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RESUMEN

En este trabajo se presenta una propuesta de una metodologia para la deteccion de
anomalias en procesos de atornillado industrial utilizando técnicas de clustering
sobre datos de sensores. El analisis se basa en las series temporales de par y angulo
registradas durante el ensamblaje, pudiendo identificar patrones anémalos en los
datos. Se evaluan algoritmos especializados como TimeSerieskMeans y K-Shape,
aplicando métricas como Dynamic Time Warping y SoftDTW para la comparacion de
formas. También se proponen indices de evaluacion de la calidad de los clisteres.

El método propuesto puede llegar a la deteccion de posibles fallos en el atornillado,
contribuyendo al control de calidad y la confiabilidad de los procesos industriales.
Ademas, la metodologia es escalable y puede integrarse en sistemas de
monitorizacion y mantenimiento predictivo, ayudando a reducir costes y mejorar la
seguridad de la produccion.

PALABRAS CLAVE

Atornillado industrial, deteccion de anomalias, clustering, series temporales,
deformacion temporal dinamica.

ABSTRACT

In this work, a proposal for a methodology for anomaly detection in industrial screwing
processes is presented, using clustering techniques on sensor data. The analysis is
based on time series of par and angle recorded during assembly, enabling the
identification of anomalous patterns in the data. Specialized algorithms such as
TimeSerieskMeans and K-Shape are evaluated, applying metrics like Dynamic Time
Warping and SoftDTW for shape comparison. Additionally, indices for evaluating the
quality of the clisteres are proposed.

The proposed method can lead to the detection of possible failures in screwing,
contributing to quality control and the reliability of industrial processes. Furthermore,
the methodology is scalable and can be integrated into monitoring and predictive
maintenance systems, helping to reduce costs and improve production safety.
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1. INTRODUCCION Y OBJETIVOS

1.1. Introduccion

La fiabilidad de las uniones atornilladas es un aspecto critico en la industria
moderna, ya que los tornillos y pernos constituyen uno de los sistemas de ensamblaje
mas utilizados en sectores como la automocion, la aeronautica, la construccion y la
fabricacion de maquinaria. Sin embargo, a pesar de su aparente sencillez, el
atornillado es una fuente frecuente de problemas técnicos, econémicos y de
seguridad, lo que justifica la necesidad de abordar en profundidad el estudio de los
fallos asociados a este tipo de unién y sus consecuencias.

El problema de los fallos en el atornillado se manifiesta en multiples formas, desde
el aflojamiento prematuro y la pérdida de tension hasta la rotura del tornillo o el dano
en la unién atornillada. Estas incidencias pueden deberse a errores en el proceso de
montaje (sub-apriete, sobre-apriete, cruce de roscas), a la seleccion inadecuada de
materiales, a la falta de mantenimiento o a la exposicion a condiciones de servicio
agresivas, como vibraciones, cargas dinamicas o ambientes corrosivos [1]. El
resultado es una disminucion de la integridad estructural y funcional de los conjuntos
mecanicos, que puede derivar en costosos paros de produccion, reparaciones no
planificadas y, en casos extremos, accidentes graves con consecuencias humanas y
econdmicas.

Desde el punto de vista econdmico, los fallos en el atornillado representan una de
las principales fuentes de costes ocultos en la industria. Segun estudios sobre
gestion de la calidad y mantenimiento, los costes asociados a fallos internos
(detectados antes de la entrega al cliente) y externos (detectados tras la puesta en
servicio) pueden superar ampliamente el coste inicial de fabricacion, especialmente
cuando implican la retirada de productos, la reparacion en campo o la gestion de
reclamaciones [2]. Ademas, los fallos en uniones atornilladas suelen tener un efecto
multiplicador sobre otros sistemas, generando danos colaterales en componentes
adyacentes y aumentando la complejidad de las intervenciones correctivas.

En términos de seguridad, los fallos en el atornillado pueden tener consecuencias
especialmente graves en aplicaciones criticas. En el sector de la automocion, como
en el caso de Horse Powertrain Spain (empresa dedicada a la fabricacion de sistemas
de transmisién para movilidad), un fallo en la uniéon de un componente estructural o
de seguridad puede poner en riesgo el correcto funcionamiento de los sistemas de
transmision. Por ello, la gestion del riesgo y la prevencion de fallos mediante
metodologias como el Analisis Modal de Fallos y Efectos (AMFE) se han convertido
en practicas habituales para garantizar la seguridad y la conformidad con los
estandares de calidad [3].



La calidad del producto final también se ve directamente afectada por la fiabilidad
de las uniones atornilladas. Un ensamblaje defectuoso puede traducirse en ruidos,
vibraciones, fugas, pérdida de prestaciones o reduccion de la vida atil del producto,
lo que impacta negativamente en la satisfaccion del cliente y la reputacion de la
empresa. Ademas, en un contexto de competencia global y mejora continua, la
prevencion de fallos en el atornillado es un requisito imprescindible para alcanzar la
excelencia operativa y cumplir con las exigencias de certificaciones internacionales
de calidad y seguridad, como la ISO 9001 [4] o la IATF.

Por todo ello, la problematica de los fallos en el atornillado y sus consecuencias
constituye un campo de estudio prioritario en la ingenieria industrial y el
mantenimiento. La identificacion, analisis y prevencion de estos fallos no solo
permite reducir costes y mejorar la calidad, sino que también contribuye de manera
decisiva a la seguridad de los productos y procesos. El presente trabajo, desarrollado
en colaboraciéon con Horse Powertrain Spain, se plantea, por tanto, como una
contribucién al conocimiento y la mejora de las técnicas de control y diagnéstico de
fallos en uniones atornilladas, con el objetivo final de minimizar su impacto en la
industria y la sociedad.

La aplicacion de técnicas de analitica de datos y, en particular, de clustering, puede
ser una estrategia eficaz para abordar la problematica de los fallos en el atornillado
industrial. Esta problematica, caracterizada por la alta variabilidad de los procesos,
la presencia de grandes volimenes de datos y la dificultad para identificar patrones
an6malos de forma manual, requiere enfoques automaticos y escalables que
permitan detectar, clasificar y prevenir defectos en tiempo real.

Uno de los principales retos en el control de calidad de procesos de atornillado es la
deteccion temprana de anomalias entre miles o millones de operaciones, donde los
fallos son eventos poco frecuentes y, a menudo, presentan caracteristicas sutiles o
atipicas respecto al comportamiento estandar [1]. Tradicionalmente, la supervision
se ha basado en la inspeccion visual, el analisis de curvas par-angulo o la aplicacion
de umbrales fijos sobre variables como el par o el angulo final. Sin embargo, estos
métodos resultan insuficientes ante la complejidad y el volumen de datos generados
en entornos industriales modernos, donde la digitalizacion y la sensorizaciéon masiva
han dado lugar a escenarios de big data [5] [6].

En este contexto, la analitica de datos basada en clustering permite agrupar
automaticamente grandes cantidades de registros de atornillado segun su similitud,
sin necesidad de etiquetas previas ni intervencion humana. Los algoritmos de
clustering, como K-Means, DBSCAN, K-Shape, identifican patrones de
comportamiento normal y detectan grupos de operaciones que se desvian del
estandar, facilitando la identificacion de fallos potenciales o condiciones anémalas
[7] [8]. Esta capacidad es especialmente relevante cuando los datos presentan alta
variabilidad, ruido o cuando los fallos no se manifiestan de forma evidente en
variables individuales.
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El uso de clustering en la deteccion de fallos en atornillado tiene varias ventajas
clave:

¢ No requiere datos etiquetados: A diferencia del aprendizaje supervisado, el
clustering es un método no supervisado, lo que lo hace ideal en entornos
donde no se dispone de grandes bases de datos de fallos conocidos [9].

e Permite descubrir patrones desconocidos: Al no estar limitado por categorias
predefinidas, el clustering puede revelar nuevos tipos de fallos,
degradaciones progresivas o cambios en el proceso que pasarian
desapercibidos con métodos tradicionales [8].

o Escalabilidad y eficiencia: Los algoritmos modernos permiten analizar
grandes volimenes de datos en tiempo real, adaptandose a la produccion
continua y a la monitorizacion masiva de lineas de montaje [7].

e Soporte a la toma de decisiones: Los resultados de clustering pueden
integrarse en sistemas de alerta, mantenimiento predictivo o visualizacion
avanzada para que los operarios y responsables de calidad puedan actuar de
forma proactiva.

En la literatura reciente, se han desarrollado soluciones que combinan el clustering
con técnicas de extraccion de caracteristicas y aprendizaje profundo para mejorar la
deteccion de defectos en procesos industriales. Por ejemplo, en la industria del
acero, la combinacion de clustering y redes neuronales ha permitido reducir la tasa
de fallos de clasificacion a solo un 4%, optimizando la inspeccion y reduciendo la
necesidad de intervencion manual [9].

En el caso concreto del atornillado, el clustering aplicado a curvas par-angulo,
senales de par o variables de proceso permite segmentar automaticamente los ciclos
en grupos homogéneos, identificar operaciones defectuosas y proporcionar
informacion explicativa a los operarios mediante herramientas de inteligencia
artificial explicable. Esta aproximacion facilita la mejora continua del proceso, la
reduccion de costes por defectos y la mejora de la seguridad y la calidad del producto
final.

En resumen, la analitica de datos basada en clustering se justifica plenamente como
una solucion avanzada y eficiente para el diagnostico y la prevencion de fallos en el
atornillado industrial, aportando valor tanto en la deteccion temprana como en la
comprension y mejora de los procesos.
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1.2. Objetivos

Objetivo general

Analizar y proponer soluciones basadas en analitica de datos, especialmente
técnicas de clustering, para la deteccion y prevencion de fallos en procesos de
atornillado industrial.

Objetivos especificos

e Recopilar y analizar datos reales de procesos de atornillado, incluyendo
curvas par-angulo, par, para caracterizar el comportamiento normal vy
anoémalo del proceso.

e Implementar y comparar diferentes algoritmos de clustering para la
segmentacion y analisis de series temporales asociadas a procesos de
atornillado, evaluando su capacidad para identificar patrones anémalos y
optimizar la deteccion de fallos.

e Comparar el rendimiento y la capacidad de discriminacion de distintas
métricas de similitud para series temporales, evaluando su impacto en la
identificacion de fallos.

e Analizar el impacto de la seleccion y ajuste de los parametros clave de los
algoritmos de clustering sobre la calidad de la segmentacion y la robustez en
la deteccion de patrones anémalos en datos industriales de atornillado.

e Disenar y validar dos indices métricos propios para evaluar la calidad del
agrupamiento y la deteccion de anomalias en los procesos de atornillado
industrial.

e Desarrollar un mecanismo de toma de decision basado en un operador de
agregacion para seleccionar las mejores configuraciones de clustering,
integrando métricas cuantitativas y facilitando la eleccion éptima en la
deteccion de anomalias.

1.3. Organizacion de la memoria

La memoria de este TFG se estructura en 5 capitulos, comenzando por la
introduccion y los objetivos de este mismo. En el Capitulo 2, se explora el marco
tedrico y el estado del arte, cubriendo el proceso de atornillado y las técnicas de
clustering. El Capitulo 3 se centrara en la explicacion de la solucién propuesta y sus
distintos criterios y validaciones. En el Capitulo 4, se detalla la experimentacion del
proyecto, incluyendo el caso de uso, la metodologia (con sus pasos y la
implementacion de los algoritmos), los resultados obtenidos junto con sus tablas y
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conclusiones y las herramientas utilizadas. El Capitulo 5 se cerrara con conclusiones
y lineas futuras en las que poder continuar con el trabajo. Finalmente, se detalla la
bibliografia utilizada para la redaccion del trabajo.

Durante la elaboracion de este trabajo se ha contado con el apoyo de una
herramienta de generacion de textos basada en inteligencia artificial, concretamente
Perplexity Al, para la redaccion inicial y simplificacion de algunas secciones. Ademas
se ha utilizado Grok para la aplicacion de algunas funciones del codigo.
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2. EL USO DEL CLUSTERING EN EL PROCESO DE
ATORNILLADO

2.1. El proceso de atornillado

El proceso de atornillado es una técnica de unidbn mecanica ampliamente utilizada
en la industria debido a su versatilidad, facilidad de implementacion y capacidad
para permitir el desmontaje y reutilizacion de componentes. Este procedimiento,
fundamental en sectores como la automocion, la aeronautica, la electronica y la
magquinaria pesada, consiste en aplicar un par de apriete a un tornillo para generar
una fuerza de sujecidon que garantice la integridad estructural y funcional de las
piezas unidas. La calidad de una unién atornillada depende de multiples factores,
como la seleccion adecuada de materiales, el control preciso del par y el angulo de
giro, y la monitorizacion de las fases del proceso, lo que ha impulsado el desarrollo
de herramientas y metodologias avanzadas para su analisis y optimizacion.

Empezaremos explorando la curva de atornillado, una representacion grafica del par
frente al angulo que revela como se comporta una unién durante el proceso. Se
describiran sus fases principales, los parametros clave para su analisis y su
importancia en el control de calidad industrial. A continuacién, se abordaran las
tipologias de fallo en el atornillado, identificando problemas comunes como el sub-
apriete, el sobre-apriete, el aflojamiento, la rotura, el cruce de roscas y la corrosion.
Finalmente, se analizara el uso de clustering para detectar anomalias, centrandonos
en el analisis de series temporales y algoritmos como TimeSeriesKMeans (TSKM) y
K-Shape, que ayudan a identificar patrones y desviaciones, mejorando la eficienciay
la calidad en procesos industriales automatizados. Se incluiran también Ia
explicacion de los indices de validacion del clustering (Silhouette, Calinski-Harabasz,
Davies-Bouldin) y el operador de agregacion WOWA (Weighted Ordered Weighted
Average) para evaluar la calidad de los agrupamientos.

2.1.1. Curva de atornillado

La curva de atornillado, también conocida como curva par-angulo, es hoy en dia una
pieza clave para vigilar y mejorar los procesos de union por tornillo en la industria.
En esencia, grafica el par de apriete frente al angulo de giro del tornillo mientras
avanzamos en el atornillado. Gracias a ella podemos interpretar como se comporta
la unién, detectar fallos incipientes y ajustar los parametros de montaje para obtener
resultados mas fiables [6] [7].
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En la practica, esta curva se genera con atornilladoras equipadas con sensores de
par y de angulo que recogen datos en cada instante. Contar con esa informacion en
tiempo real resulta imprescindible para asegurar la calidad de la unién, sobre todo
en sectores exigentes como la automocion, la electronica o la maquinaria pesada,
donde un error puede tener consecuencias muy costosas [10].

Fases caracteristicas de la curva par-angulo

Una curva par-angulo tipica presenta varias fases bien diferenciadas. Al inicio del
proceso, en la fase de asentamiento, el tornillo entra en contacto con la superficie
de la pieza y comienza a girar, registrandose un aumento progresivo del angulo con
un par relativamente bajo. Esta fase corresponde al ajuste inicial y a la eliminacion
de holguras entre las superficies en contacto [7].

A continuacién, se desarrolla la fase elastica, donde el material bajo la cabeza del
tornillo y en la rosca comienza a deformarse de manera reversible. En este tramo, la
relacion entre el par y el angulo suele ser aproximadamente lineal, reflejando la
rigidez del conjunto. Finalmente, se alcanza la fase plastica, caracterizada por un
aumento mas lento del par a medida que el material cede y se produce deformacion
irreversible. El punto maximo de la curva corresponde al par de fallo, seguido en
ocasiones por una caida brusca que indica la rotura del tornillo o del material [11].

Curva par-angulo en proceso de atornillado

Par (N.m)

—— Curva par-angulo simulada
Fin fase asentamiento
——- Inicio fase plastica

0 T T T T T
0 20 40 60 80 100 120 140

Angulo de giro (*)

Figura 1: Curva de pary angulo. Fuente: Propia (Python)

El analisis detallado de la curva par-angulo (Figura 1) permite extraer parametros
criticos para el control de calidad y la optimizacion del proceso de atornillado. Entre
los mas relevantes se encuentran al final de la fase de asentamiento, el par maximo
o de fallo, el angulo de fluencia (punto donde comienza la deformacion plastica) y la
pendiente de la fase elastica (indicativa de la rigidez de la unién) [11].
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La interpretacion de estos parametros es esencial para detectar anomalias como el
sub-apriete (par maximo bajo y pendiente reducida), el sobre-apriete (par excesivo y
angulo de fluencia bajo), o defectos como el cruce de roscas, que suele manifestarse
como oscilaciones o irregularidades en la curva (Figura 2). En entornos industriales,
estas curvas registradas se comparan automaticamente con plantillas de referencia.
Cualquier desviacion importante dispara una alerta en tiempo real y permite
descartar la pieza defectuosa antes de continuar con la linea de produccion [7].

Comparacion de curvas par-angulo bajo diferentes condiciones

—— Apriete normal
Sub-apriete

Par (N.m)
-
1

0 T T T T T T 1
0 20 40 60 80 100 120 140

Angulo de giro ()

Figura 2: Comparacion de curvas bajo diferentes condiciones. Fuente: Propia (Python)

El uso sistematico de la curva par-angulo es clave en la automatizacion del control
de calidad en lineas de montaje. Por ejemplo, en la fabricacion de inversores para
automocion, la optimizacion del par de apriete basada en el analisis de la curva ha
permitido reducir significativamente los fallos por vibracion y desconexion de
componentes, ajustando el par 6ptimo para cada tipo de union [11].

