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RESUMEN  

La evaluación de las perturbaciones post-incendio en los ecosistemas mediterráneos es 

esencial para cuantificar el impacto ecológico y guiar la restauración. Este estudio 

estima la severidad del incendio en la Sierra de la Culebra usando índices de vegetación 

(VIs) derivados de imágenes de satélite hiperespectrales (PRISMA) y multiespectrales 

(Sentinel-2). Se calculó una serie de índices de vegetación: índices de banda ancha 

adaptados a PRISMA, índices específicos de banda estrecha e índices multiespectrales 

estándar para Sentinel-2. Se identificaron los VIs de mejor desempeño analizando su 

eficacia en diferentes tipos de ecosistemas (bosque de coníferas, bosque de frondosas 

y matorral) y tipos del Índice Compuesto de Quemado (CBI; vegetación, suelo y lugar). 

La elaboración de los mapas se realizó según el tipo de sensor, ecosistema y CBI. Los 

datos hiperespectrales proporcionaron una caracterización detallada y continua de las 

propiedades espectrales relacionadas con las clases de severidad de incendio en todos 

los tipos de ecosistemas en comparación con los datos multiespectrales, mostrando 

correlaciones más fuertes con los valores de CBI. El CBI de la vegetación mostró 

mejores correlaciones con los VIs que el CBI del suelo, probablemente debido al diseño 

enfocado en la vegetación de la mayoría de los VIs. Los ecosistemas de bosque 

latifoliado y matorral mostraron valores de correlación más altos que los de bosque de 

coníferas, probablemente debido a las diferencias en la densidad del bosque y la 

estructura de los fustes, así como a la biomasa remanente y las condiciones del suelo 

tras un incendio. Entre los índices con mejores desempeños, los basados en las bandas 

borde rojo, NIR y SWIR fueron los que obtuvieron mejores resultados. En cuanto a los 

datos hiperespectrales, el índice de vegetación diferencial de borde rojo (DVIRED), el 

índice de vegetación mejorado (EVI) y el índice de absorción de celulosa (CAI) 

mostraron su utilidad para evaluar la salud de la vegetación. En cuanto a los datos 

multiespectrales, la diferencia normalizada del borde rojo (NDRE), el índice de clorofila 

del borde rojo (CIREDGE), el índice de vegetación de diferencia normalizada mejorada 

(ENDVI) y el índice de vegetación de diferencia normalizada verde (GNDVI) mostraron 

un gran rendimiento. En particular, el CAI fue el índice hiperespectral más eficaz, 

alcanzando la correlación más alta en este estudio (R2 = 0,808). Esta investigación 

demuestra el importante potencial de las imágenes hiperespectrales para la evaluación 

detallada post-incendio en los ecosistemas mediterráneos. 

 

PALABRAS CLAVES: Sensores remotos, Impacto ecológico post-incendio, PRISMA, índices 

hiperespectrales, CBI. 
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ABSTRACT 

Assessing the post-fire disturbance in Mediterranean ecosystems is essential for 

quantifying ecological impact and guiding restoration. This study estimates the fire 

severity in the Sierra de la Culebra wildfire using vegetation indices (VIs) derived from 

hyperspectral (PRISMA) and multispectral (Sentinel-2) satellite imagery. A range of VIs 

was computed: broadband-based indices adapted for PRISMA, narrowband-specific 

indices, and standard multispectral indices for Sentinel-2. The best-performing VIs were 

identified by analyzing their efficacy across different ecosystem types (coniferous forest, 

broadleaf forest, and shrubland) and Composite Burn Index (CBI) types (vegetation, soil, 

and site). Mapping was conducted by sensor, ecosystem, and CBI type. Hyperspectral 

data provided a detailed and continuous characterization of the spectral properties 

related to fire severity classes across ecosystem types compared to multispectral data, 

showing stronger correlations with CBI values. Vegetation CBI exhibited better 

correlations with VIs than soil CBI, likely due to the vegetation-focused design of most 

VIs. Broadleaf forest and shrubland ecosystems showed higher correlation values than 

coniferous forest probably owing to differences in forest density and stem structure, and 

the subsequent remaining biomass and soil conditions after a fire. Among the best-

performing indices, those based on red edge, NIR, and SWIR bands performed best. For 

hyperspectral data, the red edge difference vegetation index (DVIRED), the enhanced 

vegetation index (EVI), and the cellulose absorption index (CAI) exhibited their 

usefulness for assessing vegetation health. For multispectral data, the normalized 

difference red edge (NDRE), the red edge chlorophyll index (CIREDGE), the enhanced 

normalized difference vegetation index (ENDVI), and the green normalized difference 

vegetation index (GNDVI) showed strong performance. Notably, CAI was the most 

effective hyperspectral index, achieving the highest correlation in this study (R2 = 0.808). 

This research demonstrates the significant potential of hyperspectral imagery for detailed 

post-fire assessment across Mediterranean ecosystems. 

 

KEYWORDS: Remote sensing, post-fire ecological impact, PRISMA, hyperspectral 

indices, CBI. 
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1. INTRODUCTION 

Forest fires are the greatest disturbance in Mediterranean ecosystems worldwide, and 

even more so in the Mediterranean basin, where large areas have been burned in recent 

decades due to abrupt changes in fire regimes caused by climate change (Oliveira et al., 

2012; M. M. Boer et al., 2017; Gonçalves & Sousa, 2017). Fires play an essential role in 

shaping the species composition, structure, and dynamics of Mediterranean plant 

communities (Tessler et al., 2016; Fernández-Guisuraga et al., 2019). Furthermore, fires 

cause physical, chemical, and biological changes in forest soils (Evangelides & Nobajas, 

2020). 

In the study of post-fire environments, the terms fire severity and burn severity are 

frequently used interchangeably, yet they enclose distinct concepts (M. Boer et al., 2008; 

Keeley, 2009). Fire severity refers to the immediate extent of environmental alteration 

induce by a fire event, encompassing changes to both biotic and abiotic components of 

the ecosystem (Lentile et al., 2006; Veraverbeke et al., 2010; Morgan et al., 2014). 

Unlike, burn severity integrates the magnitude of fire-induced environmental change with 

the subsequent trajectory of vegetation recovery. Both fire and burn severity collectively 

describe the impacts of fire on vegetation and soil properties, influencing ecosystem 

structure and function (Key & Benson, 2006; Parsons et al., 2010; Morgan et al., 2014). 

Assessing fire severity is critical for quantifying losses in above- and below-ground 

biomass (Keeley, 2009), evaluating the ecological and socioeconomic impacts of 

wildfires, and informing evidence-based decision-making in land management 

(Fernández-Manso & Quintano, 2020). Fire severity is defined as the magnitude of 

ecological change in a burned area relative to the pre-fire scenario and is measured 

qualitatively as the effects of the fire on vegetation and soil (Key & Benson, 2006; Lentile 

et al., 2009). It is evaluated in the field by analyzing vegetation and soil and integrating 

indices such as the Composite Burn Index (CBI) (Key & Benson, 2006). It is calculated 

by assessing across five structural strata: substrates – ranging from inert materials to 

soil, organic waste, and harvested fuelwood; grasses – herbaceous, low shrubs, and low 

trees layer of height less than 1 m; shrubs and trees – tall shrub and sapling layer 

between 1 and 5 m height; intermediate trees – trees with a diameter between 10 and 

25 cm, and heights between 5 and 20 m; large trees – dominant trees with crowns 

receiving direct sunlight with height above 20 m (De Santis & Chuvieco, 2007; De Bonis 

& Laneve, 2013). In the substrate layer, metrics include fine fuel consumption and 

charcoal characteristics. For the herbaceous, shrub, and lower tree layers (<5 m), the 

percentage of foliage consumed is visually estimated. In taller vegetation layers (≥5 m), 

foliar coloration (green, brown, black) and charcoal deposition depth on tree trunks are 

recorded. To ensure consistency, each plot assessment is performed by at least two 

observers, and only scores reached by consensus are recorded (De Santis & Chuvieco, 

2007; Quintano et al., 2023). The final CBI score per plot, referred to as site CBI, is 

calculated as the mean of scores across all assessed strata. Additionally, vegetation CBI 

derives by averaging scores across vegetation strata only (excluding substrate), and soil 

CBI is calculated using only the substrate stratum scores. Furthermore, fire severity data 

are categorized according to the following CBI thresholds: low (CBI < 1.25), moderate 

(1.25 ≤ CBI ≤ 2.25), and high (CBI > 2.25) (Miller & Thode, 2007; Quintano et al., 2023). 

Remote sensing has become a valuable data source for ecological assessment, as it 

overcomes limitations associated with traditional field-based methods, such as, error-

prone, incomplete, limited, and spatially or temporally inconsistent due to irregular data 
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collection, reducing uncertainty in analyses (Chuvieco et al., 2019). In particular, remote 

sensing is  highly effective for assessing fire severity across large burned landscapes, 

owing to its favorable cost-benefit ratio and synoptic capabilities (Yin et al., 2020). 

The multispectral data provided by Sentinel-2 are commonly used in quantitative fire 

severity assessments (Quintano et al., 2023). It improves the efficiency, speed, and 

feasibility of identifying and monitoring regions at risk of wildfires (Atun et al., 2020). 

Satellite images are also used to determine fire severity over large areas, which are 

validated by the CBI (Holden et al., 2009). 

Hyperspectral remote sensing provides hundreds of contiguous, narrow spectral bands 

with bandwidths of 5 nm to 15 nm (Goetz, 2009; Transon et al., 2018). The availability of 

these data has great potential to provide fire severity estimates that align with post-fire 

management needs. These benefits include reduced logistics costs and the elimination 

of suboptimal sensitivity broadband data (Quintano et al., 2023). Additionally, it enables 

precise within-pixel fractional cover estimates for various ground cover classes, including 

charcoal, which serve as key indicators of fire severity (Veraverbeke et al., 2014; Lewis 

et al., 2017). Vegetation index (VI) calculations from remotely sensed data are critical for 

post-fire recovery assessments, assisting with spatio-temporal analysis and mapping fire 

severity (Chrysafis et al., 2019). VI can highlight the subtleties and characteristics of a 

feature class or a specific feature and can indicate crop development, vegetation and 

non-vegetation, soil, and other related information (Chen et al., 2024). This can be a 

linear or nonlinear combination of two or more spectral bands (Wang et al., 2024). 

Traditional multispectral VIs are limited to the characteristic red, near-infrared, and mid-

infrared bands. These VIs have the disadvantages of a small number of bands, large 

bandwidths, and restricted wavelength positions, which cannot accurately reflect 

biomass characteristics (Wang et al., 2024). Hyperspectral remote sensing, on the other 

hand, has high spectral resolution and spectral information in hundreds of bands (Wang 

et al., 2024). 

Therefore, this study seeks to estimate wildfire severity in arboreal and non-arboreal 

ecosystems in the Sierra de La Culebra using PRISMA hyperspectral indices. The three 

CBI types were evaluated in the field: vegetation, soil, and site, to identify the 

performance of the hyperspectral indices in predicting fire severity at these levels. In 

addition, multispectral indices were calculated from a Sentinel-2 satellite image for 

comparison with the hyperspectral indices. 

