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RESUMEN 

En este trabajo se presenta una propuesta de una metodología para la detección de 

anomalías en procesos de atornillado industrial utilizando técnicas de clustering 

sobre datos de sensores. El análisis se basa en las series temporales de par y ángulo 

registradas durante el ensamblaje, pudiendo identificar patrones anómalos en los 

datos. Se evalúan algoritmos especializados como TimeSeriesKMeans y K-Shape, 

aplicando métricas como Dynamic Time Warping y SoftDTW para la comparación de 

formas. También se proponen índices de evaluación de la calidad de los clústeres.  

El método propuesto puede llegar a la detección de posibles fallos en el atornillado, 

contribuyendo al control de calidad y la confiabilidad de los procesos industriales. 

Además, la metodología es escalable y puede integrarse en sistemas de 

monitorización y mantenimiento predictivo, ayudando a reducir costes y mejorar la 

seguridad de la producción. 

 

PALABRAS CLAVE 

Atornillado industrial, detección de anomalías, clustering, series temporales, 

deformación temporal dinámica. 

 

ABSTRACT 

In this work, a proposal for a methodology for anomaly detection in industrial screwing 

processes is presented, using clustering techniques on sensor data. The analysis is 

based on time series of par and angle recorded during assembly, enabling the 

identification of anomalous patterns in the data. Specialized algorithms such as 

TimeSeriesKMeans and K-Shape are evaluated, applying metrics like Dynamic Time 

Warping and SoftDTW for shape comparison. Additionally, indices for evaluating the 

quality of the clústeres are proposed. 

The proposed method can lead to the detection of possible failures in screwing, 

contributing to quality control and the reliability of industrial processes. Furthermore, 

the methodology is scalable and can be integrated into monitoring and predictive 

maintenance systems, helping to reduce costs and improve production safety. 

 

KEYWORDS  

Industrial screwing, anomaly detection, clustering, time series, Dynamic Time 

Warping. 
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1. INTRODUCCIÓN Y OBJETIVOS 

 

1.1. Introducción 

 

La fiabilidad de las uniones atornilladas es un aspecto crítico en la industria 

moderna, ya que los tornillos y pernos constituyen uno de los sistemas de ensamblaje 

más utilizados en sectores como la automoción, la aeronáutica, la construcción y la 

fabricación de maquinaria. Sin embargo, a pesar de su aparente sencillez, el 

atornillado es una fuente frecuente de problemas técnicos, económicos y de 

seguridad, lo que justifica la necesidad de abordar en profundidad el estudio de los 

fallos asociados a este tipo de unión y sus consecuencias. 

El problema de los fallos en el atornillado se manifiesta en múltiples formas, desde 

el aflojamiento prematuro y la pérdida de tensión hasta la rotura del tornillo o el daño 

en la unión atornillada. Estas incidencias pueden deberse a errores en el proceso de 

montaje (sub-apriete, sobre-apriete, cruce de roscas), a la selección inadecuada de 

materiales, a la falta de mantenimiento o a la exposición a condiciones de servicio 

agresivas, como vibraciones, cargas dinámicas o ambientes corrosivos [1]. El 

resultado es una disminución de la integridad estructural y funcional de los conjuntos 

mecánicos, que puede derivar en costosos paros de producción, reparaciones no 

planificadas y, en casos extremos, accidentes graves con consecuencias humanas y 

económicas. 

Desde el punto de vista económico, los fallos en el atornillado representan una de 

las principales fuentes de costes ocultos en la industria. Según estudios sobre 

gestión de la calidad y mantenimiento, los costes asociados a fallos internos 

(detectados antes de la entrega al cliente) y externos (detectados tras la puesta en 

servicio) pueden superar ampliamente el coste inicial de fabricación, especialmente 

cuando implican la retirada de productos, la reparación en campo o la gestión de 

reclamaciones [2]. Además, los fallos en uniones atornilladas suelen tener un efecto 

multiplicador sobre otros sistemas, generando daños colaterales en componentes 

adyacentes y aumentando la complejidad de las intervenciones correctivas. 

En términos de seguridad, los fallos en el atornillado pueden tener consecuencias 

especialmente graves en aplicaciones críticas. En el sector de la automoción, como 

en el caso de Horse Powertrain Spain (empresa dedicada a la fabricación de sistemas 

de transmisión para movilidad), un fallo en la unión de un componente estructural o 

de seguridad puede poner en riesgo el correcto funcionamiento de los sistemas de 

transmisión. Por ello, la gestión del riesgo y la prevención de fallos mediante 

metodologías como el Análisis Modal de Fallos y Efectos (AMFE) se han convertido 

en prácticas habituales para garantizar la seguridad y la conformidad con los 

estándares de calidad [3]. 
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La calidad del producto final también se ve directamente afectada por la fiabilidad 

de las uniones atornilladas. Un ensamblaje defectuoso puede traducirse en ruidos, 

vibraciones, fugas, pérdida de prestaciones o reducción de la vida útil del producto, 

lo que impacta negativamente en la satisfacción del cliente y la reputación de la 

empresa. Además, en un contexto de competencia global y mejora continua, la 

prevención de fallos en el atornillado es un requisito imprescindible para alcanzar la 

excelencia operativa y cumplir con las exigencias de certificaciones internacionales 

de calidad y seguridad, como la ISO 9001 [4] o la IATF. 

Por todo ello, la problemática de los fallos en el atornillado y sus consecuencias 

constituye un campo de estudio prioritario en la ingeniería industrial y el 

mantenimiento. La identificación, análisis y prevención de estos fallos no solo 

permite reducir costes y mejorar la calidad, sino que también contribuye de manera 

decisiva a la seguridad de los productos y procesos. El presente trabajo, desarrollado 

en colaboración con Horse Powertrain Spain, se plantea, por tanto, como una 

contribución al conocimiento y la mejora de las técnicas de control y diagnóstico de 

fallos en uniones atornilladas, con el objetivo final de minimizar su impacto en la 

industria y la sociedad. 

La aplicación de técnicas de analítica de datos y, en particular, de clustering, puede 

ser una estrategia eficaz para abordar la problemática de los fallos en el atornillado 

industrial. Esta problemática, caracterizada por la alta variabilidad de los procesos, 

la presencia de grandes volúmenes de datos y la dificultad para identificar patrones 

anómalos de forma manual, requiere enfoques automáticos y escalables que 

permitan detectar, clasificar y prevenir defectos en tiempo real. 

Uno de los principales retos en el control de calidad de procesos de atornillado es la 

detección temprana de anomalías entre miles o millones de operaciones, donde los 

fallos son eventos poco frecuentes y, a menudo, presentan características sutiles o 

atípicas respecto al comportamiento estándar [1]. Tradicionalmente, la supervisión 

se ha basado en la inspección visual, el análisis de curvas par-ángulo o la aplicación 

de umbrales fijos sobre variables como el par o el ángulo final. Sin embargo, estos 

métodos resultan insuficientes ante la complejidad y el volumen de datos generados 

en entornos industriales modernos, donde la digitalización y la sensorización masiva 

han dado lugar a escenarios de big data [5] [6]. 

En este contexto, la analítica de datos basada en clustering permite agrupar 

automáticamente grandes cantidades de registros de atornillado según su similitud, 

sin necesidad de etiquetas previas ni intervención humana. Los algoritmos de 

clustering, como K-Means, DBSCAN, K-Shape, identifican patrones de 

comportamiento normal y detectan grupos de operaciones que se desvían del 

estándar, facilitando la identificación de fallos potenciales o condiciones anómalas 

[7] [8]. Esta capacidad es especialmente relevante cuando los datos presentan alta 

variabilidad, ruido o cuando los fallos no se manifiestan de forma evidente en 

variables individuales. 



11 

 

El uso de clustering en la detección de fallos en atornillado tiene varias ventajas 

clave: 

• No requiere datos etiquetados: A diferencia del aprendizaje supervisado, el 

clustering es un método no supervisado, lo que lo hace ideal en entornos 

donde no se dispone de grandes bases de datos de fallos conocidos [9]. 

• Permite descubrir patrones desconocidos: Al no estar limitado por categorías 

predefinidas, el clustering puede revelar nuevos tipos de fallos, 

degradaciones progresivas o cambios en el proceso que pasarían 

desapercibidos con métodos tradicionales [8]. 

• Escalabilidad y eficiencia: Los algoritmos modernos permiten analizar 

grandes volúmenes de datos en tiempo real, adaptándose a la producción 

continua y a la monitorización masiva de líneas de montaje [7]. 

• Soporte a la toma de decisiones: Los resultados de clustering pueden 

integrarse en sistemas de alerta, mantenimiento predictivo o visualización 

avanzada para que los operarios y responsables de calidad puedan actuar de 

forma proactiva. 

  

En la literatura reciente, se han desarrollado soluciones que combinan el clustering 

con técnicas de extracción de características y aprendizaje profundo para mejorar la 

detección de defectos en procesos industriales. Por ejemplo, en la industria del 

acero, la combinación de clustering y redes neuronales ha permitido reducir la tasa 

de fallos de clasificación a solo un 4%, optimizando la inspección y reduciendo la 

necesidad de intervención manual [9].   

En el caso concreto del atornillado, el clustering aplicado a curvas par-ángulo, 

señales de par o variables de proceso permite segmentar automáticamente los ciclos 

en grupos homogéneos, identificar operaciones defectuosas y proporcionar 

información explicativa a los operarios mediante herramientas de inteligencia 

artificial explicable. Esta aproximación facilita la mejora continua del proceso, la 

reducción de costes por defectos y la mejora de la seguridad y la calidad del producto 

final. 

En resumen, la analítica de datos basada en clustering se justifica plenamente como 

una solución avanzada y eficiente para el diagnóstico y la prevención de fallos en el 

atornillado industrial, aportando valor tanto en la detección temprana como en la 

comprensión y mejora de los procesos. 
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1.2. Objetivos 

 

Objetivo general 

Analizar y proponer soluciones basadas en analítica de datos, especialmente 

técnicas de clustering, para la detección y prevención de fallos en procesos de 

atornillado industrial. 

Objetivos específicos 

• Recopilar y analizar datos reales de procesos de atornillado, incluyendo 

curvas par-ángulo, par, para caracterizar el comportamiento normal y 

anómalo del proceso. 

• Implementar y comparar diferentes algoritmos de clustering para la 

segmentación y análisis de series temporales asociadas a procesos de 

atornillado, evaluando su capacidad para identificar patrones anómalos y 

optimizar la detección de fallos. 

• Comparar el rendimiento y la capacidad de discriminación de distintas 

métricas de similitud para series temporales, evaluando su impacto en la 

identificación de fallos. 

• Analizar el impacto de la selección y ajuste de los parámetros clave de los 

algoritmos de clustering sobre la calidad de la segmentación y la robustez en 

la detección de patrones anómalos en datos industriales de atornillado. 

• Diseñar y validar dos índices métricos propios para evaluar la calidad del 

agrupamiento y la detección de anomalías en los procesos de atornillado 

industrial. 

• Desarrollar un mecanismo de toma de decisión basado en un operador de 

agregación para seleccionar las mejores configuraciones de clustering, 

integrando métricas cuantitativas y facilitando la elección óptima en la 

detección de anomalías. 

 

1.3. Organización de la memoria 

 

La memoria de este TFG se estructura en 5 capítulos, comenzando por la 

introducción y los objetivos de este mismo. En el Capítulo 2, se explora el marco 

teórico y el estado del arte, cubriendo el proceso de atornillado y las técnicas de 

clustering. El Capítulo 3 se centrará en la explicación de la solución propuesta y sus 

distintos criterios y validaciones. En el Capítulo 4, se detalla la experimentación del 

proyecto, incluyendo el caso de uso, la metodología (con sus pasos y la 

implementación de los algoritmos), los resultados obtenidos junto con sus tablas y 
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conclusiones y las herramientas utilizadas. El Capítulo 5 se cerrará con conclusiones 

y líneas futuras en las que poder continuar con el trabajo. Finalmente, se detalla la 

bibliografía utilizada para la redacción del trabajo.  

 

Durante la elaboración de este trabajo se ha contado con el apoyo de una 

herramienta de generación de textos basada en inteligencia artificial, concretamente 

Perplexity AI, para la redacción inicial y simplificación de algunas secciones. Además 

se ha utilizado Grok para la aplicación de algunas funciones del código. 
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2. EL USO DEL CLUSTERING EN EL PROCESO DE 

ATORNILLADO 

 

2.1. El proceso de atornillado 

 

El proceso de atornillado es una técnica de unión mecánica ampliamente utilizada 

en la industria debido a su versatilidad, facilidad de implementación y capacidad 

para permitir el desmontaje y reutilización de componentes. Este procedimiento, 

fundamental en sectores como la automoción, la aeronáutica, la electrónica y la 

maquinaria pesada, consiste en aplicar un par de apriete a un tornillo para generar 

una fuerza de sujeción que garantice la integridad estructural y funcional de las 

piezas unidas. La calidad de una unión atornillada depende de múltiples factores, 

como la selección adecuada de materiales, el control preciso del par y el ángulo de 

giro, y la monitorización de las fases del proceso, lo que ha impulsado el desarrollo 

de herramientas y metodologías avanzadas para su análisis y optimización. 

Empezaremos explorando la curva de atornillado, una representación gráfica del par 

frente al ángulo que revela cómo se comporta una unión durante el proceso. Se 

describirán sus fases principales, los parámetros clave para su análisis y su 

importancia en el control de calidad industrial. A continuación, se abordarán las 

tipologías de fallo en el atornillado, identificando problemas comunes como el sub-

apriete, el sobre-apriete, el aflojamiento, la rotura, el cruce de roscas y la corrosión. 

Finalmente, se analizará el uso de clustering para detectar anomalías, centrándonos 

en el análisis de series temporales y algoritmos como TimeSeriesKMeans (TSKM) y 

K-Shape, que ayudan a identificar patrones y desviaciones, mejorando la eficiencia y 

la calidad en procesos industriales automatizados. Se incluirán también la 

explicación de los índices de validación del clustering (Silhouette, Calinski-Harabasz, 

Davies-Bouldin) y el operador de agregación WOWA (Weighted Ordered Weighted 

Average) para evaluar la calidad de los agrupamientos. 

 

2.1.1. Curva de atornillado 

 

La curva de atornillado, también conocida como curva par-ángulo, es hoy en día una 

pieza clave para vigilar y mejorar los procesos de unión por tornillo en la industria. 

En esencia, grafica el par de apriete frente al ángulo de giro del tornillo mientras 

avanzamos en el atornillado. Gracias a ella podemos interpretar cómo se comporta 

la unión, detectar fallos incipientes y ajustar los parámetros de montaje para obtener 

resultados más fiables [6] [7]. 
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En la práctica, esta curva se genera con atornilladoras equipadas con sensores de 

par y de ángulo que recogen datos en cada instante. Contar con esa información en 

tiempo real resulta imprescindible para asegurar la calidad de la unión, sobre todo 

en sectores exigentes como la automoción, la electrónica o la maquinaria pesada, 

donde un error puede tener consecuencias muy costosas [10]. 

 

Fases características de la curva par-ángulo 

Una curva par-ángulo típica presenta varias fases bien diferenciadas. Al inicio del 

proceso, en la fase de asentamiento, el tornillo entra en contacto con la superficie 

de la pieza y comienza a girar, registrándose un aumento progresivo del ángulo con 

un par relativamente bajo. Esta fase corresponde al ajuste inicial y a la eliminación 

de holguras entre las superficies en contacto [7]. 

A continuación, se desarrolla la fase elástica, donde el material bajo la cabeza del 

tornillo y en la rosca comienza a deformarse de manera reversible. En este tramo, la 

relación entre el par y el ángulo suele ser aproximadamente lineal, reflejando la 

rigidez del conjunto. Finalmente, se alcanza la fase plástica, caracterizada por un 

aumento más lento del par a medida que el material cede y se produce deformación 

irreversible. El punto máximo de la curva corresponde al par de fallo, seguido en 

ocasiones por una caída brusca que indica la rotura del tornillo o del material [11]. 

 

Figura 1: Curva de par y ángulo. Fuente: Propia (Python) 

 

El análisis detallado de la curva par-ángulo (Figura 1) permite extraer parámetros 

críticos para el control de calidad y la optimización del proceso de atornillado. Entre 

los más relevantes se encuentran al final de la fase de asentamiento, el par máximo 

o de fallo, el ángulo de fluencia (punto donde comienza la deformación plástica) y la 

pendiente de la fase elástica (indicativa de la rigidez de la unión) [11]. 
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La interpretación de estos parámetros es esencial para detectar anomalías como el 

sub-apriete (par máximo bajo y pendiente reducida), el sobre-apriete (par excesivo y 

ángulo de fluencia bajo), o defectos como el cruce de roscas, que suele manifestarse 

como oscilaciones o irregularidades en la curva (Figura 2). En entornos industriales, 

estas curvas registradas se comparan automáticamente con plantillas de referencia. 

Cualquier desviación importante dispara una alerta en tiempo real y permite 

descartar la pieza defectuosa antes de continuar con la línea de producción [7]. 

 

Figura 2: Comparación de curvas bajo diferentes condiciones. Fuente: Propia (Python) 

 

El uso sistemático de la curva par-ángulo es clave en la automatización del control 

de calidad en líneas de montaje. Por ejemplo, en la fabricación de inversores para 

automoción, la optimización del par de apriete basada en el análisis de la curva ha 

permitido reducir significativamente los fallos por vibración y desconexión de 

componentes, ajustando el par óptimo para cada tipo de unión [11]. 

Cuando hablamos de montaje automatizado con varios tornillos, entran en juego 

sistemas de visión artificial y herramientas de análisis de señal. Estas soluciones 

capturan cada curva de par-ángulo y la cotejan al instante con un patrón de 

referencia. Para medir cuán parecidas son, se aplican métricas como la distancia de 

Fréchet, que cuantifica de forma precisa cualquier variación sutil. Al detectar una 

desviación significativa, el sistema alerta automáticamente, lo que abre la puerta a 

un control predictivo y evita costes extra derivados de piezas mal montadas [7]. 

