestra herramienta.

= Eﬁ] Pinza
[+~ Eslabones

-/ Ejes

~ Datos de herramienta

- Calibracign

+/ Dependencias

Compilar mecanismo Cerrar

llustracion 58: Compilacion mecanismo pinza de RobotStudio

Ya tenemos nuestra pinza definida y modelada como podemos ver en la imagen a continuacion
con su TCP.

76

llustracion 59: Herramienta pinza de RobotStudio

Ahora vamos a afiadir dos posiciones: Pinza abierta y Pinza cerrada.

Para ello vamos a crear una pose Pinza_abierta y definimos valores de los ejes.

Crear Pose

Nombre de pose:

Pinza_abierta| [[] Pose inicial
Valores de gje

0.00 2500| < | >
-25.00 000 <| =

Aceptar Cancelar

llustracion 60: Creacion Pose de la posicion pinza abierta de RobotStudio

Cuando tenemos la primera posicién, haremos lo mismo para la posicidn de pinza cerrada.

Ahora vamos a definir la logica inteligente de la pinza.

Trabajo finDe Gradover1 | do0. | do0. | Logica deestacion | Pinza Intervalos x | = || Documentos
" s - () Estacién Buscar
{6F Pinza_Intervalos [Descripeion | [Englsh 2 °
Ubicaciones..
Disefio Componer Propi y Sefiales y
acii i ExpotaraXml.

42 OpcUaClient
*d un dliente OPC UA
Source
P founcomponene
CollisionSensor
@ etec s colsion enre obieos
LogicGate
D
Estados g~ Mecanismo a mover
Nombre Focha fosna ta s 3
‘Guardar estado actual Restaurar estado seleccionado Detalled ’
Activos.
[Nombre de actvo >
Afadractvo Definuicono Acwalzariodos los actvos Ver G ,
oL

Soiea |

llustracion 61: Composicion pinza de RobotStudio

77

Pose Mover

El Pose Mover es un componente inteligente (Smart Component) que permite que el TCP de un
robot se mueva a posicién especifica, en nuestro caso serdn las poses definidas como
pinza_abierta y pinza_cerrada.

Para poder completar la lIégica de nuestro componente, vamos a afadir unas puertas légicas.

E\PoseMover [Pinza_cerrada]

Propiedades
Mechanism (Pinza)
Pose (Pinza_cerrada)
Duration (0.0 s)

Sefiales de E/S
Execute (0) ~=_ Executed (0)
Pause (0) - ~== Executing (1)
Cancel (0) -===° ==+ Paused (0)

!:«_" ‘PoseMover_2 [Pinza_abierta]
Propiedades
Mechanism (Pinza)
Pase (Pinza_abierta)
Duration (0.0 s)
Sefiales de EjS
Execute (0) = _ Executed (0)
Pause (0) -- = Executing (0)
Cancel (0) === Paused (0)

llustracion 62: PoserMovers del mecanismo pinza de RobotStudio

= w vl
H P LogicGate N
Do 29 [resliza uns operacion logica conlas
sefiales digitales
PoseMover
[‘5 Mueve los ejes de un mecanismo hasta gD LogicExpression
una pose predefinida Evaliia una expresion logica
RapidVariable Logichux
{31 cstablece u obtiene el valor de una :D_ celections uns de dos sehales de
variable RAPID entrada
OpeUaClient LogicSplit
23 U cliente OPC UA -EE Activa y pulsa las sefiales de salida en
funcion del estado de la sefial de entr ..
Source
@P cres una copia de un componente LogicSRLatch
gréfico . Aplicar-restablecer cierre
o CollisionSensor Converter Sefiales:
Detecta la colisién entre objetos = Convierte entre valores de propie. g Establecer
valores de sefial
LogicGate Reset Restablecer
D. Realiza una operacién légica con las g{;] VectorConverter Output Salida
sefiles digitales © 2] Convierte entre Vector3 y valores InvOutput Salida inversa
Sefiales y propiedades » b Expression
o ; R ﬂT Se evaltia como una expresion
rimitivos paramétricos matematica
_| | sensores > Comparer
lani Acciones y| al=b Activa una sefial digital como resultado
= de una comparacion de propiedades
Manipuladores > Counter
Controlador »| a++ incrementa o reduce el valor de una
ropiedad
Fisica > prep
Repeater
PLC 4
T o une senet un mimero de veces
>

Realidad virtual

Otros » D

| Componente inteligente vaco

5 Importar biblioteca... [rh
|2 | Importar geometria..

La puerta légica usada es NOT

Timer
Pulsa una sefial digital con un intervalo
especificado durante la simulacion
MultiTimer

Emite pulsos de sefiales digitales en los

momentos especificados durante 1a si... _

llustracion 63: LogicSRLatch del mecanismo pinza de RobotStudio

78

Propiedades: LogicGate [... |~ X
Propiedades B

Operator

NOT ~

Delay (s)

0.0 2

Senales =

| InputA @‘

| Output o‘
Aplicar Cerrar

llustracion 64: Puerta l6gica NOT del mecanismo pinza en RobotStudio

El tipo de sefial que emplearemos sera un DigitalOutput funcionardn como nuestras dos salidas
de la pinza. Las llamaremos Dos_Notasy Una_Nota.

Afiadir sefiales de E/S ? X Afiadir sefiales de E/S ? X
Tipo de sefial Numero de sefiales Tipo de sefial Nimero de sefiales
DigitalOutput P Restablecimiento = DigitalOutput = Restablecimiento =

U automtico ! = B = U automatco ! >
Nombre de base de sefiales ~ Nombre de base de sefiales
Dos_Notas| - Una_Nota| -
0 B i 0 5 1 =
Grupo Grupo
Valor de Ia sefial 0.00 B 0.00 = Valor de Ia sefial 0.00 = 0.00 E
o o
Mostrar nombre (English) Descripcion (English) Mostrar nombre (English) Descripcian (English)
[Oculto [sélolectura [oculte (] Sélo lectura
Mostrar como comando en el mend contextual Mastrar como comando en el mend contextual

llustracion 65: DigitalOutputs del mecanismo pinza de RobotStudio

I Propiedades: PoseMover [... \¢_X| Propiedades: PoseMover_... |=_x
Propiedades Bl Propiedades B
Mechanism Mechanism
|F’inza V| |Pinza V|
Pose Pose
|Pinza_cerrada v | | Pinza_abierta hd |
Duration (s) . Duration (s)
00 = |[oo S
Senales E] Senales =
Execute		Execute
Pause		Pause
Cancel		Cancel
Executed] Executed	
I Executing @l	Executing ®	
Paused ®		Paused ®
Aplicar Cerrar Aplicar Cerrar

llustracion 67: Propiedades de los DigitalOutputs del mecanismo pinza de RobotStudio

La sefial de entrada sera Unica, y lavamos a denominar Pulsador. Mediante la activacion de este
pulsador vamos a ser capaces de cambiar la posicién de la pinza, a la deseada por el usuario.

79

Afadir sefiales de E/S

Tipo de sefial

? *

Nimero de sefiales

Digitallnput ~ 0 Restablecimiento 1 =
automatico =
Nombre de base de sefiales
Pulsador
0 = 1 =
Grupo z x
v
Valor de la sefial 0.00 = 0.00 =
0
Mostrar nombre (English) Descripcién (English)
C] Oculto D Sdlo lectura
] Mostrar como comando en el mend contextual

llustracion 668: Entrada digital pulsador del mecanismo pinza de RobotStudio

Finalmente obtendremos la siguiente Pinza de intervalos.

@ Pinzail ntervalos |Descrip:\dn

English ~

Disefio Componer Propiedades y enlazamientos Seiiales y conexiones

Propiedades
Entradas

Pulsador (0) "_’,""PoseMover [Pinza_cerrada]

Propiedades
Mechanism (Pinza)
Pose (Pinza_cerrada)
Duration (0.0 s)
Sefiales de E/S
Execute (0) == Executed (0)
Pause (0) “-- Executing (0)
Cancel (0) -==° “£» Paused (0)

- LogicGate [NOT]
Propiedades
Operator (NOT)
Delay (0.0)
Sefiales de /S
Inputé (0) » Output (1)

Mestrar enlazamientas Mestrar conexiones Mostrar no usados Zoom:

Set (0)

Reset (0) -=- - InvOutput (1)

o
51 LogicSRLatch
Propisdades
Sefisles de E/S

S Output(0)

D

‘-?‘PoseMover_Z [Pinza_abierta]

Propiedades

Mechanism (Pinza)
Pose (Pinza_abierta)

uration (0.0s)

Sefiales de E/S

Execute (0) ~«-_ Executed (0)

Fause (0) - Executing (0)

Cancel (0) -=== Paused (0}
Organizacion automatica

llustracion 679: Disefio y l6gica del mecanismo pinza de RobotStudio

4.1.1.4 Légica de la estacidn

Salidas

Dos_Notas (0)
Una_Nata (1)

En RobotStudio, la Idgica de la estacion (Station Logic) es una herramienta que permite definir y
visualizar el comportamiento légico de los dispositivos y elementos de una celda robdtica virtual.
Funciona como un entorno de control basado en sefiales, en el que se establecen las relaciones
entre entradas, salidas, sensores, actuadores y el robot simulado.

El objetivo principal de esta herramienta es coordinar la interaccién del robot con los periféricos
de la estacion virtual, garantizando que la simulacién represente fielmente las condiciones que

existiran en el entorno fisico.

80

Elementos que se muestran en la légica de una estacidn:

Entradas digitales (DI)y Salidas digitales (DO) y Bloques légicosy
analdgicas (AO) analogicas (AO) condiciones

Eventosy secuencias Visualizacion del estado Controlador virtual

Senales digitales y analdgicas

<+ Entradas digitales (DI) y analdgicas (Al): simulan la informacién de sensores, finales de
carrera o detectores de pieza.

+ Salidas digitales (DO) y analdgicas (AO): controlan actuadores como pinzas, cilindros
neumaticos, bandas transportadoras o sistemas de iluminacién.

Bloques ldgicos y condiciones

% Se representan mediante diagramas de légica (puertas AND, OR, NOT).

= Se utilizan temporizadores, comparadores y reglas condicionales (if/then).

Eventos y secuencias

#+ Se definen reglas que desencadenan acciones: por ejemplo, “si un sensor detecta pieza
-> activar pinza”.

= Permite sincronizar el ciclo de trabajo entre robot y periféricos.

Visualizacién del estado de la celda

=%+ Se muestran animaciones en tiempo real, como la activacién de un cilindro, la apertura
de una garra o el movimiento de una cinta transportadora.

81

4 Los cambios en las sefiales se reflejan con indicadores graficos que facilitan la
depuracion.

Interaccién con el controlador virtual

4+ Laldgicade la estacion puede conectarse al controlador virtual del robot, lo que permite
que el programa RAPID y los periféricos funcionen en conjunto.

4 Obtencién de una simulacién completa que reproduce el comportamiento del sistema
fisico antes de su implementacion.

)

e
Entradas [<] Sabdas [<]

4EFPinznl_Intervolos.

st [
Pz

{E}Pinza2_Imervalos.

[E#] contoteder_Robots 1RE120

ine 7] Mostar conesiones 7] Moslvar o ueacon Zoom

llustracion 68: Disefio de la légica de la estacion de modelado de RobotStudio

4.1.2 Trayectorias y puntos

Workobject

Un workObject define un sistema de coordenadas local (un marco de referencia) respecto al cual
se pueden programar las posiciones del robot

82

Disefio | Trayectorias y... | Etiquetas| > X

% Contraer todo Buscar

Estacion_TFG"

4 [Hemertos de estacidn
[Tarea predeteminada

4 H Controlador3

T ROB_R
&= T_ROE_L
4 [Controlador_Robots_IRE120
4 [&] T_ROB1
[Datos de heramierta
F D F = O I .
I, Crear objeto de trabajo
B | Pega Ctrl+\
[Trayectoras y procedimientos
&= T_ROB2

llustracion 69: Creacién de un objeto de trabajo en RobotStudio

Caracteristicas:

+ Representa un sistema de coordenadas movil o fijo.
#+ Permite programas en términos relativos a una pieza, herramienta, otra estructura.

%+ Facilita la reutilizacién de programas sin modificar coordenadas absolutas.

+ Incluye tanto la posicién y orientacién del origen del sistema, como una posible base

movil.
Tipos:

+ Fijo: Coordenadas relativas a la celda del robot.

+ M0vil: Asociado a un objeto en movimiento .

Nuestros workobjects serdn los distintos teclados sobre los que trabajaran los IRB 1200.

