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Abstract

This letter introduces an unconditionally stable finite‐difference time‐
domain (FDTD) method, based on the locally one‐dimensional (LOD)

technique, for the solution of the two‐dimensional scalar wave equation

(WE) in homogeneous media. The second spatial derivatives in the WE

are discretized by using a three‐point compact (implicit) finite‐difference
formula with a free parameter. This formula has second‐order accuracy

and becomes fourth‐order by properly selecting the parameter value.

Moreover, the resulting algorithm only involves tridiagonal matrices, as

when using standard (explicit) second‐order finite differences. Addition-

ally, a stability analysis is performed and the numerical dispersion

relation of the method is derived. The proposed compact LOD‐WE‐FDTD

technique has been applied to the calculation of resonant frequencies in a

metallic ridge cavity. The accuracy of the results obtained has been

studied as a function of the parameter value.
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1 | INTRODUCTION

During the last two decades, a considerable effort has
been made to develop efficient unconditionally stable
finite‐difference time‐domain (FDTD) techniques for
computational electromagnetics, such as the alternating‐
direction implicit FDTD (ADI‐FDTD), the locally one‐
dimensional FDTD (LOD‐FDTD) and the split‐step
FDTD (SS‐FDTD) methods.1–3 In comparison to the
conventional FDTD method,4 these techniques are
able to remove the Courant–Friedrich–Levy limit on
the time step size at the cost of solving sparse systems of

linear equations in each time iteration. Specifically,
tridiagonal systems arise when, as usual, the spatial
derivatives in Maxwell's equations are approximated by
explicit second‐order FDs.

To improve the accuracy of the unconditionally stable
FDTD methods, the use of explicit high‐order FDs to
approximate the spatial derivatives was proposed.
However, this approach increases the bandwidth of the
matrix equations involved. For instances, fourth‐order
unconditionally stable FDTD methods require the solu-
tion of heptadiagonal matrix equations.5 To alleviate this
problem, the explicit FDs were replaced by compact
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(implicit) FDs. As a result, compact fourth‐order
schemes, in which only pentadiagonal matrix equations
need to be solved, were developed for the ADI‐FDTD,6

LOD‐FDTD,7 and SS‐FDTD8,9 methods.
As an alternative to the conventional FDTD

method, the scalar wave‐equation FDTD (WE‐FDTD)
technique has also been proposed for solving electro-
magnetic wave problems.10,11 In this letter, we intro-
duce a new compact LOD‐WE‐FDTD method for the
solution of two‐dimensional (2D) problems in homoge-
nous media. The second spatial derivatives appearing in
the scalar WE are directly approximated by using a
three‐point compact FD formula with a free parameter
α. This FD formula is a second‐order accurate
approximation that becomes fourth‐order accuracy by
properly choosing the value of α. Moreover, the
resulting algorithm only involves tridiagonal matrices.
Additionally, a stability analysis is performed and the
numerical dispersion relation of the method is derived.
The proposed compact LOD‐WE‐FDTD technique has
been applied to the calculation of resonant frequencies
in a metallic ridge cavity.

2 | THE COMPACT LOD ‐WE ‐
FDTD METHOD FOR TMZ WAVES

The electric WE for TMz waves in a source‐free
medium with permittivity ε and permeability μ can
be written as
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By applying the Crank–Nicolson (CN) method to (1),
the following semidiscrete equation is obtained
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where Δt is the time step. The right‐hand side (RHS) of
(2) has been approximated by using a single average in
time as
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The CN scheme given in (2) can be expressed as
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According to the LOD method, by dropping the
second term of the RHS of (3), the resulting expression
can be split into two substeps as
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where ez
(1) and ez

(2) are auxiliary variables. This splitting
procedure preserves the second‐order accuracy in time of
the original CN scheme given in (2).