Cuando hablamos de montaje automatizado con varios tornillos, entran en juego
sistemas de vision artificial y herramientas de analisis de senal. Estas soluciones
capturan cada curva de par-angulo y la cotejan al instante con un patron de
referencia. Para medir cuan parecidas son, se aplican métricas como la distancia de
Fréchet, que cuantifica de forma precisa cualquier variacion sutil. Al detectar una
desviacion significativa, el sistema alerta automaticamente, lo que abre la puerta a
un control predictivo y evita costes extra derivados de piezas mal montadas [7].

Mas alla de la recogida de datos, también podemos anticipar el comportamiento de
la union gracias a modelos matematicos y simulaciones (Figura 3). Por un lado,
ajustando funciones gaussianas a la curva; por otro, recurriendo a métodos de
elementos finitos. Esto resulta especialmente Util en aplicaciones exigentes, como
las bombas hidraulicas, donde identificar el par de apriete ideal puede minimizar la
deformacion geométrica y alargar la vida util del conjunto atornillado [6].
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En la literatura técnica se han propuesto modelos que describen la curva como una
combinacion de fases elasticas y plasticas, permitiendo ajustar parametros como la
rigidez, la resistencia maxima y la ductilidad del sistema. Estos modelos son
especialmente (tiles para el diseno de uniones criticas y la validacion de
procedimientos de montaje en sectores como la aeronautica o la automocion [6].

Curva par-angulo con ruido simulado

—— Curva base
Curva con ruido e

Par (N.m)

T T T T
0 20 40 60 80 100 120 140
Angulo de giro (°)

Figura 3: Curva con ruido simulado. Fuente: Propia (Python)

En definitiva, la curva par-angulo es una herramienta indispensable para el analisis,
control y optimizacion de procesos de atornillado en la industria moderna. Su
interpretacion permite garantizar la integridad estructural de las uniones, detectar
defectos en tiempo real y reducir costes de fabricacion. La integracion de sensores
avanzados, algoritmos de analisis de senales y técnicas de inteligencia artificial abre
nuevas posibilidades para el control automatico y predictivo de la calidad en
procesos de ensamblaje.

2.1.2. Fases del atornillado

En este subcapitulo se describen las etapas principales que caracterizan el apriete
del tornillo, desde el contacto inicial, pasando por la deformacion elastica y plastica
del material, hasta el momento critico de falla o rotura.

La Figura 4 ilustra la curva par-angulo junto con sus fases caracteristicas que se
tratan posteriormente.
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Curva par-angulo y fases del atornillado

—— Curva par-angulo simulada
Asentamiento

4 1 Elastica

Plastica

Fallo

Par (IN-/m)

0 20 40 60 80 100 120 140
Angulo de giro (°)

Figura 4: Curva par-angulo y sus fases. Fuente: Propia (Python)

1. Fase de asentamiento

La primera etapa del atornillado es la fase de asentamiento (Figura 5). En esta fase,
el tornillo comienza a girar y entra en contacto con la superficie de la pieza a unir.
Inicialmente, el par de apriete (par) es bajo y el angulo de giro aumenta rapidamente.
Durante este periodo, se eliminan las holguras entre las superficies, se ajustan las
imperfecciones y se acomodan las rugosidades de contacto. El objetivo principal de
esta fase es lograr el contacto efectivo entre las superficies, asegurando que el
tornilloy la rosca estén correctamente alineados y que la fuerza de friccion comience
a actuar [7].

Fase de asentamiento en la curva par-angulo

1.6 4

1.4 4

1.2 4

1.0 4

0.8 1

Par ((N-m)

0.6

0.4 4

0.2 4

0.0

T T

0 5 10 15 20 25 30 35 40
Angulo de giro (°)

Figura 5: Fase de asentamiento. Fuente: Propia (Python)

19



2. Fase de apriete (fase elastica)

Una vez superado el asentamiento, el proceso entra en la fase de apriete o fase
elastica (Figura 6). Aqui, el par de apriete comienza a incrementarse de manera mas
pronunciada en relacion con el angulo de giro. El material bajo la cabeza del tornillo
y en la rosca se deforma elasticamente, es decir, de forma reversible. En esta fase,
la relacion entre el par y el angulo es aproximadamente lineal, lo que refleja la rigidez
del conjunto tornillo-material. El objetivo es alcanzar el nivel de tensién necesario
para asegurar la unién sin exceder el limite elastico del material [11].

Fase elastica en la curva par-angulo

Par (N-m)

-=-=Inicio fase elastica
-=~ Fin fase elastica

8.----------------------- -

20 30 40 50 60 70 80
Angulo de giro (°)

100

Figura 6: Fase elastica. Fuente: Propia (Python)

3. Fase de fluencia (fase plastica)

Si se continda aplicando par mas alla del limite elastico, se entra en la fase de
fluencia o fase plastica (Figura 7). En este tramo, el material comienza a deformarse
de manera irreversible. El par de apriete sigue aumentando, pero la pendiente de la
curva disminuye, indicando que el angulo de giro crece mas rapidamente respecto al
aumento de par. Esta fase es critica, ya que una deformacion plastica excesiva puede
comprometer la integridad de la union y llevar al fallo del tornillo o del material unido
[6].

Fase plastica en la curva par-angulo

4.8 -

>
o

Par (N-m)
F<
>

4.2 1
=== Inicio fase plastica
-==Inicio fase de fallo

4.0 1
80

e e ittt

100 110
Angulo de giro (°)

-

Figura 7: Fase plastica. Fuente: Propia (Python)
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4. Fase de fallo

Finalmente, si el proceso de apriete continla, se alcanza el par maximo o par de fallo
(Figura 8). Este punto representa la maxima resistencia que puede soportar la union
antes de que ocurra la rotura del tornillo, el deslizamiento de la rosca o la fractura
del material. Tras este punto, el par puede disminuir abruptamente, aunque el angulo
siga aumentando, lo que indica la pérdida total de la capacidad de carga de la unién
[11].

Fase de fallo en la curva par-angulo

4.75 - -==Inicio fase de fallo

4.50 A

4.25 A

4.00 A

3.75 4

Par (NI-nm)

3.50 1

3.25 4

3.00 A

s ————_————_— . . o . 2. ]

110 115 120 125 130 135 140 145 150 155
Angulo de giro (°)

Figura 8: Fase de fallo. Fuente: Propia (Python)

El anélisis detallado de estas fases permite detectar anomalias como sub-apriete
(cuando no se alcanza la fase elastica adecuada), sobre-apriete (cuando se excede
la fase plastica) o defectos como el cruce de roscas, que pueden manifestarse como
irregularidades en la curva par-angulo. La monitorizacion en tiempo real de estas
fases es esencial para la automatizacion del control de calidad y la reduccion de
defectos en la produccion industrial [7].

El conocimiento profundo de las fases del atornillado permite optimizar los procesos
de montaje, seleccionar los parametros de apriete adecuados y prevenir fallos
mecanicos costosos. La representacion grafica mediante la curva par-angulo y el
analisis de sus distintas fases constituyen herramientas imprescindibles para
ingenieros y técnicos en la industria moderna.
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2.1.3. Tipologias de fallo en el atornillado

El atornillado es uno de los métodos de unidon mas utilizados en la industria, tanto
por su sencillez como por la posibilidad de desmontaje y reutilizaciéon de
componentes. Sin embargo, la fiabilidad de una union atornillada depende de
numerosos factores y, en la practica, pueden aparecer diferentes tipologias de fallo
que comprometen la seguridad, la funcionalidad o la durabilidad del conjunto. El
conocimientoy la prevencion de estos fallos es esencial para el diseno, la fabricacion
y el mantenimiento de cualquier sistema mecanico [1].

El analisis de las tipologias de fallo en el atornillado permite establecer
procedimientos de control de calidad, seleccionar los pares de apriete adecuados y
disenar sistemas de monitorizacion que detecten anomalias en tiempo real. El uso
de curvas par-angulo, el analisis estadistico de los procesos y la formacion del
personal son herramientas clave para reducir la incidencia de fallos y mejorar la
fiabilidad de las uniones atornilladas [1].

Fallo por sub-apriete

El sub-apriete ocurre cuando el par aplicado al tornillo es insuficiente para garantizar
la correcta sujecion de las piezas. Esto puede deberse a un error en el ajuste de la
herramienta, a la falta de control en el proceso 0 a la presencia de lubricantes o
contaminantes en la rosca. El principal riesgo del sub-apriete es la aparicion de
holguras, que pueden derivar en movimientos relativos, ruidos, pérdida de
estanqueidad y, en casos extremos, el desensamblaje espontaneo de la union.
Ademas, el sub-apriete favorece la fatiga por micro-movimientos, acelerando el
desgaste de las superficies de contacto [1].

Fallo por sobre-apriete

El sobre-apriete se produce cuando el par aplicado excede el valor recomendado
para el tornillo o el material de las piezas a unir. Este exceso de carga puede provocar
la deformacion plastica del tornillo, el deterioro de la rosca o incluso la rotura por
traccion o cizalladura. El sobre-apriete también puede inducir tensiones residuales
que, a largo plazo, favorecen la aparicion de grietas o la fatiga del material. En
aplicaciones criticas, como la automocion o la aeronautica, el sobre-apriete es una
de las principales causas de fallo catastréfico de uniones atornilladas [6].

Fallo por aflojamiento

El aflojamiento de los tornillos es un problema habitual en uniones que estan
sometidas a vibraciones, cargas dinamicas o variaciones térmicas. Este fendmeno
puede deberse a un apriete insuficiente al inicio o0 a la relajacion progresiva de las
tensiones internas, provocada por la fluencia de los materiales o por deformaciones
en las superficies de contacto. Cuando se produce un aflojamiento progresivo, la
fuerza de sujecion disminuye y, con el tiempo, puede perderse completamente la
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funciéon estructural de la unién. Para prevenir esta situacion, es comun utilizar
elementos como arandelas de seguridad, adhesivos especiales o sistemas de
bloqueo mecanico [1].

Fallo por rotura del tornillo

La rotura del tornillo representa uno de los fallos mas criticos en uniones atornilladas.
Generalmente, esta asociada a un exceso de apriete, defectos de fabricacion —como
microgrietas o inclusiones en el material— o0 a la aplicacion de cargas superiores a
las especificadas en el diseno. Dependiendo del tipo de esfuerzo predominante, la
rotura puede producirse por traccion, cizalladura o fatiga. En muchos casos, la
fractura comienza en zonas de alta concentracion de tensiones, como la raiz de la
rosca o la transicion entre la cabeza y el vastago [11].

Fallo por cruce de roscas

El cruce de roscas se produce cuando el tornillo no sigue el camino correcto en la
rosca de la pieza, generando un contacto anémalo entre los filetes. Esto puede
deberse a un desalineamiento durante el montaje, a la presencia de suciedad o a
defectos en la fabricacion de las roscas. El cruce de roscas provoca un aumento
irregular del par, danos irreversibles en la rosca y, en muchos casos, la imposibilidad
de desmontar el conjunto sin destruirlo [1].

Fallo por corrosion y desgaste

La corrosiony el desgaste son mecanismos de fallo a largo plazo que afectan
especialmente a uniones expuestas a ambientes agresivos 0 a movimientos relativos
entre las piezas. La corrosion puede debilitar el tornillo y la rosca, facilitando el
aflojamiento o la rotura, mientras que el desgaste reduce la capacidad de
transmision de carga y puede generar holguras. La seleccion adecuada de materiales
y recubrimientos, asi como el mantenimiento preventivo, son esenciales para
minimizar estos riesgos [6].

Las uniones atornilladas, a pesar de su aparente simplicidad, pueden fallar por
multiples mecanismos si no se controlan adecuadamente los parametros de montaje
y las condiciones de servicio. La identificacion y prevencion de los distintos tipos de
fallo es fundamental para garantizar la seguridad y la durabilidad de los productos
industriales.
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2.2. Uso de Clustering para Deteccion de Anomalias

2.2.1. Series temporales

Las series temporales constituyen una de las estructuras de datos mas relevantes y
frecuentes en el ambito cientifico, tecnolégico e industrial. Se definen como una
secuencia ordenada de observaciones recogidas a intervalos regulares de tiempo, lo
que permite analizar la evolucion de un fendmeno, identificar patrones, realizar
pronosticos y detectar anomalias [10]. A diferencia de otros tipos de datos, las series
temporales incorporan explicitamente la dimension temporal, lo que implica que el
ordeny la dependencia entre los datos son aspectos fundamentales para su analisis.

El estudio de series temporales es esencial en campos tan variados como la
economia (por ejemplo, para el analisis de precios y mercados) [12], la meteorologia
(temperaturas, precipitaciones) [13], la energia [14], la medicina (senales
biomédicas como el electrocardiograma) [15], la ingenieria (monitorizacion de
maquinaria) [16], y muchos otros. La capacidad de modelar y comprender la
dindamica temporal de estos procesos permite no solo describir su comportamiento
pasado, sino también anticipar su evolucion futura y tomar decisiones
fundamentadas.

El analisis de series temporales tiene particularidades que lo diferencian del
tratamiento convencional de datos. Entre sus aspectos mas relevantes se
encuentran:

o Dependencia temporal: Los valores de la serie suelen estar influenciados por
los anteriores, lo que se conoce como autocorrelacion. Esta propiedad es
clave para el desarrollo de modelos que intentan predecir el comportamiento
futuro.

o Tendencias y estacionalidades: Muchas series muestran patrones repetitivos
0 cambios graduales a lo largo del tiempo. Detectar estos componentes
permite comprender mejor el sistema y construir modelos mas precisos.

o Presencia de ruido y valores atipicos: Las series pueden contener ruido
aleatorio o anomalias que enmascaran la senal real. Es necesario aplicar
técnicas que filtren estos elementos para evitar interpretaciones erroneas.

e No estacionalidad: Algunas series cambian su comportamiento estadistico
con el tiempo, lo que dificulta su modelado. En estos casos, se suelen aplicar
transformaciones para estabilizar la varianza o la media, o se opta por
modelos especificos.

Debido a estos desafios, se han desarrollado multiples enfoques, que van desde
métodos estadisticos tradicionales —como ARIMA o los modelos de suavizado— hasta
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técnicas mas modernas basadas en inteligencia artificial y aprendizaje profundo
[10].

Las series temporales son fundamentales para entender como evolucionan muchos
procesos reales. En la industria, su analisis permite monitorizar operaciones,
anticipar fallos en equipos, detectar comportamientos anémalos y mejorar la
eficiencia en la produccion. Por ejemplo, en el sector energético se utilizan para
prever el consumo y optimizar la distribucion de recursos [14]. En medicina, el
analisis de senales como el ECG (Electrocardiografia) o las ondas cerebrales
contribuye al diagnéstico y seguimiento clinico [15].

Debido a la digitalizacion y la expansion del Internet de las Cosas (loT), la cantidad
de datos temporales ha crecido enormemente. Esto ha hecho imprescindible contar
con herramientas avanzadas que permitan aprovechar esta informacion. Algoritmos
como K-Shape o TimeSerieskMeans han demostrado ser eficaces para clasificar
series similares y extraer patrones Utiles para la toma de decisiones [17].

Las técnicas para trabajar con series temporales son diversas y se pueden agrupar
en varias categorias:

e Modelos tradicionales: Incluyen métodos como AR (AutoRegressive), MA
(Moving Average), ARMA (AutoRegressive Moving Average), ARIMA
(AutoRegressive Integrated Moving Average) o SARIMA (Seasonal
AutoRegressive Integrated Moving Average). Todos ellos utilizan
combinaciones lineales de valores anteriores y errores para representar la
evolucion de la serie.

e« Modelos de descomposicion: Separan la serie en componentes como
tendencia, estacionalidad y ruido. Esta descomposicion facilita tanto el
analisis como la elaboracion de predicciones.

o Técnicas de suavizado: Métodos como el suavizado exponencial son Utiles
especialmente para hacer predicciones a corto plazo o cuando la serie
presenta poca estructura.

e Modelos multivariantes: Técnicas como VAR (Vector AutoRegressive) o la
cointegracion permiten analizar series relacionadas entre si, ofreciendo una
vision mas completa del sistema.

e Enfoques de machine learning: Aqui se encuentran algoritmos de
clasificacion, agrupamiento y redes neuronales, especialmente las de tipo
recurrente. Estas técnicas resultan muy eficaces para captar relaciones
complejas y anticipar eventos futuros.

Cada tipo de enfoque tiene sus propias ventajas, y su eleccion depende del tipo de
datos disponibles, del comportamiento de la serie y de los objetivos especificos del
analisis.

El analisis de series temporales es una disciplina en constante evolucion.
Actualmente, la integracion de técnicas de machine learning y deep learning esta
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permitiendo abordar problemas cada vez mas complejos, como la prediccion en
tiempo real, la deteccion automatica de anomalias y el clustering de grandes
volimenes de datos temporales. Ademas, la combinacion de analisis de series
temporales con otras fuentes de datos (por ejemplo, datos espaciales o
contextuales) esta abriendo nuevas posibilidades en areas como la industria 4.0, la
salud digital y la gestion inteligente de infraestructuras.

En resumen, el analisis de series temporales es una herramienta imprescindible para
entender, modelar y anticipar el comportamiento de sistemas dinamicos en un
mundo cada vez mas conectado y orientado a los datos.