83

Disefo | Trayectorias y... | Etiquetas| ¥ X || Estacion_TFG:Vert x|

Estacion_TFG*
[Blementos de estacion
B Controladara
4[] Controlador_Robots_IRB120
4 [A] T_ROB1
[Datos de hemamienta
4O

(%) Target_10
() Target_10_2
@ Target_30
v 1 wobjd
[Trayectorias y procedimientos
4 =] T_ROB2
+ [Datos de hemamiznta
[&0bjetos de trabajo y purtos
[Trayectorias y procedimientos

llustracion 70: Workobjects de la estacion de modelado de RobotStudio

Su definicidn en RAPID viene dada por los siguientes pardmetros:

'Workobjects
TASK PERS wobjdata Teclade 1:=[FALSE,TRUE,"",[[34@,238,68],[@.787187,8,0,-8.787187]],[[@,9,0],[1,8,8,8]]];

llustracion 71: Definicion del Workobject Teclado del médulo ModulePiano de RAPID

Los parametros que lo definen son los siguientes:

%+ FALSE: El sistema de coordenadas del WorkObject estd definido respecto al World
(Mundo, Sistema global del robot).

#+ TRUE: El objeto se mueve con la pieza.

%+ ““:Nombre del userframe al que se referencia. Si estd vacio el sistema de referencia
serd el World.

% Posicidn y orientacién del User Frame respecto al sistemta mundial (World). Se define
como un robtarget.

84

= Origen del objeto de trabajo (WorkObject Frame) dentro del uframe.

Robtarget

Un robtarget es una posicién y orientacién completa en el espacio caartesiano (X; Y, Z +
orientacion del TCP), junto con informacidn adicional necesaria para ejecutar movimientos

Suele ser el tipo de dato mas empleado para la definicién de posiciones que tiene como objetivo

el robot poder alcanzar.

Estos serdn nuestros robtargets sobre el teclado_1.

Diseio | Trayectorias y... | Etiquetas| ¥ X ||| Estacion_TFG:Vert x|
Conaetode

[B) Estacion_TFG"
[Bemerttos de estacidn
£ Controlador3
4 [Controlador_Robots_IRE120
4 =] T_ROB1
[Datos de hemamienta
4 [80bjetos detrabsjoy purtos |

() Target_10
() Target_10_2
() Target_30
1 wobi0
3 Trayectorias y procedimientos
4 [=] T_ROB2
[Datos de hemamienta
[&0bietos de trabajo y purtos
3 Trayectonas y procedimientos

- /J‘
N
S
I

Ti\ Y \\\k\\&i

llustracion 72: Robtargets del objeto teclado de la estacion de RobotStudio

Uno de los robtargets empleados posteriormente en RAPID:

'Punto de partida de la primera escala
CONST robtarget Target_18:=[[3@,1ee,8],[0,1,8,8],[9,@,-1,8], [9E+89,9E+@9,9E+09, 9E+89,9E+@9,9E+89]];
CONST robtarget Target_18_2:-[[62.5,108,0],[@,1,0,0],[0,8,-1,8], [9E+89,9E+@0,9E4+09, 9E+89, 9E+@9,9E+89]];

llustracion 73: Definicion de Robtargets del médulo ModulePiano de RAPID

Consta de 4 partes [Pos, Orient, ConfJ, ConfL]:

1. Pos (posicion):
Coordenadas cartesianas [X, Y, Z] en mm, respecto al sistema de referencia activo (por
ejemplo, World, Tool, o Workobject)

85

2. Orient (orientacion):
Cuaterno que representa la orientacidén del TCP (herramienta). Se trata de un cuaterno
unitario, ya que es mas estable que los angulos de Euler.

3. ConfJ (Configuracién articular):
Configuracién del robot para alcanzar esa posicién, con opcién a miultiples
configuraciones posibles.

Cf1 - Estado del eje 1 (frente/detras)

Cf4 - Orientacion de la mufieca (arriba/abajo)

Cf6 = Giro de la mufieca

Cfx = Configuracion externa (ejes externos o séptimo eje)

= = + &

4. ConfL (Configuracidn de la orientacion del eje 6 / posicién externa)
Informacidn adicional para movimientos con ejes externos o redundancia.

BovcvQy = Fremamicntas de instruccione] Estacion_TFG - RobotStudio
WEE rosicisnimical Mogeado | Smuadén | Contiolador RAPID Complementos Modificar

{8 Configuracién de

s

I0KBE> 06 B &g S B

erar Restablecer | Dportar Simulador Rastreo Cronémetro Anafizador Cofiguracion Grabar | Gabar Gvahar Detenerla | v
vvvvv e E/5 Reproduccion | simulaci sén | grab

o e s " Monitor Grabr pelicula "
Diseio| Trayectorias y... 2 4 x
% Commertods | Buse] 618 | Srear Tayectaria sin colisiones.. -
[E] Estacion_TFG" Ctrl=x ®
4 [Bementos de ssta Copiar an-c |

Pegar Ctrl+
4[4 Corfrolador3 o | Mover a trayectoria > ‘
|
TR0BR Copiara trayectoria » |
= T_RoB_L _
4[] Cortrolador_Robatd | " »]
4 [T_RoB1 Ver herramienta en 2 posiaidn » |

@
2
4 [Datos dehef BB Ver robot en posicién

TV Comprabar alcance Ver robot en posicién

Ejecutar instruccion de movimier seleccons esta apadny luege

Saltar hasta instruccién de movir el v
Frormre—

7 8bjetos de obotvaya
4 T Trayectores| (3
[Doshotal ¢ | Editarinstruction ...
[main i | wodificar una instruccién
[2] mainPian)
[2] Moduie1
[ModueP{ ™) | nvertir trayectoria
4 o ModuleP{] | Eliminar Supr
= Move SRS TTrgEL_TU T
— Movel. Target_30

Q | Lolizar punto

& ModulePiano,Tocar_Notas_As|
ModuePiano. Tocar_Notas_De
& ModulePiano/Tocar_Notas_De
[Notasieatorias

& Path_10

© zoom DO/ ERE Girar) esplazar manualmente

llustracion 74: Robot IRB 1200 en posicion del robtarget

Joint tarjets

Se define joint target como su propio nombre indica a la posicién o target final queremos
alcanzar posicionan y definiendo las posiciones de las juntas o articulaciones del robot para
poder llegar a ella.

JointTarget es un tpo de posicion definida por los dngulos individuales de cada eje del robot. En
lugar de especificar una posicién en el espacio cartesiano (X; Y; Z) defines directamente la
configuracién de las articulaciones del robot.

86

Caracteristicas:

<+ Especifica para un robot particular (ya que depende de su configuracién de ejes).

%+ No se ve afectado por el sistema de coordenadas del WorkObject.

+ Utilizado cuando se necesita precision en las posiciones articulares, por ejemplo:

1. Posiciones de referencia de seguridad.
2. Movimiento de aproximacidn en espacios reducidos.

Estos son nuestros jointtargets:

BRovc-Q- s Estacion_TFG - Robotstudio
TT0| posicéninicsl Modelado | Simuiacén | Controlador RAPD Complementos Moditicar
O @c.m«.gu.mnawmmmn D Uu D Q = . : @ . §§} [adivado ? 8% D B
7
L] |8 Gigien e estaiin s Ginbaciines. | 2O
Crear conjunto Reproduci pausa Farar Restabicer | Exportar | Simulador m.w Crongmetrs snateador Coniguacisn Grabar | Grabar mm,
decolision | () Activar unidades mecanicas visor | de/S deTcE desefiales desenalv %) Reproduccién | simulacién | aplicacion graficos or
Colisiones Configurar = Control de simuiacion [Monitor Anslizdor de sefales Grabar pelicula 5

Disefo | Trayectorias y puntos | Etiquetas| X || () La vista del robot en punto esta activa
2 Controertodo | Buscar Estacion_TFG:Vert X |

[2) Estacion_TFG"
4 [Elementos de estacién
[Tarea predetemminada
4 B Controlador3
1 T_ROB_R
4 BRI TROBL
[Datos de hemamienta
4 [tOjetos de trabajo y purtos
4 [Posicién de ses
ModuieDancel/Abajo_
ModueDancel/Adertro_
4% ModuleDancelAarget_2
% ModuleDanceLAarget_do
target 2
target_do
. wobi0
[Trayectoras y procedimientos
4[4 Controlador_Robots_IRB120
R T_RoB1
= T_ROB2

2]

@ zoom O O/EAEHE) ciar G

llustracion 75: Robot 1400 YuMi en posicion del jointtarget
Algunos de nuestros jointtargets en nuestros maddulos de RAPID:

LOCAL CONST jointtarget target_do := [[-133.471326165,-46.983870968,-89.218637993,11.433691756,16.494623656,0.82078853], [@,9E+89,9E+09,9E+09,9E+09,9E+89]] ;
LOCAL CONST jointtarget target_2 := [[-133.471326165,-50.335125448,-61.581792115,11.433691756,16.494623656,0.82878853], [@,9E+@9,9E+@9, 9E+A9, 9E+89,9E+89]] ;

LOCAL CONST jointtarget Abajo_ := [[-82.748143369,-84.517921147,-8.985663082,13.512544803,44.835342294,0.82078853], [33.216845878, 9E+09,9E+89, 9E+89, 9E+89,9E+09]];
LOCAL CONST jointtarget Adentro_ := [[-1@5.689964158,-73.123655914, -8.985663082,13.512544803,44,.835842294,0.820878853], [33. 216845875, 9E+@89, 9E+89, 9E4+089, 9E+89,9E4+89]] ;
LOCAL CONST jointtarget Afuera_ := [[-41.672843811,-73.123656915,-8.985663683,13.512544013,44.035538089,0.328738475],[33.216845578,9E+89,9E+09, 9E+89, 9E+89,9E+89]];

llustracion 76: Definicion de los jointargets de nuestro moédulo Dancel de RAPID

Esta compuesto por dos listas de valores:
1. Ejes del robot principal (j1—j6):

#+ Representan los angulos de cada articulacién del robot, normalmente en
grados.

87

+ Elnumero depende del robot (los de 6 ejes tienen j1—j6).
2. Ejes externos (el—e6):

+ Representan los valores de los ejes adicionales que puedan estar conectados al
controlador (por ejemplo, un séptimo eje lineal, una posicién de mesa rotativa
o un track).

% Si no hay ejes externos, estos valores suelen ser 0.

Path

Un path (camino o trayectoria) en robdtica es la forma en que el robot se mueve de un punto A
a un punto B. Define el tipo de movimiento que el robot debe seguir para llegar a una posicién
destino.

El path determinara cdmo el robot se mueve entre dos robtarget o jointtarget, elementos
mencionados previamente, el tipo de movimiento que va a realizar, una linea o una curva, y el
nivel de precision o suavidad del movimiento.

Tipos:

%+ Movel (Lineal) -->Movimiento lineal del TCP, sigue una linea recta entre puntos. Esideal
para aplicaciones que necesitan precision en la trayectoria.

+ Movel (Articular) --> El robot mueve sus articulaciones para llegar rapido a la posicién
destino, no garantiza trayectoria lineal en el espacio. Es mas rapido y eficiente para

moverse entre posiciones distantes.

% MoveC (Circular) --> El robot sigue un arco o curva circular, usando un punto intermedio
para definir la curva.

Nosotros lo hemos empleado para alcanzar las siguientes posiciones:

88

BRs-c-Q- =
Posiién i

Modelado | Smulsdén | Controlsdor RAPD Complementos
O 8 Contiguracion de simutacién
8 Logica de estacion
Cress conjunto
de cousion

Estacion_TFG - Robotstudio
DIOKB®E[E =
Reproducir Fausa Farar Restablecer | Exportar S

Activar unidades mecanicas) v
Colsiones = Contigurar © Control de simuladién
Disefio] Trayectonias y puntos | Etiquetas| = X

= Corempertode

Estacion_TFGVer! X |
Buscar

3

[®) Estocion_TFG"

O Admado
deEs de seales de sehal
Monitor

£ 8 Gravaciones g
imulagor Rastreo Cronémetro Analizador Configuracien Grabar
qeTce v

rabar | Grabar Grabar Detener a
[2) Repraduccion simuiacién | aphcacian graficos grabacon
Analizador e seales Grabar pelicula
L]
Tarea predetemnnada
4[5 Cortrolador3
= TROBR
4 [TROBL

+ [Datos de hemamients

4[] Bamentos de estacin

grabacon

5

4 [40bjetos de trabato y puntos.

4 3] Controlador_Robots_IRB120
T_ROB!

® zoom OE/EEDE Grar G Desplazar manusimente
llustracion 77: Path mostrado en nuestra estacion de RobotStudio

89

RAPID es el lenguaje de programaciéon propietario desarrollado por ABB Robotics para sus
controladores de robots industriales. Se introdujo junto con el controlador S4 en 1994 y desde
entonces se ha consolidado como el estandar de programacion en los sistemas de ABB (ABB,
2004-2017).

Se trata de un lenguaje de programacion de alto nivel, disefiado especificamente para:

+ Controlar la cinematica y el movimiento de robots industriales ABB.

+ Gestionar entradas/salidas digitales y analdgicas.

+ Coordinar rutinas, ciclosy tareas complejas de produccién.

Integrar periféricos y sistemas externos dentro de una celda robética.

Caracteristicas principales:

+ Sintaxis estructurada similar a lenguajes como Pascal o BASIC, lo que lo hace accesible
para programadores.

% Estructuracién modular, con procedimientos, funciones y rutinas.

+ Manejo de movimientos robdticos, mediante instrucciones predefinidas como Movel
(movimiento articular), Movel (movimiento lineal) o MoveC (movimiento circular).