To approximate the spatial derivatives appearing in
(4), we use three‐point compact FDs. Specifically, for the
second partial derivative in the x‐direction, the following
expression is adopted12:
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where αx is a free parameter, I and j are spatial indices,
Δx is the cell size in the x‐direction and T is the
truncation error, given by
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For α .1x , Equation (5) is a family of implicit
second‐order FD approximations. For α = .1x the
second‐order term in (6) vanish and, conseque-
ntly, Equation (5) becomes a fourth‐order accurate
approximation. Additionally, notice that for α = 0x ,
Equation (5) reduces to the standard explicit second‐
order formula commonly used to approximate the
second derivative.
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It is useful to write (5) in operational form. To this
end, we begin by considering the second‐order central FD
operator δ x

2 defined as13
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Then, after dropping the error term in (5), the
approximation for the second partial derivative with respect
to x at the node (i, j) can be expressed in terms of δ x
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is a FD operator that should be interpreted symbolically.
The approximation for the second partial derivative with
respect to y has an expression analogous to (7).

For the first LOD step in (4a), the second derivative
with respect to x is replaced by (7) leading to
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Multiplying now both sides of (8) by Lx we obtain
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For each j, (9) leads to a tridiagonal system of linear
equations that allows one to compute ez

(1) in the x‐
direction, row by row.

Repeating the same procedure for the second LOD
step in (4b), we get
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where cy and dy are defined analogously to cx and dx in
(10). For each i, (11) also results in a tridiagonal system
that is used to calculate ez

(2) in the y‐direction. Finally,
Ez
n+1 is updated by using (4c).

Notice that previous LOD‐FDTD formulations based
on three‐point FDs but directly applied to Maxwell's
equations7 involve the solution of pentadiagonal matrix
equations, while the proposed LOD‐WE‐FDTD method
involves tridiagonal matrices only. Moreover, as based on
the scalar WE, the LOD‐WE‐FDTD method requires to
update just one field component.

3 | STABILITY AND NUMERICAL
DISPERSION

With the aim to study the stability and numerical
dispersion of the compact FD scheme introduced in the
preceding section, we begin by eliminating the auxiliary
variables ez

(1) and ez
(2) in (4). After dropping the spatial

indices, the following single‐step scheme is obtained
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By applying the von Neumann method to (12),14 we
get the following stability polynomial

A Z Z A( + 1) − 2 + ( + 1) = 0,2 (13)
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with ξ x y= , . In (15), k k ϕ˜ = ˜ cosx and k k ϕ˜ = ˜ sinx ,
where k̃ is the numerical wavenumber and ϕ the wave
propagation angle.

The roots of (13) are

Z
A

A
=

1 ± 1 − ( + 1)

+ 1
.1,2

2

It is easy to see that, for A 0, the LOD scheme is
unconditionally stable since Z = 1.1,2 
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To fulfill A 0, we enforce the conditions νx
2 , ν 0y

2

in (14), which lead to the restriction α α, .5x y for the
parameters αx and αy arising in the compact FD
approximation of the second partial derivative in (5).

By doing Z ωj= exp( Δ )t in (13), where j = −1 , we
obtain the following numerical dispersion relation
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where νx
2 and ν y

2 are given in (15).

4 | NUMERICAL RESULTS

With the aim of validating the numerical dispersion relation
(16), we consider a line current source located at the center
of a square computational domain and radiating in free
space as shown in Figure 1. The wave phase constant is
calculated far away from the source position, where the
radiated fields are assumed to be plane waves. The procedure
used for this calculation is analogous to the one described
in Saehoon et al.15 A working frequency f=10GHz is
considered. The computational domain is discretized by
using square cells of size λΔ = Δ = /40,x y where λ c f= / is
the exact wavelength with c being the speed of light. We
define the stability factor as

s =
Δ

Δ
,t

t,max
(expl.)

where Δt is time step used in the simulations and Δt,max
(expl.) is

the maximum one permitted by the explicit FDTD method.4

Figure 2 depicts the phase relative error as a function
of the wave propagation angle ϕ for s = 2 and for several
values of the parameter α α α= =x y. The theoretical
results obtained by directly solving the numerical
dispersion relation (16) have been plotted by lines and
the results actually simulated by the compact LOD‐WE‐
FDTD method have been denoted by symbols. Very good
agreement can be seen between theory and simulation. It
is worth noting in Figure 2 that the phase error decreases
as α increases. Consequently, the fourth‐order formula-
tion (α = .1) provides better accuracy than the standard
explicit second‐order one (α = 0). However, compact
second‐order approximations with α > .1 lead to more
accurate solutions than in the fourth‐order case.