2.2.2. TimeSerieskKMeans

El algoritmo TimeSeriesKkMeans es una extension especializada del método K-Means
clasico disenada para series temporales, capaz de manejar la dimensionalidad
temporal y la variabilidad en la longitud de los datos [18]. A diferencia de los
algoritmos de clustering tradicionales que operan en espacios euclidianos estaticos,
TimeSerieskMeans incorpora métricas especificas para secuencias temporales,
como la Dynamic Time Warping (DTW)y su variante diferenciable softDTW,
permitiendo comparar patrones con deformaciones temporales no lineales [19]. Esta
capacidad es crucial en procesos industriales como el atornillado, donde las senales
de par-angulo presentan variaciones en duracion y velocidad [10].

2.2.2.1. Dynamic Time Warping (DTW)

DTW calcula la similitud entre dos series temporales X = (x1,%3,...,x,) € Y =
(y1,¥Y2, -, ¥n) mediante un alineamiento no lineal que minimiza la distancia

acumulativa: DTW (X, Y) = minn\/z(i‘j)@ d)(xi'yj)

donde:

e T €S una trayectoria de alineacion que satisface:

- Monotonicidad: i, < ixy1,Jkx < Jr+1
- Condiciones de frontera: m; = (1,1), T, = (n,m)
- Continuidad: iy 1 — iy < 1,igs1 —Jjr <1
e La funcion de costo ¢ suele ser la distancia euclidiana qb(xl-,y]-) =

2 L o . .
|x; = ;||". Esta métrica es invariante a compresiones/expansiones

temporales, esencial para comparar ciclos de atornillado con diferentes
velocidades. [20]
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Esta métrica hace que el agrupamiento sea mucho mas robusto, ya que detecta
patrones similares, aunque ocurran en momentos distintos o a distintas velocidades,
pudiendo detectar comportamientos anémalos o patrones repetitivos en procesos
industriales.

Los centroides de los clisteres no se calculan como simples medias, sino mediante
un promedio especial basado en DTW, lo que garantiza que el centroide represente
fielmente la forma temporal tipica del grupo.

2.2.2.2. Soft Dynamic Time Warping (softDTW)

SoftDTW suaviza la minimizacion de DTW mediante un parametro de regularizacion
y > 0:
_(AgAXY)F
softDTW (X,Y) = —ylog e Y
TEA

donde:

e Aes el conjunto de todas las trayectorias de alineacion

« A(X,Y) es la matriz de costos con A;;= ||x; — yj||2

e (-,7)r es el producto de Frobenius. Esta formulacién es diferenciable respecto
a XeVY, permitiendo su uso en métodos de optimizacidbn basados en
gradientes. [19]

2.2.2.3. Implementacion del Algoritmo TimeSeriesKMeans

El algoritmo sigue un esquema iterativo similar al K-Means, con adaptaciones clave:
Configuracion Inicial
El algoritmo TimeSeriesKMeans requiere:

e Entrada de datos: Tensor 3D de forma (n_series, n_puntos, n_caracteristicas)

e Preprocesamiento: Escalado de series
con TimeSeriesScalerMeanVariance() para normalizar media y varianza [21].

Parametros Clave

Parametro Descripcion Valor por defecto

n_cluasteres Numero de clisteres a formar (k) 3
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Max_iter NUmero maximo de iteraciones 50
tol Tolerancia; criterio de convergencia le-6
N_init Veces que se ejecuta con distintas 1
semillas
metric Métrica de distancia euclidean
Max_iter_barycenter | Iteraciones maximas para calcular el 100
centroide
init Método de inicializacon de centroides k-means++
Random_state Semilla para generador aleatorio None

Tabla 1: Parametros Clave TimeSeriesKMeans. Fuente: Propia

Flujo del algoritmo:

1. Inicializacion de centroides:

e Selecciona k series aleatorias como centroides iniciales usando k-
means++. [22]

2. Asignacion a clisteres:

e Calcula la distancia entre cada serie y los centroides usando
DTW/softDTW. [22]

e Asigna cada serie al clister con centroide mas cercano.
3. Actualizacién de centroides:

e Recalcula centroides mediante DTW Barycenter Averaging (DBA) [20]:
Uk = a'rgmin ZXiECk DTW (:ulXi)Z

4. Convergencia:

e Repite pasos 2-3 hasta que los centroides se estabilicen o se
alcance max_iter.

Aplicaciones destacadas

TimeSerieskMeans se aplica en diversas areas donde las series temporales
presentan desplazamientos o distorsiones temporales. Por ejemplo, en finanzas se
usa para identificar mecanismos subyacentes en datos de mercado agrupando
series segln sus patrones de retorno (mejorando la inferencia causal) [12]. En
entornos industriales, puede detectar anomalias en procesos a partir de sensores
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agrupando comportamientos normales y resaltando desviaciones atipicas [16].
También se emplea para el analisis de series multimodales (varias senales
simultaneas), ajustando diferencias de fase; por ejemplo, en hidrologia se han
alineado perfiles de contaminantes con datos de caudal mediante DTW para agrupar
eventos similares [13].

En general, TimeSerieskKMeans mejora la calidad del agrupamiento frente a k-means
estandar al capturar la dependencia temporal de las series. Al permitir la
deformacion temporal (DTW), genera cllisteres mas coherentes cuando las series
estan desfasadas o distorsionadas. Sin embargo, su uso implica un mayor costo
computacional debido a la complejidad de DTW. A continuacion, se resumen ventajas
e inconvenientes clave.

Ventajas

e Manejo de alineamiento temporal: Al usar DTW/Soft-DTW, puede agrupar
series de distinta longitud y compensar desplazamientos de fase. Captura
similitudes de forma independientemente del desfase temporal.

¢ Resultados mas robustos: Supera al k-means clasico con distancia euclidiana
en series donde los patrones estan desplazados en el tiempo (p.ej.
financieros). Mejora la agrupacion e interpretabilidad de los resultados en
datos temporales.

e Escalable y convergente: Hereda las propiedades de k-means: es
relativamente simple de implementar y converge (alcanzando un minimo
local) tras unas iteraciones. Al ser iterativo, permite paralelizar ciertas
operaciones (p.ej. calculo de distancias).

e Flexibilidad: Puede trabajar con datos multivariantes (cada serie puede tener
multiples caracteristicas) y opciones de inicialinzacion (k-means++ o
aleatoria). Ademas, Soft-DTW es diferenciable, lo cual facilita su uso en
optimizacion avanzada.

Inconvenientes

e Costo computacional elevado: DTW tiene complejidad 0(n?) en la longitud de
la serie, por lo que TimeSerieskMeans es mas lento que k-means clasico (que
usa 0(n). El calculo iterativo del barycenter DTW es especialmente costoso
en series largas.

e Eleccion de k e inicializacion: Al igual que k-means, hay que fijar el nimero de
clisteres a priori y los resultados dependen de los centroides iniciales. A
menudo se ejecuta varias veces (n_init>1) para mitigar este efecto.

e Sensibilidad a valores atipicos: K-means puede verse afectado por outliers
(un outlier puede arrastrar el centroide o formar su propio cluster). Se
recomienda preprocesar o eliminar atipicos si existen.

e Limitaciones de la métrica: DTW no es una métrica de distancia en sentido
estricto (no cumple triangular), y en algunos casos deformar excesivamente
las series puede no ser deseable. Ademas, requiere series del mismo tamano
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cuando se usa métrica euclidiana (para esa métrica alternativa); con DTW
esto no aplica.

La técnica TimeSerieskMeans ha sido aplicada con éxito en el analisis de perfiles de
atornillado en lineas de ensamblaje automotriz, donde la identificacion de patrones
anémalos en curvas par-tiempo es fundamental para garantizar la calidad del
proceso. En el estudio de Carlos Betancort [23], se emplearon algoritmos de
clustering como TimeSeriesKMeans, implementados a través de la libreria tslearn,
para agrupar series temporales correspondientes a operaciones de atornillado.

El objetivo era detectar perfiles de apriete desviados respecto a los patrones
normales mediante la comparacion de formas temporales. Los autores subrayan que
este tipo de algoritmos permite diferenciar operaciones correctas de posibles
defectos o errores, gracias a su capacidad para capturar la morfologia de la senal sin
requerir un alineamiento explicito en el tiempo. Este enfoque resulta especialmente
atil en entornos de produccion donde las senales pueden presentar ligeras
variaciones temporales que no necesariamente implican una pérdida de calidad.

2.2.3. KShape

En este contexto, el algoritmo K-Shape, propuesto por [24], representa un avance
significativo en el clustering de series temporales. K-Shape agrupa las series no solo
considerando la proximidad en términos de valores absolutos, sino evaluando la
similitud en la forma de las series, lo que permite identificar patrones comunes
incluso cuando las series presentan variaciones en escala o estan desplazadas en el
tiempo. Esta caracteristica lo hace especialmente Gtil en aplicaciones donde la forma
de la senal es mas relevante que su valor absoluto, como en el analisis de senales
biomédicas, vibraciones mecanicas o patrones de consumo energético.

El ndcleo del algoritmo K-Shape es la métrica de distancia denominada Shape-Based
Distance (SBD), que mide la similitud entre dos series temporales a través de la
correlacion cruzada normalizada [8]. Esta métrica es invariante a cambios en la
escala y al desplazamiento temporal, lo que permite comparar series que tienen la
misma forma, pero pueden estar desfasadas o presentar diferentes amplitudes.

Matematicamente, para dos series temporales X e Y, la distancia SBD se define
como:

CcC,(X,Y)
SBD (X,Y) =1 — max
W JRo(X, X) - Ro(Y, V)

donde:
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e CCyu(X,Y)es la correlacion cruzada entre X e Y con desplazamiento
temporal w.

e Ro(X,X) Ro(Y,Y)son las autocorrelaciones de X e Y en desplazamiento
cero.

La maximizacion sobre w permite encontrar el mejor alineamiento temporal entre las
dos series, capturando asi la maxima similitud en forma. Esta propiedad es esencial
para aplicaciones donde los eventos pueden ocurrir en diferentes momentos, pero
mantienen patrones similares.

A diferencia del K-Means tradicional, donde los centroides se calculan como la media
aritmética de los puntos asignados a cada cluster, en K-Shape los centroides
representan la forma promedio de las series temporales agrupadas. Para ello, se
resuelve un problema de optimizacion que busca maximizar la suma de correlaciones
cuadraticas entre el centroide y las series del clister:

Ui = arg max z (K- 17
k= oz
o Il

donde:

e u: candidato a centroide.
e (}: conjunto de series asignadas al cluster k.
e X;: serie temporal i-ésima en el cluster k.

Este problema se traduce en obtener el primer vector singular derecho (primer
autovector) de la matriz que contiene las series temporales del cluster, utilizando la
descomposicion en valores singulares (SVD). De esta forma, el centroide refleja la
forma dominante del clUster, lo que facilita la interpretacion y el analisis posterior.

El algoritmo K-Shape es una variante de K-Means especialmente disenada para
trabajar con series temporales. Su funcionamiento se basa en un proceso iterativo
en el que se alternan dos etapas principales: asignacion de series a grupos y
actualizacion de los centroides, respetando la estructura temporal de los datos. El
procedimiento sigue los siguientes pasos:

1. Inicializacion: Se seleccionan aleatoriamente k series como centroides
iniciales. Para mejorar la estabilidad y evitar resultados locales pobres, es
aconsejable utilizar técnicas como k-means++.

2. Asignacion: Cada serie se asigna al clister cuyo centroide presenta la mayor
correlacion cruzada normalizada, utilizando como métrica la distancia SBD
(Shape-Based Distance) [8].

3. Actualizacion de centroides: Se recalcula el centroide de cada grupo
aplicando descomposicion en valores singulares (SVD), con el fin de obtener
una forma promedio representativa del conjunto de series asignadas.
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4. Criterio de parada: El proceso se repite hasta que las asignaciones no
cambian o se alcanza un nimero maximo de iteraciones.

Este enfoque permite agrupar series temporales respetando tanto la forma como la
dindamica de las senales, incluso si existen diferencias en duracion, desplazamientos
temporales o presencia de ruido.

Este algoritmo trae consigo una serie de ventajas e inconvenientes:
Ventajas:

« Robustez ante escalas y desplazamientos: La métrica SBD permite que series
similares pero desfasadas o con diferentes amplitudes puedan agruparse
correctamente.

o Eficiencia computacional: K-Shape es significativamente mas rapido que
métodos como DTW, lo que lo hace adecuado para conjuntos de datos
grandes.

o Interpretabilidad: Los centroides representan formas promedio, lo que facilita
el analisis y la visualizacion de los resultados.

o Resistencia al ruido: El enfoque centrado en la forma es menos sensible a
valores atipicos y fluctuaciones aleatorias.

Limitaciones:

« Dependencia de la inicializacion: Al igual que otros algoritmos basados en K-
Means, los resultados pueden variar en funcion de la eleccion inicial de los
centroides.

o Diseno univariado: K-Shape esta enfocado a series de una sola variable. Su
uso con series multivariadas requiere adaptaciones o el uso de técnicas
complementarias.

o Falta de modelado temporal profundo: No capta relaciones complejas ni no
lineales como lo hacen los modelos basados en aprendizaje profundo.

El algoritmo K-Shape se ha aplicado con éxito en multiples dominios gracias a su
capacidad para capturar la forma de las series temporales. En ingenieria civil, se ha
empleado para clasificar senales de deformacion en infraestructuras como presas,
identificando zonas de comportamiento similar y posibles riesgos estructurales [25].
En el ambito del consumo energético, ha permitido analizar perfiles eléctricos en
edificios, facilitando una gestion mas eficiente y la optimizacién de tarifas [14]. En
procesos industriales, como el control de calidad del atornillado, K-Shape agrupa
curvas de par-angulo y detecta desviaciones que indican errores como sub-aprietes
o defectos mecanicos [24]. También se ha utilizado en mineria de datos para agrupar
series derivadas de redes sociales o analisis de videos, apoyando tareas de analisis
de sentimiento y multimedia [8].
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Para potenciar su rendimiento, se han desarrollado varias extensiones. Herramientas
paralelas y basadas en GPU, como Times-C, han incrementado la velocidad de
calculo hasta 345 veces, habilitando analisis en tiempo real [25]. Métodos como
Adaptive Piecewise Aggregate Approximation (APAA) simplifican las series
preservando las caracteristicas clave de la forma [26]. Finalmente, para datos
multivariados, se han propuesto modelos como T-GMRF (Time-varying Gaussian
Markov Random Fields), que extienden los principios de K-Shape a series con
multiples variables [27].

El algoritmo K-Shape también ha demostrado su utilidad en la industria,
particularmente en la monitorizacion de procesos como la soldadura por arco.
Giordano et al. [17] utilizaron K-Shape como método de referencia para agrupar
senales de corriente recogidas durante operaciones de soldadura automatizada.
Estas series temporales presentan patrones morfolégicos especificos que reflejan el
estado del proceso y el desgaste del electrodo.

El estudio mostré que K-Shape era capaz de identificar distintos grupos de senales
con una elevada coherencia interna, diferenciando entre soldaduras normales y
aquellas con variaciones potencialmente criticas. A través del analisis de forma que
caracteriza a K-Shape, los investigadores lograron extraer perfiles prototipicos
representativos, lo que facilité el diagnéstico del proceso y la deteccion de posibles
anomalias de manera no invasiva y sin necesidad de etiquetas previas.

El algoritmo K-Shape es una herramienta eficaz y eficiente para el analisis de series
temporales, especialmente cuando el objetivo es agrupar senales en funcién de su
forma. Su tolerancia a desplazamientos, escalas y ruido, unida a su bajo coste
computacional y facilidad de interpretacion, lo convierte en una opcion atractiva en
entornos industriales y cientificos.

Las recientes mejoras en rendimiento y su extension a datos multivariados amplian
aln mas sus posibilidades. Como linea futura, seria interesante explorar su
combinacion con técnicas de aprendizaje profundo para abordar problemas de
clustering en linea y el analisis de series complejas.

2.2.4. Indices de valoracién del clustering

En el analisis de clustering, después de agrupar los datos, resulta esencial evaluar
la calidad de los clusteres formados. Para este fin, se utilizan tres indices comunes:
el Silhouette, el Calinski-Harabasz (CH) y el Davies-Bouldin (DB). Cada uno de ellos
mide aspectos como la cohesion interna de los cllsteres y la separacion entre ellos,
lo que permite determinar el nidmero 6ptimo de clisteres o comparar diferentes
algoritmos.
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El indice Silhouette evalla cOmo se ajusta cada punto a su cllister en comparacion
con los clusteres cercanos. Calcula una puntuaciéon entre -1 y 1 para cada punto:
valores altos indican que el punto esta bien colocado y separado de otros clUsteres,
mientras que valores negativos sugieren que podria pertenecer a otro cluster. Este
indice sirve para validar la calidad general del clustering y seleccionar el valor 6ptimo
del ndmero de clisteres. [28]

La féormula que describe la métrica:

b(i) — a(i)
max(a(i), b(i))

Silhouette =

Donde:

e Qa(i) es la distancia media del punto ia todos los demas puntos dentro de su
mismo cluster (mide la cohesion interna).

e b(i) es la minima distancia media del punto ia todos los puntos del cllster
mas cercano (mide la separacion).

El indice Calinski-Harabasz, conocido también como criterio de razén de varianza,
compara la dispersion dentro de los clisteres con la dispersion entre ellos: un valor
mas alto indica un clustering mejor, con clisteres compactos y bien separados. Se
emplea para comparar particiones y encontrar el nimero ideal de clisteres. [29]

La formula que describe la métrica:

_ BCSS/(k—1)
- WCSS/(n—k)

Donde:

e BCSS es la suma de cuadrados entre clisteres (separacion)

e WCSS es la suma de cuadrados dentro de clusteres (compacidad)
e k es el namero de clUsteres.

e n es el nUmero total de puntos.