2. OBJECTIVE 

The objective of this study is to estimate the fire severity in the Sierra de La Culebra 

following the 2022 wildfire by obtaining a set of vegetation indices (VIs) from PRISMA 

hyperspectral imagery and correlating these with the Composite Burn Index (CBI) at 

vegetation, soil, and site levels. Additionally, the study aims to validate these 

hyperspectral indices by comparing them with multispectral indices derived from 

Sentinel-2 imagery. Furthermore, fire severity will be extrapolated across the entire study 

area at vegetation, soil, and site levels and visualized through mapping. 

  



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data 
 

 
José Alberto Cipra Rodriguez 
Máster en Gestión Forestal basada en Ciencia de Datos - Master on Forest Management based on Data 
Science (DATAFOREST) 

- 8 - 

3. METHODS 

3.1. STUDY AREA 

The Sierra de La Culebra wildfire, located in Zamora, Castilla y León, Spain, was the 

second largest and most destructive fire recorded in the country (Figure 1). This event 

occurred between June 15th and 19th, 2022, affecting a total area of 28 046 ha (Quintano 

et al., 2023). 

The region exhibits diverse topography, characterize by steep slopes and broad valleys, 

with altitudes ranging from 747 to 1205 meters above sea level. The climate is classified 

as Mediterranean, with an average annual temperature of 11°C and an average rainfall 

of 750 mm (Ninyerola et al., 2005). 

 

Figure 1. Location map of Sierra de la Culebra wildfire (top) and field plot distribution over a Sentinel-2 

false color composite - R: band 12; G: band 8A; B: band 4 (image below). 
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Based on the vegetation present before the fire, three main ecosystem groups were 

identified (Figure 2): coniferous forests, dominated by species such as Pinus sylvestris 

L. (Scots pine) and Pinus pinaster Ait. (Maritime pine); broadleaf forests, composed of 

Quercus ilex L. (Holm oak) and Quercus pyrenaica Willd. (European oak); and 

shrublands dominated by Cistus ladanifer L., Pterospartum tridentatum (L.) Willk., Erica 

australis L. and Halimium lasianthum subsp. Alyssoides (Lam.) Greuter, as well as 

Mediterranean grasslands (Quintano et al., 2023). 

Source: Adapted from (Ministerio para la Transición Ecológica y el Reto Demográfico, 

2025). 

3.2. COMPOSITE BURN INDEX (CBI) 

The Composite Burn Index (CBI) is a standardized field measure of fire severity widely 

used to validate satellite-derived remote sensing products (Holden et al., 2009). It is 

calculated through visual assessment of post-fire changes across four vegetation and 

soil strata, providing a general overview of fire damage (Fernández-García et al., 2018). 

In this study, post-fire attributes, such as changes in species composition or new 

additions to the soil, were not considered. 

A total of 70 field plots, each measuring 30 m × 30 m, were surveyed approximately one 

month after the wildfire event (Figure 1). Plots were selected using a random stratified 

sampling design, where strata were defined by the dominant vegetation types, excluding 

Mediterranean grasslands (Quintano et al., 2023). The distribution of plots by ecosystem 

category was as follows: 34 plots in coniferous forests, 20 in broadleaved forests, and 

16 in shrublands. 

Three CBI types were used: vegetation CBI was derived by averaging scores across 

vegetation strata only (excluding substrate), and soil CBI was calculated using only the 

substrate stratum scores. Site CBI was also calculated as the mean of both prior CBIs 

(see Annex A1.1). Fire severity categorization was according to the following CBI 

Figure 2. Map of forestry classification in the Sierra de la Culebra wildfire area. 
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thresholds: low (CBI < 1.25), moderate (1.25 <= CBI <= 2.25), and high (CBI > 2.25) 

(Miller & Thode, 2007). 

Severity classes corresponded to distinct post-fire structural patterns: low severity refers 

to a partial foliage consumption in shrubs and the tree canopy remained almost intact, in 

other words, minimal canopy damage; moderate severity means substantial understory 

consumption with incomplete foliage loss in the canopy; and high severity refers to near-

total consumption of both understory and overstory foliage (Fernández-Guisuraga et al., 

2023). 

3.3. HYPERSPECTRAL AND MULTISPECTRAL SATELLITE IMAGERY 

To assess post-fire vegetation severity in the Sierra de la Culebra, two types of satellite 

imagery were employed: hyperspectral and multispectral. 

The hyperspectral imagery was acquired from the PRecursore IperSpettrale della 

Missione Applicativa (PRISMA) mission, developed by the Italian Space Agency (ASI), 

and downloaded from its platform on July 13th, 2023. PRISMA, launched in March 2019, 

provides hyperspectral satellite data in a spectral range of 400 to 2500 nm, with a spatial 

resolution of 30 m, and swath width of 30 km, enabling detailed spectral discrimination 

of vegetation characteristics. These features make PRISMA a valuable tool for fire 

severity assessment, particularly due to its sensitivity to post-disturbance spectral 

changes in vegetation and soil (Amici & Piscini, 2021).  

The multispectral imagery was obtained from the Sentinel-2 satellite (level 2A product) 

on July 15th, 2022, shortly after the fire event. Sentinel-2, belonging to the European 

Space Agency (ESA) under Copernicus Programme, is equipped with a multispectral 

sensor that offers 13 bands with spatial resolutions of 10 m, 20 m, and 60 m. These 

bands span visible (VIS), red-edge, near-infrared (VNIR), and shortwave infrared (SWIR) 

regions, allowing an assessment of the effects of the fire (Quintano et al., 2023). 

3.4. IMAGE PROCESSING 

The processing of the hyperspectral and multispectral images was carried out using 

Python in Visual Studio Code (see Annexes A5.1 & A5.2). Image handling and 

computation were carried out with specialized libraries such as rasterio, numpy, and 

pandas (Gorelick et al., 2017). 

3.4.1. QUALITY-BASED BAND EXCLUSION AND COREGISTRATION 

To enhance data quality, hyperspectral bands exhibiting low signal-to-noise ratios and 

sensor artifacts were excluded from the analysis. These bands were identified through 

visual inspection, following recommendations from prior studies (Tane et al., 2018; Amici 

& Piscini, 2021). In particular, bands in the 400–434 nm, 1345–1459 nm, 1774–1975 nm, 

2010–2035 nm, and 2469–2505 nm regions were discarded (Quintano et al., 2023). To 

facilitate index calculation and enable comparison with multispectral data, selected 

hyperspectral bands were aggregated and renamed according to standard wavelength 

regions: blue (400-500 nm), green (500-600 nm), red (600-700 nm), red edge (700-750 

nm), near-infrared (NIR; 750-1050 nm), and shortwave infrared (SWIR; 1050-2500 nm). 

As a result, the number of hyperspectral bands was reduced from 233 to 191, and these 
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bands were relabeled with both hyperspectral and multispectral names for the vegetation 

index (VI) computation (see Annex A2.1). Otherwise, Sentinel-2 multispectral imagery 

bands used in this study included blue (B2), green (B3), red (B4), red edge (B5, B6, & 

B7), near-infrared (B8, & B8A), shortwave infrared 1 (B11), and shortwave infrared 2 

(B12). All other bands were excluded (see Annex A2.2). 

In addition, to ensure precise spatial alignment between the PRISMA hyperspectral 

image and the Sentinel-2 multispectral image, a co-registration process was conducted. 

This step was essential to allow pixel-by-pixel comparison and accurate VI computation. 

Ground control points were manually selected and used to geometrically align the 

images (Gorelick et al., 2017). 

3.4.2. VEGETATION INDICES COMPUTATION 

Vegetation indices (VIs) were calculated from both hyperspectral and multispectral 

imagery to quantify post-fire vegetation and soil changes across the study area. A total 

of 140 spectral indices were computed, 40 multispectral and 100 purely hyperspectral, 

enabling a comprehensive evaluation of fire severity responses (see Annex A3.1). 

Classical broadband indices, such as the Normalized Difference Vegetation Index 

(NDVI) and the Normalized Burn Ratio (NBR), were calculated using both Sentinel-2 and 

PRISMA data. These indices are based on reflectance from broad spectral regions and 

are commonly used for large-scale vegetation monitoring and burn severity 

assessments. 

In contrast, hyperspectral indices, including the Leaf Chlorophyll Index (LCI), Normalized 

Difference Nitrogen Index (NDNI), and Cellulose Absorption Index (CAI), rely on narrow 

spectral bands that are available only in hyperspectral datasets. Notably, the 

computation of these indices involved testing permutations of the VI formula, 

incorporating two bands immediately below and above the target band for each index. 

These indices are specifically designed to detect subtle physiological or structural 

changes in vegetation, such as chlorophyll degradation, nitrogen content variation, or 

cellulose loss, often linked to fire damage (Clark et al., 2005). 

For clarity throughout this study, hyperspectral indices refer to indices calculated 

exclusively from PRISMA hyperspectral data, regardless of whether their original 

formulation was for hyperspectral or multispectral use. Multispectral indices refer to 

indices derived from Sentinel-2 multispectral data. Hyperspectral indices are generally 

more sensitive than multispectral ones in detecting fine-scale spectral variations, 

particularly in transition zones between burn severity classes. This increased sensitivity 

is attributed to the availability of narrow, contiguous bands, which allow for more precise 

detection of biochemical changes in vegetation and soil properties following fire (Clark 

et al., 2005). 

3.5. STATISTICAL ANALYSIS 

All statistical analyses were conducted in R version 4.4.2 (R Development Core Team, 

2019; see Annex A5.3). Simple linear regression models were employed to analyze each 

VI as the independent variable, with CBI values as the dependent variable. This 

approach allowed for the identification of VIs most strongly associated with fire severity. 

Prior to VI analysis, raw hyperspectral and multispectral bands were correlated with CBI 
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to identify bands likely to contribute to highly correlated VIs. Two primary performance 

metrics were used to evaluate model accuracy. The coefficient of determination (R²) was 

used to measure the proportion of variability in the CBI data explained by each VI. Values 

approaching 1 indicate strong explanatory power and high predictive performance. The 

Pearson correlation coefficient (r) evaluated the strength and direction of the linear 

relationship between VI and CBI. Additionally, the root mean square error (RMSE) was 

used to quantify the dispersion of observed values relative to those predicted by the 

model. Lower RMSE values indicate better model fit and reduced deviation between 

predicted and actual data (Qiao et al., 2022). 