#+ Soporte de multitarea, lo que permite ejecutar rutinas paralelas para manejar

periféricos o procesos en segundo plano.

+ Compatibilidad con simulacién y control real, ya que el mismo cédigo se puede ejecutar
en un controlador virtual (RobotStudio) o en un controlador fisico del robot.

90

Usos principales:

% Programacién de trayectorias y movimientos: definir la forma en que el robot se
desplaza en el espacio de trabajo.

4+ Control de dispositivos externos: como pinzas, sensores, cintas transportadoras,
mediante sefiales de E/S.

4+ Automatizacién de procesos: soldadura, ensamblaje, pintura, paletizado, entre otros.

4+ Simulacién offline: probar y validar programas en RobotStudio sin necesidad de detener

la produccion real.

4+ Interaccién con sistemas externos: a través de comunicacién por buses de campo
(Ethernet/IP, DeviceNet, Profibus, etc.).

4.1.3.1 Importacién de los datos

Para poder emplear los puntos y trayectorias, definidas previamente, en nuestros mddulos de
RAPID tendremos que realizar la importacién de estas

Boo-c-Q-~ =

ﬁl Posicion inicial Modelado Simulacion Controlador RAPID Complementos

= Fragmento Instruccion

o

= =

Acceso Sincronizar con RAPID... ertar

Controlador | Archivos I : Rutas de transferencia y puntos enla

estacionparaelcédigo RAPID.

2 Contraesrtodo] - .
- Sincronizar con estacién...
M x Transfiera el codigo RAPID a las rutas y 13
4 [Cortrolador3 puntos de la estacion.

[HOME
4 Configuracidn
Communication

llustracion 78: Formas de sincronizacion con estacion y RAPID en RobotStudio

91

Sincronizaciéon con RAPID

La opcién Sincronizar con RAPID en RobotStudio se utiliza cuando se requiere mantener
actualizado el cédigo RAPID entre el proyecto de simulaciéon y el controlador virtual o fisico. Esta
sincronizacién garantiza que los mddulos, procedimientos y variables RAPID cargados en el
controlador se reflejen fielmente en el entorno de RobotStudio. Resulta especialmente util
cuando se realizan modificaciones directamente desde el FlexPendant o desde el propio
controlador, como ajustes de rutinas, depuracién de programas o cambios en variables
persistentes, y posteriormente se desea que dichos cambios queden registrados en el proyecto
de simulacion. De esta forma se asegura la coherencia del programa entre el entorno de
desarrollo y el controlador que ejecuta el robot (ABB, 2019).

Sincronizacién con estacién

Por otro lado, la opcién Sincronizar con Estacion estd orientada a la coherencia entre el modelo
3D de la celda virtual en RobotStudio y el controlador virtual asociado. Con este método se
sincronizan aspectos fisicos y de configuracion, tales como los datos de herramientas (ToolData),
marcos de referencia (WObjData), trayectorias, posiciones y configuraciones de los robots
dentro del entorno de simulacion. Es la opcidon adecuada cuando se realizan modificaciones en
la estacién 3D, como mover un objeto de trabajo, crear una nueva herramienta o reconfigurar
la disposicidn de la celda, y se quiere garantizar que el controlador refleje exactamente la misma
configuracién. De esta forma, la simulacidon y la realidad virtual del sistema se mantienen
consistentes, minimizando discrepancias durante la ejecucién real (Kihiman, 2017; ABB, 2020).

En RAPID, un moddulo es un archivo o bloque de cddigo que agrupa funciones, rutinas,
procedimientos y declaraciones de datos relacionadas, con el objetivo de organizar el programa
y facilitar la reutilizacién del cddigo en diferentes partes del programa o en distintos proyectos.
Cada mddulo puede contener procedimientos (PROC), que son bloques de instrucciones
ejecutables, funciones (FUNC), que devuelven un valor, asi como variables y constantes.
Ademads, los mddulos se pueden llamar desde otros mddulos, lo que permite estructurar
programas complejos y facilita el mantenimiento y la lectura del cédigo al dividir un programa
grande en partes mas manejables.

92

Modulos del Controlador 3

4 E] Controlador3
» [HOME
B Corfiguracién
I Registro de evertos
Sistema de E/S
4 [# RAFID
4 [T_ROB_L @
Médulos de programa
' M_MainL
; ModuleDancel
Médulos de sistema

BASE O]
user
4 [T_ROB_R @
Médulos de programa
P M_MainR
; MaoduleDancel
; MaoduleDanceR

Médulos de sistema
BASE =
user

617 Sistema de visidn

llustracion 79: Desglose de los médulos de RAPID de nuestro Controlador3

Moédulos del Controlador Irb120

4 [Controlador_Robats_IRE120
» [HOME
Configuracian
m Registro de eventas
Sistema de E/S
4 ¥ RAPID
4 [3] T_ROB1 @
Médulos de programa
' M_Main1_IRE120
) ModulePiano

Médulos de sistema
BASE ©
user
4 [T_ROB2 @
Médulos de programa
' M_MainZ_IRE120
) ModulePiano

Madules de sistema
BASE ©
user

llustracion 80: Desglose de los médulos de RAPID de nuestro Controlador_Robots_IRB120

Variables globales

Una variable global es una variable que puede ser accedida y modificada desde cualquier rutina,

procedimiento o mdédulo del programa, siempre y cuando se haya declarado con ese alcance
(ABB, 2004-2017) .

Caracteristicas principales de las variables globales en RAPID:

.

Se declaran fuera de procedimientos o funciones, normalmente al inicio de un mdédulo
0 en un sistema de datos comun.

Estan disponibles en todo el médulo donde fueron declaradas (y en otros, si se definen
como PERS o mediante mddulos de sistema compartidos).

Su valor puede permanecer constante entre ejecuciones si se declaran con la palabra
clave PERS (persistent).

Si no son PERS, su valor se reinicia cada vez que se inicia el programa o se reinicia el
controlador.

Son utiles para almacenar estados, configuraciones o pardmetros que se necesitan en
varios lugares del programa.

'WVariables del main
PERS bool nosalir;
PERS num opcion;

PERS num notaPulsada;

Ivariable generales

PERS bool ActiveRobotl;

PERS bool ActiveRobot2;

PERS bool Dos_Motas := FALSE;

Variables locales

Las variables locales son aquellas que Oslo existen dentro un de un procedimiento (PROC), o
funcion (FUNC).

Caracteristicas de las variables locales en RAPID:

+ Se declaran dentro de una rutina (PROC o FUNC).

94

Solo pueden ser usadas dentro de esa rutina; no son visibles fuera de ella.

Su valor se pierde cuando la rutina termina.

Se utilizan para cdlculos internos o datos temporales que no es necesario guardar ni

compartir.

Ocupan menos memoria y evitan conflictos con variables globales.

LOCAL PERS num seed:=18426;

llustracion 82: Variable Local del médulo ModulePiano del Controlador_Robots_IRB120 de RAPID

Variables Constantes

Las variables constantes son aquellas que se definen con la palabra clave CONST.

Caracteristicas de las constantes (CONST) en RAPID:

+

- = = *

Su valor no puede cambiar durante la ejecucion del programa.

Se usan cuando un dato es fijo y no debe modificarse.

Mejoran la legibilidad y la seguridad del cédigo, evitando cambios accidentales.
Se pueden usar en expresiones, movimientos o calculos.

Pueden declararse a nivel global, general o incluso local dentro de un procedimiento.

IDistancia entre notas
COMNST num DistMota:=65;

CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST

llustracion 83: Variables CONST del médulo ModulePiano del Controlador_Robots_IRB120 de RAPID

aum
aum
aum
aum
aum
aum
num
num

Mota_DO :

Mota RE
Mota MI

Mota FA @

Mota_SOL

Mota_ LA :

Mota_5I

Mota_Do_Alto

95

Variables Normales

Las variables declaradas con VAR son las mas comunes y se consideran variables normales (no
persistentes).

Caracteristicas de las variables VAR en RAPID:
+ Se pueden modificar libremente durante la ejecucion del programa.

% Se reinician a su valor inicial (0 0 si no se les asigna nada) cada vez que se reinicia el
programa o el controlador.

4+ Pueden declararse como:

o Locales = dentro de un procedimiento (PROC) o funcién (FUNC), visibles solo
ahi.

o Globales - fuera de procedimientos, accesibles desde todo el mddulo.

o Generales - en un médulo de datos compartido, accesibles desde cualquier
mddulo.

+ Son Utiles para calculos temporales, estados momentaneos o datos que no necesitan
guardarse permanentemente.

'Wariables para la lectura de ficheros
VAR string lineRead;

VAR string filePath := "/home/cancion.txt";
VAR string note;
VAR num 1;

El procedimiento Init en RAPID se encarga de preparar las interrupciones que va a usar el robot.
Primero borra cualquier configuracidon previa con IDelete para empezar desde cero. Luego
conecta cada interrupcién conuna rutina especial lamada TRAP, que es el bloque de cédigo que
se ejecutard automaticamente cuando ocurra un evento. Finalmente, asigna cada entrada digital
del robot (DI_1 a DI_16) a su interrupcidon correspondiente mediante ISignalDI, de manera que,
cuando una de esas entradas se active, se dispare la rutina asociada.

96

LOCAL PROC Init()

IDelets Idie;
IDelete Tdil;
IDelete Idia;
IDelete Idi3;
IDelete Idid;
IDelete Idis;
IDelete Idis;
IDelete Idi7;
IDelete IdiB;
IDelete Idig;
IDelets Idile;
IDelete Tdill;
IDelete Idilz;
IDelete Idil3;
IDelete Idild;
IDelets Idils;

CONMECT Idi@ WITH trap @ _DO0;

CONMECT Idil WITH trap 1 RE;

CONMECT Idi2 WITH trap 2 MI;

CONMECT Idi3 WITH trap_3_FA;

CONMECT Tdi4 WITH trap_d4_sSOL:

CONMECT IdiS WITH trap 5_LA;

CONMECT Idié WITH trap 6_SI;

CONMECT Idi7 WITH trap 7_DancelN;

CONMECT Idi® WITH trap B_Escaladscendente;
CONMECT Idi9 WITH trap 9 EccalaDescendents;
CONMECT Idil® WITH trap_18 Partitura;
CONMECT Idill WITH trap_11_Aleatorle;
CONMECT Idil2 WITH trap 12 UnaDosNotas
COMMECT Idil3 WITH trap 13 ROBL;

CONMECT Tdild WITH trap 14 ROB2;

CONMECT Idil5 WITH trap 15 HWOSALIR;

IsignalDI DI 1 0O, 1, Idia;
IsignalDI DI_2 RE, 1, Idii;
ISignalDI DI_3 MI, 1, Idiz;
IsignalDI DI_4 FA, 1, Idi3;
ISignalDI DI_5 s0L, 1, Idl4;
ISignalDI DI_& LA, 1, Idis;
IsignalDI DI_7 SI, 1, Idis;
IsignalDI DI_& DancelM, 1, IdiT;
IsignalDI DI 9 Asc, 1, Idig;
ISignalDI DI_18 Decc, 1, Idig;
ISignalDI DI_11 Fich, 1, Idilaé;
ISignalDI DI_12 Rand, 1, Idill;
ISignalDI DI_13 MumN, 1, IdilZ;
ISignalDl DI 14 Rebl, 1, Idils;
ISignalDT DI_15 Reb2, 1, Idila;
IsignalDI DI 16 Salir, 1, Idils;
ENDPROC

llustracion 85: Funcion Init del médulo ModulePiano del Controlador_Robots_IRB120 de RAPID

Las rutinas TRAP son diferentes a los procedimientos normales porque no se llaman
directamente dentro del programa, sino que se lanzan solas en cuanto sucede el evento que las
activa. Esto permite que el robot responda al instante, interrumpiendo lo que estaba haciendo
para ejecutar la accidn indicada y, después, volver al punto donde lo dejé. Gracias a esto, el
sistema puede reaccionar a sefales externas en tiempo real, como un sensor, un pulsador o una
orden de seguridad, sin necesidad de estar comprobando esas condiciones dentro del ciclo
principal. Los TRAPs empleados son los siguientes:

97

Para las distintas notas musicales del teclado, hemos creado un TRAP para cada uno de los
sonidos de la escala.

TRAP trag 8 DO

Mota_a tocar := Hota DO;
apcion 1= 5
ENDTRAP

Descripcion del funcionamiento

1. Asignacion de la nota: Cada TRAP establece el valor de la variable Nota_a_tocar conla
nota correspondiente (DO, RE, M, FA, SOL, LA, SI). Esta variable es utilizada
posteriormente por el sistema para reproducir el sonido asociado.

2. Control de opciones: La variable opcidn se asigna con el valor 5, indicando al sistema
que se debe ejecutar la accidén de reproduccién de la nota seleccionada.

3. Activacién de TRAPs: Cada TRAP se activa de forma independiente, generalmente
como respuesta a la interaccion del usuario, ya sea a través de un teclado o un interfaz
grafico, permitiendo un control preciso sobre qué nota se reproducira en cada
momento.

