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 a b s t r a c t

This paper explores the concept of consensus in the context of ternary preferences, an extension of dichotomous 
preference approvals, where alternatives are classified into three categories: acceptable, neutral, and unaccept-
able.We propose a novel distance-based measure to quantify consensus among voters and introduce a method 
for calculating the marginal contribution of each voter to the overall consensus, drawing parallels to the Banzhaf 
value in cooperative game theory. To handle large voter groups, we also present an estimation procedure based 
on sampling techniques to derive the marginal contributions. We performed comprehensive simulation studies 
to validate the statistical properties and computational efficiency of the proposed approach. Finally, empirical 
analyses using data from the Italian National Institute of Statistics (ISTAT) and the Balkan Barometer highlight 
its practical applicability.

1.  Introduction

In voting and decision-making processes, accurately capturing the 
preferences of individuals is crucial for ensuring fair and representative 
outcomes.
However, as Dummett (1984) famously remarked: “If there are, say, 
twenty possible outcomes, the task of deciding the precise order of pref-
erence in which he ranks them may induce psychological paralysis in 
the voter".

The presence of many alternatives can make it challenging for voters 
to produce a full ranking, highlighting the need for simplified mecha-
nisms that retain the essential structure of their preferences. One ap-
proach to mitigating these difficulties is to allow voters to classify out-
comes into broad categories before ranking them within each class. A 
well-known solution to this problem is approval voting, which simpli-
fies decision-making by requiring voters to classify alternatives into two 
groups {‘acceptable’, ‘unacceptable’} without needing to rank them in 
detail (Brams & Fishburn, 1978). However, as Balinski and Laraki argue, 
“Approve is not the opposite of Disapprove. Two grades are simply too 
few to adequately express voters’ opinions" (Balinski & Laraki, 2022). In 
order to capture the complexity of voter preferences, they support using 
at least three categories.

Several voting systems have adopted this principle. For instance, the 
Majority Judgment system employs a qualitative scale with multiple cat-
egories (e.g., {‘to reject’, ‘poor’, ‘acceptable’, ‘good’, ‘very good’, ‘excel-
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lent’}), allowing voters to classify alternatives without requiring a full 
ordering (see Balinski & Laraki, 2007, 2011). A related idea appears 
in Cooperative Game Theory, where different authors have considered 
three levels of approval (see Felsenthal & Machover, 1997, Musegaas 
et al., 2018 and Bilbao et al., 2010, among others).1

Unlike these multi-category systems, which typically do not im-
pose any ordering among alternatives within the same category, the 
preference-approvals framework introduces a ranking component. Specif-
ically, voters partition the set of alternatives into two categories—
{acceptable, unacceptable}—and additionally rank all alternatives via a 
weak order (see  (Brams, 2008, Chapter 3),  Brams & Sanver, 2009, 
Sanver, 2011,  Erdamar et al., 2014,  Kamwa, 2019, 2023,  Dong et al., 
2021,  Barokas, 2022, 2023, and  Barokas & Sprumont, 2022).

Several authors have extended this approach to cover ternary pref-
erences (under different names), where voters classify alternatives into 
three categories, such as {‘acceptable’, ‘neutral’, ‘unacceptable’} (see 
Felsenthal, 1989, Yılmaz, 1999 and Alcantud & Laruelle, 2014, among 
others). Recent work by Ye et al. (2024) further highlights the utility 
of ternary structures, proposing a three-way group consensus decision-
making approach for medical diagnosis.

1 However, differently from our purpose, the aforementioned game theory ap-
proach is dedicated to analyzing winning coalitions independently of any voting 
system.
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$T_k, T_l \in \mathcal {T}(X)$


$v_k$


$v_l$


$x_i$


$x_j$


$\,p_{ij}^{kl} \in \{0,0.5,1\}$


$\,k,l\in \{1,2,\dots ,m\}\,$


$\,i,j\in \{1,2,\dots ,n\}$


$P_A(x_i)$


\begin {equation*}P_A(x_i)= \left \{ \begin {array}{@{}ll} 1, & \,\mbox { if }\, x_i \in A, \,\\[.2ex] 0, & \,\mbox { if }\, x_i \in N, \,\\[.2ex] -1, & \,\mbox { if }\, x_i \in U. \end {array} \right .\end {equation*}


$T_k, T_l \in \mathcal {T}(X)$


$v_k$


$v_l$


$x_i$


$x_j)$


$\,a_{ij}^{kl} \in \{0,0.25,0.5,0.75,1\}$


$\,k,l\in \{1,2,\dots ,m\}\,$


$\,i,j\in \{1,2,\dots ,n\}$


$p_{ij}^{kl}\,$


$\,a_{ij}^{kl}$


$d_{\lambda }$


$\mathcal {T}(X)$


$\lambda \in (0,1)$


$\,d_\lambda : \mathcal {T}(X) \times \mathcal {T}(X) \longrightarrow [0,1]\,$


\begin {equation}\label {eq:d_lambda} d_\lambda (T_k,T_l)= \frac {2}{n \cdot (n-1)} \cdot \sum _{\substack {i,j=1\\[.3ex] i<j}}^n \big ( \lambda \cdot p_{ij}^{kl} + (1- \lambda ) \cdot a_{ij}^{kl} \big ).\end {equation}


$\lambda $


$d_\lambda $


$\mathcal {T}(X)$


$D_{\lambda }$


$\,(D_{\lambda })_{kl} = d_\lambda (T_k, T_l)\,$


$\,k, l = 1,2, \ldots , m$


$T_k$


$T_l$


$v_k$


$v_l$


$D_{\lambda }$


\begin {equation*}D_{\lambda } = \begin {pmatrix} 0 & \dots & d_{\lambda }(T_1, T_k) & \dots & d_{\lambda }(T_1, T_m) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ d_{\lambda }(T_k, T_1) & \dots & 0 & \dots & d_{\lambda }(T_k, T_m) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ d_{\lambda }(T_m, T_1) & \dots & d_{\lambda }(T_m, T_k) & \dots & 0 \\ \end {pmatrix}.\end {equation*}


$\lambda \in (0,1)$


$\,\mathcal {C}_\lambda : \mathcal {T}(X)^m \times \mathcal {P}_2(V) \longrightarrow [0,1]\,$


\begin {equation}\label {eq:C_lambda} \mathcal {C}_\lambda (\boldsymbol {T},I) = 1- \frac {\displaystyle {\sum _{\substack {v_k,v_l \in I\\[.3ex] k<l}}} d_\lambda (T_k,T_l)}{\displaystyle {\binom {\#I}{2}}} ,\end {equation}


$I$


$X$


$\boldsymbol {T}$


$\,\boldsymbol {T} = (T_1, T_2, \dots , T_m) \in \mathcal {T}(X)^m\,$


$m$


$\pi $


$\{1,2,\dots ,m\}$


$\boldsymbol {T}_\pi = \bigl (T_{\pi (1)}, T_{\pi (2)}, \dots , T_{\pi (m)}\bigr ),$


$\boldsymbol {T}$


$\pi $


$I \subseteq V$


$I_\pi = \{ v_{\pi ^{-1}(i)} \mid v_i \in I \},$


$\,v_j \in I_\pi \,$


$\,v_{\pi (j)} \in I$


$\,\boldsymbol {T} = (T_1, T_2, T_3)\,$


$\pi $


$\pi = (1 \, 3)$


$\boldsymbol {T}_\pi = (T_3, T_2, T_1)$


$I = \{v_1, v_2\}$


$I_\pi = \{v_{\pi ^{-1}(1)}, v_{\pi ^{-1}(2)}\} = \{v_3, v_2\}.$


$\sigma $


$\{1,2,\dots ,n\}$


$\boldsymbol {T}^\sigma = \bigl (T_1^\sigma , T_2^\sigma , \dots , T_m^\sigma \bigr )$


$\boldsymbol {T}$


$\sigma $


$\,i,j \in \{1,2, \dots , n\}\,$


$k$


$x_i \; R_k \; x_j \quad \Leftrightarrow \quad x_{\sigma (i)} \; R_k^\sigma \; x_{\sigma (j)},$


$x_i \in A_k^\sigma \; \Leftrightarrow \; x_{\sigma (i)} \in A_k, \quad x_i \in N_k^\sigma \; \Leftrightarrow \; x_{\sigma (i)} \in N_k, \quad x_i \in U_k^\sigma \; \Leftrightarrow \; x_{\sigma (i)} \in U_k.$


$\sigma $


$x_1$


$x_2$


$v_k$


$x_1 \,R_k\, x_3$


$x_2 \,R_k^\sigma \, x_3$


$\boldsymbol {T} = (T_1, T_2, \dots , T_m) \in \mathcal {T}(X)^m$


$\boldsymbol {T}^{-1} = \bigl (T_1^{-1}, T_2^{-1}, \dots , T_m^{-1}\bigr ),$


$k \in \{1, 2, \dots , m\}$


$T_k^{-1} = (R_k^{-1}, U_k, N_k, A_k)$


$R_k^{-1}$


$R_k$


\begin {equation*}x_i \, R_k \, x_j \quad \text {if and only if} \quad x_j \, R_k^{-1} \, x_i.\end {equation*}


$v_k$


$x_1, x_2, x_3$


\begin {equation*}x_1 \, R_k \, x_2 \, R_k \, x_3, \quad A_k = \{x_1\}, \quad N_k = \{\emptyset \}, \quad U_k = \{x_2,\,x_3\}.\end {equation*}


$x_1$


$x_2$


$x_2$


$x_3$


$x_1$


$x_2,\,x_3$


$T_k^{-1}$


\begin {equation*}x_3 \, R_k \, x_2 \, R_k \, x_1, \quad A_k = \{x_2,\,x_3\}, \quad N_k = \{\emptyset \}, \quad U_k = \{x_1\}.\end {equation*}


$x_3$


$x_2$


$x_2$


$x_1$


$x_1$


$x_2,\,x_3$


$\mathcal {C}_\lambda $


$\,\lambda \in (0,1)$


$\mathcal {C}_\lambda $


$\,\boldsymbol {T} \in \mathcal {T}(X)^m\,$


$\,I \in \mathcal {P}_2(V)$


\begin {equation*}0 \leqslant \mathcal {C}_\lambda (\boldsymbol {T}, I) \leqslant 1.\end {equation*}


$\,\pi \,$


$\,\{1,\dots ,m\}$


$\,\boldsymbol {T} \in \mathcal {T}(X)^m\,$


$\,I \in \mathcal {P}_2(V)$


\begin {equation*}\mathcal {C}_\lambda (\boldsymbol {T}_\pi , I_\pi ) = \mathcal {C}_\lambda (\boldsymbol {T}, I).\end {equation*}


$\,\sigma \,$


$\,\{1,\dots ,n\}$


$\,\boldsymbol {T} \in \mathcal {T}(X)^m\,$


$\,I \in \mathcal {P}_2(V)$


\begin {equation*}\mathcal {C}_\lambda (\boldsymbol {T}^\sigma , I) = \mathcal {C}_\lambda (\boldsymbol {T}, I).\end {equation*}


$\,\boldsymbol {T} \in \mathcal {T}(X)^m\,$


$\,I \in \mathcal {P}_2(V)$


\begin {equation*}\mathcal {C}_\lambda (\boldsymbol {T}, I) = 1 \;\Leftrightarrow \, (T_k = T_l\; \mbox { for all }\,v_k,v_l \in I).\end {equation*}


$\,\boldsymbol {T} \in \mathcal {T}(X)^m\,$


$\,v_k,v_l \in V\,$


$\,k\ne l$


\begin {align*}&\mathcal {C}_\lambda (\boldsymbol {T}, \{v_k,v_l\}) = 0 \;\Leftrightarrow \; R_k,R_l \in {L(X)}, \; R_l=R_k^{-1}, \\[1ex] &A_l = U_k, \; N_k = N_l = \emptyset \; \mbox { and }\; U_l = A_k.\end {align*}


$\,\boldsymbol {T} \in \mathcal {T}(X)^m\,$


$\,I \in \mathcal {P}_2(V)$


\begin {equation*}\mathcal {C}_\lambda (\boldsymbol {T}^{-1}, I) = \mathcal {C}_\lambda (\boldsymbol {T}, I).\end {equation*}


$\mathcal {C}_\lambda (\boldsymbol {T}, I) = 1 \;\Leftrightarrow \; \displaystyle \sum _{\substack {v_k,v_l \in I\\[.3ex] k<l}} d_\lambda (T_k,T_l) = 0 \;\Leftrightarrow \; (T_k = T_l \;\mbox { for all }\; v_k,v_l \in I)$