3.6. MAPPING FIRE SEVERITY USING CBI ANALYSIS 

Fire severity across the study area was assessed using both PRISMA hyperspectral and 

Sentinel-2 multispectral imagery by calculating VI tailored to the three ecosystem types 

(coniferous forest, broadleaf forest, and shrubland). For each ecosystem, the VI with the 

highest R2 to CBI type value was selected, based on the prior regression analyses. CBI 

values were categorized into three severity levels: low (CBI < 1.25), moderate (1.25 ≤ 

CBI ≤ 2.25), and high (CBI > 2.25), following established thresholds. These CBI-VI 

relationship were then extrapolated to the entire study area by applying the selected VIs 

to the corresponding spectral imagery, mapping fire severity spatially. 
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4. RESULTS 

4.1. SPECTRAL SIGNATURES 

Figure 2 presents the spectral characteristics derived from PRISMA and Sentinel-2 data 

for three ecosystem types in the Sierra la Culebra wildfire. The spectral signatures are 

categorized by sensor type and ecosystem type, with mean fire severity classes depicted 

as colored lines (low severity: green; moderate severity: brown; high severity: red) and 

the overall mean spectral signature shown as a black line.  

Figure 2. Spectral characteristics of study plots of burned vegetation by ecosystem types derived from PRISMA 
and Sentinel-2 imagery in the Sierra La Culebra wildfire. 
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4.2. BEST-PERFORMING SPECTRAL INDICES 

A comprehensive set of vegetation indices (VIs) was calculated, comprising 100 purely 

hyperspectral indices from PRISMA imagery and 40 multispectral indices derived from 

PRISMA and Sentinel-2 imagery. To determine the optimal index for each sensor, CBI, 

and ecosystem types, the coefficient of determination (R2) was employed as the primary 

evaluation metric. Additionally, the Pearson correlation coefficient (r) was utilized to 

assess the strength and direction of linear relationships, while the root mean squared 

error (RMSE) was used to evaluate prediction error and data variability (Figures 3 & 4). 

All hyperspectral and multispectral indices computed showed diverse fitting (see 

Annexes A4.1 & A4.2). The best-performing hyperspectral and multispectral indices are 

exhibited in Table 1 showed varying correlations depending on the CBI type and 

ecosystem type analyzed. This highlights the importance of selecting indices specific to 

each ecological context and analysis objective.  

Table 1. Best-performing spectral indices correlated with CBI class and ecosystem type. 

 
Ecosystem 

vegetation CBI soil CBI site CBI 

VI R2 VI R2 VI R2 

H
Y

P
E

R
S

P
E

C
T

R
A

L
 

C
o

n
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e

ro
u

s
 

fo
re

s
t 

DVIRED[ρ729(VIS),

ρ802(NIR)]

 
0.739 

EVI[ρ485(VIS),
ρ614(VIS) ,

ρ877(NIR)]

 
0.443 

EVI[ρ485(VIS),
ρ699(VIS) ,

ρ877(NIR)]

 
0.611 

B
ro

a
d

le
a
f 

fo
re

s
t CAI[ρ1976(SWIR) ,

ρ2199(SWIR) ,

ρ2103(SWIR)]

 
0.752 

CAI[ρ2036(SWIR) ,
ρ2199(SWIR) ,

ρ2103(SWIR)]

 
0.705 

CAI[ρ2036(SWIR) ,
ρ2199(SWIR) ,

ρ2103(SWIR)]

 
0.766 

S
h

ru
b

la
n
d
 

CAI[ρ1993(SWIR) ,
ρ2199(SWIR) ,

ρ2086(SWIR)]

 
0.798 

CAI[ρ1993(SWIR) ,
ρ2199(SWIR) ,

ρ2086(SWIR)]

 
0.770 

CAI[ρ1993(SWIR) ,
ρ2199(SWIR) ,

ρ2086(SWIR)]

 
0.808 

M
U

L
T

IS
P

E
C

T
R

A
L

 

C
o

n
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e
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u

s
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s
t 

NDRE[𝐵5(Red edge),

𝐵8(NIR)]

 
0.778 

CIREDGE[𝐵5(Red edge),

𝐵8(NIR)]

 
0.309 

CIREDGE[𝐵5(Red edge),

𝐵8(NIR)]

 
0.634 

B
ro

a
d

le
a
f 

fo
re

s
t ENDVI[𝐵5(Red edge),

𝐵3(Green) ,

𝐵2(Blue)]

 
0.509 

ENDVI[𝐵5(Red edge),

𝐵3(Green) ,

𝐵2(Blue)]

 
0.442 

ENDVI[𝐵5(Red edge),

 𝐵3(Green),

𝐵2(Blue)]

 
0.532 

S
h

ru
b

la
n
d
 

GNDVI [𝐵3(Green) ,

𝐵5(Red edge),

𝐵8𝐴(NIR narrow)]

 
0.738 

GNDVI [B3(Green),

𝐵5(Red edge),

𝐵8𝐴(NIR narrow)]

 
0.624 

GNDVI [𝐵3(𝐺𝑟𝑒𝑒𝑛),

𝐵5(Red edge),

𝐵8𝐴(NIR narrow)]

 
0.705 
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Regarding the performance of the CBI types, the best correlations were observed with 

the vegetation CBI. In contrast, the soil CBI showed lower correlations and the site CBI 

showed intermediate performance, which is consistent with being the average of the 

other two classes. Otherwise, shrubland ecosystem obtained, on average, the highest 

correlations with the CBI, followed by the broadleaf forest and the coniferous forest.  

The hyperspectral indices that were best correlated with CBI values were the cellulose 

absorption index (CAI), the red edge difference vegetation index (DVIRED), and the 

enhanced vegetation index (EVI). Regarding multispectral indices, the vegetation indices 

that showed the best correlation were the normalized difference red edge (NDRE), the 

red edge chlorophyll index (CIREDGE), the enhanced normalized difference vegetation 

index (ENDVI), and the green normalized difference vegetation index (GNDVI). 

The hyperspectral index that appeared most frequently as the best performer was CAI, 

which was most prominent in broadleaf forest and shrubland ecosystems with all CBI 

classes. Throughout the analysis with hyperspectral data, the VI with the best correlation 

was the CAI with the site CBI and shrubland ecosystem, obtaining a value of -0.899 (R2 

= 0.808). Regarding the multispectral data, the ENDVI and GDNVI indices were the ones 

with the highest number of occurrences and the best performer, standing out in the 

broadleaf forest and shrubland in the vegetation, soil, and site CBI. However, the NDRE 

index applied to coniferous forests with the vegetation CBI was the one that presented 

the best correlation among the multispectral indices, with a value of -0.882 (R2 = 0.778). 
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4.3. SPECTRAL INDICES CORRELATION 

The selected hyperspectral indices exhibited negative Pearson correlation in all cases, 

as depicted in Figure 3. Pearson correlation between hyperspectral VI values and CBI 

across coniferous forest, broadleaf forest, and shrubland ecosystems is strongly 

negative.  For coniferous forest, the DVIRED index (729 nm/802 nm) with vegetation CBI 

yielded the highest correlation (R2 = 0.739, r = -0.866, RMSE = 0.386), while the EVI 

index (485 nm/614 nm/877 nm) with soil CBI showed a weaker relationship (R2 = 443, r 

= -0.666, RMSE = 0.454). In broadleaf forest, the CAI index (2036 nm/2199 nm/2103 

nm) with site CBI performed best (R2 = 0.766, r = -0.875, RMSE = 0.348). For shrublands, 

the CAI index (1993 nm/2199 nm/2086 nm) with site CBI exhibited the strongest 

relationship (R2 = 0.808, r = -0.899, RMSE = 0.359), followed closely by CAI at 1993 

nm/2199 nm/2086 nm (R2 = 0.798, r = -0.894, RMSE = 0.409) with vegetation CBI. These 

findings highlight the efficacy of hyperspectral indices in assessing vegetation and site 

CBI across diverse ecosystem types, with CAI consistently outperforming other indices 

in broadleaf and shrubland settings. 

 

Figure 3. Relationship between hyperspectral vegetation index values and vegetation, soil, and site CBI 
across ecosystem types. 
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The results presented in Figure 4 reveal the relationship between multispectral VI values 

and CBI across coniferous forest, broadleaf forest, and shrubland ecosystems. In 

coniferous forests, the NDRE B5/B8 index with vegetation CBI showed the strongest 

correlation (R2 = 0.778, r = -0.882, RMSE = 0.338), while CIREDGE B5/B8 with soil CBI 

had the weakest fit (R2 = 0.309, r = -0.556, RMSE = 0.506). For broadleaf forests, ENDVI 

B5/B3/B2 with site CBI exhibited the highest correlation (R2 = 0.532, r = -0.729, RMSE 

= 0.492), with ENDVI B5/B3/B2 with vegetation CBI showing a moderate relationship (R2 

=0.509, r = -0.714, RMSE = 0.569) and ENDVI B5/B3/B2 with soil CBI a slightly weaker 

one (R2 =0.442, r = -0.665, RMSE = 0.525). In shrubland, GNDVI B3/B5/B8A with 

vegetation CBI performed best (R2 =0.738, r = -0.859, RMSE = 0.466), followed closely 

by GNDVI B3/B5/B8A with site CBI (R2 =0.705, r = -0.840, RMSE = 0.445), while GNDVI 

B3/B5/B8A showed a slightly lower correlation (R2 =0.624, r = -0.790, RMSE = 0.459). 

These results indicate that multispectral indices, particularly NDRE B5/B8 and GNDVI 

B3/B5/B8A, are effective for assessing vegetation and soil CBI, with varying performance 

across ecosystem types. 

 

 

  

Figure 4. Relationship between multispectral vegetation index values and vegetation, soil, and site CBI across 
ecosystem types. 
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4.4. SPATIAL DISTRIBUTION OF FIRE SEVERITY 

Table 2 shows the vegetation fire severity area by ecosystem type using the 

hyperspectral (PRISMA) or multispectral (Sentinel-2) indices. For PRISMA, the DVIRED 

index highlighted a significant high-severity area (6427 ha, 25.6%) in coniferous forests, 

with moderate (2065 ha, 8.2%) and low (562 ha, 2.2%) severity areas also notable. In 

broadleaf forests, the CAI index identified high severity at 1693 ha (6.7%), with moderate 

and low severity areas closely at 1844 ha each (7.3%). Shrubland showed a high-

severity area of 4477 ha (17.8%) using CAI, with moderate (3235 ha, 12.9%) and low 

(2952 ha, 11.8%) severity regions. Sentinel-2 data, using NDRE, ENDVI, and GNDVI 

indices, corroborated these findings, with coniferous forests exhibiting a high-severity 

area of 6743 ha (26.9%), broadleaf forests at 1626 ha (6.5%), and shrublands at 3966 

ha (15.8%). The spatial distribution maps (Figures 5 & 6) reveal a predominance of high-

severity area (red) across all ecosystems, particularly in central regions, with moderate 

(brown) and low (green) severity patches interspersed, indicating the utility of both data 

types in mapping fire severity, with hyperspectral data enhancing precision in ecosystem-

specific analysis. 

