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RESUMEN

La evaluacion de las perturbaciones post-incendio en los ecosistemas mediterraneos es
esencial para cuantificar el impacto ecoldgico y guiar la restauracion. Este estudio
estima la severidad del incendio en la Sierra de la Culebra usando indices de vegetacion
(VIs) derivados de imagenes de satélite hiperespectrales (PRISMA) y multiespectrales
(Sentinel-2). Se calcul6é una serie de indices de vegetacion: indices de banda ancha
adaptados a PRISMA, indices especificos de banda estrecha e indices multiespectrales
estandar para Sentinel-2. Se identificaron los VIs de mejor desempefio analizando su
eficacia en diferentes tipos de ecosistemas (bosque de coniferas, bosque de frondosas
y matorral) y tipos del indice Compuesto de Quemado (CBI; vegetacion, suelo y lugar).
La elaboraciéon de los mapas se realizd segun el tipo de sensor, ecosistema y CBI. Los
datos hiperespectrales proporcionaron una caracterizacion detallada y continua de las
propiedades espectrales relacionadas con las clases de severidad de incendio en todos
los tipos de ecosistemas en comparacién con los datos multiespectrales, mostrando
correlaciones mas fuertes con los valores de CBI. El CBI de la vegetacibn mostro
mejores correlaciones con los Vis que el CBI del suelo, probablemente debido al disefio
enfocado en la vegetacion de la mayoria de los Vis. Los ecosistemas de bosque
latifoliado y matorral mostraron valores de correlacién méas altos que los de bosque de
coniferas, probablemente debido a las diferencias en la densidad del bosque y la
estructura de los fustes, asi como a la biomasa remanente y las condiciones del suelo
tras un incendio. Entre los indices con mejores desempefios, los basados en las bandas
borde rojo, NIR y SWIR fueron los que obtuvieron mejores resultados. En cuanto a los
datos hiperespectrales, el indice de vegetacion diferencial de borde rojo (DVIRED), el
indice de vegetacion mejorado (EVI) y el indice de absorcién de celulosa (CAl)
mostraron su utilidad para evaluar la salud de la vegetacion. En cuanto a los datos
multiespectrales, la diferencia normalizada del borde rojo (NDRE), el indice de clorofila
del borde rojo (CIREDGE), el indice de vegetacion de diferencia normalizada mejorada
(ENDVI) y el indice de vegetacion de diferencia normalizada verde (GNDVI) mostraron
un gran rendimiento. En particular, el CAl fue el indice hiperespectral mas eficaz,
alcanzando la correlaciébn mas alta en este estudio (R2 = 0,808). Esta investigacion
demuestra el importante potencial de las imagenes hiperespectrales para la evaluacién
detallada post-incendio en los ecosistemas mediterraneos.

PALABRAS CLAVES: Sensores remotos, Impacto ecolégico post-incendio, PRISMA, indices
hiperespectrales, CBI.
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ABSTRACT

Assessing the post-fire disturbance in Mediterranean ecosystems is essential for
quantifying ecological impact and guiding restoration. This study estimates the fire
severity in the Sierra de la Culebra wildfire using vegetation indices (VIs) derived from
hyperspectral (PRISMA) and multispectral (Sentinel-2) satellite imagery. A range of Vs
was computed: broadband-based indices adapted for PRISMA, narrowband-specific
indices, and standard multispectral indices for Sentinel-2. The best-performing VIs were
identified by analyzing their efficacy across different ecosystem types (coniferous forest,
broadleaf forest, and shrubland) and Composite Burn Index (CBI) types (vegetation, soll,
and site). Mapping was conducted by sensor, ecosystem, and CBI type. Hyperspectral
data provided a detailed and continuous characterization of the spectral properties
related to fire severity classes across ecosystem types compared to multispectral data,
showing stronger correlations with CBI values. Vegetation CBI exhibited better
correlations with VIs than soil CBI, likely due to the vegetation-focused design of most
VIs. Broadleaf forest and shrubland ecosystems showed higher correlation values than
coniferous forest probably owing to differences in forest density and stem structure, and
the subsequent remaining biomass and soil conditions after a fire. Among the best-
performing indices, those based on red edge, NIR, and SWIR bands performed best. For
hyperspectral data, the red edge difference vegetation index (DVIRED), the enhanced
vegetation index (EVI), and the cellulose absorption index (CAIl) exhibited their
usefulness for assessing vegetation health. For multispectral data, the normalized
difference red edge (NDRE), the red edge chlorophyll index (CIREDGE), the enhanced
normalized difference vegetation index (ENDVI), and the green normalized difference
vegetation index (GNDVI) showed strong performance. Notably, CAl was the most
effective hyperspectral index, achieving the highest correlation in this study (R? = 0.808).
This research demonstrates the significant potential of hyperspectral imagery for detailed
post-fire assessment across Mediterranean ecosystems.

KEYWORDS: Remote sensing, post-fire ecological impact, PRISMA, hyperspectral
indices, CBI.
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1. INTRODUCTION

Forest fires are the greatest disturbance in Mediterranean ecosystems worldwide, and
even more so in the Mediterranean basin, where large areas have been burned in recent
decades due to abrupt changes in fire regimes caused by climate change (Oliveira et al.,
2012; M. M. Boer et al., 2017; Goncalves & Sousa, 2017). Fires play an essential role in
shaping the species composition, structure, and dynamics of Mediterranean plant
communities (Tessler et al., 2016; Fernandez-Guisuraga et al., 2019). Furthermore, fires
cause physical, chemical, and biological changes in forest soils (Evangelides & Nobajas,
2020).

In the study of post-fire environments, the terms fire severity and burn severity are
frequently used interchangeably, yet they enclose distinct concepts (M. Boer et al., 2008;
Keeley, 2009). Fire severity refers to the immediate extent of environmental alteration
induce by a fire event, encompassing changes to both biotic and abiotic components of
the ecosystem (Lentile et al., 2006; Veraverbeke et al., 2010; Morgan et al., 2014).
Unlike, burn severity integrates the magnitude of fire-induced environmental change with
the subsequent trajectory of vegetation recovery. Both fire and burn severity collectively
describe the impacts of fire on vegetation and soil properties, influencing ecosystem
structure and function (Key & Benson, 2006; Parsons et al., 2010; Morgan et al., 2014).

Assessing fire severity is critical for quantifying losses in above- and below-ground
biomass (Keeley, 2009), evaluating the ecological and socioeconomic impacts of
wildfires, and informing evidence-based decision-making in land management
(Fernandez-Manso & Quintano, 2020). Fire severity is defined as the magnitude of
ecological change in a burned area relative to the pre-fire scenario and is measured
qualitatively as the effects of the fire on vegetation and soil (Key & Benson, 2006; Lentile
et al., 2009). It is evaluated in the field by analyzing vegetation and soil and integrating
indices such as the Composite Burn Index (CBI) (Key & Benson, 2006). It is calculated
by assessing across five structural strata: substrates — ranging from inert materials to
soil, organic waste, and harvested fuelwood; grasses — herbaceous, low shrubs, and low
trees layer of height less than 1 m; shrubs and trees — tall shrub and sapling layer
between 1 and 5 m height; intermediate trees — trees with a diameter between 10 and
25 cm, and heights between 5 and 20 m; large trees — dominant trees with crowns
receiving direct sunlight with height above 20 m (De Santis & Chuvieco, 2007; De Bonis
& Laneve, 2013). In the substrate layer, metrics include fine fuel consumption and
charcoal characteristics. For the herbaceous, shrub, and lower tree layers (<5 m), the
percentage of foliage consumed is visually estimated. In taller vegetation layers (=5 m),
foliar coloration (green, brown, black) and charcoal deposition depth on tree trunks are
recorded. To ensure consistency, each plot assessment is performed by at least two
observers, and only scores reached by consensus are recorded (De Santis & Chuvieco,
2007; Quintano et al., 2023). The final CBI score per plot, referred to as site CBI, is
calculated as the mean of scores across all assessed strata. Additionally, vegetation CBI
derives by averaging scores across vegetation strata only (excluding substrate), and soll
CBl is calculated using only the substrate stratum scores. Furthermore, fire severity data
are categorized according to the following CBI thresholds: low (CBI < 1.25), moderate
(1.25 < CBI £ 2.25), and high (CBI > 2.25) (Miller & Thode, 2007; Quintano et al., 2023).

Remote sensing has become a valuable data source for ecological assessment, as it
overcomes limitations associated with traditional field-based methods, such as, error-
prone, incomplete, limited, and spatially or temporally inconsistent due to irregular data

José Alberto Cipra Rodriguez
Méaster en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data
Science (DATAFOREST)

-6-



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

collection, reducing uncertainty in analyses (Chuvieco et al., 2019). In particular, remote
sensing is highly effective for assessing fire severity across large burned landscapes,
owing to its favorable cost-benefit ratio and synoptic capabilities (Yin et al., 2020).

The multispectral data provided by Sentinel-2 are commonly used in quantitative fire
severity assessments (Quintano et al.,, 2023). It improves the efficiency, speed, and
feasibility of identifying and monitoring regions at risk of wildfires (Atun et al., 2020).
Satellite images are also used to determine fire severity over large areas, which are
validated by the CBI (Holden et al., 2009).

Hyperspectral remote sensing provides hundreds of contiguous, narrow spectral bands
with bandwidths of 5 nm to 15 nm (Goetz, 2009; Transon et al., 2018). The availability of
these data has great potential to provide fire severity estimates that align with post-fire
management needs. These benefits include reduced logistics costs and the elimination
of suboptimal sensitivity broadband data (Quintano et al., 2023). Additionally, it enables
precise within-pixel fractional cover estimates for various ground cover classes, including
charcoal, which serve as key indicators of fire severity (Veraverbeke et al., 2014; Lewis
et al., 2017). Vegetation index (VI) calculations from remotely sensed data are critical for
post-fire recovery assessments, assisting with spatio-temporal analysis and mapping fire
severity (Chrysafis et al., 2019). VI can highlight the subtleties and characteristics of a
feature class or a specific feature and can indicate crop development, vegetation and
non-vegetation, soil, and other related information (Chen et al., 2024). This can be a
linear or nonlinear combination of two or more spectral bands (Wang et al., 2024).

Traditional multispectral VIs are limited to the characteristic red, near-infrared, and mid-
infrared bands. These VIs have the disadvantages of a small number of bands, large
bandwidths, and restricted wavelength positions, which cannot accurately reflect
biomass characteristics (Wang et al., 2024). Hyperspectral remote sensing, on the other
hand, has high spectral resolution and spectral information in hundreds of bands (Wang
et al., 2024).

Therefore, this study seeks to estimate wildfire severity in arboreal and non-arboreal
ecosystems in the Sierra de La Culebra using PRISMA hyperspectral indices. The three
CBI types were evaluated in the field: vegetation, soil, and site, to identify the
performance of the hyperspectral indices in predicting fire severity at these levels. In
addition, multispectral indices were calculated from a Sentinel-2 satellite image for
comparison with the hyperspectral indices.

2. OBJECTIVE

The objective of this study is to estimate the fire severity in the Sierra de La Culebra
following the 2022 wildfire by obtaining a set of vegetation indices (VIs) from PRISMA
hyperspectral imagery and correlating these with the Composite Burn Index (CBI) at
vegetation, soil, and site levels. Additionally, the study aims to validate these
hyperspectral indices by comparing them with multispectral indices derived from
Sentinel-2 imagery. Furthermore, fire severity will be extrapolated across the entire study
area at vegetation, soil, and site levels and visualized through mapping.

José Alberto Cipra Rodriguez
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3. METHODS

3.1. STUDY AREA

The Sierra de La Culebra wildfire, located in Zamora, Castilla y Ledn, Spain, was the
second largest and most destructive fire recorded in the country (Figure 1). This event
occurred between June 15th and 19th, 2022, affecting a total area of 28 046 ha (Quintano
et al., 2023).

The region exhibits diverse topography, characterize by steep slopes and broad valleys,
with altitudes ranging from 747 to 1205 meters above sea level. The climate is classified
as Mediterranean, with an average annual temperature of 11°C and an average rainfall
of 750 mm (Ninyerola et al., 2005).
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Figure 1. Location map of Sierra de la Culebra wildfire (top) and field plot distribution over a Sentinel-2
false color composite - R: band 12; G: band 8A; B: band 4 (image below).
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Based on the vegetation present before the fire, three main ecosystem groups were
identified (Figure 2): coniferous forests, dominated by species such as Pinus sylvestris
L. (Scots pine) and Pinus pinaster Ait. (Maritime pine); broadleaf forests, composed of
Quercus ilex L. (Holm oak) and Quercus pyrenaica Willd. (European oak); and
shrublands dominated by Cistus ladanifer L., Pterospartum tridentatum (L.) Willk., Erica
australis L. and Halimium lasianthum subsp. Alyssoides (Lam.) Greuter, as well as
Mediterranean grasslands (Quintano et al., 2023).
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Figure 2. Map of forestry classification in the Sierra de la Culebra wildfire area.

Source: Adapted from (Ministerio para la Transicion Ecoldgica y el Reto Demogréfico,
2025).

3.2. COMPOSITE BURN INDEX (CBI)

The Composite Burn Index (CBI) is a standardized field measure of fire severity widely
used to validate satellite-derived remote sensing products (Holden et al., 2009). It is
calculated through visual assessment of post-fire changes across four vegetation and
soil strata, providing a general overview of fire damage (Fernandez-Garcia et al., 2018).
In this study, post-fire attributes, such as changes in species composition or new
additions to the soil, were not considered.

A total of 70 field plots, each measuring 30 m x 30 m, were surveyed approximately one
month after the wildfire event (Figure 1). Plots were selected using a random stratified
sampling design, where strata were defined by the dominant vegetation types, excluding
Mediterranean grasslands (Quintano et al., 2023). The distribution of plots by ecosystem
category was as follows: 34 plots in coniferous forests, 20 in broadleaved forests, and
16 in shrublands.

Three CBI types were used: vegetation CBI was derived by averaging scores across
vegetation strata only (excluding substrate), and soil CBI was calculated using only the
substrate stratum scores. Site CBI was also calculated as the mean of both prior CBls
(see Annex Al.l). Fire severity categorization was according to the following CBI

José Alberto Cipra Rodriguez
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thresholds: low (CBI < 1.25), moderate (1.25 <= CBI <= 2.25), and high (CBI > 2.25)
(Miller & Thode, 2007).

Severity classes corresponded to distinct post-fire structural patterns: low severity refers
to a partial foliage consumption in shrubs and the tree canopy remained almost intact, in
other words, minimal canopy damage; moderate severity means substantial understory
consumption with incomplete foliage loss in the canopy; and high severity refers to near-
total consumption of both understory and overstory foliage (Ferndndez-Guisuraga et al.,
2023).

3.3. HYPERSPECTRAL AND MULTISPECTRAL SATELLITE IMAGERY

To assess post-fire vegetation severity in the Sierra de la Culebra, two types of satellite
imagery were employed: hyperspectral and multispectral.

The hyperspectral imagery was acquired from the PRecursore IperSpettrale della
Missione Applicativa (PRISMA) mission, developed by the Italian Space Agency (ASI),
and downloaded from its platform on July 13th, 2023. PRISMA, launched in March 2019,
provides hyperspectral satellite data in a spectral range of 400 to 2500 nm, with a spatial
resolution of 30 m, and swath width of 30 km, enabling detailed spectral discrimination
of vegetation characteristics. These features make PRISMA a valuable tool for fire
severity assessment, particularly due to its sensitivity to post-disturbance spectral
changes in vegetation and soil (Amici & Piscini, 2021).

The multispectral imagery was obtained from the Sentinel-2 satellite (level 2A product)
on July 15th, 2022, shortly after the fire event. Sentinel-2, belonging to the European
Space Agency (ESA) under Copernicus Programme, is equipped with a multispectral
sensor that offers 13 bands with spatial resolutions of 10 m, 20 m, and 60 m. These
bands span visible (VIS), red-edge, near-infrared (VNIR), and shortwave infrared (SWIR)
regions, allowing an assessment of the effects of the fire (Quintano et al., 2023).

3.4. IMAGE PROCESSING

The processing of the hyperspectral and multispectral images was carried out using
Python in Visual Studio Code (see Annexes A5.1 & A5.2). Image handling and
computation were carried out with specialized libraries such as rasterio, numpy, and
pandas (Gorelick et al., 2017).

3.4.1. QUALITY-BASED BAND EXCLUSION AND COREGISTRATION

To enhance data quality, hyperspectral bands exhibiting low signal-to-noise ratios and
sensor artifacts were excluded from the analysis. These bands were identified through
visual inspection, following recommendations from prior studies (Tane et al., 2018; Amici
& Piscini, 2021). In particular, bands in the 400-434 nm, 1345-1459 nm, 1774-1975 nm,
2010-2035 nm, and 2469-2505 nm regions were discarded (Quintano et al., 2023). To
facilitate index calculation and enable comparison with multispectral data, selected
hyperspectral bands were aggregated and renamed according to standard wavelength
regions: blue (400-500 nm), green (500-600 nm), red (600-700 nm), red edge (700-750
nm), near-infrared (NIR; 750-1050 nm), and shortwave infrared (SWIR; 1050-2500 nm).
As a result, the number of hyperspectral bands was reduced from 233 to 191, and these

José Alberto Cipra Rodriguez
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bands were relabeled with both hyperspectral and multispectral names for the vegetation
index (VI) computation (see Annex A2.1). Otherwise, Sentinel-2 multispectral imagery
bands used in this study included blue (B2), green (B3), red (B4), red edge (B5, B6, &
B7), near-infrared (B8, & B8A), shortwave infrared 1 (B11), and shortwave infrared 2
(B12). All other bands were excluded (see Annex A2.2).

In addition, to ensure precise spatial alignment between the PRISMA hyperspectral
image and the Sentinel-2 multispectral image, a co-registration process was conducted.
This step was essential to allow pixel-by-pixel comparison and accurate VI computation.
Ground control points were manually selected and used to geometrically align the
images (Gorelick et al., 2017).

3.4.2. VEGETATION INDICES COMPUTATION

Vegetation indices (VIs) were calculated from both hyperspectral and multispectral
imagery to quantify post-fire vegetation and soil changes across the study area. A total
of 140 spectral indices were computed, 40 multispectral and 100 purely hyperspectral,
enabling a comprehensive evaluation of fire severity responses (see Annex A3.1).

Classical broadband indices, such as the Normalized Difference Vegetation Index
(NDVI) and the Normalized Burn Ratio (NBR), were calculated using both Sentinel-2 and
PRISMA data. These indices are based on reflectance from broad spectral regions and
are commonly used for large-scale vegetation monitoring and burn severity
assessments.

In contrast, hyperspectral indices, including the Leaf Chlorophyll Index (LCI), Normalized
Difference Nitrogen Index (NDNI), and Cellulose Absorption Index (CAl), rely on narrow
spectral bands that are available only in hyperspectral datasets. Notably, the
computation of these indices involved testing permutations of the VI formula,
incorporating two bands immediately below and above the target band for each index.
These indices are specifically designed to detect subtle physiological or structural
changes in vegetation, such as chlorophyll degradation, nitrogen content variation, or
cellulose loss, often linked to fire damage (Clark et al., 2005).

For clarity throughout this study, hyperspectral indices refer to indices calculated
exclusively from PRISMA hyperspectral data, regardless of whether their original
formulation was for hyperspectral or multispectral use. Multispectral indices refer to
indices derived from Sentinel-2 multispectral data. Hyperspectral indices are generally
more sensitive than multispectral ones in detecting fine-scale spectral variations,
particularly in transition zones between burn severity classes. This increased sensitivity
is attributed to the availability of narrow, contiguous bands, which allow for more precise
detection of biochemical changes in vegetation and soil properties following fire (Clark
et al., 2005).

3.5. STATISTICAL ANALYSIS

All statistical analyses were conducted in R version 4.4.2 (R Development Core Team,
2019; see Annex A5.3). Simple linear regression models were employed to analyze each
VI as the independent variable, with CBI values as the dependent variable. This
approach allowed for the identification of VIs most strongly associated with fire severity.
Prior to VI analysis, raw hyperspectral and multispectral bands were correlated with CBI
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to identify bands likely to contribute to highly correlated VIs. Two primary performance
metrics were used to evaluate model accuracy. The coefficient of determination (R2) was
used to measure the proportion of variability in the CBI data explained by each VI. Values
approaching 1 indicate strong explanatory power and high predictive performance. The
Pearson correlation coefficient (r) evaluated the strength and direction of the linear
relationship between VI and CBI. Additionally, the root mean square error (RMSE) was
used to quantify the dispersion of observed values relative to those predicted by the
model. Lower RMSE values indicate better model fit and reduced deviation between
predicted and actual data (Qiao et al., 2022).

3.6. MAPPING FIRE SEVERITY USING CBI ANALYSIS

Fire severity across the study area was assessed using both PRISMA hyperspectral and
Sentinel-2 multispectral imagery by calculating VI tailored to the three ecosystem types
(coniferous forest, broadleaf forest, and shrubland). For each ecosystem, the VI with the
highest R? to CBI type value was selected, based on the prior regression analyses. CBI
values were categorized into three severity levels: low (CBI < 1.25), moderate (1.25 <
CBI = 2.25), and high (CBI > 2.25), following established thresholds. These CBI-VI
relationship were then extrapolated to the entire study area by applying the selected Vls
to the corresponding spectral imagery, mapping fire severity spatially.
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4

4.

. RESULTS

1. SPECTRAL SIGNATURES

Figure 2 presents the spectral characteristics derived from PRISMA and Sentinel-2 data
for three ecosystem types in the Sierra la Culebra wildfire. The spectral signatures are
categorized by sensor type and ecosystem type, with mean fire severity classes depicted
as colored lines (low severity: green; moderate severity: brown; high severity: red) and
the overall mean spectral signature shown as a black line.

HYPERSPECTRAL SIGNATURE OF CONIFEROUS FOREST PLOTS

0.40 4

0.30 1

0.20 1

Reflectance

0.10 4

= Average High Severity
== Average Moderate Severity
= Average Low Severity
m— Total Average

0.00

HYPERSPECTRAL SIGNATURE OF BROADLEAF FOREST PLOTS

T T T T
1000 1500 2000 2500

Wavelength (nm)

T
500

0.40

0.30

0.20

Reflectance

0.10

= Average High Severity
= Average Moderate Severity
m— Average Low Severity
m— Total Average

0.00

T T T T
1000 1500 2000 2500

Wavelength (nm)

HYPERSPECTRAL SIGNATURE OF SHRUBLAND PLOTS

T
500

0.40 1

0.30

Reflectance
o
~
o
L

0.10

= Average High Severity
= Average Moderate Severity
= Average Low Severity

m— Total Average

T T T T
1000 1500 2000 2500

Wavelength (nm)

500

Reflectance

Reflectance

Reflectance

MULTISPECTRAL SIGNATURE OF CONIFERQUS FOREST PLOTS

0.40 4

0.30 1

0.20 4

0.10 4

= Average High Severity
= Average Moderate Severity
= Average Low Severity
m—— Total Average

0.00

T T T
1500 2000 2500

Wavelength (nm)

T T
500 1000

MULTISPECTRAL SIGNATURE OF BROADLEAF FOREST PLOTS

0.40 1

0.30 4

0.20 1

0.10 4

= Average High Severity
= Average Moderate Severity
= Average Low Severity

m—— Total Average

0.00

T T T
1500 2000 2500

Wavelength (nm)

MULTISPECTRAL SIGNATURE OF SHRUBLAND PLOTS

T T
500 1000

0.40 1

0.30 4

0.20 4

0.10 1

= Average High Severity
= Average Moderate Severity
= Average Low Severity
m— Total Average

0.00

1500 2000 2500

Wavelength (nm)

500 1000

Figure 2. Spectral characteristics of study plots of burned vegetation by ecosystem types derived from PRISMA
and Sentinel-2 imagery in the Sierra La Culebra wildfire.
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4.2. BEST-PERFORMING SPECTRAL INDICES

A comprehensive set of vegetation indices (VIs) was calculated, comprising 100 purely
hyperspectral indices from PRISMA imagery and 40 multispectral indices derived from
PRISMA and Sentinel-2 imagery. To determine the optimal index for each sensor, CBI,
and ecosystem types, the coefficient of determination (R?) was employed as the primary
evaluation metric. Additionally, the Pearson correlation coefficient (r) was utilized to
assess the strength and direction of linear relationships, while the root mean squared
error (RMSE) was used to evaluate prediction error and data variability (Figures 3 & 4).
All hyperspectral and multispectral indices computed showed diverse fitting (see
Annexes A4.1 & A4.2). The best-performing hyperspectral and multispectral indices are
exhibited in Table 1 showed varying correlations depending on the CBI type and
ecosystem type analyzed. This highlights the importance of selecting indices specific to
each ecological context and analysis objective.