$\Rightarrow $


$\,\mathcal {C}_\lambda (\boldsymbol {T}, \{v_k,v_l\}) = 0$


$\,d_\lambda (T_k,T_l) = 1$


$\,p_{ij}^{kl} = a_{ij}^{kl} =1\,$


$\,i,j \in \{1,\dots ,n\}\,$


$\,i<j$


$\,R_k \in {W(X)} \setminus {L(X)}\,$


$\,R_l \in {W(X)} \setminus {L(X)}$


$\,p_{ij}^{kl}<1\,$


$\,i,j\in \{1,2,\dots ,n\}$


$\,R_k,R_l \in {L(X)}$


$\,R_l \ne R_k^{-1}$


$\,p_{ij}^{kl}<1\,$


$\,i,j\in \{1,2,\dots ,n\}$


$\,R_l=R_k^{-1}$


$\,A_l \ne U_k\,$


$\,N_k \ne \emptyset \,$


$\,N_l \ne \emptyset \,$


$\,U_l \ne A_k$


$\,a_{ij}^{kl}<1\,$


$\,i,j\in \{1,2,\dots ,n\}$


$\,A_l = U_k$


$\,N_k = N_l = \emptyset \,$


$\,U_l = A_k$


$\Leftarrow $


$\,O^{-1}_{R_k}(x_i,x_j)=-O_{R_k}(x_i,x_j)$


$\,O^{-1}_{R_l}(x_i,x_j)=-O_{R_l}(x_i,x_j)$


$\,P_{U_k}(x_i)=-P_{A_k}(x_i)$


$\,P_{U_l}(x_i)=-P_{A_l}(x_i)$


$\,P_{U_k}(x_j)=-P_{A_k}(x_j)$


$\,P_{U_l}(x_j)=-P_{A_l}(x_j)$


$\,d_\lambda (T^{-1}_k,T^{-1}_l)=d_\lambda (T_k,T_l)\,$


$\,\mathcal {C}_\lambda (\boldsymbol {T}^{-1}, I) = \mathcal {C}_\lambda (\boldsymbol {T}, I)$


$\,I \in \mathcal {P}_2(V)\,$


$\,\boldsymbol {T} = (T_1, T_2, \dots , T_m) \in \mathcal {T}(X)^m$


$I$


$s$


$I_1, I_2, \dots , I_s \subseteq I$


$I_1 \cup I_2 \cup \dots \cup I_s = I$


$I_p \cap I_q = \emptyset $


$p \neq q$


$\,\# I = \displaystyle \sum _{p=1}^s \# I_p$


$s$


$I_p$


$I_p$


$I_q$


$p \neq q$


\begin {equation}\label {eq:group1.1} \sum _{\substack {v_k, v_l \in I \\[0.3ex] k < l}} d_\lambda (T_k, T_l) = \displaystyle \sum _{p=1}^s \;\sum _{\substack {v_k, v_l \in I_p \\[0.3ex] k < l}} d_\lambda (T_k, T_l) + \;\displaystyle \sum _{\substack {p, q = 1 \\[0.3ex] p < q}}^{s} \;\sum _{k=1}^{\# I_p} \;\sum _{l=1}^{\# I_q} d_\lambda (T_k, T_l).\end {equation}


$I_p \subset I$


$I_p$


\begin {equation*}\mathcal {C}_\lambda (\boldsymbol {T}, I_p) = 1 - \frac { \displaystyle { \sum _{\substack {v_k, v_l \in I_p \\[0.3ex] k < l}} d_\lambda (T_k, T_l)}} {\displaystyle {\binom {\#I_p}{2}}}.\end {equation*}


$I_p$


$\, \displaystyle \sum _{\substack {v_k, v_l \in I_p \\[0.3ex] k < l}} d_\lambda (T_k, T_l)$


\begin {equation}\label {eq:group2} \sum _{\substack {v_k, v_l \in I_p \\[0.3ex] k < l}} d_\lambda (T_k, T_l) = \binom {\#I_p}{2} \cdot \left ( 1 - \mathcal {C}_\lambda (\boldsymbol {T}, I_p) \right ).\end {equation}


\begin {equation}\label {eq:group1.2} \begin {split} \sum _{\substack {v_k, v_l \in I \\[0.3ex] k < l}} d_\lambda (T_k, T_l) &= \sum _{p=1}^s \binom {\# I_p}{2} \cdot \left ( 1 - \mathcal {C}_\lambda (\boldsymbol {T}, I_p) \right ) +\\ &\quad \quad + \;\displaystyle \sum _{\substack {p, q = 1 \\[0.3ex] p < q}}^{s} \;\sum _{k=1}^{\# I_p} \;\sum _{l=1}^{\# I_q} d_\lambda (T_k, T_l). \end {split}\end {equation}


$\mathcal {C}_\lambda (\boldsymbol {T}, I)$


\begin {equation}\label {eq:group1} \mathcal {C}_\lambda (\boldsymbol {T}, I) = 1-\frac {\displaystyle \sum _{p=1}^{s} \left ( \binom {\# I_p}{2} \cdot \left ( 1 - \mathcal {C}_\lambda (\boldsymbol {T}_p, I_p) \right ) \right ) + \displaystyle \sum _{\substack {p, q = 1 \\[0.3ex] p < q}}^{s} \;\sum _{k=1}^{\# I_p} \;\sum _{l=1}^{\# I_q} d_\lambda (T_k, T_l)}{\displaystyle \binom {m}{2}},\end {equation}


$\,\binom {\# I_p}{2} \cdot \left ( 1 - \mathcal {C}_\lambda (\boldsymbol {T}_p, I_p) \right )\,$


$I_p$


$\, \sum _{\substack {p, q = 1 \\[0.3ex] p < q}}^{s} \;\sum _{k=1}^{\# I_p} \;\sum _{l=1}^{\# I_q} d_\lambda (T_k, T_l)\,$


$\,v_1, v_2, v_3, v_4$


\begin {equation*}I_1 = \{v_1, v_2\}, \qquad I_2 = \{v_3, v_4\}, \qquad I = I_1 \cup I_2.\end {equation*}


\begin {equation*}d_\lambda (T_1, T_2) = 0 \quad \text {and} \quad d_\lambda (T_3, T_4) = 0.\end {equation*}


\begin {equation*}d_\lambda (T_1, T_3) = d_\lambda (T_1, T_4) = d_\lambda (T_2, T_3) = d_\lambda (T_2, T_4) = 1.\end {equation*}


$I$
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Despite this rich literature, there remains a need for robust meth-
ods to measure consensus in the context of ternary preferences. In the 
field of Social Choice, Bosch (2005) introduced the concept of consensus 
measure as a mapping that assigns a number between 0 and 1 to ev-
ery profile of linear orders, satisfying three properties: unanimity (in ev-
ery subgroup of voters, the highest degree of consensus is only reached 
whenever all individuals have the same ranking), anonymity (the de-
gree of consensus is not affected by any permutation of voters) and neu-
trality (the degree of consensus is not affected by any permutation of 
alternatives). While consensus measures in voting have been explored 
extensively in the context of linear orders (Bosch, 2005), weak orders 
(García-Lapresta & Pérez-Román, 2011), dichotomous preferences (Al-
cantud et al., 2013), and preference-approvals (Albano et al., 2023; Er-
damar et al., 2014), the extension of these ideas to ternary preferences 
remains underdeveloped. This paper aims to fill that gap by proposing 
a novel distance-based measure of consensus specifically designed for 
ternary preferences.

Furthermore, this paper introduces the concept of marginal contribu-
tion to consensus, inspired by the Banzhaf value (Banzhaf, 1965) from 
cooperative game theory. The Banzhaf value, widely applied in vari-
ous contexts such as voting power analysis, cost allocation, and coali-
tion formation in political and economic settings, quantifies the power 
of individual players in cooperative games by measuring their marginal 
contribution to coalition formation, while our approach adapts this con-
cept to group decision-making by measuring how much each voter con-
tributes to the overall consensus. By quantifying the impact of each 
voter on the overall consensus, our method provides a new perspec-
tive on voter influence in ternary preference settings. In other words, 
if a voter’s presence tends to raise the consensus score, that individ-
ual can be regarded as a “consensus driver", someone whose prefer-
ences align well with those of other voters. Conversely, if adding a 
voter consistently lowers the consensus score, that voter acts as a “con-
sensus breaker", indicating that their preferences often introduce dis-
agreement. We also develop an estimation procedure based on sam-
pling techniques to make these calculations feasible in large-scale voter
groups.

The remainder of the paper is structured as follows. Section 2 in-
troduces the formal framework for preference-approvals and ternary 
preferences. In Section 3, we present the proposed consensus mea-
sure, outlining its theoretical foundation. Section 4 details the marginal 
contribution approach, including its theoretical properties and the 
estimation procedure for large voter groups. To empirically assess 
the statistical properties and the computational efficiency of the 
proposed methods, Section 5 presents extensive simulation studies. 
Following, Section 6 provides two case studies using data from 
the Italian National Institute of Statistics (ISTAT) and the Balkan 
Barometer to demonstrate the practical applicability of our meth-
ods. Finally, Section 7 concludes with a discussion of the impli-
cations of our findings and suggests potential directions for future
research.

2.  Preliminaries

Let 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} be a finite set of alternatives with 𝑛 ⩾ 2. A 
weak order (or complete preorder) on 𝑋 is a binary relation that is both 
complete and transitive, while a linear order is a weak order that is also 
antisymmetric.
We write 𝑊 (𝑋) for the set of weak orders on 𝑋 and 𝐿(𝑋) for the set of 
linear orders. For any 𝑅 ∈ 𝑊 (𝑋), we denote its asymmetric part by ≻
and its symmetric part by ∼, so that 𝑥𝑖 ≻ 𝑥𝑗 if and only if not 𝑥𝑗 𝑅𝑥𝑖
and 𝑥𝑖 ∼ 𝑥𝑗 if and only if (𝑥𝑖 𝑅𝑥𝑗 and 𝑥𝑗 𝑅𝑥𝑖).  For an arbitrary set 
𝑌 , (𝑌 ) denotes its power set, i.e. 𝐼 ∈ (𝑌 ) if and only if 𝐼 ⊆ 𝑌 . The 
notation #𝑌  indicates the cardinality of 𝑌 .

Consider that a set of voters 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑚}, with 𝑚 ⩾ 2, have to 
express their opinions over 𝑋. With 2(𝑉 )  we denote the set of all the 

subsets of 𝑉  with at least two voters, i.e., 2(𝑉 ) = {𝐼 ∈ (𝑉 ) ∣ #𝐼 ⩾ 2}. 
Note that #2(𝑉 ) = #(𝑉 ) − #𝑉 − 1 = 2𝑚 − 𝑚 − 1.

2.1.  Preference-approvals

Preference-approvals assume that each voter assesses each alterna-
tive as either acceptable or unacceptable by partitioning 𝑋 into 𝐴, the 
set of acceptable alternatives, and 𝑈 = 𝑋 ⧵ 𝐴, the set of unacceptable al-
ternatives, where 𝐴 and 𝑈 may be empty and ranks the alternatives in 
𝑋 by means of a weak order.
To ensure coherence between approvals and weak orders a consistency 
condition is imposed: if 𝑥𝑗 is acceptable and 𝑥𝑖 is ranked above 𝑥𝑗 , then 
𝑥𝑖 should be acceptable as well.
Definition 1. A preference-approval on 𝑋 is a pair (𝑅,𝐴) ∈ 𝑊 (𝑋) ×
(𝑋)  satisfying the following condition:
∀𝑥𝑖, 𝑥𝑗 ∈ 𝑋

(

(𝑥𝑖 𝑅𝑥𝑗 and 𝑥𝑗 ∈ 𝐴) ⇒ 𝑥𝑖 ∈ 𝐴
)

.

With (𝑋)  we denote the set of preference-approvals on 𝑋.
Remark 1.  If (𝑅,𝐴) ∈ (𝑋), then the following conditions are satis-
fied:

1. ∀𝑥𝑖, 𝑥𝑗 ∈ 𝑋
(

(𝑥𝑖 ∈ 𝐴 and 𝑥𝑗 ∈ 𝑈 ) ⇒ 𝑥𝑖 ≻ 𝑥𝑗
)

.
2. ∀𝑥𝑖, 𝑥𝑗 ∈ 𝑋

(

(𝑥𝑖 𝑅𝑥𝑗 and 𝑥𝑖 ∈ 𝑈 ) ⇒ 𝑥𝑗 ∈ 𝑈
)

.