El indice Davies-Bouldin mide la similitud entre cllsteres a partir de la distancia entre
sus centros y el tamano de los clisteres. Valores bajos senalan un clustering de
mayor calidad, con grupos distintos y sin solapamientos. Ayuda a validar la distincion
de los grupos y a optimizar parametros. [30]

La formula que describe la métrica:
k
1
DB = Ez maxjiiRij
i=1
Donde:
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* R;; representa la similitud entre los clisteres iy j, definido como la relacion

entre la dispersion promedio de ambos cllsteres y la distancia entre sus
centroides.

Estos indices permiten justificar los resultados de manera objetiva, mas alla de las
visualizaciones.

2.2.5. Criterio de valoracion

En el contexto de la evaluacion de las configuraciones del clustering, se emplea el
operador Weighted Ordered Weighted Averaging (WOWA) para combinar varios de los
indices propuestos, asignando pesos a cada uno. Este operador permite obtener una
medida Unica y ponderada que indica si una configuracion es adecuada,
considerando tanto la importancia relativa de cada indice como su orden en términos
de rendimiento.

El operador WOWA es una extension del Ordered Weighted Averaging (OWA),
propuesto por Yager en 1988, que integra dos conjuntos de pesos:

e Pesos de criterio (p;): reflejan la relevancia intrinseca de cada indice (por
ejemplo, mayor peso a la homogeneidad si es critica).

e Pesos de orden (w;): ponderan la posicion de los valores una vez ordenados
(por ejemplo, priorizar los mejores o peores desempenos).

La combinacion de ambos permite modelar comportamientos complejos, desde el
optimismo (enfocarse en los mejores valores) hasta el pesimismo (atender los
peores), o un equilibrio intermedio. En clustering, WOWA genera una puntuacion
global que no solo promedia, sino que ajusta estratégicamente segln el objetivo:
maximizar separacion, compactacion o deteccién de anomalias.

Matematicamente, para un conjunto de indices x4, x5, ..., X;yordenados de mayor a
menor, WOWA se define como:

m

WOWA(xq, ..., Xm) = Z Vi ' X;

i=1

donde los pesos agregados v; se construyen a partir de p y w mediante una funcion
de cuantificacion. Esto asegura que el resultado sea monétono y compensatorio
controlado, evitando que un indice dominante oculte fallos en otros.

En la practica, WOWA sirve para agregar valores de multiples indicadores de manera
equilibrada, priorizando aquellos con mayor relevancia o ajustando segun el
contexto, lo que facilita la comparacion de diferentes configuraciones y la seleccion
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de la mas o6ptima. En aplicaciones de clustering, ayuda a resolver problemas de
multicriterio al proporcionar una puntuacion global que refleja la calidad general sin
ignorar las diferencias entre los indices. Por ejemplo, si se desea una configuracion
robusta ante ruido, se puede asignar mayor peso al indice que mida homogeneidad
interna; si el objetivo es deteccion de anomalias, se prioriza la separacion entre
clisteres.

La principal ventaja de WOWA frente a promedios ponderados simples radica en su
capacidad para modelar criterios de decision mas complejos. Permite, por ejemplo,
priorizar configuraciones donde al menos dos indices superen un umbral minimo o
garantizar que el indice de peor rendimiento no sea excesivamente bajo, integrando
tanto la relevancia de cada métrica como su posicion relativa tras ordenar los
resultados. Esta propiedad resulta especialmente Util en entornos industriales,
donde la calidad del clustering debe cumplir requisitos operativos especificos, como
alta tolerancia a ruido, sensibilidad a defectos criticos o equilibrio entre
compactacion y separacion de clisteres. [31]
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3. PROCESO PARA LA DETECCION DE ANOMALIAS

El objetivo principal de esta propuesta es desarrollar una herramienta informatica
que ayude a detectar de manera eficiente anomalias en los procesos de atornillado
de motores industriales, analizando de forma inteligente las curvas de par y angulo
gue se generan en cada operacion de ensamblaje. Este reto, considerado en el sector
automotriz como un aspecto clave de calidad y seguridad, requiere un enfoque
estructurado que combine técnicas avanzadas de analisis de datos con la
experiencia practica en procesos productivos.

La propuesta se fundamenta en la aplicacion de algoritmos de clustering
especializados en series temporales, para identificar patrones anémalos en el
comportamiento de las uniones atornilladas. El enfoque metodolédgico se estructura
en cuatro tareas principales que cubren desde la adquisicion de datos hasta la
evaluacion de resultados (Figura 9):

CARGAR Y
PREPARAR DATOS

ELIMINAR TOMAS ELIMINAR EL NORMALIZAR LAS
VACIAS PRE-AJUSTE CURVAS

PREPROCESAMIENTO

DEFINIR EJECUCION DEL
PARAMETROS CLUSTERING

EJECUCION DE ALGORITMOS

CALCULAR SELECCIONAR

METRICAS MEJORES
CONFIGURACIONES

ANALISIS DE RESULTADOS

NORMALIZAR GUARDAR
METRICAS RESULTADOS

Figura 9: Diagrama de flujo. Fuente: Propia (LucidChart)
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1. Captura de datos (datos de series temporales).

2. Preprocesamiento: Procesamiento de imagenes (acondicionamiento y
normalizacion de series temporales).

3. Ejecucion de los algoritmos de clustering y criterios de validacion

4. Analisis y criterios de evaluacion de los resultados.

La razén de adoptar este enfoque esta en superar las limitaciones de los métodos
tradicionales de inspeccion manual y de control basados en umbrales fijos, que
resultan poco efectivos ante la variabilidad natural de los procesos industriales
modernos y frente al gran volumen de datos que genera la digitalizacion de las lineas
de produccion.

3.1. Adquisicion de Datos de Series Temporales

La primera fase se centra en la recopilacion sistematica y estructurada de los datos
de entrada, que constituyen la base fundamental para el analisis posterior. Los datos
corresponden a series temporales que registran variables dinamicas clave durante
el proceso industrial, como la evolucion de magnitudes fisicas en funcion del tiempo.
Por ejemplo, en un proceso de ensamblaje, estas series pueden capturar el
comportamiento de variables criticas, como se observa en la Figura 10 (curva que
muestra una aceleracion inicial seguida de una estabilizacion) y la Figura 11 (curva
que refleja un incremento progresivo, estabilizacion y un valor maximo alcanzado).
Estos datos son capturados mediante sensores especializados integrados en los
sistemas de produccion, asegurando alta precision y resolucion temporal.

Los datos se organizan en conjuntos que representan casos normales y anémalos,
permitiendo una representacion completa de las condiciones del proceso. Esta etapa
garantiza que los datos sean representativos, capturando tanto comportamientos
tipicos como posibles anomalias.

Angulo vs Tiempo

Aceleracion === Estabilizacion

o

Angulo (grados)

Tiempo (seg)
Figura 10: Diagrama del proceso de atornillado. Angulo-tiempo. Fuente: Propia (Python)
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Torque vs Tiempo

Incremento === Establlizacién % Torque Max

T~

Torque (N-m)

Tiempo (s)

Figura 11: Diagrama del proceso de atornillado. Par-tiempo. Fuente: Propia (Python)

3.2. Preprocesamiento

En esta segunda etapa se realiza el preprocesamiento de los datos, que constituye
una fase critica en el analisis de procesos industriales, particularmente en
operaciones de atornillado donde la calidad y precision son fundamentales [32]. Esta
etapa preliminar transforma los datos brutos capturados por sensoresen
informacion estructurada y depurada, eliminando ruido, inconsistencias y
valores atipicos que podrian comprometer la validez de los analisis posteriores [25].
En el contexto especifico de procesos de atornillado, donde se registran variables
como par, angulo y tiempo, el preprocesamiento adquiere especial relevancia para
identificar con precision las fases operativas relevantes y descartar informacion no
significativa [10].

Los objetivos fundamentales del preprocesamiento incluyen:

1. Mejorar la calidad y consistencia de los datos mediante la eliminacion de
informacion redundante o errénea.

2. Reducir la dimensionalidad y complejidad de los conjuntos de datos para
optimizar el rendimiento computacional [25].

3. Extraer caracteristicas relevantes que faciliten la identificacion de patronesy
anomalias.

4. Segmentar adecuadamente las series temporales para aislar fases
operativas especificas [25].

Por estas razones se aplica al inicio un procesamiento de las series temporales para
eliminar la parte del preajuste y quedarse Unicamente con la parte de la grafica que
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corresponda con la informaciéon del proceso. Primero se parte de los datos en bruto
y se eliminan los datos que no interesan para quedarse solo con el tiempo, par y
angulo, que son las caracteristicas que queremos analizar.

La propuesta incluye mecanismos robustos de trazabilidad. Cada registro viene con
el numero de identificacion del elemento para poder hacer un seguimiento de este
mismo e identificarlo en caso de anomalias. Cada curva de par-angulo tiene su propio
"nombre Gnico" (un identificador), que nos permite seguirla hasta el elemento exacto,
dejando un rastro claro que permite analizar mejor las causas.

El resultado de esta fase es un conjunto homogéneo de series temporales
normalizadas, listas para el analisis mediante técnicas de clustering, manteniendo
la informacion esencial del proceso.

3.2.1. Limpieza de datos

Cada etapa del procesamiento integra un control automatico de calidad orientado a
la limpieza de datos. De esta forma, se eliminan las tomas vacias o aquellas con
menos de 10 puntos, previniendo la inclusion de registros falsos o erroneos que no
contribuyan al experimento.

Esta medida asegura la solidez del conjunto de datos, minimizando errores y
garantizando su idoneidad para el analisis de clustering.

3.2.2. Acondicionamiento de Series Temporales

Esta etapa constituye el nicleo esencial del tratamiento de los datos, un paso
fundamental que determina la calidad de los resultados en las fases posteriores de
analisis. En esta etapa se procesan las series temporales de variables dinamicas,
aplicando técnicas especificas para preservar las caracteristicas relevantes del
proceso mientras se eliminan variaciones no deseadas.

3.2.2.1. Segmentacion y Extraccion de Regiones de Interés

Antes de proceder con cualquier transformacion, se realiza un analisis exploratorio
inicial del comportamiento temporal. Las curvas presentan duraciones variables,
influenciadas por configuraciones de equipos y caracteristicas mecanicas, por lo que
se segmentan y estandarizan temporalmente, preservando la dinamica del proceso.
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Una de las aportaciones clave es un algoritmo de segmentacion que identifica
automaticamente las regiones relevantes dentro de cada serie temporal:

o Deteccion del punto de inflexion: Se utiliza el valor maximo de las variables
clave y su punto medio como referencia temporal para la segmentacion.

o Ventana adaptativa: Se define un intervalo centrado en el punto medio de los
valores maximos para optimizar el enfoque en la region de interés.

« Eliminacién del pre-ajuste: La creacion de la ventana con la region de interés
descarta la fase inicial de la curva, donde los valores son bajos e inestables,
enfocando el analisis en la regidon mas representativa.

3.2.2.2. Normalizacion y Estandarizacion

El proceso de normalizacion se centra en la variacion en amplitud: Los valores varian
segln condiciones operativas, por lo que se aplica un escalado para normalizarlos a
un rango estandar, lo que permite una comparacion objetiva. Adicionalmente, este
ajuste contribuye a la proteccion de datos sensibles que no pueden divulgarse.

El propodsito es equilibrar las series temporales para evitar que variaciones en escala
afecten desproporcionadamente el agrupamiento, mejorando asi la precision y la
equidad de los resultados.

3.3. Ejecucion de algoritmos

La tercera etapa representa el nlcleo analitico de la propuesta y constituye la
aplicacion de técnicas avanzadas de clustering especificamente adaptadas para
series temporales. Esta fase es crucial para descubrir patrones latentes en los datos
y establecer una clasificacion automatica que permita distinguir entre
comportamientos normales y andmalos en procesos industriales con variables
dinamicas.

3.3.1. Seleccion y Configuracion de Algoritmos

El enfoque implementa técnicas de clustering especializadas en series temporales, cada una
adaptada para capturar aspectos Unicos del analisis:

e Técnicas basadas en alineamiento dindmico: Utilizan medidas de distancia
que ajustan de manera flexible el tiempo entre secuencias que difieren en
ritmo o fase, conservando la estructura principal de las curvas. Esto es
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particularmente Gtil para reconocer patrones que siguen ordenes similares,
pero con variaciones en la duracion debido a diferencias en los
procedimientos o en los elementos involucrados. TimeSerieskMeans con
DTW es un ejemplo de esta técnica. (Seccion 2.2.2.1)

e Técnicas con suavizado: Son mejoras que incorporan factores de ajuste para
hacer la comparacion mas resistente al ruido, lo cual es clave en contextos
industriales donde las variaciones pueden provenir de condiciones externas
o de medicion, en vez de indicar problemas reales. TimeSerieskMeans con
SoftDTW es un ejemplo de esta técnica. (Seccién 2.2.2.2)

e Técnicas basadas en correlacion: Creadas especialmente para datos
secuenciales en el tiempo, aplican indicadores de semejanza que evaltan la
configuracion general de las curvas sin necesidad de sincronizarlas paso a
paso. Resultan ideales para captar irregularidades que aparecen como
alteraciones en la silueta de las series, sin importar su escala o intensidad. El
algoritmo KShape es un ejemplo de esta técnica. (Seccioén 2.2.3)

3.3.2. Optimizacion de Parametros

El enfoque explora de forma sistematica diferentes configuraciones para optimizar
las técnicas de clustering:

o Ndmero de grupos: Se prueba un rango equilibrado de grupos, entre una
granularidad minima que distinga los principales tipos de comportamiento y
evitando una fragmentacion excesiva que complique la interpretacion.

o Iteraciones maximas: Se evallan varios niveles de iteraciones, buscando un
compromiso entre la convergencia del algoritmo y el rendimiento
computacional.

« Método de inicializacion: Se utilizan métodos para seleccionar los centroides
iniciales, distribuyéndolos inteligentemente en el espacio de datos para
mejorar la convergencia y reducir la probabilidad de 6ptimos locales.

3.4. Analisis de resultados

Esta cuarta y ultima etapa establece un marco de evaluacion que asegura la
aplicabilidad practica y la fiabilidad de los resultados obtenidos. Va mas alla de la
verificacion técnica para enfocarse en aspectos clave como la usabilidad y el impacto
real en el entorno industrial.
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El analisis de resultados integra las salidas de las fases previas en un proceso de
interpretacion global, que no solo verifica la calidad técnica del clustering, sino que
también examina su capacidad para generar conocimientos accionables en
contextos reales de operacion. En el ambito de procesos industriales con series
temporales (donde los datos capturan dinamicas complejas, tales como variaciones
en par o angulo), este marco enfatiza la habilidad de los cllsteres para identificar
patrones andémalos de forma interpretable, reduciendo la complejidad vy
maximizando su relevancia practica.

Se fundamenta en un enfoque multicriterio que combina métricas cuantitativas,
como varios indices de calidad del clustering, que se agregan mediante un operador,
para obtener una puntuacion Unica y objetiva, con evaluaciones cualitativas
centradas en elementos visuales como graficas de clusteres, representaciones de
series temporales agrupadas. Estos elementos permiten una inspeccion intuitiva de
la coherencia y el significado de los grupos formados. De esta manera, se selecciona
la configuracion 6ptima de forma equilibrada y fundamentada.

3.4.1. Evaluacion Cuantitativa

El analisis cuantitativo ofrece una evaluacion objetiva del rendimiento del clustering,
a través de indicadores que miden la calidad esencial de los grupos obtenidos. Estas
métricas analizan elementos como la cohesion interna de los clUsteres, la separacion
entre ellos y la dispersion general de los datos, con el fin de asegurar que los grupos
sean compactos y claramente diferenciados. En el contexto de series temporales
industriales, esta revision es fundamental para confirmar que los patrones
detectados no surjan simplemente del ruido, sino que representen comportamientos
genuinos, como las variaciones en la evolucion de variables relevantes a lo largo del
tiempo.

La evaluacion de los resultados de clustering se basa en un sistema de validacion
multi-criterio, enfoque que combina métricas internas y externas:

e MEétricas internas:

o Cohesion y separacion: Miden la compactacion dentro de cada grupo
y su distancia respecto a otros, con valores que indican mejor
agrupamiento cuando son mas altos o bajos seguln la métrica.

Ejemplos de este tipo de métrica son Silhouette y Davies-Bouldin
(Seccion 2.2.4).

o Dispersion: Analizan la relacion entre la varianza entre grupos y dentro
de ellos, favoreciendo configuraciones con grupos bien definidos.

43



Un ejemplo de este tipo de métrica es Calinski-Harabasz (Seccién
2.2.4).

o Nuamero de clisteres: Se prioriza un valor mas pequeno para promover
una segmentacion mas interpretable y generalizable, evitando la
sobrefragmentacion de los datos.

Este criterio se mide mediante el K_Index, un indicador normalizado
que penaliza el aumento excesivo de cllisteres y que se detalla en la
seccion subsiguiente.

e Meétricas externas:

o Homogeneidad: Es un indice que mide qué tan limpios estan los
grupos en base a las etiquetas ya conocidas, premiando
configuraciones donde cada cluster tiene mayoritariamente un tipo de
dato similar. Se explica con mas detalle mas adelante.