Table 1. Best-performing spectral indices correlated with CBI class and ecosystem type.
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Regarding the performance of the CBI types, the best correlations were observed with
the vegetation CBI. In contrast, the soil CBI showed lower correlations and the site CBI
showed intermediate performance, which is consistent with being the average of the
other two classes. Otherwise, shrubland ecosystem obtained, on average, the highest
correlations with the CBI, followed by the broadleaf forest and the coniferous forest.

The hyperspectral indices that were best correlated with CBI values were the cellulose
absorption index (CAl), the red edge difference vegetation index (DVIRED), and the
enhanced vegetation index (EVI). Regarding multispectral indices, the vegetation indices
that showed the best correlation were the normalized difference red edge (NDRE), the
red edge chlorophyll index (CIREDGE), the enhanced normalized difference vegetation
index (ENDVI), and the green normalized difference vegetation index (GNDVI).

The hyperspectral index that appeared most frequently as the best performer was CAl,
which was most prominent in broadleaf forest and shrubland ecosystems with all CBI
classes. Throughout the analysis with hyperspectral data, the VI with the best correlation
was the CAI with the site CBI and shrubland ecosystem, obtaining a value of -0.899 (R?
= 0.808). Regarding the multispectral data, the ENDVI and GDNVI indices were the ones
with the highest number of occurrences and the best performer, standing out in the
broadleaf forest and shrubland in the vegetation, soil, and site CBI. However, the NDRE
index applied to coniferous forests with the vegetation CBI was the one that presented
the best correlation among the multispectral indices, with a value of -0.882 (R? = 0.778).
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Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

4.3. SPECTRAL INDICES CORRELATION

The selected hyperspectral indices exhibited negative Pearson correlation in all cases,
as depicted in Figure 3. Pearson correlation between hyperspectral VI values and CBI
across coniferous forest, broadleaf forest, and shrubland ecosystems is strongly
negative. For coniferous forest, the DVIRED index (729 nm/802 nm) with vegetation CBI
yielded the highest correlation (R? = 0.739, r = -0.866, RMSE = 0.386), while the EVI
index (485 nm/614 nm/877 nm) with soil CBI showed a weaker relationship (R? = 443, r
= -0.666, RMSE = 0.454). In broadleaf forest, the CAl index (2036 nm/2199 nm/2103
nm) with site CBI performed best (R>=0.766, r =-0.875, RMSE = 0.348). For shrublands,
the CAIl index (1993 nm/2199 nm/2086 nm) with site CBI exhibited the strongest
relationship (R? = 0.808, r = -0.899, RMSE = 0.359), followed closely by CAI at 1993
nm/2199 nm/2086 nm (R? = 0.798, r =-0.894, RMSE = 0.409) with vegetation CBI. These
findings highlight the efficacy of hyperspectral indices in assessing vegetation and site
CBI across diverse ecosystem types, with CAIl consistently outperforming other indices
in broadleaf and shrubland settings.
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Figure 3. Relationship between hyperspectral vegetation index values and vegetation, soil, and site CBI
across ecosystem types.
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The results presented in Figure 4 reveal the relationship between multispectral VI values
and CBI across coniferous forest, broadleaf forest, and shrubland ecosystems. In
coniferous forests, the NDRE B5/B8 index with vegetation CBI showed the strongest
correlation (R?2 = 0.778, r = -0.882, RMSE = 0.338), while CIREDGE B5/B8 with soil CBI
had the weakest fit (R? = 0.309, r = -0.556, RMSE = 0.506). For broadleaf forests, ENDVI
B5/B3/B2 with site CBI exhibited the highest correlation (R? = 0.532, r = -0.729, RMSE
= 0.492), with ENDVI B5/B3/B2 with vegetation CBI showing a moderate relationship (R?
=0.509, r = -0.714, RMSE = 0.569) and ENDVI B5/B3/B2 with soil CBI a slightly weaker
one (R? =0.442, r = -0.665, RMSE = 0.525). In shrubland, GNDVI B3/B5/B8A with
vegetation CBI performed best (R? =0.738, r = -0.859, RMSE = 0.466), followed closely
by GNDVI B3/B5/B8A with site CBI (R? =0.705, r = -0.840, RMSE = 0.445), while GNDVI
B3/B5/B8A showed a slightly lower correlation (R? =0.624, r = -0.790, RMSE = 0.459).
These results indicate that multispectral indices, particularly NDRE B5/B8 and GNDVI
B3/B5/B8A, are effective for assessing vegetation and soil CBI, with varying performance

across ecosystem types.
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Figure 4. Relationship between multispectral vegetation index values and vegetation, soil, and site CBI across

ecosystem types.

José Alberto Cipra Rodriguez

Méaster en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data

Science (DATAFOREST)

-17 -



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

4.4. SPATIAL DISTRIBUTION OF FIRE SEVERITY

Table 2 shows the vegetation fire severity area by ecosystem type using the
hyperspectral (PRISMA) or multispectral (Sentinel-2) indices. For PRISMA, the DVIRED
index highlighted a significant high-severity area (6427 ha, 25.6%) in coniferous forests,
with moderate (2065 ha, 8.2%) and low (562 ha, 2.2%) severity areas also notable. In
broadleaf forests, the CAl index identified high severity at 1693 ha (6.7%), with moderate
and low severity areas closely at 1844 ha each (7.3%). Shrubland showed a high-
severity area of 4477 ha (17.8%) using CAI, with moderate (3235 ha, 12.9%) and low
(2952 ha, 11.8%) severity regions. Sentinel-2 data, using NDRE, ENDVI, and GNDVI
indices, corroborated these findings, with coniferous forests exhibiting a high-severity
area of 6743 ha (26.9%), broadleaf forests at 1626 ha (6.5%), and shrublands at 3966
ha (15.8%). The spatial distribution maps (Figures 5 & 6) reveal a predominance of high-
severity area (red) across all ecosystems, particularly in central regions, with moderate
(brown) and low (green) severity patches interspersed, indicating the utility of both data
types in mapping fire severity, with hyperspectral data enhancing precision in ecosystem-
specific analysis.

Table 2. Vegetation fire severity areas by ecosystem type using hyperspectral (PRISMA) and multispectral
(Sentinel-2) indices
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Figure 5. Map of vegetation fire severity in the Sierra de la Culebra wildfire area using hyperspectral indices
across ecosystem types.
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Figure 6. Map of vegetation fire severity in the Sierra de la Culebra wildfire area using multispectral indices
across ecosystem types
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Soil fire severity analysis using hyperspectral (PRISMA) and multispectral (Sentinel-2)
indices is shown in Table 3. For coniferous forests, PRISMA’s EVI index indicated
moderate severity as the dominant category (7326 ha, 29.3%), with low (708 ha, 2.8%)
and high (1021 ha, 4.1%) severity areas being less extensive, while Sentinel-2’s
CIREDGE index showed a significant moderate severity area (8577 ha, 34.2%) and
minimal high severity (143 ha, 0.6%). In broadleaf forests, PRISMA’s CAl index identified
moderate severity as prevalent (2667 ha, 10.7%), with low (2129 ha, 8.5%) and high
(520 ha, 2.1%) severity areas, whereas Sentinel-2’s ENDVI index showed a higher
moderate severity area (3663 ha, 14.6%) and low severity (1634 ha, 6.5%). For
shrubland, PRISMA’s CAl index revealed a substantial low severity area (3669 ha,
14.7%), with moderate (4648 ha, 18.6%) and high (2347 ha, 9.4%) severity regions,
while Sentinel-2’'s GNDVI index indicated a dominant moderate severity area (5621 ha,
22.4%) and a notable low severity area (3647 ha, 14.6%). The spatial maps (Figures 7
& 8) depict a widespread distribution of moderate severity (brown) across all ecosystems,
with high severity (red) concentrated in central regions and low severity (green) patches
scattered throughout, suggesting that both spectral indices effectively capture soil fire
severity variations, with PRISMA providing finer detail and Sentinel-2 offering a robust
broad-scale perspective.

Table 3. Soil fire severity areas by ecosystem type using hyperspectral (PRISMA) and multispectral
(Sentinel-2) indices
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Figure 7. Map of soil fire severity in the Sierra de la Culebra wildfire area using hyperspectral indices across
ecosystem types.
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Figure 8. Map of soil fire severity in the Sierra de la Culebra wildfire area using multispectral indices across ecosystem
types.

José Alberto Cipra Rodriguez
Master en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data
Science (DATAFOREST)

-21-



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

Site fire severity analysis across coniferous forest, broadleaf forest, and shrubland
ecosystems in the Sierra de la Culebra wildfire area, as assessed using hyperspectral
(PRISMA) and multispectral (Sentinel-2) indices is shown in Table 4. For coniferous
forests, PRISMA's EVI index identified moderate severity as the most extensive category
(3607 ha, 14.4%), with high severity (4920 ha, 19.6%) and low severity (528 ha, 2.1%)
areas also significant, while Sentinel-2's CIREDE index showed a dominant high severity
area (5649 ha, 22.5%) and moderate severity (3047 ha, 12.2%). In broadleaf forests,
PRISMA's CAl index highlighted moderate severity (2506 ha, 10.0%) as prevalent, with
low (1883 ha, 7.5%) and high (991 ha, 3.9%) severity areas, whereas Sentinel-2's ENDVI
index indicated a substantial moderate severity area (3319 ha, 13.2%) and low severity
(1394 ha, 5.6%). For shrublands, PRISMA's CAI index revealed a notable low severity
area (3251 ha, 13.0%), with moderate (3922 ha, 15.6%) and high (3392 ha, 13.9%)
severity regions, while Sentinel-2's GNDVI index showed a significant moderate severity
area (4608 ha, 18.4%) and low severity (3300 ha, 13.2%). The spatial maps (Figures 9
& 10) describe a widespread presence of high severity (red) across all ecosystems,
particularly in central regions, with moderate (brown) and low (green) severity patches
distributed throughout, indicating that both hyperspectral and multispectral indices
effectively map site fire severity.

Table 4. Site fire severity areas by ecosystem type using hyperspectral (PRISMA) and multispectral
(Sentinel-2) indices
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Figure 9. Map of site fire severity in the Sierra de la Culebra wildfire area using hyperspectral indices across
ecosystem types.
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Figure 10. Map of site fire severity in the Sierra de la Culebra wildfire area using multispectral indices across
ecosystem types.
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5. DISCUSSION

The hyperspectral data obtained from the PRISMA satellite provided a more thorough
and continuous characterization of the spectral properties associated with fire severity
levels across various ecosystem types compared to multispectral data. This finding
aligns with a previous study conducted in a hilly and mountainous landscape dominated
by Mediterranean oak and pine species (Vangi et al., 2021). The spectral signatures of
vegetation display distinct variations across fire severity levels, particularly in the red,
near-infrared (NIR), and short-wave infrared (SWIR) regions of the electromagnetic
spectrum. Areas affected by low-severity fires exhibit high reflectance in the NIR band,
attributed to intact internal leaf structures, and reduced reflectance in the red band due
to chlorophyll absorption. Conversely, high-severity fires result in significantly decreased
NIR reflectance, caused by the degradation of canopy structure and loss of pigment
content, alongside elevated SWIR reflectance due to reduced water content and the
presence of char and ash (Key & Benson, 2006).

Hyperspectral indices showed a stronger correlation with CBI values compared to those
derived from multispectral data. For example, the hyperspectral indices in relation to the
site CBI presented a mean correlation of -0.852 (R? = 0.728), while the corresponding
multispectral index reached a correlation of -0.788 (R? = 0. 624). These results confirm
the greater capacity of hyperspectral images to capture greater details in fire severity, in
agreement with previous studies that also highlight the superiority of PRISMA images
over Sentinel-2 images (Vangi et al., 2021; Quintano et al., 2023). The higher sensitivity
of the narrow bands of hyperspectral images allows a more precise detection of physical
and chemical changes in vegetation, making them suitable for assessing fire severity
(Adam et al., 2010). Furthermore, it was determined that the coarser spatial resolution
of PRISMA does not inherently underperform compared to the finer spatial resolution of
Sentinel-2 (M. Liu et al., 2020; Vangi et al., 2021).

The vegetation CBI showed the best correlations with spectral indices across all
ecosystem types (coniferous forest, broadleaf forest, and shrubland), using both
PRISMA hyperspectral and Sentinel-2 multispectral data. This may be because
vegetation indices (VIs) are specifically designed to detect vegetation cover-related
characteristics, such as chlorophyll content, vegetation density, and plant vigor (Meng &
Zhao, 2017). Besides, outperforming correlations of vegetation CBI over soil is likely due
to the planimetry of the images, which better captures the upper vegetation strata rather
than the soil (Pefia & Martinez, 2021).

On the other hand, the strongest negative correlations between spectral indices and soil
and site CBIs were observed primarily in broadleaf forest and shrubland ecosystems, but
not in coniferous forests. One possible explanation is the distinct spectral responses
emitted depending on the vegetation type assessed (Aldana etal., 2020; Flores
Rodriguez et al., 2021; Pefia & Martinez, 2021). Furthermore, factors such as forest
density and stem structure can influence sensor detection of soil conditions, as these
characteristics affect the amount of remaining biomass and soil exposure after a fire
(Robichaud et al., 2007; Garcia-Llamas et al., 2019).

The calculated hyperspectral indices showed strong negative correlations, greater than
-0.850 (R? = 0.722), with the vegetation CBI and all ecosystems. Broadleaf forest and
shrubland ecosystems stood out for presenting the best correlations between
hyperspectral indices and all CBI types. This behavior can be attributed to the different
dynamics of ecosystems and the adaptive characteristics of plant species in response to
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fire, such as tolerance or resistance to burning, which result chemical compositions that
are detected more accurately by the narrow bands of hyperspectral sensors through
specific band combinations (Rodriguez-Trejo & Fulé, 2003; Adam et al., 2010).

Soil composition varies across ecosystems due to differences in the biomass input
provided by plant species. This input includes differences in mass, volume, and chemical
compounds, such as leaves, needles, and other organic debris (Calvo et al., 2003).
These differences explain why certain spectral indices performed better depending on
the ecosystem type.

The hyperspectral and multispectral image bands that more frequently came up in the
best correlated indices with the CBI were the red edge, NIR, and SWIR bands which
have proved their usefulness in forest fire analysis (Chuvieco et al.,, 2006; Carvajal-
Ramirez et al., 2019; Ferndndez-Manso & Quintano, 2020). In contrast to commonly
utilized VIs, such as the Normalized Difference Vegetation Index (NDVI) and the
Normalized Burn Ratio (NBR), these indices showed limited effectiveness in correlating
with the Composite Burn Index (CBI) due to their reliance on the red spectral band, which
exhibited weak correlations with field-based burn severity measurements. This reduced
correlation is likely attributable to their heightened sensitivity to denser canopy structures
(Ferndndez-Manso et al., 2016). The selection of the most appropriate index for fire
severity analysis is context-dependent, and the optimal index should be chosen based
on the specific conditions of each case (Flores Rodriguez et al., 2021).

Hyperspectral indices such as DVIRED, EVI, and CAI are particularly valuable for
assessing vegetation health due to their sensitivity to variations in leaf reflectance and
biomass (Qiao et al., 2022). DVIRED can be used to assess vegetation-covered areas,
particularly under heterogeneous conditions, though its value for shadowed soil is
typically low and less responsive to vegetation cover on such soil (Y. Liu et al., 2021).
EVI is designed for high-biomass forests to account for the combined effects of canopy
background and atmospheric influences (H. Q. Liu & Huete, 1995). CAl measures the
relative depth of reflectance spectra at 2100 nm to distinguish plant litter from soils based
on spectral reflectance differences driven by physical and chemical properties, with
coniferous litter exhibiting a higher response value than deciduous litter, both surpassing
soil, due to the cellulose-lignin absorption feature in the SWIR wavelengths (Nagler et al.,
2000).

The most effective Sentinel-2 spectral indices for assessing fire severity are those
derived from band B5, located in the red-edge region near red wavelengths and primarily
associated with variations in chlorophyll content, and bands B8 or B8A, situated in the
narrow NIR region and predominantly linked to changes in leaf structure. These findings
are consistent with previous studies (Fernandez-Manso et al., 2016). In this study,
multispectral indices such as NDRE, CIREDGE, ENDVI, and GNDVI were effective for
detecting variations in chlorophyll, biomass, and fire severity, providing insights into
vegetation health and density (Imran et al., 2020). NDRE, derived from the NDVI formula
but utilizing the red edge band, serves as a reliable indicator of chlorophyll or nitrogen
status (Fitzgerald et al., 2006). CIREDGE enables estimation of chlorophyll content in
canopies, facilitating the monitoring of physiological status, mainly in crops such as
maize and soybean (Gitelson et al., 2005). ENDVI, which leverages green and blue
wavelengths to enhance chlorophyll absorption values, particularly chlorophyll-b, is
applied in agricultural monitoring and assessing peatland disturbance (Strong et al.,
2017). GNDVI was originally developed to evaluate plant chlorophyll status in wheat,
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closely associated with nitrogen status and other stress factors (Hunt et al., 2010). Unlike
multispectral indices, the identification of specific hyperspectral VIs enhances the remote
assessment of vegetation and soil fire severity, offering greater precision (Hudak et al.,
2007; Carvajal-Ramirez et al., 2019). This detailed understanding of vegetation and soll
fire severity supports the planning of ecological restoration strategies and post-fire
monitoring, concentrating efforts on priority areas (Garcia-Llamas et al., 2019).

The findings of this study highlight several key directions for future research to refine fire
severity assessment methodologies. Developing adaptive algorithms that incorporate
vegetation type, meteorological conditions during image acquisition, and topographic
slope could enhance the accuracy of fire severity detection (Chuvieco et al., 2019).
However, the timing of image acquisition requires careful consideration; extended
intervals, such as 1l-year post-fire, could compromise precision due to seasonal
precipitation and high r

ate regrowth of shrubs and grasses, which can mask fire severity signals (Key & Benson,
2006; Fornacca et al., 2018). Furthermore, defining forest fire boundaries as the study
area is critical to reduce variability in spectral index values, thereby improving result
reliability (Flores Rodriguez et al., 2021). SWIR-based VIs have been shown in other
research studies to exhibit greater accuracy when applied to wildfire areas larger than
25 ha, indicating that larger fire extents may yield better detection outcomes (Bastarrika
et al., 2011). To ensure robust validation, maximizing the number of field reference sites
(plots) is essential for achieving a representative distribution across the study area
(Flores Rodriguez et al., 2021). Additionally, adopting a bitemporal image analysis
approach—comparing pre- and post-fire conditions—could better isolate vegetation
changes caused by fire, distinguishing them from changes due to pre-existing stressors
such as plagues, drought, hurricanes, or prior fires (Flores Rodriguez et al., 2021).
Additionally, other hyperspectral imagery source is necessary to study. Fire severity
analyses should be designed to support wildfire management agencies responsible for
forest monitoring, enhancing their ability to make timely and informed decisions.
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6. CONCLUSION

This study demonstrates that hyperspectral indices derived from PRISMA imagery
provided superior estimates of fire severity in the Sierra de La Culebra following the 2022
wildfire compared to multispectral indices from Sentinel-2 imagery. Specifically, stronger
correlations were observed with the Composite Burn Index (CBI) at the vegetation level,
likely due to the enhanced detectability of vegetation strata in satellite imagery planimetry
compared to soil and site levels. Among the vegetation types assessed, broadleaf forest
and shrubland ecosystems exhibited higher correlations with CBI than coniferous
forests, suggesting that plant species' adaptations to fire significantly influence spectral
responses captured by satellite imagery. The Cellulose Absorption Index (CAIl) emerged
as the most effective hyperspectral index, achieving the highest correlation in the study
(R? = 0.808, r = -0.899, RMSE = 0.359). Meanwhile, Green Normalized Difference
Vegetation Index (GNDVI) became the best-performing multispectral index (R? = 0.738,
r =-0.859, RMSE = 0.466). These findings highlight the efficacy of hyperspectral imagery
for precise fire severity assessment and its potential for mapping fire impacts across
diverse ecosystems.
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ANNEX 1 - Field data

Al.1. Composite Burn Index (CBI) mean values for study plots in the Sierra de la Culebra
Wildfire.

CBIl mean values

Ecosystem type Number of plots - - -
Vegetation Soil Site
Coniferous forest 34 2.25 1.82 2.03
Broadleaf forest 20 1.82 1.52 1.67
Shrubland 16 2.07 1.68 1.88
Total 70 2.09 1.70 1.89

José Alberto Cipra Rodriguez
Méaster en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data
Science (DATAFOREST)

-38 -



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

ANNEX 2 — Wavelengths of PRISMA hyperspectral imagery

A2.1. Spectral band alignment of PRISMA based on Sentinel-2 wavelengths

Hyperspectral band name Multispectral band name

Wavelength (nm)

1

© 0N Ol h WN

B W WWWWWWWWWNDNDNDNDNMNMNMNDNNNMNNMNMN-EERPRPEPERPERPEPRRERPREPR
QO WO ~NOOUTA,WNPOOONOUEA,WNPEPOOONODOGM~AWDNDLEDO

Blue
Blue
Blue
Blue
Blue
Blue
Blue
Blue
Blue
Green
Green
Green
Green
Green
Green
Green
Green
Green
Green
Green
Green
Green
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red Edge
Red Edge
Red Edge
Red Edge
Red Edge
NIR
NIR

434.31
441.66
449.03
456.38
463.73
470.95
478.18
485.41
492.70
500.14
507.66
515.18
522.92
530.67
538.49
546.48
554.56
562.74
571.00
579.35
587.82
596.48
605.39
614.17
623.20
632.13
641.33
650.79
660.26
669.82
679.47
689.42
699.10
709.00
719.17
729.24
739.42
749.73
760.10
770.53
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41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1

780.91
791.36
801.94
812.54
823.15
833.75
844.43
855.18
865.95
876.64
887.27
897.99
908.64
919.18
929.39
939.86
951.36
962.26
972.63
951.01
959.52
969.39
978.74
988.41
998.37
1008.17
1017.98
1028.81
1037.76
1047.43
1057.38
1067.61
1078.04
1088.59
1099.11
1109.74
1120.49
1131.14
1141.87
1152.47
1163.48
1174.53
1185.40
1196.17
1207.11
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SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
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SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1
SWIR 1

1217.70
1229.00
1240.06
1250.80
1262.33
1273.31
1284.28
1295.20
1306.05
1317.02
1328.09
1338.95
1349.60
1459.07
1469.70
1480.62
1491.20
1501.78
1512.41
1523.01
1533.56
1544.03
1554.58
1565.12
1575.39
1585.63
1595.98
1606.24
1616.58
1626.78
1636.85
1646.97
1656.77
1666.97
1677.12
1687.17
1697.01
1706.81
1716.60
1726.44
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1774.91
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175

SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2

1975.78
1984.55
1993.29
2036.00
2044.42
2052.76
2061.14
2069.54
2077.75
2086.10
2094.41
2102.55
2110.82
2118.96
2127.09
2135.24
2143.23
2151.13
2159.29
2167.25
2175.07
2183.18
2190.84
2198.89
2206.60
2214.34
2222.19
2229.75
2237.65
2245.21
2252.85
2260.63
2268.04
2275.77
2283.28
2290.57
2298.33
2305.50
2312.91
2320.64
2327.61
2335.24
2342.59
2349.58
2357.02
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176
177
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179
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181
182
183
184
185
186
187
188
189
190
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SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2
SWIR 2

2364.37
2371.34
2378.51
2385.81
2392.84
2399.80
2407.34
2414.16
2420.99
2428.40
2435.33
2442.19
2448.92
2456.33
2462.81
2469.42

A2.2. Spectral characteristics of Sentinel-2 bands

Band

Multispectral

Band range (nm)

Spatial resolution

band name (m)
B2 Blue 458-523 10
B3 Green 543-578 10
B4 Red 650-680 10
B5 Red edge 698-713 20
B6 Red edge 734-748 20
B7 Red edge 765-785 20
B8 NIR 785-900 10
B8A NIR 855-875 20
B11 SWIR 1 1565-1655 20
B12 SWIR 2 2100-2280 20

Source: (Pour et al., 2023)
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ANNEX 3 — Vegetation indices formulas

A3.1. Summary of Vegetation Indices with Formulas, Applications, and References (H:
Hyperspectral; M: Multispectral)

R, G, and B represent the proportions of red, green, and blue light reflected by
vegetation, each normalized by the sum of all three bands (R =red/ (red + green + blue),

and similarly for G and B).