Más allá de la recogida de datos, también podemos anticipar el comportamiento de 

la unión gracias a modelos matemáticos y simulaciones (Figura 3). Por un lado, 

ajustando funciones gaussianas a la curva; por otro, recurriendo a métodos de 

elementos finitos. Esto resulta especialmente útil en aplicaciones exigentes, como 

las bombas hidráulicas, donde identificar el par de apriete ideal puede minimizar la 

deformación geométrica y alargar la vida útil del conjunto atornillado [6]. 
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En la literatura técnica se han propuesto modelos que describen la curva como una 

combinación de fases elásticas y plásticas, permitiendo ajustar parámetros como la 

rigidez, la resistencia máxima y la ductilidad del sistema. Estos modelos son 

especialmente útiles para el diseño de uniones críticas y la validación de 

procedimientos de montaje en sectores como la aeronáutica o la automoción [6]. 

 

Figura 3: Curva con ruido simulado. Fuente: Propia (Python) 

 

En definitiva, la curva par-ángulo es una herramienta indispensable para el análisis, 

control y optimización de procesos de atornillado en la industria moderna. Su 

interpretación permite garantizar la integridad estructural de las uniones, detectar 

defectos en tiempo real y reducir costes de fabricación. La integración de sensores 

avanzados, algoritmos de análisis de señales y técnicas de inteligencia artificial abre 

nuevas posibilidades para el control automático y predictivo de la calidad en 

procesos de ensamblaje. 

 

2.1.2. Fases del atornillado 

 

En este subcapítulo se describen las etapas principales que caracterizan el apriete 

del tornillo, desde el contacto inicial, pasando por la deformación elástica y plástica 

del material, hasta el momento crítico de falla o rotura. 

La Figura 4 ilustra la curva par-ángulo junto con sus fases características que se 

tratan posteriormente. 
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Figura 4: Curva par-ángulo y sus fases. Fuente: Propia (Python) 

 

1. Fase de asentamiento 

La primera etapa del atornillado es la fase de asentamiento (Figura 5). En esta fase, 

el tornillo comienza a girar y entra en contacto con la superficie de la pieza a unir. 

Inicialmente, el par de apriete (par) es bajo y el ángulo de giro aumenta rápidamente. 

Durante este periodo, se eliminan las holguras entre las superficies, se ajustan las 

imperfecciones y se acomodan las rugosidades de contacto. El objetivo principal de 

esta fase es lograr el contacto efectivo entre las superficies, asegurando que el 

tornillo y la rosca estén correctamente alineados y que la fuerza de fricción comience 

a actuar [7]. 

 

Figura 5: Fase de asentamiento. Fuente: Propia (Python) 
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2. Fase de apriete (fase elástica) 

Una vez superado el asentamiento, el proceso entra en la fase de apriete o fase 

elástica (Figura 6). Aquí, el par de apriete comienza a incrementarse de manera más 

pronunciada en relación con el ángulo de giro. El material bajo la cabeza del tornillo 

y en la rosca se deforma elásticamente, es decir, de forma reversible. En esta fase, 

la relación entre el par y el ángulo es aproximadamente lineal, lo que refleja la rigidez 

del conjunto tornillo-material. El objetivo es alcanzar el nivel de tensión necesario 

para asegurar la unión sin exceder el límite elástico del material [11]. 

 

Figura 6: Fase elástica. Fuente: Propia (Python) 

 

3. Fase de fluencia (fase plástica) 

Si se continúa aplicando par más allá del límite elástico, se entra en la fase de 

fluencia o fase plástica (Figura 7). En este tramo, el material comienza a deformarse 

de manera irreversible. El par de apriete sigue aumentando, pero la pendiente de la 

curva disminuye, indicando que el ángulo de giro crece más rápidamente respecto al 

aumento de par. Esta fase es crítica, ya que una deformación plástica excesiva puede 

comprometer la integridad de la unión y llevar al fallo del tornillo o del material unido 

[6]. 

 

Figura 7: Fase plástica. Fuente: Propia (Python) 
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4. Fase de fallo 

Finalmente, si el proceso de apriete continúa, se alcanza el par máximo o par de fallo 

(Figura 8). Este punto representa la máxima resistencia que puede soportar la unión 

antes de que ocurra la rotura del tornillo, el deslizamiento de la rosca o la fractura 

del material. Tras este punto, el par puede disminuir abruptamente, aunque el ángulo 

siga aumentando, lo que indica la pérdida total de la capacidad de carga de la unión 

[11]. 

 

Figura 8: Fase de fallo. Fuente: Propia (Python) 

 

El análisis detallado de estas fases permite detectar anomalías como sub-apriete 

(cuando no se alcanza la fase elástica adecuada), sobre-apriete (cuando se excede 

la fase plástica) o defectos como el cruce de roscas, que pueden manifestarse como 

irregularidades en la curva par-ángulo. La monitorización en tiempo real de estas 

fases es esencial para la automatización del control de calidad y la reducción de 

defectos en la producción industrial [7]. 

El conocimiento profundo de las fases del atornillado permite optimizar los procesos 

de montaje, seleccionar los parámetros de apriete adecuados y prevenir fallos 

mecánicos costosos. La representación gráfica mediante la curva par-ángulo y el 

análisis de sus distintas fases constituyen herramientas imprescindibles para 

ingenieros y técnicos en la industria moderna. 
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2.1.3. Tipologías de fallo en el atornillado 

 

El atornillado es uno de los métodos de unión más utilizados en la industria, tanto 

por su sencillez como por la posibilidad de desmontaje y reutilización de 

componentes. Sin embargo, la fiabilidad de una unión atornillada depende de 

numerosos factores y, en la práctica, pueden aparecer diferentes tipologías de fallo 

que comprometen la seguridad, la funcionalidad o la durabilidad del conjunto. El 

conocimiento y la prevención de estos fallos es esencial para el diseño, la fabricación 

y el mantenimiento de cualquier sistema mecánico [1]. 

El análisis de las tipologías de fallo en el atornillado permite establecer 

procedimientos de control de calidad, seleccionar los pares de apriete adecuados y 

diseñar sistemas de monitorización que detecten anomalías en tiempo real. El uso 

de curvas par-ángulo, el análisis estadístico de los procesos y la formación del 

personal son herramientas clave para reducir la incidencia de fallos y mejorar la 

fiabilidad de las uniones atornilladas [1]. 

Fallo por sub-apriete 

El sub-apriete ocurre cuando el par aplicado al tornillo es insuficiente para garantizar 

la correcta sujeción de las piezas. Esto puede deberse a un error en el ajuste de la 

herramienta, a la falta de control en el proceso o a la presencia de lubricantes o 

contaminantes en la rosca. El principal riesgo del sub-apriete es la aparición de 

holguras, que pueden derivar en movimientos relativos, ruidos, pérdida de 

estanqueidad y, en casos extremos, el desensamblaje espontáneo de la unión. 

Además, el sub-apriete favorece la fatiga por micro-movimientos, acelerando el 

desgaste de las superficies de contacto [1]. 

Fallo por sobre-apriete 

El sobre-apriete se produce cuando el par aplicado excede el valor recomendado 

para el tornillo o el material de las piezas a unir. Este exceso de carga puede provocar 

la deformación plástica del tornillo, el deterioro de la rosca o incluso la rotura por 

tracción o cizalladura. El sobre-apriete también puede inducir tensiones residuales 

que, a largo plazo, favorecen la aparición de grietas o la fatiga del material. En 

aplicaciones críticas, como la automoción o la aeronáutica, el sobre-apriete es una 

de las principales causas de fallo catastrófico de uniones atornilladas [6]. 

Fallo por aflojamiento 

El aflojamiento de los tornillos es un problema habitual en uniones que están 

sometidas a vibraciones, cargas dinámicas o variaciones térmicas. Este fenómeno 

puede deberse a un apriete insuficiente al inicio o a la relajación progresiva de las 

tensiones internas, provocada por la fluencia de los materiales o por deformaciones 

en las superficies de contacto. Cuando se produce un aflojamiento progresivo, la 

fuerza de sujeción disminuye y, con el tiempo, puede perderse completamente la 
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función estructural de la unión. Para prevenir esta situación, es común utilizar 

elementos como arandelas de seguridad, adhesivos especiales o sistemas de 

bloqueo mecánico [1]. 

Fallo por rotura del tornillo 

La rotura del tornillo representa uno de los fallos más críticos en uniones atornilladas. 

Generalmente, está asociada a un exceso de apriete, defectos de fabricación —como 

microgrietas o inclusiones en el material— o a la aplicación de cargas superiores a 

las especificadas en el diseño. Dependiendo del tipo de esfuerzo predominante, la 

rotura puede producirse por tracción, cizalladura o fatiga. En muchos casos, la 

fractura comienza en zonas de alta concentración de tensiones, como la raíz de la 

rosca o la transición entre la cabeza y el vástago [11]. 

Fallo por cruce de roscas 

El cruce de roscas se produce cuando el tornillo no sigue el camino correcto en la 

rosca de la pieza, generando un contacto anómalo entre los filetes. Esto puede 

deberse a un desalineamiento durante el montaje, a la presencia de suciedad o a 

defectos en la fabricación de las roscas. El cruce de roscas provoca un aumento 

irregular del par, daños irreversibles en la rosca y, en muchos casos, la imposibilidad 

de desmontar el conjunto sin destruirlo [1]. 

Fallo por corrosión y desgaste 

La corrosión y el desgaste son mecanismos de fallo a largo plazo que afectan 

especialmente a uniones expuestas a ambientes agresivos o a movimientos relativos 

entre las piezas. La corrosión puede debilitar el tornillo y la rosca, facilitando el 

aflojamiento o la rotura, mientras que el desgaste reduce la capacidad de 

transmisión de carga y puede generar holguras. La selección adecuada de materiales 

y recubrimientos, así como el mantenimiento preventivo, son esenciales para 

minimizar estos riesgos [6]. 

Las uniones atornilladas, a pesar de su aparente simplicidad, pueden fallar por 

múltiples mecanismos si no se controlan adecuadamente los parámetros de montaje 

y las condiciones de servicio. La identificación y prevención de los distintos tipos de 

fallo es fundamental para garantizar la seguridad y la durabilidad de los productos 

industriales. 
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2.2. Uso de Clustering para Detección de Anomalías 

 

2.2.1. Series temporales 

 

Las series temporales constituyen una de las estructuras de datos más relevantes y 

frecuentes en el ámbito científico, tecnológico e industrial. Se definen como una 

secuencia ordenada de observaciones recogidas a intervalos regulares de tiempo, lo 

que permite analizar la evolución de un fenómeno, identificar patrones, realizar 

pronósticos y detectar anomalías [10]. A diferencia de otros tipos de datos, las series 

temporales incorporan explícitamente la dimensión temporal, lo que implica que el 

orden y la dependencia entre los datos son aspectos fundamentales para su análisis. 

El estudio de series temporales es esencial en campos tan variados como la 

economía (por ejemplo, para el análisis de precios y mercados) [12], la meteorología 

(temperaturas, precipitaciones) [13], la energía [14], la medicina (señales 

biomédicas como el electrocardiograma) [15], la ingeniería (monitorización de 

maquinaria) [16], y muchos otros. La capacidad de modelar y comprender la 

dinámica temporal de estos procesos permite no solo describir su comportamiento 

pasado, sino también anticipar su evolución futura y tomar decisiones 

fundamentadas. 

El análisis de series temporales tiene particularidades que lo diferencian del 

tratamiento convencional de datos. Entre sus aspectos más relevantes se 

encuentran: 

• Dependencia temporal: Los valores de la serie suelen estar influenciados por 

los anteriores, lo que se conoce como autocorrelación. Esta propiedad es 

clave para el desarrollo de modelos que intentan predecir el comportamiento 

futuro. 

• Tendencias y estacionalidades: Muchas series muestran patrones repetitivos 

o cambios graduales a lo largo del tiempo. Detectar estos componentes 

permite comprender mejor el sistema y construir modelos más precisos. 

• Presencia de ruido y valores atípicos: Las series pueden contener ruido 

aleatorio o anomalías que enmascaran la señal real. Es necesario aplicar 

técnicas que filtren estos elementos para evitar interpretaciones erróneas. 

• No estacionalidad: Algunas series cambian su comportamiento estadístico 

con el tiempo, lo que dificulta su modelado. En estos casos, se suelen aplicar 

transformaciones para estabilizar la varianza o la media, o se opta por 

modelos específicos. 

Debido a estos desafíos, se han desarrollado múltiples enfoques, que van desde 

métodos estadísticos tradicionales —como ARIMA o los modelos de suavizado— hasta 
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técnicas más modernas basadas en inteligencia artificial y aprendizaje profundo 

[10]. 

Las series temporales son fundamentales para entender cómo evolucionan muchos 

procesos reales. En la industria, su análisis permite monitorizar operaciones, 

anticipar fallos en equipos, detectar comportamientos anómalos y mejorar la 

eficiencia en la producción. Por ejemplo, en el sector energético se utilizan para 

prever el consumo y optimizar la distribución de recursos [14]. En medicina, el 

análisis de señales como el ECG (Electrocardiografía) o las ondas cerebrales 

contribuye al diagnóstico y seguimiento clínico [15]. 

Debido a la digitalización y la expansión del Internet de las Cosas (IoT), la cantidad 

de datos temporales ha crecido enormemente. Esto ha hecho imprescindible contar 

con herramientas avanzadas que permitan aprovechar esta información. Algoritmos 

como K-Shape o TimeSeriesKMeans han demostrado ser eficaces para clasificar 

series similares y extraer patrones útiles para la toma de decisiones [17]. 

Las técnicas para trabajar con series temporales son diversas y se pueden agrupar 

en varias categorías: 

• Modelos tradicionales: Incluyen métodos como AR (AutoRegressive), MA 

(Moving Average), ARMA (AutoRegressive Moving Average), ARIMA 

(AutoRegressive Integrated Moving Average) o SARIMA (Seasonal 

AutoRegressive Integrated Moving Average). Todos ellos utilizan 

combinaciones lineales de valores anteriores y errores para representar la 

evolución de la serie. 

• Modelos de descomposición: Separan la serie en componentes como 

tendencia, estacionalidad y ruido. Esta descomposición facilita tanto el 

análisis como la elaboración de predicciones. 

• Técnicas de suavizado: Métodos como el suavizado exponencial son útiles 

especialmente para hacer predicciones a corto plazo o cuando la serie 

presenta poca estructura. 

• Modelos multivariantes: Técnicas como VAR (Vector AutoRegressive) o la 

cointegración permiten analizar series relacionadas entre sí, ofreciendo una 

visión más completa del sistema. 

• Enfoques de machine learning: Aquí se encuentran algoritmos de 

clasificación, agrupamiento y redes neuronales, especialmente las de tipo 

recurrente. Estas técnicas resultan muy eficaces para captar relaciones 

complejas y anticipar eventos futuros. 

Cada tipo de enfoque tiene sus propias ventajas, y su elección depende del tipo de 

datos disponibles, del comportamiento de la serie y de los objetivos específicos del 

análisis. 

El análisis de series temporales es una disciplina en constante evolución. 

Actualmente, la integración de técnicas de machine learning y deep learning está 
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permitiendo abordar problemas cada vez más complejos, como la predicción en 

tiempo real, la detección automática de anomalías y el clustering de grandes 

volúmenes de datos temporales. Además, la combinación de análisis de series 

temporales con otras fuentes de datos (por ejemplo, datos espaciales o 

contextuales) está abriendo nuevas posibilidades en áreas como la industria 4.0, la 

salud digital y la gestión inteligente de infraestructuras. 

En resumen, el análisis de series temporales es una herramienta imprescindible para 

entender, modelar y anticipar el comportamiento de sistemas dinámicos en un 

mundo cada vez más conectado y orientado a los datos. 

 

2.2.2. TimeSeriesKMeans 

 

El algoritmo TimeSeriesKMeans es una extensión especializada del método K-Means 

clásico diseñada para series temporales, capaz de manejar la dimensionalidad 

temporal y la variabilidad en la longitud de los datos [18]. A diferencia de los 

algoritmos de clustering tradicionales que operan en espacios euclidianos estáticos, 

TimeSeriesKMeans incorpora métricas específicas para secuencias temporales, 

como la Dynamic Time Warping (DTW) y su variante diferenciable softDTW, 

permitiendo comparar patrones con deformaciones temporales no lineales [19]. Esta 

capacidad es crucial en procesos industriales como el atornillado, donde las señales 

de par-ángulo presentan variaciones en duración y velocidad [10]. 

 

2.2.2.1. Dynamic Time Warping (DTW)  

 

DTW calcula la similitud entre dos series temporales 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) e 𝑌 =

(𝑦1, 𝑦2, … , 𝑦𝑛) mediante un alineamiento no lineal que minimiza la distancia 

acumulativa: 𝐷𝑇𝑊 (𝑋, 𝑌) = 𝑚𝑖𝑛𝜋√∑ 𝜙(𝑥𝑖 , 𝑦𝑗)(𝑖,𝑗)∈𝜋   

donde: 

• 𝜋 es una trayectoria de alineación que satisface: 

- Monotonicidad: 𝑖𝑘 ≤ 𝑖𝑘+1, 𝑗𝑘 ≤ 𝑗𝑘+1 

- Condiciones de frontera: 𝜋1 = (1,1), 𝜋𝑘 = (𝑛, 𝑚) 

- Continuidad: 𝑖𝑘+1 −  𝑖𝑘 ≤ 1, 𝑖𝑘+1 − 𝑗𝑘 ≤ 1 

• La función de costo 𝜙 suele ser la distancia euclidiana 𝜙(𝑥𝑖 , 𝑦𝑗) =

 ‖𝑥𝑖 − 𝑦𝑗‖
2
. Esta métrica es invariante a compresiones/expansiones 

temporales, esencial para comparar ciclos de atornillado con diferentes 

velocidades. [20] 
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Esta métrica hace que el agrupamiento sea mucho más robusto, ya que detecta 

patrones similares, aunque ocurran en momentos distintos o a distintas velocidades, 

pudiendo detectar comportamientos anómalos o patrones repetitivos en procesos 

industriales. 

Los centroides de los clústeres no se calculan como simples medias, sino mediante 

un promedio especial basado en DTW, lo que garantiza que el centroide represente 

fielmente la forma temporal típica del grupo. 