Table 2. Vegetation fire severity areas by ecosystem type using hyperspectral (PRISMA) and multispectral 
(Sentinel-2) indices 

Ecosystem 
Vegetation 

fire 
severity 

PRISMA 
(hyperspectral) 

SENTINEL-2 
(multispectral) 

VI 
Area 
(ha) 

% VI 
Area 
(ha) 

% 

C
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ro
u

s
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re

s
t 

Low 

DVIRED[ρ729(VIS),

ρ802(NIR)]

 

562 2.2 

NDRE[𝐵5(Red edge),

 B8(NIR)]

 

376 1.5 

Moderate 2065 8.2 1937 7.7 

High 6427 25.6 6743 26.9 

B
ro

a
d

le
a
f 

fo
re

s
t 

Low 

CAI[ρ1976(SWIR),
ρ2199(SWIR) ,

ρ2103(SWIR)]

 

1843 7.3 

ENDVI[𝐵5(Red edge),

𝐵3(Green) ,

𝐵2(Blue)]

 

1233 4.9 

Moderate 1844 7.3 2526 10.1 

High 1693 6.7 1626 6.5 

S
h

ru
b

la
n
d
 

Low 
CAI[ρ1993(SWIR),

ρ2199(SWIR) ,

ρ2086(SWIR)]

 
2952 11.8 

GNDVI [𝐵3(Green) ,

𝐵5(Red edge),

𝐵8𝐴(NIR narrow)]

 
3066 12.2 

Moderate 3235 12.9 3588 14.3 

High 4477 17.8 3966 15.8 
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Figure 5. Map of vegetation fire severity in the Sierra de la Culebra wildfire area using hyperspectral indices 
across ecosystem types. 

Figure 6. Map of vegetation fire severity in the Sierra de la Culebra wildfire area using multispectral indices 
across ecosystem types 
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Soil fire severity analysis using hyperspectral (PRISMA) and multispectral (Sentinel-2) 

indices is shown in Table 3. For coniferous forests, PRISMA’s EVI index indicated 

moderate severity as the dominant category (7326 ha, 29.3%), with low (708 ha, 2.8%) 

and high (1021 ha, 4.1%) severity areas being less extensive, while Sentinel-2’s 

CIREDGE index showed a significant moderate severity area (8577 ha, 34.2%) and 

minimal high severity (143 ha, 0.6%). In broadleaf forests, PRISMA’s CAI index identified 

moderate severity as prevalent (2667 ha, 10.7%), with low (2129 ha, 8.5%) and high 

(520 ha, 2.1%) severity areas, whereas Sentinel-2’s ENDVI index showed a higher 

moderate severity area (3663 ha, 14.6%) and low severity (1634 ha, 6.5%). For 

shrubland, PRISMA’s CAI index revealed a substantial low severity area (3669 ha, 

14.7%), with moderate (4648 ha, 18.6%) and high (2347 ha, 9.4%) severity regions, 

while Sentinel-2’s GNDVI index indicated a dominant moderate severity area (5621 ha, 

22.4%) and a notable low severity area (3647 ha, 14.6%). The spatial maps (Figures 7 

& 8) depict a widespread distribution of moderate severity (brown) across all ecosystems, 

with high severity (red) concentrated in central regions and low severity (green) patches 

scattered throughout, suggesting that both spectral indices effectively capture soil fire 

severity variations, with PRISMA providing finer detail and Sentinel-2 offering a robust 

broad-scale perspective. 

Table 3. Soil fire severity areas by ecosystem type using hyperspectral (PRISMA) and multispectral 
(Sentinel-2) indices 

Ecosystem 
Soil fire 
severity 

PRISMA 
(hyperspectral) 

SENTINEL-2 
(multispectral) 

VI 
Area 
(ha) 

% VI 
Area 
(ha) 

% 

C
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n
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e
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s
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s
t 

Low 
EVI[ρ485(VIS),

ρ614(VIS),

ρ877(NIR)]

 
708 2.8 

CIREDGE[𝐵5(Red edge),

𝐵8(NIR)]

 

334 1.3 

Moderate 7326 29.3 8577 34.2 

High 1021 4.1 143 0.6 

B
ro

a
d

le
a
f 

fo
re

s
t 

Low 
CAI[ρ2036(SWIR),

ρ2199(SWIR),

ρ2103(SWIR)]

 
2129 8.5 

ENDVI[𝐵5(Red edge),

𝐵3(Green) ,

𝐵2(Blue)]

 
1634 6.5 

Moderate 2667 10.7 3663 14.6 

High 520 2.1 88 0.4 

S
h

ru
b

la
n
d
 

Low 
CAI[ρ1993(SWIR),

 ρ2199(SWIR) ,

ρ2086(SWIR)]

 
3669 14.7 

GNDVI [𝐵3(Green) ,

𝐵5(Red edge),

𝐵8𝐴(NIR narrow)]

 
3647 14.6 

Moderate 4648 18.6 5621 22.4 

High 2347 9.4 1353 5.4 
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Figure 7. Map of soil fire severity in the Sierra de la Culebra wildfire area using hyperspectral indices across 
ecosystem types. 

Figure 8. Map of soil fire severity in the Sierra de la Culebra wildfire area using multispectral indices across ecosystem 
types. 
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Site fire severity analysis across coniferous forest, broadleaf forest, and shrubland 

ecosystems in the Sierra de la Culebra wildfire area, as assessed using hyperspectral 

(PRISMA) and multispectral (Sentinel-2) indices is shown in Table 4. For coniferous 

forests, PRISMA's EVI index identified moderate severity as the most extensive category 

(3607 ha, 14.4%), with high severity (4920 ha, 19.6%) and low severity (528 ha, 2.1%) 

areas also significant, while Sentinel-2's CIREDE index showed a dominant high severity 

area (5649 ha, 22.5%) and moderate severity (3047 ha, 12.2%). In broadleaf forests, 

PRISMA's CAI index highlighted moderate severity (2506 ha, 10.0%) as prevalent, with 

low (1883 ha, 7.5%) and high (991 ha, 3.9%) severity areas, whereas Sentinel-2's ENDVI 

index indicated a substantial moderate severity area (3319 ha, 13.2%) and low severity 

(1394 ha, 5.6%). For shrublands, PRISMA's CAI index revealed a notable low severity 

area (3251 ha, 13.0%), with moderate (3922 ha, 15.6%) and high (3392 ha, 13.9%) 

severity regions, while Sentinel-2's GNDVI index showed a significant moderate severity 

area (4608 ha, 18.4%) and low severity (3300 ha, 13.2%). The spatial maps (Figures 9 

& 10) describe a widespread presence of high severity (red) across all ecosystems, 

particularly in central regions, with moderate (brown) and low (green) severity patches 

distributed throughout, indicating that both hyperspectral and multispectral indices 

effectively map site fire severity. 

Table 4. Site fire severity areas by ecosystem type using hyperspectral (PRISMA) and multispectral 
(Sentinel-2) indices 

Ecosystem 
Site fire 
severity 

PRISMA 
(hyperspectral) 

SENTINEL-2 
(multispectral) 

VI 
Area 
(ha) 

% VI 
Area 
(ha) 

% 

C
o

n
if
e

ro
u

s
 

fo
re

s
t 

Low 
EVI[ρ485(VIS) ,

ρ699(VIS),

ρ877(NIR)]

 
528 2.1 

CIREDGE[𝐵5(Red edge),

𝐵8(NIR)]

 

359 1.4 

Moderate 3607 14.4 3047 12.2 

High 4920 19.6 5649 22.5 

B
ro

a
d

le
a
f 

fo
re

s
t 

Low 
CAI[ρ2036(SWIR) ,

ρ2199(SWIR),

ρ2103(SWIR)]

 
1883 7.5 

ENDVI[𝐵5(Red edge),

B3(𝐺𝑟𝑒𝑒𝑛),

𝐵2(Blue)]

 
1394 5.6 

Moderate 2506 10.0 3319 13.2 

High 991 3.9 662 2.6 

S
h

ru
b

la
n
d
 

Low 
CAI[ρ1993(SWIR) ,

ρ2199(SWIR),

ρ2086(SWIR)]

 
3251 13.0 

GNDVI [B3(𝐺𝑟𝑒𝑒𝑛),

𝐵5(Red edge),

𝐵8𝐴(NIR narrow)]

 
3300 13.2 

Moderate 3922 15.6 4608 18.4 

High 3492 13.9 2712 10.8 
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Figure 9. Map of site fire severity in the Sierra de la Culebra wildfire area using hyperspectral indices across 

ecosystem types. 

Figure 10. Map of site fire severity in the Sierra de la Culebra wildfire area using multispectral indices across 
ecosystem types. 
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5. DISCUSSION 

The hyperspectral data obtained from the PRISMA satellite provided a more thorough 

and continuous characterization of the spectral properties associated with fire severity 

levels across various ecosystem types compared to multispectral data. This finding 

aligns with a previous study conducted in a hilly and mountainous landscape dominated 

by Mediterranean oak and pine species (Vangi et al., 2021). The spectral signatures of 

vegetation display distinct variations across fire severity levels, particularly in the red, 

near-infrared (NIR), and short-wave infrared (SWIR) regions of the electromagnetic 

spectrum. Areas affected by low-severity fires exhibit high reflectance in the NIR band, 

attributed to intact internal leaf structures, and reduced reflectance in the red band due 

to chlorophyll absorption. Conversely, high-severity fires result in significantly decreased 

NIR reflectance, caused by the degradation of canopy structure and loss of pigment 

content, alongside elevated SWIR reflectance due to reduced water content and the 

presence of char and ash (Key & Benson, 2006). 

Hyperspectral indices showed a stronger correlation with CBI values compared to those 

derived from multispectral data. For example, the hyperspectral indices in relation to the 

site CBI presented a mean correlation of -0.852 (R2 = 0.728), while the corresponding 

multispectral index reached a correlation of -0.788 (R2 = 0. 624). These results confirm 

the greater capacity of hyperspectral images to capture greater details in fire severity, in 

agreement with previous studies that also highlight the superiority of PRISMA images 

over Sentinel-2 images (Vangi et al., 2021; Quintano et al., 2023). The higher sensitivity 

of the narrow bands of hyperspectral images allows a more precise detection of physical 

and chemical changes in vegetation, making them suitable for assessing fire severity 

(Adam et al., 2010). Furthermore, it was determined that the coarser spatial resolution 

of PRISMA does not inherently underperform compared to the finer spatial resolution of 

Sentinel-2 (M. Liu et al., 2020; Vangi et al., 2021). 

The vegetation CBI showed the best correlations with spectral indices across all 

ecosystem types (coniferous forest, broadleaf forest, and shrubland), using both 

PRISMA hyperspectral and Sentinel-2 multispectral data. This may be because 

vegetation indices (VIs) are specifically designed to detect vegetation cover-related 

characteristics, such as chlorophyll content, vegetation density, and plant vigor (Meng & 

Zhao, 2017). Besides, outperforming correlations of vegetation CBI over soil is likely due 

to the planimetry of the images, which better captures the upper vegetation strata rather 

than the soil (Peña & Martínez, 2021). 