2.2.  Ternary preferences

Hereinafter, we consider that each voter 𝑣 ∈ 𝑉  ranks the set of al-
ternatives through a weak order 𝑅𝑣 ∈ 𝑊 (𝑋)  and, additionally, makes 
a partition of 𝑋 in three categories: 𝐴𝑣 (acceptable), 𝑁𝑣 (neutral) and 
𝑈𝑣 (unacceptable).2

The three categories are mutually disjoint, i.e., 𝐴𝑣 ∩𝑁𝑣 = 𝐴𝑣 ∩ 𝑈𝑣 =
𝑁𝑣 ∩ 𝑈𝑣 = ∅  and together they cover the entire set of alternatives, i.e., 
𝐴𝑣 ∪𝑁𝑣 ∪ 𝑈𝑣 = 𝑋. Whatever of these categories can be empty, but not 
all of them simultaneously. Notably, when 𝑁𝑣 = ∅, the ternary prefer-
ence reduces to a standard preference-approval.
Definition 2. A ternary preference on 𝑋 is a 4-tuple (𝑅,𝐴,𝑁,𝑈 ) ∈
𝑊 (𝑋) × (𝑋) × (𝑋) × (𝑋)  satisfying the following conditions:

1. 𝐴 ∩𝑁 = 𝐴 ∩ 𝑈 = 𝑁 ∩ 𝑈 = ∅.

2. 𝐴 ∪𝑁 ∪ 𝑈 = 𝑋.

3. ∀𝑥𝑖, 𝑥𝑗 ∈ 𝑋
(

(𝑥𝑖 ∈ 𝐴 and 𝑥𝑗 ∈ 𝑁 ∪ 𝑈 ) ⇒ 𝑥𝑖 ≻ 𝑥𝑗
)

.

4. ∀𝑥𝑖, 𝑥𝑗 ∈ 𝑋
(

(𝑥𝑖 ∈ 𝑁 and 𝑥𝑗 ∈ 𝑈 ) ⇒ 𝑥𝑖 ≻ 𝑥𝑗
)

.

With  (𝑋)  we denote the set of ternary preferences on 𝑋. 
As an example, consider 𝑇 = (𝑅,𝐴,𝑁,𝑈 ) ∈  ({𝑥1,… , 𝑥9}) repre-

sented by
𝑥2
𝑥1 𝑥6

𝑥3 𝑥5

𝑥8
𝑥4 𝑥7 𝑥9

In our representation of ternary preferences, alternatives are ar-
ranged in rows according to a weak order. Alternatives on higher rows 
are strictly preferred to those on lower rows, while alternatives on the 
same row are tied in preference, i.e., indifferent. Two horizontal lines 
divide the alternatives into three categories. All alternatives above the 

2 From a behavioral standpoint, the ternary preference does not stem from an 
explicit expression of three distinct options, but rather emerges from a binary 
judgment, acceptable versus unacceptable, where everything else is treated as 
neutral.
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first line are acceptable, those between the first and second line are neu-
tral, and those below the second line are unacceptable. That implies that 
𝐴 = {𝑥1, 𝑥2, 𝑥6}, 𝑁 = {𝑥3, 𝑥5}  and 𝑈 = {𝑥4, 𝑥7, 𝑥8, 𝑥9}. The correspond-
ing weak order is characterized by the relations
𝑥2 ≻ (𝑥1 ∼ 𝑥6) ≻ (𝑥3 ∼ 𝑥5) ≻ 𝑥8 ≻ (𝑥4 ∼ 𝑥7 ∼ 𝑥9),

where ≻ and and ∼ denote strict preference and indifference between 
alternatives, respectively.
Remark 2.  Drawing parallels with preference-approvals, conditions 3 
and 4 in Definition 2 can be written as: given two alternatives 𝑥𝑖 and 
𝑥𝑗 , if 𝑥𝑗 is acceptable and 𝑥𝑖 is ranked above 𝑥𝑗 , then 𝑥𝑖 must also be 
acceptable. Furthermore, if 𝑥𝑗 is neutral and 𝑥𝑖 is ranked above 𝑥𝑗 , then 
𝑥𝑖 must be either acceptable or neutral.

1. If 𝑥𝑗 ∈ 𝐴 and 𝑥𝑖 𝑅𝑥𝑗 , then 𝑥𝑖 ∈ 𝐴.
2. If 𝑥𝑗 ∈ 𝑁 and 𝑥𝑖 𝑅𝑥𝑗 , then 𝑥𝑖 ∈ 𝐴 ∪𝑁 .

In other words, any alternative labeled “acceptable" must be ranked 
strictly above any alternative labeled “neutral" or “unacceptable," en-
suring consistency between approval status and ordering. In the same 
way, every “neutral" alternative is ranked strictly above any “unaccept-
able" alternative, establishing the hierarchy 𝐴 ≻ 𝑁 ≻ 𝑈 . These condi-
tions prevent any illogical ordering, such as placing an acceptable al-
ternative below a neutral one, while still allowing complete freedom to 
rank or tie alternatives within each category as the weak order permits. 

3.  Consensus in ternary preferences

When voters express their evaluations using ternary preferences, 
measuring the degree of agreement among them becomes crucial for 
understanding the group’s collective behaviour. To this aim, we ex-
tend the framework of  Albano et al. (2023, 2024), originally devel-
oped for preference-approvals, by introducing two complementary mea-
sures of disagreement between voters.  The first measure, denoted as 𝑝𝑘𝑙𝑖𝑗
(Eq. (1)), captures preference disagreement, that is, how differently two 
voters compare a pair of alternatives. The second measure, 𝑎𝑘𝑙𝑖𝑗  (Eq. (2)), 
captures approval disagreement, namely how differently two voters cate-
gorise alternatives into approved, neutral, or unapproved classes. 

To formally define 𝑝𝑘𝑙𝑖𝑗 , we first introduce a numerical representation 
of a voter’s judgement between two alternatives. Given a weak order 𝑅
over the set of alternatives 𝑋, we define: 

𝑂𝑅(𝑥𝑖, 𝑥𝑗 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if 𝑥𝑖 ≻ 𝑥𝑗 (i.e., 𝑥𝑖 is strictly preferred to 𝑥𝑗 ),
0, if 𝑥𝑖 ∼ 𝑥𝑗 (i.e., 𝑥𝑖 and 𝑥𝑗 are considered equivalent),

−1, if 𝑥𝑗 ≻ 𝑥𝑖 (i.e., 𝑥𝑗 is strictly preferred to 𝑥𝑖).

For 𝑇𝑘, 𝑇𝑙 ∈  (𝑋), the preference-discordance between voters 𝑣𝑘 and 
𝑣𝑙 over 𝑥𝑖 and 𝑥𝑗 is

𝑝𝑘𝑙𝑖𝑗 =
|

|

|

𝑂𝑅𝑘
(𝑥𝑖, 𝑥𝑗 ) − 𝑂𝑅𝑙

(𝑥𝑖, 𝑥𝑗 )
|

|

|

2
. (1)

Note that 𝑝𝑘𝑙𝑖𝑗 ∈ {0, 0.5, 1} for all 𝑘, 𝑙 ∈ {1, 2,… , 𝑚}  and 𝑖, 𝑗 ∈
{1, 2,… , 𝑛}. Now, let us consider all the alternatives in each class, and 
define 𝑃𝐴(𝑥𝑖) as:

𝑃𝐴(𝑥𝑖) =

⎧

⎪

⎨

⎪

⎩

1,  if 𝑥𝑖 ∈ 𝐴,
0,  if 𝑥𝑖 ∈ 𝑁,
−1,  if 𝑥𝑖 ∈ 𝑈.

For two ternary preferences 𝑇𝑘, 𝑇𝑙 ∈  (𝑋), the approval-discordance 
between voters 𝑣𝑘 and 𝑣𝑙 over 𝑥𝑖 and 𝑥𝑗 ) is defined as

𝑎𝑘𝑙𝑖𝑗 =
|

|

|

𝑃𝐴𝑘
(𝑥𝑖) − 𝑃𝐴𝑙

(𝑥𝑖)
|

|

|

+ |

|

|

𝑃𝐴𝑘
(𝑥𝑗 ) − 𝑃𝐴𝑙

(𝑥𝑗 )
|

|

|

4
. (2)

It is easy to check that 𝑎𝑘𝑙𝑖𝑗 ∈ {0, 0.25, 0.5, 0.75, 1} for all 𝑘, 𝑙 ∈
{1, 2,… , 𝑚}  and 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}.

Having introduced two complementary measures of disagreement 
(𝑝𝑘𝑙𝑖𝑗  and 𝑎𝑘𝑙𝑖𝑗 ) between voters, we now turn to defining an overall dis-
tance metric between complete ternary preferences. To this end, we pro-
pose the metric 𝑑𝜆 on  (𝑋), defined as the average of convex combina-
tions of the two discordances across all pairs of alternatives.
Definition 3. Let 𝜆 ∈ (0, 1), the function 𝑑𝜆 ∶  (𝑋) ×  (𝑋) ⟶ [0, 1]
is defined as

𝑑𝜆(𝑇𝑘, 𝑇𝑙) =
2

𝑛 ⋅ (𝑛 − 1)
⋅

𝑛
∑

𝑖,𝑗=1
𝑖<𝑗

(

𝜆 ⋅ 𝑝𝑘𝑙𝑖𝑗 + (1 − 𝜆) ⋅ 𝑎𝑘𝑙𝑖𝑗
)

. (3)

The parameter 𝜆 allows us to emphasize different aspects of agreement: 
values close to 1 focus on preference rankings, while values close to 0 
focus on ternary approval classifications.
Note that 𝑑𝜆 is a metric on  (𝑋) having the unit interval as codomain.

With 𝐷𝜆 we denote the matrix containing the pairwise distances in 
a set of voters. That is, (𝐷𝜆)𝑘𝑙 = 𝑑𝜆(𝑇𝑘, 𝑇𝑙)  for 𝑘, 𝑙 = 1, 2,… , 𝑚, where 𝑇𝑘
and 𝑇𝑙 are the ternary preference of voters 𝑣𝑘 and 𝑣𝑙, respectively. The 
matrix 𝐷𝜆 is clearly symmetric, and its main diagonal consists of zeros.

𝐷𝜆 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 … 𝑑𝜆(𝑇1, 𝑇𝑘) … 𝑑𝜆(𝑇1, 𝑇𝑚)
⋮ ⋮ ⋱ ⋮ ⋮

𝑑𝜆(𝑇𝑘, 𝑇1) … 0 … 𝑑𝜆(𝑇𝑘, 𝑇𝑚)
⋮ ⋮ ⋱ ⋮ ⋮

𝑑𝜆(𝑇𝑚, 𝑇1) … 𝑑𝜆(𝑇𝑚, 𝑇𝑘) … 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The consensus among a set of voters is determined by computing the 
distances between their respective ternary preferences.
Definition 4. For 𝜆 ∈ (0, 1), the mapping 𝜆 ∶  (𝑋)𝑚 × 2(𝑉 ) ⟶ [0, 1]
defined as

𝜆(𝑻 , 𝐼) = 1 −

∑

𝑣𝑘 ,𝑣𝑙∈𝐼
𝑘<𝑙

𝑑𝜆(𝑇𝑘, 𝑇𝑙)

(

#𝐼
2

) , (4)

measures the consensus among the voters of 𝐼 over the alternatives 
of 𝑋 in the profile 𝑻 . 

3.1.  Basic properties

To establish some fundamental properties of the consensus mea-
sure, we first introduce the following notation.  Let 𝑻 = (𝑇1, 𝑇2,… , 𝑇𝑚) ∈
 (𝑋)𝑚  be a profile of ternary preferences of 𝑚 voters, and let 𝜋 be a per-
mutation on the set {1, 2,… , 𝑚}. Define 𝑻 𝜋 =

(

𝑇𝜋(1), 𝑇𝜋(2),… , 𝑇𝜋(𝑚)
)

, the 
profile obtained from 𝑻  by relabeling the voters according to 𝜋.  For 
any subset 𝐼 ⊆ 𝑉  of voters, define 𝐼𝜋 = {𝑣𝜋−1(𝑖) ∣ 𝑣𝑖 ∈ 𝐼}, so that 𝑣𝑗 ∈ 𝐼𝜋
if and only if 𝑣𝜋(𝑗) ∈ 𝐼 .