 

2.2.2.2. Soft Dynamic Time Warping (softDTW) 

 

SoftDTW suaviza la minimización de DTW mediante un parámetro de regularización 

𝛾 > 0: 

𝑠𝑜𝑓𝑡𝐷𝑇𝑊 (𝑋, 𝑌) =  −𝛾𝑙𝑜𝑔 ∑ 𝑒
−

(𝐴𝜋∆(𝑋,𝑌))𝐹
𝛾

𝜋𝜖𝐴
 

donde: 

• A es el conjunto de todas las trayectorias de alineación 

• ∆ (𝑋, 𝑌) es la matriz de costos con ∆𝑖𝑗=  ‖𝑥𝑖 − 𝑦𝑗‖
2

  

• 〈∙,∙〉𝐹 es el producto de Frobenius. Esta formulación es diferenciable respecto 

a 𝑋 𝑒 𝑌, permitiendo su uso en métodos de optimización basados en 

gradientes. [19] 

 

2.2.2.3. Implementación del Algoritmo TimeSeriesKMeans 

 

El algoritmo sigue un esquema iterativo similar al K-Means, con adaptaciones clave: 

Configuración Inicial 

El algoritmo TimeSeriesKMeans requiere: 

• Entrada de datos: Tensor 3D de forma (n_series, n_puntos, n_características) 

• Preprocesamiento: Escalado de series 

con TimeSeriesScalerMeanVariance() para normalizar media y varianza [21]. 

 

Parámetros Clave 

Parámetro Descripción Valor por defecto 

n_clústeres Número de clústeres a formar (k) 3 
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Max_iter Número máximo de iteraciones 50 

tol Tolerancia; criterio de convergencia 1e-6 

N_init Veces que se ejecuta con distintas 

semillas 

1 

metric Métrica de distancia euclidean 

Max_iter_barycenter Iteraciones máximas para calcular el 

centroide 

100 

init Método de inicializacón de centroides k-means++ 

Random_state Semilla para generador aleatorio None 

 

Tabla 1: Parámetros Clave TimeSeriesKMeans. Fuente: Propia 

 

Flujo del algoritmo: 

1. Inicialización de centroides: 

• Selecciona k series aleatorias como centroides iniciales usando k-

means++. [22] 

2. Asignación a clústeres: 

• Calcula la distancia entre cada serie y los centroides usando 

DTW/softDTW. [22] 

• Asigna cada serie al clúster con centroide más cercano. 

3. Actualización de centroides: 

• Recalcula centroides mediante DTW Barycenter Averaging (DBA) [20]: 

𝜇𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐷𝑇𝑊 (𝜇, 𝑋𝑖)
2

𝑋𝑖𝜖𝐶𝑘
 

4. Convergencia: 

• Repite pasos 2-3 hasta que los centroides se estabilicen o se 

alcance max_iter. 

 

Aplicaciones destacadas 

TimeSeriesKMeans se aplica en diversas áreas donde las series temporales 

presentan desplazamientos o distorsiones temporales. Por ejemplo, en finanzas se 

usa para identificar mecanismos subyacentes en datos de mercado agrupando 

series según sus patrones de retorno (mejorando la inferencia causal) [12]. En 

entornos industriales, puede detectar anomalías en procesos a partir de sensores 
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agrupando comportamientos normales y resaltando desviaciones atípicas [16]. 

También se emplea para el análisis de series multimodales (varias señales 

simultáneas), ajustando diferencias de fase; por ejemplo, en hidrología se han 

alineado perfiles de contaminantes con datos de caudal mediante DTW para agrupar 

eventos similares [13]. 

En general, TimeSeriesKMeans mejora la calidad del agrupamiento frente a k-means 

estándar al capturar la dependencia temporal de las series. Al permitir la 

deformación temporal (DTW), genera clústeres más coherentes cuando las series 

están desfasadas o distorsionadas. Sin embargo, su uso implica un mayor costo 

computacional debido a la complejidad de DTW. A continuación, se resumen ventajas 

e inconvenientes clave. 

Ventajas 

• Manejo de alineamiento temporal: Al usar DTW/Soft-DTW, puede agrupar 

series de distinta longitud y compensar desplazamientos de fase. Captura 

similitudes de forma independientemente del desfase temporal. 

• Resultados más robustos: Supera al k-means clásico con distancia euclidiana 

en series donde los patrones están desplazados en el tiempo (p.ej. 

financieros). Mejora la agrupación e interpretabilidad de los resultados en 

datos temporales. 

• Escalable y convergente: Hereda las propiedades de k-means: es 

relativamente simple de implementar y converge (alcanzando un mínimo 

local) tras unas iteraciones. Al ser iterativo, permite paralelizar ciertas 

operaciones (p.ej. cálculo de distancias). 

• Flexibilidad: Puede trabajar con datos multivariantes (cada serie puede tener 

múltiples características) y opciones de inicialinzación (k-means++ o 

aleatoria). Además, Soft-DTW es diferenciable, lo cual facilita su uso en 

optimización avanzada. 

 

Inconvenientes 

• Costo computacional elevado: DTW tiene complejidad 𝑂(𝑛2) en la longitud de 

la serie, por lo que TimeSeriesKMeans es más lento que k-means clásico (que 

usa 𝑂(𝑛). El cálculo iterativo del barycenter DTW es especialmente costoso 

en series largas. 

• Elección de k e inicialización: Al igual que k-means, hay que fijar el número de 

clústeres a priori y los resultados dependen de los centroides iniciales. A 

menudo se ejecuta varias veces (n_init>1) para mitigar este efecto. 

• Sensibilidad a valores atípicos: K-means puede verse afectado por outliers 

(un outlier puede arrastrar el centroide o formar su propio clúster). Se 

recomienda preprocesar o eliminar atípicos si existen. 

• Limitaciones de la métrica: DTW no es una métrica de distancia en sentido 

estricto (no cumple triangular), y en algunos casos deformar excesivamente 

las series puede no ser deseable. Además, requiere series del mismo tamaño 
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cuando se usa métrica euclidiana (para esa métrica alternativa); con DTW 

esto no aplica. 

La técnica TimeSeriesKMeans ha sido aplicada con éxito en el análisis de perfiles de 

atornillado en líneas de ensamblaje automotriz, donde la identificación de patrones 

anómalos en curvas par-tiempo es fundamental para garantizar la calidad del 

proceso. En el estudio de Carlos Betancort [23], se emplearon algoritmos de 

clustering como TimeSeriesKMeans, implementados a través de la librería tslearn, 

para agrupar series temporales correspondientes a operaciones de atornillado.  

El objetivo era detectar perfiles de apriete desviados respecto a los patrones 

normales mediante la comparación de formas temporales. Los autores subrayan que 

este tipo de algoritmos permite diferenciar operaciones correctas de posibles 

defectos o errores, gracias a su capacidad para capturar la morfología de la señal sin 

requerir un alineamiento explícito en el tiempo. Este enfoque resulta especialmente 

útil en entornos de producción donde las señales pueden presentar ligeras 

variaciones temporales que no necesariamente implican una pérdida de calidad. 

 

2.2.3. KShape 

 

En este contexto, el algoritmo K-Shape, propuesto por [24], representa un avance 

significativo en el clustering de series temporales. K-Shape agrupa las series no solo 

considerando la proximidad en términos de valores absolutos, sino evaluando la 

similitud en la forma de las series, lo que permite identificar patrones comunes 

incluso cuando las series presentan variaciones en escala o están desplazadas en el 

tiempo. Esta característica lo hace especialmente útil en aplicaciones donde la forma 

de la señal es más relevante que su valor absoluto, como en el análisis de señales 

biomédicas, vibraciones mecánicas o patrones de consumo energético. 

El núcleo del algoritmo K-Shape es la métrica de distancia denominada Shape-Based 

Distance (SBD), que mide la similitud entre dos series temporales a través de la 

correlación cruzada normalizada [8]. Esta métrica es invariante a cambios en la 

escala y al desplazamiento temporal, lo que permite comparar series que tienen la 

misma forma, pero pueden estar desfasadas o presentar diferentes amplitudes. 

Matemáticamente, para dos series temporales 𝑋 e 𝑌, la distancia SBD se define 

como: 

 

𝑆𝐵𝐷 (𝑋, 𝑌) = 1 − max
𝑤

𝐶𝐶𝑤(𝑋, 𝑌)

√𝑅0(𝑋, 𝑋) ∙ 𝑅0(𝑌, 𝑌)
 

donde: 
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• 𝐶𝐶𝑤(𝑋, 𝑌) es la correlación cruzada entre  𝑋 e 𝑌 con desplazamiento 

temporal w. 

• 𝑅0(𝑋, 𝑋) ∙ 𝑅0(𝑌, 𝑌) son las autocorrelaciones de 𝑋 e 𝑌 en desplazamiento 

cero. 

La maximización sobre w permite encontrar el mejor alineamiento temporal entre las 

dos series, capturando así la máxima similitud en forma. Esta propiedad es esencial 

para aplicaciones donde los eventos pueden ocurrir en diferentes momentos, pero 

mantienen patrones similares. 

A diferencia del K-Means tradicional, donde los centroides se calculan como la media 

aritmética de los puntos asignados a cada clúster, en K-Shape los centroides 

representan la forma promedio de las series temporales agrupadas. Para ello, se 

resuelve un problema de optimización que busca maximizar la suma de correlaciones 

cuadráticas entre el centroide y las series del clúster: 

𝜇𝑘 =  arg max
𝜇

∑
(𝑋𝑖 ∙ 𝜇)2

‖𝜇‖2

𝑋𝑖𝜖𝐶𝑘

 

donde: 

• 𝜇: candidato a centroide. 

• 𝐶𝑘: conjunto de series asignadas al clúster k. 

• 𝑋𝑖: serie temporal i-ésima en el clúster k. 

Este problema se traduce en obtener el primer vector singular derecho (primer 

autovector) de la matriz que contiene las series temporales del clúster, utilizando la 

descomposición en valores singulares (SVD). De esta forma, el centroide refleja la 

forma dominante del clúster, lo que facilita la interpretación y el análisis posterior. 

El algoritmo K-Shape es una variante de K-Means especialmente diseñada para 

trabajar con series temporales. Su funcionamiento se basa en un proceso iterativo 

en el que se alternan dos etapas principales: asignación de series a grupos y 

actualización de los centroides, respetando la estructura temporal de los datos. El 

procedimiento sigue los siguientes pasos: 

1. Inicialización: Se seleccionan aleatoriamente k series como centroides 

iniciales. Para mejorar la estabilidad y evitar resultados locales pobres, es 

aconsejable utilizar técnicas como k-means++. 

2. Asignación: Cada serie se asigna al clúster cuyo centroide presenta la mayor 

correlación cruzada normalizada, utilizando como métrica la distancia SBD 

(Shape-Based Distance) [8]. 

3. Actualización de centroides: Se recalcula el centroide de cada grupo 

aplicando descomposición en valores singulares (SVD), con el fin de obtener 

una forma promedio representativa del conjunto de series asignadas. 
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4. Criterio de parada: El proceso se repite hasta que las asignaciones no 

cambian o se alcanza un número máximo de iteraciones. 

Este enfoque permite agrupar series temporales respetando tanto la forma como la 

dinámica de las señales, incluso si existen diferencias en duración, desplazamientos 

temporales o presencia de ruido. 

Este algoritmo trae consigo una serie de ventajas e inconvenientes: 

Ventajas: 

• Robustez ante escalas y desplazamientos: La métrica SBD permite que series 

similares pero desfasadas o con diferentes amplitudes puedan agruparse 

correctamente. 

• Eficiencia computacional: K-Shape es significativamente más rápido que 

métodos como DTW, lo que lo hace adecuado para conjuntos de datos 

grandes. 

• Interpretabilidad: Los centroides representan formas promedio, lo que facilita 

el análisis y la visualización de los resultados. 

• Resistencia al ruido: El enfoque centrado en la forma es menos sensible a 

valores atípicos y fluctuaciones aleatorias. 

Limitaciones: 

• Dependencia de la inicialización: Al igual que otros algoritmos basados en K-

Means, los resultados pueden variar en función de la elección inicial de los 

centroides. 

• Diseño univariado: K-Shape está enfocado a series de una sola variable. Su 

uso con series multivariadas requiere adaptaciones o el uso de técnicas 

complementarias. 

• Falta de modelado temporal profundo: No capta relaciones complejas ni no 

lineales como lo hacen los modelos basados en aprendizaje profundo. 

El algoritmo K-Shape se ha aplicado con éxito en múltiples dominios gracias a su 

capacidad para capturar la forma de las series temporales. En ingeniería civil, se ha 

empleado para clasificar señales de deformación en infraestructuras como presas, 

identificando zonas de comportamiento similar y posibles riesgos estructurales [25]. 

En el ámbito del consumo energético, ha permitido analizar perfiles eléctricos en 

edificios, facilitando una gestión más eficiente y la optimización de tarifas [14]. En 

procesos industriales, como el control de calidad del atornillado, K-Shape agrupa 

curvas de par-ángulo y detecta desviaciones que indican errores como sub-aprietes 

o defectos mecánicos [24]. También se ha utilizado en minería de datos para agrupar 

series derivadas de redes sociales o análisis de vídeos, apoyando tareas de análisis 

de sentimiento y multimedia [8]. 
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Para potenciar su rendimiento, se han desarrollado varias extensiones. Herramientas 

paralelas y basadas en GPU, como Times-C, han incrementado la velocidad de 

cálculo hasta 345 veces, habilitando análisis en tiempo real [25]. Métodos como 

Adaptive Piecewise Aggregate Approximation (APAA) simplifican las series 

preservando las características clave de la forma [26]. Finalmente, para datos 

multivariados, se han propuesto modelos como T-GMRF (Time-varying Gaussian 

Markov Random Fields), que extienden los principios de K-Shape a series con 

múltiples variables [27]. 

El algoritmo K-Shape también ha demostrado su utilidad en la industria, 

particularmente en la monitorización de procesos como la soldadura por arco. 

Giordano et al. [17] utilizaron K-Shape como método de referencia para agrupar 

señales de corriente recogidas durante operaciones de soldadura automatizada. 

Estas series temporales presentan patrones morfológicos específicos que reflejan el 

estado del proceso y el desgaste del electrodo.  

El estudio mostró que K-Shape era capaz de identificar distintos grupos de señales 

con una elevada coherencia interna, diferenciando entre soldaduras normales y 

aquellas con variaciones potencialmente críticas. A través del análisis de forma que 

caracteriza a K-Shape, los investigadores lograron extraer perfiles prototípicos 

representativos, lo que facilitó el diagnóstico del proceso y la detección de posibles 

anomalías de manera no invasiva y sin necesidad de etiquetas previas. 

El algoritmo K-Shape es una herramienta eficaz y eficiente para el análisis de series 

temporales, especialmente cuando el objetivo es agrupar señales en función de su 

forma. Su tolerancia a desplazamientos, escalas y ruido, unida a su bajo coste 

computacional y facilidad de interpretación, lo convierte en una opción atractiva en 

entornos industriales y científicos. 

Las recientes mejoras en rendimiento y su extensión a datos multivariados amplían 

aún más sus posibilidades. Como línea futura, sería interesante explorar su 

combinación con técnicas de aprendizaje profundo para abordar problemas de 

clustering en línea y el análisis de series complejas. 

 

2.2.4. Índices de valoración del clustering 

 

En el análisis de clustering, después de agrupar los datos, resulta esencial evaluar 

la calidad de los clústeres formados. Para este fin, se utilizan tres índices comunes: 

el Silhouette, el Calinski-Harabasz (CH) y el Davies-Bouldin (DB). Cada uno de ellos 

mide aspectos como la cohesión interna de los clústeres y la separación entre ellos, 

lo que permite determinar el número óptimo de clústeres o comparar diferentes 

algoritmos. 
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El índice Silhouette evalúa cómo se ajusta cada punto a su clúster en comparación 

con los clústeres cercanos. Calcula una puntuación entre -1 y 1 para cada punto: 

valores altos indican que el punto está bien colocado y separado de otros clústeres, 

mientras que valores negativos sugieren que podría pertenecer a otro clúster. Este 

índice sirve para validar la calidad general del clustering y seleccionar el valor óptimo 

del número de clústeres. [28] 

La fórmula que describe la métrica: 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 =  
𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
 

Donde:  

• a(i) es la distancia media del punto 𝑖a todos los demás puntos dentro de su 

mismo clúster (mide la cohesión interna). 

• 𝑏(𝑖) es la mínima distancia media del punto 𝑖a todos los puntos del clúster 

más cercano (mide la separación). 

El índice Calinski-Harabasz, conocido también como criterio de razón de varianza, 

compara la dispersión dentro de los clústeres con la dispersión entre ellos: un valor 

más alto indica un clustering mejor, con clústeres compactos y bien separados. Se 

emplea para comparar particiones y encontrar el número ideal de clústeres. [29] 

La fórmula que describe la métrica: 

𝐶𝐻 =  
𝐵𝐶𝑆𝑆/(𝑘 − 1)

𝑊𝐶𝑆𝑆/(𝑛 − 𝑘)
 

Donde:  

• BCSS es la suma de cuadrados entre clústeres (separación) 

• WCSS es la suma de cuadrados dentro de clústeres (compacidad) 

• 𝑘 es el número de clústeres. 

• 𝑛 es el número total de puntos. 

El índice Davies-Bouldin mide la similitud entre clústeres a partir de la distancia entre 

sus centros y el tamaño de los clústeres. Valores bajos señalan un clustering de 

mayor calidad, con grupos distintos y sin solapamientos. Ayuda a validar la distinción 

de los grupos y a optimizar parámetros. [30] 

La fórmula que describe la métrica: 

𝐷𝐵 =  
1

𝑘
∑ 𝑚𝑎𝑥𝑗≠𝑖𝑅𝑖𝑗

𝑘

𝑖=1

 

Donde: 
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• 𝑅𝑖𝑗 representa la similitud entre los clústeres i y j, definido como la relación 

entre la dispersión promedio de ambos clústeres y la distancia entre sus 

centroides. 

Estos índices permiten justificar los resultados de manera objetiva, más allá de las 

visualizaciones. 