Vegetation index Formula Ap|ior:|ed Reference
Normalized
Difference . (nir —red) (Rouse
Vegetation Index: navi = i T red) H&M  etal, 1074)
NDVI
. i — swir2 (Garcia &
Norma}h?ed Burn nbr = M H&M Caselles,
Ratio: NBR (nir 4+ swir2) 1991)
Normalized
Difference . (nir — swirl) (Shietal.,
Moisture Index: ndmi = (nir + swirl) H&M 2016)
NDMI
Difference (Jordan
Vegetation Index: dvi = nir —red H&M ’
1969)
DVI
Green Difference (Jordan
Vegetation Index: dvigre = nir — green H&M 1969) '
GDVI
Red Edge
Vegetation Index: dvired = nir ~ redge Hem Ygey
DVIRED
Chlorophyll Index nir (A. A
With Red Edge: ciredge = redge H&M Gitelson
CIREDGE et al., 2005)
Chlorophyll Index nir (A. A
With Green: cigreen = -1 H&M Gitelson
CIGREEN green et al., 2003)
Infrared _
Percentage o nir (Jabbar &
Vegetation Index: PULE (nir + red) H&M " Chen, 2006)
IPVI
Near-Infrared ;
nir —red

Reflectance of nirv = nir * % H&M (Zeggzit)al”
Vegetation: NIRV (nir +red)

Modified Non- L (nir? —red) (Z. Yang
Linear Index: MNLI mnli = 1.5+ (nir? + red + 0.5) H&M et al., 2008)
Non-Linear Index: (nir? — red) (Goel & Qin

| = ——————= H&M !
NLI = i ¥ red) 1994)

Wide Dynamlp (0.2 % nir — red) (A. A.
Range Vegetation wdrvi = 02 i P H&M Gitelson,

Index: WDRVI (0.2 + nir + red) 2004)
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Normalized
Difference Red
Edge Index: NDRE
Burn Area Index:
BAI
Structural
Vegetation Index:
SVI
Modified Red-
Edge Simple
Ratio: MRESR
Three-Band
Difference
Vegetation Index:
TBDVI
Enhanced
Vegetation Index:
EVI
Excess Green
Index: EXG2
Red Light
Normalized Value:
NRI
Green Light
Normalized Value:
NGI
Green Normalized
Difference
Vegetation Index:
GNDVI
Enhances
Normalized
Difference
Vegetation Index:
ENDVI
Modified Red
Green- Blue
Vegetation Index:
MRGBVI
Nitrogen
Reflectance Index:
NREI
Red Edge Position
Index: REP
Excess Green
Index: EXG
Excess Blue
Index: EXB
Excess Red Index:
EXR

Red / Green Ratio:
RGR

(nir —redge)
(nir + redge)
1

ndre =

bai

- ((redge — 0.1)? + (nir — 0.06)?)
_ (redge —red)

SvE= (redge + red)

nir

mresr =
redge

(red + swirl)

thdvi = nir —
vi = nir >

evi
(nir — red)

5
i (nir + 6 *red — 7.5 * blue + 1)

exg2 = 2 * green —red — blue

o red
= (red + green + blue)
o green
ngt= (red + green + blue)
dui = (nir — green)
gnavt = (nir + redge)
. (redge + green — 2 * blue)
endvi =
(redge + green + 2 * blue)
mrgbvi

_ (redge + 2 x green — 2 * blue)
~ (redge + 2 * green + 2 * blue)

redge
(redge + nir + green)
(red + nir)
(2 —redge)
exg=2+xG—R—-B

nrei =

rep = 700 + 40 =

exb=14*xR—-G
exr=14+«B—G

R
rgr = —

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

(F. Lietal.,
2014)

(Fornacca
et al., 2018)

(R. Lietal.,
2024)

(Hallik et al.,
2019)

(Zhao et al.,
2024)

(Liu &

Huete,

1995)
(Woebbecke
et al., 1995)

(Silleos
et al., 2006)

(Silleos
et al., 2006)

(A. A
Gitelson &
Merzlyak,

1998)

(Traba
et al., 2022)

(Guo et al.,
2022)

(Diker &
Bausch,
2003)
(Clevers
et al., 2001)
(Qiao et al.,
2022)
(Meyer &
Neto, 2008)
(Guijarro
et al., 2011)
(Gamon &
Surfus,
1999)
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Blue / Green
Ratio: BGR
Normalized Green-
Red Difference
Index: NGRDI
Normalized Green-
Blue Difference
Index: NGBDI
Modified Green-
Red Vegetation
Index: MGRVI
Red Green- Blue
Vegetation Index:
RGBVI
Green Leaf Index:
GLI
Color Index of
Vegetation
Extraction: CIVE
Excess Green
Minus Excess Red
Index: EXGR
Improved Red
Green- Blue
Vegetation Index:
IRGBVI
Greenness Index:
G
Simple R. Pigment
Ind.: SRPI
Lichtenthaler Index
2: Lic2
Carter Index 1:
Ctrl
Carter Index 2:
Ctr2
Vogelmann Index
1: Vogl
Gitelson and
Merzlyak Index 1:
GM1
Gitelson and
Merzlyak Index 2:
GM2
Zarco-Tejada &
Miller: ZM
Fluorescence
Ratio Index 1:
FRI1
Fluorescence
Ratio Index 2:
FRI2

b _ B

(G-R)

di= 2
=G TR

(G -B)
G + B)

ngbdi =

(6>~ R?)

mgrvi= G7y RD)

(G* =R * B)
(GZ+R *B)
(2%xG —R—B)
(2*G+R+B)

cive = 0441 R —0.881+G + 0.385* R
+ 1878745

rgbvi =

gli =

exgr = exg — exr

(5%xG%2—2%R?—5xB?)
(5%G%2+2*R2+5xB2?)

irgbvi =

_ Pss4

Pe77

. Pa3o
srpi = ——

Peso

licg = P20

Pe90

ctrl = @

Paz0

ctr2 = @

P760

vogl = P40

P720

gml = P750

Psso0

P700
_ P750

P710

fril = P740

Psoo

fri2 = Pe90

Peso0

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

H&M

(Sellaro
et al., 2010)

(Tucker,
1979)

(Hunt et al.,
2005)

(Bendig
et al., 2015)

(Bendig
et al., 2015)

(Louhaichi
et al., 2001)

(Kataoka
et al., 2003)

(Meyer &
Neto, 2008)

(C. Chen
et al., 2024)

(Xue & Su,
2017)
(Xue & Su,
2017)
(Xue & Su,
2017)
(Xue & Su,
2017)
(Xue & Su,
2017)
(Vogelmann
et al., 1993)

(Xue & Su,
2017)
(Xue & Su,
2017)

(Xue & Su,
2017)

(Dobrowski
et al., 2005)

(Dobrowski
et al., 2005)
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Simple Ratio o = Psgoo
Index: SR Ps70
. p
Water Index: WI1 wil = 299
53970
Water Index: WI2 wi2 = p16°°
820
Moisture Stress . P1599
Index: MSI e
Ratio Vegetation i = Pgg7
Index: RVI De7s
Green Ratio Dacs
Vegetation Index: grvi = —
GRVI Pss0
Green Red Ratio Psso
Vegetation Index: gr=—
GR Pess0
Green Blue Ratio Psso
Vegetation Index: gb=——
GB Pass
Vegetation Index 8 i = Poosg
VI8 B P713
Water I?/\E/lg(lj Index: whi = 2970
900
Normalized _
Phaeophytinization npqi = (Pa15 — Pazs)
Index: NPQI (Pa15 + Pazs)
Photochemical _
Reflectance Index pril = (Ps28 — Ps67)
1: PRI1 (Ps28 + Ps67)
Normalized
Pigment npci = (Psso — Pa30)
ChlorOﬁrl;)(/I:Illndex: P = Ceso  Paso)
Lichtenthaler Index licl = (Pgoo — Peso)
1: Licl ~ (psoo + Peso)
Visible
Atmospherically vari (Pss50 — Pe70)
ReSiSsl:;:ndeX: B (Pss0 + Pe70)
Normalized _
Difference Water ndwi = (Psoo ~ P1600)
Index: NDWI (P00 * P1600)
Normalized _
Difference Water ndwi2 = (Pss7 = Pr241)
Index 2: NDWI2 (Pss7 + P1241)
Depth Water dwi = (P816 — P2218)
Index: DWI ~ (ps16 + P2218)
Hyperspectral Fire _
Detection Index: hfdi = (P2430 — P2060)
HFEDI (P2430 t P2060)

(Birth &
McVey,
1968)
(Xue & Su,
2017)
(Xue & Su,
2017)
(Hunt Jr &
Rock, 1989)
(X. L. Gao &
Wang,
2008)

(Xue & Su,
2017)

(Xue & Su,
2017)

(Xue & Su,
2017)

(Jiang et al.,
2022)
(Pefiuelas
et al., 1994)

(Pefiuelas
et al., 1995)

(Xue & Su,
2017)

(Xue & Su,
2017)

(Xue & Su,
2017)

(Xue & Su,
2017)

(Xue & Su,
2017)

(B. Gao,
1996)

(Pasqualotto
et al., 2018)
(Dennison &
Roberts,
2009)
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Vegetation Index 7
VI7
Normalized
Difference
Vegetation Index
red-edge 1:
NDVIirel
Normalized
Difference
Vegetation Index
red-edge 1:
NDVlreln
Normalized
Difference
Vegetation Index
red-edge 2:
NDVIre2
Normalized
Difference
Vegetation Index
red-edge 2:
NDVlre2n
Normalized
Difference
Vegetation Index
red-edge 3:
NDVIre3
Normalized
Difference
Vegetation Index
red-edge 3:
NDVIre3n
Normalized
Difference red-
edge 1: NDrel
Normalized
Difference red-
edge 2: NDre2
Leaf Water
Vegetation Index
1: LWVI1
Leaf Water
Vegetation Index
2: LWVI2
Normalized
Difference Infrared
Index: NDII
Structure Intensive
Pigment Index:
SIPI
Meris Terrestrial
Chlorophyll Index:
MTCI

_ (Po9s — P713)

vi7 =
(Poog + P713)
ndvirel = (P833 — P699)
(Pg33 + Pe99)
ndvireln = (Pg65 — P699)
(Pges + P699)
ndvire2 = (Pg33 — P729)
(Pg33 t P729)
ndvire2n = (Pg6s — P729)
(Pges + P729)
ndvire3 = (Pg33 — P780)
(Ps33 + P780)
ndvire3n = (Pges — P780)
(Pges + P780)
ndrel = (P729 — P699)
(P729 *+ P699)
ndre2 = (P780 — P699)
(P780 + Pe99)
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ANNEX 4 — Pearson and R? metrics

A4.1. Pearson correlation and Coefficient of determination for vegetation indices derived from hyperspectral imagery across ecosystem and CBI

type.
Coniferous forest Broadleaf forest Shrubland
V?ﬁgit?;isn vegetation CBI soil CBI site CBI vegetation CBI soil CBI site CBI vegetation CBI soil CBI site CBI
r R? r R? r R? r R? r R? r R? r R? r R? r R?

ARI1 0.288 0.083 0.192 0.037 0.266 0.071 0.357 0.127 0.407 0.166 0.401 0.161 0.270 0.073 0.405 0.164 0.336 0.113
ARI2 -0.660 0.435 -0.355 0.126 -0.566 0.320 -0.340 0.116 -0.452 0.204 -0.412 0.170 -0.490 0.240 -0.421 0.178 -0.465 0.217
ARVI -0.789 0.622 -0.593 0.352 -0.749 0.560 -0.403 0.163 -0.611 0.374 -0.526 0.277 -0.461 0.212 -0.473 0.224 -0.472 0.223
BAI 0.728 0.531 0.383 0.147 0.619 0.384 0.676 0.457 0.602 0.362 0.672 0.451 0.724 0.524 0.768 0.589 0.751 0.564
BGR 0.630 0.397 0.321 0.103 0.458 0.210 0.488 0.238 0.485 0.236 0.419 0.175 0.642 0.412 0.693 0.480 0.674 0.454
Blue 0.252 0.064 0.142 0.020 0.219 0.048 -0.322 0.104 -0.221 0.049 -0.291 0.084 -0.213 0.045 -0.346 0.120 -0.276 0.076
CAl -0.666 0.444 -0.413 0.170 -0.599 0.358 -0.867 0.752 -0.840 0.705 -0.875 0.766 -0.894 0.798 -0.878 0.770 -0.899 0.808
CIGREEN -0.744 0.554 -0.453 0.205 -0.659 0.434 -0.438 0.192 -0.543 0.295 -0.513 0.264 -0.646 0.417 -0.547 0.299 -0.605 0.366
CIREDGE -0.820 0.672 -0.547 0.299 -0.748 0.559 -0.764 0.584 -0.659 0.435 -0.718 0.516 -0.571 0.326 -0.531 0.282 -0.542 0.294
CIVE -0.525 0.276 0.428 0.183 -0.430 0.185 0.459 0.210 0.581 0.337 0.543 0.295 -0.428 0.183 -0.283 0.080 -0.363 0.132
Clre -0.812 0.660 -0.547 0.299 -0.739 0.545 -0.385 0.148 -0.552 0.304 -0.485 0.235 -0.537 0.288 -0.571 0.326 -0.560 0.313
CMRI -0.199 0.040 -0.149 0.022 -0.191 0.037 -0.243 0.059 -0.492 0.242 -0.372 0.139 -0.232 0.054 -0.079 0.006 -0.164 0.027
CO2-CIBR 0.711 0.506 0.407 0.165 0.622 0.387 0.242 0.058 0.363 0.131 0.314 0.099 0.385 0.148 0.281 0.079 0.343 0.117
CRI1 -0.396 0.157 -0.080 0.006 -0.259 0.067 -0.200 0.040 -0.268 0.072 -0.224 0.050 -0.331 0.110 -0.334 0.112 -0.337 0.114
CRI2 -0.152 0.023 0.088 0.008 -0.098 0.010 0.220 0.048 0.230 0.053 0.237 0.056 0.216 0.047 0.353 0.125 0.280 0.079
Ctrl -0.624 0.390 -0.301 0.091 -0.486 0.236 -0.362 0.131 -0.339 0.115 -0.370 0.137 -0.530 0.281 -0.461 0.213 -0.506 0.256
Ctr2 0.780 0.608 0.537 0.289 0.720 0.519 0.455 0.207 0.599 0.358 0.544 0.296 0.547 0.299 0580 0.337 0570 0.325
DVI -0.853 0.728 -0.511 0.261 -0.755 0.570 -0.615 0.378 -0.657 0.432 -0.666 0.443 -0.763 0.581 -0.787 0.620 -0.781 0.609
DVIGRE -0.839 0.704 -0.488 0.238 -0.738 0.544 -0.651 0.424 -0.659 0.434 -0.680 0.463 -0.775 0.601 -0.806 0.649 -0.800 0.640
DVIRED -0.860 0.739 -0.522 0.272 -0.765 0.585 -0.823 0.677 -0.751 0.564 -0.780 0.608 -0.711 0.506 -0.746 0.556 -0.727 0.528

José Alberto Cipra Rodriguez

Master en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data Science (DATAFOREST)

63



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

DWI
DWSI
ENDVI
EVI
EVI2
EXB
EXG
EXG2
EXGR
EXR
FRI1
FRI2
G
GARI
GB
GLI
GM1
GM2
GNDVI
GR
Green
GRVI
GSAVI
HFDI
IPVI
IRGBVI
LCAI
LCI

-0.742
-0.767
-0.638
-0.831
-0.786
-0.531
-0.687
-0.732
-0.731

0.638

0.771
-0.651

0.438
-0.799
-0.570
-0.687
-0.700
-0.791
-0.757

0.155
-0.438
-0.657
-0.694

0.206
-0.810
-0.688
-0.643
-0.808

0.551
0.588
0.407
0.691
0.618
0.282
0.471
0.535
0.535
0.407
0.595
0.424
0.192
0.638
0.324
0.471
0.490
0.626
0.573
0.024
0.192
0.432
0.482
0.043
0.657
0.474
0.413
0.652

-0.424
-0.442
-0.346
-0.666
-0.498

0.304
-0.510
-0.524
-0.460

0.334

0.538
-0.410

0.206
-0.611
-0.216
-0.505
-0.410
-0.547
-0.498
-0.138
-0.188
-0.369
-0.441

0.138
-0.529
-0.505
-0.438
-0.554

0.179
0.195
0.120
0.443
0.248
0.092
0.260
0.275
0.212
0.112
0.290
0.168
0.042
0.373
0.047
0.255
0.168
0.299
0.248
0.019
0.035
0.136
0.194
0.019
0.280
0.255
0.192
0.307

-0.643
-0.670
-0.517
-0.782
-0.710
-0.430
-0.640
-0.674
-0.643

0.495

0.723
-0.588

0.361
-0.756
-0.433
-0.638
-0.617
-0.733
-0.679
-0.101
-0.347
-0.567
-0.629

0.167
-0.735
-0.636
-0.582
-0.743

0.414
0.449
0.267
0.611
0.504
0.185
0.410
0.454
0.414
0.245
0.523
0.346
0.130
0.571
0.188
0.407
0.381
0.537
0.461
0.010
0.120
0.321
0.395
0.028
0.540
0.404
0.339
0.552

-0.584
-0.506
-0.404
-0.494
-0.401

0.326
-0.521

0.662
-0.565

0.438

0.558
-0.376
-0.263
-0.407
-0.329
-0.520
-0.355
-0.385
-0.571
-0.263
-0.490
-0.334
-0.430

0.631
-0.483
-0.502

0.820
-0.410

0.341
0.256
0.163
0.244
0.161
0.106
0.271
0.439
0.319
0.192
0.311
0.142
0.069
0.165
0.108
0.271
0.126
0.148
0.326
0.069
0.240
0.112
0.185
0.398
0.233
0.252
0.673
0.168

-0.647
-0.576
-0.432
-0.643
-0.567

0.517
-0.617

0.669
-0.640

0.463

0.638
-0.474
-0.473
-0.627
-0.362
-0.619
-0.481
-0.548
-0.592
-0.502
-0.311
-0.496
-0.546

0.676
-0.598

0.632
-0.758
-0.643

0.419
0.331
0.187
0.414
0.321
0.267
0.380
0.447
0.409
0.214
0.407
0.225
0.223
0.393
0.131
0.383
0.231
0.300
0.351
0.252
0.097
0.246
0.299
0.457
0.357
0.400
0.575
0.413

-0.643
-0.563
-0.407
-0.574
-0.504

0.438
-0.568

0.664
-0.594

0.400

0.614
-0.439
-0.380
-0.533
-0.336
-0.572
-0.432
-0.485
-0.597
-0.385
-0.429
-0.431
-0.506

0.671
-0.562
-0.550
-0.786
-0.547

José Alberto Cipra Rodriguez
Master en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data Science (DATAFOREST)

0.413
0.317
0.166
0.330
0.254
0.192
0.323
0.441
0.352
0.160
0.378
0.192
0.145
0.284
0.113
0.327
0.186
0.235
0.357
0.149
0.184
0.186
0.256
0.450
0.316
0.302
0.618
0.299

-0.652
-0.713
-0.550
-0.632
-0.574
-0.429
-0.595

0.634
-0.702

0.637

0.540
-0.563

0.280
-0.455
-0.621
-0.594
-0.562
-0.537
-0.653

0.121
-0.450
-0.437
-0.519

0.797
-0.657
-0.611
-0.871
-0.483

0.425
0.508
0.302
0.400
0.329
0.184
0.354
0.402
0.493
0.406
0.292
0.317
0.079
0.207
0.386
0.353
0.316
0.288
0.426
0.015
0.203
0.191
0.269
0.635
0.432
0.374
0.758
0.233

-0.736
-0.751
-0.484
-0.595
-0.537
-0.302
-0.599
-0.728
-0.729

0.646

0.534
-0.508

0.168
-0.437
-0.624
-0.599
-0.497
-0.571
-0.597
-0.151
-0.580
-0.328
-0.427

0.695
-0.598
-0.627
-0.833
-0.404

0.542
0.564
0.235
0.355
0.289
0.091
0.359
0.530
0.531
0.418
0.285
0.258
0.028
0.191
0.389
0.359
0.247
0.326
0.356
0.023
0.336
0.108
0.183
0.484
0.357
0.393
0.694
0.163

-0.700
-0.740
-0.525
-0.624
-0.560
-0.374
-0.583
-0.672
-0.724

0.637

0.545
-0.545

0.233
-0.448
-0.622
-0.583
-0.540
-0.560
-0.636
-0.073
-0.516
-0.387
-0.484

0.762
-0.626
-0.622
-0.866
-0.452

0.489
0.548
0.275
0.390
0.313
0.140
0.340
0.452
0.524
0.406
0.297
0.297
0.054
0.201
0.387
0.340
0.292
0.313
0.405
0.005
0.266
0.150
0.234
0.580
0.392
0.386
0.749
0.204

64



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

Licl

Lic2
LWVI1
LWVI2
MCARI1
MCARI2
MCARI3
MGRVI
MNLI
MRENDVI
MRESR
MRGBVI
MSAVI
MSI
MSR
MSR2
MSRre
MSRREG
MSRren
MTCI
MTVI1
MTVI2
MVI
NBR
NDIB
NDIG
NDII
NDLI

-0.802

0.535
-0.186
-0.469
-0.727
-0.835
-0.797

0.513

0.376
-0.773
-0.820
-0.647
-0.778

0.753
-0.780
-0.787
-0.801
-0.815
-0.816
-0.805
-0.835
-0.791
-0.773
-0.743
-0.399
-0.180
-0.770

0.731

0.644
0.286
0.034
0.220
0.528
0.698
0.634
0.263
0.141
0.598
0.672
0.419
0.605
0.567
0.608
0.619
0.642
0.664
0.666
0.648
0.698
0.626
0.598
0.552
0.159
0.033
0.592
0.534