Ademads de usar TRAPs para la gestidn de notas musicales, se han implementado para
controlar distintas activaciones y desactivaciones de ciertas funciones:

#* Activacion del Robot IRB 1400 YuMi

TRAP trap_7_DancelN

IF DO_5_DanceON = 1 THEN
TPWRite "Activo DanceRobot -»> Pasamos a desactivarlo™;
reset DO_5_DancelN;
ActiveRobotl := FALSE;

ELSE
TPWRite "Incatiwvo DanceRobot -» Pasamos a Activarlo™;
set DO0_5_DancelN;
ActiveRobotl := TRUE;

ENDIF

ENDTRAP

98

+ Modo de empleo de la pinza instrumento

TRAP trap_12 UnalosNotas

IF D0 _1 OneMotel = 1 THEN
TPWRite "Una nota, cambiamos a dos™;
reset DO _1 OneNotel;
reset D0 3 OneNotel;

ELSE
TPWRite "Dos notas, cambiamos a una™;
set DO_1 OneNotel;
set DO_3 OneNotel;

ENDIF

ENDTRAP

llustracion 88: Interrupcion TRAP para tocar una o dos notas en el teclado a través de los modos de la pinza
herramienta

% Activacidn de los distintos Robots IRB 120

TRAP trap_13_ROB1

IF DO_2 ActiveRobotl = 1 THEN
TPWRite “Activo Robotl -» Pasamos a desactivarlo™;

reset DO_2 ActiveRobotl;
ActiveRobotl := FALSE;

ELSE
TPWRite "Incativo Robotl -»> Pasamos a Activarlo™;

set D0_2 ActiveRobotl;
ActiveRobotl := TRUE;
ENDIF

ENDTRAP
TRAP trap_14 ROB2

IF 0 4 ActiveRobot2 = 1 THEN
TPWRite "Activo Raobot2 -» Pasamos a desactivarle™;
reset DO_4 ActiveRobot2;
ActiveRobot2 := FALSE;

ELSE
TPWRite “Incativo Robot2 -> Pasamos a Activarlo™;

set DO_4 ActiveRobot2;
ActiveRobot2 := TRUE;
ENDIF

ENDTRAP

llustracion 89: Interrupciones TRAP de la activacion/desactivacién de los robots IRB120

Para mejorar la interaccion del usuario y la dindmica del sistema, se implementaron TRAPs que
permiten seleccionar distintos modos de ejecucién musical y controlar la finalizacion del
programa. Cada TRAP modifica la variable opcion o nosalir segin la accién deseada.

99

Estas variables funcion seran las que empleamos como los distintos CASE en nuestro
principal main.

#% Activacién del modo Escala Ascendente.

TRAP trap_8 Escalafscendente
opcion := 1;

ENDTRAP

llustracion 90: Interrupcion TRAP de activacion del modo Escala Ascendente

=% Activacidn del modo Escala Descendente.

TRAP trap_9 EscalaDescendente
opcion := 2;

ENDTRAP

llustracion 91: Interrupcion TRAP de activacion del modo Escala Descendente

= Activacidn del modo Lectura de Partitura.

TRAP trap_18@ Partitura
opcion = 3;

ENDTRAP

llustracion 92: Interrupcion TRAP de activacion del modo Leer Partitura

=% Activacidon de modo Aleatorio.

TRAP trap_l1_ Aleatorio
opcion := 4;

ENDTRAP

llustracion 93: Interrupcion TRAP de activacion del modo Aleatorio

menu

100

% Activacién de Finalizacion de Programa.

TRAP trap 15 NOSALIR
nosalir:=FALSE;

ENDTRAP

Primero vamos a explicar las funciones principales usadas en los
Controlador_Robots_IRB120.

Num Rand

Descripcion del funcionamiento

1. Semilla y generacién de nimero aleatorio:

modulos del

% Lavariable seed se actualiza mediante la férmula (171 * seed) MOD 30269 para

garantizar un flujo pseudoaleatorio.

+ random almacena un valor decimal entre 0y 1, calculado a partir de la semilla.

2. Escalado al rango deseado:

% Se multiplica el valor decimal random por posibilidad (el limite superior del
rango) y se suma 1, para obtener un niumero entre 1y posibilidad.

% La funcién Trunc elimina la parte decimal, asegurando que el resultado sea un

nimero entero.

3. Retorno del valor:

% Lafuncién devuelve el nimero entero generado, que puede ser utilizado para

seleccionar notas aleatorias u otras acciones dentro del sistema.

101

I Generar un numerc aleatoric
LOCAL FUNC num rand({num posibilidad)
VAR num random;
VAR num valor:=0;
VAR num ej:=8;
VAR num inicio:=8;
VAR num fin:=@;
seed:=(171*seed) MOD 38269;
random:=seed/308269;
valor:=random*posibilidad+l;
valor:=Trunc(valor\Dec:=8);

RETURN walor;

ENDFUNC

llustracion 95: Funcidon num rand para la generaciéon de un numero aleatorio

Notas Aleatorias

Descripcion del funcionamiento

1. Generacion de nota aleatoria:

#+ Se utiliza la funcién rand(6) para generar un valor aleatorio entre 0 y 6,
correspondiente a las siete notas de la escala (DO, RE, Ml, FA, SOL, LA, SI).

#+ Elvalor generado se asigha a la variable Nota_a_tocar, que indica la nota que se
reproducira.

2. Reproduccion de la nota:

#+ La funcién TocarNota(Nota_a_tocar) recibe la nota seleccionada
aleatoriamente y la reproduce en el sistema, permitiendo al usuario escuchar
una nota diferente cada vez que se ejecuta el procedimiento.

I Tocar notas Aleatorias
PROC NotasAleatorias()

TPWrite "Tocar nota aleatoria™;
¥

Nota_a_tocar:=rand(6};
TocarNota(Nota_a_tocar);

ENDPROC

llustracion 96: Funcidon de RAPID NotasAleatorias

102

Leer Partitura

Descripcion del funcionamiento

1. Apertura y lectura del fichero:

+ Se utiliza Open para abrir el fichero de texto ubicado en "HOME:" y ReadStr para
leer cada linea del fichero.

+ La variable saltodelinea controla si se debe avanzar a la siguiente linea de la
partitura.

2. Interpretacién de las notas:

+ Cada linea del fichero se analiza caracter por caracter mediante la estructura
TEST ... CASE.

% Segln el caracter leido (C, D, E, F, G, A, B), se asigna la nota correspondiente a
la variable Nota_a_tocar.

3. Reproduccién de las notas:

%+ La funcién TocarNota(Nota_a_tocar) se invoca tras determinar la nota,
permitiendo su reproduccidon inmediata.

4. Control de finalizacion:

% Siopcidén =0 o la linea estd vacia, el procedimiento finaliza mediante GOTO last.

+ La estructura WHILE linea <> EOF garantiza que se procesen todas las lineas del
fichero hasta llegar al final.

Ruta del fichero:

C:\Users\User\Documents\RobotStudio\VirtualControllers\Controlador_Rob
ots_IRB120\HOME

E Sonrisas y Lagrimas.txt x +

Archivo Editar Ver H ~ =~ B T
kc/D/E/C/E/CIE

D/E/F/F/E/D/F

103

Para trabajar con partituras almacenadas en ficheros de texto, se utiliza Open para abrir el
fichero en modo lectura y Close para cerrarlo al finalizar, garantizando que los recursos del
sistema se gestionen correctamente. La funcién ReadStr se emplea para leer el contenido linea
por linea o hasta un delimitador especifico, lo que permite procesar cada nota de la partitura de
manera secuencial y asignarla directamente a la variable correspondiente. Estas funciones se
usan porque facilitan la lectura controlada del fichero, permiten recorrer todas las notas de
manera ordenada y aseguran que el fichero se cierre correctamente al terminar, evitando
errores o bloqueos de recursos.

! Leer partitura de un fichero .txt
PROC LeerPartitura(string nombre)
VAR string caracter;
VAR string linea;
VAR num casoj
VAR num fila :=8;
VAR iodev fic;

Close fic;
Open “HOME:"“\File:=nombre,fic\Read;

WHILE linea <> EOF DO
TPWrite "Empezamos por la primera linea™;
IF saltodelinea THEN
linea:=Readstr(fic);
saltodelinea:=FALSE;
fila:=8;
GOTO init;
ENDIF

init: linea:=ReadStr(fic\Delim:="\2F"};

TPWrite linea;

104

IF opcion = @ OR Strien{linea)=8 THEN

GOTO last;
ENDIF
TEST linea
CASE "C":
TPWrite "Tocamos el DO";
Nota_a_tocar := Nota_DO;
CASE "D":
TPWrite "Tocamos el RE";
Nota_a_tocar := Nota_RE;
CASE "E™:
TPlrite "Tocamos el MI™;
Mota_a_tocar := Nota_MI;
CASE "F":
TPWrite "Tocamos el FA";

Nota_a_tocar := Nota_FA;

"Tocamos el S0L";
Nota_a_tocar := Nota_50L;

CASE "A":
TPWrite "Tocamos el LA™;
Nota_a_ tocar := Nota_ LA;
CASE "B":
TPWrite "Tocamos el 5I";
Nota_a_tocar := Nota_5I;
DEFAULT:
ENDTEST

TocarNota(Nota_a_tocar);

ENDWHILE

Se usan caracteres en lugar de strings completos porque cada nota de la escala (C, D, E, F, G, A,
B) se puede representar con un solo simbolo, lo que hace que el cddigo sea mas simple y rapido
de procesar. Con caracteres, podemos comparar directamente cada uno usando un CASE o un
IF sin tener que hacer operaciones de parsing de strings mas largas, lo que también ahorra
memoria y tiempo de ejecucion, algo importante en sistemas con recursos limitados. Ademas,
al leer la partitura linea por linea, procesar los caracteres uno a uno permite tocar las notas en
secuencia de manera directa y manejar mejor los espacios o saltos de linea. En resumen, usar
caracteres hace que todo sea mas eficiente, sencillo y facil de entender.

105

Tocar Nota

Descripcion del funcionamiento
1. Movimiento del robot:

+ Movel mueve el robot a la posicién de la tecla correspondiente segun la nota
pulsada (notaPulsada) multiplicando la distancia base DistNota.

+ Una vez pulsada la tecla, Movel devuelve la pinza a la posicién inicial
(Target_30).

2. Asignacidn de la nota:

#+ Segun el valor de notaPulsada, se asigna el nombre de la nota ("Do", "Re", etc.)
a la variable nota y se activa la salida digital correspondiente (DO_6_DO,
DO_7_RE, etc.) para indicar que la nota se ha pulsado.

3. Comunicaciéon con el servidor:

#+ SocketSend envia la nota reproducida al cliente o servidor conectado,
permitiendo registrar o mostrar la nota en tiempo real.

PROC TocarNota(num notaPulsada)
Movel 0ffs (Target_18, DistNota*notaPulsada, @,@),v38@,z@8,Pinza_Pulsader\Wobj:=Teclado_1;

IF notaPulsada = @ THEN
nota = "Do";
Set DO_6_DO;

ELSEIF notaPulsada = 1 THEN
nota := "Re™;
Set DO_7_RE;

ELSEIF notaPulsada = 2 THEN
nota = "Mi";
Set DO_8_MI;

ELSEIF notaPulsada = 3 THEN
nota := "Fa";
Set DO 9 FA;

ELSEIF notaPulsada = 4 THEN
nota := "Sol™;
Set DO_1@ SOL;

ELSEIF notaPulsada = 5 THEN
nota := "La";
Set DO_11_LA;

ELSEIF notaPulsada = & THEN

nota := "Si";
Set DO 12 5T;
ENDIF

liniciamos el server
SocketSend client L \Str:=nota;
Movel Target_3@,vSe@,z@,Pinza_Pulsador\Wobj:=Teclado_1;

ENDPROC

106

Tocas notas Ascendentemente

Descripcion del funcionamien
1. Escala ascendente completa (Tocar_Notas_Asc):

#+ Se recorre un bucle desde 0 hasta 6, correspondiente a las siete notas de la
escala (Do a Si).

+ Movel desplaza la pinza a la tecla correspondiente segln el indice cont y la
distancia entre notas DistNota.

Movel devuelve la pinza a la posicidn inicial después de pulsar cada tecla.

Este procedimiento permite tocar la escala de manera secuencial y continua.

2. Escala ascendente por intervalos (Tocar_Notas_Asc_Intervalos):

+ Similar al anterior, pero se saltan teclas de manera que el robot toca cada
segunda nota de la escala, generando intervalos.

#+ El bucle recorre un rango menor (0 a 3) y multiplica la distancia entre notas por
2 (DistNota*2).