3.4.1.1. Indices propuestos de Evaluacion

En el marco de esta propuesta, se incorporan dos métricas propuestas para
enriquecer la validacion de los clisteres en el analisis de series temporales. Estos
indices complementan las métricas internas, priorizando aspectos practicos como la
pureza de los grupos y la simplicidad interpretativa, esenciales para entornos donde
la distincidbn entre comportamientos normales y anomalos debe ser clara vy
accionable. A continuacion, se describen su formulacion y relevancia.

3.4.1.1.1. Homogeneidad: Métrica de Pureza de Clusteres

La Homogeneidad es un indice desarrollado ad hoc para medir la capacidad del
clustering en separar muestras de clases conocidas (normales o andmalas),
ponderando la contribucion de cada clister segun su tamano relativo al conjunto
total. Su diseno resalta la utilidad practica en escenarios industriales, donde
clusteres "puros" (dominados por una clase) facilitan la identificacion rapida de
desviaciones, reduciendo falsos positivos y mejorando la toma de decisiones.

La métrica se define como:
k
. S 0; n;
Homogeneidad = Z(ﬁ * max (—,—)

s;s;
i=1 Lot

donde:
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e Kk :numero total de clisteres,

e s; tamano del cluster i (nUmero de muestras),

e N:numero total de muestras en el conjunto,

e 0;: numero de muestras normales (OK) en el cluster i,

e 1; :numero de muestras andmalas (NOK) en el cluster i.

Esta métrica genera un valor entre O y 1, donde 1 indica clUsteres perfectamente

- . Si
puros (cada uno 100% de una clase) y O representa mezclas totales. El término EL
actla como peso, dando mayor relevancia a clusteres grandes, mientras que

0] Nn; . . . . -
max (—f,—‘) captura la dominancia de la clase mayoritaria en cada clister. Su

Si  Si
integracion con los demas indices permite equilibrar la pureza con otras métricas,
haciendo que la propuesta sea particularmente efectiva para procesos donde la
segregacion de anomalias es prioritaria, como en la monitorizacion de uniones
mecanicas.

3.4.1.1.2. K_Index: Métrica de Simplicidad de Configuracion

El K_Index es un indice complementario que penaliza configuraciones con un numero
excesivo de clusteres, promoviendo soluciones parsimoniosas y faciles de interpretar
en contextos operativos. En procesos industriales, donde la complejidad puede
complicar la aplicacion practica, este indice favorece valores bajos de k (cerca del
minimo razonable, e.g., 5) para priorizar interpretabilidad sobre granularidad
excesiva.

La formula se define como:

k — kmin
1————F——5sik < kpax
Kindex = kmax — kmin
0sik > kpax
donde:
e k:numero de cllsteres en la configuracion,

e ks minimo ndmero de clusteres considerado (5, para capturar patrones
basicos),

e Kpmax: Maximo nimero evaluado (24, para evitar fragmentacion).
Esta normalizacion lineal asigna 1 al minimo (k = k,,;,,), decrece gradualmente

hasta O en k,,,, Y penaliza valores superiores con O. Por ejemplo, con k,,in =5 vy
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Kmax = 24, para k = 5: K_Index = 1; para k = 10, K_Index = 0,74; y para k = 24,
K_Index = 0. (Figura 12).

Evolucion del K_Index variando k
1.0 =

0.99

T T T T T T T T T T T T T T T T T T T *
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
k (nimero de clusters)

Figura 12: Evolucion de K_Index en funcién de k. Fuente: Propia (Python)

3.4.1.2. Operador WOWA (Weighted Ordered Weighted Averaging) y Ranking

Para unir todas las métricas en una sola decision clara, el método usa un operador
de agregacion que prueba varias combinaciones de pesos, para ver cOmo priorizar
de distintas maneras. Estos pesos se adaptan segin lo que se quiera resaltar en
cada caso, con el fin de mejorar la deteccion de anomalias. Ademas, se hace un
ranking de los resultados basados en esos puntajes, ordenando las configuraciones
de mejor a peor, tanto para cada técnica por separado como en el total. Esto
simplifica la eleccion de las opciones mas Utiles para el analisis. (Seccion 2.2.5)

3.4.1.3. Tablas de composicion de clisteres

Para complementar las métricas numéricas, se incluyen tablas que permiten una
revision detallada de la composicion de los clusteres. Estas herramientas apoyan la
evaluacion objetiva al resumir distribuciones y patrones de forma clara y medible.

Estas tablas detallan, para cada cluster, el tamano total, el conteo y porcentaje de
elementos correctos y defectuosos, junto con la distribucion de conteos y porcentajes
por atributos relevantes. Esto ofrece una vista tabular precisa para identificar
clisteres puros (donde un alto porcentaje de un tipo domina) o mixtos (con
distribuciones equilibradas entre tipos). Se aplican formatos condicionales, como
rojo para clisteres con separaciones mixtas o insuficientes (por ejemplo, porcentajes
equilibrados) y verde para grupos puros (porcentajes dominantes de un tipo), lo que
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resalta cuantitativamente la homogeneidad y permite una evaluacion objetiva de la
pureza y efectividad de cada cluster.

3.4.2. Analisis Cualitativo y Visualizacion

Complementando la cuantificacion, el analisis cualitativo incorpora herramientas
visuales para facilitar la interpretacion humana de los cllsteres. Estas
representaciones permiten explorar la estructura subyacente de los datos,
identificando solapamientos o caracteristicas distintivas que no emergen de
numeros aislados. En entornos industriales, donde la toma de decisiones depende
de la comprension intuitiva de anomalias, la visualizacion actla como puente entre
los resultados algoritmicos y la accion operativa.

Para potenciar esta interpretacion, la propuesta integra representaciones
esquematicas y graficas adaptadas a la complejidad de las series temporales:

« Imagenes de superposicion de series en cllsteres: Se generan graficas que
superponen las curvas de las series temporales asignadas a cada cllster,
utilizando colores distintivos para diferenciar clases. Estas imagenes revelan
patrones visuales, como alineamientos en fases elasticas o desviaciones en
picos andmalos, permitiendo una inspeccion intuitiva de la homogeneidad y
separabilidad, esencial para validar la relevancia practica de los clUsteres en
procesos dinamicos.

De esta forma, el analisis cualitativo enriquece la comprension general, asegurando
que los hallazgos sean no solo precisos, sino también accesibles para su aplicacion
en contextos reales.
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4. EXPERIMENTACION

El Capitulo 4 representa la validacion practica de la propuesta metodologica
delineada en el Capitulo 3, trasladando los conceptos abstractos a un contexto real
mediante la aplicacion de técnicas de clustering a datos industriales especificos.

El capitulo se estructura en tres subsecciones principales. En primer lugar, el caso
de uso describe el problema aplicado a un entorno industrial real, caracterizando el
conjunto de datos y sus desafios inherentes. A continuacion, la metodologia
experimental expone los detalles operativos de la implementacion, incluyendo el
preprocesamiento adaptado, las configuraciones de algoritmos y el proceso de
evaluacion. Finalmente, los resultados obtenidos presentan los hallazgos
cuantitativos y cualitativos, respaldados por tablas, graficos y visualizaciones de
clusteres.

4.1. Caso de uso

El caso de uso de este trabajo se centra en el anélisis de anomalias en el proceso de
atornillado de motores, un componente critico en la industria automotriz donde la
precision del par y el angulo influye directamente en la calidad y seguridad del
ensamblaje. Los datos disponibles provienen de mediciones de sensores durante el
atornillado, normalizados entre O y 1 para las variables Par y Angulo, que reflejan la
evolucion temporal del proceso de manera estandarizada. Estos datos se dividen en
dos categorias: aprietes en estado OK (funcionales) y NOK (con anomalias), con un
total de 200 conjuntos de aprietes procesados, de los cuales 150 estan en estado
OK y 50 en estado NOK, seleccionados para garantizar una representatividad
adecuada y un enfoque especial en la detecciéon de anomalias.

Para caracterizar mejor el conjunto de datos, se analizan estadisticas descriptivas
basicas de las series temporales, como el numero de tomas por categoria, la
duracion en segundos (minima, maxima y media) y el nimero de puntos por toma
(minimo, maximo y medio). Estas métricas ayudan a entender la variabilidad
inherente en las mediciones, que oscila entre duraciones de 2,6 y 3,4 segundos y un
ndmero de puntos que varia segun la resolucion de los sensores. La Tabla 2 resume
estos valores, destacando diferencias sutiles entre categorias que justifican el uso
de técnicas robustas de clustering.
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. Duraci6 | Duracio > N° N° N°
Categori Namer n n Duracio untos untos unto
g o de . .. n media p,. p,. P
a , minima | maxima minim | maxim S
tornillos (s) .
(s) (s) (o] o] medio
OK 800 2.60 3.39 2.96 348 453 395.9
NOK 400 2.61 3.10 2.96 349 415 395.7
Total 1200 2.60 3.39 2.96 348 453 395.8

Tabla 2: Estadisticas descriptivas de las series temporales. Fuente: Propia (Python)

La caracterizacion de las series temporales revela un conjunto rico pero desafiante,
con duraciones originales entre 2,6 y 3,4 segundos uniformadas a una escala
estandar para facilitar el analisis. Cada operacion de apriete, se agrupa en un
conjunto de 8 aprietes sincronos (8 tomas o tornillos), Io que genera un volumen
significativo de datos que presentan ruido, valores atipicos y desfases temporales,
aspectos que se corrigen mediante ajustes previos. Estas curvas estandarizadas
muestran picos distintivos que indican fases de preajuste y apriete real, ofreciendo
pistas clave para identificar patrones andémalos. Estos picos se observan en las
graficas originales de la Figura 13. El objetivo principal es emplear técnicas de
clustering sobre estas series procesadas para detectar anomalias como sub-aprietes
0 cruces de roscas, contribuyendo a mejorar la calidad del control de procesos en la
produccion automotriz mediante un analisis robusto y reproducible.

4.2. Metodologia experimental

La metodologia disenada para identificar las mejores configuraciones de
agrupamiento de series temporales derivadas de las mediciones de par y angulo en
motores se basa en un enfoque meticuloso y estructurado, pensado para extraer
patrones significativos de forma sistematica. El desarrollo del programa para analizar
las curvas par-angulo y detectar anomalias en el atornillado, se identificod que los
parametros configurables eran fundamentales para obtener resultados fiables. Estos
valores no solo determinan codmo se procesan los datos y se aplican los algoritmos,
sino que también reflejan las decisiones que se toman para adaptar el analisis a las
caracteristicas de las series temporales.

A continuacion, se describen las etapas principales del analisis: configuracion
general, preprocesamiento y estandarizacion, configuracion de algoritmos de
clustering, y evaluacion con la métrica WOWA, incluyendo los parametros utilizados
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en cada una, su propoésito y los ajustes realizados mediante pruebas iterativas. Al
final de la seccion de algoritmos de clustering se incluye una tabla que los resume,
proporcionando una referencia clara para la metodologia propuesta.

El proceso arranca con un paso inicial de preparacion de los datos, donde se eliminan
las secciones que no aportan valor al analisis y se ajustan las duraciones de las
series para que todas tengan una escala uniforme, facilitando comparaciones
precisas. Este ajuste inicial es clave para homogenizar las mediciones y reducir el
impacto de variaciones no deseadas.

A continuacion, se aplican diferentes configuraciones de técnicas de agrupamiento,
explorando un rango de grupos posibles y ajustando el nimero de iteraciones para
refinar los resultados. Esta etapa busca capturar la diversidad de comportamientos
en las series temporales, permitiendo distinguir entre patrones normales y anémalos.
Para evaluar la calidad de cada configuracion, se emplea un conjunto de indicadores
gue miden como de bien se agrupan los datos dentro de cada cldster, cuanto se
separan entre si los distintos grupos y hasta qué punto se respetan las categorias
predefinidas de motores funcionales y con fallos. Estos indicadores se combinan en
un criterio ponderado que da mas peso a la capacidad de detectar anomalias,
ordenando las configuraciones segln su rendimiento.

Para complementar el analisis, se crean representaciones visuales que muestran
como se distribuyen las series temporales dentro de los grupos identificados,
ayudando a interpretar los resultados de manera intuitiva. Ademas, se elaboran
reportes detallados que recogen las métricas obtenidas, la distribucion de los
estados de los motores y las configuraciones mas efectivas. Este enfoque asegura
que el proceso sea reproducible y que los resultados puedan integrarse facilmente
en estrategias de control de calidad, ofreciendo una base sélida para tomar
decisiones en la industria automotriz.

4.2.1. Preprocesamiento

En la fase de preprocesamiento, se probaron varias opciones de intervalos para
igualar la duracion de las curvas a una longitud fija. Estas pruebas ayudaron a
comparar distintos grados de detalle, mostrando que pocos intervalos generaban un
suavizado excesivo que borraba aspectos clave, mientras que mas intervalos
mantenian mejor los picos y cambios notables. Asi, se adapto6 el nivel de precision
temporal segln las caracteristicas propias de cada curva, mejorando la forma en que
se representan los datos para los pasos siguientes del analisis. El algoritmo del
preprocesamiento se detalla en la Tabla 3:
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PARA cada muestra
SELECCIONAR columnas {Tiempo, Par, Angulo}
Sl num_puntos de la toma >= 10 ENTONCES
Eliminar intervalo irrelevante (pre-ajuste) usando punto medio de par/angulo
Extraer segmento de interés y normalizar curva a [0,1]
Generar graficas y guardar resultados con identificador Gnico
FIN SI
FIN_PARA

Tabla 3: Pseudocddigo asociado al preprocesamiento de datos. Fuente: Propia

Para realizar el preprocesamiento, se calcula el punto donde la grafica toma la mitad
del valor maximo y a partir de ese tiempo se aplica un intervalo a cada lado
dependiendo de si es el par o el angulo (Figura 13). Para el par, se toma un intervalo
de 0.85 segundos antes y 1.6 segundos después de la mitad del valor maximo,
mientras que para el angulo se usa un intervalo de 1.1 segundos antes y 1.1
segundos después. En la Figura 13, las dos graficas de la izquierda muestran el par
y angulo originales, mientras que las dos de la derecha presentan el par y angulo ya
preprocesados.

Motor HSFE00002295 - OK

Figura 13: Ejemplo de procesamiento de datos. Fuente: Propia (Python)
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Asi nos aseguramos de que los datos miden lo mismo en tiempo para poder
analizarlos conjuntamente y de que nos quedamos con la informacion que nos
interesa, ya que el preajuste no es valido para nuestro analisis y puede generar
anomalias o errores de interpretacion a la hora de realizar el clustering.

Ademas, se genera un archivo .json con los datos preprocesados de cada toma,
incluyendo las columnas Tiempo (Seg), Par (N.m) y Angulo (Deg), lo que permite
almacenar y reutilizar la informacion estructurada para analisis posteriores (Tabla 3).

También se definen n_ok = 150 y n_nok = 50, que limitan la cantidad de motores en
estado "OK" y "NOK" a procesar. Estas cifras se eligieron basandose en la
disponibilidad de datos y en un equilibrio entre representatividad: 150 conjuntos de
aprietes OK y 50 conjuntos de aprietes NOK para detectar anomalias. Esto asegura
que el analisis refleje tanto lo tipico como lo atipico sin sobrecargar el procesamiento.
Ademas, en ocasiones variaba esta cantidad de datos de entrada para poder realizar
comprobaciones mas rapidas cuando realizaba cambios significativos en el
programa.

4.2.2. Algoritmos de clustering

Para agrupar las series temporales en funcion de su forma dinamica se emplean
algoritmos de clustering especializados. En este trabajo se utilizan principalmente
variantes de k-means adaptadas a series temporales: la clase TimeSerieskMeans
con métrica DTW o Soft-DTW, y el algoritmo K-Shape. Las caracteristicas clave de
estos métodos son:

o TimeSeriesKkMeans con DTW (Dynamic Time Warping): La métrica DTW mide
la similitud entre dos series temporales alineando sus puntos de forma no
lineal. Esto permite comparar series que pueden tener desfases o variaciones
en el tiempo. Al usar metric="dtw" en TimeSerieskKMeans, el algoritmo calcula
centroides basados en el promedio de DTW. En la practica, esta variante
agrupa series con formas similares independientemente de pequenos
desplazamientos temporales.

o TimeSeriesKkMeans con Soft-DTW: El método Soft-DTW es una version
suavizada y diferenciable de DTW. Al emplear metric="softdtw",
TimeSerieskKMeans calcula centroides mediante Soft-DTW, lo que facilita el
computo de promedios en el espacio DTW. Soft-DTW ha demostrado mejorar
la calidad de clustering y de calculo de centroides frente a DTW. En la practica
se parametriza con un valor de suavizado y para controlar la regularizacion.

e K-Shape: K-Shape es un algoritmo de clustering disenado para series
temporales que utiliza una medida basada en correlacion normalizada para
comparar formas. A diferencia de DTW, K-Shape no realiza un alineamiento
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dindamico, sino que compara las series directamente seglin su “forma”
general. K-Shape es iterativo y construye centroides de forma eficiente a partir
de las propiedades de esta distancia de correlacion. Se ha observado que K-
Shape produce cllsteres bien separados y homogéneos para diversos
conjuntos de series.