Example 1.  Suppose we have a profile 𝑻 = (𝑇1, 𝑇2, 𝑇3)  and a permu-
tation 𝜋 swapping voter 1 and 3, i.e., 𝜋 = (1 3). Then, 𝑻 𝜋 = (𝑇3, 𝑇2, 𝑇1). 
If 𝐼 = {𝑣1, 𝑣2}, then 𝐼𝜋 = {𝑣𝜋−1(1), 𝑣𝜋−1(2)} = {𝑣3, 𝑣2}.

Next, let 𝜎 be a permutation on the set of alternatives {1, 2,… , 𝑛}. Then 
the profile 𝑻 𝜎 =

(

𝑇 𝜎
1 , 𝑇

𝜎
2 ,… , 𝑇 𝜎

𝑚
) is obtained from 𝑻  by relabeling the 

alternatives according to 𝜎. More precisely, for all 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}  and 
every voter 𝑘, 𝑥𝑖 𝑅𝑘 𝑥𝑗 ⇔ 𝑥𝜎(𝑖) 𝑅𝜎

𝑘 𝑥𝜎(𝑗), and similarly, 𝑥𝑖 ∈ 𝐴𝜎
𝑘 ⇔

𝑥𝜎(𝑖) ∈ 𝐴𝑘, 𝑥𝑖 ∈ 𝑁𝜎
𝑘 ⇔ 𝑥𝜎(𝑖) ∈ 𝑁𝑘, 𝑥𝑖 ∈ 𝑈𝜎

𝑘 ⇔ 𝑥𝜎(𝑖) ∈ 𝑈𝑘.

Example 2.  Let 𝜎 be a permutation on alternatives swapping 𝑥1 and 
𝑥2. Then, for any voter 𝑣𝑘, the preference 𝑥1 𝑅𝑘 𝑥3 becomes 𝑥2 𝑅𝜎

𝑘 𝑥3, 
reflecting the renaming of alternatives, while preserving the structure 
of preferences. 
Lastly, for a profile 𝑻 = (𝑇1, 𝑇2,… , 𝑇𝑚) ∈  (𝑋)𝑚, we define the inverse 
profile 𝑻 −1 =

(

𝑇 −1
1 , 𝑇 −1

2 ,… , 𝑇 −1
𝑚

)

, obtained by inverting each voter’s 
preferences. More specifically, for every voter 𝑘 ∈ {1, 2,… , 𝑚}, 𝑇 −1

𝑘 =
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(𝑅−1
𝑘 , 𝑈𝑘, 𝑁𝑘, 𝐴𝑘) where 𝑅−1

𝑘  is the inverse of the original preference re-
lation 𝑅𝑘, and the acceptable and unacceptable sets are swapped. That 
is:

𝑥𝑖 𝑅𝑘 𝑥𝑗 if and only if 𝑥𝑗 𝑅
−1
𝑘 𝑥𝑖.

Example 3.  Suppose a voter 𝑣𝑘 has the following ternary preference 
over three alternatives 𝑥1, 𝑥2, 𝑥3:
𝑥1 𝑅𝑘 𝑥2 𝑅𝑘 𝑥3, 𝐴𝑘 = {𝑥1}, 𝑁𝑘 = {∅}, 𝑈𝑘 = {𝑥2, 𝑥3}.

That is, the voter strictly prefers 𝑥1 over 𝑥2, and 𝑥2 over 𝑥3; considers 
𝑥1 acceptable and 𝑥2, 𝑥3 unacceptable. Then, the inverted ternary pref-
erence 𝑇 −1

𝑘  is:
𝑥3 𝑅𝑘 𝑥2 𝑅𝑘 𝑥1, 𝐴𝑘 = {𝑥2, 𝑥3}, 𝑁𝑘 = {∅}, 𝑈𝑘 = {𝑥1}.

In this inverted ternary preference, the voter now strictly prefers 𝑥3 over 
𝑥2, and 𝑥2 over 𝑥1; the formerly best alternative 𝑥1 is now deemed un-
acceptable, the formerly worst alternatives 𝑥2, 𝑥3 are now acceptable. 
The set of neutral alternatives remains empty. 
In the following Proposition 1, we show that the consensus measure 
𝜆 satisfies boundedness (the degree of consensus is always between 0 
and 1), anonymity (all voters are treated in the same way), neutrality
(all alternatives are treated in the same way), unanimity (the maximum 
degree of consensus, 1, is only achieved whenever all voters have the 
same opinions), maximum dissension (when there are only two voters, the 
minimum degree of consensus, 0, is only achieved whenever voters rank 
order the alternatives in the opposite way; the acceptable alternatives 
of one voter are the unacceptable alternatives of the other; and none of 
the voters have neutral alternatives), and reciprocity (if all voters invert 
their opinions, the degree of consensus does not change).

Proposition 1. For every 𝜆 ∈ (0, 1), the consensus measure 𝜆 satisfies the 
following properties:

1. Boundedness: For all 𝑻 ∈  (𝑋)𝑚  and 𝐼 ∈ 2(𝑉 ), it holds
0 ⩽ 𝜆(𝑻 , 𝐼) ⩽ 1.

2. Anonymity: For all permutation 𝜋  on {1,… , 𝑚}, 𝑻 ∈  (𝑋)𝑚  and 𝐼 ∈
2(𝑉 ), it holds
𝜆(𝑻 𝜋 , 𝐼𝜋 ) = 𝜆(𝑻 , 𝐼).

3. Neutrality: For all permutation 𝜎  on {1,… , 𝑛}, 𝑻 ∈  (𝑋)𝑚  and 𝐼 ∈
2(𝑉 ), it holds
𝜆(𝑻 𝜎 , 𝐼) = 𝜆(𝑻 , 𝐼).

4. Unanimity: For all 𝑻 ∈  (𝑋)𝑚  and 𝐼 ∈ 2(𝑉 ), it holds
𝜆(𝑻 , 𝐼) = 1 ⇔ (𝑇𝑘 = 𝑇𝑙  for all 𝑣𝑘, 𝑣𝑙 ∈ 𝐼).

5. Maximum dissension: For all 𝑻 ∈  (𝑋)𝑚  and 𝑣𝑘, 𝑣𝑙 ∈ 𝑉  such that 
𝑘 ≠ 𝑙, it holds
𝜆(𝑻 , {𝑣𝑘, 𝑣𝑙}) = 0 ⇔ 𝑅𝑘, 𝑅𝑙 ∈ 𝐿(𝑋), 𝑅𝑙 = 𝑅−1

𝑘 ,

𝐴𝑙 = 𝑈𝑘, 𝑁𝑘 = 𝑁𝑙 = ∅  and 𝑈𝑙 = 𝐴𝑘.

6. Reciprocity: For all 𝑻 ∈  (𝑋)𝑚  and 𝐼 ∈ 2(𝑉 ), it holds
𝜆(𝑻 −1, 𝐼) = 𝜆(𝑻 , 𝐼).

Proof. 

• Boundedness, Anonymity and Neutrality: the proof is straightfor-
ward

• Unanimity: 𝜆(𝑻 , 𝐼) = 1 ⇔
∑

𝑣𝑘 ,𝑣𝑙∈𝐼
𝑘<𝑙

𝑑𝜆(𝑇𝑘, 𝑇𝑙) = 0 ⇔ (𝑇𝑘 =

𝑇𝑙  for all 𝑣𝑘, 𝑣𝑙 ∈ 𝐼).

• Maximum dissension : ⇒) If 𝜆(𝑻 , {𝑣𝑘, 𝑣𝑙}) = 0, then 𝑑𝜆(𝑇𝑘, 𝑇𝑙) = 1. 
Taking into account Eq. (3), 𝑝𝑘𝑙𝑖𝑗 = 𝑎𝑘𝑙𝑖𝑗 = 1  for all 𝑖, 𝑗 ∈ {1,… , 𝑛}  such 
that 𝑖 < 𝑗. If 𝑅𝑘 ∈ 𝑊 (𝑋) ⧵ 𝐿(𝑋)  or 𝑅𝑙 ∈ 𝑊 (𝑋) ⧵ 𝐿(𝑋), then 𝑝𝑘𝑙𝑖𝑗 <
1  for some 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}; consequently, 𝑅𝑘, 𝑅𝑙 ∈ 𝐿(𝑋). Analo-
gously, if 𝑅𝑙 ≠ 𝑅−1

𝑘 , then 𝑝𝑘𝑙𝑖𝑗 < 1  for some 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}; conse-
quently, 𝑅𝑙 = 𝑅−1

𝑘 . If 𝐴𝑙 ≠ 𝑈𝑘  or 𝑁𝑘 ≠ ∅  or 𝑁𝑙 ≠ ∅  or 𝑈𝑙 ≠ 𝐴𝑘, then 
𝑎𝑘𝑙𝑖𝑗 < 1  for some 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}; consequently, 𝐴𝑙 = 𝑈𝑘, 𝑁𝑘 =
𝑁𝑙 = ∅  and 𝑈𝑙 = 𝐴𝑘.

⇐) It is straightforward.

• Reciprocity: Since 𝑂−1
𝑅𝑘

(𝑥𝑖, 𝑥𝑗 ) = −𝑂𝑅𝑘
(𝑥𝑖, 𝑥𝑗 ), 𝑂−1

𝑅𝑙
(𝑥𝑖, 𝑥𝑗 ) =

−𝑂𝑅𝑙
(𝑥𝑖, 𝑥𝑗 ), 𝑃𝑈𝑘

(𝑥𝑖) = −𝑃𝐴𝑘
(𝑥𝑖), 𝑃𝑈𝑙

(𝑥𝑖) = −𝑃𝐴𝑙
(𝑥𝑖), 𝑃𝑈𝑘

(𝑥𝑗 ) =
−𝑃𝐴𝑘

(𝑥𝑗 ), 𝑃𝑈𝑙
(𝑥𝑗 ) = −𝑃𝐴𝑙

(𝑥𝑗 ), we have 𝑑𝜆(𝑇 −1
𝑘 , 𝑇 −1

𝑙 ) = 𝑑𝜆(𝑇𝑘, 𝑇𝑙)
and, consequently, 𝜆(𝑻 −1, 𝐼) = 𝜆(𝑻 , 𝐼).

These properties ensure that the consensus measure is meaningful and 
interpretable in real-world scenarios: it is standardized and comparable 
across groups (boundedness), treats all voters and alternatives equally 
(anonymity and neutrality), detects full agreement or irreconcilable dis-
agreement (unanimity and maximum dissension), and remains stable 
under global opinion reversals (reciprocity). Note that, for three or more 
voters, it is not possible to achieve a consensus value exactly equal to 
zero.

3.2.  Group decomposability

The overall consensus of a group of voters can be broken down into 
contributions from consensus within subgroups, as well as the pairwise 
disagreements between voters in different subgroups.

As a matter of fact, given 𝐼 ∈ 2(𝑉 )  and 𝑻 = (𝑇1, 𝑇2,… , 𝑇𝑚) ∈
 (𝑋)𝑚, consider a partition of the voters of 𝐼 into 𝑠 disjoint subgroups: 
𝐼1, 𝐼2,… , 𝐼𝑠 ⊆ 𝐼 , where 𝐼1 ∪ 𝐼2 ∪⋯ ∪ 𝐼𝑠 = 𝐼 and 𝐼𝑝 ∩ 𝐼𝑞 = ∅ for 𝑝 ≠ 𝑞. 

Note that #𝐼 =
𝑠
∑

𝑝=1
#𝐼𝑝.

Let us consider the general formula for consensus given in Eq. (4). This 
formula relies on the sum of all pairwise distances among all voters 
in a group. When voters are partitioned into 𝑠 disjoint subgroups, we 
can decompose this total sum of pairwise distances into two parts: the 
distances between voters within each subgroup 𝐼𝑝, and the distances 
between voters in different subgroups 𝐼𝑝 and 𝐼𝑞 (for 𝑝 ≠ 𝑞): 

∑

𝑣𝑘 ,𝑣𝑙∈𝐼
𝑘<𝑙

𝑑𝜆(𝑇𝑘, 𝑇𝑙) =
𝑠
∑

𝑝=1

∑

𝑣𝑘 ,𝑣𝑙∈𝐼𝑝
𝑘<𝑙

𝑑𝜆(𝑇𝑘, 𝑇𝑙) +
𝑠
∑

𝑝,𝑞=1
𝑝<𝑞

#𝐼𝑝
∑

𝑘=1

#𝐼𝑞
∑

𝑙=1
𝑑𝜆(𝑇𝑘, 𝑇𝑙).