-0.510

0.272
-0.125
-0.261
-0.459
-0.541
-0.566
-0.398
-0.319
-0.590
-0.547
-0.348
-0.499

0.465
-0.496
-0.498
-0.535
-0.543
-0.544
-0.548
-0.541
-0.555
-0.444
-0.443
-0.118
-0.140
-0.454

0.412

0.260
0.074
0.016
0.068
0.211
0.293
0.320
0.159
0.102
0.348
0.299
0.121
0.249
0.216
0.246
0.248
0.286
0.295
0.296
0.300
0.293
0.308
0.197
0.196
0.014
0.020
0.206
0.169

-0.724

0.441
-0.170
-0.407
-0.657
-0.756
-0.731

0.433

0.361
-0.719
-0.748
-0.520
-0.704

0.672
-0.704
-0.710
-0.736
-0.745
-0.746
-0.734
-0.756
-0.732
-0.676
-0.653
-0.288
-0.149
-0.676

0.631

0.524
0.195
0.029
0.165
0.432
0.571
0.535
0.188
0.131
0.517
0.559
0.271
0.495
0.451
0.496
0.505
0.542
0.554
0.556
0.539
0.571
0.536
0.457
0.427
0.083
0.022
0.457
0.398

-0.415
0.313
0.463

-0.487

-0.506

-0.421

-0.418

-0.463
0.505

-0.617

-0.764

-0.411

-0.423
0.612

-0.373

-0.392

-0.392

-0.430

-0.377

-0.466

-0.421

-0.415

-0.464

-0.725

-0.142
0.247

-0.544
0.715

0.172
0.098
0.215
0.238
0.256
0.177
0.174
0.215
0.255
0.381
0.584
0.169
0.179
0.375
0.139
0.153
0.153
0.185
0.142
0.217
0.177
0.172
0.215
0.526
0.020
0.061
0.296
0.511

-0.577

0.195
-0.423
-0.659
-0.611
-0.587
-0.629
-0.579
-0.451
-0.623
-0.659
-0.441
-0.594

0.635
-0.573
-0.559
-0.583
-0.659
-0.592
-0.647
-0.587
-0.628
-0.583
-0.736

0.178

0.492
-0.612

0.790

0.333
0.038
0.179
0.434
0.374
0.345
0.396
0.335
0.203
0.388
0.435
0.195
0.353
0.404
0.328
0.312
0.340
0.434
0.350
0.419
0.345
0.394
0.340
0.541
0.032
0.242
0.375
0.625

-0.517
0.248
0.405

-0.590

-0.585

-0.521

-0.532

-0.545

-0.485

-0.630

-0.718

-0.414

-0.527
0.650

-0.490

-0.495

-0.495

-0.553

-0.494

-0.546

-0.521

-0.534

-0.545

-0.731
0.108
0.373

-0.603
0.764

José Alberto Cipra Rodriguez
Master en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data Science (DATAFOREST)

0.267
0.062
0.164
0.348
0.343
0.271
0.283
0.297
0.235
0.397
0.516
0.172
0.277
0.423
0.240
0.245
0.245
0.306
0.244
0.299
0.271
0.285
0.298
0.534
0.012
0.139
0.364
0.584

-0.576
0.428
0.226

-0.278

-0.655

-0.613

-0.459
0.400
0.518
0.425

-0.571

-0.577

-0.552
0.459

-0.519

-0.572

-0.551

-0.470

-0.507

-0.483

-0.613

-0.496

-0.542

-0.814

-0.364

-0.202

-0.475
0.794

0.332
0.183
0.051
0.077
0.429
0.375
0.211
0.160
0.268
0.180
0.326
0.333
0.305
0.211
0.269
0.328
0.304
0.221
0.257
0.233
0.375
0.246
0.294
0.663
0.133
0.041
0.225
0.631

-0.540
0.358
0.468

-0.302

-0.708

-0.644

-0.495
0.243
0.509
0.512

-0.531

-0.519

-0.516
0.593

-0.448

-0.536

-0.536

-0.394

-0.452

-0.404

-0.644

-0.492

-0.621

-0.878

-0.288

-0.116

-0.610
0.835

0.291
0.128
0.219
0.091
0.501
0.415
0.245
0.059
0.259
0.262
0.282
0.269
0.266
0.352
0.201
0.287
0.287
0.155
0.205
0.163
0.415
0.242
0.385
0.771
0.083
0.013
0.372
0.696

-0.562
0.402
0.339

-0.291

-0.688

-0.636

-0.476
0.323
0.520
0.470

-0.542

-0.551

-0.541
0.526

-0.490

-0.559

-0.552

-0.441

-0.488

-0.452

-0.636

-0.487

-0.586

-0.847

-0.331

-0.149

-0.541
0.824

0.315
0.162
0.115
0.085
0.474
0.404
0.227
0.105
0.270
0.221
0.294
0.304
0.293
0.276
0.240
0.312
0.305
0.194
0.238
0.204
0.404
0.237
0.343
0.717
0.109
0.022
0.293
0.678

65



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

NDMI
NDNI
NDRE
NDrel
NDrelm
NDre2
NDre2m
NDVI
NDVIrel
NDVireln
NDVIre2
NDVIire2n
NDVIre3
NDVIire3n
NDWI
NDWI2
NGBDI
NGI
NGRDI
NIR
NIRV

NLI

NMDI
NPCI
NPQI
NREI

NRI
OSAVI

-0.780

0.402
-0.812
-0.783
-0.773
-0.806
-0.804
-0.810
-0.797
-0.812
-0.791
-0.812
-0.568
-0.568
-0.769
-0.474
-0.651
-0.687

0.512
-0.829
-0.854

0.376

0.206
-0.527

0.769

0.808
-0.534
-0.784

0.608
0.162
0.659
0.613
0.598
0.649
0.646
0.657
0.635
0.659
0.626
0.659
0.322
0.322
0.592
0.225
0.424
0.471
0.263
0.688
0.729
0.141
0.043
0.277
0.592
0.653
0.285
0.615

-0.499

0.395
-0.545
-0.509
-0.555
-0.541
-0.614
-0.529
-0.534
-0.545
-0.534
-0.545
-0.381
-0.381
-0.456
-0.282
-0.345
-0.510
-0.398
-0.453
-0.519
-0.319

0.119
-0.250

0.456

0.581
-0.261
-0.498

0.249
0.156
0.297
0.259
0.308
0.293
0.377
0.280
0.285
0.297
0.285
0.297
0.145
0.145
0.207
0.079
0.119
0.260
0.159
0.205
0.269
0.102
0.014
0.062
0.207
0.337
0.068
0.248

-0.696

0.407
-0.743
-0.711
-0.719
-0.734
-0.757
-0.735
-0.732
-0.743
-0.732
-0.743
-0.485
-0.485
-0.678
-0.413
-0.470
-0.640

0.431
-0.714
-0.759

0.361

0.181
-0.411

0.678

0.762
-0.425
-0.708

0.485
0.166
0.551
0.506
0.517
0.539
0.573
0.540
0.536
0.551
0.536
0.551
0.235
0.235
0.460
0.171
0.221
0.410
0.185
0.509
0.577
0.131
0.033
0.169
0.460
0.581
0.181
0.502

-0.689

0.289
-0.768
-0.445
-0.488
-0.426
-0.445
-0.483
-0.415
-0.399
-0.560
-0.446

0.261
-0.260
-0.541
-0.540
-0.494
-0.521
-0.463
-0.686
-0.572

0.505

0.800
-0.264

0.541
-0.517
-0.294
-0.415

0.474
0.083
0.589
0.198
0.238
0.181
0.198
0.233
0.172
0.160
0.314
0.199
0.068
0.068
0.293
0.291
0.244
0.271
0.215
0.471
0.327
0.255
0.641
0.070
0.293
0.267
0.087
0.172

-0.720

0.565
-0.666
-0.571
-0.618
-0.580
-0.630
-0.598
-0.599
-0.607
-0.666
-0.666
-0.336
-0.336
-0.602
-0.592
-0.492
-0.617
-0.579
-0.658
-0.641
-0.451

0.752
-0.161

0.611

0.654

0.370
-0.577

0.519
0.319
0.443
0.326
0.382
0.337
0.397
0.357
0.359
0.368
0.443
0.443
0.113
0.113
0.362
0.351
0.242
0.380
0.335
0.432
0.411
0.203
0.566
0.026
0.373
0.428
0.137
0.333

-0.667

0.440
-0.721
-0.523
-0.559
-0.520
-0.553
-0.562
-0.517
-0.515
-0.608
-0.561

0.296

0.162
-0.595
-0.575
-0.428
-0.568
-0.545
-0.700
-0.635
-0.485

0.818
-0.205

0.599

0.602
-0.288
-0.517

José Alberto Cipra Rodriguez
Master en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data Science (DATAFOREST)

0.444
0.194
0.519
0.274
0.312
0.270
0.306
0.316
0.267
0.265
0.370
0.315
0.088
0.026
0.355
0.330
0.183
0.323
0.297
0.490
0.404
0.235
0.669
0.042
0.359
0.362
0.083
0.267

-0.636
-0.243
-0.563
-0.534
-0.552
-0.543
-0.414
-0.657
-0.557
-0.510
-0.506
-0.449
-0.296
-0.327
-0.457
-0.313
-0.641
-0.595

0.406
-0.718
-0.753

0.518

0.784
-0.403

0.459
-0.642
-0.424
-0.576

0.404
0.059
0.317
0.286
0.305
0.295
0.171
0.432
0.310
0.260
0.256
0.202
0.087
0.107
0.208
0.098
0.411
0.354
0.165
0.515
0.567
0.268
0.615
0.162
0.211
0.412
0.180
0.332

-0.760
-0.210
-0.533
-0.613
-0.624
-0.577
-0.495
-0.598
-0.540
-0.450
-0.470
-0.322
-0.266
-0.287
-0.596
-0.480
-0.691
-0.599

0.250
-0.762
-0.772

0.509

0.815
-0.325

0.596
-0.656
-0.355
-0.540

0.578
0.044
0.284
0.376
0.390
0.333
0.245
0.357
0.291
0.203
0.221
0.104
0.071
0.082
0.355
0.230
0.478
0.359
0.062
0.580
0.596
0.259
0.665
0.105
0.355
0.430
0.126
0.291

-0.701
-0.231
-0.543
-0.571
-0.592
-0.566
-0.457
-0.626
-0.557
-0.489
-0.497
-0.397
-0.286
-0.313
-0.527
-0.393
-0.673
-0.583

0.330
-0.738
-0.769

0.520

0.808
-0.367

0.527
-0.656
-0.396
-0.562

0.492
0.053
0.295
0.326
0.350
0.321
0.209
0.392
0.310
0.239
0.247
0.158
0.082
0.098
0.277
0.154
0.453
0.340
0.109
0.545
0.591
0.270
0.652
0.135
0.277
0.430
0.157
0.315

66



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

OSAVIREG
PRI1
PSRI
RDVI
RDVI2
RDVIREG
Red

Red Edge
REP
RGBVI
RGR

RVI

SAVI
SAVIGRE
SIPI
SIPI1

SR

SRPI
SRrel
SRre2
SVI
SWIR 1
SWIR 2
TCARI
TCI

TVI

VARI
VARI2

-0.812
0.375
0.658

-0.787

-0.793

-0.817

-0.643

-0.820
0.834

-0.709

-0.510

-0.816

-0.810

-0.697

-0.695
0.743

-0.787
0.508

-0.776

-0.776

-0.783

-0.676
0.446

-0.725
0.687
0.613
0.198

-0.295

0.659
0.141
0.434
0.619
0.630
0.667
0.413
0.672
0.696
0.503
0.260
0.666
0.657
0.486
0.483
0.553
0.619
0.258
0.603
0.603
0.613
0.457
0.199
0.526
0.473
0.375
0.039
0.087

-0.545
0.204
0.504

-0.498

-0.506

-0.544

-0.285

-0.442
0.577

-0.467
0.395

-0.522

-0.521

-0.450

-0.408
0.609

-0.498
0.244

-0.563

-0.563

-0.495

-0.361
0.310

-0.452
0.451
0.426

-0.137

-0.294

0.297
0.041
0.254
0.248
0.256
0.296
0.081
0.196
0.333
0.218
0.156
0.272
0.271
0.202
0.167
0.371
0.248
0.059
0.317
0.317
0.245
0.131
0.096
0.204
0.204
0.181
0.019
0.086

-0.743
0.297
0.624

-0.710

-0.719

-0.746

-0.521

-0.704
0.773

-0.623

-0.425

-0.740

-0.735

-0.634

-0.606
0.721

-0.710
0.411

-0.727

-0.727

-0.708

-0.578
0.416

-0.653
0.624
0.541
0.134

-0.320

0.551
0.088
0.390
0.505
0.517
0.557
0.271
0.495
0.598
0.389
0.180
0.547
0.540
0.402
0.368
0.520
0.504
0.169
0.529
0.529
0.502
0.334
0.173
0.426
0.389
0.293
0.018
0.103

-0.446
-0.241
0.401
-0.389
-0.374
-0.446
-0.565
-0.663
0.531
-0.594
0.464
-0.368
-0.400
-0.413
-0.430
0.513
-0.375
0.262
0.499
0.499
-0.438
-0.728
0.661
-0.535
0.490
0.654
-0.247
-0.373

0.199
0.058
0.161
0.151
0.140
0.199
0.319
0.439
0.282
0.353
0.215
0.135
0.160
0.171
0.185
0.263
0.140
0.068
0.249
0.249
0.192
0.530
0.437
0.286
0.240
0.428
0.061
0.139

-0.666
-0.477

0.616
-0.557
-0.574
-0.662
-0.322
-0.608

0.647
-0.660

0.578
-0.561
-0.597
-0.563
-0.508

0.710
-0.547
-0.164
-0.581
-0.581
-0.571
-0.666

0.697
-0.631

0.624

0.790
-0.462
-0.582

0.443
0.228
0.379
0.310
0.329
0.438
0.104
0.370
0.419
0.435
0.335
0.315
0.357
0.317
0.258
0.504
0.299
0.027
0.338
0.338
0.326
0.443
0.485
0.398
0.389
0.624
0.213
0.339

-0.562
-0.370
0.514
-0.493
-0.491
-0.558
-0.477
-0.641
0.607
-0.624
0.545
-0.480
-0.515
-0.506
-0.470
0.632
-0.480
0.194
0.554
0.554
-0.523
-0.723
0.666
-0.611
0.548
0.710
-0.366
-0.488

José Alberto Cipra Rodriguez
Master en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data Science (DATAFOREST)

0.315
0.137
0.265
0.243
0.241
0.311
0.228
0.411
0.369
0.389
0.297
0.230
0.265
0.256
0.221
0.399
0.230
0.038
0.307
0.307
0.274
0.522
0.443
0.374
0.301
0.505
0.134
0.238

-0.474
-0.153

0.221
-0.572
-0.523
-0.475
-0.581
-0.666
-0.644
-0.692
-0.420
-0.531
-0.532
-0.478
-0.548

0.418
-0.568

0.389
-0.548
-0.548
-0.641
-0.700

0.635
-0.660

0.478
-0.591

0.186

0.159

0.224
0.023
0.049
0.327
0.274
0.226
0.338
0.444
0.415
0.479
0.176
0.282
0.283
0.228
0.300
0.175
0.323
0.151
0.301
0.301
0.411
0.490
0.403
0.436
0.228
0.350
0.035
0.025

-0.394
-0.270

0.327
-0.536
-0.452
-0.399
-0.656
-0.735
-0.659
-0.731
-0.264
-0.455
-0.450
-0.359
-0.470

0.445
-0.532

0.307
-0.620
-0.620
-0.637
-0.737

0.702
-0.706

0.385
-0.613
-0.138
-0.190

0.155
0.073
0.107
0.287
0.205
0.159
0.430
0.540
0.434
0.534
0.070
0.207
0.203
0.129
0.221
0.198
0.283
0.094
0.384
0.384
0.406
0.544
0.492
0.498
0.148
0.376
0.019
0.036

-0.443
-0.205

0.263
-0.558
-0.494
-0.446
-0.623
-0.704
-0.647
-0.702
-0.346
-0.500
-0.497
-0.430
-0.517

0.436
-0.556

0.352
-0.588
-0.588
-0.627
-0.724

0.674
-0.690

0.442
-0.608

0.128
-0.144

0.196
0.042
0.069
0.312
0.244
0.198
0.389
0.496
0.418
0.493
0.119
0.250
0.247
0.185
0.267
0.190
0.309
0.124
0.345
0.345
0.393
0.524
0.454
0.476
0.195
0.370
0.016
0.021

67



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

Vi1
VI3
VI6
VI7
VI8
Vogl
Vog2
Vog3
WBI
WDRVI
wi1
WI2
M

-0.266
-0.304
-0.675
0.124
-0.467
-0.578
0.486
0.473
0.570
-0.814
-0.572
0.753
-0.781

0.071
0.092
0.456
0.015
0.218
0.334
0.237
0.224
0.325
0.663
0.328
0.567
0.610

-0.163
-0.077
-0.338
0.077
-0.290
-0.464
0.275
0.264
0.421
-0.532
-0.415
0.465
-0.514

0.027
0.006
0.114
0.006
0.084
0.215
0.076
0.070
0.177
0.283
0.172
0.216
0.264

-0.236
-0.217
-0.549
0.109
-0.420
-0.572
0.424
0.411
0.530
-0.738
-0.539
0.672
-0.717

0.056
0.047
0.302
0.012
0.176
0.327
0.180
0.169
0.281
0.545
0.291
0.451
0.514

-0.403
0.026
-0.545
-0.350
-0.338
-0.230
0.350
0.356
0.447
-0.460
-0.444
0.612
-0.334

0.163
0.001
0.297
0.123
0.114
0.053
0.123
0.126
0.199
0.211
0.197
0.375
0.112

0.544
0.076
-0.434
-0.541
-0.536
-0.531
0.247
0.248
0.580
-0.581
-0.581
0.635
-0.544

0.295
0.006
0.189
0.292
0.287
0.282
0.061
0.061
0.336
0.337
0.338
0.404
0.296

0.461
0.052
-0.521
-0.456
-0.444
-0.390
0.319
0.322
0.513
-0.540
-0.514
0.650
-0.456

0.213
0.003
0.271
0.208
0.197
0.152
0.102
0.104
0.263
0.291
0.264
0.423
0.208

0.435
-0.220
-0.463
-0.408
-0.410
-0.097

0.186

0.186

0.305
-0.658
-0.307

0.459
-0.367

0.189
0.049
0.215
0.166
0.168
0.009
0.035
0.034
0.093
0.433
0.094
0.211
0.135

-0.383
-0.352
-0.608
-0.284
-0.294
0.029
0.348
0.348
0.407
-0.600
-0.408
0.593
-0.311

0.146
0.124
0.369
0.081
0.086
0.001
0.121
0.121
0.165
0.361
0.167
0.352
0.096

0.395
-0.284
-0.536
-0.357
-0.363
-0.041

0.263

0.262

0.325
-0.628
-0.327

0.526
-0.347

0.156
0.081
0.287
0.127
0.132
0.002
0.069
0.069
0.106
0.395
0.107
0.276
0.120

José Alberto Cipra Rodriguez
Master en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data Science (DATAFOREST)

68



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

A4.2. Pearson correlation and Coefficient of determination for vegetation indices derived from multispectral imagery across ecosystem and CBI

type.
Coniferous forest Broadleaf forest Shrubland
V?gg}?g;” vegetation CBI soil CBI site CBI vegetation CBI soil CBI site CBI vegetation CBI soil CBI site CBI
r R? r R? r R? r R? r R? r R? r R? r R? r R?