On the other hand, the strongest negative correlations between spectral indices and soil 

and site CBIs were observed primarily in broadleaf forest and shrubland ecosystems, but 

not in coniferous forests. One possible explanation is the distinct spectral responses 

emitted depending on the vegetation type assessed (Aldana et al., 2020; Flores 

Rodríguez et al., 2021; Peña & Martínez, 2021). Furthermore, factors such as forest 

density and stem structure can influence sensor detection of soil conditions, as these 

characteristics affect the amount of remaining biomass and soil exposure after a fire 

(Robichaud et al., 2007; García-Llamas et al., 2019). 

The calculated hyperspectral indices showed strong negative correlations, greater than 

-0.850 (R2 = 0.722), with the vegetation CBI and all ecosystems. Broadleaf forest and 

shrubland ecosystems stood out for presenting the best correlations between 

hyperspectral indices and all CBI types. This behavior can be attributed to the different 

dynamics of ecosystems and the adaptive characteristics of plant species in response to 
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fire, such as tolerance or resistance to burning, which result chemical compositions that 

are detected more accurately by the narrow bands of hyperspectral sensors through 

specific band combinations (Rodríguez-Trejo & Fulé, 2003; Adam et al., 2010). 

Soil composition varies across ecosystems due to differences in the biomass input 

provided by plant species. This input includes differences in mass, volume, and chemical 

compounds, such as leaves, needles, and other organic debris (Calvo et al., 2003). 

These differences explain why certain spectral indices performed better depending on 

the ecosystem type. 

The hyperspectral and multispectral image bands that more frequently came up in the 

best correlated indices with the CBI were the red edge, NIR, and SWIR bands which 

have proved their usefulness in forest fire analysis (Chuvieco et al., 2006; Carvajal-

Ramírez et al., 2019; Fernández-Manso & Quintano, 2020). In contrast to commonly 

utilized VIs, such as the Normalized Difference Vegetation Index (NDVI) and the 

Normalized Burn Ratio (NBR), these indices showed limited effectiveness in correlating 

with the Composite Burn Index (CBI) due to their reliance on the red spectral band, which 

exhibited weak correlations with field-based burn severity measurements. This reduced 

correlation is likely attributable to their heightened sensitivity to denser canopy structures 

(Fernández-Manso et al., 2016). The selection of the most appropriate index for fire 

severity analysis is context-dependent, and the optimal index should be chosen based 

on the specific conditions of each case (Flores Rodríguez et al., 2021). 

Hyperspectral indices such as DVIRED, EVI, and CAI are particularly valuable for 

assessing vegetation health due to their sensitivity to variations in leaf reflectance and 

biomass (Qiao et al., 2022). DVIRED can be used to assess vegetation-covered areas, 

particularly under heterogeneous conditions, though its value for shadowed soil is 

typically low and less responsive to vegetation cover on such soil (Y. Liu et al., 2021). 

EVI is designed for high-biomass forests to account for the combined effects of canopy 

background and atmospheric influences (H. Q. Liu & Huete, 1995). CAI measures the 

relative depth of reflectance spectra at 2100 nm to distinguish plant litter from soils based 

on spectral reflectance differences driven by physical and chemical properties, with 

coniferous litter exhibiting a higher response value than deciduous litter, both surpassing 

soil, due to the cellulose-lignin absorption feature in the SWIR wavelengths (Nagler et al., 

2000). 

The most effective Sentinel-2 spectral indices for assessing fire severity are those 

derived from band B5, located in the red-edge region near red wavelengths and primarily 

associated with variations in chlorophyll content, and bands B8 or B8A, situated in the 

narrow NIR region and predominantly linked to changes in leaf structure. These findings 

are consistent with previous studies (Fernández-Manso et al., 2016). In this study, 

multispectral indices such as NDRE, CIREDGE, ENDVI, and GNDVI were effective for 

detecting variations in chlorophyll, biomass, and fire severity, providing insights into 

vegetation health and density (Imran et al., 2020). NDRE, derived from the NDVI formula 

but utilizing the red edge band, serves as a reliable indicator of chlorophyll or nitrogen 

status (Fitzgerald et al., 2006). CIREDGE enables estimation of chlorophyll content in 

canopies, facilitating the monitoring of physiological status, mainly in crops such as 

maize and soybean (Gitelson et al., 2005). ENDVI, which leverages green and blue 

wavelengths to enhance chlorophyll absorption values, particularly chlorophyll-b, is 

applied in agricultural monitoring and assessing peatland disturbance (Strong et al., 

2017). GNDVI was originally developed to evaluate plant chlorophyll status in wheat, 
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closely associated with nitrogen status and other stress factors (Hunt et al., 2010). Unlike 

multispectral indices, the identification of specific hyperspectral VIs enhances the remote 

assessment of vegetation and soil fire severity, offering greater precision (Hudak et al., 

2007; Carvajal-Ramírez et al., 2019). This detailed understanding of vegetation and soil 

fire severity supports the planning of ecological restoration strategies and post-fire 

monitoring, concentrating efforts on priority areas (García-Llamas et al., 2019). 

The findings of this study highlight several key directions for future research to refine fire 

severity assessment methodologies. Developing adaptive algorithms that incorporate 

vegetation type, meteorological conditions during image acquisition, and topographic 

slope could enhance the accuracy of fire severity detection (Chuvieco et al., 2019). 

However, the timing of image acquisition requires careful consideration; extended 

intervals, such as 1-year post-fire, could compromise precision due to seasonal 

precipitation and high r 

ate regrowth of shrubs and grasses, which can mask fire severity signals (Key & Benson, 

2006; Fornacca et al., 2018). Furthermore, defining forest fire boundaries as the study 

area is critical to reduce variability in spectral index values, thereby improving result 

reliability (Flores Rodríguez et al., 2021). SWIR-based VIs have been shown in other 

research studies to exhibit greater accuracy when applied to wildfire areas larger than 

25 ha, indicating that larger fire extents may yield better detection outcomes (Bastarrika 

et al., 2011). To ensure robust validation, maximizing the number of field reference sites 

(plots) is essential for achieving a representative distribution across the study area 

(Flores Rodríguez et al., 2021). Additionally, adopting a bitemporal image analysis 

approach—comparing pre- and post-fire conditions—could better isolate vegetation 

changes caused by fire, distinguishing them from changes due to pre-existing stressors 

such as plagues, drought, hurricanes, or prior fires (Flores Rodríguez et al., 2021). 

Additionally, other hyperspectral imagery source is necessary to study. Fire severity 

analyses should be designed to support wildfire management agencies responsible for 

forest monitoring, enhancing their ability to make timely and informed decisions. 
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6. CONCLUSION 

This study demonstrates that hyperspectral indices derived from PRISMA imagery 

provided superior estimates of fire severity in the Sierra de La Culebra following the 2022 

wildfire compared to multispectral indices from Sentinel-2 imagery. Specifically, stronger 

correlations were observed with the Composite Burn Index (CBI) at the vegetation level, 

likely due to the enhanced detectability of vegetation strata in satellite imagery planimetry 

compared to soil and site levels. Among the vegetation types assessed, broadleaf forest 

and shrubland ecosystems exhibited higher correlations with CBI than coniferous 

forests, suggesting that plant species' adaptations to fire significantly influence spectral 

responses captured by satellite imagery. The Cellulose Absorption Index (CAI) emerged 

as the most effective hyperspectral index, achieving the highest correlation in the study 

(R2 = 0.808, r = -0.899, RMSE = 0.359). Meanwhile, Green Normalized Difference 

Vegetation Index (GNDVI) became the best-performing multispectral index (R2 = 0.738, 

r = -0.859, RMSE = 0.466). These findings highlight the efficacy of hyperspectral imagery 

for precise fire severity assessment and its potential for mapping fire impacts across 

diverse ecosystems. 
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ANNEX 1 – Field data 

A1.1. Composite Burn Index (CBI) mean values for study plots in the Sierra de la Culebra 

Wildfire. 

Ecosystem type Number of plots 
CBI mean values 

Vegetation Soil Site 

Coniferous forest 34 2.25 1.82 2.03 

Broadleaf forest 20 1.82 1.52 1.67 

Shrubland 16 2.07 1.68 1.88 

Total 70 2.09 1.70 1.89 
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ANNEX 2 – Wavelengths of PRISMA hyperspectral imagery 

A2.1. Spectral band alignment of PRISMA based on Sentinel-2 wavelengths 

Hyperspectral band name Multispectral band name Wavelength (nm) 