En la tabla 4 se expone el pseudocodigo de la aplicacion de TimeSeriesKMeans
y KShape:

PARA algoritmo EN {TimeSeriesKMeans, KShape}:
PARA num_cluster EN {5, 25}:
PARA iteraciones EN {50, 100, 150}:
PARA método EN {DTW, SoftDTW}:
Ejecutar clustering para: algoritmo, num_cluster, iteraciones, método
Calcular indices de evaluacion: Silhouette, DB, CH, Homogeneidad, K-Index
Analizar composicién de los clisteres
Generar representaciones visuales de los clisteres
Generar archivos de reporte con resultados por configuracion
FIN_PARA
FIN_PARA
FIN_PARA
FIN_PARA

Tabla 4: Pseudocddigo de evaluacion de curvas par-angulo. Fuente: Propia

En el programa, cada algoritmo se ejecuta para varias configuraciones de k (nimero
de clUsteres), en este caso varian de k = 5 hasta k = 25. Ademas, existen otros
parametros que son actualizables, como las iteraciones maximas (max_iters), que
varian en 50, 100 y 150 y como el intervalo para estandarizacion (n_init) que varia
en 5y 10. Estas ejecuciones permiten estudiar como varian los resultados con
distintos niveles de granularidad. Se inicializa el algoritmo con el método k-means++
(que mejora la seleccion de centroides iniciales). Esta serie de parametros van
variando, creando las diferentes configuraciones mediante bucles for. En total para
este procedimiento con esos parametros se generan 180 configuraciones, de las
cuales las 60 primeras pertenecen a TimeSerieskKMeans con DTW, las siguientes 60
pertenecen a TimeSerieskMeans con Softdtw y las Ultimas 60 pertenecen al
algoritmo KShape.

El programa cada vez que realiza una configuracion genera un archivo de valores o
tabla con las caracteristicas de dicha configuracion: Numero de configuracion,
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nlmero de clUsteres, iteraciones maximas y el clister que es junto con sus datos de
numero de tornillos, nimero de tornillos OK, porcentaje de tornillos OK, nimero de
tornillos NOK, porcentaje de tornillos NOK y el namero de tornillos de cada
atornilladora con sus respectivos porcentajes sobre el total. Ademas en las Gltimas
columnas se genera el archivo de la imagen del clustering realizado de esa
configuracion y los coeficientes de los indices de medicion de las métricas:
Silhouette, Calinski-Harabasz, Davies-Bouldin y los indices propios generados
(Homogeneidad y K_Index).

Una vez se han generado todas las configuraciones se almacenan los resultados con
todas las configuraciones de cada algoritmo (KMeans y KShape). De esta manera
podemos tener un archivo completo con todos los datos de las configuraciones y
archivos individuales de cada configuracion que puedan ser mas manejables debido
a la gran cantidad de datos que se manejan en el programa.

4.2.3. Mejores configuraciones

Para identificar la configuracion 6ptima de clustering, se analizaron los resultados de
las 180 configuraciones generadas mediante el indice WOWA, que integra las
métricas normalizadas de Silhouette, Davies-Bouldin (inverso), Calinski-Harabasz,
Homogeneidad y K_Index. La normalizacion escal6 todas las métricas entre Oy 1
usando la férmula (valor - minimo) / (maximo - minimo), con Davies-Bouldin ajustado
como 1 - valor_normalizado (ya que valores mas bajos son mejores). Esto permite
compararlas equitativamente.

Tras evaluar las combinaciones de pesos WOWA (base: [0.1, 0.1, 0.1, 0.5, 0.2],
priorizando Homogeneidad en 0.5 y K_Index en 0.2; y variaciones como [0.0, 0.0,
0.0, 0.5, 0.5], [0.0, 0.0, 0.0, 1.0, 0.0], [0.25, 0.25, 0.25, 0.0, 0.25], [0.2, 0.2, 0.2,
0.2, 0.2]), el proceso se realizd en dos niveles: primero, por cada combinacion de
pesos, agrupando datos por Config_ID, k y Max_lter, calculando WOWA promedio y
seleccionando las 20 mejores Unicas por algoritmo (TimeSerieskKkMeans y KShape),
eliminando duplicados. Segundo, consolidando todas las combinaciones en un
ranking global de 20 mejores, combinando resultados sin importar si es
TimeSerieskMeans o KShape, y expresando los pesos utilizados para cada
conifguracion.

En la Tabla 5 se detalla el pseudocddigo del proceso de seleccion y generacion de
resultados:

PARA cada métrica EN {Silhouette, DB, CH, Homogeneidad, K_Index}:
CALCULAR min/max globales
NORMALIZAR a [0,1]
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para Davies-Bouldin: 1 - normalizado
FIN_PARA
PARA cada combinacion de pesos:
PARA cada configuracion:
ORDENAR métricas normalizadas descendente
CALCULAR WOWA
FIN_PARA
PARA algoritmo EN {TimeSeriesKMeans, KShape}:
AGRUPAR por Config_ID, k, Max_lter
SELECCIONAR 20 mejores
FIN_PARA
ALMACENAR resultados
FIN_PARA

Tabla 5: Pseudocodigo para la generacion de resultados. Fuente: Propia

4.3. Resultados obtenidos

La evaluacion de los resultados se centra en analizar la configuracion de clustering
obtenidas para detectar anomalias en las series temporales de par y angulo,
utilizando el operador de agregacion WOWA como criterio principal de seleccion. Este
indice agrega las métricas normalizadas de Silhouette (cohesion y separacion),
Davies-Bouldin (inverso, para compactidad), Calinski-Harabasz (dispersion),
Homogeneidad (pureza de clisteres en términos de OK/NOK) y K_Index
(penalizacion por numero de cllsteres). La normalizacion escal6 todas las métricas
entre O y 1 mediante la formula (valor - minimo) / (maximo - minimo), ajustando
Davies-Bouldin como 1 - valor_normalizado para que valores mas bajos sean
favorables.

Se analizaron las 180 configuraciones generadas (60 por variante:
TimeSerieskMeans con DTW, con SoftDTW, y KShape). El proceso detalla las 20
mejores configuraciones obtenidas para distintas combinaciones de pesos WOWA.
La notacion utilizada para indicar los pesos asignados a cada indice individualmente
es: [Silhouette, Davies-Bouldin, Calinski-Harabasz, Homogeneidad, K_Index]:
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43.1. [0.0,0.0,0.0,0.5,0.9]

Esta primera variacion de pesos se centra exclusivamente en las métricas
propuestas (Homogeneidad y K_Index). Los pesos cero de las primeras métricas
internas significan que se ignoran por completo, priorizando los otros dos indices con
igual importancia. Esto es util para centrarnos en la pureza de los clisteres y la
adecuacion del nimero de clusteres. (Tabla 6)

TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 0,783 @ 0,947
TSKM (SoftDTW) 69 7 150 0,348 1,309 1407,04 | 0,779 H 0,895
TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 0,779 0,895
TSKM (SoftDTW) 71 8 100 0,357 1,03 1512,902 @ 0,781 | 0,842
TSKM (SoftDTW) 67 7 50 0,407 0,748 1572,921 0,774 0,895
TSKM (SoftDTW) 72 8 150 0,421 0,813 1713,707 | 0,779 | 0,842
TSKM (SoftDTW) 66 6 150 0,431 0,758 1680,987 0,766 @ 0,947
TSKM (DTW) 2 5 100 0,059 1,658 457,87 0,76 1
TSKM (SoftDTW) 61 5 50 0,433 0,752 1625,621 0,759 1
TSKM (SoftDTW) 62 5 100 0,433 0,752 1625,621 | 0,759 1
TSKM (SoftDTW) 63 5 150 0,433 0,752 1625,621 0,759 1
TSKM (SoftDTW) 64 6 50 0,429 0,759 1677,112 0,764 | 0,947
TSKM (DTW) 15 9 150 -0,032 3,571 338,353 0,779 0,789
TSKM (DTW) 17 10 100 -0,024 6,298 326,73 0,783 | 0,737
TSKM (DTW) 7 7 50 0 2,524 373,463 0,764 0,895
TSKM (SoftDTW) 70 8 50 0,307 1,053 1230,446 @ 0,769 @ 0,842
TSKM (SoftDTW) 73 9 50 0,311 1,277 1326,824 0,774 0,789
TSKM (DTW) 14 9 100 -0,026 6,188 358,212 | 0,774 0,789
TSKM (SoftDTW) 77 10 100 0,276 1,206 1316,595 0,779 @ 0,737
TSKM (DTW) 16 10 50 -0,03 5,653 327,789 | 0,779 | 0,737

Tabla 6: Mejores configuraciones [0.0,0.0,0.0,0.5,0.5]. Fuente: Propia

Ahora se profundiza en las dos mejores configuraciones de esta variacion de pesos:

1. Configuracion 65: k = 6. Max_It = 100 (WOWA = 0.916):

Con k=6, divide los datos en grupos medianos, logrando una homogeneidad
sélida con dos clusteres casi perfectos en division, dos clisteres de mayor
tamano con una composicion 6ptima en porcentaje entre aprietes buenos y
malos, y dos clisteres de tamano mediano cuya composicibn no es tan
adecuada, cercana al 60/40. (Tabla 7)
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 Cldster  Cldster_Size OK_Count OK_Percent NOK_Count NOK_Percent
e 232 156 61.9 96 38.1
a | 206 74 35.9 132 64.1
2 o5 240 87.3 35 12.7
8 283 214 81.4 49 18.6
A 109 108 i) 1 0.9
s 9 5 5.4 87 94.6

Tabla 7: Configuracion 65. Fuente: Propia

2. Configuracion 69: k=7. Max_It = 150 (WOWA = 0.870):

En este caso el nimero de clisteres es 7, lo que refina la division, pero baja
ligeramente el K_Index. La division de homogeneidad se mantiene alta, pero el
clUster extra introduce mas variabilidad. Esta division contiene dos clisteres que
rozan la perfeccion en la division, de casi un 100/0, tres cllsteres bastante
Optimos que se acercan a un valor del 90/10 y un clister con una division
inadecuada cercana al 60/40. (Tabla 8)

302 212 70.2 90 29.8
115 7 6.1 108 93.9
152 132 86.8 20 13.2

102 101 99.0 1 1.0
236 101 42.8 135 57.2

142 126 88.7 16 11.3
148 118 79.7 30 20.3

Tabla 8: Configuracion 69. Fuente: Propia

4.3.2. [0.0,0.0,0.0, 1.0, 0.0]

Esta variacion de pesos es alin mas focalizada que la anterior, ignora completamente
todas las métricas internas y se centra Unicamente en la métrica externa propuesta,
la Homogeneidad. (Tabla 9)
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Ahora se profundiza en las dos mejores configuraciones:

91
55
105
102
118
37
92
60
97
86
65
17
45
117
114
120
19
22
90
21

15
23
19
18
24
17
15
24
17
13
6
10
19
23
22
24
11
12
14
11

50
50
150
150
50
50
100
150
50
100
100
100
150
150
150
150
50
50
150
150

0,206
-0,067
0,053
-0,059
-0,003
-0,051
0,164
-0,082
0,004
0,201
0,457
-0,024
-0,079
0,001
0,025
0,098
-0,074
-0,054
0,139
-0,039

1,523
5,287
1,738
1,533
1,608
6,395
1,819
6,211
1,402
1,55
0,733
6,298
4,384
1,707
1,844
1,278
4,918
8,445
1,267
7,754

735,43
225,637
532,275
494,631

482,35
259,415
880,566
206,935
555,178
1152,61

1788,623

326,73
242,275
569,118
471,444
648,946
314,143
296,421
781,292
304,379

Tabla 9: Mejores configuraciones [0.0,0.0,0.0,1.0,0.0]. Fuente: Propia

1. Configuracién 91: k=15, Max_It=150 (WOWA = 0.944):

0,795
0,789
0,789
0,786
0,786
0,786
0,785
0,784
0,784
0,784
0,783
0,783
0,783
0,782
0,782
0,782
0,782
0,782
0,782
0,781

0,474
0,053
0,263
0,316

0,368
0,474

0,368
0,579
0,947
0,737
0,263
0,053
0,105

0,684
0,632
0,526
0,684

Contiene 3 clisteres vacios (11, 12 y 13), a que los centros iniciales caen en
baja densidad, dejando regiones sin asignacion. Esto perjudica ya que
aumenta artificialmente k, el cual deberia ser 12. En este caso al solo tener
en cuenta la Homogeneidad, la mayoria de los cllUsteres son éptimos (con 6
clisteres realmente buenos), salvo dos cllsteres malos que no separan bien
las tomas buenas de las malas. (Tabla 10)

230
362
89
48
31
12
27
248
12
71
1
66

Tabla 10: Configuraciéon 71. Fuente: Propia
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2. Configuracion 55: k=23, Max_It=100 (WOWA=0.938):

No presenta clisteres vacios, gracias a una inicializacion efectiva que distribuye
centros en zonas de densidad media, evitando regiones desérticas. Esto beneficia la
Homogeneidad al maximizar el uso de todos los k, aunque k alto fragmenta datos en
subgrupos finos, potencialmente diluyendo la pureza global. Al enfocarnos solo en
Homogeneidad, la mayoria de los cllisteres son 6ptimos con alto % de division
(cercano al 80/20), salvo seis clisteres problematicos que no separan bien las

tomas y bajan el promedio general. (Tabla 11)

25
44
63
72
32
73
66
71
48
31
76
53
49
48
55
42
52
53
27
25
80
62
50

43.3. [0.14,0.1,0.1,0.5,0.2]

Esta variacion de pesos equilibra las métricas, dando un peso débil a Silhouette,
Davies-Bouldin y Calinski-Harabasz, un peso moderado a K_Index y un mayor peso a
la Homogeneidad. Priorizando la pureza y estabilidad, pero teniendo en cuenta la

24
16
37
65
32
28
57
30
41
1
56
a7
37
43
53
31
3
10
24
21
67
42
32

Tabla 11: Configuracién 55. Fuente: Propia

88.9
84.0
83.8

separacion global de los clusteres. (Tabla 12)

60

16.2



1 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 0,783 @ 0,947 0,933
2 TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 | 0,779 | 0,895 | 0,886
3 TSKM (SoftDTW) 72 8 150 0,421 0,813 1713,707v 0,779 0,842 0,881
4 TSKM (SoftDTW) 71 8 100 0,357 1,03 1512,902 | 0,781 @ 0,842 | 0,866
5 TSKM (SoftDTW) 67 7 50 0,407 0,748 1572,921 0,774 0,895 0,859
6 TSKM (SoftDTW) 69 7 150 0,348 1,309 1407,04 0,779 | 0,895 0,858
7 TSKM (SoftDTW) 66 6 150 0,431 0,758 1680,987 0,766 @ 0,947 0,843
8 TSKM (SoftDTW) 64 6 50 0,429 0,759 1677,412 | 0,764 | 0,947 0,833
9 TSKM (SoftDTW) 61 5 50 0,433 0,752 1625,621 0,759 1 0,818
10 | TSKM (SoftDTW) 62 5 100 0,433 0,752 1625,621 | 0,759 1 0,818
11 | TSKM (SoftDTW) 63 5 150 0,433 0,752 1625,621 0,759 1 0,818
12 | TSKM (SoftDTW) 76 10 50 0,312 1,283 1369,489 | 0,778 | 0,737 @ 0,812
13 | TSKM (SoftDTW) 77 10 100 0,276 1,206 1316,595 0,779 0,737 0,809
14 | TSKM (SoftDTW) 73 9 50 0,311 1,277 1326,824 | 0,774 | 0,789 @ 0,802
15 | TSKM (SoftDTW) 84 12 150 0,285 1,607 1366,09 0,781 0,632 0,797
16 | TSKM (SoftDTW) 79 11 50 0,256 1,305 1349,334 | 0,779 | 0,684 @ 0,795
17 | TSKM (SoftDTW) 70 8 50 0,307 1,053 1230,446 0,769 @ 0,842 0,786
18 | TSKM (SoftDTW) 91 15 50 0,206 1,523 735,43 0,795 | 0,474 0,78
19 | TSKM (SoftDTW) 75 9 150 0,278 1,284 1296,89 0,77 0,789 0,776
20 | TSKM (SoftDTW) 88 14 50 0,254 1,385 1423,313 | 0,781 | 0,526 @ 0,775

Tabla 12: Mejores configuraciones [0.1,0.1,0.1,0.5,0.2]. Fuente: Propia

A continuacion, se desarrollan las mejores configuraciones:

1. Configuracion 65: Explicada en la seccion 4.3.1.

2. Configuracién 68: k=7. Max_It = 100 (WOWA = 0.886):
Esta configuracion refina con un k=7, manteniendo unas iteraciones
moderadas (Max_It=100). Contiene una homogeneidad sélida, una Silhouette
decente y un K_Index estable, aunque Davies-Bouldin sugiere algo de
solapamiento. La composicion de clisteres destaca el O y 1 por su casi
perfecta separacion, pero penaliza con dos clusteres de gran tamano que
realizan una separacion mala de los tornillos OK y NOK. (Tabla 13)
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~ Cldster  Cldster_Size OK_Count OK_Percent NOK_Count NOK_Percent
e 113 7 6.2 106 93.8
N o4 o3 98.9 1 11
2 1. 150 78.5 41 21.5
8 209 86 411 123 58.9
4 | 198 172 86.9 26 13.1
8 125 112 89.6 13 10.4
e 267 177 66.3 90 33.7

Tabla 13: Configuraciéon 68. Fuente: Propia

4.3.4. [0.25,0.25,0.25, 0.0, 0.25]