(5)

For any subgroup 𝐼𝑝 ⊂ 𝐼 , the consensus within 𝐼𝑝 is given by: 

𝜆(𝑻 , 𝐼𝑝) = 1 −

∑

𝑣𝑘 ,𝑣𝑙∈𝐼𝑝
𝑘<𝑙

𝑑𝜆(𝑇𝑘, 𝑇𝑙)

(

#𝐼𝑝
2

) .

Rearranging this equation, the sum of distances within each sub-
group 𝐼𝑝, 

∑

𝑣𝑘 ,𝑣𝑙∈𝐼𝑝
𝑘<𝑙

𝑑𝜆(𝑇𝑘, 𝑇𝑙), can be expressed in terms of the subgroup 

consensus:
∑

𝑣𝑘 ,𝑣𝑙∈𝐼𝑝
𝑘<𝑙

𝑑𝜆(𝑇𝑘, 𝑇𝑙) =
(

#𝐼𝑝
2

)

⋅
(

1 − 𝜆(𝑻 , 𝐼𝑝)
)

. (6)
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By substituting Eq. (6) into Eq. (5), we obtain the following expres-
sion for the total sum of pairwise distances:
∑

𝑣𝑘 ,𝑣𝑙∈𝐼
𝑘<𝑙

𝑑𝜆(𝑇𝑘, 𝑇𝑙) =
𝑠
∑

𝑝=1

(

#𝐼𝑝
2

)

⋅
(

1 − 𝜆(𝑻 , 𝐼𝑝)
)

+

+
𝑠
∑

𝑝,𝑞=1
𝑝<𝑞

#𝐼𝑝
∑

𝑘=1

#𝐼𝑞
∑

𝑙=1
𝑑𝜆(𝑇𝑘, 𝑇𝑙).

(7)

Finally, by substituting Eq. (7) into the general consensus formula in 
Eq. (4), we achieve the Group Decomposability property, i.e., the overall 
consensus 𝜆(𝑻 , 𝐼) can be expressed as:

𝜆(𝑻 , 𝐼) = 1 −

𝑠
∑

𝑝=1

((

#𝐼𝑝
2

)

⋅
(

1 − 𝜆(𝑻 𝑝, 𝐼𝑝)
)

)

+
𝑠
∑

𝑝,𝑞=1
𝑝<𝑞

#𝐼𝑝
∑

𝑘=1

#𝐼𝑞
∑

𝑙=1
𝑑𝜆(𝑇𝑘, 𝑇𝑙)

(

𝑚
2

) ,

(8)

where (#𝐼𝑝
2

)

⋅
(

1 − 𝜆(𝑻 𝑝, 𝐼𝑝)
)  represents the contribution 

of the internal consensus within each subgroup 𝐼𝑝, while, 
∑𝑠

𝑝,𝑞=1
𝑝<𝑞

∑#𝐼𝑝
𝑘=1

∑#𝐼𝑞
𝑙=1 𝑑𝜆(𝑇𝑘, 𝑇𝑙)  is the sum of pairwise distances be-

tween voters from different subgroups.
Example 4.  Suppose four voters 𝑣1, 𝑣2, 𝑣3, 𝑣4 are grouped into two 
disjoint subgroups:
𝐼1 = {𝑣1, 𝑣2}, 𝐼2 = {𝑣3, 𝑣4}, 𝐼 = 𝐼1 ∪ 𝐼2.

Assume full agreement within each subgroup, so that:
𝑑𝜆(𝑇1, 𝑇2) = 0 and 𝑑𝜆(𝑇3, 𝑇4) = 0.

Assume also full disagreement across subgroups:
𝑑𝜆(𝑇1, 𝑇3) = 𝑑𝜆(𝑇1, 𝑇4) = 𝑑𝜆(𝑇2, 𝑇3) = 𝑑𝜆(𝑇2, 𝑇4) = 1.

The total sum of pairwise distances among all voters in 𝐼 is:
4
∑

𝑘,𝑙=1
𝑘<𝑙

𝑑𝜆(𝑇𝑘, 𝑇𝑙) =

= 𝑑𝜆(𝑇1, 𝑇2) + 𝑑𝜆(𝑇1, 𝑇3) + 𝑑𝜆(𝑇1, 𝑇4)+

+ 𝑑𝜆(𝑇2, 𝑇3) + 𝑑𝜆(𝑇2, 𝑇4) + 𝑑𝜆(𝑇3, 𝑇4) =

= 0 + 1 + 1 + 0 + 1 + 1 + 0 = 4.

There are (42
)

= 6 total pairs, so the overall consensus is:

𝜆(𝑻 , 𝐼) = 1 − 4
6
= 1

3
.

Considering that the internal consensus of both subgroups is maximal 
(i.e., 1), the group decomposability formula yields:

𝜆(𝑻 , 𝐼) = 1 −

(2
2

)

⋅ (1 − 𝜆(𝑻 , 𝐼1)) +
(2
2

)

⋅ (1 − 𝜆(𝑻 , 𝐼2)) + 4

6

= 1 − 0 + 0 + 4
6

= 1
3
.

4.  Marginal contribution to consensus

In group decision-making, understanding each voter’s influence is 
crucial for analyzing how individual preferences shape collective out-
comes. A novel concept, the marginal contribution to consensus, is intro-
duced as a measure of each voter’s impact on group consensus. The 
approach builds on existing frameworks and is related to the Banzhaf 
value (Banzhaf, 1965) in the representation developed by Owen (1975) 
and characterized by Lehrer (1988).

Definition 5. Let 𝑻 ∈  (𝑋)𝑚  be a profile and 𝜆 ∈ (0, 1). The average 
marginal contribution to consensus of voter 𝑣𝑘 ∈ 𝑉  is defined as

𝑐𝑘 =

∑

𝐼∈𝑆𝑘

(

𝜆(𝑻 , 𝐼 ∪ {𝑣𝑘}) − 𝜆(𝑻 , 𝐼)
)

#𝑆𝑘
, (9)

where 𝑆𝑘 = {𝐼 ∈ 2(𝑉 ) ∣ 𝑣𝑘 ∉ 𝐼}. 
Remark 3.  Note that 𝑐𝑘 ∈ [−1, 1]. However, in practice, the extreme 
values are impossible to achieve:

𝑐𝑘 = −1  means that 𝜆(𝑻 , 𝐼 ∪ {𝑣𝑘}) = 0  and 𝜆(𝑻 , 𝐼) = 1, for every 
𝐼 ∈ 𝑆𝑘.

𝑐𝑘 = 0  means that 𝜆(𝑻 , 𝐼 ∪ {𝑣𝑘}) = 𝜆(𝑻 , 𝐼)  for every 𝐼 ∈ 𝑆𝑘.
𝑐𝑘 = 1  means that 𝜆(𝑻 , 𝐼 ∪ {𝑣𝑘}) = 1  and 𝜆(𝑻 , 𝐼) = 0, for every 

𝐼 ∈ 𝑆𝑘. 
While in monotonic transferable utility cooperative games, each 
marginal contribution is always non-negative, in our approach 𝜆(𝑻 , 𝐼 ∪
{𝑣𝑘}) − 𝜆(𝑻 , 𝐼)  can be negative if the consensus in 𝐼 ∪ {𝑣𝑘} is smaller 
than in 𝐼 . This reflects the fact that adding a voter decreases the overall 
consensus when the newly formed group 𝐼 ∪ {𝑣𝑘} is more heterogeneous 
than the original one 𝐼 . 

4.1.  Standardized marginal contributions

As previously mentioned, achieving the theoretical minimum and 
maximum average marginal contributions, denoted as 𝑐𝑘, of 1 and −1
is impossible due to the pairwise additive nature of the consensus func-
tion. Specifically, for 𝑐𝑘 to be equal to −1, the consensus among vot-
ers, excluding 𝑣𝑘, should be consistently 1 (i.e., 𝜆(𝑻 , 𝐼) = 1), while the 
consensus including 𝑣𝑘 should be 0 (i.e., 𝜆(𝑻 , 𝐼 ∪ {𝑣𝑘}) = 0), which is 
infeasible (in the same way, reaching 𝑐𝑘 = 1 is impossible as well).
Remark 4.  Recalling the unanimity property, the consensus within a 
coalition is maximized, i.e., 𝜆(𝑻 , 𝐼) = 1 , if and only if all voters in the 
coalition share the same ternary preference. In contrast, according to 
the total disagreement property, the consensus within a coalition is min-
imized, i.e., 𝜆(𝑻 , 𝐼) = 0, if and only if the coalition consists of exactly 
two voters with opposing ternary preferences. 
Example 5.  Let us consider an example with three voters 𝑉 =
{𝑣1, 𝑣2, 𝑣3} expressing their preferences on a set of three alternatives 
𝑋 = {𝑥1, 𝑥2, 𝑥3}. Assume that two voters, 𝑣1, 𝑣2, have the same ternary 
preference, while 𝑣3 shows maximum disagreement with them. This set-
ting could be displayed as:

𝑇1 = 𝑇2

𝑥1
𝑥2
𝑥3

∅

∅

𝑇3

∅

∅

𝑥3
𝑥2
𝑥1

Which will produce the following distances:
𝑑𝜆(𝑇1, 𝑇2) = 0

𝑑𝜆(𝑇1, 𝑇3) = 𝑑𝜆(𝑇2, 𝑇3) = 1.

In this configuration, 𝑣3 shows maximum disagreement with 𝑣1 and 
𝑣2, while 𝑣1 and 𝑣2 are in complete agreement with each other. Conse-
quently, this setup results in the most negative marginal contribution 
possible for 𝑣3.

Let us compute the marginal contribution of 𝑣3. First, we compute 
𝐷𝜆, the matrix containing the pairwise distances between voters’ pref-
erences:

𝐷𝜆 =
⎛

⎜

⎜

⎝

0 0 1
0 0 1
1 1 0

⎞

⎟

⎟

⎠

.
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To compute the marginal contribution of 𝑣3, we need to consider 
how removing 𝑣3 affects the consensus. In this case, Eq. (5) reduces to:

𝑐3 = 𝜆(𝑻 , 𝐼 ∪ {𝑣3}) − 𝜆(𝑻 , 𝐼)
)

=
(

1 − 2
3

)

− 1 = −2
3
,

where 𝐼 = {𝑣1, 𝑣2}.
As observed, the marginal contribution does not reach −1, even in 

the case of maximum possible disagreement. 
Based on the example results, it is reasonable to assume that the actual 
maximum and minimum values of 𝑐𝑘 depend on the number of voters, 
𝑚. The lowest possible value occurs when all other voters share the same 
ternary preference, a generic voter 𝑣𝑘 exhibits maximum disagreement 
with them. Specifically: 
⎧

⎪

⎨

⎪

⎩

𝑑𝜆(𝑇𝑝, 𝑇𝑘) = 1,  if 𝑝 ≠ 𝑘,

𝑑𝜆(𝑇𝑝, 𝑇𝑞) = 0,  if 𝑝, 𝑞 ≠ 𝑘.
(10)

Without loss of generality, let 𝑣𝑘 be the last element of the distance 
matrix, then 𝐷𝜆 becomes:

𝐷𝜆 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 ⋯ 0 1
0 0 ⋯ 0 1
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 1
1 1 ⋯ 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

It is straightforward to see that, given a coalition 𝑆 such that 𝑣𝑘 ∉ 𝑆, 
the consensus will be 𝜆(𝑻 , 𝐼) = 1. On the other hand, the consensus 
including 𝑣𝑘 will be:

𝜆(𝑻 , 𝐼 ∪ {𝑣𝑘}) = 1 −
0 ⋅

(

#𝑆 − 1
2

)

+ 1 ⋅ (#𝑆 − 1)
(

#𝑆
2

) = 1 − 2
#𝑆

.

Thus, the marginal contribution of 𝑣𝑘 is given by:

𝜆(𝑻 , 𝐼) − 𝜆(𝑻 , 𝐼 ∪ {𝑣𝑘}) = − 2
#𝑆

.

Such result arises because, in the distance matrix 𝐷𝜆, there are as many 
0s as there are pairwise comparisons between voters excluding 𝑣𝑘, which 
is (#𝑆−12

)

, and there are as many 1s as there are comparisons between 𝑘
and the other voters, which is #𝑆 − 1.