BAI 0.787 0.619 0.454 0.207 0.690 0.476 0.625 0.390 0.544 0.296 0.620 0.384 0.565 0.319 0.447 0.200 0.519 0.269
BGR 0.836 0.699 0.521 0.271 0.752 0.566 0.660 0.436 0.623 0.388 0.678 0.460 0.483 0.234 0.388 0.150 0.446 0.199
Blue -0.193 0.037 0.059 0.003 -0.084 0.007 0.060 0.004 0.220 0.048 0.142 0.020 0.283 0.080 0.377 0.142 0.330 0.109
CIGREEN -0.855 0.731 -0.541 0.293 -0.774 0.599 -0.577 0.333 -0.633 0.401 -0.636 0.405 -0.851 0.724 -0.785 0.616 -0.832 0.693
CIREDGE -0.881 0.776 -0.556 0.309 -0.796 0.634 -0.669 0.447 -0.653 0.426 -0.698 0.487 -0.787 0.619 -0.691 0.478 -0.754 0.569
CIVE 0.348 0.121 0.176 0.031 0.293 0.086 0.006 0.000 0.284 0.081 0.143 0.020 -0.763 0.583 -0.703 0.494 -0.746 0.557
DVI -0.849 0.720 -0.526 0.277 -0.763 0.582 -0.524 0.274 -0.604 0.365 -0.592 0.350 -0.816 0.666 -0.737 0.543 -0.791 0.626
DVIGRE -0.850 0.723 -0.530 0.280 -0.765 0.586 -0.577 0.333 -0.622 0.387 -0.631 0.398 -0.820 0.672 -0.738 0.544 -0.794 0.630
DVIRED -0.869 0.755 -0.542 0.294 -0.783 0.612 -0.616 0.380 -0.646 0.417 -0.665 0.442 -0.783 0.613 -0.719 0.517 -0.752 0.566
ENDVI -0.840 0.706 -0.532 0.283 -0.761 0.579 -0.714 0509 -0.665 0.442 -0.729 0.532 -0.730 0.534 -0.658 0.432 -0.707 0.500
EVI -0.461 0.213 -0.343 0.118 -0.443 0.196 -0.099 0.010 -0.317 0.101 -0.211 0.045 0.191 0.036 0.127 0.016 0.164 0.027
EXB 0.219 0.048 0.094 0.009 0.176 0.031 -0.053 0.003 0.240 0.058 0.088 0.008 -0.753 0.567 -0.685 0.469 -0.732 0.536
EXG -0.762 0580 -0.453 0.205 -0.675 0.455 -0.299 0.090 -0.478 0.228 -0.403 0.163 0.197 0.039 0.259 0.067 0.228 0.052
EXG2 0.737 0543 0.368 0.135 0.618 0.381 0.215 0.046 0.381 0.145 0.308 0.095 0.171 0.029 0.225 0.050 0.198 0.039
EXGR -0.833 0.693 -0.508 0.258 -0.744 0.554 -0.470 0.221 -0.567 0.321 -0.543 0.295 -0.299 0.089 -0.205 0.042 -0.260 0.068
EXR 0.830 0.688 0.520 0.271 0.749 0.560 0.696 0.484 0.626 0.391 0.700 0.490 0.514 0.264 0419 0.176 0.478 0.228
GLI -0.762 0.581 -0.452 0.204 -0.675 0.455 -0.297 0.088 -0.477 0.227 -0.401 0.161 0.197 0.039 0.259 0.067 0.228 0.052
GNDVI -0.858 0.737 -0.539 0.290 -0.775 0.600 -0.675 0.456 -0.661 0.437 -0.706 0.498 -0.859 0.738 -0.790 0.624 -0.840 0.705
Green -0.618 0.382 -0.278 0.077 -0.503 0.253 -0.302 0.091 -0.164 0.027 -0.251 0.063 -0.039 0.002 0.071 0.005 0.011 o0.000
IPVI -0.854 0.729 -0.529 0.280 -0.767 0.589 -0.549 0.301 -0.624 0.389 -0.616 0.379 -0.847 0.718 -0.774 0.599 -0.826 0.682
IRGBVI -0.828 0.685 -0.503 0.253 -0.739 0.546 -0.439 0.193 -0.551 0.303 -0.518 0.268 -0.246 0.061 -0.154 0.024 -0.207 0.043
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MGRVI -0.340 0.115 -0.171 0.029 -0.286 0.082 -0.010 0.000 -0.288 0.083 -0.147 0.022 0.760 0578 0.700 0.490 0.743 0.552
MNLI -0.366 0.134 -0.079 0.006 -0.255 0.065 0.310 0.096 0.178 0.032 0.218 0.047 -0.322 0.103 -0.339 0.115 -0.334 0.112
MRESR -0.881 0.776 -0.556 0.309 -0.796 0.634 -0.669 0.447 -0.653 0.426 -0.698 0.487 -0.787 0.619 -0.691 0.478 -0.754 0.569
MRGBVI -0.844 0.712 -0.534 0.285 -0.763 0.583 -0.709 0.503 -0.662 0.439 -0.725 0.526 -0.697 0.485 -0.619 0.383 -0.671 0.450
NBR 0.683 0466 0414 0.171 0609 0371 0.391 0.153 0449 0.201 0428 0.183 0.196 0.038 0.070 0.005 0.141 0.020
NDMI 0.731 0534 0.312 0.097 0.586 0.344 0514 0.264 0517 0.267 0544 0.295 0586 0.343 0466 0.217 0.539 0.291
NDRE -0.882 0.778 -0.549 0.301 -0.794 0.630 -0.670 0.449 -0.649 0.421 -0.697 0485 -0.785 0.616 -0.689 0.475 -0.752 0.566
NDVI -0.854 0.729 -0.529 0.280 -0.767 0.589 -0.549 0.301 -0.624 0.389 -0.616 0.379 -0.847 0.718 -0.774 0.599 -0.826 0.682
NGBDI -0.837 0.700 -0.521 0.272 -0.753 0.567 -0.660 0.435 -0.626 0.392 -0.680 0.462 -0.489 0.239 -0.395 0.156 -0.453 0.205
NGI -0.762 0.580 -0.453 0.205 -0.675 0.455 -0.299 0.090 -0.478 0.228 -0.403 0.163 0.197 0.039 0.259 0.067 0.228 0.052
NGRDI -0.339 0.115 -0.171 0.029 -0.285 0.081 -0.008 0.000 -0.286 0.082 -0.145 0.021 0.760 0578 0.700 0.490 0.743 0.553
NIR -0.833 0.695 -0.499 0.249 -0.740 0.548 -0.577 0.333 -0.595 0.354 -0.618 0.382 -0.624 0.390 -0.515 0.265 -0.583 0.340
NIRV -0.843 0.711 -0.527 0.277 -0.760 0.577 -0.496 0.246 -0.591 0.349 -0.570 0.325 -0.814 0.663 -0.737 0.543 -0.790 0.624
NLI -0.366 0.134 -0.079 0.006 -0.255 0.065 0.310 0.096 0.178 0.032 0.218 0.047 -0.322 0.103 -0.339 0.115 -0.334 0.112
NREI 0.871 0.758 0538 0.290 0.782 0.611 -0.531 0.282 -0.600 0.360 -0.585 0.342 -0.682 0.466 -0.672 0.452 -0.687 0.472
NRI -0.214 0.046 -0.174 0.030 -0.213 0.045 -0.261 0.068 0.070 0.005 -0.113 0.013 -0.706 0.499 -0.626 0.392 -0.679 0.462
Red -0.419 0.175 -0.179 0.032 -0.336 0.113 -0.260 0.068 0.039 0.002 -0.128 0.016 -0.255 0.065 -0.142 0.020 -0.207 0.043
Red Edge -0.816 0.666 -0.493 0.243 -0.727 0.528 -0.571 0.326 -0.572 0.327 -0.587 0.345 -0.573 0.329 -0.475 0.226 -0.537 0.288
REP -0.803 0.645 -0.468 0.219 -0.707 0.500 -0.605 0.366 -0.565 0.319 -0.617 0.380 -0.512 0.262 -0.398 0.158 -0.467 0.218
RGBVI -0.775 0.601 -0.462 0.213 -0.687 0.472 -0.327 0.107 -0.495 0.245 -0.427 0.182 0.070 0.005 0.141 0.020 0.103 0.011
RGR 0.332 0.110 0.161 0.026 0.276 0.076 -0.015 0.000 0.269 0.073 0.124 0.015 -0.762 0.581 -0.702 0.493 -0.745 0.556
Svi 0.095 0.009 0.157 0.025 0.134 0.018 -0.508 0.258 -0.598 0.358 -0.580 0.337 -0.774 0.599 -0.737 0.544 -0.768 0.590
SWIR 1 -0.352 0.124 -0.039 0.001 -0.227 0.051 -0.459 0.211 -0.092 0.009 -0.305 0.093 -0.555 0.308 -0.444 0.197 -0.512 0.262
SWIR 2 0.566 0.321 0.448 0.200 0.557 0.310 0.397 0.158 0.598 0.358 0.518 0.268 0.012 0.000 0.121 0.015 0.062 0.004
WDRVI -0.850 0.723 -0.530 0.281 -0.766 0.586 -0.514 0.265 -0.607 0.368 -0.588 0.346 -0.846 0.715 -0.773 0.598 -0.824 0.680
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ANNEX 5 = Scripts in Python and R

A5.1. Python script for calculating vegetation indices from PRISMA hyperspectral
imagery aligned with CBI plots

# Calculate indices from HYPERSPECTRAL image
#### Install libraries
# Ipip install rasterio matplotlib pyproj
##HHE Import libraries and read hyperspectral image (.tiff)
from math import log
import numpy as np
import pandas as pd
import rasterio
from rasterio.plot import show
from rasterio.transform import rowcol
import matplotlib.pyplot as plt
from pyproj import Proj, transform
import openpyxl
import shutil
# Path to the .tiff file
working_dir = "C:/Users/User/OneDrive - UVa/l_ASIGNATURAS/TFM/1_DataProcessing/"
tiff_file_orig = working_dir + "2_Satellitallmages/2_HYP/inicial_2_mtotal.tiff"
tiff_file = working_dir +
"2_Satellitallmages/2_HYP/z_CoRegisteredlmage/imagen_coregistered_global_191band.ti
o
#### Open hyperspectral image and classify wavelengths by landsat approach
def open_tiff(tiff_file):
# Open the GeoTIFF file
with rasterio.open(tiff_file) as src:
# Read the custom metadata (wavelengths)
wavelengths = src.tags().get('Wavelengths', 'No wavelengths information found")
if wavelengths != 'No wavelengths information found':
wavelengths = eval(wavelengths) # Convert string representation back to list

# Convert a list of strings to a list of numbers
wavelength =[]
for wv in wavelengths:
wavelength.append(float(wv))
return wavelength

def classify_wavelength(wl):
if 1900 <= wl < 2500:
return 'SWIR 2'
elif 1050 <=wl < 1900:
return 'SWIR 1'
elif 750 <= wl < 1050:
return 'NIR'
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elif 700 <= wl < 750:
return '‘Red Edge'

elif 600 <= wl < 700:
return 'Red'

elif 500 <= wl < 600:
return 'Green'

elif 400 <=wl < 500:
return 'Blue'

else:
return "***'

def create_band_list(wavelength):

band_Ist =]

count=1

for wl in wavelength:
bandL9 = classify_wavelength(wl)
band_classL9 tuples = (count, bandL9, wl)
band_Ist.append(band_classL9_tuples)
count+=1

return band_|st

# Run the classification
wavelength = open_tiff(tiff_file_orig)
band_lIst = create_band_list(wavelength)
for m in band_lIst:
print(m)
#### Vegetation Indices Formulas
# Normalized Difference Vegetation Index: NDVI
def calculate_ndvi(red, nir):
ndvi = (nir - red) / (nir + red)
return ndvi
# Normalized Burn Ratio: NBR
def calculate_nbr(nir, swir2):
nbr = (nir - swir2) / (nir + swir2)
return nbr
# Normalized Difference Moisture Index: NDMI
def calculate_ndmi(nir, swirl):
ndmi = (nir - swirl) / (nir + swirl)
return ndmi
# Difference Vegetation Index: DVI
def calculate_dvi(red, nir):
dvi = nir - red
return dvi
# Green Difference Vegetation Index: DVIGRE o GDVI
def calculate_dvigre(green, nir):
dvigre = nir - green
return dvigre
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# Red Difference Vegetation Index: DVIRED
def calculate_dvired(redge, nir):
dvired = nir - redge
return dvired
# Chlorophyll Index With Red Edge: CIREDGE
def calculate_ciredge(redge, nir):
ciredge = (nir / redge) - 1
return ciredge
# Chlorophyll Index With Green: CIGREEN
def calculate_cigreen(green, nir):
cigreen = (nir / green) - 1
return cigreen
# Infrared Percentage Vegetation Index: IPVI
def calculate_ipvi(red, nir):
ipvi = nir / (nir + red)
return ipvi
# Near-Infrared Reflectance of Vegetation: NIRV
def calculate_nirv(red, nir):
nirv = nir * ((nir - red) / (nir + red))
return nirv
# Modified Non-Linear Index: MNLI
def calculate_mnli(nir, red):
mnli = 1.5 * (nir ** 2 - red) / (nir ** 2 + red + 0.5)
return mnli
# Non-Linear Index: NLI
def calculate_nli(nir, red):
nli = (nir ** 2 - red) / (nir ** 2 + red)
return nli
# Wide Dynamic Range Vegetation Index: WDRVI
def calculate_wdrvi(nir, red):
wdrvi = (0.2 * nir - red) / (0.2 * nir + red)
return wdrvi
# Normalized Difference Red Edge Index: NDRE
def calculate_ndre(redge, nir):
ndre = (nir - redge) / (nir + redge)
return ndre
# Burn Area Index: BAI
def calculate_bai(redge, nir):
bai =1/ (((redge - 0.1) ** 2) + ((nir - 0.06) ** 2))
return bai
# Structural Vegetation Index: SVI
def calculate_svi(redge, red):
svi = (redge - red) / (redge + red)
return svi
# Modified Red-Edge Simple Ratio: MRESR
def calculate_mresr(redge, nir):
mresr = nir / redge
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return mresr
# Three-Band Difference Vegetation Index: TBDVI
def calculate_tbdvi(red, nir, swirl):
tbdvi = nir - (red - swirl) / 2
return tbdvi
# Enhanced Vegetation Index: EVI
def calculate_evi(blue, red, nir):
evi =2.5* ((nir - red)/(nir + 6 *red - 7.5 * blue + 1))
return evi
# Excess Green Index: EXG2
def calculate_exg2(blue, green, red):
exg2 = 2 * green - red - blue
return exg2
# Red Light Normalized Value: NRI
def calculate_nri(blue, green, red):
nri =red / (red + green + blue)
return nri
# Green Light Normalized Value: NGI
def calculate_ngi(blue, green, red):
ngi = green / (red + green + blue)
return ngi
# Green Normalized Difference Vegetation Index: GNDVI
def calculate_gndvi(green, redge, nir):
gndvi = (nir - green) / (nir + redge)
return gndvi
# Enhances Normalized Difference Vegetation Index: ENDVI
def calculate_endvi(redge, green, blue):
endvi = (redge + green - 2 * blue) / (redge + green + 2 * blue)
return endvi
# Modified Red Green- Blue Vegetation Index: MRGBVI
def calculate_mrgbvi(redge, green, blue):
mrgbvi = (redge + 2 * green - 2 * blue) / (redge + 2 * green + 2 * blue)
return mrgbvi
# Nitrogen Reflectance Index: NREI
def calculate_nrei(green, redge, nir):
nrei = redge / (redge + nir + green)
return nrei
# Red Edge Position Index: REP
def calculate_rep(red, redge, nir):
rep =700 + 40 * ((red + nir)/(2 - redge))
return rep
HHH R
def normalized_band (red, green, blue):
R =red/ (red + green + blue)
G =green/ (red + green + blue)
B = blue / (red + green + blue)
return R, G, B
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HHH TR R R R R
# Excess Green Index: EXG
def calculate_exg(red, green, blue):
R,G,B = normalized_band(red, green, blue)
exg=2*G-R-B
return exg
# Excess Blue Index: EXB
def calculate_exb(red, green, blue):
R,G,B = normalized_band(red, green, blue)
exb=14*R-G
return exb
# Excess Red Index: EXR
def calculate_exr(red, green, blue):
R,G,B = normalized_band(red, green, blue)
exr=14*B-G
return exr
# Red / Green Ratio: RGR
def calculate_rgr(red, green, blue):
R,G,B = normalized_band(red, green, blue)
rgr=R/G
return rgr
# Blue / Green Ratio: BGR
def calculate_bgr(red, green, blue):
R,G,B = normalized_band(red, green, blue)
bgr=B/G
return bgr
# Normalized Green-Red Difference Index: NGRDI
def calculate_ngrdi(red, green, blue):
R,G,B = normalized_band(red, green, blue)
ngrdi=(G-R)/ (G +R)
return ngrdi
# Normalized Green-Blue Difference Index: NGBDI
def calculate_ngbdi(red, green, blue):
R,G,B = normalized_band(red, green, blue)
ngbdi =(G-B) /(G + B)
return ngbdi
# Modified Green-Red Vegetation Index: MGRVI
def calculate_magrvi(red, green, blue):
R,G,B = normalized_band(red, green, blue)
mgrvi = (G**2 - R**2) [ (G**2 + R**2)
return mgrvi
# Red Green- Blue Vegetation Index: RGBVI
def calculate_rgbvi(red, green, blue):
R,G,B = normalized_band(red, green, blue)
rgbvi = (G*2 - R *B) / (G**2 + R * B)
return rgbvi
# Green Leaf Index: GLI
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def calculate_gli(red, green, blue):
R,G,B = normalized_band(red, green, blue)
gi=(2*G-R-B)/(2*G+R + B)
return gli
# Color Index of Vegetation Extraction: CIVE
def calculate_cive(red, green, blue):
R,G,B = normalized_band(red, green, blue)
cive = 0.441*R - 0.881*G + 0.385*R + 18.78745
return cive
# Excess Green Minus Excess Red Index: EXGR
def calculate_exgr(red, green, blue):
exg = calculate_exg(red, green, blue)
exr = calculate_exr(red, green, blue)
exgr = exg - exr
return exgr
# Improved Red Green- Blue Vegetation Index: IRGBVI
def calculate_irgbvi(red, green, blue):
R,G,B = normalized_band(red, green, blue)
irgbvi = (5*G**2 - 2*R**2 - 5*B**2) [/ (5*G**2 + 2*R**2 + 5*B**2)
return irgbvi
# Model 1 in Vegetation Index
def calculate_vi_modell(band_a, band_b, band_c, band_d):
vi_modell = band_a/band_b
return vi_modell
# Greenness Index: G =r554/r677
# Simple R. Pigment Ind.: SRPI = r430/r680
# Lichtenthaler Index 2: Lic2 =r440 / r690
# Carter Index 1: Ctrl =r695 / r420
# Carter Index 2: Ctr2 =695 / r760
# Vogelmann Index 1: Vogl =r740/r720
# Gitelson and Merzlyak Index 1: GM1 = r750 / r550
# Gitelson and Merzlyak Index 2: GM2 =r750 / r700
# Zarco-Tejada & Miller: ZM =r750 / r710
# Fluorescence Ratio Index 1: FRI1 =r740 / r800
# Fluorescence Ratio Index 2: FRI2 =690 / r600
# Simple Ratio Index: SR =r800/r670
# Water Index: WI1 =r900 / r970
# Water Index: WI2 =r1600 / r820
# Moisture Stress Index: MSI =r1599 /r819
# Ratio Vegetation Index: RVI =r887 / r678
# Green Ratio Vegetation Index: GRVI = r865/r550
# Green Red Ratio Vegetation Index: GR = r550/r650
# Green Blue Ratio Vegetation Index: GB = r550/r485
#VI8=r998/r713
# Water Band Index: WBI =wl_970/wl_900
# Model 2a in Vegetation Index
def calculate_vi_model2a(band_a, band_b, band_c, band_d):
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vi_model2a = (band_a - band_b) / (band_a + band_b)

return vi_model2a

# Normalized Phaeophytinization Index: NPQI = (r415 - r435) / (r415 + r435)

# Photochemical Reflectance Index 1: PRI1 = (r528 - r567) / (r528 + r567)

# Normalized Pigment Chlorophyll Index: NPCI = (r680 - r430) / (r680 + r430)

# Lichtenthaler Index 1: Licl = (r800 - r680) / (r800 + r680)

# Visible Atmospherically Resistant Index: VARI = (r550 - r670) / (r550 + r670)

# Normalized Difference Water Index: NDWI = (r800 - r1600) / (r800 + r1600)

# Normalized Difference Water Index 2: NDWI2 = (r857 - r1241) / (r857 + r1241)
# Depth Water Index: DWI = (r816 - r2218) / (r816 + r2218)

# Hyperspectral Fire Detection Index: HFDI = (r2430 - r2060) / (r2430 + r2060)
#VI7 = (r998 - r713) / (r998 + r713)

# Normalized Difference Vegetation Index red-edge 1: NDVIirel = (r833 - r699) / (r833 +

r699)

# Normalized Difference Vegetation Index red-edge 1: NDVIreln = (r865 - r699) / (r865 +
r699)

# Normalized Difference Vegetation Index red-edge 2: NDVIre2 = (r833 - r729) / (r833 +
r729)

# Normalized Difference Vegetation Index red-edge 2: NDVIre2n = (r865 - r729) / (r865 +
r729)

# Normalized Difference Vegetation Index red-edge 3: NDVIre3 = (r833 - r780) / (r833 +
r780)

# Normalized Difference Vegetation Index red-edge 3: NDVIre3n = (r865 - r780) / (r865 +
r780)

# Normalized Difference red-edge 1: NDrel = (r729 - r699) / (r729 + r699)
# Normalized Difference red-edge 2: NDre2 = (r780 - r699) / (r780 + r699)
# Leaf Water Vegetation Index 1: LWVI1 = (r1099 - r988) / (r1099 + r988)
# Leaf Water Vegetation Index 2: LWVI2 = (r1099 - r1207) / (r1099 + r1205)
# Normalized Difference Infrared Index: NDII = (r823 - r1646) / (r823 + r1646)
# Model 2b in Vegetation Index
def calculate_vi_model2b(band_a, band_b, band_c, band_d):
vi_model2b = (band_a - band_b) / (band_a + band_c)
return vi_model2b
# Structure Intensive Pigment Index: SIPI = (r800 - r450) / (r800 + r650)
# Meris Terrestrial Chlorophyll Index: MTCI = (r865 - r717) / (r865 - r650)
# Leaf Chlorophyll Index: LCI = (r855 - r708) / (r855 + r679)
# Model 2c in Vegetation Index
def calculate_vi_model2c(band_a, band_b, band_c, band_d):
vi_model2c = (band_a - band_b) / (band_c - band_b)
return vi_model2c
# Mangrove Vegetation Index: MVI = (r842 - r561) / (r1610 - r561)
# Model 2d in Vegetation Index
def calculate_vi_model2d(band_a, band_b, band_c, band_d):
vi_model2d = (band_a - band_b) / (band_c + band_d)
return vi_model2d
# Vogelmann Index 2: Vog2 = (r734 - r747) / (r715 + r726)
# Vogelmann Index 3: Vog3 = (r734 - r747) / (r715 + r720)
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# Disease Water Stress Index: DWSI = (r801 - r546) / (r1656 + r879)
# Model 2e in Vegetation Index
def calculate_vi_model2e(band_a, band_b, band_c, band_d):
vi_model2e = (band_a ** 2- band_b ** 2) / (band_a ** 2 + band_b ** 2)
return vi_model2e
#VI5 = (r513 ** 2 - r504 **2) / (r513 ** 2 + r504 ** 2)
# Model 2f in Vegetation Index
def calculate_vi_model2f(band_a, band_b, band_c, band_d):
vi_model2f = (band_a- band_b) / (band_c - band_b)
return vi_model2f
# Simple Ratio red-edge 1: SRrel = (r729 - r441) / (r699 - r441)
# Simple Ratio red-edge 2: SRre2 = (r780 - r441) / (r699 - r441)
# Structure Independent Pigment Index: SIPI1 = (r445 - r800) / (r670 + r800)
# Model 3a in Vegetation Index
def calculate_vi_model3a(band_a, band_b, band_c, band_d):
vi_model3a = (band_a / band_b) / ((band_a / band_b)**0.5)
return vi_model3a
# Renormalized Difference Vegetation Index: RDVI = (r800 / r670) / ((r800 / r670)**0.5)
# Renormalized Difference Vegetation Index: RDVI2 = (r865 / r670) / ((r865 / r670)**0.5)
# Red Difference Vegetation Index With Red Edge: RDVIREG = (r865 - r717) / ((r865 +
r717) ** 0.5)
# Model 3b in Vegetation Index
def calculate_vi_model3b(band_a, band_b, band_c, band_d):
vi_model3b = (band_a/ (band_b - 1)) / ((band_a / (band_b + 1))**0.5)
return vi_model3b
# Modified Simple Ratio: MSR = (r865 / (r660 - 1))/(r865 / (r660 + 1)) ** 0.5
# Modified Simple Ratio With Red Edge: MSRREG = (r865 / (r717 - 1))/(r865 / (r717 +
1)) ** 0.5
# Model 4 in Vegetation Index
def calculate_vi_model4(band_a, band_b, band_c, band_d):
vi_model4 = ((band_a / band_b) - 1) / (((band_a / band_b) + 1)**0.5)
return vi_model4
# Modified Simple Ratio Index: MSR2 = ((r800 / r670) - 1) / (((r800 / r670) + 1)**0.5)
# Model 5a in Vegetation Index
def calculate_vi_model5a(band_a, band_b, band_c, band_d):
vi_model5a = (1 + 0.16) * (band_a - band_b) / (band_a + band_b + 0.16)
return vi_model5a
# Optimized Soil-Adjusted Vegetation Index: OSAVI = (1 + 0.16) * (r800 - r670) / (r800 +
r670 + 0.16)
# Soil-Adjusted Vegetation Index: SAVI = (1 + 0.16) * (r887 - r678) / (r887 + r678 + 0.16)
# Optimized Soil-adjusted Vegetation Index With Red Edge: OSAVIREG = (1 + 0.16) *
(r865 - r717) / (r865 + r717 + 0.16)
# Model 5b in Vegetation Index
def calculate_vi_model5b(band_a, band_b, band_c, band_d):
vi_model5b = 1.5 * (band_a - band_b) / (band_a + band_b + 0.5)
return vi_model5b
# Green Soil Adjusted Vegetation Index: GSAVI = 1.5 * (r800 - r560) / (r800 + r560 + 0.5)
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# Model 6 in Vegetation Index
def calculate_vi_model6(band_a, band_b, band_c, band_d):
vi_model6 = ((band_a - band_b) - 0.2 * (band_a - band_c)) * (band_c / band_b)
return vi_model6
# Modified Chlorophyll Absorption in Reflectance Index 1: MCARI1 = ((r700 - r670) - 0.2
*(r700 - r550)) * (r700 / r670)
# Model 7 in Vegetation Index
def calculate_vi_model7(band_a, band_b, band_c, band_d):
vi_model7 = 1.2 *(2.5* (band_a - band_b) - 1.3 * (band_a - band_c))
return vi_model7
# Modified Chlorophyll Absorption in Reflectance Index 2: MCARI2 = 1.2 * (2.5 * (r800 -
r670) - 1.3 * (r800 - r550))
# Model 8 in Vegetation Index
def calculate_vi_model8(band_a, band_b, band_c, band_d):
vi_model8 = 1.5 * (2.5 * (band_a - band_b) - 1.3 * (band_a - band_c)) / ((((2 * band_a +
1) **2) - (6 * band_a - 5 * (band_b ** 0.5)) - 0.5) ** 0.5)
return vi_model8
# Modified Chlorophyll Absorption in Reflectance Index 3: MCARI3 = 1.5 * (2.5 * (r800 -
r670) - 1.3 * (r800 - r550)) / ((((2 * r800 + 1) ** 2) - (6 * r800 - 5 * (r670 ** 0.5)) - 0.5) ** 0.5)
# Model 9 in Vegetation Index
def calculate_vi_model9(band_a, band_b, band_c, band_d):
vi_model9 = 3 * ((band_a - band_b) - 0.2 * (band_a - band_c) * (band_a / band_b))
return vi_model9
# Transformed CARI: TCARI =3 * ((r700 - r670) - 0.2 * (r700 - r550) * (r700 / r670))
# Model 10 in Vegetation Index
def calculate_vi_model10(band_a, band_b, band_c, band_d):
vi_modell0 = 0.5 * (120 * (band_a - band_b) - 200 * (band_c - band_b))
return vi_model10
# Triangular Vegetation Index: TVI = 0.5 * (120 * (r750 - r550) - 200 * (r670 - r550))
# Model 11 in Vegetation Index
def calculate_vi_modelll(band_a, band_b, band_c, band_d):
vi_modelll =1.2 * (1.2 * (band_a - band_b) - 2.5 * (band_c - band_b))
return vi_modell1l
# Modified Triangular Vegetation Index 1: MTVI1 =1.2 * (1.2 * (r800 - r550) - 2.5 * (r670 -
r550))
# Model 12 in Vegetation Index
def calculate_vi_model12(band_a, band_b, band_c, band_d):
vi_modell2 = (1.5 * (1.2 * (band_a - band_b) - 2.5 * (band_c - band_b))) / ((((2 * band_a
+1)**2-(6*band_a- (5* (band_c ** 0.5)))) - 0.5) ** 0.5)
return vi_model12
# Modified Triangular Vegetation Index 2: MTVI2 = 1.5 * (1.2 * (r800 - r550) - 2.5 * (r670 -
r550)) / ((((2 * r800 + 1) ** 2 - (6 * r800 - (5 * (r670 ** 0.5)))) - 0.5) ** 0.5)
# Model 13 in Vegetation Index
def calculate_vi_model13(band_a, band_b, band_c, band_d):
vi_modell3=05*(2*band_a+1-(((2*band_a+ 1) ** 2)-8*(band_a - band_b)) **
0.5)
return vi_modell3
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# Improved SAVI with self-adjustment factor L: MSAVI =0.5* (2 * r800 + 1 - (((2 * r800 +
1) **2) - 8 * (r800 - r670)) ** 0.5)
# Model 14 in Vegetation Index
def calculate_vi_modell4(band_a, band_b, band_c, band_d):