Esta variacion enfatiza las métricas internas del clustering con un mismo peso e
ignorando completamente la métrica externa de la Homogeneidad. Esto es ideal para
priorizar la compactacion y separacion global sin preocuparse por la pureza externa,
Gatil para comparar la métrica propuesta. (Tabla 14)

1 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 @ 0,783 | 0,947 @ 0,986
2 TSKM (SoftDTW) 63 5 150 0,433 0,752 1625,621 | 0,759 1 0,966
3 TSKM (SoftDTW) 62 5 100 0,433 0,752 1625,621 = 0,759 1 0,966
4 TSKM (SoftDTW) 61 5 50 0,433 0,752 1625,621 | 0,759 1 0,966
5 TSKM (SoftDTW) 66 6 150 0,431 0,758 1680,987 @ 0,766 @ 0,947 | 0,959
6 TSKM (SoftDTW) 64 6 50 0,429 0,759 1677,112 | 0,764 | 0,947 | 0,958
7 TSKM (SoftDTW) 72 8 150 0,421 0,813 1713,707 0,779 0,842 0,931
8 TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 | 0,779 @ 0,895 | 0,929
9 TSKM (SoftDTW) 67 7 50 0,407 0,748 1572,921 = 0,774 | 0,895 0,92
10 TSKM (SoftDTW) 71 8 100 0,357 1,03 1512,902 | 0,781 0,842 | 0,871
11 TSKM (SoftDTW) 69 7 150 0,348 1,309 1407,04 0,779 0,895 0,861
12 TSKM (SoftDTW) 70 8 50 0,307 1,053 1230,446 | 0,769 @ 0,842 | 0,809
13 TSKM (SoftDTW) 73 9 50 0,311 1,277 1326,824 @ 0,774 | 0,789 @ 0,806
14 TSKM (SoftDTW) 76 10 50 0,312 1,283 1369,489 | 0,778 0,737 | 0,799
15 TSKM (SoftDTW) 75 9 150 0,278 1,284 1296,89 0,77 | 0,789 | 0,788
16 TSKM (SoftDTW) 78 10 150 0,28 1,222 1332,461 | 0,77 | 0,737 | 0,782
17 TSKM (SoftDTW) 80 11 100 0,275 1,367 1455,732 = 0,77 0,684 0,78
18 TSKM (SoftDTW) 77 10 100 0,276 1,206 1316,595 | 0,779 | 0,737 | 0,778
19 TSKM (SoftDTW) 74 9 100 0,26 1,382 1223,042 0,771 0,789 0,768
20 TSKM (SoftDTW) 81 11 150 0,285 1,05 1269,594 | 0,771 A 0,684 | 0,764

Tabla 14: Mejores configuraciones [0.25,0.25,0.25,0.0,0.25]. Fuente: Propia
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A continuacion, se desarrollan las mejores configuraciones:

1. Configuracién 65: Explicada en la seccion 4.3.1.

2. Configuracion 63: k=5, Max_It=150 (WOWA = 0.966):
Esta configuracion usa k=5 minimo, lo cual hace que los clisteres sean mas
estables, pero baja la granularidad. Las iteraciones aseguran una
convergencia completa que ajusta bien los centros (Silhouette=0,433),
aunque el valor de Davies-Bouldin moderado que indica algo de solapamiento
entre cllisteres y un Calinski-Harabasz sélido que refleja una cohesion interna
fuerte. Los detalles de la configuracion reflejan 4 cllisteres bastante 6ptimos
con una separacion superior al 75/25%, pero con un clister mal separado y
con un volumen alto de tamano. (Tabla 15)

129 11 8.5 118 91.5

299 260 87.0 39 13.0
324 252 77.8 72 22.2
109 108 99.1 1 0.9

336 166 49.4 170 50.6

Tabla 15: Configuracién 63. Fuente: Propia

4.35. [0.2,0.2,0.2,0.2,0.2]

Esta variacion asigna un valor uniforme a cada métrica, equilibrandolas en el
analisis. Esto permite tener en cuenta todas las métricas por igual para dar un
analisis integral y sin sesgos, capturando tanto la validez interna de los clisteres
como su utilidad externa, lo que favorece configuraciones mas versatiles. (Tabla 16)

1 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 | 0,783 0,947 0,966
2 TSKM (SoftDTW) 72 8 150 0,421 0,813 1713,707 | 0,779 | 0,842 | 0,915
3 TSKM (SoftDTW) 66 6 150 0,431 0,758 1680,987 0,766 0,947 0,913
4 TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 | 0,779 0,895 0,913
5 TSKM (SoftDTW) 64 6 50 0,429 0,759 1677,112 | 0,764 0,947 0,908
6 TSKM (SoftDTW) 61 5 50 0,433 0,752 1625,621 | 0,759 1 0,906
7 TSKM (SoftDTW) 63 5 150 0,433 0,752 1625,621 | 0,759 1 0,906
8 TSKM (SoftDTW) 62 5 100 0,433 0,752 1625,621 | 0,759 1 0,906
9 TSKM (SoftDTW) 67 7 50 0,407 0,748 1572,921 0,774 0,895 0,897
10 TSKM (SoftDTW) 71 8 100 0,357 1,03 1512,902 | 0,781 | 0,842 0,871
11 TSKM (SoftDTW) 69 7 150 0,348 1,309 1407,04 | 0,779 0,895 0,859
12 TSKM (SoftDTW) 76 10 50 0,312 1,283 1369,489 | 0,778 0,737 | 0,808
13 TSKM (SoftDTW) 73 9 50 0,311 1,277 1326,824 0,774 0,789 0,806
14 TSKM (SoftDTW) 70 8 50 0,307 1,053 1230,446 | 0,769 0,842 0,799
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15
16
17
18
19
20

TSKM (SoftDTW) 77
TSKM (SoftDTW) 75
TSKM (SoftDTW) 78
TSKM (SoftDTW) 80
TSKM (SoftDTW) 79
TSKM (SoftDTW) 84

10 100
9 150
10 150
11 100
11 50
12 150

0,276
0,278
0,28
0,275
0,256
0,285

1,206
1,284
1,222
1,367
1,305
1,607

1316,595
1296,89
1332,461
1455,732
1349,334
1366,09

Tabla 16: Mejores configuraciones [0.2,0.2,0.2,0.2,0.2]. Fuente: Propia

A continuacion, se desarrollan las mejores configuraciones:

1. Configuracién 65: Explicada en la seccién 4.3.1
2. Configuracion 72: k=8, Max_It=150 (WOWA = 0.915):
Esta configuracion tiene un k=8 medio para una granularidad equilibrada y
un Max_It alto para una convergencia estable, destacando una buena
separacion y cohesion fuerte, aunque indica algo de solapamiento. La
separacion segun el desglose revela unos clisteres muy bien separados,
sobre todo el 1,3 y 6. Pero un cllster de gran tamano mal separado (Clister

0). (Tabla 17)

263
60
214
51
134
230
50
195

4.3.6.

155
5
64

1

120

182
50

166

Tabla 17: Configuracion 72. Fuente: Propia

58.9
98.3
29.9
2.0

89.6
79.1

85.1

Conclusion sobre los resultados

108

150
50
14
48

29

0,779
0,77
0,77
0,77

0,779

0,781

41.1
i
70.1

10.4
20.9

14.9

0,737
0,789
0,737
0,684
0,684
0,632

Tras explorar las diferentes ponderaciones de métricas en el analisis de series
temporales de motores, se observa que el algoritmo TSKM (TimeSerieskMeans)

emerge como el

mas efectivo y consistente, apareciendo en todas

las

configuraciones top 20 de los vectores de pesos evaluados. Esto se debe a su
capacidad para manejar distancias temporales (DTW/softDTW) y generar cllsteres
estables, superando a KShape en WOWA maximo. (Figura 14)
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TimeSerieskKMeans destaca por su adaptabilidad a datos como los de tornillos,
minimizando solapamientos y maximizando homogeneidad sin requerir ajustes
complejos.

Maximos valores de WOWA por algoritmo

0.986

1.0+

0.8 4

WOWA

0.4

0.373

0.24

0.0~
TimeSeriesKMeans KShape

Figura 14: Maximos valores por algoritmo. Fuente: Propia (Python)

Para sintetizar, la Tabla 18 resume las 20 mejores configuraciones globales,
ordenadas por WOWA descendente, incluyendo la columna de pesos asociada a cada

una:

Algorithm Conf_ID Silho  Dav_Bou Cal_Har Homog K_Ind
1 TSKM (SoftDTW) 65 6 100 | 0,457 0,733 1788,623 = 0,783 | 0,947 | 0,986 | [0.25,0.25, 0.25, 0, 0.25]
2 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 | 0,783 | 0,947 | 0,966 [0.2,0.2,0.2,0.2,0.2]
3 TSKM (SoftDTW) 63 5 150 0,433 0,752 1625,621 | 0,759 1 0,966 | [0.25, 0.25, 0.25, 0, 0.25]
4 TSKM (SoftDTW) 62 5 100 | 0,433 0,752 1625,621 | 0,759 1 0,966 | [0.25, 0.25,0.25, 0, 0.25]

5 TSKM (SoftDTW) 61 5 50 0,433 0,752 1625,621 | 0,759 1 0,966 | [0.25,0.25, 0.25, 0, 0.25]

6 TSKM (SoftDTW) 65 6 100 0,457 0,733 1788,623 | 0,783 | 0,947 | 0,933 [0.1,0.4,0.1,0.5,0.2]

7 TSKM (SoftDTW) 91 15 50 0,206 1,523 735,43 0,795 | 0,474 | 0,930 [0, 0,0, 1.0, 0]

8 TSKM (SoftDTW) 72 8 150 0,421 0,813 1713,707 | 0,779 | 0,842 | 0,931 | [0.25,0.25,0.25, 0, 0.25]

9 TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 | 0,779 | 0,895 | 0,929 @ [0.25, 0.25, 0.25, 0, 0.25]

10 TSKM (SoftDTW) 72 8 150 0,421 0,813 1713,707 | 0,779 | 0,842 | 0,915 [0.2,0.2,0.2,0.2,0.2]

11 TSKM (SoftDTW) 66 6 150 0,431 0,758 1680,987 @ 0,766 | 0,947 | 0,913 [0.2,0.2,0.2,0.2,0.2]

12 TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 | 0,779 | 0,895 | 0,913 [0.2,0.2,0.2,0.2,0.2]

13 TSKM (SoftDTW) 64 6 50 0,429 0,759 1677,1412 | 0,764 | 0,947 | 0,908 [0.2,0.2,0.2,0.2,0.2]

14 TSKM (SoftDTW) 61 5 50 0,433 0,752 1625,621 | 0,759 1 0,906 [0.2,0.2,0.2,0.2,0.2]

15 TSKM (SoftDTW) 63 5 150 0,433 0,752 1625,621 | 0,759 1 0,906 [0.2,0.2,0.2,0.2,0.2]
16 TSKM (SoftDTW) 62 5 100 0,433 0,752 1625,621 | 0,759 1 0,906 [0.2,0.2,0.2,0.2,0.2]
17 TSKM (SoftDTW) 67 7 50 0,407 0,748 1572,921 | 0,774 | 0,895 0,92 [0.25, 0.25, 0.25, 0, 0.25]
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TSKM (SoftDTW) 67 7 50 0,407 0,748 1572,921 | 0,774 | 0,895 | 0,897 [0.2,0.2,0.2,0.2,0.2]

19

TSKM (SoftDTW) 68 7 100 0,396 0,805 1672,574 | 0,779 | 0,895 | 0,886 [0.1,0.1, 0.1, 0.5, 0.2]

20

TSKM (SoftDTW) 71 8 100 0,357 1,03 1512,902 | 0,781 | 0,842 | 0,871 [0.1,0.1,0.1,0.5,0.2]

Tabla 18: : Mejores configuraciones globales. Fuente: Propia

La configuracion 6ptima global es la 65 (k=6, Max_It=100), apareciendo en todas las
mejores, con un valor de WOWA medio ~0.95 una Silhouette alta (separacion buena),
Homogeneidad soélida (pureza ~78%), K_Index 6ptimo (estabilidad sin extremos), y
métricas internas compactas (Davi_Bou bajo, Cal_Har alto). Es superior porque
integra todo sin sesgos, superando configuraciones con k alto (sobreajuste) o muy
bajo (poca granularidad).

—

A continuacion, en la Tabla 19 y la Figura 15 se detalla el desglose completo de la
configuracion 65:

252 206 275 263 109 92
156 74 240 214 108 5

619 359 87.3 814 99.1 54
96 132 35 49 1 87
38.1 64.1 12.7 186 0.9 94.6
26 30 36 31 15 12
31T 29 32 27 14 17

29 24 35 45 15 2

47 25 21 22 13 22
32 23 44 35 14 2

29 15 45 40 17 3

30 33 34 26 11 15
28 27 28 37 10 19
10.3 146 13.1 11.8 13.8 13.0
12.3 141 116 10.3 12.8 185
11.5 117 127 17.1 13.8 2.2
18.7 121 7.6 84 119 239
12.7 112 16.0 13.3 12.8 2.2
11.5 7.3 164 152 156 3.3
119 16.0 124 99 10.1 16.3
11.1 13.1 10.2 141 9.2 20.7

Tabla 19: Desglose completo Configuracion 65. Fuente: Propia
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Config 65: TimeSeriesKMeans, Metri
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Figura 15: Clustering Configuracion 65. Fuente: Propia (Pyhton)




El analisis de la distribucion de los tornillos (Tabla 19) a lo largo de las
configuraciones de clustering revela que la separacion de los clisteres no se basa
de manera significativa en la atornilladora utilizada. A pesar de evaluar las
proporciones de tornillos OK y NOK por clister, los datos muestran una distribucion
homogénea entre las diferentes atornilladoras, con porcentajes de tornillos
asignados a cada cluster que varian de forma aleatoria y no presentan patrones
distintivos asociados a un equipo especifico (por ejemplo, clisteres con un 10-20%
de tornillos por atornilladora en todas las configuraciones). Esto sugiere que las
diferencias en las curvas par-angulo estan mas influenciadas por factores inherentes
al proceso de atornillado (como par o angulo) que, por las caracteristicas especificas
de las atornilladoras, lo que indica que el clustering no logra segregar los datos segln
el equipo utilizado.

La Figura 15 muestra la visualizacion de los 5 cllisteres generados por la
configuracion 6ptima, presentando las curvas de par en la parte izquierda y las
curvas de angulo en la parte derecha. Se puede observar un excelente solapamiento
de las curvas dentro de cada clister, evidenciando alta cohesion interna y buena
separacion entre cllsteres. Esto confirma la calidad del clustering, demostrando que
la configuracion 6ptima genera agrupaciones interpretables, compactas y efectivas.

Como conclusion, este analisis ha abordado las curvas par-angulo para detectar
anomalias en el atornillado de motores, un desafio clave en la industria automotriz
donde la precision del par y el angulo marca la diferencia. Partiendo de un caso de
uso practico, se caracterizaron datos de 200 conjuntos de aprietes (150 OK y 50
NOK), procesandolos para extraer patrones relevantes mediante clustering. La
metodologia incluyd un preprocesamiento que elimind intervalos irrelevantes,
normalizd curvas y generd graficas, seguido de la aplicacién de algoritmos como
TimeSerieskMeans y KShape con configuraciones variadas (5 a 25 clusteres, 50 a
150 iteraciones, DTW y SoftDTW). Esto permitié evaluar los clisteres con las métricas
Silhouette, Davies-Bouldin, Calinski-Harabasz, Homogeneidad y K_Index,
combinados en un criterio WOWA con pesos variados para poder saber mas acerca
de los clUsteres y la separacion de estos.

La Homogeneidad, métrica desarrollada ad hoc, cuantifica la pureza de cada cluster
ponderando su tamano relativo por el maximo porcentaje de una clase (OK o NOK).
Su rol es crucial para priorizar clisteres "puros" (>78% de una clase), facilitando la
deteccion de desviaciones claras. El K_Index, también propuesto, penaliza
configuraciones complejas favoreciendo k bajos (k=5=1, k=10~0.74) para una
simplicidad interpretativa en entornos industriales.

El analisis exhaustivo de las variaciones en los pesos de las métricas de evaluacion,
desde una configuracion inclinada al indice de Homogeneidad propuesto [0.0, 0.0,
0.0, 1.0, 0.0] hasta los extremos dominados por las métricas internas [0.25, 0.25,
0.25, 0.0, 0.25], revela patrones consistentes en el rendimiento de los algoritmos
TimeSerieskKMeans y KShape para el clustering de series temporales orientado a la
deteccion de anomalias (OK/NOK). En todas las combinaciones, TimeSerieskMeans
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demuestra una superioridad clara y robusta, ocupando invariablemente las
posiciones superiores de los rankings con valores de WOWA promedio superiores a
0.80, impulsados por una cohesion interna sélida (Silhouette positivo ~0.4),
separacion entre clisteres efectiva (Davies-Bouldin ~0.8) y dispersion externa
Optima (Calinski-Harabasz ~1600-2100), combinados con una Homogeneidad
elevada (~0.77-0.78) que asegura pureza superior al 77% y un K_Index equilibrado
(~0.8-0.95) que favorece simplicidad sin sacrificar granularidad. Los resultados
reflejan que configuraciones como la Conf_ID 65 (k=6, Max_It=100) se repite de
manera estable en los tops a lo largo de las variaciones, destacando su versatilidad
para datos temporales variables con alineamientos dinamicos, lo que la posiciona
como ideal para implementaciones practicas en entornos industriales donde la
precision en la clasificacion prima sobre la complejidad computacional.