 

2.2.5. Criterio de valoración 

 

En el contexto de la evaluación de las configuraciones del clustering, se emplea el 

operador Weighted Ordered Weighted Averaging (WOWA) para combinar varios de los 

índices propuestos, asignando pesos a cada uno. Este operador permite obtener una 

medida única y ponderada que indica si una configuración es adecuada, 

considerando tanto la importancia relativa de cada índice como su orden en términos 

de rendimiento. 

El operador WOWA es una extensión del Ordered Weighted Averaging (OWA), 

propuesto por Yager en 1988, que integra dos conjuntos de pesos: 

• Pesos de criterio (𝑝𝑖): reflejan la relevancia intrínseca de cada índice (por 

ejemplo, mayor peso a la homogeneidad si es crítica). 

• Pesos de orden (𝑤𝑖): ponderan la posición de los valores una vez ordenados 

(por ejemplo, priorizar los mejores o peores desempeños). 

La combinación de ambos permite modelar comportamientos complejos, desde el 

optimismo (enfocarse en los mejores valores) hasta el pesimismo (atender los 

peores), o un equilibrio intermedio. En clustering, WOWA genera una puntuación 

global que no solo promedia, sino que ajusta estratégicamente según el objetivo: 

maximizar separación, compactación o detección de anomalías. 

Matemáticamente, para un conjunto de índices 𝑥1, 𝑥2, … , 𝑥𝑚ordenados de mayor a 

menor, WOWA se define como: 

𝑊𝑂𝑊𝐴(𝑥1, … , 𝑥𝑚) = ∑ 𝑣𝑖 ∙ 𝑥𝑖

𝑚

𝑖=1

 

donde los pesos agregados 𝑣𝑖 se construyen a partir de p y w mediante una función 

de cuantificación. Esto asegura que el resultado sea monótono y compensatorio 

controlado, evitando que un índice dominante oculte fallos en otros.  

En la práctica, WOWA sirve para agregar valores de múltiples indicadores de manera 

equilibrada, priorizando aquellos con mayor relevancia o ajustando según el 

contexto, lo que facilita la comparación de diferentes configuraciones y la selección 
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de la más óptima. En aplicaciones de clustering, ayuda a resolver problemas de 

multicriterio al proporcionar una puntuación global que refleja la calidad general sin 

ignorar las diferencias entre los índices. Por ejemplo, si se desea una configuración 

robusta ante ruido, se puede asignar mayor peso al índice que mida homogeneidad 

interna; si el objetivo es detección de anomalías, se prioriza la separación entre 

clústeres. 

La principal ventaja de WOWA frente a promedios ponderados simples radica en su 

capacidad para modelar criterios de decisión más complejos. Permite, por ejemplo, 

priorizar configuraciones donde al menos dos índices superen un umbral mínimo o 

garantizar que el índice de peor rendimiento no sea excesivamente bajo, integrando 

tanto la relevancia de cada métrica como su posición relativa tras ordenar los 

resultados. Esta propiedad resulta especialmente útil en entornos industriales, 

donde la calidad del clustering debe cumplir requisitos operativos específicos, como 

alta tolerancia a ruido, sensibilidad a defectos críticos o equilibrio entre 

compactación y separación de clústeres. [31] 

. 
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3. PROCESO PARA LA DETECCIÓN DE ANOMALÍAS 

 

El objetivo principal de esta propuesta es desarrollar una herramienta informática 

que ayude a detectar de manera eficiente anomalías en los procesos de atornillado 

de motores industriales, analizando de forma inteligente las curvas de par y ángulo 

que se generan en cada operación de ensamblaje. Este reto, considerado en el sector 

automotriz como un aspecto clave de calidad y seguridad, requiere un enfoque 

estructurado que combine técnicas avanzadas de análisis de datos con la 

experiencia práctica en procesos productivos. 

La propuesta se fundamenta en la aplicación de algoritmos de clustering 

especializados en series temporales, para identificar patrones anómalos en el 

comportamiento de las uniones atornilladas. El enfoque metodológico se estructura 

en cuatro tareas principales que cubren desde la adquisición de datos hasta la 

evaluación de resultados (Figura 9):  

 

Figura 9: Diagrama de flujo. Fuente: Propia (LucidChart) 
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1. Captura de datos (datos de series temporales). 

2. Preprocesamiento: Procesamiento de imágenes (acondicionamiento y 

normalización de series temporales). 

3. Ejecución de los algoritmos de clustering y criterios de validación 

4. Análisis y criterios de evaluación de los resultados. 

La razón de adoptar este enfoque está en superar las limitaciones de los métodos 

tradicionales de inspección manual y de control basados en umbrales fijos, que 

resultan poco efectivos ante la variabilidad natural de los procesos industriales 

modernos y frente al gran volumen de datos que genera la digitalización de las líneas 

de producción. 

 

3.1.  Adquisición de Datos de Series Temporales 

 

La primera fase se centra en la recopilación sistemática y estructurada de los datos 

de entrada, que constituyen la base fundamental para el análisis posterior. Los datos 

corresponden a series temporales que registran variables dinámicas clave durante 

el proceso industrial, como la evolución de magnitudes físicas en función del tiempo. 

Por ejemplo, en un proceso de ensamblaje, estas series pueden capturar el 

comportamiento de variables críticas, como se observa en la Figura 10 (curva que 

muestra una aceleración inicial seguida de una estabilización) y la Figura 11 (curva 

que refleja un incremento progresivo, estabilización y un valor máximo alcanzado). 

Estos datos son capturados mediante sensores especializados integrados en los 

sistemas de producción, asegurando alta precisión y resolución temporal.  

Los datos se organizan en conjuntos que representan casos normales y anómalos, 

permitiendo una representación completa de las condiciones del proceso. Esta etapa 

garantiza que los datos sean representativos, capturando tanto comportamientos 

típicos como posibles anomalías. 

 

Figura 10: Diagrama del proceso de atornillado. Ángulo-tiempo. Fuente: Propia (Python) 
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Figura 11: Diagrama del proceso de atornillado. Par-tiempo. Fuente: Propia (Python) 

 

3.2. Preprocesamiento 

 

En esta segunda etapa se realiza el preprocesamiento de los datos, que constituye 

una fase crítica en el análisis de procesos industriales, particularmente en 

operaciones de atornillado donde la calidad y precisión son fundamentales [32]. Esta 

etapa preliminar transforma los datos brutos capturados por sensores en 

información estructurada y depurada, eliminando ruido, inconsistencias y 

valores atípicos que podrían comprometer la validez de los análisis posteriores [25]. 

En el contexto específico de procesos de atornillado, donde se registran variables 

como par, ángulo y tiempo, el preprocesamiento adquiere especial relevancia para 

identificar con precisión las fases operativas relevantes y descartar información no 

significativa [10]. 

Los objetivos fundamentales del preprocesamiento incluyen: 

1. Mejorar la calidad y consistencia de los datos mediante la eliminación de 

información redundante o errónea. 

2. Reducir la dimensionalidad y complejidad de los conjuntos de datos para 

optimizar el rendimiento computacional [25]. 

3. Extraer características relevantes que faciliten la identificación de patrones y 

anomalías. 

4. Segmentar adecuadamente las series temporales para aislar fases 

operativas específicas [25]. 

Por estas razones se aplica al inicio un procesamiento de las series temporales para 

eliminar la parte del preajuste y quedarse únicamente con la parte de la gráfica que 
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corresponda con la información del proceso. Primero se parte de los datos en bruto 

y se eliminan los datos que no interesan para quedarse solo con el tiempo, par y 

ángulo, que son las características que queremos analizar.  

La propuesta incluye mecanismos robustos de trazabilidad. Cada registro viene con 

el número de identificación del elemento para poder hacer un seguimiento de este 

mismo e identificarlo en caso de anomalías. Cada curva de par-ángulo tiene su propio 

"nombre único" (un identificador), que nos permite seguirla hasta el elemento exacto, 

dejando un rastro claro que permite analizar mejor las causas.  

El resultado de esta fase es un conjunto homogéneo de series temporales 

normalizadas, listas para el análisis mediante técnicas de clustering, manteniendo 

la información esencial del proceso. 

 

3.2.1. Limpieza de datos 

 

Cada etapa del procesamiento integra un control automático de calidad orientado a 

la limpieza de datos. De esta forma, se eliminan las tomas vacías o aquellas con 

menos de 10 puntos, previniendo la inclusión de registros falsos o erróneos que no 

contribuyan al experimento. 

Esta medida asegura la solidez del conjunto de datos, minimizando errores y 

garantizando su idoneidad para el análisis de clustering. 

 

3.2.2. Acondicionamiento de Series Temporales 

 

Esta etapa constituye el núcleo esencial del tratamiento de los datos, un paso 

fundamental que determina la calidad de los resultados en las fases posteriores de 

análisis. En esta etapa se procesan las series temporales de variables dinámicas, 

aplicando técnicas específicas para preservar las características relevantes del 

proceso mientras se eliminan variaciones no deseadas. 

 

3.2.2.1. Segmentación y Extracción de Regiones de Interés 

 

Antes de proceder con cualquier transformación, se realiza un análisis exploratorio 

inicial del comportamiento temporal. Las curvas presentan duraciones variables, 

influenciadas por configuraciones de equipos y características mecánicas, por lo que 

se segmentan y estandarizan temporalmente, preservando la dinámica del proceso. 
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Una de las aportaciones clave es un algoritmo de segmentación que identifica 

automáticamente las regiones relevantes dentro de cada serie temporal: 

• Detección del punto de inflexión: Se utiliza el valor máximo de las variables 

clave y su punto medio como referencia temporal para la segmentación. 

• Ventana adaptativa: Se define un intervalo centrado en el punto medio de los 

valores máximos para optimizar el enfoque en la región de interés. 

• Eliminación del pre-ajuste: La creación de la ventana con la región de interés 

descarta la fase inicial de la curva, donde los valores son bajos e inestables, 

enfocando el análisis en la región más representativa. 

 

3.2.2.2. Normalización y Estandarización 

 

El proceso de normalización se centra en la variación en amplitud: Los valores varían 

según condiciones operativas, por lo que se aplica un escalado para normalizarlos a 

un rango estándar, lo que permite una comparación objetiva. Adicionalmente, este 

ajuste contribuye a la protección de datos sensibles que no pueden divulgarse. 

 El propósito es equilibrar las series temporales para evitar que variaciones en escala 

afecten desproporcionadamente el agrupamiento, mejorando así la precisión y la 

equidad de los resultados. 

 

3.3. Ejecución de algoritmos 

 

La tercera etapa representa el núcleo analítico de la propuesta y constituye la 

aplicación de técnicas avanzadas de clustering específicamente adaptadas para 

series temporales. Esta fase es crucial para descubrir patrones latentes en los datos 

y establecer una clasificación automática que permita distinguir entre 

comportamientos normales y anómalos en procesos industriales con variables 

dinámicas. 

 

3.3.1. Selección y Configuración de Algoritmos 

 

El enfoque implementa técnicas de clustering especializadas en series temporales, cada una 

adaptada para capturar aspectos únicos del análisis: 

• Técnicas basadas en alineamiento dinámico: Utilizan medidas de distancia 

que ajustan de manera flexible el tiempo entre secuencias que difieren en 

ritmo o fase, conservando la estructura principal de las curvas. Esto es 
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particularmente útil para reconocer patrones que siguen órdenes similares, 

pero con variaciones en la duración debido a diferencias en los 

procedimientos o en los elementos involucrados. TimeSeriesKMeans con 

DTW es un ejemplo de esta técnica. (Sección 2.2.2.1) 

• Técnicas con suavizado: Son mejoras que incorporan factores de ajuste para 

hacer la comparación más resistente al ruido, lo cual es clave en contextos 

industriales donde las variaciones pueden provenir de condiciones externas 

o de medición, en vez de indicar problemas reales. TimeSeriesKMeans con 

SoftDTW es un ejemplo de esta técnica. (Sección 2.2.2.2) 

• Técnicas basadas en correlación: Creadas especialmente para datos 

secuenciales en el tiempo, aplican indicadores de semejanza que evalúan la 

configuración general de las curvas sin necesidad de sincronizarlas paso a 

paso. Resultan ideales para captar irregularidades que aparecen como 

alteraciones en la silueta de las series, sin importar su escala o intensidad. El 

algoritmo KShape es un ejemplo de esta técnica. (Sección 2.2.3) 

 

3.3.2. Optimización de Parámetros 

 

El enfoque explora de forma sistemática diferentes configuraciones para optimizar 

las técnicas de clustering: 

• Número de grupos: Se prueba un rango equilibrado de grupos, entre una 

granularidad mínima que distinga los principales tipos de comportamiento y 

evitando una fragmentación excesiva que complique la interpretación. 

• Iteraciones máximas: Se evalúan varios niveles de iteraciones, buscando un 

compromiso entre la convergencia del algoritmo y el rendimiento 

computacional. 

• Método de inicialización: Se utilizan métodos para seleccionar los centroides 

iniciales, distribuyéndolos inteligentemente en el espacio de datos para 

mejorar la convergencia y reducir la probabilidad de óptimos locales. 

 

3.4. Análisis de resultados 

 

Esta cuarta y última etapa establece un marco de evaluación que asegura la 

aplicabilidad práctica y la fiabilidad de los resultados obtenidos. Va más allá de la 

verificación técnica para enfocarse en aspectos clave como la usabilidad y el impacto 

real en el entorno industrial. 
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El análisis de resultados integra las salidas de las fases previas en un proceso de 

interpretación global, que no solo verifica la calidad técnica del clustering, sino que 

también examina su capacidad para generar conocimientos accionables en 

contextos reales de operación. En el ámbito de procesos industriales con series 

temporales (donde los datos capturan dinámicas complejas, tales como variaciones 

en par o ángulo), este marco enfatiza la habilidad de los clústeres para identificar 

patrones anómalos de forma interpretable, reduciendo la complejidad y 

maximizando su relevancia práctica. 

Se fundamenta en un enfoque multicriterio que combina métricas cuantitativas, 

como varios índices de calidad del clustering, que se agregan mediante un operador, 

para obtener una puntuación única y objetiva, con evaluaciones cualitativas 

centradas en elementos visuales como gráficas de clústeres, representaciones de 

series temporales agrupadas. Estos elementos permiten una inspección intuitiva de 

la coherencia y el significado de los grupos formados. De esta manera, se selecciona 

la configuración óptima de forma equilibrada y fundamentada. 

 

3.4.1. Evaluación Cuantitativa 

 

El análisis cuantitativo ofrece una evaluación objetiva del rendimiento del clustering, 

a través de indicadores que miden la calidad esencial de los grupos obtenidos. Estas 

métricas analizan elementos como la cohesión interna de los clústeres, la separación 

entre ellos y la dispersión general de los datos, con el fin de asegurar que los grupos 

sean compactos y claramente diferenciados. En el contexto de series temporales 

industriales, esta revisión es fundamental para confirmar que los patrones 

detectados no surjan simplemente del ruido, sino que representen comportamientos 

genuinos, como las variaciones en la evolución de variables relevantes a lo largo del 

tiempo. 

La evaluación de los resultados de clustering se basa en un sistema de validación 

multi-criterio, enfoque que combina métricas internas y externas: 

• Métricas internas:  

o Cohesión y separación: Miden la compactación dentro de cada grupo 

y su distancia respecto a otros, con valores que indican mejor 

agrupamiento cuando son más altos o bajos según la métrica.  

Ejemplos de este tipo de métrica son Silhouette y Davies-Bouldin 

(Sección 2.2.4). 

o Dispersión: Analizan la relación entre la varianza entre grupos y dentro 

de ellos, favoreciendo configuraciones con grupos bien definidos.  
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Un ejemplo de este tipo de métrica es Calinski-Harabasz (Sección 

2.2.4). 

o Número de clústeres: Se prioriza un valor más pequeño para promover 

una segmentación más interpretable y generalizable, evitando la 

sobrefragmentación de los datos.  

Este criterio se mide mediante el K_Index, un indicador normalizado 

que penaliza el aumento excesivo de clústeres y que se detalla en la 

sección subsiguiente. 

• Métricas externas:  

o Homogeneidad: Es un índice que mide qué tan limpios están los 

grupos en base a las etiquetas ya conocidas, premiando 

configuraciones donde cada clúster tiene mayoritariamente un tipo de 

dato similar. Se explica con más detalle más adelante. 

 

3.4.1.1. Índices propuestos de Evaluación 

 

En el marco de esta propuesta, se incorporan dos métricas propuestas para 

enriquecer la validación de los clústeres en el análisis de series temporales. Estos 

índices complementan las métricas internas, priorizando aspectos prácticos como la 

pureza de los grupos y la simplicidad interpretativa, esenciales para entornos donde 

la distinción entre comportamientos normales y anómalos debe ser clara y 

accionable. A continuación, se describen su formulación y relevancia. 

 

3.4.1.1.1. Homogeneidad: Métrica de Pureza de Clústeres 

 

La Homogeneidad es un índice desarrollado ad hoc para medir la capacidad del 

clustering en separar muestras de clases conocidas (normales o anómalas), 

ponderando la contribución de cada clúster según su tamaño relativo al conjunto 

total. Su diseño resalta la utilidad práctica en escenarios industriales, donde 

clústeres "puros" (dominados por una clase) facilitan la identificación rápida de 

desviaciones, reduciendo falsos positivos y mejorando la toma de decisiones. 

La métrica se define como: 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑑𝑎𝑑 =  ∑(
𝑠𝑖

𝑁
∗  𝑚𝑎𝑥 (

𝑜𝑖

𝑠𝑖
,
𝑛𝑖

𝑠𝑖
)

𝑘

𝑖=1

 

donde: 
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• k : número total de clústeres, 

• 𝑠𝑖 tamaño del clúster i (número de muestras), 

• N: número total de muestras en el conjunto, 

• 𝑜𝑖: número de muestras normales (OK) en el clúster i, 

• 𝑛𝑖 : número de muestras anómalas (NOK) en el clúster i. 

Esta métrica genera un valor entre 0 y 1, donde 1 indica clústeres perfectamente 

puros (cada uno 100% de una clase) y 0 representa mezclas totales. El término 
𝑠𝑖

𝑁
 

actúa como peso, dando mayor relevancia a clústeres grandes, mientras que 

𝑚𝑎𝑥 (
𝑜𝑖

𝑠𝑖
,

𝑛𝑖

𝑠𝑖
) captura la dominancia de la clase mayoritaria en cada clúster. Su 

integración con los demás índices permite equilibrar la pureza con otras métricas, 

haciendo que la propuesta sea particularmente efectiva para procesos donde la 

segregación de anomalías es prioritaria, como en la monitorización de uniones 

mecánicas. 