vi_modell4 = 2.5 * ((band_a - band_b) / (band_a + 2.4 * band_b + 1))

return vi_model14

# Enhanced Vegetation Index 2: EVI2 = 2.5 * ((r800 - r670) / (r800 + 2.4 * r670 + 1))
# Model 15 in Vegetation Index
def calculate_vi_model15(band_a, band_b, band_c, band_d):

vi_modell5 = ((band_a - band_b)/(band_a + band_b)) - ((band_a - band_c)/(band_a +
band_c))

return vi_model15

# Combine Mangrove Recognition Index (CMRI = NDVI - NDWI): CMRI = ((r865 -
r660)/(r865 + r660)) - ((r857 - r1241)/(r857 + r1241))
# Model 16 in Vegetation Index
def calculate_vi_modell6(band_a, band_b, band_c, band_d):

vi_modell6 = ((band_a + 1.5 * band_b) - band_c) / (band_a - band_d)

return vi_modell6

# Temperature Condition Index: TCI = ((r887 + 1.5 *r524) - r678) / (r887 - r701)
# Model 17 in Vegetation Index
def calculate_vi_modell7(band_a, band_b, band_c, band_d):

vi_modell7 = (band_a - band_b) / (band_a + band_b + 0.01)

return vi_modell7

# Normalized Red Green Difference Vegetation Index: NDIG = (r650 - r560)/(r650 + r560
+0.01)

# Normalized Red Blue Difference Vegetation Index: NDIB = (r650 - r485)/(r650 + r485 +
0.01)
# Model 18 in Vegetation Index
def calculate_vi_model18(band_a, band_b, band_c, band_d):

vi_modell8 = 1.5 * (band_a - band_b) / (band_a + band_b + 0.5)

return vi_modell8

# Soil-adjusted Vegetation Index With Green: SAVIGRE = 1.5 * (r865 - r560) / (r865 +
r560 + 0.5)
# Model 19 in Vegetation Index
def calculate_vi_model19(band_a, band_b, band_c, band_d):

vi_modell9 = (band_a - band_b) / (band_a + band_b - band_c)

return vi_modell19

# Visible Atmospherically Resistant Index: VARI2 = (r560 - r650) / (r560 + r650 - r485)
# Model 20 in Vegetation Index
def calculate_vi_model20(band_a, band_b, band_c, band_d):

vi_model20 = (band_a - band_b + 1.7 * (band_c - band_d)) /(band_a + band_b - 1.7 *
(band_c - band_d))

return vi_model20

# Green Atmospherically Resistant Index: GARI = (r865 - r560 + 1.7 * (r485 - r650))
/(r865 + r560 - 1.7 * (r485 - r650))
# Model 21 in Vegetation Index
def calculate_vi_model21(band_a, band_b, band_c, band_d):
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vi_model21 = (band_a) / (0.666 * band_b + 0.334 * band_c)
return vi_model21
# Carbon Dioxide Continuum Interpolated Band Ratio: CO2-CIBR = (r2010) / (0.666 *
r1990 + 0.334 * r2040)
# Model 22 in Vegetation Index
def calculate_vi_model22(band_a, band_b, band_c, band_d):
vi_model22 = band_a / (band_b + band_c)
return vi_model22
#VI1L =r712/(r998 + r693)
# Model 23 in Vegetation Index
def calculate_vi_model23(band_a, band_b, band_c, band_d):
vi_model23 = (band_a - band_b) / band_c
return vi_model23
#VI3 = (r708 - r693) / r758
# Plant Senescence Reflectance Index: PSRI = (r660 - r554) / (r729)
# Model 24 in Vegetation Index
def calculate_vi_model24(band_a, band_b, band_c, band_d):
vi_model24 = (1 /band_a) - (1 / band_b)
return vi_model24
#VI6 = (1/r1000) - (1/r713)
# Anthocyanin Reflectance Index 1: ARI1 = (1/r554) - (1/r699)
# Carotenoid Reflectance Index 1: CRI1 = (1/r507) - (1/r546)
# Carotenoid Reflectance Index 2: CRI2 = (1/r507) - (1/r699)
# Model 25 in Vegetation Index
def calculate_vi_model25(band_a, band_b, band_c, band_d):
vi_model25 = (band_a/band_b) - 1
return vi_model25
# Chlorophyll Index red-edge: Clre = (r780 / r699) - 1
# Model 26 in Vegetation Index
def calculate_vi_model26(band_a, band_b, band_c, band_d):
vi_model26 = (band_a - band_b) / (band_a + band_b - 2 * band_c)
return vi_model26
# Normalized Difference red-edge 1 modified: NDrelm = (r729 - r699) / (r729 + r699 - 2 *
r441)
# Normalized Difference red-edge 2 modified: NDre2m = (r780 - r699) / (r780 + r699 - 2 *
r441)
# Model 27 in Vegetation Index
def calculate_vi_model27(band_a, band_b, band_c, band_d):
vi_model27 = ((band_a/band_b)-1)/((band_a/band_b) + 1) ** 0.5
return vi_model27
# Modified Simple Ratio red-edge: MSRre = ((r833 /r699) - 1)/ ((r833 /r699) + 1) ** 0.5
# Modified Simple Ratio red-edge narrow: MSRren = ((r865 / r699) - 1) / ((r865 / r699) +
1)**0.5
# Model 28 in Vegetation Index
def calculate_vi_model28(band_a, band_b, band_c, band_d):
vi_model28 = (band_a - (band_b - (band_c - band_b))) / (band_a + (band_b - (band_c -
band_b)))
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return vi_model28

# Atmospherically Resistant Vegetation Index: ARVI = (r801 - (r679 - (r449 - r679))) /
(r801 + (r679 - (r449 - r679)))
# Model 29 in Vegetation Index
def calculate_vi_model29(band_a, band_b, band_c, band_d):

vi_model29 = (band_a - band_b) / (band_a + band_b - 2 * band_c)

return vi_model29

# Modified Red Edge Normalized Difference Vegetation Index: MRENDVI = (r749 - r708)
[ (r749 +r708 - 2 * r441)
# Model 30 in Vegetation Index
def calculate_vi_model30(band_a, band_b, band_c, band_d):

vi_model30 = (np.log(1/band_a) - np.log(1/band_b)) / (np.log(1/band_a) +
np.log(1/band_b))

return vi_model30

# Normalized Difference Nitrogen Index: NDNI = (log(1/r1512) - log(1/r1677)) /
(log(1/r1512) + log(1/r1677))

# Normalized Difference Lignin Index: NDLI = (log(1/r1755) - log(1/r1677)) /
(log(1/r1755) + log(1/r1677))
# Model 31 in Vegetation Index
def calculate_vi_model31(band_a, band_b, band_c, band_d):

vi_model31 = 0.5 * (band_a + band_b) - band_c

return vi_model31

# Cellulose Absorption Index: CAl = 0.5 * (r1993 + r2206) - r2102
# Model 32 in Vegetation Index
def calculate_vi_model32(band_a, band_b, band_c, band_d):

vi_model32 = 100 * ((band_a - band_b) + (band_a - band_c))

return vi_model32

# Lignin Cellulose Absorption Index: LCAlI = 100 * ((r2206 - r2159) + (r2206 - r2335))
# Model 33 in Vegetation Index
def calculate_vi_model33(band_a, band_b, band_c, band_d):

vi_model33 = band_a * ((1 / band_b) - (1 / band_c))

return vi_model33

# Anthocyanin Reflectance Index 2: ARI2 = r801 * ((1 / r554) - (1 / r699))
# Model 34 in Vegetation Index
def calculate_vi_model34(band_a, band_b, band_c, band_d):

vi_model34 = (band_a - (band_b - band_c)) / (band_a + (band_b - band_c))

return vi_model34

# Normalized Multi-band Drought Index: NMDI = (r855 - (r1636 - r2127)) / (r855 + (r1636
- 12127))
def select_model(vi, band_a, band_b, band_c, band_d):

modell =["'G", "SRPI", "Lic2", "Ctr1", "Ctr2", "Vogl", "GM1", "GM2", "ZM", "FRI1",
"FRI2", "SR", "WI1", "WI2", "MSI", "RVI", "GRVI", "GR", "GB", "P1", "P2", "VI8","WBI"]

model2a = ["NPQI", "PRI1", "PRI2", "NPCI", "Licl", "VARI", "NDWI", "NDWI2", "DWI",
"HFDI", "VI7", "NDVIrel", "NDVIreln", "NDVIre2", "NDVIre2n", "NDVIre3", "NDVIre3n",
"NDrel", "NDre2","LWVI1","LWVI2","NDII"]

model2b = ["SIPI", "MTCI", "LCI"]

model2c = ["MVI"]
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model2d =["Vog2", "Vog3","DWSI"]
model2e =["VI5"]

model2f = ["SRrel","SRre2","SIPI1"]
model3a = ['"RDVI", "RDVI2", "RDVIREG"]
model3b = ["MSR", "MSRREG"]
model4 = ["MSR2"]

model5a = ["OSAVI", "SAVI", "OSAVIREG"]
model5b = ["GSAVI"]

model6 = ['"MCARI1"]

model7 = ["MCARI2"]

model8 = ['MCARI3"]

model9 = ["TCARI"]

modell0 = ["TVI"]

modelll = ["MTVI1"]

modell2 = ["MTVI2"]

modell3 = ["MSAVI"]

modell4 = ["EVI2"]

modell5 = ["CMRI"]

modell6 = ["TCI"]

modell7 = ["NDIG", "NDIB"]
modell8 = ['SAVIGRE"]

modell9 = ["VARI2"]

model20 = ["GARI"]

model21 = ["CO2-CIBR"]

model22 =["VI1"]

model23 = ["VI3", "PSRI"]

model24 =["VI16","ARI1","CRI1","CRI2"]
model25 =["Clre"]

model26 = ["NDrelm", "NDre2m"]
model27 = ["MSRre", "MSRren"]
model28 = ["ARVI"]

model29 = ["'MRENDVI"]

model30 = ["NDNI", "NDLI"]
model31 = ["CAI"]

model32 = ["LCAI"]

model33 = ["ARI2"]

model34 = ["NMDI"]

if vi in modell.:

veg_index_values = calculate_vi_modell(band_a, band_b, band_c, band_d)
elif vi in model2a:

veg_index_values = calculate_vi_model2a(band_a, band_b, band_c, band_d)
elif vi in model2b:

veg_index_values = calculate_vi_model2b(band_a, band_b, band_c, band_d)
elif vi in model2c:

veg_index_values = calculate_vi_model2c(band_a, band_b, band_c, band_d)
elif vi in model2d:
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veg_index_values = calculate_vi_model2d(band_a, band_b, band_c, band_d)
elif vi in model2e:

veg_index_values = calculate_vi_model2e(band_a, band_b, band_c, band_d)
elif vi in model2f:

veg_index_values = calculate_vi_model2f(band_a, band_b, band_c, band_d)
elif vi in model3a:

veg_index_values = calculate_vi_model3a(band_a, band_b, band_c, band_d)
elif vi in model3b:

veg_index_values = calculate_vi_model3b(band_a, band_b, band_c, band_d)
elif vi in model4:

veg_index_values = calculate_vi_model4(band_a, band_b, band_c, band_d)
elif vi in model5a:

veg_index_values = calculate_vi_model5a(band_a, band_b, band_c, band_d)
elif vi in model5b:

veg_index_values = calculate_vi_model5b(band_a, band_b, band_c, band_d)
elif vi in model®6:

veg_index_values = calculate_vi_model6(band_a, band_b, band_c, band_d)
elif vi in model7:

veg_index_values = calculate_vi_model7(band_a, band_b, band_c, band_d)
elif vi in model8:

veg_index_values = calculate_vi_model8(band_a, band_b, band_c, band_d)
elif vi in model9:

veg_index_values = calculate_vi_model9(band_a, band_b, band_c, band_d)
elif vi in model10:

veg_index_values = calculate_vi_modell0(band_a, band_b, band_c, band_d)
elif vi in model11:

veg_index_values = calculate_vi_modelll(band_a, band_b, band_c, band_d)
elif vi in model12:

veg_index_values = calculate_vi_modell2(band_a, band_b, band_c, band_d)
elif vi in model13:

veg_index_values = calculate_vi_modell3(band_a, band_b, band_c, band_d)
elif vi in model14:

veg_index_values = calculate_vi_modell4(band_a, band_b, band_c, band_d)
elif vi in model15:

veg_index_values = calculate_vi_modell5(band_a, band_b, band_c, band_d)
elif vi in model16:

veg_index_values = calculate_vi_modell6(band_a, band_b, band_c, band_d)
elif vi in model17:

veg_index_values = calculate_vi_modell7(band_a, band_b, band_c, band_d)
elif vi in model18:

veg_index_values = calculate_vi_model18(band_a, band_b, band_c, band_d)
elif vi in model19:

veg_index_values = calculate_vi_model19(band_a, band_b, band_c, band_d)
elif vi in model20:

veg_index_values = calculate_vi_model20(band_a, band_b, band_c, band_d)
elif vi in model21:

veg_index_values = calculate_vi_model21(band_a, band_b, band_c, band_d)
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elif vi in model22:

veg_index_values = calculate_vi_model22(band_a, band_b, band_c, band_d)
elif vi in model23:

veg_index_values = calculate_vi_model23(band_a, band_b, band_c, band_d)
elif vi in model24:

veg_index_values = calculate_vi_model24(band_a, band_b, band_c, band_d)
elif vi in model25:

veg_index_values = calculate_vi_model25(band_a, band_b, band_c, band_d)
elif vi in model26:

veg_index_values = calculate_vi_model26(band_a, band_b, band_c, band_d)
elif vi in model27:

veg_index_values = calculate_vi_model27(band_a, band_b, band_c, band_d)
elif vi in model28:

veg_index_values = calculate_vi_model28(band_a, band_b, band_c, band_d)
elif vi in model29:

veg_index_values = calculate_vi_model29(band_a, band_b, band_c, band_d)
elif vi in model30:

veg_index_values = calculate_vi_model30(band_a, band_b, band_c, band_d)
elif vi in model31:

veg_index_values = calculate_vi_model31(band_a, band_b, band_c, band_d)
elif vi in model32:

veg_index_values = calculate_vi_model32(band_a, band_b, band_c, band_d)
elif vi in model33:

veg_index_values = calculate_vi_model33(band_a, band_b, band_c, band_d)
elif vi in model34:

veg_index_values = calculate_vi_model34(band_a, band_b, band_c, band_d)
return veg_index_values

###H# Dictionaries of vegetation indices bands
# Classed bands to calculate vegetatio index
vi_classed band_dict = {

“NDVI"; ("Red", "NIR"),
"NBR": ("NIR", "SWIR 2"),
"NDMI"; ("NIR", "SWIR 1"),

“DVI": ("Red", "NIR"),

"DVIGRE": ("Green", "NIR"),
"DVIRED": ("Red Edge", "NIR"),
"CIREDGE": (“Red Edge", "NIR"),
"CIGREEN": ("Green", "NIR"),
“IPVI": ("Red", "NIR"),

"NIRV": ("Red", "NIR"),

"MNLI"; ("NIR", "Red"),

"NLI": ("NIR", "Red"),

"WDRVI": ("NIR", "Red"),
"NDRE": ("Red Edge”, "NIR"),
"BAI": ("Red Edge", "NIR"),

"SVI"; ("Red Edge", "Red"),
"MRESR": ("Red Edge", "NIR"),
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}

vi_classed_band_dict2 ={
"TBDVI": ("Red", "NIR", "SWIR 1"),
"EVI": ("Blue", "Red", "NIR"),
"EXG2": ("Blue", "Green", "Red"),
"NRI"; ("Blue", "Green", "Red"),
"NGI": ("Blue", "Green", "Red"),
"GNDVI": ("Green", "Red Edge", "NIR"),
"ENDVI": ("Red Edge", "Green", "Blue"),
"MRGBVI": ("Red Edge", "Green", "Blue"),
"NREI": ("Green", "Red Edge", "NIR"),
"EXG": ("Red", "Green", "Blue"),
"EXB": ("Red", "Green", "Blue"),
"EXR"; ("Red", "Green", "Blue"),
"RGR": ("Red", "Green", "Blue"),
"BGR": ("Red", "Green", "Blue"),
"NGRDI"; ("Red", "Green", "Blue"),
"NGBDI": ("Red", "Green", "Blue"),
"MGRVI": ("Red", "Green", "Blue"),
"RGBVI"; ("Red", "Green", "Blue"),
"GLI": ("Red", "Green", "Blue"),
"CIVE": ("Red", "Green", "Blue"),
"EXGR": ("Red", "Green", "Blue"),
"IRGBVI": ("Red", "Green", "Blue"),
"REP"; ("Red", "Red Edge", "NIR"),
}
# Fixed bands to calculate vegetation index
vi_fixed_band_dict ={
"Vogl": (37, 35, 0, 0),
"ZM"; (38, 34, 0, 0),
"Vog2": (37, 38, 35, 36),
"Vog3": (37, 38, 35, 35),
"MCARI1": (33, 30, 16, 0),
"TCARI": (33, 30, 16, 0),
"P1" (2, 189, 0, 0),
"P2" (3, 190, 0, 0),
"CO2-CIBR": (134, 133, 135, 0),
"VI3": (34, 32, 39, 0),
"VI3": (12, 10, 0, 0),
}
# Variable bands to calculate vegetation index
vi_variable_band_dict = {
"G": (17, 31, 0, 0),
"SRPI": (1, 31, 0, 0),
"Lic2": (2, 32, 0, 0),
"Ctrl"™ (33, 1, 0, 0),
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"Ctr2" (33, 39, 0, 0),
"GM1": (38, 17, 0, 0),
"GM2": (38, 33, 0, 0),
"FRI1": (37, 43, 0, 0),
"FRI2" (32, 22, 0, 0),
"SR": (43, 30, 0, 0),
"WIL": (52, 59, 0, 0),
"WI2": (112, 45, 0, 0),
"NPQI": (112, 45, 0, 0),
"PRI1": (14, 19, 0, 0),
"NPCI": (31, 1, 0, 0),
"Licl": (43, 31, 0, 0),
"VARI": (16, 30, 0, 0),
"NDWI"; (43, 112, 0, 0),
"NDWI2": (48, 88, 0, 0),
"DWI": (44, 156, 0, 0),
"SIPI": (43, 3, 28, 0),
"RDVI'": (43, 30, 0, 0),
"MSR2": (43, 30, 0, 0),
"OSAVI": (43, 30, 0, 0),
"MCARI2": (43, 30, 16, 0),
"MCARI3": (43, 30, 16, 0),
"TVI": (38, 16, 30, 0),
"MTVI1": (43, 16, 30, 0),
"MTVI2": (43, 16, 30, 0),
"MSAVI": (43, 30, 0, 0),
"EVI2" (43, 30, 0, 0),
"MSI"; (112, 45, 0, 0),
"MVI": (47, 18, 113, 0),
"CMRI": (49, 29, 88, 0),
"SAVI": (51, 31, 0, 0),
"RVI": (51, 31, 0, 0),
"TCI": (51, 13, 31, 33),
"GRVI": (49, 16, 0, 0),
"GR": (16, 28, 0, 0),

"GB": (16, 8, 0, 0),
"MTCI": (49, 35, 28, 0),
"MVI": (47, 18, 113, 0),
"RDVI2": (49, 30, 0, 0),
"RDVIREG": (49, 35, 0, 0),
"MSR": (49, 29, 0, 0),
"MSRREG": (49, 35, 0, 0),
"MSR2": (43, 30, 0, 0),
"OSAVIREG": (49, 35, 0, 0),
"NDIG": (28, 18, 0, 0),
"NDIB": (28, 8, 0, 0),
"SAVIGRE": (49, 18, 0, 0),
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"VARI2": (18, 28, 0, 0),
"GARI"; (49, 18, 8, 28),
"GSAVI": (43, 18, 0, 0),
"HFDI"; (185, 137, 0, 0),
"VI7": (65, 34, 0, 0),
"VI1": (34, 65, 32, 0),
"VI16"; (65, 34, 0, 0),
"VI8"; (65, 34, 0, 0),
"NDVIrel": (46, 33, 0, 0),
"NDVlreln"; (49, 33, 0, 0),
"NDVIre2": (46, 36, 0, 0),
"NDVIre2n": (49, 36, 0, 0),
"NDVIre3": (46, 41, 0, 0),
"NDVIre3n": (49, 41, 0, 0),
"NDrel"; (36, 33, 0, 0),
"NDre2"; (41, 33, 0, 0),
"LCI" (48, 34, 31, 0),
"PSRI": (29, 17, 36, 0),
"Clre": (41, 33, 0, 0),
"NDrelm": (36, 33, 2, 0),
"NDre2m": (41, 33, 2, 0),
"SRrel": (36, 2, 33, 0),
"SRre2"; (36, 2, 33, 0),
"MSRre"; (46, 33, 0, 0),
"MSRren": (49, 33, 0, 0),
"SIPI1": (2, 43, 30, 0),
"WBI" (59, 52, 0, 0),
"LWVIL1": (75, 64, 0, 0),
"LWVI2": (75, 85, 0, 0),
"NDII": (45, 117, 0, 0),
"DWSI": (43, 16, 118, 50),
"ARI1": (17, 33, 0, 0),
"CRI1": (11, 16, 0, 0),
"CRI2"; (11, 33, 0, 0),
"ARVI": (43, 31, 3, 0),
"MRENDVI": (38, 34, 2, 0),
"NDNI"; (104, 120, 0, 0),
"NDLI": (128, 120, 0, 0),
"CAI": (133, 155, 142, 0),
"LCAI": (155, 149, 172, 0),
"ARI2": (43, 17, 33, 0),
"NMDI": (48, 116, 145, 0),