LOCAL PROC Tocar MNotas_Asc()
VAR intnum cont;
TPWrite “Empezamos a tocar la escala ascendentemente™;
FOR cont FROM @ TO & DO
Movel Offs (Target 1@, DistNota*cont, @,8),v380,z8,Pinza_Pulsador\Wobj:=Teclado 1;
Movel Target 36,v588,z8,Pinza Pulsador\WObj:=Teclado_1;
!TocarNota(cont);

ENDFOR

ENDPROC

llustracion 101: Funcion de RAPID Tocar Notas Ascendentes

PROC Tocar Notas_Asc_Intervalos()
VAR intnum cont;
FOR cont FROM @ TO 3 DO
Movel Offs (Target_18_ 2, (DistNota*2)*cont, @,8),v380,z8,Pinza_Pulsador\WObj:=Teclado_1;
Mowel Target_3@,v308,:z0,Pinza_Pulsador\Wobj:=Teclado_1;

ENDFOR

ENDPROC

llustracion 102: Funcion de RAPID Tocar notas ascendentes en intervalos

107

Tocar Notas Descendentemente

Descripcion del funcionamiento
1. Escala descendente completa (Tocar_Notas_Desc):

#+ Serecorre un bucle desde 6 hasta 0, correspondiente a las notas de la escala de
Si a Do.

#+ Se invoca el procedimiento TocarNota(cont) para pulsar cada nota en orden
descendente.

2. Escala descendente por intervalos (Tocar_Notas_Desc_Intervalos):

#+ El procedimiento toca cada segunda nota descendente, generando intervalos
dentro de la escala.

#+ Elbucle recorre un rango menor (3 a 0) y multiplica la distancia entre notas por
2 (DistNota*2) para saltar teclas.

LOCAL PROC Tocar_Notas_Desc()
VAR intnum cont;
TPWrite “"Empezamos a tocar la escala descendentemente™;
FOR cont FROM & TO @ DO
TocarNota(cont);

ENDFOR

ENDPROC

llustracion 103: Funcion de RAPID Tocar Notas Descendentes

LOCAL PROC Tocar_Notas_Desc_Intervalos()
VAR intnum cont;
FOR cant FROM 3 TO @ DO
Moweld Offs (Target_1@ 2, (DistNota*2)*cont, @,8),v388,z08,Pinza_Pulsador\Wobj:=Teclado_1;
Movel Target 38,v308,z8,Pinza_Pulsador\WObj:=Teclado 1;
ENDFOR

ENDPROC

llustracion 104: Funcion Tocar Notas descendentes en Intervalos

108

A continuacién, vamos a explicar las distintas funciones principales usadas en los mddulos del
Controlador3.

Bailar Nota

Descripcion del funcionamiento
1. Configuracion inicial:

ConfL\Offy ConfI\Off desactivan configuraciones de seguridad o limitaciones de
eje, permitiendo movimientos libres del robot.

2. Movimientos segun la nota:

#+ Se evalla la variable nota y se ejecuta un movimiento absoluto (MoveAbs)J)
hacia una posicién especifica (target_do o target_2).

+ Esto provoca que la pinza del robot se desplace de forma coordinada con la nota
que se esta tocando, creando un efecto visual de baile.

3. Velocidad y precisién:

#+ Lavelocidad se ajusta con v100y la precisién con fine, asegurando movimientos
suaves y sincronizados.

#+ La pinza utilizada es Pinza_Yumi_L, indicando que el brazo izquierdo del robot
realiza los movimientos.

PROC BailarNota()

ConfL\Off;
ConfI\Off;

IF nota = "Do" THEN

MoveAbs] Abajo_, wlee, fine, Pinza Yumi_L;
ELSEIF nota = "Re™ THEN

MovefAbs] Adentro_, wl@e, fine, Pinza_Yumi_L;
ELSEIF nota = "Mi" THEN

Movefbs] Abajo_, wl@d, fine, Pinza Yumi_L;
ELSEIF nota = "Fa" THEN

MoveAbs] Adentro_, wl@@, fine, Pinza_Yumi_L;
ELSEIF nota = "Sol™ THEN

Movepbs] Abajo_, wl@d, fine, Pinza Yumi_Lj;
ELSEIF nota = "La™ THEN

Movefbs] Adentro_, wvl@@, fine, Pinza_Yumi_Lj;
ELSEIF nota = "Si™ THEN

Movefbs] Abajo_, wvl@e, fine, Pinza_Yumi_L;
ENDIF

ENDPROC

109

Bailar Normal

Descripcion del funcionamiento
1. Configuracién inicial:

+ ConfL\Off y ConfJ\Off desactivan restricciones de seguridad o limitaciones de
eje, permitiendo movimientos libres y fluidos del robot.

2. Patrén de movimiento:
+ Elrobot se desplaza alternativamente entre las posiciones target_do y target_2.

+ Cada movimiento se realiza con velocidad v100 y precisidén fine, asegurando
desplazamientos suaves.

3. Efecto visual:

+ Este patréon repetitivo genera un “baile” sencillo del brazo izquierdo
(Pinza_Yumi_L) del robot, agregando dinamismo a la presentacion musical.

LOCAL PROC BailarNocrmal()

ConfLNOFT ;
ConftI\Off;

MoveAbs] Abajo_, vies, fine, Pinza_Yumi_L;
MoveAbs] Adentro_, vlee, fine, Pinza_Yumi_L;

MoveAbs] Abajo_, vies, fine, Pinza_Yumi_L;
MoveAbs] Adentro_, vlee, fine, Pinza_Yumi_L;

ENDPROC

Leer Nota de IRB120

Descripcion del funcionamiento
1. Recepcidn de datos:

% SocketReceive se utiliza para recibir informaciéon desde el socket sock,
asignando el valor recibido a la variable notaSocket.

+ Esta variable contiene el nombre de la nota que el robot IRB1200 ha pulsado o
enviado.

110

2. Retorno de la nota:

+ La funcién devuelve notaSocket, permitiendo que otros procedimientos del
sistema conozcan qué nota fue recibida y puedan procesarla, tocarla con el
robot Yumi o activar movimientos de baile.

FUNC string LeerNotaDeIRB1288()
SocketReceive sock \stri=notaSocket;
RETURN notaSocket;

ENDFUNC

La funcién mainPiano se encarga de controlar el piano robdtico y de recibir comandos para
ejecutar distintas acciones musicales. Primero, inicializa variables y hardware mediante la
llamada a Init, y establece un bucle controlado por la variable nosalir que determina cuando salir
de la rutina. A continuacién, configura un socket servidor en la IP local y puerto 5000, lo que
permite que otros programas o robots se conecten y envien drdenes. Dentro del bucle principal,
la funcidn verifica si ActiveRobotl esta activo y, segun el valor de la variable opcion, ejecuta
diferentes acciones: tocar escalas ascendentes o descendentes, leer partituras desde un archivo,
tocar notas aleatorias o tocar una nota especifica. Tras cada accién, opcion se reinicia, y el bucle
espera medio segundo antes de continuar, asegurando un ciclo continuo de recepcién de
6rdenes y ejecucion musical.

111

MODULEPIANO

na nota o Dos

notas

(Do, Re, Mi ,Fa,
Sol, La, Si)

-

llustracion 108: Diagrama de flujo de la funcion main de ModulePiano de RAPID

112

Por su parte, la funcidon mainL controla el robot bailarin y actia como cliente que se conecta al
servidor creado por mainPiano. Al inicio, también inicializa variables y hardware, y establece un
socket cliente que se conectaala IPy puerto donde corre mainPiano. Su bucle principal se activa
cuando un sensor (DI_O_ON) o una variable de control (dance_ON) indica que el robot debe
bailar. En cada iteracion, muestra en pantalla un mensaje con la nota correspondiente y, segln
la variable opcion, decide si debe leer la nota proveniente del piano y ejecutar un baile
especifico, o si debe realizar un patron de baile normal. Cada iteracidon del bucle espera 0.1
segundos, y al finalizar, el socket se cierra para liberar la conexidn.

MODULEDANCE

Inicializacion Interrupciones

l

Opcién = 0 && NoSalir = False

\ 4

Creacién Socket

'

NoSalir == true

true

DanceON == true

Opcidn

LeerNotadelRB120 BailarNormal Salir

[|

Parar Simulacién [«

llustracion 109: Diagrama de flujo de la funcion main de Dancel de RAPID

113

La relacién entre ambas funciones se da a través del socket TCP/IP: mainPiano funciona como
servidor que toca notas y envia informacidon, mientras que mainL actia como cliente que recibe

las notas y realiza los movimientos de baile correspondientes.

La variable opcion es el

mecanismo que coordina qué accidon se ejecuta en cada robot, asegurando que el piano vy el
bailarin trabajen de forma sincronizada. En conjunto, este sistema permite que las acciones del
piano robdtico influyan directamente en los movimientos del robot bailarin, creando una

interaccidn musical y coreografica entre ambos.

mainPiano mainL
Iniciar actividad Crear cliente
Crear servidor Socket Conectar a servidor
vV
Escuchar conexior} Leer nota

I

v

!

Reproducir nota

BailarNota

BailarNormal

l

Cerrar

llustracion 110: Diagrama de flujo de larelacién entre los médulos

114

La arquitectura OPC UA (OPC Unified Architecture) es un estdndar de comunicacién para

entornos industriales que proporciona un modelo seguro, independiente del fabricante y de la

plataforma para el intercambio de informacién. A diferencia de los antiguos OPC basados en
COM/DCOM, OPC UA define segiin manual (ABB, 2020-2022):

.

Un modelo de informacién orientado a objetos: los datos se exponen como un espacio
de direccionamiento jerarquico de nodos (Nodes). Cada nodo puede representar una
variable, un objeto, un método, un tipo de dato o una referencia.

Namespaces y Nodelds: cada servidor organiza sus nodos en namespaces y cada nodo
tiene un identificador Unico (Nodeld) que el cliente puede explorar.

Mecanismos de acceso flexibles: lectura/escritura puntual (Read/Write), subscriptions
(publicacidon de cambios) y llamada a métodos (Method Call).

Seguridad integrada: canales cifrados, firmas, certificados para autenticar
servidor/cliente y politicas de seguridad configurables.

Portabilidad: funciona sobre TCP/UA Binary, WebSockets, HTTPS, etc., y no depende del
sistema operativo ni del lenguaje.

Gracias a este enfoque, OPC UA se usa tanto como pasarela de datos entre sistemas

heterogéneos (PLC, robots, SCADA, MES) como modelo de informaciéon que permite describir
estructura, tipos y comportamiento de los datos de forma explicita y autodescriptiva.

ABB proporciona un servidor OPC (IRC5 OPC) que puede ejecutarse en el controlador IRC5 real

o en el Controlador Virtual dentro de RobotStudio. Este servidor expone nodos que representan:

Sefales digitales y analdgicas (1/0).
Variables RAPID (numeric, bool, string, robtargets, wobjdata, ...).

Estados del controlador y del robot (estados de seguridad, alarmas, posicién, programa
en ejecucion).

Eventos y alarmas.

115

En RobotStudio se dispone de una herramienta de OPC Configuration que permite seleccionar

qué variables y sefiales del controlador se exportan (mapearlas) al espacio OPC UA.

Abriremos el programa ABB IRC5 OPC Configuration.

M ABB IRC5 OPC Configuration -

Aliases | User 1D | Language | Communication settings | Server Control |
=l 2

Mliss Name | Controller .. | System Na... | Address | Cortroller ID_| System ID | 10 Subscri... | RAPID Subs...|

4B DESKTO... DESKTOP-.. Controlador... C:\Users\User\Doc... 4FancOC.. ? ?

4B DESKTO... DESKTOP-.. Controlader C\Users'User\Dec... {5FB34A82.. 7 ?

Set IP Address
ﬂ Add ‘ Help | Sawe Exit
T w

llustracion 111: Interfaz inicial del programa ABB IRC5 OPC Configuration

Escaneamos para ver los controladores disponibles en nuestro PC para generar un nuevo alias.

Add Mew Alias
&i Alias Name: || eate
i ion Criteria

[Controller Name: I
r Address: I

I” System Name: I
™ Controller ID: I

- System ID: |

Scan > Close

llustracion 112: Creacion de un nuevo alias para un controlador

Observamos a continuacién los dispositivos encontrados por el programa.

116

Add New Alias

& Alizs Name: |
—C ion Criteria
[~ Controller Name: [~ System Name:
r Address: [~ Controller ID;
r System ID: |

Scan results: 2 found. 2 of 2 displayed

Cortroler Name | System Name | Address | Cortroller ID | System ID
<3DESKTOP-2GR.. Cortrolador_Robots_IRB120 CAUsers\User\Do {4FAACICD-AAZB-ACE2-5C0C-08CTFEDTABS 3}
=3DESKTOP-2GR... Confroladar3 Ci\Users\User\Do.. {BFB34A82:6311-420C-ABOS-FBIEIEBE0CEE)

™ Show only robots with no assigned Alias
™ Show only robots that match connection criteria Clese

llustracion 113: Dispositivos escaneados por ABB IRC5 OPC Configuration

Seleccionamos uno de ellos, y sus criterios de conexion, y lo creamos.

Add New Alias
- AMissName: [DESKTOP-2GR20GE Controlador_Rabats_IRE120 Create |
—Ci Criteria
¥ Controller Name: IDESKTOP-ZGHZCIGE ¥ System Name: (BB
2 Address: Imladorﬁﬂnboisjﬂﬂ‘l?ﬂ [T Controller ID:
2 System 10: I{AFAACDCD-AMEJCE—ECDC-DEC?FED?AEEJ)

Scan results: 2 found. 2 of 2 displayed.