Por el contrario, KShape exhibe un rendimiento consistentemente inferior, con
WOWA promedio ~0.35-0.25, limitado por clisteres dispersos (Silhouette negativo
~-0.08), separacion pobre (Davies-Bouldin ~3.0) y dispersion externa baja (Calinski-
Harabasz ~110-150), resultando en una Homogeneidad moderada (~0.69-0.72) que
genera clasificaciones mixtas insuficientes para anomalias complejas. Solo en
variaciones extremas con peso total en Homogeneidad y nimero de clUsteres mejora
relativamente, pero sin superar la brecha global de ~0.55-0.5 puntos en WOWA
respecto a TSKM, cuya fortaleza radica en el manejo superior de correlaciones
temporales y alineamientos no lineales. (Tabla 20)

Rank Algorithm Conf_ID k Max_It Silho Dav_Bou Cal_Har Homog K_Ind WOWA Pesos

1 KShape 130 8 50 -0.078 3.061 112.688 | 0.716 | 0.842 | 0.372993 | [0.0, 0.0, 0.0, 0.5, 0.5]
2 KShape 131 8 100 | -0.078 3.061 112.688 | 0.716 | 0.842 | 0.372993 | [0.0, 0.0, 0.0, 0.5, 0.5]
3 KShape 132 8 150 | -0.078 3.061 112.688 | 0.716 | 0.842 | 0.372993 | [0.0, 0.0, 0.0, 0.5, 0.5]
4 KShape 121 5 50 -0.053 3.207 149.440 | 0.688 | 1.000 | 0.368940 | [0.0, 0.0, 0.0, 1.0, 0.0]
5 KShape 123 5 150 | -0.053 3.207 149.440 | 0.688 | 1.000 | 0.368940 | [0.0, 0.0, 0.0, 1.0, 0.0]
6 KShape 122 5 100 | -0.053 3.207 149.440 | 0.688 | 1.000 | 0.368940 | [0.0, 0.0, 0.0, 1.0, 0.0]
7 KShape 127 7 50 -0.078 2.878 119.389 | 0.700 | 0.895 | 0.365697 | [0.0, 0.0, 0.0, 0.5, 0.5]
8 KShape 128 7 100 | -0.078 2.878 119.389 | 0.700 | 0.895 | 0.365697 | [0.0, 0.0, 0.0, 0.5, 0.5]
9 KShape 129 7 150 | -0.078 2.878 119.389 | 0.700 | 0.895 | 0.365697 | [0.0, 0.0, 0.0, 0.5, 0.5]
10 KShape 124 6 50 -0.076 2.953 131.958 | 0.689 | 0.947 | 0.353659 | [0.0, 0.0, 0.0, 0.5, 0.5]
11 KShape 125 6 100 | -0.076 2.953 131.958 | 0.689 | 0.947 | 0.353659 | [0.0, 0.0, 0.0, 0.5, 0.5]
12 KShape 126 6 150 | -0.076 2.953 131.958 | 0.689 | 0.947 | 0.353659 | [0.0, 0.0, 0.0, 0.5, 0.5]
13 KShape 133 9 50 -0.086 3.196 95.618 | 0.712 | 0.789 | 0.331205 | [0.1,0.1,0.1, 0.5, 0.2]
14 KShape 134 9 100 | -0.086 3.196 95.618 | 0.712 | 0.789 | 0.331205 | [0.1,0.1,0.1, 0.5, 0.2]
15 KShape 135 9 150 | -0.086 3.196 95.618 | 0.712  0.789  0.331205 | [0.1,0.1,0.1, 0.5, 0.2]
16 KShape 138 10 150 | -0.094 3.493 87.552 | 0.713 | 0.737 | 0.291489 | [0.0, 0.0, 0.0, 0.5, 0.5]
17 KShape 136 10 50 -0.094 3.493 87.552 | 0.713 | 0.737 | 0.291489 | [0.0, 0.0, 0.0, 0.5, 0.5]
18 KShape 137 10 100 | -0.094 3.493 87.552 | 0.713 | 0.737 | 0.291489 | [0.0, 0.0, 0.0, 0.5, 0.5]
19 KShape 139 11 50 -0.100 3.345 84.112 | 0.712 | 0.684 | 0.282868 | [0.1,0.1,0.1, 0.5, 0.2]
20 KShape 140 11 100 | -0.100 3.345 84.112 | 0.712 | 0.684 | 0.282868 | [0.1,0.1,0.1, 0.5,0.2]
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Tabla 20: Mejores configuraciones KShape. Fuente: Propia

Las variaciones en pesos confirman que equilibrar métricas internas (Silhouette,
Davies-Bouldin, Calinski-Harabasz y K_Index) con el indice de Homogeneidad genera
rankings mas estables y configuraciones robustas, elevando WOWA ~0.85-0.90 sin
desestabilizar el orden, y favoreciendo nimeros de clisteres entre 5 y 8 con
iteraciones en torno a 100 para una combinacion 6ptima entre pureza y simplicidad.
Sin embargo, una variacion que pondere totalmente a la Homogeneidad, priorizacion
de pureza extrema permite k mas altos (hasta 24) con menor penalizacion, pero
reduce la influencia de la cohesion, lo que podria inducir sobreajuste en datasets
ruidosos; en estos casos, WOWA se mantiene alto, pero los rankings se vuelven
menos sensibles a métricas internas, resaltando el rol de Homogeneidad como
métrica principal. Ignorar completamente las métricas internas en la variaciéon no
parece una buena opcion para el ajuste correcto del clustering

En sintesis, estos resultados validan TimeSerieskMeans como el algoritmo
preferente para clustering temporal en deteccion de anomalias, donde SoftDTW
destaca por encima de DTW tradicional gracias a su aproximacion suave y
diferenciable que facilita la optimizacion basada en gradientes y reduce la
sensibilidad a alineamientos locales ruidosos, mejorando la estabilidad en series
variables. La mejor configuracién global corresponde a la base equilibrada en
métricas internas [0.25, 0.25, 0.25, 0.0, 0.25], aunque la adicién del indice de
Homogeneidad mejora los resultados desarrollados en las configuraciones.

4.4, Bibliotecas, Herramientas y Software Utilizados

Para llevar a cabo este trabajo, se utilizan una serie de herramientas que me han
permitido procesar los datos, realizar los analisis y presentar los resultados de forma
clara. El analisis comienza con la configuracion general de parametros que
establecen el marco del trabajo, detallados en la Tabla 21.:

Parametro Valor Propésito

Define las métricas de distancia (DTW y Soft-

metrics "dtw", "softdtw" . .
! [dtw W] DTW) para TimeSerieskKMeans.

k_values range(5, 25) Establece el rango de clisteres a probar (5 a 24).

Define las iteraciones maximas para la

max_fters [50, 100, 150] convergencia de los algoritmos.
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. Controla los intervalos de interpolacion en la
n_int [5, 10] o L
estandarizacion de duracion.
Limita el ndmero de motores en estado "OK" a
n_ok_motors 150
procesar.
n_nok_motor 50 Limita el ndmero de motores en estado "NOK" a
S procesar.
. Establece el método de inicializacién de
init_method "k-means++" i , .
centroides en TimeSerieskKMeans.
N init 1 Define el nimero de inicializaciones en KShape
- (implicito).
wowa_weight [0.1,0.1,0.1, Asigna pesos a las métricas para calcular el
S 0.5, 0.2] indice WOWA.

Tabla 21: Configuracion de los parametros: Fuente: Propia

Estos parametros no son aleatorios; se ajustaron mediante un proceso iterativo
basado en las caracteristicas de las curvas par-angulo:

Uno de los primeros es metrics, una lista que incluye ["dtw", "softdtw"], que especifica
las métricas de distancia utilizadas por TimeSerieskMeans. Se elige DTW (Dynamic
Time Warping) por su capacidad para alinear temporalmente las curvas y capturar
variaciones en el par, mientras que Soft-DTW anade flexibilidad con un suavizado
implicito, lo que se prueba para mejorar la robustez ante ruido. Este parametro
permite comparar ambos enfoques y evaluar su impacto en la deteccion de
anomalias.

Otro parametro clave es k_values, definido como list(range(5, 25)), que establece el
rango de clusteres a probar. Lo fijé entre 5y 24 porque queria explorar una variedad
de agrupaciones que reflejaban tanto patrones normales como andmalos en las
curvas, basandome en la diversidad de los datos de entrada. Lo ajusté tras observar
que valores menores a 5 generaban clisteres demasiado generales, mientras que
mas de 24 fragmentaban excesivamente los datos.

El parametro max_iters, con valores [50, 100, 150], define las iteraciones maximas
para la convergencia de TimeSerieskMeans y KShape. Lo configuré en este rango
tras probar que 50 iteraciones a veces no alcanzaban la convergencia en datasets
grandes, mientras que 150 ofrecia mejoras marginales, por lo que 100 se convirtié
en un punto intermedio efectivo. Este ajuste asegura que los algoritmos se
estabilicen sin consumir recursos innecesarios.
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Para TimeSerieskMeans, el parametro init_method = "k-means++" establece el
método de inicializacion de los centroides. Lo seleccioné porque k-means++ mejora
la convergencia inicial al elegir puntos iniciales mas representativos, reduciendo el
riesgo de caer en 6ptimos locales, algo que noté al comparar con inicializaciones
aleatorias en pruebas previas.

En K-Shape, aunque no se especifica explicitamente un parametro de inicializacion,
el valor implicito de n_init = 1 (definido en el c6digo) indica una sola inicializacion. Lo
mantuve asi por simplicidad y para alinear el tiempo de cémputo con
TimeSerieskMeans, aunque consideré aumentar a 5 en futuros ajustes si la
estabilidad lo requiriera.

Todos estos parametros pueden variarse al inicio del programa para buscar
configuraciones 6ptimas, incluyendo ajustes en n_ok_motors y n_nok_motors segin
disponibilidad de datos.

A continuacion, se detallan las principales bibliotecas y herramientas utilizadas:

o Python: Se utiliza este lenguaje como base para todo el proyecto, eligiendo la
version 3.12 por su estabilidad y la amplia comunidad que lo apoya, ideal
para tareas de ciencia de datos. Me ha dado la flexibilidad necesaria para
estructurar el flujo de trabajo.

e pandas: Esta herramienta ha sido clave para organizar los datos en tablas
manejables. Me ha permitido trabajar con las mediciones como si fueran
hojas de calculo, facilitando su analisis y preparacion.

e numpy: Para los calculos numéricos, especialmente con matrices y ajustes de
series temporales, esta biblioteca ha sido mi aliada. Su rapidez ha hecho que
los procesos pesados fueran mas eficientes.

« matplotlib y gridspec: Con matplotlib se crean los graficos que muestran las
curvas de par y angulo, mientras que gridspec me ha ayudado a organizar
varios subgraficos en una misma figura, mejorando la visualizacion
comparativa.

o tslearn: Esta biblioteca especializada en series temporales me ha
proporcionado los algoritmos necesarios para el clustering, como
TimeSerieskMeans y KShape, adaptados perfectamente a mi caso de
estudio.

o sklearn: Se ha recurrido a esta herramienta para evaluar los cllisteres con
métricas como la puntuacion de Silhouette, el indice de Davies-Bouldin y el
de Calinski-Harabasz, ademas de estandarizar los datos antes del analisis.

e json: Me ha servido para guardar los datos procesados en un formato ligero,
ideal para almacenar las series temporales de forma ordenada y accesible.
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e openpyxl: Con esta biblioteca se han generado los reportes en Excel,
anadiendo tablas estilizadas que hacen que los resultados sean mas
profesionales y faciles de compartir.

e collections (Counter): Este médulo me ha ayudado a contar rapidamente la
distribucion de estados (OK y NOK) entre los motores, dandome una vision
inicial util del conjunto de datos.

Todas estas herramientas se han integrado de manera que el proceso fluya desde la
carga de datos hasta la generacion de informes y graficos, asegurando un analisis
sélido y resultados comprensibles para su uso en un entorno industrial.
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5. CONCLUSIONES Y TRABAJO FUTURO

5.1. Conclusiones

Alo largo de este trabajo se han abordado con éxito los objetivos planteados y se ha
conseguido realizar una contribucion significativa al campo del control de calidad en
procesos de atornillado industrial, tomando como caso de estudio los motores
ensamblados en la empresa HORSE.

El primery principal objetivo era analizar y proponer soluciones basadas en técnicas
de analitica de datos, especialmente algoritmos de clustering orientados a la
detecciony prevencion de anomalias en series temporales de par y angulo generadas
durante el proceso de atornillado. Para ello, se ha disenado una metodologia
detallada que abarca desde el preprocesamiento de los datos, la normalizacion de
los perfiles de cada tornillo, hasta la aplicacion iterativa y sistematica de diferentes
configuraciones de clustering que permiten segmentar y analizar de forma objetiva
grandes volumenes de informacion provenientes de sensores industriales.

Entre las principales aportaciones destacan el desarrollo y puesta en practica de un
sistema de seleccion de parametros configurables que facilita la comparacion
rigurosa entre distintas variantes de algoritmos de agrupamiento, como
TimeSerieskMeans y KShape, ademas de comparar las métricas DTW y SoftDTW en
el analisis de series temporales.

El enfoque propuesto permite no solo identificar patrones normales y andémalos en
los datos, sino también discriminar de forma robusta entre motores funcionales y
aquellos con defectos, aportando indicadores cuantitativos como la Silhouette,
Calinski-Harabasz, Davies-Bouldin, Homogeneidad y K_Index, ademas del operador
de agregacion de métricas WOWA, que ha demostrado ser muy Util para sintetizar la
calidad de las configuraciones ensayadas.

Cabe subrayar que la solucion final adoptada, basada en TimeSerieskMeans con
SoftDTW y un nimero O6ptimo de clUsteres de seis, ha mostrado una capacidad
sobresaliente para agrupar curvas de par-angulo y detectar anomalias caracteristicas
del proceso de atornillado en los motores de HORSE, superando el rendimiento de
otras alternativas estudiadas. Este resultado, validado por la comparacion
sistematica de cientos de configuraciones, se apoya ademas en la generacion
automatizada de informes y visualizaciones, lo cual facilita enormemente su
integracion en entornos reales de fabricacion.

Esta metodologia se ha aplicado a un problema real de produccion industrial,
validada con datos de 200 motores ensamblados en HORSE (150 funcionales y 50
con anomalias), demostrando su efectividad en la deteccion de desviaciones del
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comportamiento nominal y su potencial para reducir rechazos y mejorar la fiabilidad
en entornos operativos.

No menos importante es el valor anadido que aporta el desarrollo operativo de todo
el proceso en Python, apoyandose en bibliotecas especializadas para la
manipulacion y visualizacion de datos, lo que garantiza la reproducibilidad y
escalabilidad del analisis en contextos industriales. Se ha logrado asi avanzar
sustancialmente en la automatizacion del diagnostico de fallos en el atornillado y en
la mejora continua del control de calidad.

5.2. Lineas de Trabajo Futuro

El trabajo realizado abre numerosas posibilidades de ampliacion y mejora en futuras
investigaciones y desarrollos, algunas de las cuales se enumeran a continuacion:

» Extension de la base de datos: Como evolucion natural, resulta fundamental
ampliar el nUmero de motores y atornilladoras analizadas, recogiendo mas
muestras y expandiendo la representatividad tanto en cantidad como en
diversidad de casos. Esto permitiria fortalecer la validez estadistica de los
resultados y abordar variantes o modelos de motores con particularidades
distintas, adaptando el analisis a nuevos escenarios industriales.

e Incorporacion de nuevas técnicas analiticas: La metodologia puede
enriquecerse probando algoritmos de clustering alternativos (como DBSCAN,
espectrales o modelos basados en aprendizaje profundo) que faciliten la
visualizacion y comprension de patrones ocultos en los datos de par y angulo.
Igualmente, la integracion de técnicas de aprendizaje supervisado podria
servir para comparar el rendimiento contra los enfoques no supervisados
utilizados hasta ahora.

o Desarrollo de dashboards interactivos: De cara a la aplicacion practica en
planta, se plantea construir paneles de control visuales que permitan a los
técnicos y responsables de calidad ver en tiempo real el estado de cada motor
y tornillo, facilitando la identificacion instantanea de posibles anomalias. Esto
requeriria el desarrollo de aplicaciones web o interfaces graficas que
conecten con el sistema de analisis y muestren indicadores de agrupamiento,
perfiles de par-angulo, alertas, y estadisticas clave, todo ello de manera
intuitiva y flexible.

e Implementacion en streaming en la planta de HORSE: Una linea
especialmente relevante es la adaptacion del sistema para su uso en
streaming, integrandolo directamente en el proceso de produccion de HORSE.
Esto permitiria analizar las curvas de par-angulo en tiempo real, detectando
anomalias durante el propio ensamblaje y facilitando la toma de decisiones
inmediata, la trazabilidad automatica y la optimizacion de los tiempos de
parada necesarios para revisiones o correcciones. Para ello seria necesaria
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una arquitectura capaz de manejar grandes volimenes de datos en tiempo
real, asi como mecanismos de alerta y retroalimentacion directa para los
operarios.

En definitiva, el camino iniciado con este trabajo pone las bases para una mejora
sustancial en el analisis predictivo y el control de calidad en procesos de atornillado
industrial, no solo contribuyendo a la fiabilidad y seguridad de los motores de HORSE
sino también abriendo la puerta a aplicaciones similares en muchas otras areas de
la industria moderna.
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