}

#### Read the excel file

# Read the Excel file

excel_file = working_dir + "CulebraPointsCBI.xIsx"

points = pd.read_excel(excel_file)
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# Initialize lists to store results
cb results Ist=0
cb2_results_Ist =0
fb_results_Ist =0
vb_results Ist=0
rb_results_Ist =0
### FOR CLASSED BANDS
##HH Combination of bands of CLASSED BANDS
def bands_combinations(tiff_file, band_lIst, vi_classed_band_dict):
foriin vi_classed band_dict:
print(i)
vi_name = input("Insert the index name: ")
combination_lIst =]
band_names = vi_classed_band_dict[vi_name]
with rasterio.open(tiff_file) as src:
for band_a in band_lst:
if band_a[1] == band_names[0]:
band_ax = band_a[0]
for band_b in band_lst:
if band_b[1] == band_names[1]:
band_bx = band_b[0]
combination_lIst.append((band_ax, band_bx))
for i in combination_Ist:
print(i)
return combination_lst, vi_name

def bands_combinations2(tiff_file, band_lIst, vi_classed_band_dict2):

foriin vi_classed_band_dict2:

print(i)
vi_name = input("Insert the index name: ")
combination_Ist2 =]
band_names = vi_classed_band_dict2[vi_name]
with rasterio.open(tiff_file) as src:

for band_a in band_lIst:

if band_a[1] == band_names|0]:
band_ax = band_a[0]
for band_b in band_lst:
if band_b[1] == band_names[1]:
band_bx = band_b[0]
for band_c in band_lIst:
if band_c[1] == band_names|[2]:
band_cx = band_c[0]
combination_Ist2.append((band_ax, band_bx, band_cx))

for i in combination_lIst2:

print(i)
return combination_Ist2, vi_name

##HH Calculate vegetation index values for CLASSED BANDS
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def get_vi_cb_image(tiff_file, vi_name, band_a, band_b):
with rasterio.open(tiff_file) as dataset:

band_1 = dataset.read(band_a)
band_2 = dataset.read(band_b)
if vi_name == "NDVI":

vi_values = calculate_ndvi(band_1, band_2)
elif vi_name == "NBR":

vi_values = calculate_nbr(band_1, band_2)
elif vi_name == "NDMI":

vi_values = calculate_ndmi(band_1, band_2)
elif vi_name == "DVI"

vi_values = calculate_dvi(band_1, band_2)
elif vi_name == "DVIGRE":

vi_values = calculate_dvigre(band_1, band_2)
elif vi_name == "DVIRED":

vi_values = calculate_dvired(band_1, band_2)
elif vi_name == "CIREDGE":

vi_values = calculate_ciredge(band_1, band_2)
elif vi_name == "CIGREEN":

vi_values = calculate_cigreen(band_1, band_2)
elif vi_name == "IPVI";

vi_values = calculate_ipvi(band_1, band_2)
elif vi_name == "NIRV":

vi_values = calculate_nirv(band_1, band_2)
elif vi_name == "MNLI":

vi_values = calculate_mnli(band_1, band_2)
elif vi_name == "NLI":

vi_values = calculate_nli(band_1, band_2)
elif vi_name == "WDRVI":

vi_values = calculate_wdrvi(band_1, band_2)
elif vi_name == "NDRE":

vi_values = calculate_ndre(band_1, band_2)
elif vi_name == "BAI":

vi_values = calculate_bai(band_1, band_2)
elif vi_name =="SVI":

vi_values = calculate_svi(band_1, band_2)
elif vi_name == "MRESR":

vi_values = calculate_mresr(band_1, band_2)
else:

print("Insert other vegetation index name")

return vi_values, dataset

def get_vi_cb_at_points(vi_values, dataset, points):
veg_index_values =[]
for _, row in points.iterrows():
name, X, y = row['Parcela’], row['Coord_X", row['Coord_Y"]
row_idx, col_idx = rasterio.transform.rowcol(dataset.transform, x, y)
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veg_index_value = vi_values[row_idx, col_idx]
veg_index_values.append((name, veg_index_value))
return veg_index_values

def get_cb_comparative_points(tiff_file, band_lst, vi_classed_band_dict, points):
cb_results_Ist =]
combination_Ist, vi_name = bands_combinations(tiff_file, band_lIst,
vi_classed_band_dict)
for paired_bands in combination_lst:
band_a = paired_bandsJ[0]
band_b = paired_bandsJ[1]
vi_values, dataset = get_vi_cb_image(tiff_file, vi_name, band_a, band_b)
veg_index_values = get_vi_cb_at_points(vi_values, dataset, points)
cb_results_Ist.append((vi_name, band_a, band_b, veg_index_values))
return cb_results_|Ist
def get_vi_cbh2_image(tiff_file, vi_name, band_a, band_b, band_c):
with rasterio.open(tiff_file) as dataset:
band_1 = dataset.read(band_a)
band_2 = dataset.read(band_b)
band_3 = dataset.read(band_c)
if vi_name =="TBDVI":
vi_values = calculate_tbdvi(band_1, band_2, band_3)
elif vi_name == "EVI":
vi_values = calculate_evi(band_1, band_2, band_3)
elif vi_name == "EXG2":
vi_values = calculate_exg2(band_1, band_2, band_3)
elif vi_name == "NRI":
vi_values = calculate_nri(band_1, band_2, band_3)
elif vi_name == "NGI":
vi_values = calculate_ngi(band_1, band_2, band_3)
elif vi_name == "GNDVI":
vi_values = calculate_gndvi(band_1, band_2, band_3)
elif vi_name == "ENDVI":
vi_values = calculate_endvi(band_1, band_2, band_3)
elif vi_name == "MRGBVI":
vi_values = calculate_mrgbvi(band_1, band_2, band_3)
elif vi_name == "NREI":
vi_values = calculate_nrei(band_1, band_2, band_3)
elif vi_name == "EXG":
vi_values = calculate_exg(band_1, band_2, band_3)
elif vi_name == "EXB":
vi_values = calculate_exb(band_1, band_2, band_3)
elif vi_name == "EXR":
vi_values = calculate_exr(band_1, band_2, band_3)
elif vi_name == "RGR":
vi_values = calculate_rgr(band_1, band_2, band_3)
elif vi_name == "BGR":
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vi_values = calculate_bgr(band_1, band_2, band_3)
elif vi_name == "NGRDI":

vi_values = calculate_ngrdi(band_1, band_2, band_3)
elif vi_name == "NGBDI":

vi_values = calculate_ngbdi(band_1, band_2, band_3)
elif vi_name == "MGRVI":

vi_values = calculate_mgrvi(band_1, band_2, band_3)
elif vi_name == "RGBVI":

vi_values = calculate_rgbvi(band_1, band_2, band_3)
elif vi_name =="GLI"

vi_values = calculate_gli(band_1, band_2, band_3)
elif vi_name == "CIVE":

vi_values = calculate_cive(band_1, band_2, band_3)
elif vi_name == "EXGR":

vi_values = calculate_exgr(band_1, band_2, band_3)
elif vi_name == "IRGBVI":

vi_values = calculate_irgbvi(band_1, band_2, band_3)

elif vi_name == "REP":
vi_values = calculate_rep(band_1, band_2, band_3)
else:

print("Insert other vegetation index name")
return vi_values, dataset

def get_cb2_comparative_points(tiff_file, band_lIst, vi_classed_band_dict2, points):
cb2_results_Ist =]
combination_Ist2, vi_name = bands_combinations2(tiff_file, band_lst,
vi_classed band_dict2)
for paired_bands in combination_Ist2:
band_a = paired_bandsJ[0]
band_b = paired_bands[1]
band_c = paired_bands[2]
vi_values, dataset = get_vi_cb2_image(tiff_file, vi_name, band_a, band_b, band_c)
veg_index_values = get_vi_cb_at_points(vi_values, dataset, points)
cb2_results_Ist.append((vi_name, band_a, band_b, band_c, veg_index_values))
return cb2_results_|Ist
#### Extract results of wavelength and vegetation index of CLASSED BANDS
cb_results_Ist = get_cb_comparative_points(tiff_file, band_Ist, vi_classed_band_dict,

points)
foriin cb_results_lst:
print(i)
cb2_results_Ist = get_ch2_comparative_points(tiff_file, band_Ist, vi_classed_band_dict2,
points)

foriin cb2_results_lst:
print(i)
### FOR FIXED BANDS
###H Calculate vegetation index values for FIXED BANDS
def get_vi_fb_image(tiff_file, vi_fixed_band_dict):
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vi_list=1]
for vi in vi_fixed_band_dict:
band = vi_fixed_band_dict[vi]
band = tuple(1 if b == 0 else b for b in band)
with rasterio.open(tiff_file) as dataset:
band_a = dataset.read(band[0])
band_b = dataset.read(band[1])
band_c = dataset.read(band[2])
band_d = dataset.read(band[3])

veg_index_values = select_model(vi, band_a, band_b, band_c, band_d)
vi_list.append((veg_index_values, dataset))
return vi_list

def get_vi_fb_at_points(veg_index, dataset, points):

veg_index_values =]

for _, row in points.iterrows():
name, X, y = row['Parcela’], row['Coord_X", row['Coord_Y"]
row_idx, col_idx = rasterio.transform.rowcol(dataset.transform, x, y)
veg_index_value = veg_index[row_idx, col_idx]
veg_index_values.append((name, veg_index_value))

return veg_index_values

def get_fb_comparative_points(tiff_file, vi_fixed_band_dict, points):
fb_results_Ist =]

vi_list = get_vi_fb_image(tiff_file, vi_fixed_band_dict)

iv_keys =]

for key in vi_fixed_band_dict:
iv_keys.append(key)

cnt=0

for tup in vi_list:
veg_index = tup[0]
dataset = tup[1]
veg_index_values = get vi_fb_at points(veg_index, dataset, points)

band_tup = vi_fixed_band_dict[iv_keys[cnt]]
fb_results_Ist.append((iv_keys[cnt], band_tup[0], band_tup[1], band_tup[2],
band_tup[3], veg_index_values))
cnt+=1
return fb_results_|st
##H#H Extract results of wavelength and vegetations index of FIXED BANDS
fb_results_Ist = get_fb_comparative points(tiff_file, vi_fixed_band_dict, points)
foriin fb_results_lst:
print(i)
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### FOR VARIABLE BANDS
#i## Combination of bands of VARIABLE BANDS
import itertools

def get_vb_combination_bands(vi_variable_band_dict):
vi_combination_lIst =[]

for key, val_tup in vi_variable_band_dict.items():
total_neighborhood = [[] for _ in range(len(val_tup))] # Create a list of empty lists for
each value in the tuple
for idx, val in enumerate(val_tup):
if val I=0:
band_neighborhood = [val + i for i in range(-2, 3)] # Generate values from val-2
to val+2
else:
band_neighborhood = [val] # If the value is zero, keep it as zero in all
combinations
total_neighborhood[idx] = band_neighborhood

# Generate all possible combinations from the neighborhoods
combinations = list(itertools.product(*total_neighborhood))

# Add the key to each combination and filter out combinations with negative values
for combination in combinations:
if all(x >= 0 for x in combination):
vi_combination_Ist.append((key, *combination))

return vi_combination_|st
##HH Calculate vegetation index values for VARIABLE BANDS
def get_vi_vb_image(tiff_file, vi_variable_band_dict):

vi_list =]

vb_combination_band = get_vb_combination_bands(vi_variable_band_dict)
for val_tup in vb_combination_band:
val_tup =tuple(l if b==0 else b for b in val_tup)
with rasterio.open(tiff_file) as dataset:
band_a = dataset.read(val_tup[1])
band_b = dataset.read(val_tup[2])
band_c = dataset.read(val_tup[3])
band_d = dataset.read(val_tup[4])

veg_index_values = select_model(val_tup[0], band_a, band_b, band_c, band_d)
vi_list.append((veg_index_values, dataset))
return vi_list, vb_combination_band

def get_vi_vb_at_points(veg_index, dataset, points):
veg_index_values =]
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for _, row in points.iterrows():
name, X, y = row['Parcela’], row['Coord_X", row['Coord_Y"]
row_idx, col_idx = rasterio.transform.rowcol(dataset.transform, x, y)
veg_index_value = veg_index[row_idx, col_idx]
veg_index_values.append((name, veg_index_value))

return veg_index_values

def get_vb_comparative_points(tiff_file, vi_variable_band_dict, points):
vb_results_Ist =]

vi_list, vb_combination_band = get_vi_vb_image(tiff_file, vi_variable_band_dict)
count=0

for tup in vi_list:
veg_index = tup[0]
dataset = tup[1]
veg_index_values = get_vi_vb_at_points(veg_index, dataset, points)

band_tup = vb_combination_band[count]
vb_results_Ist.append((band_tup[0], band_tup[1], band_tup[2], band_tup[3],
band_tup[4],veg_index_values))
count +=1
return vb_results_|Ist
#### Extract results of wavelength and vegetation index of VARIABLE BANDS
vb_results_Ist = get_vb_comparative_points(tiff_file, vi_variable_band_dict, points)
# foriin vb_results_Ist:
#  print(i)
### FOR RAW BANDS
#### Calculate vegetation index values for RAW BANDS
def get_rb_image(tiff_file, band_number):
with rasterio.open(tiff_file) as dataset:
band_values = dataset.read(band_number)
return band_values, dataset

def get_rb_at points(band_values, dataset, points):

band_values_Ist =]

for _, row in points.iterrows():
name, X, y = row['Parcela’], row['Coord_X", row['Coord_Y']
row_idx, col_idx = rasterio.transform.rowcol(dataset.transform, x, y)
band_value = band_values[row_idx, col_idx]
band_values_Ist.append((name, band_value))

return band_values_|st

def get_rb_comparative_points(tiff_file, band_lst, points):
rb_results_Ist =]
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for band_number in range(1,192):
band_values, dataset = get_rb_image(tiff_file, band_number)
band_values_Ist = get_rb_at points(band_values, dataset, points)
rb_results_Ist.append((band_Istfband_number-1][1], band_number,
band_Ist[band_number-1][2], band_values_lIst))

return rb_results_|st
##HH Extract results of wavelength and vegetation index of RAW BANDS
rb_results_Ist = get_rb_comparative_points(tiff_file, band_lIst, points)
# foriinrb_results |st:
#  print(i)
### SAVE INDICES VALUES
##HH Save vegetation indices values in an excel file (.xIsx)
def save_xIsx(input_file, results_Ist):
# Creamos un diccionario para almacenar los datos
data_dict = {}

for elm in results_Ist:

if results_Ist == cb_results_|Ist:
col_name = f"{elm[0]} {elm[1]} {elm[2]}"
type_name = "classed_bands"

elif results_|Ist == cb2_results_Ist:
col_name = f*{elm[0]} {elm[1]} {elm[2]} {elm[3]}"
type_name = "classed_bands"

elif results_Ist == fb_results_Ist:
col_name = f*{elm[0]} {elm[1]} {eIm[2]} {elm[3]} {elm[4]}"
type_name = "fixed_bands"

elif results_Ist == vb_results_|st:
col_name = f*{elm[0]} {elm[1]} {eIm[2]} {elm[3]} {elm[4]}"
type_name = "variable_bands"

elif results_Ist == rb_results_lIst:
col_name = f*{elm[0]} {elm[1]} {eIm[2]:.0f}hm"
type_name = "raw_bands"

data_dict[col_name] = [value for point, value in elm[len(elm)-1] ]

# Convertimos el diccionario en un DataFrame
df = pd.DataFrame(data_dict)

### PARA DATAFRAMES CON MAS DE 16000 COLUMNAS ###
# Si el DataFrame tiene mas de 16000 columnas, dividirlo en partes
max_columns = 16000

num_parts = (df.shape[1] // max_columns) + 1

for part in range(num_parts):
start_col = part * max_columns
end_col = start_col + max_columns
df part = df.iloc[;, start_col:end_col]
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# Define the output file name for each part

if type_name == "classed_bands":
output_file = input_file[:-5] + f*_hyp_{type_name} {results_Ist[O][O]}_p{part+1}.xIsx"
else:

output_file = input_file[:-5] + f*_hyp_{type_name} p{part+1}.xIsx"

# Copia el archivo original al nuevo archivo
shutil.copyfile(input_file, output_file)

# Abre el nuevo archivo
wb = openpyxl.load_workbook(output_file)
sheet = wb.active

# Encuentra la Ultima columna con datos en la hoja existente
last_col = sheet.max_column

# Escribe los datos del DataFrame en las columnas nuevas a partir de la Gltima
columna existente
for col_idx, col_name in enumerate(df_part.columns, start=last_col + 1):
sheet.cell(row=1, column=col_idx, value=col_name)
for row_idx, value in enumerate(df_part[col_name], start=2):
sheet.cell(row=row_idx, column=col_idx, value=value)

# Guarda el archivo con las nuevas columnas
wh.save(output_file)

# # Copia el archivo original al nuevo archivo

# if type_name == "classed_bands™:

# output_file = input_file[:-5] +"_hyp_" + type_name +"_" + results_Ist[0][0] + ".xIsx"
# else:

# output_file = input_file[:-5] + " _hyp_" + type_name + ".xIsx"

# shutil.copyfile(input_file, output_file)

# # Abre el nuevo archivo
# wb = openpyxl.load_workbook(output_file)
# sheet = wb.active

# # Encuentra la Ultima columna con datos en la hoja existente
# last_col = sheet.max_column

# # Escribe los datos del DataFrame en las columnas nuevas a partir de la Ultima
columna existente

# for col_idx, col_name in enumerate(df.columns, start=last_col + 1):

# sheet.cell(row=1, column=col_idx, value=col_name)

# for row_idx, value in enumerate(df[col_name], start=2):

# sheet.cell(row=row_idx, column=col_idx, value=value)
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# # Guarda el archivo con las nuevas columnas
# wb.save(output_file)
return output_file

## Options to save file

# save_xlsx(excel_file, cb_results_Ist)
save_xIsx(excel_file, cb2_results_lst)
# save_xlsx(excel_file, fb_results_Ist)
# save_xlsx(excel_file, vb_results_Ist)
# save_xlsx(excel_file, rb_results_lIst)
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A5.2. Python script for calculating vegetation indices from SENTINEL-2 multispectral
imagery aligned with CBI plots

# Calculate indices from MULTISPECTRAL image
#### Import libraries and read multispectral image (.tiff)
from math import log

import numpy as np

import pandas as pd

import rasterio

from rasterio.plot import show

from rasterio.transform import rowcol

import matplotlib.pyplot as plt

from pyproj import Proj, transform

import openpyxl

import shutil

# Path to the .tiff file
working_dir = "C:/Users/User/OneDrive - UVa/l_ASIGNATURAS/TFM/1_DataProcessing/"
tiff_file = working_dir + "2_Satellitallmages/1_MLT/S2_post_clip.tif"
###H# Open multispectral image and classify wavelengths
# Sentinel 2 bands
band_Ist = [

(1, "Blue", "B2", 450, 520),

(2, "Green", "B3", 540, 570),

(3, "Red", "B4", 650, 680),

(4, "Red Edge", "B5", 690, 710),

(5, "Red Edge", "B6", 730, 740),

(6, "Red Edge", "B7", 770, 790),

(7, "NIR", "B8", 780, 900),

(8, "NIR", "B8A", 850, 870),

(9, "SWIR 1", "B11", 1560, 1650),

(10, "SWIR 2", "B12", 2100, 2280),

]

# Display band information for the 10 bands assumed to be in your TIFF file
print(f*{'Band":<5} {Name":<25} {'Wavelength (nm)":<15}")
print("="*50)
for band in band_lIst:

print(f*{band[2]:<5} {band[1]:<25} {band[3]} - {band[4]:<15}")
#HH Vegetation Indices Equations
# Normalized Difference Vegetation Index: NDVI
def calculate_ndvi(red, nir):

ndvi = (nir - red) / (nir + red)

return ndvi
# Normalized Burn Ratio: NBR
def calculate_nbr(nir, swir2):

nbr = (nir - swir2) / (nir + swir2)
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return nbr
# Normalized Difference Moisture Index: NDMI
def calculate_ndmi(nir, swirl):
ndmi = (nir - swirl) / (nir + swirl)
return ndmi
# Difference Vegetation Index: DVI
def calculate_dvi(red, nir):
dvi = nir - red
return dvi
# Green Difference Vegetation Index: DVIGRE o GDVI
def calculate_dvigre(green, nir):
dvigre = nir - green
return dvigre
# Red Difference Vegetation Index: DVIRED
def calculate_dvired(redge, nir):
dvired = nir - redge
return dvired
# Chlorophyll Index With Red Edge: CIREDGE
def calculate_ciredge(redge, nir):
ciredge = (nir / redge) - 1
return ciredge
# Chlorophyll Index With Green: CIGREEN
def calculate_cigreen(green, nir):
cigreen = (nir / green) - 1
return cigreen
# Infrared Percentage Vegetation Index: IPVI
def calculate_ipvi(red, nir):
ipvi = nir / (nir + red)
return ipvi
# Near-Infrared Reflectance of Vegetation: NIRV
def calculate_nirv(red, nir):
nirv = nir * ((nir - red) / (nir + red))
return nirv
# Modified Non-Linear Index: MNLI
def calculate_mnli(nir, red):
mnli = 1.5 * (nir ** 2 - red) / (nir ** 2 + red + 0.5)
return mnli
# Non-Linear Index: NLI
def calculate_nli(nir, red):
nli = (nir ** 2 - red) / (nir ** 2 + red)
return nli
# Wide Dynamic Range Vegetation Index: WDRVI
def calculate_wdrvi(nir, red):
wdrvi = (0.2 * nir - red) / (0.2 * nir + red)
return wdrvi
# Normalized Difference Red Edge Index: NDRE
def calculate_ndre(redge, nir):

José Alberto Cipra Rodriguez
Méaster en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data
Science (DATAFOREST)