 

3.4.1.1.2. K_Index: Métrica de Simplicidad de Configuración 

 

El K_Index es un índice complementario que penaliza configuraciones con un número 

excesivo de clústeres, promoviendo soluciones parsimoniosas y fáciles de interpretar 

en contextos operativos. En procesos industriales, donde la complejidad puede 

complicar la aplicación práctica, este índice favorece valores bajos de k (cerca del 

mínimo razonable, e.g., 5) para priorizar interpretabilidad sobre granularidad 

excesiva. 

La fórmula se define como: 

𝐾𝐼𝑛𝑑𝑒𝑥 =  {
1 −

𝑘 − 𝑘𝑚𝑖𝑛

𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛
 𝑠𝑖 𝑘 ≤ 𝑘𝑚𝑎𝑥

0 𝑠𝑖 𝑘 > 𝑘𝑚𝑎𝑥

 

donde: 

• k : número de clústeres en la configuración, 

• 𝑘𝑚𝑖𝑛: mínimo número de clústeres considerado (5, para capturar patrones 

básicos), 

• 𝑘𝑚𝑎𝑥: máximo número evaluado (24, para evitar fragmentación). 

Esta normalización lineal asigna 1 al mínimo (𝑘 =  𝑘𝑚𝑖𝑛), decrece gradualmente 

hasta 0 en 𝑘𝑚𝑎𝑥 y penaliza valores superiores con 0. Por ejemplo, con 𝑘𝑚𝑖𝑛 = 5  y 
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𝑘𝑚𝑎𝑥 = 24, para k = 5: K_Index = 1; para k = 10, K_Index = 0,74; y para k = 24, 

K_Index = 0. (Figura 12).  

 

Figura 12: Evolución de K_Index en función de k. Fuente: Propia (Python) 

 

3.4.1.2. Operador WOWA (Weighted Ordered Weighted Averaging) y Ranking 

 

Para unir todas las métricas en una sola decisión clara, el método usa un operador 

de agregación que prueba varias combinaciones de pesos, para ver cómo priorizar 

de distintas maneras. Estos pesos se adaptan según lo que se quiera resaltar en 

cada caso, con el fin de mejorar la detección de anomalías. Además, se hace un 

ranking de los resultados basados en esos puntajes, ordenando las configuraciones 

de mejor a peor, tanto para cada técnica por separado como en el total. Esto 

simplifica la elección de las opciones más útiles para el análisis. (Sección 2.2.5) 

 

3.4.1.3. Tablas de composición de clústeres 

 

Para complementar las métricas numéricas, se incluyen tablas que permiten una 

revisión detallada de la composición de los clústeres. Estas herramientas apoyan la 

evaluación objetiva al resumir distribuciones y patrones de forma clara y medible. 

Estas tablas detallan, para cada clúster, el tamaño total, el conteo y porcentaje de 

elementos correctos y defectuosos, junto con la distribución de conteos y porcentajes 

por atributos relevantes. Esto ofrece una vista tabular precisa para identificar 

clústeres puros (donde un alto porcentaje de un tipo domina) o mixtos (con 

distribuciones equilibradas entre tipos). Se aplican formatos condicionales, como 

rojo para clústeres con separaciones mixtas o insuficientes (por ejemplo, porcentajes 

equilibrados) y verde para grupos puros (porcentajes dominantes de un tipo), lo que 
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resalta cuantitativamente la homogeneidad y permite una evaluación objetiva de la 

pureza y efectividad de cada clúster. 

 

3.4.2. Análisis Cualitativo y Visualización 

 

Complementando la cuantificación, el análisis cualitativo incorpora herramientas 

visuales para facilitar la interpretación humana de los clústeres. Estas 

representaciones permiten explorar la estructura subyacente de los datos, 

identificando solapamientos o características distintivas que no emergen de 

números aislados. En entornos industriales, donde la toma de decisiones depende 

de la comprensión intuitiva de anomalías, la visualización actúa como puente entre 

los resultados algorítmicos y la acción operativa. 

Para potenciar esta interpretación, la propuesta integra representaciones 

esquemáticas y gráficas adaptadas a la complejidad de las series temporales: 

• Imágenes de superposición de series en clústeres: Se generan gráficas que 

superponen las curvas de las series temporales asignadas a cada clúster, 

utilizando colores distintivos para diferenciar clases. Estas imágenes revelan 

patrones visuales, como alineamientos en fases elásticas o desviaciones en 

picos anómalos, permitiendo una inspección intuitiva de la homogeneidad y 

separabilidad, esencial para validar la relevancia práctica de los clústeres en 

procesos dinámicos. 

De esta forma, el análisis cualitativo enriquece la comprensión general, asegurando 

que los hallazgos sean no solo precisos, sino también accesibles para su aplicación 

en contextos reales. 
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4. EXPERIMENTACIÓN 

 

El Capítulo 4 representa la validación práctica de la propuesta metodológica 

delineada en el Capítulo 3, trasladando los conceptos abstractos a un contexto real 

mediante la aplicación de técnicas de clustering a datos industriales específicos.  

El capítulo se estructura en tres subsecciones principales. En primer lugar, el caso 

de uso describe el problema aplicado a un entorno industrial real, caracterizando el 

conjunto de datos y sus desafíos inherentes. A continuación, la metodología 

experimental expone los detalles operativos de la implementación, incluyendo el 

preprocesamiento adaptado, las configuraciones de algoritmos y el proceso de 

evaluación. Finalmente, los resultados obtenidos presentan los hallazgos 

cuantitativos y cualitativos, respaldados por tablas, gráficos y visualizaciones de 

clústeres.  

 

4.1. Caso de uso 

 

El caso de uso de este trabajo se centra en el análisis de anomalías en el proceso de 

atornillado de motores, un componente crítico en la industria automotriz donde la 

precisión del par y el ángulo influye directamente en la calidad y seguridad del 

ensamblaje. Los datos disponibles provienen de mediciones de sensores durante el 

atornillado, normalizados entre 0 y 1 para las variables Par y Ángulo, que reflejan la 

evolución temporal del proceso de manera estandarizada. Estos datos se dividen en 

dos categorías: aprietes en estado OK (funcionales) y NOK (con anomalías), con un 

total de 200 conjuntos de aprietes procesados, de los cuales 150 están en estado 

OK y 50 en estado NOK, seleccionados para garantizar una representatividad 

adecuada y un enfoque especial en la detección de anomalías. 

Para caracterizar mejor el conjunto de datos, se analizan estadísticas descriptivas 

básicas de las series temporales, como el número de tomas por categoría, la 

duración en segundos (mínima, máxima y media) y el número de puntos por toma 

(mínimo, máximo y medio). Estas métricas ayudan a entender la variabilidad 

inherente en las mediciones, que oscila entre duraciones de 2,6 y 3,4 segundos y un 

número de puntos que varía según la resolución de los sensores. La Tabla 2 resume 

estos valores, destacando diferencias sutiles entre categorías que justifican el uso 

de técnicas robustas de clustering. 
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Categorí

a 

Númer

o de 

tornillos 

Duració

n 

mínima 

(s) 

Duració

n 

máxima 

(s) 

Duració

n media 

(s) 

N° 

puntos 

mínim

o 

N° 

puntos 

máxim

o 

N° 

punto

s 

medio 

OK 800 2.60 3.39 2.96 348 453 395.9 

NOK 400 2.61 3.10 2.96 349 415 395.7 

Total 1200 2.60 3.39 2.96 348 453 395.8 

 

Tabla 2: Estadísticas descriptivas de las series temporales. Fuente: Propia (Python) 

 

La caracterización de las series temporales revela un conjunto rico pero desafiante, 

con duraciones originales entre 2,6 y 3,4 segundos uniformadas a una escala 

estándar para facilitar el análisis. Cada operación de apriete, se agrupa en un 

conjunto de 8 aprietes síncronos (8 tomas o tornillos), lo que genera un volumen 

significativo de datos que presentan ruido, valores atípicos y desfases temporales, 

aspectos que se corrigen mediante ajustes previos. Estas curvas estandarizadas 

muestran picos distintivos que indican fases de preajuste y apriete real, ofreciendo 

pistas clave para identificar patrones anómalos. Estos picos se observan en las 

gráficas originales de la Figura 13. El objetivo principal es emplear técnicas de 

clustering sobre estas series procesadas para detectar anomalías como sub-aprietes 

o cruces de roscas, contribuyendo a mejorar la calidad del control de procesos en la 

producción automotriz mediante un análisis robusto y reproducible. 

 

4.2. Metodología experimental 

 

La metodología diseñada para identificar las mejores configuraciones de 

agrupamiento de series temporales derivadas de las mediciones de par y ángulo en 

motores se basa en un enfoque meticuloso y estructurado, pensado para extraer 

patrones significativos de forma sistemática. El desarrollo del programa para analizar 

las curvas par-ángulo y detectar anomalías en el atornillado, se identificó que los 

parámetros configurables eran fundamentales para obtener resultados fiables. Estos 

valores no solo determinan cómo se procesan los datos y se aplican los algoritmos, 

sino que también reflejan las decisiones que se toman para adaptar el análisis a las 

características de las series temporales.  

A continuación, se describen las etapas principales del análisis: configuración 

general, preprocesamiento y estandarización, configuración de algoritmos de 

clustering, y evaluación con la métrica WOWA, incluyendo los parámetros utilizados 
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en cada una, su propósito y los ajustes realizados mediante pruebas iterativas. Al 

final de la sección de algoritmos de clustering se incluye una tabla que los resume, 

proporcionando una referencia clara para la metodología propuesta.  

El proceso arranca con un paso inicial de preparación de los datos, donde se eliminan 

las secciones que no aportan valor al análisis y se ajustan las duraciones de las 

series para que todas tengan una escala uniforme, facilitando comparaciones 

precisas. Este ajuste inicial es clave para homogenizar las mediciones y reducir el 

impacto de variaciones no deseadas.  

A continuación, se aplican diferentes configuraciones de técnicas de agrupamiento, 

explorando un rango de grupos posibles y ajustando el número de iteraciones para 

refinar los resultados. Esta etapa busca capturar la diversidad de comportamientos 

en las series temporales, permitiendo distinguir entre patrones normales y anómalos. 

Para evaluar la calidad de cada configuración, se emplea un conjunto de indicadores 

que miden cómo de bien se agrupan los datos dentro de cada clúster, cuánto se 

separan entre sí los distintos grupos y hasta qué punto se respetan las categorías 

predefinidas de motores funcionales y con fallos. Estos indicadores se combinan en 

un criterio ponderado que da más peso a la capacidad de detectar anomalías, 

ordenando las configuraciones según su rendimiento.  

Para complementar el análisis, se crean representaciones visuales que muestran 

cómo se distribuyen las series temporales dentro de los grupos identificados, 

ayudando a interpretar los resultados de manera intuitiva. Además, se elaboran 

reportes detallados que recogen las métricas obtenidas, la distribución de los 

estados de los motores y las configuraciones más efectivas. Este enfoque asegura 

que el proceso sea reproducible y que los resultados puedan integrarse fácilmente 

en estrategias de control de calidad, ofreciendo una base sólida para tomar 

decisiones en la industria automotriz. 

 

4.2.1. Preprocesamiento 

 

En la fase de preprocesamiento, se probaron varias opciones de intervalos para 

igualar la duración de las curvas a una longitud fija. Estas pruebas ayudaron a 

comparar distintos grados de detalle, mostrando que pocos intervalos generaban un 

suavizado excesivo que borraba aspectos clave, mientras que más intervalos 

mantenían mejor los picos y cambios notables. Así, se adaptó el nivel de precisión 

temporal según las características propias de cada curva, mejorando la forma en que 

se representan los datos para los pasos siguientes del análisis. El algoritmo del 

preprocesamiento se detalla en la Tabla 3: 
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PARA cada muestra 

    SELECCIONAR columnas {Tiempo, Par, Ángulo} 

    SI num_puntos de la toma >= 10 ENTONCES 

        Eliminar intervalo irrelevante (pre-ajuste) usando punto medio de par/ángulo 

        Extraer segmento de interés y normalizar curva a [0,1] 

        Generar gráficas y guardar resultados con identificador único 

    FIN SI 

FIN_PARA 

 

Tabla 3: Pseudocódigo asociado al preprocesamiento de datos. Fuente: Propia 

Para realizar el preprocesamiento, se calcula el punto donde la gráfica toma la mitad 

del valor máximo y a partir de ese tiempo se aplica un intervalo a cada lado 

dependiendo de si es el par o el ángulo (Figura 13). Para el par, se toma un intervalo 

de 0.85 segundos antes y 1.6 segundos después de la mitad del valor máximo, 

mientras que para el ángulo se usa un intervalo de 1.1 segundos antes y 1.1 

segundos después. En la Figura 13, las dos gráficas de la izquierda muestran el par 

y ángulo originales, mientras que las dos de la derecha presentan el par y ángulo ya 

preprocesados. 

 

Figura 13: Ejemplo de procesamiento de datos. Fuente: Propia (Python) 
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Así nos aseguramos de que los datos miden lo mismo en tiempo para poder 

analizarlos conjuntamente y de que nos quedamos con la información que nos 

interesa, ya que el preajuste no es válido para nuestro análisis y puede generar 

anomalías o errores de interpretación a la hora de realizar el clustering. 

Además, se genera un archivo .json con los datos preprocesados de cada toma, 

incluyendo las columnas Tiempo (Seg), Par (N.m) y Ángulo (Deg), lo que permite 

almacenar y reutilizar la información estructurada para análisis posteriores (Tabla 3). 

También se definen n_ok = 150 y n_nok = 50, que limitan la cantidad de motores en 

estado "OK" y "NOK" a procesar. Estas cifras se eligieron basándose en la 

disponibilidad de datos y en un equilibrio entre representatividad: 150 conjuntos de 

aprietes OK y 50 conjuntos de aprietes NOK para detectar anomalías. Esto asegura 

que el análisis refleje tanto lo típico como lo atípico sin sobrecargar el procesamiento. 

Además, en ocasiones variaba esta cantidad de datos de entrada para poder realizar 

comprobaciones más rápidas cuando realizaba cambios significativos en el 

programa. 

 

4.2.2. Algoritmos de clustering 

 

Para agrupar las series temporales en función de su forma dinámica se emplean 

algoritmos de clustering especializados. En este trabajo se utilizan principalmente 

variantes de k-means adaptadas a series temporales: la clase TimeSeriesKMeans 

con métrica DTW o Soft-DTW, y el algoritmo K-Shape. Las características clave de 

estos métodos son: 

• TimeSeriesKMeans con DTW (Dynamic Time Warping): La métrica DTW mide 

la similitud entre dos series temporales alineando sus puntos de forma no 

lineal. Esto permite comparar series que pueden tener desfases o variaciones 

en el tiempo. Al usar metric="dtw" en TimeSeriesKMeans, el algoritmo calcula 

centroides basados en el promedio de DTW. En la práctica, esta variante 

agrupa series con formas similares independientemente de pequeños 

desplazamientos temporales. 

• TimeSeriesKMeans con Soft-DTW: El método Soft-DTW es una versión 

suavizada y diferenciable de DTW. Al emplear metric="softdtw", 

TimeSeriesKMeans calcula centroides mediante Soft-DTW, lo que facilita el 

cómputo de promedios en el espacio DTW. Soft-DTW ha demostrado mejorar 

la calidad de clustering y de cálculo de centroides frente a DTW. En la práctica 

se parametriza con un valor de suavizado γ para controlar la regularización. 

• K-Shape: K-Shape es un algoritmo de clustering diseñado para series 

temporales que utiliza una medida basada en correlación normalizada para 

comparar formas. A diferencia de DTW, K-Shape no realiza un alineamiento 
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dinámico, sino que compara las series directamente según su “forma” 

general. K-Shape es iterativo y construye centroides de forma eficiente a partir 

de las propiedades de esta distancia de correlación. Se ha observado que K-

Shape produce clústeres bien separados y homogéneos para diversos 

conjuntos de series. 

En la tabla 4 se expone el pseudocódigo de la aplicación de TimeSeriesKMeans 

y KShape: 

PARA algoritmo EN {TimeSeriesKMeans, KShape}: 

    PARA num_clúster EN {5, 25}: 

        PARA iteraciones EN {50, 100, 150}: 

            PARA método EN {DTW, SoftDTW}: 

                Ejecutar clustering para: algoritmo, num_clúster, iteraciones, método 

                Calcular índices de evaluación:  Silhouette, DB, CH, Homogeneidad, K-Index 

                Analizar composición de los clústeres 

                Generar representaciones visuales de los clústeres 

                Generar archivos de reporte con resultados por configuración 

            FIN_PARA 

        FIN_PARA 

    FIN_PARA 

FIN_PARA 

 

Tabla 4: Pseudocódigo de evaluación de curvas par-ángulo. Fuente: Propia 

 

En el programa, cada algoritmo se ejecuta para varias configuraciones de k (número 

de clústeres), en este caso varían de k = 5 hasta k = 25. Además, existen otros 

parámetros que son actualizables, como las iteraciones máximas (max_iters), que 

varían en 50, 100 y 150 y como el intervalo para estandarización (n_init) que varía 

en 5 y 10. Estas ejecuciones permiten estudiar cómo varían los resultados con 

distintos niveles de granularidad. Se inicializa el algoritmo con el método k-means++ 

(que mejora la selección de centroides iniciales). Esta serie de parámetros van 

variando, creando las diferentes configuraciones mediante bucles for. En total para 

este procedimiento con esos parámetros se generan 180 configuraciones, de las 

cuales las 60 primeras pertenecen a TimeSeriesKMeans con DTW, las siguientes 60 

pertenecen a TimeSeriesKMeans con Softdtw y las últimas 60 pertenecen al 

algoritmo KShape. 