Controller Name System Name | Address | Controller D | System 1D
=2 DESKTOP-2GR... Controlador_Robots_|RB120 Ch\lUsers\User\Do {4F4ACDCD-AAZB-4CE2-9COC-08CTFED7ABS3}
=BDESKTOP-2GR... Controladar3 Ch\lUsers\User\Do... {5FB34A82-6311-42CC-ABOS-FA3EI5B60CEB}

I~ Show only robots with no assigned Alias
™ Show only robots that match connection criteria Close

llustracion 114: Creacion de un controlador y sus criterios de conexion en ABB IRC5 OPC Configuration

Iniciamos el OPC Server

B ABEB IRC5 OPC Configuration - b4

Niasesl UserIDI Language | Communication settings Server Control |

Use these controls to start and stop the Start
0OPC server after you have made changes to
its configuration. Please note that some

OPC clients automatically restart the server. Stop |

Path to OPC Server
C-Program Files (x86)"ABB Industrial IT"Robatics IT\RCS OPC Server\RobOPC exe

Hlp | Save | Eait |

llustracion 115: Activacion y desactivacion del Server Control de los dispositivos de ABB IRC5 OPC Configuration

117

OPC DA (Data Access) es uno de los estdandares de la familia OPC Clasico, pensado
principalmente para el acceso a variables en tiempo real de controladores, PLCs, SCADA o
sistemas de simulacién como RobotStudio.

En el caso de MATLAB, la comunicacién con un servidor OPC DA se realiza mediante el OPC
Toolbox, que actua como cliente OPC. Esto permite:

1. Conectarse a un servidor OPC DA (en este caso, el ABB OPC Server de RobotStudio).
2. Leervariables en tiempo real (tags, sefiales de sensores, estados del robot).
3. Escribir variables (enviar consignas, activar flags, modificar pardametros de control).

4. Monitorizar la calidad de la comunicacion (estado bueno, malo o incierto).

4\ MATLAB R2023a - academic use.

Carrert P ® =] =] =

Ventajas de usar OPC DA en MATLAB

+ Integracién sencilla con RobotStudio (ya que ABB incluye un servidor OPC DA).
+ No requiere configuraciones complejas de seguridad (a diferencia de OPC UA).

+ Permite trabajar en tiempo real con los robots (ej. enviar consignas desde MATLAB y
recibir estados instantdneamente).

+ MATLAB puede procesar datos en paralelo (filtrado, control avanzado, analisis
matematico).

118

Abrimos la aplicacidn y generamos un nuevo Host.

4\ OPC Dats Access Explorer - [Untitled.osf] = (u] *

File Host Sever Client Group ltem View Help

MATLAB OPC Data Access Clients

<No properties>

g & 2l €|k

72 OPC Net]
Add Host
Delete All

<No properties>

OPC Servers Namespace
Ready

llustracion 117: Interfaz OPC Data Explorer de Matlab

Le damos un hombre como ‘localhost’.

(4\ Host Name X |

Enter host name or IP address:

Aceptar Cancelar

llustracion 118: Definicién del hostname de un host en OPC Data Explorer

Creamos un Cliente en el local host previamente definido.

119

4\ OPC Data Access Explarer - [Untitled.osf*]

File Host Server Client Group ltem View Help

MATLAB OPC Data Access Clients
<No properties>

FF 2l
I OPC Network
=58 localhost

Create Client

Update

<No properties (disconnected)>

OPC Servers Namespace
Ready i

llustracion 119: Creacion de un cliente en OPC Data explorer de Matlab

Ya conectado, lo conectamos con el servidor.

\ OPC Data Access Explarer - [Untitled.osf] - O 'Y

File Host Sever Client Group ltem View Help

FFClal # & a| X|2F F localhost/ABB.IRCS.0PC Server.DA
|28 0PC Network d\ MATLAB OPC Data Access Clients
58y localhost . = Name: |localhost/ABE.RC5.0PC Server.DA
T Connect
Disconnect T |
OPC Server

Add Group
Server host: localhost

Delete Client ServerID: ABB.RC5.0PC.Server.DA

Export To Warkspace Tmeos: 100 |«

Update Status: Disconnected Connect

«<No properties (disconnected)>

Event Log

Maximum number of records: | 1000

Current size: 0 records Update View

Callback functions

ErrorFcn Callback: |@opccallback g

Called when an error event occurs. An error event is general
asynchronous transaction fails.

OPC Servers Mamespace
Ready

llustracion 120: Conexion al servidor de OPC

Creamos el Grupo, que posteriormente emplearemos para la conexion OPC.

120

4\ OPC Data Access Explorer - [Untitled.osf]

File Host Server

Client

Group

ftem View Help

=8 localhost

Property Value

Bandwidth 00

CurrentTime [2025-09-16 12:08:28

LastUpdateTime

PublicGroups

ServerStatus Running

SoftwarcVersion 101

StartTime: |2025-09-16 19:07:03

Supportedinterfaces [IOPCCommon
[0PCServer

|IOPCBrowseServerAddresss...

|ConnecticnPeintContainer

|0PCltemProperties

|IOPCServerPublicGroups

Vendorlnfo

\ABB Rohotics [T

Ready

OPC Servers Namespace

Connect

Disconnect
Add Group

Delete Client

Export To Workspace

Update

FF 2R & e a | X| 2| F & localhost/ABB.IRCS.0PC.Server. DA
22 OPC Network g MATLAB OPC Data Access Clients
= \oalhost/ABB.IRC5.0PC Seneer Name: | localhost/ABBJRCS.0PC.Server. DA

Tag |

OPC Server

Server host: localhost

asynchronous transaction fails.

Server|D: ABB.RCS.OPC.Server.DA

Timeout 100 |s

Status: Connected Connect Disconnect

Event Log

Maximum number of records: | 1000

Current size: 0 records Update View Clear

Callback functions

Name:

Callback: | @opccallback Open In Editor
n

TimerFen Called when an error event occurs. An error event is generated when an

llustracion 121: Creacién de un grupo de variables en OPC Data Explorer de Matlab

Con el grupo ya creado, afiadiremos las variables (Items).

| 4\ OPC Data Access Explorer - [Untitied.os™]

File Host Server Client View

Group ltem

E VAN

Help

& @ RIAETIF

FEF OPC Network

‘ MATLAB OPC Data Access Clients
=] localhost/ABB.IRC5.0PC Server.DA

GRPO4E057CE

Properties Read/Write Logging

=8 localhost

2

Property Value
0o

CurrentTime 2025-08-16 19:09:28

Lastl

PublicGroups

ServerStatus Running

SoftwareVersion 101

StartTime 20250916 19:07:03

Supportedinterfaces |[OPCCommon
10PCServer

IOPCBrowseServerAddressS...

IConnectionPointContainer

|0PCltemProperties

|IOPCServerPublicGroups

\Vendorlnfo

|ABB Robotics IT

Ready

OPC Servers Namespace

Add ltem

Export To
Logging

Update

Delete Group

Name: |GRPIEOSTCE

Tog |

8 Active

Subscription
8 Subscribed (update on data change)

s Deadband: %
Trmebi —

Callback functions

UpdateRate:

Name:

ncFcn

Callback: | @opecallback

Open In Editor

DataChangeFen
ReadAsyncFen
RecordsAcquiredFen
StartFen

StopFen
[WriteAsyncFen

Called when an asynchronous operation is cancelled.

llustracion 122: Anadir Items en un grupo del localhost en OPC Data Explorer de Matlab

Seleccionamos las variables que vamos a modificar a través de la conexidn creada con el
servidor de ABB IRC5 OPC.

121

[4 Browse Name Space

Namespace:
£ localnost/ABB.IRCS.0PC Server DA B
» @ DESKTOP-2GR20GE_Controlador3
~ @ DESKTOP-2GR20GE_Controlador_Robots_IRB120
» @ |0SYSTEM
~ @ RAPID
~ @ T_ROB1

Selected Items:

a

a
ya
~a

M_Main1_IRB120
uzer

BASE
ModulePiano

@ notaPulsada
@ Servo

@ Teclado_1

@ opcion

@ Pinza_Pulsador
@ Dos_Notas

@ ActiveRobot1
@ seed

@ nosalir

S0 add items to selected list

@ Nota_a_tocar

@ ActiveRobot2
@ TaskExecutionState
@ Taskstate

» @ T_ROB2

InterfaceState

BootVersion

CollisionDetectState

ControllerAddress

ControllerlD

ControllerName

ControllerState

Operatinghode

ControllerExecutionState

RapidProgramFreeMemory

RapidProgramUsedMemory

SpeedRatio

SystemClock

SystemiD

SystemName

MasterRAPID

llustracion 123:

Items disponibles de nuestros controladores

Ya seleccionados los Items elegidos, podremos comenzar con la simulacién.

| 4\ OPC Data Access Explorer - [Untitied.os]

File Host Server Client Group Item View Help

¥ o |

% OPC Network

@ DESKTOP-2GR20GE_Controlader_Robots IRB120.RAPID.T_ROB1.ModulePiano. Activef
DESKTOP-2GR20GE_Controlador_Robots_IRB120.RAPID.T_ROB1.ModulePiano.Activef
@ DESKTOP-2GR20GE_Controlader_Robots IRB120.RAPID.T_ROB1.ModulePiano.Dos_N
I DESKTOP-2GR20GE_Controlador_Robots_IRB120.RAPID.T_ROB1.ModulePiano.nosalir|
@ DESKTOP-2GR20GE_Controlador_Robots_IRB120.RAPID.T_ROB1.ModulePiano.Nota_a
- DESKTOP-2GR20GE_Controlador_Robots_|RB120.RAPID.T_ROB1.ModulePiano.notaPi

GRPO4EDS7CE

Properties Resd/Write Logging

Name: | GRPB4EOSTCE

Tag |

8 Active

Subscription
18 Subscribed (update on data change)

Ready

OPC Servers Namespace

Property Value [os |s Deadband: 0.0 [E3
oo

CurrentTime /2025016 19:08:26

Lastt Timebiest (00 | minutes

PublicGroups

ServerStatus Running e

Softwarelersion [1.0.1

startTime 12025-08-16 19:07:03 Calloack: |@opecaliback

. 10PCCommon DataChangsFen
(0P CServer ReadAsyncFen | Called when on asynchromous operation is cancelle
(0P CBrowseServerhddresss... RecordshcquiredFen
IConnectionPointCentainer StartFcn
(0PCltemProperties StopFen
(0PCServerPublicGroups WriteAsyncFcn

Vendorinfo |4BB Robotics IT

llustracion 124: Explorador de variables del Server Control a través de OPC Data Explorer de Matlab

La definicion y nombre de las variables e Items afiadidos los emplearemos en el disefio de
nuestra pantalla de iteraccién con App Designer.

122

App Designer es la herramienta integrada de MATLAB para crear aplicaciones graficas
interactivas (GUIs), combinando disefio visual con programacion en MATLAB para definir el
comportamiento de la aplicacion. Permite disefar interfaces mediante un editor visual (arrastrar
y soltar componentes) y luego afiadir l6gica mediante callbacks, clases, propiedades y métodos
(MathWorks, 2025a).

Caracteristicas principales

1. Disefo visual de la interfaz: Se pueden arrastrar y soltar componentes como botones,
menus, controles deslizantes, tablas, graficos, paneles y pestainas (MathWorks, 2025a).

2. Vistas de desarrollo:
+ Design View para organizar visualmente la interfaz.

* Code View para programar el comportamiento de la aplicacién (Matworks,
2025).

3. Programacion orientada a objetos: Las aplicaciones creadas en App Designer son clases
que heredan de matlab.apps.AppBase. Se utilizan propiedades para los componentes
de la interfaz y métodos o callbacks para la Idgica de interaccién (MathWorks, 2025a).

4. Biblioteca de componentes modernos: Incluye componentes como botones, listas

desplegables, paneles, pestafias, indicadores, ldmparas, interruptores y ejes para
graficos 2D/3D (MathWorks, 2025c).

5. Componentes personalizados: El usuario puede crear y configurar sus propios
componentes para integrarlos en la biblioteca de App Designer (MathWorks, 2025d).

6. Propiedades y organizacion de datos: Se pueden definir propiedades privadas para
datos internos, publicas para accesibilidad y constantes para valores inmutables. Esto
facilita la organizacién de aplicaciones complejas (MathWorks, 2025e).

7. Compartir y desplegar aplicaciones: Las aplicaciones se pueden empaquetar en archivos
.mlappinstall, exportar como aplicaciones web o compilarlas en ejecutables con
MATLAB Compiler o Web App Server (MathWorks, 2025a).

En App Designer de MATLAB, la Code View es la vista en la que se escribe y organiza el cédigo
asociado a la aplicacion.

La Code View es el entorno donde se define la légica funcional de la aplicacidn. En esta vista, el
usuario programa el comportamiento de los componentes a través de callbacks, funciones y
propiedades, que determinan codmo responde la aplicacidon ante acciones del usuario o eventos
internos del sistema (MathWorks, 2025a).