Therefore, the average marginal contribution of 𝑣𝑘, derived by sum-
ming over all possible coalitions is given by:

𝑐𝑘 = −
𝑚
∑

#𝑆=3

(

𝑚 − 1
#𝑆 − 1

)

⋅
2
#𝑆

2𝑚−1 − 𝑚
. (11)

Eq. (11) represents the minimum achievable average marginal con-
tribution, which, as expected, depends on the value of 𝑚. To find the 
maximum average marginal contribution achievable, one might con-
sider the inverse configuration where:
{

𝑑𝜆(𝑇𝑝, 𝑇𝑘) = 0,  if 𝑝 ≠ 𝑘,
𝑑𝜆(𝑇𝑝, 𝑇𝑞) = 1,  if 𝑝, 𝑞 ≠ 𝑘.

(12)

In this hypothetical configuration, 𝑣𝑘 is at a minimum distance (0) 
from all other voters, while all remaining pairwise distances reach the 
maximum value of 1. However, this configuration is not compatible with 
the ternary preference structures. It is impossible for all the other voters 
to be at maximum distance from each other (i.e., 𝑑𝜆(𝑇𝑝, 𝑇𝑞) = 1 for all 
𝑝 ≠ 𝑞) while 𝑣𝑘 maintains a minimum distance (0) from each of them. 
Identifying an explicit configuration that maximizes the marginal contri-
bution is particularly challenging due to the complexity of these prefer-
ence structures. Empirical methods can be employed to approximate the 
maximum 𝑐𝑘 achievable. By running extensive simulations and evaluat-
ing a large number of random coalitions, one can approximate the upper 
bound of the average marginal contribution. Details of the simulation 

Fig. 1. Maximum and minimum average marginal contributions achievable as 
a function of the numbers of voters.

procedure are provided in Appendix B. The maximum and minimum 𝑐𝑘
values are graphically illustrated in Fig. 1.

From the plot, we observe that both the maximum and minimum 
average marginal contributions tend to converge towards zero as the 
number of voters increases, reflecting a “dilution" effect of individual 
contributions in larger groups. Specifically, in a configuration with 20 
voters, the maximum approaches a value of approximately 0.028, while 
the minimum approaches approximately −0.2. This convergence toward 
zero highlights a fundamental feature of large voting systems: as the 
group size increases, the influence of any individual voter diminishes. 
This mirrors a well-established principle in collective decision-making, 
where individual power declines with growing group size, ultimately ap-
proaching zero in the limit. Given this dilution effect, directly compar-
ing marginal contributions across different group sizes becomes prob-
lematic. To overcome this limitation, we introduce the standardized 
marginal contributions 𝑐∗𝑘 :

𝑐∗𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐𝑘
max𝑚(𝑐𝑘)

, if 𝑐𝑘 > 0,

𝑐𝑘
|min𝑚(𝑐𝑘)|

, if 𝑐𝑘 < 0,

0, if 𝑐𝑘 = 0,

(13)

where max𝑚(𝑐𝑘) and min𝑚(𝑐𝑘) are the maximum and minimum values 
of 𝑐𝑘 observed or calculated depending on the number of voters, 𝑚.
The quantity 𝑐∗𝑘 scales the marginal contributions by the maximum ab-
solute value observed for any group size 𝑚, allowing us to compare the 
relative influence of voters across different voting populations by re-
moving the influence of group size from the calculation. In a setting 
with a large number of voters, the absolute impact of each voter is typi-
cally negligible. As a result, evaluating each voter’s influence relative to 
their theoretical maximum and minimum contributions provides a more 
meaningful basis for comparison.

Remark 5.  The standardized marginal contribution 𝑐∗𝑘 does not re-
place the classical marginal contribution 𝑐𝑘, but rather complements it. 
Indeed, the standardization strips away the absolute scale, which re-
mains important in contexts where the magnitude of influence matters. 
For instance, in small groups where individual voters have a more pro-
nounced impact on the overall outcome, the raw 𝑐𝑘 value is essential 
for understanding the actual shifts in group consensus caused by each 
voter’s participation. 

Remark 6.  The proposed marginal contributions, 𝑐𝑘 and 𝑐∗𝑘 , can be 
used to detect outlying voters. By examining them, we can determine if 
any voter in our set has a substantially higher absolute impact on the 
consensus. This means that including or excluding such a voter greatly 
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influences the consensus. Voters with a highly positive marginal contri-
bution may have judgments that are central to the overall consensus, 
whereas those with a negative marginal contribution may have judg-
ments that deviate significantly from others. 

4.2.  Estimating the average marginal contribution in large groups

From a computational perspective, two different sources of complex-
ity must be distinguished: the number of alternatives 𝑛 and the number 
of voters 𝑚. The main bottleneck comes from the exponential number 
of coalitions in 𝑚: computing the exact value of 𝑐𝑘 requires consider-
ing 2𝑚 − 𝑚 − 1 coalitions, which rapidly becomes infeasible as 𝑚 grows. 
By contrast, the number of alternatives 𝑛 affects the measure only indi-
rectly, through the cost of computing the consensus function 𝜆 based 
on the distance 𝑑𝜆 (Eq. (3)). Each distance 𝑑𝜆(𝑇𝑘, 𝑇𝑙) involves all 

(𝑛
2

) pairs 
of alternatives, resulting in a computational cost of order 𝑂(𝑛2).
As a result, the exact computation of the average marginal contribution 
𝑐𝑘 has overall complexity 𝑂

(

2𝑚 ⋅ 𝑚2 ⋅ 𝑛2
)

, which is exponential in the 
number of voters 𝑚, but only quadratic in the number of alternatives 𝑛. 

In other words, increasing the number of alternatives 𝑛 only yields a 
computationally manageable growth even for moderately large 𝑛. By 
contrast, increasing the number of voters 𝑚 leads to an exponential 
growth in the number of coalitions, making exact computation infea-
sible. 

To address this issue, we now propose a general procedure for esti-
mating the average marginal contribution using sampling techniques. 
Our proposal is adapted from the algorithm proposed by Saavedra-
Nieves (2021), which introduces strategies for estimating the Banzhaf 
value and the Banzhaf-Owen value for general TU-games. This work is 
also related to Bachrach et al. (2010).

To estimate the average marginal contribution 𝑐𝑘 of a voter 𝑣𝑘, 
we perform simple random sampling with replacement. This sampling 
method is chosen because it provides an unbiased estimator, is com-
putationally efficient and scalable for large voter sets. Moreover, con-
fidence intervals can be constructed using standard techniques (e.g., 
Central Limit Theorem). In contrast, more advanced sampling methods 
(e.g., stratified or importance sampling, see Saavedra-Nieves, 2020 and 
Saavedra-Nieves & Fiestras-Janeiro, 2021) often require prior knowl-
edge about the distribution of marginal contributions or the structure 
of the game.  First, we select a sample of 𝓁 coalitions with at least two 
voters not including 𝑣𝑘, 𝐼1,… , 𝐼𝓁 , where each 𝐼𝑗 ⊆ 𝑆𝑘 for 𝑗 = 1,… ,𝓁, 
and 1 < 𝓁 ⩽ 2𝑚 − 𝑚 − 1. Then, the estimator 𝐶𝑘 of 𝑐𝑘 is the average of 
the marginal contributions Δ𝑗 over the 𝓁 sampled coalitions:

𝐶𝑘 = 1
𝓁
⋅

𝓁
∑

𝑗=1
Δ𝑗 =

1
𝓁
⋅

𝓁
∑

𝑗=1

(

𝜆(𝑻 , 𝐼𝑗 ∪ {𝑘}) − 𝜆(𝑻 , 𝐼𝑗 )
)

. (14)

The pseudocode to derive the estimate 𝑐𝑘 is displayed below Algo-
rithms 1 and 2.

Algorithm 1 Estimate average marginal contribution.
Input: (𝑁∗, 𝑣∗), voter 𝑣𝑘, number of coalitions to be sampled 𝓁
Output: The estimated average marginal contribution 𝑐𝑘
Initialize 𝑐𝑘 ← 0
Initialize Marginal_Contributions← empty list
Generate a sample 𝐼 = {𝐼1,… , 𝐼𝓁} of coalitions of 𝑆𝑘 with replace-
ment, where 𝐼𝑗 ⊆ 𝑆𝑘 for 𝑗 = 1,… ,𝓁, and 1 < 𝓁 ⩽ 2𝑚 − 𝑚 − 1
for each coalition 𝐼𝑗 ∈ 𝐼 do
Compute the 𝑗th marginal contribution 𝛿𝑗 = 𝜆(𝑻 , 𝐼𝑗 ∪ {𝑣𝑘}) −
𝜆(𝑻 , 𝐼𝑗 )
Append 𝛿𝑗 to Marginal_Contributions

end for
Compute 𝑐𝑘 = 1

𝓁
⋅

𝓁
∑

𝑗=1
𝛿𝑗

Return 𝑐𝑘

Note that 𝛿𝑗 is the realization of Δ𝑗 in the 𝑗th coalition.
This reduces the computational complexity to 𝑂(𝓁 ⋅ 𝑚2 ⋅ 𝑛2

)

, replacing 
the intractable exponential dependency on 𝑚 with a tractable linear de-
pendence on the sample size 𝓁, while keeping the effect of 𝑛 polynomial 
and thus computationally feasible. 

Following the approaches outlined by Cochran (1977) and Saavedra-
Nieves (2021), we review some known statistical properties of the 𝐶𝑘
estimator for 𝑐𝑘. As an estimator for the mean, 𝐶𝑘 is both unbiased 
(i.e., 𝔼[𝐶𝑘] = 𝑐𝑘) and consistent (i.e., ∀ 𝜀 > 0 lim𝓁→∞ Pr

(

|𝐶𝑘 − 𝑐𝑘| >
𝜀
)

= 0).  The variance of the marginal contributions across all coali-
tions 𝑆𝑘 is given by 

𝜃2 = 1
2𝑚 − 𝑚 − 1

⋅
∑

𝐼⊆𝑆𝑘

(

Δ(𝑻 , 𝐼) − 𝑐𝑘
)2.

Thus, the variance of the estimator 𝐶𝑘 is Var(𝐶𝑘) =
𝜃2

𝓁
.  An un-

biased estimate for this variance is provided by V̂ar(𝑐𝑘) = 𝜃̂2 = 1
𝓁−1 ⋅

∑𝓁
𝑗=1

(

𝛿𝑗 − 𝑐𝑘
)2.  Moreover, 𝐶𝑘 is efficient, having the minimum vari-

ance among all unbiased estimators.
To construct confidence intervals and quantify estimation uncertainty, 
we rely on distribution-free methods. Specifically, for a given con-
fidence level (1 − 𝛼) and desired precision (𝜀 > 0), we seek to en-
sure that Pr (|

|

𝑐𝑘 − 𝑐𝑘|| ⩽ 𝜀
)

⩾ 1 − 𝛼.  Hoeffding’s inequality is partic-
ularly well-suited to this problem since the marginal contributions 
are bounded. Let the range for a fixed voter (𝑣𝑘 ∈ 𝑉 ) be denoted 
by 𝑤𝑘 = max𝐼,𝐼 ′⊆𝑆𝑘

(

Δ(𝐼)𝑘 − Δ(𝐼 ′)𝑘
)

.  Then, if 𝓁 ⩾
ln(2∕𝛼)⋅𝑤2

𝑘
2𝜀2 , it follows 

Pr
(

|𝑐𝑘 − 𝑐𝑘| ⩾ 𝜀
)

⩽ 𝛼.
Similarly, Chebyshev’s inequality provides a more general bound that 
can be applied when the variance of the marginal contributions is 
known. Applying Chebyshev’s inequality to the estimator 𝐶𝑘 (which has 
variance 𝜃2∕𝓁) gives

Pr
(

|𝑐𝑘 − 𝑐𝑘| ⩾ 𝜀
)

⩽
Var(𝐶𝑘)

𝜀2
= 𝜃2

𝓁 ⋅ 𝜀2
.

Although this bound is typically looser than Hoeffding’s inequality, it is 
useful since it only requires knowledge of the variance and holds under 
very general conditions.
Alternatively, non-parametric approaches such as the percentile boot-
strap can be employed to construct confidence intervals Bootstrap meth-
ods naturally accommodate boundedness and potential skewness in the 
distribution of marginal contributions, and may therefore offer more 
accurate coverage in small-sample settings. 

To perform the estimation, we use the R (Team, 2024) software to 
randomly sample indices of coalitions with replacement from 𝑆𝑘. 

5.  Simulation studies

In this section, we present a comprehensive empirical assessment of 
the proposed algorithm. Section 5.1 investigates its statistical properties 
by examining both the bias and the variance of the estimator, while 
Section 5.2 focuses on the computational performance and scalability 
of the approach. 