El programa cada vez que realiza una configuración genera un archivo de valores o 

tabla con las características de dicha configuración: Número de configuración, 
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número de clústeres, iteraciones máximas y el clúster que es junto con sus datos de 

número de tornillos, número de tornillos OK, porcentaje de tornillos OK, número de 

tornillos NOK, porcentaje de tornillos NOK y el número de tornillos de cada 

atornilladora con sus respectivos porcentajes sobre el total. Además en las últimas 

columnas se genera el archivo de la imagen del clustering realizado de esa 

configuración y los coeficientes de los índices de medición de las métricas: 

Silhouette, Calinski-Harabasz, Davies-Bouldin y los índices propios generados 

(Homogeneidad y K_Index).  

Una vez se han generado todas las configuraciones se almacenan los resultados con 

todas las configuraciones de cada algoritmo (KMeans y KShape). De esta manera 

podemos tener un archivo completo con todos los datos de las configuraciones y 

archivos individuales de cada configuración que puedan ser más manejables debido 

a la gran cantidad de datos que se manejan en el programa. 

 

4.2.3. Mejores configuraciones 

 

Para identificar la configuración óptima de clustering, se analizaron los resultados de 

las 180 configuraciones generadas mediante el índice WOWA, que integra las 

métricas normalizadas de Silhouette, Davies-Bouldin (inverso), Calinski-Harabasz, 

Homogeneidad y K_Index. La normalización escaló todas las métricas entre 0 y 1 

usando la fórmula (valor - mínimo) / (máximo - mínimo), con Davies-Bouldin ajustado 

como 1 - valor_normalizado (ya que valores más bajos son mejores). Esto permite 

compararlas equitativamente. 

Tras evaluar las combinaciones de pesos WOWA (base: [0.1, 0.1, 0.1, 0.5, 0.2], 

priorizando Homogeneidad en 0.5 y K_Index en 0.2; y variaciones como [0.0, 0.0, 

0.0, 0.5, 0.5], [0.0, 0.0, 0.0, 1.0, 0.0], [0.25, 0.25, 0.25, 0.0, 0.25], [0.2, 0.2, 0.2, 

0.2, 0.2]), el proceso se realizó en dos niveles: primero, por cada combinación de 

pesos, agrupando datos por Config_ID, k y Max_Iter, calculando WOWA promedio y 

seleccionando las 20 mejores únicas por algoritmo (TimeSeriesKMeans y KShape), 

eliminando duplicados. Segundo, consolidando todas las combinaciones en un 

ranking global de 20 mejores, combinando resultados sin importar si es 

TimeSeriesKMeans o KShape, y expresando los pesos utilizados para cada 

conifguración. 

En la Tabla 5 se detalla el pseudocódigo del proceso de selección y generación de 

resultados: 

PARA cada métrica EN {Silhouette, DB, CH, Homogeneidad, K_Index}:  

     CALCULAR min/max globales  

     NORMALIZAR a [0,1] 
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          para Davies-Bouldin: 1 - normalizado  

FIN_PARA 

PARA cada combinación de pesos:  

    PARA cada configuración:  

        ORDENAR métricas normalizadas descendente  

        CALCULAR WOWA 

    FIN_PARA  

    PARA algoritmo EN {TimeSeriesKMeans, KShape}:  

        AGRUPAR por Config_ID, k, Max_Iter  

        SELECCIONAR 20 mejores  

    FIN_PARA  

    ALMACENAR resultados  

FIN_PARA 

 

Tabla 5: Pseudocódigo para la generación de resultados. Fuente: Propia 

 

4.3. Resultados obtenidos 

 

La evaluación de los resultados se centra en analizar la configuración de clustering 

obtenidas para detectar anomalías en las series temporales de par y ángulo, 

utilizando el operador de agregación WOWA como criterio principal de selección. Este 

índice agrega las métricas normalizadas de Silhouette (cohesión y separación), 

Davies-Bouldin (inverso, para compactidad), Calinski-Harabasz (dispersión), 

Homogeneidad (pureza de clústeres en términos de OK/NOK) y K_Index 

(penalización por número de clústeres). La normalización escaló todas las métricas 

entre 0 y 1 mediante la fórmula (valor - mínimo) / (máximo - mínimo), ajustando 

Davies-Bouldin como 1 - valor_normalizado para que valores más bajos sean 

favorables. 

Se analizaron las 180 configuraciones generadas (60 por variante: 

TimeSeriesKMeans con DTW, con SoftDTW, y KShape). El proceso detalla las 20 

mejores configuraciones obtenidas para distintas combinaciones de pesos WOWA. 

La notación utilizada para indicar los pesos asignados a cada índice individualmente 

es: [Silhouette, Davies-Bouldin, Calinski-Harabasz, Homogeneidad, K_Index]: 
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4.3.1. [0.0, 0.0, 0.0, 0.5, 0.5] 

 

Esta primera variación de pesos se centra exclusivamente en las métricas 

propuestas (Homogeneidad y K_Index). Los pesos cero de las primeras métricas 

internas significan que se ignoran por completo, priorizando los otros dos índices con 

igual importancia. Esto es útil para centrarnos en la pureza de los clústeres y la 

adecuación del número de clústeres. (Tabla 6) 

 

Rank Algorithm Conf_ID k Max_It Silhouette Davi_Bou Cal_Har Homog K_Ind WOWA 

1 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 0,783 0,947 0,916 

2 TSKM (SoftDTW) 69 7 150 0,348 1,309 1407,04 0,779 0,895 0,87 

3 TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 0,779 0,895 0,87 

4 TSKM (SoftDTW) 71 8 100 0,357 1,03 1512,902 0,781 0,842 0,851 

5 TSKM (SoftDTW) 67 7 50 0,407 0,748 1572,921 0,774 0,895 0,846 

6 TSKM (SoftDTW) 72 8 150 0,421 0,813 1713,707 0,779 0,842 0,842 

7 TSKM (SoftDTW) 66 6 150 0,431 0,758 1680,987 0,766 0,947 0,837 

8 TSKM (DTW) 2 5 100 0,059 1,658 457,87 0,76 1 0,836 

9 TSKM (SoftDTW) 61 5 50 0,433 0,752 1625,621 0,759 1 0,832 

10 TSKM (SoftDTW) 62 5 100 0,433 0,752 1625,621 0,759 1 0,832 

11 TSKM (SoftDTW) 63 5 150 0,433 0,752 1625,621 0,759 1 0,832 

12 TSKM (SoftDTW) 64 6 50 0,429 0,759 1677,112 0,764 0,947 0,827 

13 TSKM (DTW) 15 9 150 -0,032 3,571 338,353 0,779 0,789 0,814 

14 TSKM (DTW) 17 10 100 -0,024 6,298 326,73 0,783 0,737 0,805 

15 TSKM (DTW) 7 7 50 0 2,524 373,463 0,764 0,895 0,8 

16 TSKM (SoftDTW) 70 8 50 0,307 1,053 1230,446 0,769 0,842 0,795 

17 TSKM (SoftDTW) 73 9 50 0,311 1,277 1326,824 0,774 0,789 0,79 

18 TSKM (DTW) 14 9 100 -0,026 6,188 358,212 0,774 0,789 0,79 

19 TSKM (SoftDTW) 77 10 100 0,276 1,206 1316,595 0,779 0,737 0,786 

20 TSKM (DTW) 16 10 50 -0,03 5,653 327,789 0,779 0,737 0,786 

 

Tabla 6:  Mejores configuraciones [0.0,0.0,0.0,0.5,0.5]. Fuente: Propia 

 

Ahora se profundiza en las dos mejores configuraciones de esta variación de pesos: 

1. Configuración 65: k = 6. Max_It = 100 (WOWA = 0.916): 

Con k=6, divide los datos en grupos medianos, logrando una homogeneidad 

sólida con dos clústeres casi perfectos en división, dos clústeres de mayor 

tamaño con una composición óptima en porcentaje entre aprietes buenos y 

malos, y dos clústeres de tamaño mediano cuya composición no es tan 

adecuada, cercana al 60/40. (Tabla 7) 
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Clúster Clúster_Size OK_Count OK_Percent NOK_Count NOK_Percent 

0 252 156 61.9 96 38.1 

1 206 74 35.9 132 64.1 

2 275 240 87.3 35 12.7 

3 263 214 81.4 49 18.6 

4 109 108 99.1 1 0.9 

5 92 5 5.4 87 94.6 
 

Tabla 7: Configuración 65. Fuente: Propia 

 

2. Configuración 69: k=7. Max_It = 150 (WOWA = 0.870):  

En este caso el número de clústeres es 7, lo que refina la división, pero baja 

ligeramente el K_Index. La división de homogeneidad se mantiene alta, pero el 

clúster extra introduce más variabilidad. Esta división contiene dos clústeres que 

rozan la perfección en la división, de casi un 100/0, tres clústeres bastante 

óptimos que se acercan a un valor del 90/10 y un clúster con una división 

inadecuada cercana al 60/40. (Tabla 8) 

Clúster Clúster_Size OK_Count OK_Percent NOK_Count NOK_Percent 

0 302 212 70.2 90 29.8 

1 115 7 6.1 108 93.9 

2 152 132 86.8 20 13.2 

3 102 101 99.0 1 1.0 

4 236 101 42.8 135 57.2 

5 142 126 88.7 16 11.3 

6 148 118 79.7 30 20.3 
 

Tabla 8: Configuración 69. Fuente: Propia 

 

4.3.2. [0.0, 0.0, 0.0, 1.0, 0.0] 

 

Esta variación de pesos es aún más focalizada que la anterior, ignora completamente 

todas las métricas internas y se centra únicamente en la métrica externa propuesta, 

la Homogeneidad. (Tabla 9) 

 

 

 



59 

 

Rank Algorithm Conf_ID k Max_It Silhouette Davi_Bou Cal_Har Homog K_Ind WOWA 

1 TSKM (SoftDTW) 91 15 50 0,206 1,523 735,43 0,795 0,474 1 

2 TSKM (DTW) 55 23 50 -0,067 5,287 225,637 0,789 0,053 0,944 

3 TSKM (SoftDTW) 105 19 150 0,053 1,738 532,275 0,789 0,263 0,944 

4 TSKM (SoftDTW) 102 18 150 -0,059 1,533 494,631 0,786 0,316 0,916 

5 TSKM (SoftDTW) 118 24 50 -0,003 1,608 482,35 0,786 0 0,916 

6 TSKM (SoftDTW) 37 17 50 -0,051 6,395 259,415 0,786 0,368 0,916 

7 TSKM (SoftDTW) 92 15 100 0,164 1,819 880,566 0,785 0,474 0,907 

8 TSKM (DTW) 60 24 150 -0,082 6,211 206,935 0,784 0 0,897 

9 TSKM (SoftDTW) 97 17 50 0,004 1,402 555,178 0,784 0,368 0,897 

10 TSKM (SoftDTW) 86 13 100 0,201 1,55 1152,61 0,784 0,579 0,897 

11 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 0,783 0,947 0,888 

12 TSKM (DTW) 17 10 100 -0,024 6,298 326,73 0,783 0,737 0,888 

13 TSKM (DTW) 45 19 150 -0,079 4,384 242,275 0,783 0,263 0,888 

14 TSKM (SoftDTW) 117 23 150 0,001 1,707 569,118 0,782 0,053 0,879 

15 TSKM (SoftDTW) 114 22 150 0,025 1,844 471,444 0,782 0,105 0,879 

16 TSKM (SoftDTW) 120 24 150 0,098 1,278 648,946 0,782 0 0,879 

17 TSKM (DTW) 19 11 50 -0,074 4,918 314,143 0,782 0,684 0,879 

18 TSKM (DTW) 22 12 50 -0,054 8,445 296,421 0,782 0,632 0,879 

19 TSKM (SoftDTW) 90 14 150 0,139 1,267 781,292 0,782 0,526 0,879 

20 TSKM (DTW) 21 11 150 -0,039 7,754 304,379 0,781 0,684 0,869 

 

Tabla 9: Mejores configuraciones [0.0,0.0,0.0,1.0,0.0]. Fuente: Propia 

Ahora se profundiza en las dos mejores configuraciones: 

1. Configuración 91: k=15, Max_It=150 (WOWA = 0.944): 

Contiene 3 clústeres vacíos (11, 12 y 13), a que los centros iniciales caen en 

baja densidad, dejando regiones sin asignación. Esto perjudica ya que 

aumenta artificialmente k, el cual debería ser 12. En este caso al solo tener 

en cuenta la Homogeneidad, la mayoría de los clústeres son óptimos (con 6 

clústeres realmente buenos), salvo dos clústeres malos que no separan bien 

las tomas buenas de las malas. (Tabla 10) 

Clúster Clúster_Size OK_Count OK_Percent NOK_Count NOK_Percent 

0 230 77 33.5 153 66.5 

1 362 302 83.4 60 16.6 

2 89 5 5.6 84 94.4 

3 48 24 50.0 24 50.0 

4 31 29 93.5 2 6.5 

5 12 10 83.3 2 16.7 

6 27 24 88.9 3 11.1 

7 248 183 73.8 65 26.2 

8 12 12 100.0 0 0.0 

9 71 64 90.1 7 9.9 

10 1 1 100.0 0 0.0 

14 66 66 100.0 0 0.0 
 

Tabla 10: Configuración 71. Fuente: Propia 
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2. Configuración 55: k=23, Max_It=100 (WOWA=0.938): 

No presenta clústeres vacíos, gracias a una inicialización efectiva que distribuye 

centros en zonas de densidad media, evitando regiones desérticas. Esto beneficia la 

Homogeneidad al maximizar el uso de todos los k, aunque k alto fragmenta datos en 

subgrupos finos, potencialmente diluyendo la pureza global. Al enfocarnos solo en 

Homogeneidad, la mayoría de los clústeres son óptimos con alto % de división 

(cercano al 80/20), salvo seis clústeres problemáticos que no separan bien las 

tomas y bajan el promedio general. (Tabla 11) 

Clúster Clúster_Size OK_Count OK_Percent NOK_Count NOK_Percent 

0 25 24 96.0 1 4.0 

1 44 16 36.4 28 63.6 

2 63 37 58.7 26 41.3 

3 72 65 90.3 7 9.7 

4 32 32 100.0 0 0.0 

5 73 28 38.4 45 61.6 

6 66 57 86.4 9 13.6 

7 71 30 42.3 41 57.7 

8 48 41 85.4 7 14.6 

9 31 1 3.2 30 96.8 

10 76 56 73.7 20 26.3 

11 53 47 88.7 6 11.3 

12 49 37 75.5 12 24.5 

13 48 43 89.6 5 10.4 

14 55 53 96.4 2 3.6 

15 42 31 73.8 11 26.2 

16 52 3 5.8 49 94.2 

17 53 10 18.9 43 81.1 

18 27 24 88.9 3 11.1 

19 25 21 84.0 4 16.0 

20 80 67 83.8 13 16.2 

21 62 42 67.7 20 32.3 

22 50 32 64.0 18 36.0 
 

Tabla 11: Configuración 55. Fuente: Propia 

 

4.3.3. [0.1, 0.1, 0.1, 0.5, 0.2] 

 

Esta variación de pesos equilibra las métricas, dando un peso débil a Silhouette, 

Davies-Bouldin y Calinski-Harabasz, un peso moderado a K_Index y un mayor peso a 

la Homogeneidad. Priorizando la pureza y estabilidad, pero teniendo en cuenta la 

separación global de los clústeres.  (Tabla 12) 
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Rank Algorithm Conf_ID k Max_It Silhouette Davi_Bou Cal_Har Homog K_Ind WOWA 

1 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 0,783 0,947 0,933 

2 TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 0,779 0,895 0,886 

3 TSKM (SoftDTW) 72 8 150 0,421 0,813 1713,707 0,779 0,842 0,881 

4 TSKM (SoftDTW) 71 8 100 0,357 1,03 1512,902 0,781 0,842 0,866 

5 TSKM (SoftDTW) 67 7 50 0,407 0,748 1572,921 0,774 0,895 0,859 

6 TSKM (SoftDTW) 69 7 150 0,348 1,309 1407,04 0,779 0,895 0,858 

7 TSKM (SoftDTW) 66 6 150 0,431 0,758 1680,987 0,766 0,947 0,843 

8 TSKM (SoftDTW) 64 6 50 0,429 0,759 1677,112 0,764 0,947 0,833 

9 TSKM (SoftDTW) 61 5 50 0,433 0,752 1625,621 0,759 1 0,818 

10 TSKM (SoftDTW) 62 5 100 0,433 0,752 1625,621 0,759 1 0,818 

11 TSKM (SoftDTW) 63 5 150 0,433 0,752 1625,621 0,759 1 0,818 

12 TSKM (SoftDTW) 76 10 50 0,312 1,283 1369,489 0,778 0,737 0,812 

13 TSKM (SoftDTW) 77 10 100 0,276 1,206 1316,595 0,779 0,737 0,809 

14 TSKM (SoftDTW) 73 9 50 0,311 1,277 1326,824 0,774 0,789 0,802 

15 TSKM (SoftDTW) 84 12 150 0,285 1,607 1366,09 0,781 0,632 0,797 

16 TSKM (SoftDTW) 79 11 50 0,256 1,305 1349,334 0,779 0,684 0,795 

17 TSKM (SoftDTW) 70 8 50 0,307 1,053 1230,446 0,769 0,842 0,786 

18 TSKM (SoftDTW) 91 15 50 0,206 1,523 735,43 0,795 0,474 0,78 

19 TSKM (SoftDTW) 75 9 150 0,278 1,284 1296,89 0,77 0,789 0,776 

20 TSKM (SoftDTW) 88 14 50 0,254 1,385 1423,313 0,781 0,526 0,775 

 

Tabla 12: Mejores configuraciones [0.1,0.1,0.1,0.5,0.2]. Fuente: Propia 

 

A continuación, se desarrollan las mejores configuraciones: 

1. Configuración 65: Explicada en la sección 4.3.1. 

2. Configuración 68: k=7. Max_It = 100 (WOWA = 0.886): 

Esta configuración refina con un k=7, manteniendo unas iteraciones 

moderadas (Max_It=100). Contiene una homogeneidad sólida, una Silhouette 

decente y un K_Index estable, aunque Davies-Bouldin sugiere algo de 

solapamiento. La composición de clústeres destaca el 0 y 1 por su casi 

perfecta separación, pero penaliza con dos clústeres de gran tamaño que 

realizan una separación mala de los tornillos OK y NOK. (Tabla 13) 
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Clúster Clúster_Size OK_Count OK_Percent NOK_Count NOK_Percent 