123

Los callbacks son bloques de cédigo o métodos que se ejecutan automaticamente cuando ocurre
un evento asociado a un componente, como presionar un botén o mover un control deslizante;
son el vinculo entre la interfaz visual y la légica de la aplicacidn. Las funciones son secciones de
cédigo reutilizables que realizan tareas especificas dentro de la aplicacién, ayudando a
estructurar y modular el programa. Por ultimo, las propiedades son variables definidas dentro
de la clase de la aplicacidon que almacenan datos o estados de los componentes, pudiendo ser
publicas (accesibles desde otros scripts o apps) o privadas (solo disponibles dentro de la propia
aplicacién). Esta organizacidn orientada a objetos facilita el desarrollo de aplicaciones
complejas, robustas y mantenibles en MATLAB (MathWorks, 2025b).

Escala Ascendente Escala Descendente Partitura Notas Aletarorias

llustracién 125: PIANO DASHBOARD

124

5. COMUNICACIONES

La comunicacién dentro de un entorno ABB puede darse en tres niveles principales:
1. Entre mddulos de RAPID dentro de un mismo controlador.
2. Entre varios controladores o con dispositivos externos mediante sockets.

3. Con plataformas externas de supervision e integracion industrial a través de OPC UA.

Dentro de un mismo controlador IRC5, el software RAPID organiza los programas en mddulos.
Cada mddulo es una unidad que contiene:

+ Procedimientos (PROCs): instrucciones ejecutables.

+ Funciones (FUNCs): bloques que devuelven un valor.

+ Datos locales (VAR, PERS, CONST).
Cuando varios modulos necesitan compartir informacidn, se usan variables globales.
Caracteristicas de las variables globales:

+ Si una variable se declara con el modificador GLOBAL, puede ser accedida desde
cualquier otro médulo del sistema RAPID.

+ Pueden ser de tipo VAR (volatil, se reinicia con cada ciclo) o PERS (persistente, mantiene
su valor incluso después de reinicios del programa).

+ Esto permite que distintos mddulos trabajen de manera coordinada sin necesidad de
duplicar informacion.

Aplicaciones tipicas:
+ Compartir estados de maquina (ej. "Robot en espera", "Ciclo iniciado").
+ |Implementar contadores globales (ej. piezas producidas, ciclos completados).

+ Guardar parametros de proceso (velocidades, limites de tolerancia, banderas de
seguridad).

En resumen, las variables globales facilitan la comunicacidn interna dentro de un mismo sistema
RAPID, mejorando el modularidad y el mantenimiento del programa.

125

Cuando se necesita que dos o mas controladores IRC5 trabajen juntos, o bien que un robot

intercambie datos con un PC u otro dispositivo, se utiliza la tecnologia Socket Messaging de
RAPID.

Caracteristicas del Socket Messaging:
% Basado en el estandar TCP/IP (red Ethernet).
Uno de los equipos asume el rol de servidor y el otro de cliente.
o Elservidor abre un puerto y espera conexiones.
o Elcliente inicia la comunicacion y envia/recibe datos.
+ Los datos pueden ser:
o Cadenas de texto (mensajes, instrucciones simples).
o Numeros (coordenadas, estados).
o Mensajes estructurados (tablas de datos con un formato acordado).
Ejemplo de uso:
+ Coordinacién de robots en una celda:
o Un robot actla como servidor, informando su estado de produccién.
o Otro robot, como cliente, consulta ese estado y decide cuando iniciar su tarea.
+ Comunicacién con un PC:
o EIPC envia comandos de proceso al robot.
o Elrobot responde con estados, alarmas o resultados de produccidn.

Esto permite crear celdas robotizadas distribuidas sin necesidad de un PLC central, reduciendo
costos

En entornos de automatizacion industrial mds amplios, se requiere que los robots se integren
con sistemas de supervisidn y control como SCADA, MES o aplicaciones de Industria 4.0. Para
esto, se utiliza el estandar OPC UA (Open Platform Communications Unified Architecture).

126

Caracteristicas de OPC UA en ABB:

*

+

Es un protocolo cliente-servidor usado ampliamente en la industria.

ABB RobotStudio (o directamente un IRC5 real) puede actuar como servidor OPC UA,
exponiendo variables y estados del robot.

Los sistemas externos actian como clientes OPC UA, leyendo y escribiendo datos en

tiempo real.
Permite intercambiar informaciédn como:
o Entradas y salidas digitales/analdgicas.
o Estados del robot (en movimiento, parado, en error).

o Variables RAPID (parametros de proceso, valores de sensores, contadores).

Ejemplo de uso:

*

Un SCADA puede leer en tiempo real las posiciones y estados de un robot en
RobotStudio.

Un sistema MES puede recibir datos de producciéon simulados para validar flujos antes
de la puesta en marcha real.

Una fabrica digital puede simular el comportamiento de toda una celda robotizada
conectada a un sistema central.

Esto convierte al robot ABB en un componente integrado dentro de un ecosistema digital,
facilitando la transicidon hacia Industria 4.0.

127

128

Capitulo 5

6. SIMULACION

Para controlar las funciones de los robots se ha desarrollado un menu programado en RAPID,
empleando interrupciones que permiten al usuario seleccionar diferentes modos de ejecucidn
en tiempo real. Este menu constituye la base de la légica de la estacidn, gestionando la
interaccion musical de los IRB 120 y el acompafiamiento del IRB 1400.

Las funciones implementadas fueron las siguientes:

1. Escala ascendente: los robots recorren las teclas del piano en orden ascendente, de
notas graves a agudas.

2. Escala descendente: ejecucién en sentido contrario, de agudos a graves.

3. Lectura de partitura: interpretacién de una secuencia de notas predefinidas en RAPID,
emulando una melodia.

4. Notas aleatorias: los robots ejecutan notas al azar, generando un patrén impredecible.

Las primeras pruebas del menu se realizaron utilizando el simulador de sefiales de E/S digitales
de RobotStudio. Este entorno permitié verificar de manera controlada que cada entrada
activaba correctamente la funcidn correspondiente en el programa RAPID.

+ Se comprobd la correspondencia entre entradas digitales y funciones musicales.
+ Se validd el correcto funcionamiento de las interrupciones.

+ Se garantizé que la légica del menu respondia de manera inmediata a los cambios de
estado en las sefiales.

Para nuestra simulacion en RobotStudio usaremos un estado inicial. El estado inicial hace
referencia a la condicidén o configuracion del robot y su entorno de simulacién antes de iniciar la
ejecucion de un programa o ciclo de trabajo. Este estado es esencial para garantizar que las
simulaciones y pruebas se realicen de manera coherente, repetible y segura, ya que define la
posicién, orientacion y estado de los distintos elementos del sistema (robots, herramientas,
piezas, transportadores, etc.) al comienzo de una operacion.

De manera general, el estado inicial incluye:

1. Posicidon y configuracion del robot: El robot parte de una postura o posicidon conocida,
normalmente definida mediante un robtarget o una instruccion Movel) hacia una
posicion de “home” o “inicio”. Esto asegura que todas las trayectorias comiencen desde
un punto seguro y controlado.

129

2. Configuracidn de ejes y herramientas: Se especifican las herramientas activas (ToolData)
y los sistemas de referencia (WObjData) que se usaran al iniciar la simulacién.

3. Estado de las sefales y dispositivos externos: Las senales digitales o analdgicas que
comunican el robot con otros sistemas (como PLCs o sensores) pueden tener valores
iniciales predefinidos mediante la configuracién de Device Mapping o directamente
desde el entorno virtual.

4. Restablecimiento del entorno: En simulaciones complejas, el estado inicial puede incluir
la posicion de piezas, mesas o cintas transportadoras, asegurando que el entorno virtual
esté en condiciones idénticas a las del comienzo del proceso real.

En la practica, establecer un estado inicial correcto permite que la simulacion sea reproducible,
que las trayectorias no generen colisiones inesperadas y que la ejecucidn en el controlador fisico
coincida con lo ensayado en RobotStudio. Nosotros vamos a crear nuestro estado inicial que
llamaremos POS_INIT (/lustracion 128).

Sea0@

llustracion 127: Configuracion final del estado inicial POS_INIT de nuestra estacion de RobotStudio

130

A continuacién, se muestran la correspondencia y coherencia de la Iégica entre algunas de las
sefiales durante las primeras pruebas.

Sefales de entrada activas: Escala ascendente Activacion un IRB 120.

Sefales de salida activas: Robot1 Activado.

i

0 z0em 2 ESERE] e 59 st st

llustracion 128: Estacion de RobotStudio en modo escala ascendente con un IRB 120 activado en movimiento

Sefales de entrada activas: Escala ascendente, Activacion ambos IRB 120 con Pinza cerrada.

Sefiales de salida activas: Ambos robots (ABB, 2025) IRB 120 activados y ambas pinzas
cerradas.

llustracion 129: Estacion de RobotStudio en modo escala ascendente con dos IRB 120 activados en movimiento

131

Sefales de entrada activas: Nota Re, Activacion ambos IRB 120 con Pinza cerrada.

Sefiales de salida activas: Ambos robots (ABB, 2025) IRB 120 activados y ambas pinzas
cerradas, Nota Re y Dance del YuMi 1400 que hemos activado mediando pulsador.

llustracion 130: Estacion de RobotStudio en modo escala ascendente con dos IRB 120 activados en movimiento y
el YuMi 1400 bailando (1)

Sefiales de entrada activas: Nota Re, Activacion ambos IRB 120 con Pinza cerrada.

Sefales de salida activas: Ambos robots (ABB, 2025) IRB 120 activados y ambas pinzas
cerradas, Nota Re y Dance del YuMi 1400 que hemos activado mediando pulsador.

B zoom_DO/EIERE sew G dreplao manedmerse

llustracion 131 : Estacion de RobotStudio en modo escala ascendente con dos IRB 120 activados en movimientoy
el YuMi 1400 bailando (2)

132

Sefales de entrada activas: Nota Sol, Activacion ambos IRB 120 con Pinza cerrada.

Sefiales de salida activas: Ambos robots (ABB, 2025) IRB 120 activados y ambas pinzas
cerradas, Nota Sol y Dance del YuMi 1400 que hemos activado mediando pulsador.

© 700m E/EEAD re_ERD orplas st

llustracion 132 : Estacion de RobotStudio en modo escala ascendente con dos IRB 120 activados en movimientoy

el YuMi 1400 bailando (3)

Este paso resultd esencial para depurar el codigo RAPID y asegurar la estabilidad del sistema

antes de la integracién con sistemas externos.

La simulacion en RobotStudio permitid comprobar la integracidn completa del sistema:

+

+

Ejecucidén precisa de las trayectorias de los IRB 120 en cada modo de funcionamiento.
Sincronizacidn entre los robots mediante comunicacién por socket.

Respuesta del IRB 1400, que ejecuta movimientos de baile coordinados con la musica
generada.

Activacion correcta de funciones desde la HMI, confirmando la comunicacion fluida via
OPC UA.

Ausencia de colisiones y correcta coordinacion en la estacidn virtual.

Una vez validado el menu con el simulador de E/S digitales, se procedio a su integracion conuna
pantalla HMI desarrollada en MATLAB App Designer, conectada mediante OPC UAal controlador

IRCS.

+

El usuario puede elegir desde la pantalla el tipo de ejecucién deseada (ascendente,
descendente, partitura o aleatoria).

133

4+ También puede activar o desactivar el movimiento de los robots.

4+ Cada seleccidon en la HMI se traduce en sefales enviadas al controlador, que RAPID
interpreta en tiempo real.

Este avance permitid disponer de una interfaz grafica intuitiva para interactuar con el sistema,
aumentando la usabilidad y acercando el proyecto a un contexto real de supervisién industrial.

Primero iniciamos el programa ABB IRC5 OPC UA Configuration, y confirmamos que somos
capaces de leer y escribir tanto variables de nuestro programa de RAPID como entradas y salidas
de nuestros controladores.

@Eo-c-Q- s Estacion.TTG - RobotStudio

S es0 0

AZL AL |l Rl e B

gt A |
et

Ao ame

P R R TS oo

llustracion 133: Start del programa de la comunicacion de comunicaciones OPC UA de ABB

Como se muestra en la llustracion, desde el programa somos capaces de modificar los valores y
visualizarlos.

134

S os0 b

Emcon, 176 - Boborsuto

llustracion 134:

caosot cemmenaon st
1o

ACSONALS 20 0%
MICSONALS 00

Lectura/Escritura de sefialesy variables de RobotStudio a través de ABB IRC5 OPC UA
Configuration (1)

\
[

A COC Dt o St Lt |

o b e by

&€ X CIF

Ererey

[Py

eoranc < e
2602008 Corsttes bt 8120 ADO.T 08 Mokl anssctsb

llustracion 135: Lectura/Escritura de sefiales y variables de RobotStudio a través de ABB IRC5 OPC UA
Configuration (2)

Una vez verificado el correcto funcionamiento de las comunicaciones, ejecutaremos nuestra
HMI desde Matlab.

135

llustracion 136: Ejecucion de la pantalla HMi disefiada desde App Designer de Matlab

Demostracion del correcto funcionamiento de nuestra interfaz.