Figure 3 shows the phase relative error as a function
of the wave propagation angle ϕ for α = .5 and for several
values of the stability factor s. Again, an excellent
agreement is observed between theory (lines) and
simulations (symbols). Additionally, it can be seen that

the error increases with the stability factor s (i.e., with the
time step), as expected.

As an application example, we consider a rectangular
metallic ridge cavity as shown in Figure 4. The size of the
cavity is a b× with a= 20mm and b= 1.5a. The metallic
ridge has length a/2 and zero thickness. The resonant
frequency of the dominant mode was computed by using
40 × 60 spatial cells. This frequency was obtained from
the first amplitude peak of the discrete Fourier transform
of the electric field recorded at a selected point in the
cavity. By using this setup, the problem was first solved
by using the conventional FDTD method with s= 1. The
result obtained was f1,1 = 11.395 GHz. Taking this result
as a reference, Figure 5 plots the resonant frequency

FIGURE 1 Electric field of a line current source radiating in
free space.

FIGURE 2 Relative phase error versus wave propagation angle
for s= 2 and for several values of α.
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relative error against the stability factor s as computed by
the compact LOD‐WE‐FDTD method for α = 0, .1, and
0.5. Analogously to the results in Figure 2, it can be seen
that the error decreases by increasing α. For the sake of
comparison, the results obtained by the conventional
LOD‐FDTD method have been added to Figure 5. It can
be seen that the conventional LOD‐FDTD method
provides somewhat better accuracy than the compact
LOD‐WAVE‐FDTD method. The inset in Figure 5 shows
the electric field pattern of the resonant mode under
consideration.

For further comparison, Figure 6 depicts the electric field
magnitude at y b= /2 (metal ridge position) for the first
resonant mode of the cavity shown in Figure 4. These results

have been computed by using the same setup as in Figure 5
for the conventional LOD‐FDTD and the compact LOD‐
WAVE‐FDTD methods with α = .1. In both methods, the
stability factor was s=4. The electric field obtained by the
conventional FDTD method with s=1 is also included as a
reference. A good agreement is observed between the
compact LOD‐WAVE‐FDTD and the conventional FDTD

FIGURE 3 Relative phase error versus wave propagation angle
for α = .5 and for several values of the stability factor s.

FIGURE 4 Rectangular metallic ridge cavity.

FIGURE 5 Resonant frequency relative error versus the
stability factor s for the dominant mode of the metallic cavity
depicted in Figure 4. The electric field pattern of this mode is
shown in the inset. FDTD, finite‐difference time‐domain;
LOD, locally one‐dimensional; WE, wave equation.

FIGURE 6 Electric field magnitude at the metal ridge position
(y= b/2) for the first resonant mode of the cavity shown in
Figure 4.
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method. However, it can be seen that the conventional LOD‐
FDTD method exhibits an anomalous field peak in the
vicinity of the metal edge (x a/ = 0.5).16

5 | CONCLUSION

A LOD‐FDTD method for the solution of the 2D scalar WE
in homogeneous media has been introduced. The second
spatial derivatives in the WE have been discretized by using
a three‐point compact FD formula with a free parameter α.
Even though this FD formula has fourth‐order accuracy for
α = .1, the resulting formulation only involves tridiagonal
matrices. A stability analysis has demonstrated that the
proposed method is unconditionally stable for α .5.

Additionally, a numerical dispersion study has shown that
the dispersion error decreases by increasing α. The proposed
compact LOD‐WE‐FDTD method has been applied to the
calculation of resonant frequencies in a metallic ridge cavity
confirming that the best accuracy is obtained for the
maximum stable value of α, that is, α = .5. Anyway, if
fourth‐order accuracy is required, the parameter α should be
set to the value .1.

The proposed compact LOD‐WE‐FDTD method can
also be formulated for three‐dimensional (3D) problems
by simply considering the 3D WE.10
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