1 Blue 434.31 

2 Blue 441.66 

3 Blue 449.03 

4 Blue 456.38 

5 Blue 463.73 

6 Blue 470.95 

7 Blue 478.18 

8 Blue 485.41 

9 Blue 492.70 

10 Green 500.14 

11 Green 507.66 

12 Green 515.18 

13 Green 522.92 

14 Green 530.67 

15 Green 538.49 

16 Green 546.48 

17 Green 554.56 

18 Green 562.74 

19 Green 571.00 

20 Green 579.35 

21 Green 587.82 

22 Green 596.48 

23 Red 605.39 

24 Red 614.17 

25 Red 623.20 

26 Red 632.13 

27 Red 641.33 

28 Red 650.79 

29 Red 660.26 

30 Red 669.82 

31 Red 679.47 

32 Red 689.42 

33 Red 699.10 

34 Red Edge 709.00 

35 Red Edge 719.17 

36 Red Edge 729.24 

37 Red Edge 739.42 

38 Red Edge 749.73 

39 NIR 760.10 

40 NIR 770.53 
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41 NIR 780.91 

42 NIR 791.36 

43 NIR 801.94 

44 NIR 812.54 

45 NIR 823.15 

46 NIR 833.75 

47 NIR 844.43 

48 NIR 855.18 

49 NIR 865.95 

50 NIR 876.64 

51 NIR 887.27 

52 NIR 897.99 

53 NIR 908.64 

54 NIR 919.18 

55 NIR 929.39 

56 NIR 939.86 

57 NIR 951.36 

58 NIR 962.26 

59 NIR 972.63 

60 NIR 951.01 

61 NIR 959.52 

62 NIR 969.39 

63 NIR 978.74 

64 NIR 988.41 

65 NIR 998.37 

66 NIR 1008.17 

67 NIR 1017.98 

68 NIR 1028.81 

69 NIR 1037.76 

70 NIR 1047.43 

71 SWIR 1 1057.38 

72 SWIR 1 1067.61 

73 SWIR 1 1078.04 

74 SWIR 1 1088.59 

75 SWIR 1 1099.11 

76 SWIR 1 1109.74 

77 SWIR 1 1120.49 

78 SWIR 1 1131.14 

79 SWIR 1 1141.87 

80 SWIR 1 1152.47 

81 SWIR 1 1163.48 

82 SWIR 1 1174.53 

83 SWIR 1 1185.40 

84 SWIR 1 1196.17 

85 SWIR 1 1207.11 
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86 SWIR 1 1217.70 

87 SWIR 1 1229.00 

88 SWIR 1 1240.06 

89 SWIR 1 1250.80 

90 SWIR 1 1262.33 

91 SWIR 1 1273.31 

92 SWIR 1 1284.28 

93 SWIR 1 1295.20 

94 SWIR 1 1306.05 

95 SWIR 1 1317.02 

96 SWIR 1 1328.09 

97 SWIR 1 1338.95 

98 SWIR 1 1349.60 

99 SWIR 1 1459.07 

100 SWIR 1 1469.70 

101 SWIR 1 1480.62 

102 SWIR 1 1491.20 

103 SWIR 1 1501.78 

104 SWIR 1 1512.41 

105 SWIR 1 1523.01 

106 SWIR 1 1533.56 

107 SWIR 1 1544.03 

108 SWIR 1 1554.58 

109 SWIR 1 1565.12 

110 SWIR 1 1575.39 

111 SWIR 1 1585.63 

112 SWIR 1 1595.98 

113 SWIR 1 1606.24 

114 SWIR 1 1616.58 

115 SWIR 1 1626.78 

116 SWIR 1 1636.85 

117 SWIR 1 1646.97 

118 SWIR 1 1656.77 

119 SWIR 1 1666.97 

120 SWIR 1 1677.12 

121 SWIR 1 1687.17 

122 SWIR 1 1697.01 

123 SWIR 1 1706.81 

124 SWIR 1 1716.60 

125 SWIR 1 1726.44 

126 SWIR 1 1736.26 

127 SWIR 1 1745.93 

128 SWIR 1 1755.55 

129 SWIR 1 1765.25 

130 SWIR 1 1774.91 
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131 SWIR 2 1975.78 

132 SWIR 2 1984.55 

133 SWIR 2 1993.29 

134 SWIR 2 2036.00 

135 SWIR 2 2044.42 

136 SWIR 2 2052.76 

137 SWIR 2 2061.14 

138 SWIR 2 2069.54 

139 SWIR 2 2077.75 

140 SWIR 2 2086.10 

141 SWIR 2 2094.41 

142 SWIR 2 2102.55 

143 SWIR 2 2110.82 

144 SWIR 2 2118.96 

145 SWIR 2 2127.09 

146 SWIR 2 2135.24 

147 SWIR 2 2143.23 

148 SWIR 2 2151.13 

149 SWIR 2 2159.29 

150 SWIR 2 2167.25 

151 SWIR 2 2175.07 

152 SWIR 2 2183.18 

153 SWIR 2 2190.84 

154 SWIR 2 2198.89 

155 SWIR 2 2206.60 

156 SWIR 2 2214.34 

157 SWIR 2 2222.19 

158 SWIR 2 2229.75 

159 SWIR 2 2237.65 

160 SWIR 2 2245.21 

161 SWIR 2 2252.85 

162 SWIR 2 2260.63 

163 SWIR 2 2268.04 

164 SWIR 2 2275.77 

165 SWIR 2 2283.28 

166 SWIR 2 2290.57 

167 SWIR 2 2298.33 

168 SWIR 2 2305.50 

169 SWIR 2 2312.91 

170 SWIR 2 2320.64 

171 SWIR 2 2327.61 

172 SWIR 2 2335.24 

173 SWIR 2 2342.59 

174 SWIR 2 2349.58 

175 SWIR 2 2357.02 
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176 SWIR 2 2364.37 

177 SWIR 2 2371.34 

178 SWIR 2 2378.51 

179 SWIR 2 2385.81 

180 SWIR 2 2392.84 

181 SWIR 2 2399.80 

182 SWIR 2 2407.34 

183 SWIR 2 2414.16 

184 SWIR 2 2420.99 

185 SWIR 2 2428.40 

186 SWIR 2 2435.33 

187 SWIR 2 2442.19 

188 SWIR 2 2448.92 

189 SWIR 2 2456.33 

190 SWIR 2 2462.81 

191 SWIR 2 2469.42 

 

A2.2. Spectral characteristics of Sentinel-2 bands 

 

Band 
Multispectral 
band name 

Band range (nm) 
Spatial resolution 

(m) 

B2 Blue 458-523 10 
B3 Green 543-578 10 
B4 Red 650-680 10 
B5 Red edge 698-713 20 
B6 Red edge 734-748 20 
B7 Red edge 765-785 20 
B8 NIR 785-900 10 

B8A NIR 855-875 20 
B11 SWIR 1 1565-1655 20 
B12 SWIR 2 2100-2280 20 

Source: (Pour et al., 2023)  
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ANNEX 3 – Vegetation indices formulas 

A3.1. Summary of Vegetation Indices with Formulas, Applications, and References (H: 

Hyperspectral; M: Multispectral) 

R, G, and B represent the proportions of red, green, and blue light reflected by 

vegetation, each normalized by the sum of all three bands (R = red / (red + green + blue), 

and similarly for G and B). 

Vegetation index Formula 
Applied 

in 
Reference 

Normalized 
Difference 

Vegetation Index: 
NDVI 

𝑛𝑑𝑣𝑖 =  
(𝑛𝑖𝑟 − 𝑟𝑒𝑑)

(𝑛𝑖𝑟 + 𝑟𝑒𝑑)
 H & M 

(Rouse 
et al., 1974) 

Normalized Burn 
Ratio: NBR 

𝑛𝑏𝑟 =  
(𝑛𝑖𝑟 − 𝑠𝑤𝑖𝑟2)

(𝑛𝑖𝑟 + 𝑠𝑤𝑖𝑟2)
 H & M 

(García & 
Caselles, 

1991) 
Normalized 
Difference 

Moisture Index: 
NDMI 

𝑛𝑑𝑚𝑖 =  
(𝑛𝑖𝑟 − 𝑠𝑤𝑖𝑟1)

(𝑛𝑖𝑟 + 𝑠𝑤𝑖𝑟1)
 H & M 

(Shi et al., 
2016) 

Difference 
Vegetation Index: 

DVI 
𝑑𝑣𝑖 =  𝑛𝑖𝑟 − 𝑟𝑒𝑑 H & M 

(Jordan, 
1969) 

Green Difference 
Vegetation Index: 

GDVI 
𝑑𝑣𝑖𝑔𝑟𝑒 =  𝑛𝑖𝑟 − 𝑔𝑟𝑒𝑒𝑛 H & M 

(Jordan, 
1969) 

Red Edge 
Difference 

Vegetation Index: 
DVIRED 

𝑑𝑣𝑖𝑟𝑒𝑑 =  𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑔𝑒 H & M 
(Jordan, 
1969) 

Chlorophyll Index 
With Red Edge: 

CIREDGE 
𝑐𝑖𝑟𝑒𝑑𝑔𝑒 =  

𝑛𝑖𝑟

𝑟𝑒𝑑𝑔𝑒
− 1 H & M 

(A. A. 
Gitelson 

et al., 2005) 
Chlorophyll Index 

With Green: 
CIGREEN 

𝑐𝑖𝑔𝑟𝑒𝑒𝑛 =  
𝑛𝑖𝑟

𝑔𝑟𝑒𝑒𝑛
− 1 H & M 

(A. A. 
Gitelson 

et al., 2003) 
Infrared 

Percentage 
Vegetation Index: 

IPVI 

𝑖𝑝𝑣𝑖 =  
𝑛𝑖𝑟

(𝑛𝑖𝑟 + 𝑟𝑒𝑑)
 H & M 

(Jabbar & 
Chen, 2006) 

Near-Infrared 
Reflectance of 

Vegetation: NIRV 
𝑛𝑖𝑟𝑣 = 𝑛𝑖𝑟 ∗ 

(𝑛𝑖𝑟 − 𝑟𝑒𝑑)

(𝑛𝑖𝑟 + 𝑟𝑒𝑑)
 H & M 

(Zeng et al., 
2021) 

Modified Non-
Linear Index: MNLI 

𝑚𝑛𝑙𝑖 = 1.5 ∗  
(𝑛𝑖𝑟2 − 𝑟𝑒𝑑)

(𝑛𝑖𝑟2 + 𝑟𝑒𝑑 + 0.5)
 H & M 

(Z. Yang 
et al., 2008) 

Non-Linear Index: 
NLI 

𝑛𝑙𝑖 =  
(𝑛𝑖𝑟2 − 𝑟𝑒𝑑)

(𝑛𝑖𝑟2 + 𝑟𝑒𝑑)
 H & M 

(Goel & Qin, 
1994) 

Wide Dynamic 
Range Vegetation 

Index: WDRVI 
𝑤𝑑𝑟𝑣𝑖 =  

(0.2 ∗ 𝑛𝑖𝑟 − 𝑟𝑒𝑑)

(0.2 ∗ 𝑛𝑖𝑟 + 𝑟𝑒𝑑)
 H & M 

(A. A. 
Gitelson, 

2004) 
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Normalized 
Difference Red 

Edge Index: NDRE 
𝑛𝑑𝑟𝑒 =  

(𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑔𝑒)

(𝑛𝑖𝑟 + 𝑟𝑒𝑑𝑔𝑒)
 H & M 

(F. Li et al., 
2014) 

Burn Area Index: 
BAI 

𝑏𝑎𝑖 =  
1

((𝑟𝑒𝑑𝑔𝑒 − 0.1)2 + (𝑛𝑖𝑟 − 0.06)2)
 

 
H & M 

(Fornacca 
et al., 2018) 

Structural 
Vegetation Index: 

SVI 
𝑠𝑣𝑖 =  

(𝑟𝑒𝑑𝑔𝑒 − 𝑟𝑒𝑑)

(𝑟𝑒𝑑𝑔𝑒 + 𝑟𝑒𝑑)
 H & M 

(R. Li et al., 
2024) 

Modified Red-
Edge Simple 

Ratio: MRESR 

𝑚𝑟𝑒𝑠𝑟 =  
𝑛𝑖𝑟

𝑟𝑒𝑑𝑔𝑒
 H & M 

(Hallik et al., 
2019) 

Three-Band 
Difference 

Vegetation Index: 
TBDVI 

𝑡𝑏𝑑𝑣𝑖 =  𝑛𝑖𝑟 −
(𝑟𝑒𝑑 + 𝑠𝑤𝑖𝑟1)

2
 H & M 

(Zhao et al., 
2024) 

Enhanced 
Vegetation Index: 

EVI 

𝑒𝑣𝑖

=  2.5 ∗
(𝑛𝑖𝑟 − 𝑟𝑒𝑑)

(𝑛𝑖𝑟 + 6 ∗ 𝑟𝑒𝑑 − 7.5 ∗ 𝑏𝑙𝑢𝑒 + 1)
 

H & M 
(Liu & 
Huete, 
1995) 

Excess Green 
Index: EXG2 

𝑒𝑥𝑔2 =  2 ∗ 𝑔𝑟𝑒𝑒𝑛 − 𝑟𝑒𝑑 − 𝑏𝑙𝑢𝑒  H & M 
(Woebbecke 
et al., 1995) 

Red Light 
Normalized Value: 

NRI 
𝑛𝑟𝑖 =  

𝑟𝑒𝑑

(𝑟𝑒𝑑 + 𝑔𝑟𝑒𝑒𝑛 + 𝑏𝑙𝑢𝑒)
 H & M 

(Silleos 
et al., 2006) 

Green Light 
Normalized Value: 