5.1.  Bias and variance

Here, we investigate the statistical properties of our proposed al-
gorithm by evaluating both the bias and the variance of the estima-
tor for the average marginal contribution via Monte Carlo simulations. 
First, we study the unbiasedness of our proposed estimator for the aver-
age marginal contribution. The experimental framework was designed 
to compare the estimates produced by our algorithm against the exact 
average marginal contribution computed via exhaustive enumeration 
(Eq. (9)). In these experiments, we considered small group sizes where 
the exact computation is tractable. Specifically, we set the number of 
the number of voters to 𝑚 = 12, 14, 16 and the alternatives to 𝑛 = 5.
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Fig. 2. Histograms displaying the distribution of the average marginal contribution estimates for different group sizes (𝑚 = 12, 14, 16) over 10 000 replications. In 
each panel, the red dashed vertical line denotes the true value 𝑐𝑘. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

For each configuration, we generated the corresponding preference 
profiles and computed the exact average marginal contribution, 𝑐𝑘, for 
a random voter. We then obtained 10 000 independent estimates of the 
average marginal contribution 𝑐𝑘, by applying the proposed algorithm. 
The empirical bias of the estimator was computed by comparing the 
sample mean ̄̂𝑐𝑘 from the Monte Carlo replications with the true values 
𝑐𝑘: 𝑏 = ̄̂𝑐𝑘 − 𝑐𝑘.  In each replication, only 𝓁 = 10 sub-samples were used 
to compute the estimate to show that our estimator is unbiased exactly, 
rather than asymptotically.

To assess statistical evidence for unbiasedness, we performed a one-
sample 𝑡-test for each configuration. The null hypothesis 𝐻0 posits 
that the true mean of the estimates is equal to the exact value, i.e., 
𝐻0 ∶ 𝔼[𝐶𝑘] = 𝑐𝑘, while 𝐻1 ∶ 𝔼[𝐶𝑘] ≠ 𝑐𝑘. The 𝑡-test is based on the ob-
served 𝑡 statistic: 𝑡 = ̄̂𝑐𝑘−𝑐𝑘

𝑠∕
√

𝑟
, where 𝑠 is the sample standard deviation, 

and 𝑟 = 10 000 is the number of replications. Furthermore, the 95% con-
fidence intervals for the mean, calculated from the 𝑡-distribution with 
𝑟 − 1 degrees of freedom are reported.
Table 1 summarize the key results of our Monte Carlo simulations.

Table 1 
Comparison between exact values, estimated average marginal 
contributions, and results of one-sample 𝑡-tests for unbiasedness.

𝑚 𝑐𝑘 ̄̂𝑐𝑘  Bias 𝑡-statistic 𝑝-value

 12  0.01196  0.01203 7.48 × 10−5  0.707  0.480
 14  0.00146  0.00148 2.21 × 10−5  0.332  0.740
 16  0.00939  0.00938 −5.91 × 10−6 −0.108  0.914

The results indicate that the empirical bias is negligible across all 
configurations. In the configuration with 𝑚 = 12, the bias is 7.48 × 10−5, 
while for 𝑚 = 14 the bias is 2.21 × 10−5, and for 𝑚 = 16 the bias is even 
closer to zero. The one-sample 𝑡-tests further confirm that the estimated 
means are not statistically significantly different from the exact values, 
with 𝑝-values of 0.480, 0.740 and 0.914 for 𝑚 = 12, 14 and 16, respec-
tively; the 95% confidence intervals for the mean estimates consistently 
contain the exact value. Thus, we conclude that the estimator is empiri-
cally unbiased.  In addition, we examine how the empirical distribution 
of the estimates (Fig. 2) is shaped around the ground truth.

Although the experiments were conducted on medium-small voter 
groups (𝑚), they demonstrate that the estimator is unbiased even with 
small sample size (𝓁).  We now turn our attention to another criti-
cal statistical property: the variance of the estimator. In each exper-
iment, we generated a set of ternary preferences by randomly sam-
pling from the universe, considering group sizes 𝑚 = 20, 50 and 100
with 𝑛 = 10 alternatives. A range of sample sizes was defined, specifi-
cally 𝓁 ∈ {10, 50, 100, 500, 1000}, and for each value of 𝓁 we performed 
250 independent replications. In each replication, the average marginal 
contribution was estimated for a random voter 𝑣𝑘.

Fig. 3 shows the distributions of the estimates, for the random voter, 
as a function of 𝓁 for the three different values of 𝑚. The results confirm 
that the variance of the estimator decreases with increasing 𝓁, which is 
in line with the theoretical properties of a mean estimator. 

5.2.  Computational time

We now investigate the computational efficiency of the proposed al-
gorithm by evaluating how its execution time varies with both the num-
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Fig. 3. Distribution of 𝑐𝑘 as a function of 𝓁 for different values of 𝑚.

ber of voters 𝑚 and the number of alternatives 𝑛. This investigation is 
motivated by two key considerations. Firstly, as the number of voters 
increases, the need for an optimized algorithm becomes critical due to 
the combinatorial explosion in the number of possible subgroups. Sec-
ondly, increasing 𝑛 also results in higher computational costs, since the 
proposes algorithm relies on the computation of the consensus and the 
distance between ternary preferences (as defined in Eqs. (2) and (3)), 
and these functions scale with the size of the alternative set. 

To systematically assess the scalability of our method, we con-
sidered a grid of configurations with 𝑚 ∈ {20, 50, 100} and 𝑛 ∈
{5, 25, 50, 100, 200}. For each configuration, we generated synthetic pref-
erence profiles and executed the algorithm for a fixed number of iter-
ations (𝑙 = 500), repeating the process 250 times to obtain robust esti-
mates of the computational time. The total execution time (in seconds) 
was recorded for each run and the results are summarized in Fig. 4a–c. 

As expected, the computational time increases with both 𝑚 and 𝑛. 
For example, when 𝑚 = 20, execution times range from approximately 
0.25 s for 𝑛 = 5 to 0.45 s for 𝑛 = 200; for 𝑚 = 50, the times increase to 
between 0.8 s and 1.4 s, and for 𝑚 = 100 they range from 3.5 to 5.0 s.
However, despite these increases, the algorithm remains computation-
ally tractable across all configurations considered. Note that 𝑛 = 200 al-
ready represents a relatively large number of alternatives. In most real-
world surveys or decision-making contexts, asking individuals to rank 
or evaluate so many options is rare; typically, the number of alternatives 
ranges between 5 and 50.

6.  Case studies

This section presents an empirical analysis using two datasets. First, 
we explore the ISTAT dataset to assess urban issues across different Ital-

ian regions. Next, we analyze the Balkan Barometer data to examine 
public opinion trends over time in six Western Balkan countries.

6.1.  ISTAT dataset

The dataset employed in this study, already used in Albano and Plaia 
(2021), is derived from the Italian National Institute of Statistics3 (IS-
TAT).

Specifically, data regard the survey titled “Aspetti della vita quotidi-
ana" (Aspects of Daily Life). This annual survey, conducted each Febru-
ary since 2005, provides comprehensive insights into the everyday lives 
of individuals and families across Italy. The survey captures a wide range 
of thematic areas, offering detailed information about citizens’ habits, 
the challenges they face, and their overall satisfaction with various as-
pects of life, including their economic situation, local area conditions, 
and public services.

The original dataset consists of a 20 × 10 matrix, where the rows rep-
resent the 20 regions of Italy. The columns correspond to various urban 
issues, specifically: parking difficulties (𝑥1), inefficiency of public trans-
port (𝑥2), traffic (𝑥3), poor street lighting (𝑥4), poor road conditions (𝑥5), 
dirty roads (𝑥6), air pollution (𝑥7), noise (𝑥8), risk of crime (𝑥9), and bad 
smell (𝑥10).

Each element 𝑛𝑖𝑗 in the original data matrix (included in the sup-
plementary material) represents the percentage of individuals in the 𝑖th 
region who perceive the 𝑗th problem as a significant issue in their area.

In Albano and Plaia (2021), the data were transformed into a list of 
weak orders. Specifically, alternatives were ranked such that the prob-

3 https://www.istat.it/.
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Fig. 4. Computational time (in seconds) as a function of the number of alterna-
tives 𝑚 for different values of 𝑛.

Fig. 5. Histogram of the distribution of the percentage of people reporting var-
ious problems as important (aggregated across all issues and regions in Italy). 
The dashed vertical lines indicate the first and third quartiles. The plot is di-
vided into three shaded regions corresponding to three approval levels: red for 
𝑈 , blue for 𝑁 , and yellow for 𝐴. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

Table 2 
Votes in sicily.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

 Sicily  15.2  12.3  12.4  12.5  24.5  10.3  11.0  9.8  4.2  4.9

lem with the highest percentage was assigned rank 1, indicating it as 
the most prevalent issue, with subsequent ranks assigned in descending 
order of the percentages.

For our analysis, we extend this transformation to ternary prefer-
ences, by categorizing the alternatives into 𝐴, 𝑁 and 𝑈 (here represent-
ing important, neutral, and negligible problems, respectively).

Fig. 5 shows that the three categories are determinated using of dis-
tribution of the percentage of people reporting various problems as im-
portant (aggregated across all issues and regions in Italy). Alternatives 
ranked below the first quartile are categorized as 𝑈 , those between the 
first and third quartiles are classified as 𝑁 , and problems ranked above 
the third quartile are categorized as 𝐴. Aggregating across all regions 
instead of creating a separate distribution for each region allows us to 
apply consistent thresholds for all the regions.

As an example, let us consider the votes expressed in Sicily in Ta-
ble 2. Note that the percentages in Table 2 do not sum to 100% because 
respondents were allowed to select multiple options.

Since the first and third quartile of the global distribution are 5.5% 
and 11.7%, respectively, the ternary preference of Sicily is derived as 
follows:

𝑥5
𝑥1
𝑥4
𝑥3
𝑥2
𝑥7
𝑥6
𝑥8
𝑥9
𝑥10

Here, 𝑥5, 𝑥1, 𝑥4, 𝑥3 and 𝑥2 are categorized as important problems 
(𝐴), while 𝑥7, 𝑥6 and 𝑥8 are neutral (𝑁), and 𝑥9 and 𝑥10 are negligible 
(𝑈).

Following this categorization, all regional votes are transformed into 
ternary preference. Given the number of voters (𝑚 = 20), the average 
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Fig. 6. Choropleth map of Italy illustrating the estimated average marginal con-
tributions across different regions. Each region is shaded according to its esti-
mate, with colors ranging from red (indicating negative contributions) through 
white (neutral) to violet (indicating positive contributions). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

marginal contributions, shown in Fig. 6, are estimated according to the 
algorithm detailed in Section 4.2.

Fig. 6 illustrates that only a few regions, such as Piedmont, Emilia-
Romagna, Tuscany and Abruzzo, show strong positive estimates rang-
ing from 0.007 to 0.011. This suggests that these regions contribute
positively to the overall consensus. In contrast, Lazio has a negative es-
timate of approximately of −0.02, indicating a more negative impact 
on the general consensus compared to other regions. Other regions, 
including Friuli Venezia Giulia, Lombardy, Calabria and Apulia, also 
show negative estimates, but these are less pronounced than Lazio’s. 
Additionally, the estimates do not exhibit a clear geographic pattern 
across Northern, Central and Southern Italy. This lack of pattern sug-
gests that regional impacts are more influenced by local factors than 
by geographic divisions. The confidence intervals were computed fol-
lowing the methodology described in Section 4.2 using Hoeffding’s and 
Chebyshev’s inequalities (details provided in the supplementary file). 
Specifically, most estimated marginal contributions are statistically sig-
nificant under both methods (Chebyshev intervals are narrower), with 
the exception of Liguria, Veneto, Sardinia, and Campania, whose confi-
dence intervals include zero in both approaches.

To facilitate interpretation further, regions are ranked according to 
their standardized marginal contributions, expressed in percentages, as 
shown in Fig. 7.

Piedmont, Emilia-Romagna, Tuscany and Abruzzo have standardized 
contributions ranging from approximately 25% to 40% of the maximum 
positive achievable in a group of 20 voters, remarking their substantial 
positive impact on the general consensus. Conversely, Lazio’s negative 
estimate of −0.02 represents about 10% of the lower bound, highlighting 
a moderate adverse impact on the consensus.

6.2.  Balkan barometer

The data for this analysis comes from the Balkan Barometer,4 an an-
nual survey that measures public opinion and business sentiments across 
six Western Balkan economies. Commissioned by the Regional Cooper-
ation Council (RCC), the Balkan Barometer surveys life and work aspi-

4 https://www.rcc.int/balkanbarometer/.