0 113 7 6.2 106 93.8 

1 94 93 98.9 1 1.1 

2 191 150 78.5 41 21.5 

3 209 86 41.1 123 58.9 

4 198 172 86.9 26 13.1 

5 125 112 89.6 13 10.4 

6 267 177 66.3 90 33.7 
 

Tabla 13: Configuración 68. Fuente: Propia 

 

4.3.4.  [0.25, 0.25, 0.25, 0.0, 0.25] 

 

Esta variación enfatiza las métricas internas del clustering con un mismo peso e 

ignorando completamente la métrica externa de la Homogeneidad. Esto es ideal para 

priorizar la compactación y separación global sin preocuparse por la pureza externa, 

útil para comparar la métrica propuesta. (Tabla 14) 

 

Rank Algorithm Conf_ID k Max_It Silhouette Davi_Bou Cal_Har Homog K_Ind WOWA 

1 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 0,783 0,947 0,986 

2 TSKM (SoftDTW) 63 5 150 0,433 0,752 1625,621 0,759 1 0,966 

3 TSKM (SoftDTW) 62 5 100 0,433 0,752 1625,621 0,759 1 0,966 

4 TSKM (SoftDTW) 61 5 50 0,433 0,752 1625,621 0,759 1 0,966 

5 TSKM (SoftDTW) 66 6 150 0,431 0,758 1680,987 0,766 0,947 0,959 

6 TSKM (SoftDTW) 64 6 50 0,429 0,759 1677,112 0,764 0,947 0,958 

7 TSKM (SoftDTW) 72 8 150 0,421 0,813 1713,707 0,779 0,842 0,931 

8 TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 0,779 0,895 0,929 

9 TSKM (SoftDTW) 67 7 50 0,407 0,748 1572,921 0,774 0,895 0,92 

10 TSKM (SoftDTW) 71 8 100 0,357 1,03 1512,902 0,781 0,842 0,871 

11 TSKM (SoftDTW) 69 7 150 0,348 1,309 1407,04 0,779 0,895 0,861 

12 TSKM (SoftDTW) 70 8 50 0,307 1,053 1230,446 0,769 0,842 0,809 

13 TSKM (SoftDTW) 73 9 50 0,311 1,277 1326,824 0,774 0,789 0,806 

14 TSKM (SoftDTW) 76 10 50 0,312 1,283 1369,489 0,778 0,737 0,799 

15 TSKM (SoftDTW) 75 9 150 0,278 1,284 1296,89 0,77 0,789 0,788 

16 TSKM (SoftDTW) 78 10 150 0,28 1,222 1332,461 0,77 0,737 0,782 

17 TSKM (SoftDTW) 80 11 100 0,275 1,367 1455,732 0,77 0,684 0,78 

18 TSKM (SoftDTW) 77 10 100 0,276 1,206 1316,595 0,779 0,737 0,778 

19 TSKM (SoftDTW) 74 9 100 0,26 1,382 1223,042 0,771 0,789 0,768 

20 TSKM (SoftDTW) 81 11 150 0,285 1,05 1269,594 0,771 0,684 0,764 

 

Tabla 14: Mejores configuraciones [0.25,0.25,0.25,0.0,0.25]. Fuente: Propia 
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A continuación, se desarrollan las mejores configuraciones: 

1. Configuración 65: Explicada en la sección 4.3.1. 

2. Configuración 63: k=5, Max_It=150 (WOWA = 0.966): 

Esta configuración usa k=5 mínimo, lo cual hace que los clústeres sean más 

estables, pero baja la granularidad. Las iteraciones aseguran una 

convergencia completa que ajusta bien los centros (Silhouette=0,433), 

aunque el valor de Davies-Bouldin moderado que indica algo de solapamiento 

entre clústeres y un Calinski-Harabasz sólido que refleja una cohesión interna 

fuerte. Los detalles de la configuración reflejan 4 clústeres bastante óptimos 

con una separación superior al 75/25%, pero con un clúster mal separado y 

con un volumen alto de tamaño. (Tabla 15) 

Clúster Clúster_Size OK_Count OK_Percent NOK_Count NOK_Percent 

0 129 11 8.5 118 91.5 

1 299 260 87.0 39 13.0 

2 324 252 77.8 72 22.2 

3 109 108 99.1 1 0.9 

4 336 166 49.4 170 50.6 
 

Tabla 15: Configuración 63. Fuente: Propia 

 

4.3.5.  [0.2, 0.2, 0.2, 0.2, 0.2] 

 

Esta variación asigna un valor uniforme a cada métrica, equilibrándolas en el 

análisis. Esto permite tener en cuenta todas las métricas por igual para dar un 

análisis integral y sin sesgos, capturando tanto la validez interna de los clústeres 

como su utilidad externa, lo que favorece configuraciones más versátiles. (Tabla 16) 

 

Rank Algorithm Conf_ID k Max_It Silhouette Davi_Bou Cal_Har Homog K_Ind WOWA 

1 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 0,783 0,947 0,966 

2 TSKM (SoftDTW) 72 8 150 0,421 0,813 1713,707 0,779 0,842 0,915 

3 TSKM (SoftDTW) 66 6 150 0,431 0,758 1680,987 0,766 0,947 0,913 

4 TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 0,779 0,895 0,913 

5 TSKM (SoftDTW) 64 6 50 0,429 0,759 1677,112 0,764 0,947 0,908 

6 TSKM (SoftDTW) 61 5 50 0,433 0,752 1625,621 0,759 1 0,906 

7 TSKM (SoftDTW) 63 5 150 0,433 0,752 1625,621 0,759 1 0,906 

8 TSKM (SoftDTW) 62 5 100 0,433 0,752 1625,621 0,759 1 0,906 

9 TSKM (SoftDTW) 67 7 50 0,407 0,748 1572,921 0,774 0,895 0,897 

10 TSKM (SoftDTW) 71 8 100 0,357 1,03 1512,902 0,781 0,842 0,871 

11 TSKM (SoftDTW) 69 7 150 0,348 1,309 1407,04 0,779 0,895 0,859 

12 TSKM (SoftDTW) 76 10 50 0,312 1,283 1369,489 0,778 0,737 0,808 

13 TSKM (SoftDTW) 73 9 50 0,311 1,277 1326,824 0,774 0,789 0,806 

14 TSKM (SoftDTW) 70 8 50 0,307 1,053 1230,446 0,769 0,842 0,799 
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15 TSKM (SoftDTW) 77 10 100 0,276 1,206 1316,595 0,779 0,737 0,793 

16 TSKM (SoftDTW) 75 9 150 0,278 1,284 1296,89 0,77 0,789 0,784 

17 TSKM (SoftDTW) 78 10 150 0,28 1,222 1332,461 0,77 0,737 0,779 

18 TSKM (SoftDTW) 80 11 100 0,275 1,367 1455,732 0,77 0,684 0,778 

19 TSKM (SoftDTW) 79 11 50 0,256 1,305 1349,334 0,779 0,684 0,777 

20 TSKM (SoftDTW) 84 12 150 0,285 1,607 1366,09 0,781 0,632 0,776 

 

Tabla 16: Mejores configuraciones [0.2,0.2,0.2,0.2,0.2]. Fuente: Propia 

 

A continuación, se desarrollan las mejores configuraciones: 

1. Configuración 65: Explicada en la sección 4.3.1 

2. Configuración 72: k=8, Max_It=150 (WOWA = 0.915):  

Esta configuración tiene un k=8 medio para una granularidad equilibrada y 

un Max_It alto para una convergencia estable, destacando una buena 

separación y cohesión fuerte, aunque indica algo de solapamiento. La 

separación según el desglose revela unos clústeres muy bien separados, 

sobre todo el 1,3 y 6. Pero un clúster de gran tamaño mal separado (Clúster 

0). (Tabla 17) 

Clúster Clúster_Size OK_Count OK_Percent NOK_Count NOK_Percent 

0 263 155 58.9 108 41.1 

1 60 59 98.3 1 1.7 

2 214 64 29.9 150 70.1 

3 51 1 2.0 50 98.0 

4 134 120 89.6 14 10.4 

5 230 182 79.1 48 20.9 

6 50 50 100.0 0 0.0 

7 195 166 85.1 29 14.9 
 

Tabla 17: Configuración 72. Fuente: Propia 

 

4.3.6. Conclusión sobre los resultados 

 

Tras explorar las diferentes ponderaciones de métricas en el análisis de series 

temporales de motores, se observa que el algoritmo TSKM (TimeSeriesKMeans) 

emerge como el más efectivo y consistente, apareciendo en todas las 

configuraciones top 20 de los vectores de pesos evaluados. Esto se debe a su 

capacidad para manejar distancias temporales (DTW/softDTW) y generar clústeres 

estables, superando a KShape en WOWA máximo. (Figura 14)  
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TimeSeriesKMeans destaca por su adaptabilidad a datos como los de tornillos, 

minimizando solapamientos y maximizando homogeneidad sin requerir ajustes 

complejos. 

 

Figura 14: Máximos valores por algoritmo. Fuente: Propia (Python) 

 

Para sintetizar, la Tabla 18 resume las 20 mejores configuraciones globales, 

ordenadas por WOWA descendente, incluyendo la columna de pesos asociada a cada 

una: 

Rank Algorithm Conf_ID k Max_It Silho Dav_Bou Cal_Har Homog K_Ind WOWA Pesos 

1 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 0,783 0,947 0,986 [0.25, 0.25, 0.25, 0, 0.25] 

2 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 0,783 0,947 0,966 [0.2, 0.2, 0.2, 0.2, 0.2] 

3 TSKM (SoftDTW) 63 5 150 0,433 0,752 1625,621 0,759 1 0,966 [0.25, 0.25, 0.25, 0, 0.25] 

4 TSKM (SoftDTW) 62 5 100 0,433 0,752 1625,621 0,759 1 0,966 [0.25, 0.25, 0.25, 0, 0.25] 

5 TSKM (SoftDTW) 61 5 50 0,433 0,752 1625,621 0,759 1 0,966 [0.25, 0.25, 0.25, 0, 0.25] 

6 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 0,783 0,947 0,933 [0.1, 0.1, 0.1, 0.5, 0.2] 

7 TSKM (SoftDTW) 91 15 50 0,206 1,523 735,43 0,795 0,474 0,930 [0, 0, 0, 1.0, 0] 

8 TSKM (SoftDTW) 72 8 150 0,421 0,813 1713,707 0,779 0,842 0,931 [0.25, 0.25, 0.25, 0, 0.25] 

9 TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 0,779 0,895 0,929 [0.25, 0.25, 0.25, 0, 0.25] 

10 TSKM (SoftDTW) 72 8 150 0,421 0,813 1713,707 0,779 0,842 0,915 [0.2, 0.2, 0.2, 0.2, 0.2] 

11 TSKM (SoftDTW) 66 6 150 0,431 0,758 1680,987 0,766 0,947 0,913 [0.2, 0.2, 0.2, 0.2, 0.2] 

12 TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 0,779 0,895 0,913 [0.2, 0.2, 0.2, 0.2, 0.2] 

13 TSKM (SoftDTW) 64 6 50 0,429 0,759 1677,112 0,764 0,947 0,908 [0.2, 0.2, 0.2, 0.2, 0.2] 

14 TSKM (SoftDTW) 61 5 50 0,433 0,752 1625,621 0,759 1 0,906 [0.2, 0.2, 0.2, 0.2, 0.2] 

15 TSKM (SoftDTW) 63 5 150 0,433 0,752 1625,621 0,759 1 0,906 [0.2, 0.2, 0.2, 0.2, 0.2] 

16 TSKM (SoftDTW) 62 5 100 0,433 0,752 1625,621 0,759 1 0,906 [0.2, 0.2, 0.2, 0.2, 0.2] 

17 TSKM (SoftDTW) 67 7 50 0,407 0,748 1572,921 0,774 0,895 0,92 [0.25, 0.25, 0.25, 0, 0.25] 
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18 TSKM (SoftDTW) 67 7 50 0,407 0,748 1572,921 0,774 0,895 0,897 [0.2, 0.2, 0.2, 0.2, 0.2] 

19 TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 0,779 0,895 0,886 [0.1, 0.1, 0.1, 0.5, 0.2] 

20 TSKM (SoftDTW) 71 8 100 0,357 1,03 1512,902 0,781 0,842 0,871 [0.1, 0.1, 0.1, 0.5, 0.2] 

 

Tabla 18: : Mejores configuraciones globales. Fuente: Propia 

 

La configuración óptima global es la 65 (k=6, Max_It=100), apareciendo en todas las 

mejores, con un valor de WOWA medio ~0.95 una Silhouette alta (separación buena), 

Homogeneidad sólida (pureza ~78%), K_Index óptimo (estabilidad sin extremos), y 

métricas internas compactas (Davi_Bou bajo, Cal_Har alto). Es superior porque 

integra todo sin sesgos, superando configuraciones con k alto (sobreajuste) o muy 

bajo (poca granularidad). 

A continuación, en la Tabla 19 y la Figura 15 se detalla el desglose completo de la 

configuración 65: 

 

Clúster 0 1 2 3 4 5 

Clúster_Size 252 206 275 263 109 92 

OK_Count 156 74 240 214 108 5 

OK_Percent 61.9 35.9 87.3 81.4 99.1 5.4 

NOK_Count 96 132 35 49 1 87 

NOK_Percent 38.1 64.1 12.7 18.6 0.9 94.6 

Tornillo_0 26 30 36 31 15 12 

Tornillo_1 31 29 32 27 14 17 

Tornillo_2 29 24 35 45 15 2 

Tornillo_3 47 25 21 22 13 22 

Tornillo_4 32 23 44 35 14 2 

Tornillo_5 29 15 45 40 17 3 

Tornillo_6 30 33 34 26 11 15 

Tornillo_7 28 27 28 37 10 19 

Tornillo_0_Percent 10.3 14.6 13.1 11.8 13.8 13.0 

Tornillo_1_Percent 12.3 14.1 11.6 10.3 12.8 18.5 

Tornillo_2_Percent 11.5 11.7 12.7 17.1 13.8 2.2 

Tornillo_3_Percent 18.7 12.1 7.6 8.4 11.9 23.9 

Tornillo_4_Percent 12.7 11.2 16.0 13.3 12.8 2.2 

Tornillo_5_Percent 11.5 7.3 16.4 15.2 15.6 3.3 

Tornillo_6_Percent 11.9 16.0 12.4 9.9 10.1 16.3 

Tornillo_7_Percent 11.1 13.1 10.2 14.1 9.2 20.7 

 

Tabla 19: Desglose completo Configuración 65. Fuente: Propia 



67 

 

 

 

Figura 15: Clustering Configuración 65. Fuente: Propia (Pyhton) 
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El análisis de la distribución de los tornillos (Tabla 19) a lo largo de las 

configuraciones de clustering revela que la separación de los clústeres no se basa 

de manera significativa en la atornilladora utilizada. A pesar de evaluar las 

proporciones de tornillos OK y NOK por clúster, los datos muestran una distribución 

homogénea entre las diferentes atornilladoras, con porcentajes de tornillos 

asignados a cada clúster que varían de forma aleatoria y no presentan patrones 

distintivos asociados a un equipo específico (por ejemplo, clústeres con un 10-20% 

de tornillos por atornilladora en todas las configuraciones). Esto sugiere que las 

diferencias en las curvas par-ángulo están más influenciadas por factores inherentes 

al proceso de atornillado (como par o ángulo) que, por las características específicas 

de las atornilladoras, lo que indica que el clustering no logra segregar los datos según 

el equipo utilizado. 

La Figura 15 muestra la visualización de los 5 clústeres generados por la 

configuración óptima, presentando las curvas de par en la parte izquierda y las 

curvas de ángulo en la parte derecha. Se puede observar un excelente solapamiento 

de las curvas dentro de cada clúster, evidenciando alta cohesión interna y buena 

separación entre clústeres. Esto confirma la calidad del clustering, demostrando que 

la configuración óptima genera agrupaciones interpretables, compactas y efectivas. 

Como conclusión, este análisis ha abordado las curvas par-ángulo para detectar 

anomalías en el atornillado de motores, un desafío clave en la industria automotriz 

donde la precisión del par y el ángulo marca la diferencia. Partiendo de un caso de 

uso práctico, se caracterizaron datos de 200 conjuntos de aprietes (150 OK y 50 

NOK), procesándolos para extraer patrones relevantes mediante clustering. La 

metodología incluyó un preprocesamiento que eliminó intervalos irrelevantes, 

normalizó curvas y generó gráficas, seguido de la aplicación de algoritmos como 

TimeSeriesKMeans y KShape con configuraciones variadas (5 a 25 clústeres, 50 a 

150 iteraciones, DTW y SoftDTW). Esto permitió evaluar los clústeres con las métricas 

Silhouette, Davies-Bouldin, Calinski-Harabasz, Homogeneidad y K_Index, 

combinados en un criterio WOWA con pesos variados para poder saber más acerca 

de los clústeres y la separación de estos. 

La Homogeneidad, métrica desarrollada ad hoc, cuantifica la pureza de cada clúster 

ponderando su tamaño relativo por el máximo porcentaje de una clase (OK o NOK). 

Su rol es crucial para priorizar clústeres "puros" (>78% de una clase), facilitando la 

detección de desviaciones claras. El K_Index, también propuesto, penaliza 

configuraciones complejas favoreciendo k bajos (k=5=1, k=10≈0.74) para una 

simplicidad interpretativa en entornos industriales. 