NGI 

𝑛𝑔𝑖 =  
𝑔𝑟𝑒𝑒𝑛

(𝑟𝑒𝑑 + 𝑔𝑟𝑒𝑒𝑛 + 𝑏𝑙𝑢𝑒)
 H & M 

(Silleos 
et al., 2006) 

Green Normalized 
Difference 

Vegetation Index: 
GNDVI 

𝑔𝑛𝑑𝑣𝑖 =  
(𝑛𝑖𝑟 − 𝑔𝑟𝑒𝑒𝑛)

(𝑛𝑖𝑟 + 𝑟𝑒𝑑𝑔𝑒)
 H & M 

(A. A. 
Gitelson & 
Merzlyak, 

1998) 
Enhances 

Normalized 
Difference 

Vegetation Index: 
ENDVI 

𝑒𝑛𝑑𝑣𝑖 =  
(𝑟𝑒𝑑𝑔𝑒 + 𝑔𝑟𝑒𝑒𝑛 − 2 ∗ 𝑏𝑙𝑢𝑒)

(𝑟𝑒𝑑𝑔𝑒 + 𝑔𝑟𝑒𝑒𝑛 + 2 ∗ 𝑏𝑙𝑢𝑒)
 H & M 

(Traba 
et al., 2022) 

Modified Red 
Green- Blue 

Vegetation Index: 
MRGBVI 

𝑚𝑟𝑔𝑏𝑣𝑖

=  
(𝑟𝑒𝑑𝑔𝑒 + 2 ∗ 𝑔𝑟𝑒𝑒𝑛 − 2 ∗ 𝑏𝑙𝑢𝑒)

(𝑟𝑒𝑑𝑔𝑒 + 2 ∗ 𝑔𝑟𝑒𝑒𝑛 + 2 ∗ 𝑏𝑙𝑢𝑒)
 

H & M 
(Guo et al., 

2022) 

Nitrogen 
Reflectance Index: 

NREI 
𝑛𝑟𝑒𝑖 =  

𝑟𝑒𝑑𝑔𝑒

(𝑟𝑒𝑑𝑔𝑒 + 𝑛𝑖𝑟 + 𝑔𝑟𝑒𝑒𝑛)
 H & M 

(Diker & 
Bausch, 
2003) 

Red Edge Position 
Index: REP 

𝑟𝑒𝑝 =  700 + 40 ∗
(𝑟𝑒𝑑 + 𝑛𝑖𝑟)

(2 − 𝑟𝑒𝑑𝑔𝑒)
 H & M 

(Clevers 
et al., 2001) 

Excess Green 
Index: EXG 

𝑒𝑥𝑔 =  2 ∗ 𝐺 − 𝑅 − 𝐵 H & M 
(Qiao et al., 

2022) 
Excess Blue 
Index: EXB 

𝑒𝑥𝑏 =  1.4 ∗ 𝑅 − 𝐺 H & M 
(Meyer & 

Neto, 2008) 
Excess Red Index: 

EXR 
𝑒𝑥𝑟 =  1.4 ∗ 𝐵 − 𝐺 H & M 

(Guijarro 
et al., 2011) 

Red / Green Ratio: 
RGR 

𝑟𝑔𝑟 =  
𝑅

𝐺
 H & M 

(Gamon & 
Surfus, 
1999) 
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Blue / Green 
Ratio: BGR 

𝑏𝑔𝑟 =  
𝐵

𝐺
 H & M 

(Sellaro 
et al., 2010) 

Normalized Green-
Red Difference 
Index: NGRDI 

𝑛𝑔𝑟𝑑𝑖 =  
(𝐺 − 𝑅)

(𝐺 + 𝑅)
 H & M 

(Tucker, 
1979) 

Normalized Green-
Blue Difference 
Index: NGBDI 

𝑛𝑔𝑏𝑑𝑖 =  
(𝐺 − 𝐵)

(𝐺 + 𝐵)
 H & M 

(Hunt et al., 
2005) 

Modified Green-
Red Vegetation 
Index: MGRVI 

𝑚𝑔𝑟𝑣𝑖 =  
(𝐺2 − 𝑅2)

(𝐺2 + 𝑅2)
 H & M 

(Bendig 
et al., 2015) 

Red Green- Blue 
Vegetation Index: 

RGBVI 
𝑟𝑔𝑏𝑣𝑖 =  

(𝐺2 − 𝑅 ∗ 𝐵)

(𝐺2 + 𝑅 ∗ 𝐵)
 H & M 

(Bendig 
et al., 2015) 

Green Leaf Index: 
GLI 

𝑔𝑙𝑖 =  
(2 ∗ 𝐺 − 𝑅 − 𝐵)

(2 ∗ 𝐺 + 𝑅 + 𝐵)
 H & M 

(Louhaichi 
et al., 2001) 

Color Index of 
Vegetation 

Extraction: CIVE 

𝑐𝑖𝑣𝑒 =  0.441 ∗ 𝑅 − 0.881 ∗ 𝐺 + 0.385 ∗ 𝑅
+ 1878745 

H & M 
(Kataoka 

et al., 2003) 

Excess Green 
Minus Excess Red 

Index: ExGR 
𝑒𝑥𝑔𝑟 =  𝑒𝑥𝑔 − 𝑒𝑥𝑟 H & M 

(Meyer & 
Neto, 2008) 

Improved Red 
Green- Blue 

Vegetation Index: 
IRGBVI 

𝑖𝑟𝑔𝑏𝑣𝑖 =  
(5 ∗ 𝐺2 − 2 ∗ 𝑅2 − 5 ∗ 𝐵2)

(5 ∗ 𝐺2 + 2 ∗ 𝑅2 + 5 ∗ 𝐵2)
 H & M 

(C. Chen 
et al., 2024) 

Greenness Index: 
G 

𝑔 =  
𝜌554

𝜌677
 H 

(Xue & Su, 
2017) 

Simple R. Pigment 
Ind.: SRPI 

𝑠𝑟𝑝𝑖 =  
𝜌430

𝜌680
 H 

(Xue & Su, 
2017) 

Lichtenthaler Index 
2: Lic2 

𝑙𝑖𝑐2 =  
𝜌440

𝜌690
 H 

(Xue & Su, 
2017) 

Carter Index 1: 
Ctr1 

𝑐𝑡𝑟1 =  
𝜌695

𝜌420
 H 

(Xue & Su, 
2017) 

Carter Index 2: 
Ctr2 

𝑐𝑡𝑟2 =  
𝜌695

𝜌760
 H 

(Xue & Su, 
2017) 

Vogelmann Index 
1: Vog1 

𝑣𝑜𝑔1 =  
𝜌740

𝜌720
 H 

(Vogelmann 
et al., 1993) 

Gitelson and 
Merzlyak Index 1: 

GM1 

𝑔𝑚1 =  
𝜌750

𝜌550
 H 

(Xue & Su, 
2017) 

Gitelson and 
Merzlyak Index 2: 

GM2 

𝑔𝑚2 =  
𝜌750

𝜌700
 H 

(Xue & Su, 
2017) 

Zarco-Tejada & 
Miller: ZM 

𝑧𝑚 =  
𝜌750

𝜌710
 H 

(Xue & Su, 
2017) 

Fluorescence 
Ratio Index 1: 

FRI1 

𝑓𝑟𝑖1 =  
𝜌740

𝜌800
 H 

(Dobrowski 
et al., 2005) 

Fluorescence 
Ratio Index 2: 

FRI2 

𝑓𝑟𝑖2 =  
𝜌690

𝜌600
 H 

(Dobrowski 
et al., 2005) 
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Simple Ratio 
Index: SR 

𝑠𝑟 =  
𝜌800

𝜌670
 H 

(Birth & 
McVey, 
1968) 

Water Index: WI1 𝑤𝑖1 =  
𝜌900

𝜌970
 H 

(Xue & Su, 
2017) 

Water Index: WI2 𝑤𝑖2 =  
𝜌1600

𝜌820
 H 

(Xue & Su, 
2017) 

Moisture Stress 
Index: MSI 

𝑚𝑠𝑖 =  
𝜌1599

𝜌819
 H 

(Hunt Jr & 
Rock, 1989) 

Ratio Vegetation 
Index: RVI 

𝑟𝑣𝑖 =  
𝜌887

𝜌678
 H 

(X. L. Gao & 
Wang, 
2008) 

Green Ratio 
Vegetation Index: 

GRVI 

𝑔𝑟𝑣𝑖 =  
𝜌865

𝜌550
 H 

(Xue & Su, 
2017) 

Green Red Ratio 
Vegetation Index: 

GR 

𝑔𝑟 =  
𝜌550

𝜌650
 H 

(Xue & Su, 
2017) 

Green Blue Ratio 
Vegetation Index: 

GB 

𝑔𝑏 =  
𝜌550

𝜌485
 H 

(Xue & Su, 
2017) 

Vegetation Index 8 
:VI8 

𝑣𝑖8 =  
𝜌998

𝜌713
 H 

(Jiang et al., 
2022) 

Water Band Index: 
WBI 

𝑤𝑏𝑖 =  
𝜌970

𝜌900
 H 

(Peñuelas 
et al., 1994) 

Normalized 
Phaeophytinization 

Index: NPQI 
𝑛𝑝𝑞𝑖 =  

(𝜌415 − 𝜌435)

(𝜌415 + 𝜌435)
 H 

(Peñuelas 
et al., 1995) 

Photochemical 
Reflectance Index 

1: PRI1 
𝑝𝑟𝑖1 =  

(𝜌528 − 𝜌567)

(𝜌528 + 𝜌567)
 H 

(Xue & Su, 
2017) 

Normalized 
Pigment 

Chlorophyll Index: 
NPCI 

𝑛𝑝𝑐𝑖 =  
(𝜌680 − 𝜌430)

(𝜌680 + 𝜌430)
 H 

(Xue & Su, 
2017) 

Lichtenthaler Index 
1: Lic1 

𝑙𝑖𝑐1 =  
(𝜌800 − 𝜌680)

(𝜌800 + 𝜌680)
 H 

(Xue & Su, 
2017) 

Visible 
Atmospherically 
Resistant Index: 

VARI 

𝑣𝑎𝑟𝑖 =  
(𝜌550 − 𝜌670)

(𝜌550 + 𝜌670)
 H 

(Xue & Su, 
2017) 

Normalized 
Difference Water 

Index: NDWI 
𝑛𝑑𝑤𝑖 =  

(𝜌800 − 𝜌1600)

(𝜌800 + 𝜌1600)
 H 

(Xue & Su, 
2017) 

Normalized 
Difference Water 
Index 2: NDWI2 

𝑛𝑑𝑤𝑖2 =  
(𝜌857 − 𝜌1241)

(𝜌857 + 𝜌1241)
 H 

(B. Gao, 
1996) 

Depth Water 
Index: DWI 

𝑑𝑤𝑖 =  
(𝜌816 − 𝜌2218)

(𝜌816 + 𝜌2218)
 H 

(Pasqualotto 
et al., 2018) 

Hyperspectral Fire 
Detection Index: 

HFDI 
ℎ𝑓𝑑𝑖 =  

(𝜌2430 − 𝜌2060)