T wcun oy

Ealliii D) e st
Robott Robot2

llustracion 137: Representacion real de la ejecucion de la funcién escala ascendente con un robot IRB 120
activado y el YuMi 1400 de la estacion a través de la activacion de sefiales desde el HMI disefiado en Matlab (1)

136

- o x

Inm

llustracion 138: Representacion real de la ejecucion de la funcion escala ascendente con dos robots IRB 120
activados y el YuMi 1400 de la estacion a través de la activacion de sefiales desde el HMI disefiado en Matlab (2)

2 LK oNE e O B

llustracion 139: Representacion real de la ejecucion de la funcion escala ascendente con un robot IRB 120
activado y el YuMi 1400 de la estacion a través de la activacion de seiales desde el HMI disefiado en Matlab (3)

137

7. RESULTADOS

El proyecto ha permitido desarrollar y validar una estacidn robdtica completa en RobotStudio,
integrada por dos robots IRB 120 y un IRB 1400, destacando varios resultados relevantes desde
el punto de vista técnico, educativo y de simulacion industrial.

En primer lugar, se ha demostrado la eficacia de la comunicacidn por socket entre los
controladores IRC5, logrando un intercambio de datos confiable y de baja latencia. Esta
arquitectura permitid coordinar las acciones de los IRB 120 encargados de tocar el teclado de
piano y del IRB 1400 encargado de realizar movimientos de baile, sin necesidad de un PLC
intermediario. La independencia de la comunicacidon socket asegura una arquitectura mas
flexible y escalable, apta para futuras ampliaciones de la estacion con mds robots o dispositivos
externos.

El menu programado en RAPID se ha validado mediante un proceso en dos etapas: inicialmente
conel simulador de sefiales de E/S digitales de RobotStudio, y posteriormente integrando la HMI
desarrollada en MATLAB. Esto garantizé que todas las funciones —escala ascendente, escala
descendente, lectura de partitura, notas aleatorias y control de pinza abierta/cerrada, asi como
la activacién y desactivacion de los distintos robots que componen la estacion, respondieran
correctamente a las érdenes del usuario en tiempo real. La implementacion de interrupciones
en RAPID permiti®6 cambios inmediatos entre modos, asegurando un comportamiento
predecible y confiable de los robots en todas las situaciones.

El IRB 1400 se integré exitosamente como robot acompafante, mostrando que es posible
asignar tareas diferenciadas dentro de la misma celda robdtica. Este robot interpreta las sefiales
enviadas por los IRB 120 y genera movimientos sincronizados con la musica, demostrando la
eficacia de la coordinacidon entre multiples robots en tiempo real. La simulacidn confirmé la
correcta sincronizacion y la ausencia de conflictos o colisiones, asegurando la seguridad y
eficiencia de la operacién conjunta.

Por otro lado, la interfaz HMI en MATLAB, conectada a los controladores mediante OPC UA,
permitid una gestidn remota e intuitiva del sistema. A través de esta interfaz, el usuario puede
monitorizar el estado de los robots, activar o desactivar funciones del menu y controlar la pinza
de cada robot. Esto no solo valida la integracidon de sistemas externos con los controladores
IRC5, sino que también evidencia la aplicabilidad de OPC UA como estandar industrial para
comunicacién en tiempo real.

138

La simulaciéon en RobotStudio se mostré altamente fiable, permitiendo validar trayectorias,
tiempos de ciclo, secuencias de movimiento y sincronizacion de todos los robots antes de
cualquier implementacion fisica. Esto asegura que el sistema puede trasladarse posteriormente
a un entorno real sin modificaciones estructurales significativas, reduciendo riesgos y costos de
puesta en marcha.

Finalmente, desde el punto de vista educativo, el proyecto constituye una herramienta didactica
de alto valor, permitiendo a los estudiantes comprender de manera practica conceptos
avanzados de programacién en RAPID, comunicacion entre controladores y disefio de interfaces
HMI. La combinacidon de interaccion musical y movimiento robdtico genera un entorno
motivador, facilitando el aprendizaje aplicado y fomentando la creatividad en la resolucidon de
problemas industriales.

En conjunto, los resultados muestran que el sistema desarrollado es robusto, escalable vy
pedagdgicamente valioso, capaz de integrarse tanto en contextos educativos como en proyectos
de automatizacién industrial, demostrando su potencial como base para futuras ampliaciones y
aplicaciones en entornos de fabrica digital o Industria 4.0.

139

140

Capitulo 6

8. CONCLUSIONES

El desarrollo de la estacion robdtica en RobotStudio con dos manipuladores IRB 120 y un IRB
1400 ha permitido demostrar la viabilidad de integrar mdultiples robots ABB en un mismo
entorno colaborativo, coordinados tanto a nivel de programacién como de comunicaciones
industriales.

En primer lugar, se ha validado el uso de Socket Messaging como mecanismo de intercambio de
informacién entre los distintos controladores, estableciendo una arquitectura distribuida sin
necesidad de un PLC intermedio. Este enfoque ha permitido que los IRB 120 ejecuten la
interaccién con el componente inteligente disefiado —el teclado de piano—, mientras que el
IRB 1400 adapta su comportamiento a modo de baile en funcidn de la informacidn recibida. La
utilizacion de interrupciones y menuds programados en RAPID ha facilitado la creacién de un
sistema flexible y modular, capaz de responder en tiempo real a las distintas entradas del
proceso.

En segundo lugar, la integracion de la estacién con un entorno externo de supervisién a través
del estandar OPC UA ha ampliado las capacidades del sistema, posibilitando la comunicacion
entre los controladores IRC5 y una interfaz grafica desarrollada en MATLAB App Designer. Esto
ha permitido dotar al usuario de una herramienta intuitiva y practica, desde la cual puede
monitorizar el estado de los robots y enviar érdenes directamente al programa, acercando el
proyecto a un contexto real de Industria 4.0.

Desde una perspectiva educativa, el proyecto persigue como propédsito fundamental familiarizar
a los estudiantes con las tecnologias y metodologias propias de la robdtica industrial, utilizando
RobotStudio como entorno de disefio, simulacién y validacidn. La estacidn creada constituye un
recurso diddctico innovador que permite comprender de manera practica conceptos clave como
la programacién en RAPID, la comunicacién entre controladores, la integracién de interfaces
externas y el disefio de aplicaciones robédticas interactivas. De este modo, se potencia el
aprendizaje aplicado y se fomenta la creatividad en la resolucién de problemas complejos.

El uso combinado de RobotStudio como plataforma de simulacion y programacion, junto conlas
tecnologias de comunicacion implementadas, ha demostrado el potencial de los entornos
virtuales para validar celdas robdticas antes de su implementacidn fisica. Asimismo, este trabajo

141

pone de manifiesto la importancia de la interoperabilidad entre robots, controladores y sistemas
externos, condicién indispensable en entornos productivos actuales y futuros.

En conclusion, el proyecto ha logrado no solo la simulacion de un sistema innovador que
combina interaccién musical y movimiento robdtico, sino también la creacién de una
infraestructura de comunicacion robusta y escalable. Este enfoque abre la puerta a futuras
aplicaciones en ambitos educativos, de entretenimiento e industriales, en los que Ia
colaboracién entre miltiples robots y la interaccién hombre-mdquina son cada vez mas
relevantes.

142

Lineas de trabajo futuro

Con el objetivo de ampliar y mejorar el sistema desarrollado, se plantean diversas lineas de
evolucion:

1. Implementacién fisica de la estacidn: trasladar la simulacién a un entorno real con
robots ABB, validando el comportamiento de las comunicaciones y la interfaz en un
escenario productivo.

2. Optimizacién de la interaccién musical: perfeccionar el reconocimiento y traduccion de
notas musicales hacia movimientos robdticos mas complejos y sincronizados.

3. Incorporacion de visidn artificial: integrar sistemas de vision y algoritmos de
procesamiento de imagen para que los robots puedan reaccionar a estimulos visuales o
gestuales, ademas de los sonoros.

4. Ampliacidon de la interfaz de usuario: evolucionar la aplicacion desarrollada en MATLAB
hacia plataformas mas accesibles, como HMI industriales, aplicaciones web o méviles.

5. Orientacion hacia entornos educativos: consolidar el sistema como herramienta
didactica en laboratorios universitarios o de formacidn profesional, permitiendo a los
estudiantes experimentar con programacién, simulacién y control de robots.

143

144

9. Bibliografia

Referencias

ABB. (2004-2017). Tecnichal reference manual, RAPID Instructions, Functions and Data types.
Obtenido de chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://library.e.abb.com/public/b227
fcd260204c4dbeb8a58f8002fe64/Rapid_instructions.pdf

ABB. (2020-2022). Application manual - IRC5 OPC UA Server. Obtenido de chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://library.e.abb.com/public/68db
219ad97b4119b1d42170a2872a5a/3HAC074394%20AM%20IRC5%200PC%20U A%20S
erver-en.pdf?x-
sign=buiuR9xHIrMxYsX2rUUIBdfycerHrvQXxIrOEBD hcwJnJEPURrdVD/MjSE Mi7W uv

ABB. (2022). Technical reference manual - RAPID kernel. Obtenido de
https://library.e.abb.com/public/f23f1c3e506a4383b635cff165cc6993/3HAC050946%
20TRM%20RAPID%20Kernel%20RW%206-en.pdf?x-
sign=Pshy8WRY3W/ZXxWomdcYd7x/zaMRc8NYHY5S/ybBrkSUa638uSsiKt1RIg27VeH9

ABB. (2025). Manual del operador - RobotStudio. Obtenido de
https://search.abb.com/library/Download.aspx ?Document|D=3HAC032104-
005&LanguageCode=es&DocumentPartld=&Action=Launch

ABB. (2025). Operating manual. Obtenido de RobotStudio:
https://search.abb.com/library/Download.aspx?Action=Launch&DocumentID=3HACO03
2104-001&DocumentPartld=&LanguageCode=en&utm_source=chatgpt.com

ABB. (2025). RobotStudio Desktop. Obtenido de RobotStudio Desktop:
https://new.abb.com/products/robotics/es/software-y-
digital/robotstudio/robotstudio

Bruno Siciliano, L. S. (2010). Robotics Modelling, Planning and Control. Springer.

Garrido, G. M. (2015). TFG-P-252. Obtenido de En conjunto, estos proyectos reflejan la
evolucidn y el interés continuo de la Universidad de Valladolid en la integracién de la
robdtica industrial, la simulacién mediante RobotStudio y el desarrollo de aplicaciones
educativas que favorecen el aprendizaj: https://uvadoc.uva.es/handle/10324/852

Herrero, J. A. (Septiembre de 2015). Modelado de una célula robdtica con fines educativos
usando el programa Robot-Studio. Obtenido de chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://uvadoc.uva.es/bitstream/hand

le/10324/14441/TFG-P-
309.pdf;jsessionid=E92FCB1651F6A4CC177887374BDD91FA?sequence=1

Jiménez, C.J. (1 de Julio de 2019). DISENO DE UN SISTEMA ROBOTICO EDUCATIVO PARA JUGAR
AL AJEDREZ CON ROBOTS INDUSTRIALES . Obtenido de chrome-

145

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://uvadoc.uva.es/bitstream/hand
le/10324/36877/TFG-1-1168.pdf?sequence=1&isAllowed=y

Jorge Elices. (30 de Julio de 2020). National Geographic. Obtenido de
https://www.nationalgeographic.com/history/history-magazine/article/ismail-al-
jazari-muslim-inventor-called-father-robotics

Kak, S. (2011). En The Beginning of Robotics. (pags. 142 - 146). |IEEE Access.

Mata, E. P. (2022). Simulacion de un Robot Colaborativo YuMi (ABB) en entorno RobotStudio
comandado desde MATLAB mediante protocolo OPC UA para tocar un Xiléfono.
Obtenido de
https://www.bing.com/ck/a?!&&p=bda7e830a913214ed0a157038b87c285354ce983f
35b0bf14084ba0839b2fcfbJmItdHMOMTc2ZMTE3NzYWMA& ptn=3 &ver=2&hsh=4&fclid
=0411548b-ddd3-6dbc-15c2-
4138dc676c93&psqg=elena+pozas+mata+tfg&u=alaHROcHM6Ly9 1dmFkb2MudXZhLm
VzL2hhbmRsZS8xMDMyNC8

MathWorks. (2025). Code view in App Designer. Obtenido de MATLAB & Simulink
Documentation: https://es.mathworks.com/help/matlab/creating_guis/about-app-
designer.html

Mathworks. (2025). Create and edit apps in App Designer. Obtenido de MATLAB & Simulink

Documentation: https://es.mathworks.com/help/matlab/creating_guis/code-
view.html

Matworks. (2025). Mathworks. Obtenido de
https://es.mathworks.com/help/matlab/index.html?s_tid=CRUX_Iftnav

Robética. (5 de Septiembre de 2023). ¢Cuales son las partes de un robot? Obtenido de
https://www.esneca.lat/blog/partes-robot-caracteristicas/

Wikipedia. (27 de Agosto de 2024). Wikipedia . Obtenido de
https://es.wikipedia.org/wiki/Robot

146