El análisis exhaustivo de las variaciones en los pesos de las métricas de evaluación, 

desde una configuración inclinada al índice de Homogeneidad propuesto [0.0, 0.0, 

0.0, 1.0, 0.0] hasta los extremos dominados por las métricas internas [0.25, 0.25, 

0.25, 0.0, 0.25], revela patrones consistentes en el rendimiento de los algoritmos 

TimeSeriesKMeans y KShape para el clustering de series temporales orientado a la 

detección de anomalías (OK/NOK). En todas las combinaciones, TimeSeriesKMeans 
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demuestra una superioridad clara y robusta, ocupando invariablemente las 

posiciones superiores de los rankings con valores de WOWA promedio superiores a 

0.80, impulsados por una cohesión interna sólida (Silhouette positivo ~0.4), 

separación entre clústeres efectiva (Davies-Bouldin ~0.8) y dispersión externa 

óptima (Calinski-Harabasz ~1600-2100), combinados con una Homogeneidad 

elevada (~0.77-0.78) que asegura pureza superior al 77% y un K_Index equilibrado 

(~0.8-0.95) que favorece simplicidad sin sacrificar granularidad. Los resultados 

reflejan que configuraciones como la Conf_ID 65 (k=6, Max_It=100) se repite de 

manera estable en los tops a lo largo de las variaciones, destacando su versatilidad 

para datos temporales variables con alineamientos dinámicos, lo que la posiciona 

como ideal para implementaciones prácticas en entornos industriales donde la 

precisión en la clasificación prima sobre la complejidad computacional. 

Por el contrario, KShape exhibe un rendimiento consistentemente inferior, con 

WOWA promedio ~0.35-0.25, limitado por clústeres dispersos (Silhouette negativo 

~-0.08), separación pobre (Davies-Bouldin ~3.0) y dispersión externa baja (Calinski-

Harabasz ~110-150), resultando en una Homogeneidad moderada (~0.69-0.72) que 

genera clasificaciones mixtas insuficientes para anomalías complejas. Solo en 

variaciones extremas con peso total en Homogeneidad y número de clústeres mejora 

relativamente, pero sin superar la brecha global de ~0.55-0.5 puntos en WOWA 

respecto a TSKM, cuya fortaleza radica en el manejo superior de correlaciones 

temporales y alineamientos no lineales. (Tabla 20) 

 

Rank Algorithm Conf_ID k Max_It Silho Dav_Bou Cal_Har Homog K_Ind WOWA Pesos 

1 KShape 130 8 50 -0.078 3.061 112.688 0.716 0.842 0.372993 [0.0, 0.0, 0.0, 0.5, 0.5] 

2 KShape 131 8 100 -0.078 3.061 112.688 0.716 0.842 0.372993 [0.0, 0.0, 0.0, 0.5, 0.5] 

3 KShape 132 8 150 -0.078 3.061 112.688 0.716 0.842 0.372993 [0.0, 0.0, 0.0, 0.5, 0.5] 

4 KShape 121 5 50 -0.053 3.207 149.440 0.688 1.000 0.368940 [0.0, 0.0, 0.0, 1.0, 0.0] 

5 KShape 123 5 150 -0.053 3.207 149.440 0.688 1.000 0.368940 [0.0, 0.0, 0.0, 1.0, 0.0] 

6 KShape 122 5 100 -0.053 3.207 149.440 0.688 1.000 0.368940 [0.0, 0.0, 0.0, 1.0, 0.0] 

7 KShape 127 7 50 -0.078 2.878 119.389 0.700 0.895 0.365697 [0.0, 0.0, 0.0, 0.5, 0.5] 

8 KShape 128 7 100 -0.078 2.878 119.389 0.700 0.895 0.365697 [0.0, 0.0, 0.0, 0.5, 0.5] 

9 KShape 129 7 150 -0.078 2.878 119.389 0.700 0.895 0.365697 [0.0, 0.0, 0.0, 0.5, 0.5] 

10 KShape 124 6 50 -0.076 2.953 131.958 0.689 0.947 0.353659 [0.0, 0.0, 0.0, 0.5, 0.5] 

11 KShape 125 6 100 -0.076 2.953 131.958 0.689 0.947 0.353659 [0.0, 0.0, 0.0, 0.5, 0.5] 

12 KShape 126 6 150 -0.076 2.953 131.958 0.689 0.947 0.353659 [0.0, 0.0, 0.0, 0.5, 0.5] 

13 KShape 133 9 50 -0.086 3.196 95.618 0.712 0.789 0.331205 [0.1, 0.1, 0.1, 0.5, 0.2] 

14 KShape 134 9 100 -0.086 3.196 95.618 0.712 0.789 0.331205 [0.1, 0.1, 0.1, 0.5, 0.2] 

15 KShape 135 9 150 -0.086 3.196 95.618 0.712 0.789 0.331205 [0.1, 0.1, 0.1, 0.5, 0.2] 

16 KShape 138 10 150 -0.094 3.493 87.552 0.713 0.737 0.291489 [0.0, 0.0, 0.0, 0.5, 0.5] 

17 KShape 136 10 50 -0.094 3.493 87.552 0.713 0.737 0.291489 [0.0, 0.0, 0.0, 0.5, 0.5] 

18 KShape 137 10 100 -0.094 3.493 87.552 0.713 0.737 0.291489 [0.0, 0.0, 0.0, 0.5, 0.5] 

19 KShape 139 11 50 -0.100 3.345 84.112 0.712 0.684 0.282868 [0.1, 0.1, 0.1, 0.5, 0.2] 

20 KShape 140 11 100 -0.100 3.345 84.112 0.712 0.684 0.282868 [0.1, 0.1, 0.1, 0.5, 0.2] 
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Tabla 20: Mejores configuraciones KShape. Fuente: Propia 

 

Las variaciones en pesos confirman que equilibrar métricas internas (Silhouette, 

Davies-Bouldin, Calinski-Harabasz y K_Index) con el índice de Homogeneidad genera 

rankings más estables y configuraciones robustas, elevando WOWA ~0.85-0.90 sin 

desestabilizar el orden, y favoreciendo números de clústeres entre 5 y 8 con 

iteraciones en torno a 100 para una combinación óptima entre pureza y simplicidad. 

Sin embargo, una variación que pondere totalmente a la Homogeneidad, priorización 

de pureza extrema permite k más altos (hasta 24) con menor penalización, pero 

reduce la influencia de la cohesión, lo que podría inducir sobreajuste en datasets 

ruidosos; en estos casos, WOWA se mantiene alto, pero los rankings se vuelven 

menos sensibles a métricas internas, resaltando el rol de Homogeneidad como 

métrica principal. Ignorar completamente las métricas internas en la variación no 

parece una buena opción para el ajuste correcto del clustering 

En síntesis, estos resultados validan TimeSeriesKMeans como el algoritmo 

preferente para clustering temporal en detección de anomalías, donde SoftDTW 

destaca por encima de DTW tradicional gracias a su aproximación suave y 

diferenciable que facilita la optimización basada en gradientes y reduce la 

sensibilidad a alineamientos locales ruidosos, mejorando la estabilidad en series 

variables. La mejor configuración global corresponde a la base equilibrada en 

métricas internas [0.25, 0.25, 0.25, 0.0, 0.25], aunque la adición del índice de 

Homogeneidad mejora los resultados desarrollados en las configuraciones. 

 

4.4. Bibliotecas, Herramientas y Software Utilizados 

 

Para llevar a cabo este trabajo, se utilizan una serie de herramientas que me han 

permitido procesar los datos, realizar los análisis y presentar los resultados de forma 

clara. El análisis comienza con la configuración general de parámetros que 

establecen el marco del trabajo, detallados en la Tabla 21: 

Parámetro Valor Propósito 

metrics ["dtw", "softdtw"] 
Define las métricas de distancia (DTW y Soft-

DTW) para TimeSeriesKMeans. 

k_values range(5, 25) Establece el rango de clústeres a probar (5 a 24). 

max_iters [50, 100, 150] 
Define las iteraciones máximas para la 

convergencia de los algoritmos. 



71 

 

n_int [5, 10] 
Controla los intervalos de interpolación en la 

estandarización de duración. 

n_ok_motors 150 
Limita el número de motores en estado "OK" a 

procesar. 

n_nok_motor

s 
50 

Limita el número de motores en estado "NOK" a 

procesar. 

init_method "k-means++" 
Establece el método de inicialización de 

centroides en TimeSeriesKMeans. 

n_init 1 
Define el número de inicializaciones en KShape 

(implícito). 

wowa_weight

s 

[0.1, 0.1, 0.1, 

0.5, 0.2] 

Asigna pesos a las métricas para calcular el 

índice WOWA. 

 

Tabla 21: Configuración de los parámetros: Fuente: Propia 

 

Estos parámetros no son aleatorios; se ajustaron mediante un proceso iterativo 

basado en las características de las curvas par-ángulo: 

Uno de los primeros es metrics, una lista que incluye ["dtw", "softdtw"], que especifica 

las métricas de distancia utilizadas por TimeSeriesKMeans. Se elige DTW (Dynamic 

Time Warping) por su capacidad para alinear temporalmente las curvas y capturar 

variaciones en el par, mientras que Soft-DTW añade flexibilidad con un suavizado 

implícito, lo que se prueba para mejorar la robustez ante ruido. Este parámetro 

permite comparar ambos enfoques y evaluar su impacto en la detección de 

anomalías.  

Otro parámetro clave es k_values, definido como list(range(5, 25)), que establece el 

rango de clústeres a probar. Lo fijé entre 5 y 24 porque quería explorar una variedad 

de agrupaciones que reflejaban tanto patrones normales como anómalos en las 

curvas, basándome en la diversidad de los datos de entrada. Lo ajusté tras observar 

que valores menores a 5 generaban clústeres demasiado generales, mientras que 

más de 24 fragmentaban excesivamente los datos.  

El parámetro max_iters, con valores [50, 100, 150], define las iteraciones máximas 

para la convergencia de TimeSeriesKMeans y KShape. Lo configuré en este rango 

tras probar que 50 iteraciones a veces no alcanzaban la convergencia en datasets 

grandes, mientras que 150 ofrecía mejoras marginales, por lo que 100 se convirtió 

en un punto intermedio efectivo. Este ajuste asegura que los algoritmos se 

estabilicen sin consumir recursos innecesarios.  
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Para TimeSeriesKMeans, el parámetro init_method = "k-means++" establece el 

método de inicialización de los centroides. Lo seleccioné porque k-means++ mejora 

la convergencia inicial al elegir puntos iniciales más representativos, reduciendo el 

riesgo de caer en óptimos locales, algo que noté al comparar con inicializaciones 

aleatorias en pruebas previas.  

En K-Shape, aunque no se especifica explícitamente un parámetro de inicialización, 

el valor implícito de n_init = 1 (definido en el código) indica una sola inicialización. Lo 

mantuve así por simplicidad y para alinear el tiempo de cómputo con 

TimeSeriesKMeans, aunque consideré aumentar a 5 en futuros ajustes si la 

estabilidad lo requiriera. 

Todos estos parámetros pueden variarse al inicio del programa para buscar 

configuraciones óptimas, incluyendo ajustes en n_ok_motors y n_nok_motors según 

disponibilidad de datos. 

A continuación, se detallan las principales bibliotecas y herramientas utilizadas: 

• Python: Se utiliza este lenguaje como base para todo el proyecto, eligiendo la 

versión 3.12 por su estabilidad y la amplia comunidad que lo apoya, ideal 

para tareas de ciencia de datos. Me ha dado la flexibilidad necesaria para 

estructurar el flujo de trabajo. 

• pandas: Esta herramienta ha sido clave para organizar los datos en tablas 

manejables. Me ha permitido trabajar con las mediciones como si fueran 

hojas de cálculo, facilitando su análisis y preparación. 

• numpy: Para los cálculos numéricos, especialmente con matrices y ajustes de 

series temporales, esta biblioteca ha sido mi aliada. Su rapidez ha hecho que 

los procesos pesados fueran más eficientes. 

• matplotlib y gridspec: Con matplotlib se crean los gráficos que muestran las 

curvas de par y ángulo, mientras que gridspec me ha ayudado a organizar 

varios subgráficos en una misma figura, mejorando la visualización 

comparativa. 

• tslearn: Esta biblioteca especializada en series temporales me ha 

proporcionado los algoritmos necesarios para el clustering, como 

TimeSeriesKMeans y KShape, adaptados perfectamente a mi caso de 

estudio. 

• sklearn: Se ha recurrido a esta herramienta para evaluar los clústeres con 

métricas como la puntuación de Silhouette, el índice de Davies-Bouldin y el 

de Calinski-Harabasz, además de estandarizar los datos antes del análisis. 

• json: Me ha servido para guardar los datos procesados en un formato ligero, 

ideal para almacenar las series temporales de forma ordenada y accesible. 
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• openpyxl: Con esta biblioteca se han generado los reportes en Excel, 

añadiendo tablas estilizadas que hacen que los resultados sean más 

profesionales y fáciles de compartir. 

• collections (Counter): Este módulo me ha ayudado a contar rápidamente la 

distribución de estados (OK y NOK) entre los motores, dándome una visión 

inicial útil del conjunto de datos. 

Todas estas herramientas se han integrado de manera que el proceso fluya desde la 

carga de datos hasta la generación de informes y gráficos, asegurando un análisis 

sólido y resultados comprensibles para su uso en un entorno industrial. 
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5. CONCLUSIONES Y TRABAJO FUTURO 

 

5.1. Conclusiones 

 

A lo largo de este trabajo se han abordado con éxito los objetivos planteados y se ha 

conseguido realizar una contribución significativa al campo del control de calidad en 

procesos de atornillado industrial, tomando como caso de estudio los motores 

ensamblados en la empresa HORSE.  

El primer y principal objetivo era analizar y proponer soluciones basadas en técnicas 

de analítica de datos, especialmente algoritmos de clustering orientados a la 

detección y prevención de anomalías en series temporales de par y ángulo generadas 

durante el proceso de atornillado. Para ello, se ha diseñado una metodología 

detallada que abarca desde el preprocesamiento de los datos, la normalización de 

los perfiles de cada tornillo, hasta la aplicación iterativa y sistemática de diferentes 

configuraciones de clustering que permiten segmentar y analizar de forma objetiva 

grandes volúmenes de información provenientes de sensores industriales. 

Entre las principales aportaciones destacan el desarrollo y puesta en práctica de un 

sistema de selección de parámetros configurables que facilita la comparación 

rigurosa entre distintas variantes de algoritmos de agrupamiento, como 

TimeSeriesKMeans y KShape, además de comparar las métricas DTW y SoftDTW en 

el análisis de series temporales.  

El enfoque propuesto permite no solo identificar patrones normales y anómalos en 

los datos, sino también discriminar de forma robusta entre motores funcionales y 

aquellos con defectos, aportando indicadores cuantitativos como la Silhouette, 

Calinski-Harabasz, Davies-Bouldin, Homogeneidad y K_Index, además del operador 

de agregación de métricas WOWA, que ha demostrado ser muy útil para sintetizar la 

calidad de las configuraciones ensayadas. 

Cabe subrayar que la solución final adoptada, basada en TimeSeriesKMeans con 

SoftDTW y un número óptimo de clústeres de seis, ha mostrado una capacidad 

sobresaliente para agrupar curvas de par-ángulo y detectar anomalías características 

del proceso de atornillado en los motores de HORSE, superando el rendimiento de 

otras alternativas estudiadas. Este resultado, validado por la comparación 

sistemática de cientos de configuraciones, se apoya además en la generación 

automatizada de informes y visualizaciones, lo cual facilita enormemente su 

integración en entornos reales de fabricación. 

Esta metodología se ha aplicado a un problema real de producción industrial, 

validada con datos de 200 motores ensamblados en HORSE (150 funcionales y 50 

con anomalías), demostrando su efectividad en la detección de desviaciones del 
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comportamiento nominal y su potencial para reducir rechazos y mejorar la fiabilidad 

en entornos operativos. 

No menos importante es el valor añadido que aporta el desarrollo operativo de todo 

el proceso en Python, apoyándose en bibliotecas especializadas para la 

manipulación y visualización de datos, lo que garantiza la reproducibilidad y 

escalabilidad del análisis en contextos industriales. Se ha logrado así avanzar 

sustancialmente en la automatización del diagnóstico de fallos en el atornillado y en 

la mejora continua del control de calidad. 

 

5.2. Líneas de Trabajo Futuro 

 

El trabajo realizado abre numerosas posibilidades de ampliación y mejora en futuras 

investigaciones y desarrollos, algunas de las cuales se enumeran a continuación: 

• Extensión de la base de datos: Como evolución natural, resulta fundamental 

ampliar el número de motores y atornilladoras analizadas, recogiendo más 

muestras y expandiendo la representatividad tanto en cantidad como en 

diversidad de casos. Esto permitiría fortalecer la validez estadística de los 

resultados y abordar variantes o modelos de motores con particularidades 

distintas, adaptando el análisis a nuevos escenarios industriales. 

• Incorporación de nuevas técnicas analíticas: La metodología puede 

enriquecerse probando algoritmos de clustering alternativos (como DBSCAN, 

espectrales o modelos basados en aprendizaje profundo) que faciliten la 

visualización y comprensión de patrones ocultos en los datos de par y ángulo. 

Igualmente, la integración de técnicas de aprendizaje supervisado podría 

servir para comparar el rendimiento contra los enfoques no supervisados 

utilizados hasta ahora. 

• Desarrollo de dashboards interactivos: De cara a la aplicación práctica en 

planta, se plantea construir paneles de control visuales que permitan a los 

técnicos y responsables de calidad ver en tiempo real el estado de cada motor 

y tornillo, facilitando la identificación instantánea de posibles anomalías. Esto 

requeriría el desarrollo de aplicaciones web o interfaces gráficas que 

conecten con el sistema de análisis y muestren indicadores de agrupamiento, 

perfiles de par-ángulo, alertas, y estadísticas clave, todo ello de manera 

intuitiva y flexible. 

• Implementación en streaming en la planta de HORSE: Una línea 

especialmente relevante es la adaptación del sistema para su uso en 

streaming, integrándolo directamente en el proceso de producción de HORSE. 

Esto permitiría analizar las curvas de par-ángulo en tiempo real, detectando 

anomalías durante el propio ensamblaje y facilitando la toma de decisiones 

inmediata, la trazabilidad automática y la optimización de los tiempos de 

parada necesarios para revisiones o correcciones. Para ello sería necesaria 
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una arquitectura capaz de manejar grandes volúmenes de datos en tiempo 

real, así como mecanismos de alerta y retroalimentación directa para los 

operarios. 

En definitiva, el camino iniciado con este trabajo pone las bases para una mejora 

sustancial en el análisis predictivo y el control de calidad en procesos de atornillado 

industrial, no solo contribuyendo a la fiabilidad y seguridad de los motores de HORSE 

sino también abriendo la puerta a aplicaciones similares en muchas otras áreas de 

la industria moderna. 
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