Fig. 7. Standardized estimates of marginal contribution for each region.

Fig. 8. Histogram of the distribution of the percentage of people reporting var-
ious problems as important (aggregated across all issues and Balkan countries). 
The dashed vertical lines indicate the first and third quartiles. The plot is di-
vided into three shaded regions corresponding to three approval levels: red for 
𝑈 , blue for 𝑁 and yellow for 𝐴. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

rations, socio-economic and political trends, and regional integration. It 
collects data from over 6000 citizens and 1200 companies.

For this analysis, we used data from the section titled “Most impor-
tant problems in your economy" within the broader category of “Life 
satisfaction and assessment of general trends". This survey, conducted 
annually since 2015, includes opinions from citizens of six Balkan coun-
tries: Albania, Bosnia and Herzegovina, Kosovo, North Macedonia, Mon-
tenegro and Serbia. Respondents are asked to identify the most pressing 
problems they perceive, choosing from a predefined list of issues.

To analyze the temporal evolution of marginal contributions in the 
Balkan countries, we focused exclusively on the alternatives included 
every year in the survey. This results in a total of seven consistent 
issues: “Unemployment"(𝑥1), “Economic situation"(𝑥2), “Crime"(𝑥3), 
“Corruption"(𝑥4), “Protection of human rights"(𝑥5), “Environmental 
change"(𝑥6), and “Security situation" (𝑥7). Moreover, since Bosnia and 
Herzegovina did not provide any opinions in 2018, we excluded that 
year from our analysis. The reason for this exclusion is that changes in 
the respondent pool can alter the significance of marginal contributions. 
Therefore, to accurately study the temporal evolution of marginal con-
tributions, it is essential to ensure that the voter base remains the same 
across the years analyzed.

The true values recorded are displayed in the supplementary file. To 
transform these into ternary preferences, we used the same strategy as 
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Fig. 9. Marginal contributions of Balkan countries across different years. Each country’s data is represented by a dashed line and distinct points, with the horizontal 
red line indicating a zero marginal contribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)

in the previous section. Fig. 8 illustrates the resulting thresholds, i.e. Q1 
= 4.00% and Q3 = 26.75%.

Given the limited number of voters 𝑛 = 6, marginal contributions are 
computed exactly using Eq. (5), and are reported in Fig. 9.

Fig. 9 shows fluctuations in marginal contributions for most coun-
tries, with values oscillating between positive and negative. Notably, 
Kosovo is unique among the six Balkan countries in consistently exhibit-
ing a negative marginal contribution throughout the years from 2015 to 
2023. This suggests that the opinions of Kosovo’s citizens are consis-
tently more divergent from the consensus of other countries, highlight-
ing its distinct status within the region.

Conversely, Montenegro is the only country having always positive 
contribution during the period from 2015 to 2023. These consistent 
positive values suggest that the opinions of Montenegro citizens can 
be considered “central" to the whole area. Moreover, Albania contribu-
tions generally hover around zero, indicating minimal change relative 
to other countries, except for a significant dip below zero around 2020, 
highlighting a negative marginal contribution during that period. North 
Macedonia display some of the more pronounced positive contributions 
between 2017 and 2022. Bosnia and Herzegovina shows high variabil-
ity, with its marginal contributions swinging markedly between positive 
and negative. In fact, half of the analyzed countries frequently cross the 
zero line, pointing to a complex and fluctuating pattern of consensus 
within the region.

To take into account the small number of voters (countries) in our 
group, let us analyze the standardized average marginal contribution, 
expressed in percentages, in Fig. 10 (which does not consider the tem-
poral aspect).

Notably, Fig. 10 does not present any alarming or remarkably high 
extreme values, neither particularly negative nor particularly positive.

For instance, Kosovo, while consistently showing negative contri-
butions, does not exhibit values far below −5%. This suggests that, al-

Fig. 10. Boxplot of standardized estimates by country.

though there is some disagreement, it is not particularly intense. Sim-
ilarly, Montenegro, despite its consistently positive contributions, does 
not display exceptionally high values; the highest point is around 25%, 
indicating a moderate positive impact on the consensus. The other coun-
tries, also show contained ranges of contributions, reflecting a mix of 
moderate positive and negative influences. For instance, Albania’s con-
tributions range from −5% to 15%, reflecting some volatility but not 
extreme instability. North Macedonia and Serbia show similar moderate 
fluctuations around the zero mark, and Bosnia and Herzegovina’s con-
tributions generally remain positive without significant negative dips.

The lack of particularly extreme values indicates that the Balkans 
regions, despite their diversity, do not show particularly different opin-
ions of the alternatives analyzed. This suggests a stable environment 
with no significant polarization. However, some attention should be 
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paid to Kosovo’s consistent negative contributions. Although the neg-
ative values do not fall far below −5%, the persistent trend of negative 
contributions could indicate underlying disagreement that merits closer 
examination in the future.

7.  Concluding remarks

In this paper, we examined consensus within ternary preferences, a 
framework in which voters rank alternatives using a weak order and 
classify them into three categories: acceptable, neutral and unaccept-
able.

We have proposed a distance-based measure to quantify the consen-
sus among voters and introduced the notion of marginal contribution to 
consensus, which reflects the impact of each voter on the overall agree-
ment within a group. This approach allowed us to estimate the influence 
of individual voters in scenarios involving ternary preferences.

Our findings demonstrate that as the number of voters increases, the 
marginal contribution of each voter tends to become more concentrated 
around zero, highlighting a dilution effect. This is particularly evident 
when standardizing marginal contributions, which provides a compar-
ative framework across different coalition sizes. The standardized mea-
sure facilitates the identification of voters whose opinions significantly 
diverge from the group consensus, serving as a useful tool for detecting 
outliers.

To address the computational challenges inherent in calculating 
marginal contributions for large voter groups, we developed an esti-
mation procedure using sampling techniques. Our comprehensive simu-
lation studies validate both the statistical properties and computational 
efficiency of this approach. Specifically, we demonstrate that our esti-
mator is empirically unbiased across different group sizes, with variance 
decreasing as sample size increases. Moreover, the computational per-
formance analysis reveals that our algorithm remains tractable across 
various configurations. 

The empirical analysis, based on real-world data from ISTAT and the 
Balkan Barometer, provided insights into the practical application of our 
theoretical framework. The results showed that our method could effec-
tively capture and quantify the degree of consensus in diverse voting sce-
narios, even with complex preference structures. Specifically, the ISTAT 
dataset revealed significant regional variations in consensus, with Pied-
mont and Emilia-Romagna showing strong positive impacts and Lazio 
exhibiting a notable negative effect. Conversely, the Balkan Barometer 
dataset highlighted Kosovo’s persistent negative contributions and Mon-
tenegro’s consistently positive contributions, with other countries dis-
playing less extreme fluctuations. The use of standardized marginal con-
tributions revealed that the ISTAT dataset exhibited more pronounced 
impacts on consensus compared to the Balkan Barometer. This differ-
ence may be attributed to a higher overall consensus in the Balkan 
context, which led to less variation in marginal contributions across
countries.

These findings underscore the effectiveness and versatility of our 
distance-based consensus measure and marginal contribution analysis 
for understanding and evaluating consensus within ternary preference 
settings. The proposed method has practical implications for decision-
making processes in social choice, where understanding voter alignment 
and disagreement is essential.

Future research could build on this work by applying our voter influ-
ence measure to consensus-reaching processes (see Eklund et al., 2007 
and Tang et al., among others). Since in consensus-reaching processes 
the agreement is often improved through iterative interactions, where 
individuals may adjust their preferences, our influence measure could 
be instrumental in identifying key voters who might guide or sway 
the group toward a stronger consensus. Additionally, expanding this 
framework to other preference structures, such as preference rankings, 
could reveal whether similar patterns of consensus and influence emerge 
across diverse voting paradigms. Finally, the present framework pro-
vides a foundation for future work aiming at an axiomatic characteriza-
tion of the average marginal contribution of consensus.
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Appendix A.  List of symbols

Symbol Description

𝑋 Finite set of alternatives.
𝑥𝑖, 𝑥𝑗 Generic alternative of 𝑋.
𝑛 Number of alternatives.
𝑊 (𝑋) Set of weak orders on 𝑋.
𝐿(𝑋) Set of linear orders on 𝑋.
𝑅 Generic weak order.
𝑥𝑖 ≻ 𝑥𝑗 𝑥𝑖 is strictly preferred to 𝑥𝑗 in 𝑅.
𝑥𝑖 ∼ 𝑥𝑗 𝑥𝑖 and 𝑥𝑗 are indifferent in 𝑅.
(𝑌 ) Power set of an arbitrary set 𝑌 .
#𝑌 Cardinality of an arbitrary set 𝑌 .
𝑉 Finite set of voters.
𝑚 Number of voters.
2(𝑉 ) Set of all the subsets of 𝑉  with at least two 

voters.
𝐴 Set of acceptable alternatives.
𝑈 Set of unacceptable alternatives.
𝑣, 𝑣𝑘, 𝑣𝑙 Generic voter.
𝑅𝑣 Weak order of voter 𝑣.
𝐴𝑣 Set of acceptable alternatives for 𝑣.
𝑁𝑣 Set of neutral alternatives for 𝑣.
𝑈𝑣 Set of unacceptable alternatives for 𝑣.
𝑇 =
(𝑅,𝐴,𝑁,𝑈 )

Ternary preference structure.

 (𝑋) Set of ternary preferences on 𝑋.
𝑥𝑖 𝑅𝑥𝑗 𝑥𝑖 ranked at least as high as 𝑥𝑗 in 𝑅.
𝑂𝑅 Pairwise comparison between alternatives 

based on 𝑅.
𝑝𝑘𝑙𝑖𝑗 Preference-discordance between 𝑣𝑘 and 𝑣𝑙

over 𝑥𝑖 and 𝑥𝑗 .
𝑃𝐴(𝑥𝑖) Ternary approval score of alternative 𝑥𝑖.
𝑎𝑘𝑙𝑖𝑗 Approval-discordance between 𝑣𝑘 and 𝑣𝑙

over 𝑥𝑖 and 𝑥𝑗 .
𝑑𝜆 Distance between ternary preferences.
𝐷𝜆 Matrix of pairwise distances between 

voters.
𝐼 Generic subset of voters.
𝐼𝑝 Subgroup in a voter partition of 𝐼 .
𝜆(𝑻 , 𝐼) Consensus measure among voters of 𝐼 in 

the profile 𝑻 .
𝑻 𝜋 Profile relabeled by permutation 𝜋.
𝐼𝜋 Voter subset via 𝜋−1 on 𝐼 .
𝑻 𝜎 Profile relabeled by 𝜎 (alternatives).
𝑻 −1 Profile with inverted voter opinions.
𝑐𝑘 Average marginal contribution to consensus 

by 𝑣𝑘.
𝑆𝑘 Set of subsets of 2 voters not containing 

voter 𝑣𝑘: 𝑆𝑘 = {𝐼 ∈ 2(𝑉 ) ∣ 𝑣𝑘 ∉ 𝐼}.
𝑐∗𝑘 Standardized marginal contribution of 𝑣𝑘.
𝐶𝑘 Estimator of 𝑐𝑘 from sampled coalitions.
𝓁 Number of sampled coalitions.
𝑐𝑘 Estimated average marginal contribution of 

𝑣𝑘.
𝜃2 Variance of the marginal contributions 

across all coalitions.
Δ(𝑻 , 𝐼) Change in consensus adding 𝑣𝑘 to 𝐼 .
Var(𝐶𝑘) Variance of the estimator.
Pr Probability.
𝑤𝑘 Max range of marginal contributions for 𝑣𝑘.

Appendix B.  Approximating the maximum 𝒄𝒌

The following algorithm is designed to approximate the maximum 
achievable 𝑐𝑘 in a scenario involving 𝑚 voters.

Algorithm 2 Approximate maximum average marginal contribution.
Input: Number of voters 𝑚, threshold = 10, iterations = 50,000 
Output: Approximated maximum marginal contribution 

𝑚𝑎𝑥𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ← −∞
for 𝑖 ← 1 to iterations do
Extract 𝑚 ternary preferences 𝑇 = {𝑇1, 𝑇2,… , 𝑇𝑚}
if 𝑚 ⩽ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ← computes the exact 𝑐𝑘 using formula (5)
else

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ← estimates 𝑐𝑘 using the sampling-based Al-
gorithm 1

end if
if 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 > 𝑚𝑎𝑥𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 then

𝑚𝑎𝑥𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ← 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
end if

end for
Return 𝑚𝑎𝑥𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
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