100



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

ndre = (nir - redge) / (nir + redge)
return ndre
# Burn Area Index: BAI
def calculate_bai(redge, nir):
bai =1/ (((redge - 0.1) ** 2) + ((nir - 0.06) ** 2))
return bai
# Structural Vegetation Index: SVI
def calculate_svi(redge, red):
svi = (redge - red) / (redge + red)
return svi
# Modified Red-Edge Simple Ratio: MRESR
def calculate_mresr(redge, nir):
mresr = nir / redge
return mresr
# Three-Band Difference Vegetation Index: TBDVI
def calculate_tbdvi(red, nir, swirl):
tbdvi = nir - (red - swirl) / 2
return tbdvi
# Enhanced Vegetation Index: EVI
def calculate_evi(blue, red, nir):
evi = 2.5 * ((nir - red)/(nir + 6 *red - 7.5 * blue + 1))
return evi
# Excess Green Index: EXG2
def calculate_exg2(blue, green, red):
exg2 = 2 * green - red - blue
return exg2
# Red Light Normalized Value: NRI
def calculate_nri(blue, green, red):
nri=red/ (red + green + blue)
return nri
# Green Light Normalized Value: NGI
def calculate_ngi(blue, green, red):
ngi = green / (red + green + blue)
return ngi
# Green Normalized Difference Vegetation Index: GNDVI
def calculate_gndvi(green, redge, nir):
gndvi = (nir - green) / (nir + redge)
return gndvi
# Enhances Normalized Difference Vegetation Index: ENDVI
def calculate_endvi(redge, green, blue):
endvi = (redge + green - 2 * blue) / (redge + green + 2 * blue)
return endvi
# Modified Red Green- Blue Vegetation Index: MRGBVI
def calculate_mrgbvi(redge, green, blue):
mrgbvi = (redge + 2 * green - 2 * blue) / (redge + 2 * green + 2 * blue)
return mrgbvi
# Nitrogen Reflectance Index: NREI
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def calculate_nrei(green, redge, nir):
nrei = redge / (redge + nir + green)
return nrei
# Red Edge Position Index: REP
def calculate_rep(red, redge, nir):
rep =700 + 40 * ((red + nir)/(2 - redge))
return rep
T R R R T R
def normalized_band (red, green, blue):
R =red/ (red + green + blue)
G =green/ (red + green + blue)
B = blue / (red + green + blue)
return R, G, B
HHHH T R R
# Excess Green Index: EXG
def calculate_exg(red, green, blue):
R,G,B = normalized_band(red, green, blue)
exg=2*G-R-B
return exg
# Excess Blue Index: EXB
def calculate_exb(red, green, blue):
R,G,B = normalized_band(red, green, blue)
exb=14*R-G
return exb
# Excess Red Index: EXR
def calculate_exr(red, green, blue):
R,G,B = normalized_band(red, green, blue)
exr=14*B-G
return exr
# Red / Green Ratio: RGR
def calculate_rgr(red, green, blue):
R,G,B = normalized_band(red, green, blue)
rgr=R/G
return rgr
# Blue / Green Ratio: BGR
def calculate_bgr(red, green, blue):
R,G,B = normalized_band(red, green, blue)
bgr=B/G
return bgr
# Normalized Green-Red Difference Index: NGRDI
def calculate_ngrdi(red, green, blue):
R,G,B = normalized_band(red, green, blue)
ngrdi=(G-R)/ (G +R)
return ngrdi
# Normalized Green-Blue Difference Index: NGBDI
def calculate_ngbdi(red, green, blue):
R,G,B = normalized_band(red, green, blue)

José Alberto Cipra Rodriguez
Méaster en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data
Science (DATAFOREST)

102



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

ngbdi = (G -B) /(G + B)
return ngbdi
# Modified Green-Red Vegetation Index: MGRVI
def calculate_magrvi(red, green, blue):
R,G,B = normalized_band(red, green, blue)
mgrvi = (G**2 - R**2) / (G**2 + R**2)
return mgrvi
# Red Green- Blue Vegetation Index: RGBVI
def calculate_rgbvi(red, green, blue):
R,G,B = normalized_band(red, green, blue)
rgbvi = (G**2 - R *B) / (G**2 + R * B)
return rgbvi
# Green Leaf Index: GLI
def calculate_gli(red, green, blue):
R,G,B = normalized_band(red, green, blue)
gi=(2*G-R-B)/(2*G+R +B)
return gli
# Color Index of Vegetation Extraction: CIVE
def calculate_cive(red, green, blue):
R,G,B = normalized_band(red, green, blue)
cive = 0.441*R - 0.881*G + 0.385*R + 18.78745
return cive
# Excess Green Minus Excess Red Index: EXGR
def calculate_exgr(red, green, blue):
exg = calculate_exg(red, green, blue)
exr = calculate_exr(red, green, blue)
exgr = exg - exr
return exgr
# Improved Red Green- Blue Vegetation Index: IRGBVI
def calculate_irgbvi(red, green, blue):
R,G,B = normalized_band(red, green, blue)
irgbvi = (5*G**2 - 2*R**2 - 5*B**2) [ (5*G**2 + 2*R**2 + 5*B**2)
return irgbvi
##HHE Dictionaries of vegetation indices bands
# Classed bands to calculate vegetatio index
vi_classed band_dict = {
"NDVI": ("Red", "NIR"),
"NBR": ("NIR", "SWIR 2"),
"NDMI": ("NIR", "SWIR 1"),
"DVI": ("Red", "NIR"),
"DVIGRE": ("Green", "NIR"),
"DVIRED": ("Red Edge", "NIR"),
"CIREDGE": ("Red Edge", "NIR"),
"CIGREEN": ("Green", "NIR"),
"IPVI": ("Red", "NIR"),
"NIRV": ("Red", "NIR"),
"MNLI": ("NIR", "Red"),
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"NLI": ("NIR", "Red"),

"WDRVI": ("NIR", "Red"),

"NDRE":; ("Red Edge", "NIR"),

"BAI": ("Red Edge", "NIR"),

"SVI": ("Red Edge", "Red"),

"MRESR": ("Red Edge", "NIR"),
}

vi_classed_band_dict2 ={
"TBDVI"; ("Red", "NIR", "SWIR 1"),
"EVI": ("Blue", "Red", "NIR"),
"EXG2": ("Blue", "Green", "Red"),
"NRI"; ("Blue", "Green", "Red"),
"NGI": ("Blue", "Green", "Red"),
"GNDVI"; ("Green", "Red Edge", "NIR"),
"ENDVI"; ("Red Edge", "Green", "Blue"),
"MRGBVI": ("Red Edge", "Green", "Blue"),
"NREI": ("Green", "Red Edge", "NIR"),
"EXG": ("Red", "Green", "Blue"),
"EXB": ("Red", "Green", "Blue"),
"EXR"; ("Red", "Green", "Blue"),
"RGR": ("Red", "Green", "Blue"),
"BGR": ("Red", "Green", "Blue"),
"NGRDI"; ("Red", "Green", "Blue"),
"NGBDI": ("Red", "Green", "Blue"),
"MGRVI": ("Red", "Green", "Blue"),
"RGBVI": ("Red", "Green", "Blue"),
"GLI": ("Red", "Green", "Blue"),
"CIVE": ("Red", "Green", "Blue"),
"EXGR": ("Red", "Green", "Blue"),
"IRGBVI": ("Red", "Green", "Blue"),
"REP": ("Red", "Red Edge", "NIR"),
}
#HH# Read the excel file
# Read the Excel file
excel_file = working_dir + "CulebraPointsCBI.xlsx"
points = pd.read_excel(excel_file)
# Initialize lists to store results
cb_results Ist=0
cb2_results_Ist=0
cb3 results _Ist=0
fb_results Ist=0
vb_results_Ist=0
### FOR CLASSED BANDS
##HH Combination of bands of CLASSED BANDS
def bands_combinations(tiff_file, band_lIst, vi_classed_band_dict):
foriinvi_classed band_dict:
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print(i)
vi_name = input("Insert the index name: ")
combination_lIst = []
band_names = vi_classed_band_dict[vi_name]
with rasterio.open(tiff_file) as src:
for band_a in band_lst:
if band_a[1] == band_names|0]:
band_ax = band_a[0]
for band_b in band_lst:
if band_b[1] == band_names[1]:
band_bx = band_b[0]
combination_Ist.append((band_ax, band_bx))
for i in combination_Ist:
print(i)
return combination_lst, vi_name

def bands_combinations2(tiff_file, band_lIst, vi_classed_band_dict2):
foriinvi_classed _band_dict2:
print(i)
vi_name = input("Insert the index name: ")
combination_Ist2 =]
band_names = vi_classed_band_dict2[vi_name]
with rasterio.open(tiff_file) as src:
for band_a in band_lst:
if band_a[1] == band_names[0]:
band_ax = band_a[0]
for band_b in band_lst:
if band_b[1] == band_names[1]:
band_bx = band_b[0]
for band_c in band_lst:
if band_c[1] == band_names|[2]:
band_cx = band_c[0]
combination_Ist2.append((band_ax, band_bx, band_cx))
for i in combination_Ist2:
print(i)
return combination_Ist2, vi_name
##HH Calculate vegetation index values for CLASSED BANDS
def get_vi_cb_image(tiff_file, vi_name, band_a, band_b):
with rasterio.open(tiff_file) as dataset:
band_1 = dataset.read(band_a)
band_2 = dataset.read(band_b)
if vi_name == "NDVI":
vi_values = calculate_ndvi(band_1, band_2)
elif vi_name == "NBR":
vi_values = calculate_nbr(band_1, band_2)
elif vi_name == "NDMI":
vi_values = calculate_ndmi(band_1, band_2)
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elif vi_name == "DVI"

vi_values = calculate_dvi(band_1, band_2)
elif vi_name == "DVIGRE":

vi_values = calculate_dvigre(band_1, band_2)
elif vi_name == "DVIRED":

vi_values = calculate_dvired(band_1, band_2)
elif vi_name == "CIREDGE":

vi_values = calculate_ciredge(band_1, band_2)
elif vi_name == "CIGREEN":

vi_values = calculate_cigreen(band_1, band_2)
elif vi_name =="IPVI":

vi_values = calculate_ipvi(band_1, band_2)
elif vi_name == "NIRV":

vi_values = calculate_nirv(band_1, band_2)
elif vi_name == "MNLI":

vi_values = calculate_mnli(band_1, band_2)
elif vi_name == "NLI":

vi_values = calculate_nli(band_1, band_2)
elif vi_name == "WDRVI":

vi_values = calculate_wdrvi(band_1, band_2)
elif vi_name == "NDRE":

vi_values = calculate_ndre(band_1, band_2)
elif vi_name == "BAI":

vi_values = calculate_bai(band_1, band_2)
elif vi_name =="SVI":

vi_values = calculate_svi(band_1, band_2)
elif vi_name == "MRESR":

vi_values = calculate_mresr(band_1, band_2)
else:

print("Insert other vegetation index name")

return vi_values, dataset

def get_vi_cb_at points(vi_values, dataset, points):

veg_index_values =]

for _, row in points.iterrows():
name, X, y = row['Parcela’], row['Coord_X'", row['Coord_Y"]
row_idx, col_idx = rasterio.transform.rowcol(dataset.transform, x, y)
veg_index_value = vi_values[row_idx, col_idx]
veg_index_values.append((name, veg_index_value))

return veg_index_values

def get_cb_comparative_points(tiff_file, band_lIst, vi_classed_band_dict, points):
cb_results_Ist =]
combination_lIst, vi_name = bands_combinations(tiff_file, band_Ist,
vi_classed _band_dict)
for paired_bands in combination_|st:
band_a = paired_bandsJ[0]
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band_b = paired_bandsJ[1]
vi_values, dataset = get_vi_cb_image(tiff_file, vi_name, band_a, band_b)
veg_index_values = get_vi_cb_at_points(vi_values, dataset, points)
cb_results_Ist.append((vi_name, band_a, band_b, veg_index_values))
return cb_results_|Ist
def get_vi_cb2_image(tiff_file, vi_name, band_a, band_b, band_c):
with rasterio.open(tiff_file) as dataset:

band_1 = dataset.read(band_a)
band_2 = dataset.read(band_b)
band_3 = dataset.read(band_c)
if vi_name == "TBDVI":

vi_values = calculate_tbdvi(band_1, band_2, band_3)
elif vi_name =="EVI":

vi_values = calculate_evi(band_1, band_2, band_3)
elif vi_name == "EXG2":

vi_values = calculate_exg2(band_1, band_2, band_3)
elif vi_name == "NRI":

vi_values = calculate_nri(band_1, band_2, band_3)
elif vi_name == "NGI":

vi_values = calculate_ngi(band_1, band_2, band_3)
elif vi_name == "GNDVI":

vi_values = calculate_gndvi(band_1, band_2, band_3)
elif vi_name == "ENDVI":

vi_values = calculate_endvi(band_1, band_2, band_3)
elif vi_name == "MRGBVI":

vi_values = calculate_mrgbvi(band_1, band_2, band_3)
elif vi_name == "NREI":

vi_values = calculate_nrei(band_1, band_2, band_3)
elif vi_name == "EXG":

vi_values = calculate_exg(band_1, band_2, band_3)
elif vi_name == "EXB":

vi_values = calculate_exb(band_1, band_2, band_3)
elif vi_name == "EXR":

vi_values = calculate_exr(band_1, band_2, band_3)
elif vi_name == "RGR":

vi_values = calculate_rgr(band_1, band_2, band_3)
elif vi_name == "BGR":

vi_values = calculate_bgr(band_1, band_2, band_3)
elif vi_name == "NGRDI":

vi_values = calculate_ngrdi(band_1, band_2, band_3)
elif vi_name == "NGBDI":

vi_values = calculate_ngbdi(band_1, band_2, band_3)
elif vi_name == "MGRVI":

vi_values = calculate_mgrvi(band_1, band_2, band_3)
elif vi_name == "RGBVI":

vi_values = calculate_rgbvi(band_1, band_2, band_3)
elif vi_name == "GLI"
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vi_values = calculate_gli(band_1, band_2, band_3)
elif vi_name =="CIVE":

vi_values = calculate_cive(band_1, band_2, band_3)
elif vi_name == "EXGR":

vi_values = calculate_exgr(band_1, band_2, band_3)
elif vi_name =="IRGBVI":

vi_values = calculate_irgbvi(band_1, band_2, band_3)
elif vi_name == "REP":

vi_values = calculate_rep(band_1, band_2, band_3)
else:

print("Insert other vegetation index name")

return vi_values, dataset

def get_cb2_comparative_points(tiff_file, band_Ist, vi_classed_band_dict2, points):
cb2_results_Ist =]
combination_Ist2, vi_name = bands_combinations2(tiff_file, band_lIst,
vi_classed band_dict2)
for paired_bands in combination_lIst2:
band_a = paired_bandsJ[0]
band_b = paired_bandsJ[1]
band_c = paired_bands[2]
vi_values, dataset = get_vi_cb2_image(tiff_file, vi_name, band_a, band_b, band_c)
veg_index_values = get_vi_cb_at_points(vi_values, dataset, points)
cb2_results_Ist.append((vi_name, band_a, band_b, band_c, veg_index_values))
return cb2_results_|Ist
#HH Extract results of wavelength and vegetation index of CLASSED BANDS
cb_results_Ist = get_cb_comparative_points(tiff_file, band_Ist, vi_classed_band_dict,
points)
foriin cb_results_lst:
print(i)
cb2_results_Ist = get_cb2_comparative_points(tiff_file, band_Ist, vi_classed_band_dict2,
points)
foriin cb2_results_lst:
print(i)
### FOR RAW BANDS
#### Calculate vegetation index values for RAW BANDS
def get_rb_image(tiff_file, band_number):
with rasterio.open(tiff_file) as dataset:
band_values = dataset.read(band_number)
return band_values, dataset

def get_rb_at points(band_values, dataset, points):
band_values_lIst =[]
for _, row in points.iterrows():
name, X, y = row['Parcela’], row['Coord_X", row['Coord_Y']
row_idx, col_idx = rasterio.transform.rowcol(dataset.transform, x, y)
band_value = band_values[row_idx, col_idx]
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band_values_Ist.append((name, band_value))
return band_values_|Ist

def get_rb_comparative_points(tiff_file, band_Ist, points):
rb_results_Ist =]

for band_number in range(1,11):
band_values, dataset = get_rb_image(tiff_file, band_number)
band_values_Ist = get_rb_at points(band_values, dataset, points)
rb_results_Ist.append((band_lIstfband_number-1][1], band_number,
band_Ist[band_number-1][3], band_Ist[band_number-1][4], band_values_|Ist))

return rb_results_|st
#### Extract results of wavelength and vegetation index of RAW BANDS
rb_results_Ist = get_rb_comparative_points(tiff_file, band_lst, points)
foriinrb_results_lIst:

print(i)
### SAVE INDICES VALUES
###H# Save vegetation indices values in an excel file (.xIsx)
def save_xIsx(input_file, results_Ist):

# Creamos un diccionario para almacenar los datos

data_dict={}

for elm in results_Ist:

if results_Ist == cb_results_|Ist:
col_name = f*{elm[0]} _{elm[1]} {elm[2]}"
type_name = "classed_bands"

elif results_Ist == cb2_results_Ist:
col_name = f*{elm[0]} {elm[1]} {elm[2]} {elm[3]}"
type_name = "classed_bands"

elif results_Ist == cb3_results_Ist:
col_name = f*{elm[0]} {elm[1]} {eIm[2]} {elm[3]} {elm[4]}"
type_name = "classed_bands"

elif results_Ist == rb_results_|Ist:
col_name = f"{elm[0]} _{elm[1]} {elm[2]}-{elm[3]}nm"
type_name = "raw_bands"

data_dict[col_name] = [value for point, value in elm[len(elm)-1] ]

# Convertimos el diccionario en un DataFrame
df = pd.DataFrame(data_dict)

# Copia el archivo original al nuevo archivo
if type_name == "classed_bands":

output_file = input_file[:-5] +"_mlt_" + type_name + " _" + results_Ist[0][0] + ".xIsx"
else:

output_file = input_file[:-5] + "_mlt_" + type_name + ".xIsx"
shutil.copyfile(input_file, output_file)

José Alberto Cipra Rodriguez
Méaster en Gestion Forestal basada en Ciencia de Datos - Master on Forest Management based on Data
Science (DATAFOREST)

109



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data

# Abre el nuevo archivo
wb = openpyxl.load_workbook(output_file)
sheet = wb.active

# Encuentra la dltima columna con datos en la hoja existente
last_col = sheet.max_column

# Escribe los datos del DataFrame en las columnas nuevas a partir de la Ultima columna
existente
for col_idx, col_name in enumerate(df.columns, start=last_col + 1):
sheet.cell(row=1, column=col_idx, value=col_name)
for row_idx, value in enumerate(df[col_name], start=2):
sheet.cell(row=row_idx, column=col_idx, value=value)

# Guarda el archivo con las nuevas columnas
wb.save(output_file)
return output_file
## Options to save file
# save_xlsx(excel_file, cb_results_Ist)
save_xIsx(excel_file, cb2_results_lst)
# save_xlsx(excel_file, cb3_results_Ist)
# save_xlsx(excel_file, fb_results_Ist)
# save_xlsx(excel_file, vb_results_Ist)
# save_xlsx(excel_file, rb_results_lIst)
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A5.3. R Script for computing Pearson correlation coefficients from the CBI-Vegetation
Index dataset

Load libraries

# install.packages("readx|")
library(readxl)
library(dplyr)

library (writexl)

library(ggplot2)
Load Data

# Leer los datos desde el archivo Excel
wd <- "C:/Users/User/OneDrive - UVa/l_ASIGNATURAS/TFM/1_DataProcessing/"

# Desactivar codigo: Ctrl + Shift + C

# data_file <- pasteO(wd, "CulebraPointsCBIvgbj_mlt_classed_bands_TBDVI.xIsx")
data_file <- pasteO(wd, "CulebraPointsCBI_hyp_variable bands.xIsx")

# data_file <- pasteO(wd, "CulebraPointsCBIlvgbj_hyp_fixed_bands.xIsx")

# data_file <- pasteO(wd, "CulebraPointsCBIpnvb_mlt_raw_bands.xIsx")

# data_file <- pasteO(wd, "CulebraPointsCBI_hyp classed_bands_TBDVI_p2_ok.xlIsx")

sheet <- "Hojal" # Nombre de la hoja de calculo

data <- read_excel(data_file, sheet = sheet)
Check data

# Function to convert data types

convert_columns <- function(data, factor_cols) {
data[factor_cols] <- lapply(data[factor_cols], as.factor)
return(data)

}

# Columns to convert to numeric and to factor
factor_cols <- c('Parcela’,'Ecosistema’,'Estado_de")

# Apply the conversion function

sig_data <- convert_columns(data, factor_cols)
# Ensure that phenotype_data is a data.frame
sig_data <- as.data.frame(sig_data)

# Check the structure of the modified data

# head(sig_data)

# str(sig_data)

Subset

##### FOR CBIl_vegeta #####

# # Subset the data to select variables starting from column 8
# sig_data <- sig_data %>%

# select(1:5, 7, 8, 6, everything())

#

# sig_data_vars <- sig_data[, 8:ncol(sig_data)]

# str(sig_data_vars)
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#### FOR CBI_Suelo #####
# Subset the data to select variables starting from column 8
sig_data <- sig_data %>%

select(1:5, 6, 8, 7, everything())

sig_data_vars <- sig_data[, 8:ncol(sig_data)]

####H# FOR CBI_prom #####
# sig_data_vars <- sig_data][, 8:ncol(sig_data)]

Pearson correlation

### VEGETACION ###

# # Calculate Pearson correlations based on normality -- "CBI_Suelo", "CBI_vegeta", "
CBI_Promed"

# pearson_corr <- sapply(sig_data_vars[-which(hames(sig_data_vars) == "CBI_vegeta

")l
#

#

# # Create a dataframe for correlation results

# pearson_corr_df <- data.frame(Variable = names(pearson_corr), Correlation = pears
on_corr)

#

# # Sort the results by correlation

# result_corr_df <- pearson_corr_df %>% arrange(desc(Correlation))

# output_name <- "pearson_corr_veg.xlIsx"

# # View the correlation results

# print(result_corr_df)

function(x) cor(x, sig_data_vars$CBI_vegeta, method = "pearson"))

### SUELO ###

# Calculate Pearson correlations based on normality -- "CBI_Suelo", "CBI_vegeta", "C
Bl_Promed"

pearson_corr <- sapply(sig_data_vars[-which(names(sig_data_vars) == "CBl_Suelo")

1.

function(x) cor(x, sig_data_vars$CBI_Suelo, method = "pearson"))

# Create a dataframe for correlation results
pearson_corr_df <- data.frame(Variable = names(pearson_corr), Correlation = pearso
n_corr)

# Sort the results by correlation

result_corr_df <- pearson_corr_df %>% arrange(desc(Correlation))
output_name <- "pearson_corr_suelo.xlsx"

# View the correlation results

print(result_corr_df)

### PROMEDIO ###
# # Calculate Pearson correlations based on normality -- "CBI_Suelo", "CBI_vegeta", "
CBI_Promed"

# pearson_corr <- sapply(sig_data_vars[-which(names(sig_data_vars) == "CBIl_Prome
d")],

# function(x) cor(x, sig_data_vars$CBI_Promed, method = "pearson"))
#

# # Create a dataframe for correlation results
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# pearson_corr_df <- data.frame(Variable = names(pearson_corr), Correlation = pears
on_corr)

#

# # Sort the results by correlation

# result_corr_df <- pearson_corr_df %>% arrange(desc(Correlation))

# output_name <- "pearson_corr_prom.xIsx"

# # View the correlation results

# print(result_corr_df)

Create an output file

# Write the results to an Excel file

data_file_subst <- substr(data_file, 1, nchar(data_file) - 5)
output_file <- paste(data_file_subst, output_name, sep ="_")
write_xlIsx(result_corr_df, output_file)

Graph scatterplot

# Specify the indices for the two variables you want to plot
# x_index <- 1 # column for the x-axis
#y_index <- 101 # column for the y-axis

# Create the scatterplot using ggplot2

# ggplot(sig_data_vars, aes(x = sig_data_vars[[x_index]],
# y = sig_data_vars[[y_index]])) +

# geom_point() +

# labs(x = colnames(sig_data_vars)[x_index],

# y = colnames(sig_data_vars)[y_index],

# title = paste("Scatterplot of",

# colnames(sig_data_vars)[x_index],

# "vs",

# colnames(sig_data_vars)[y_index])) +
# theme_minimal()
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