(𝜌2430 + 𝜌2060)
 H 

(Dennison & 
Roberts, 

2009) 
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Vegetation Index 7 
:VI7 

𝑣𝑖7 =  
(𝜌998 − 𝜌713)

(𝜌998 + 𝜌713)
 H 

(Jiang et al., 
2022) 

Normalized 
Difference 

Vegetation Index 
red-edge 1: 

NDVIre1 

𝑛𝑑𝑣𝑖𝑟𝑒1 =  
(𝜌833 − 𝜌699)

(𝜌833 + 𝜌699)
 H 

(A. Gitelson 
& Merzlyak, 

1994) 

Normalized 
Difference 

Vegetation Index 
red-edge 1: 
NDVIre1n 

𝑛𝑑𝑣𝑖𝑟𝑒1𝑛 =  
(𝜌865 − 𝜌699)

(𝜌865 + 𝜌699)
 H 

(A. Gitelson 
& Merzlyak, 

1994) 

Normalized 
Difference 

Vegetation Index 
red-edge 2: 

NDVIre2 

𝑛𝑑𝑣𝑖𝑟𝑒2 =  
(𝜌833 − 𝜌729)

(𝜌833 + 𝜌729)
 H 

(A. Gitelson 
& Merzlyak, 

1994) 

Normalized 
Difference 

Vegetation Index 
red-edge 2: 
NDVIre2n 

𝑛𝑑𝑣𝑖𝑟𝑒2𝑛 =  
(𝜌865 − 𝜌729)

(𝜌865 + 𝜌729)
 H 

(A. Gitelson 
& Merzlyak, 

1994) 

Normalized 
Difference 

Vegetation Index 
red-edge 3: 

NDVIre3 

𝑛𝑑𝑣𝑖𝑟𝑒3 =  
(𝜌833 − 𝜌780)

(𝜌833 + 𝜌780)
 H 

(A. Gitelson 
& Merzlyak, 

1994) 

Normalized 
Difference 

Vegetation Index 
red-edge 3: 
NDVIre3n 

𝑛𝑑𝑣𝑖𝑟𝑒3𝑛 =  
(𝜌865 − 𝜌780)

(𝜌865 + 𝜌780)
 H 

(A. Gitelson 
& Merzlyak, 

1994) 

Normalized 
Difference red-
edge 1: NDre1 

𝑛𝑑𝑟𝑒1 =  
(𝜌729 − 𝜌699)

(𝜌729 + 𝜌699)
 H 

(A. Gitelson 
& Merzlyak, 

1994) 
Normalized 

Difference red-
edge 2: NDre2 

𝑛𝑑𝑟𝑒2 =  
(𝜌780 − 𝜌699)

(𝜌780 + 𝜌699)
 H 

(Barnes 
et al., 2000) 

Leaf Water 
Vegetation Index 

1: LWVI1 
𝑙𝑤𝑣𝑖1 =  

(𝜌1099 − 𝜌988)

(𝜌1099 + 𝜌988)
 H 

(Galvão 
et al., 2005) 

Leaf Water 
Vegetation Index 

2: LWVI2 
𝑙𝑤𝑣𝑖2 =  

(𝜌1099 − 𝜌1207)

(𝜌1099 + 𝜌1207)
 H 

(Galvão 
et al., 2005) 

Normalized 
Difference Infrared 

Index: NDII 
𝑛𝑑𝑖𝑖 =  

(𝜌823 − 𝜌1646)

(𝜌823 + 𝜌1646)
 H 

(Hardisky 
et al., 1983) 

Structure Intensive 
Pigment Index: 

SIPI 
𝑠𝑖𝑝𝑖 =  

(𝜌800 − 𝜌450)

(𝜌800 + 𝜌650)
 H 

(Fiodоrtsev 
et al., 2019) 

Meris Terrestrial 
Chlorophyll Index: 

MTCI 
𝑚𝑡𝑐𝑖 =  

(𝜌865 − 𝜌717)

(𝜌865 − 𝜌650)
 H 

(Zhang & 
Liu, 2014) 
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Leaf Chlorophyll 
Index: LCI 

𝑙𝑐𝑖 =  
(𝜌855 − 𝜌708)

(𝜌855 + 𝜌679)
 H (Datt, 1999) 

Mangrove 
Vegetation Index: 

MVI 
𝑚𝑣𝑖 =  

(𝜌842 − 𝜌561)

(𝜌1610 − 𝜌561)
 H 

(G. Yang 
et al., 2022) 

Vogelmann Index 
2: Vog2 

𝑣𝑜𝑔2 =  
(𝜌734 − 𝜌747)

(𝜌715 + 𝜌726)
 H 

(Xue & Su, 
2017) 

Vogelmann Index 
3: Vog3 

𝑣𝑜𝑔3 =  
(𝜌734 − 𝜌747)

(𝜌715 + 𝜌720)
 H 

(Xue & Su, 
2017) 

Disease Water 
Stress Index: 

DWSI 
𝑑𝑤𝑠𝑖 =  

(𝜌801 − 𝜌546)

(𝜌1656 + 𝜌879)
 H 

(Galvão 
et al., 2005) 

Vegetation Index 
5: VI5 

𝑣𝑖5 =  
((𝜌513)2 − (𝜌504)2)

((𝜌513)2 + (𝜌504)2)
 H 

(Jiang et al., 
2022) 

Simple Ratio red-
edge 1: SRre1 

𝑠𝑟𝑟𝑒1 =  
(𝜌729 − 𝜌441)

(𝜌699 − 𝜌441)
 H 

(Sims & 
Gamon, 
2002) 

Simple Ratio red-
edge 2: SRre2 

𝑠𝑟𝑟𝑒2 =  
(𝜌780 − 𝜌441)

(𝜌699 − 𝜌441)
 H 

(Sims & 
Gamon, 
2002) 

Structure 
Independent 

Pigment Index: 
SIPI1 

𝑠𝑖𝑝𝑖1 =  
(𝜌445 − 𝜌800)

(𝜌670 + 𝜌800)
 H 

(Peñuelas 
et al., 1994) 

Renormalized 
Difference 

Vegetation Index: 
RDVI 

𝑟𝑑𝑣𝑖 =  
(
𝜌800

𝜌670
⁄ )

√(
𝜌800

𝜌670
⁄ )

 H 
(Roujean & 

Breon, 
1995) 

Renormalized 
Difference 

Vegetation Index: 
RDVI2 

𝑟𝑑𝑣𝑖2 =  
(
𝜌865

𝜌670
⁄ )

√(
𝜌865

𝜌670
⁄ )

 H 
(Roujean & 

Breon, 
1995) 

Red Difference 
Vegetation Index 
With Red Edge: 

RDVIREG 

𝑟𝑑𝑣𝑖𝑟𝑒𝑔 =  
(𝜌865 − 𝜌717)

√(𝜌865 + 𝜌717)
 H 

(Qiao et al., 
2022) 

Modified Simple 
Ratio: MSR 

𝑚𝑠𝑟 =  
(𝜌865 − (𝜌660 − 1))

√(𝜌865 + (𝜌660 + 1))
 H 

(J. M. Chen, 
1996) 

Modified Simple 
Ratio With Red 
Edge: MSRREG 

𝑚𝑠𝑟𝑟𝑒𝑔 =  
(
𝜌865

(𝜌717 − 1)⁄ )

√(
𝜌865

(𝜌717 + 1)⁄ )

 H 
(C. Wu 

et al., 2008) 

Modified Simple 
Ratio Index: MSR2 

𝑚𝑠𝑟2 =  
((

𝜌800
𝜌670

⁄ ) − 1)

√((
𝜌800

𝜌670
⁄ ) + 1)

 H 
(Xue & Su, 

2017) 

Optimized Soil-
Adjusted 

Vegetation Index: 
OSAVI 

𝑜𝑠𝑎𝑣𝑖 =  
(1 + 0.16) ∗ (𝜌800 − 𝜌670)

(𝜌800 + 𝜌670 + 0.16)
 H 

(Rondeaux 
et al., 1996) 

Soil-Adjusted 
Vegetation Index: 

SAVI 
𝑠𝑎𝑣𝑖 =  

(1 + 0.16) ∗ (𝜌887 − 𝜌678)

(𝜌887 + 𝜌678 + 0.16)
 H 

(Huete, 
1988) 
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Optimized Soil-
adjusted 

Vegetation Index 
With Red Edge: 

OSAVIREG 

𝑜𝑠𝑎𝑣𝑖𝑟𝑒𝑔 =  
(1 + 0.16) ∗ (𝜌865 − 𝜌717)

(𝜌865 + 𝜌717 + 0.16)
 H 

(Qiao et al., 
2022) 

Green Soil 
Adjusted 

Vegetation Index: 
GSAVI 

𝑔𝑠𝑎𝑣𝑖 =  
1.5 ∗ (𝜌800 − 𝜌560)

(𝜌800 + 𝜌560 + 0.5)
 H 

(Sripada, 
2005) 

Modified 
Chlorophyll 

Absorption in 
Reflectance Index 

1: MCARI1 

𝑚𝑐𝑎𝑟𝑖1 = ((𝜌700 − 𝜌670) − 0.2

∗ (𝜌700 − 𝜌550)) ∗ (
𝜌700

𝜌670
) 

H 
(Xue & Su, 

2017) 

Modified 
Chlorophyll 

Absorption in 
Reflectance Index 

2: MCARI2 

𝑚𝑐𝑎𝑟𝑖2 = 1.2 ∗ [2.5 ∗ (𝜌800 − 𝜌670) − 1.3
∗ (𝜌800 − 𝜌550)] 

H 
(Xue & Su, 

2017) 

Modified 
Chlorophyll 

Absorption in 
Reflectance Index 

3: MCARI3 

𝑚𝑐𝑎𝑟𝑖3

=
1.5 ∗ [2.5 ∗ (𝜌800 − 𝜌670) − 1.3 ∗ (𝜌800 − 𝜌550)]

(2 ∗ 𝜌800 + 1)2 − √(6 ∗ 𝜌800 − 5 ∗ √𝜌670 − 0.5)

 H 
(Xue & Su, 

2017) 

Transformed 
CARI: TCARI 

𝑡𝑐𝑎𝑟𝑖 = 3 ∗ [(𝜌700 − 𝜌670) − 0.2

∗ (𝜌700 − 𝜌550) ∗ (
𝜌700

𝜌670
)] H 

(Xue & Su, 
2017) 

Triangular 
Vegetation Index: 

TVI 

𝑡𝑣𝑖 = 0.5 ∗ [120 ∗ (𝜌750 − 𝜌550) − 200
∗ (𝜌670 − 𝜌550)] 

H 
(Xue & Su, 

2017) 

Modified 
Triangular 

Vegetation Index 
1: MTVI1 

𝑚𝑡𝑣𝑖1 = 1.2 ∗ [1.2 ∗ (𝜌800 − 𝜌550) − 2.5
∗ (𝜌670 − 𝜌550)] 

H 
(Xue & Su, 

2017) 

Modified 
Triangular 

Vegetation Index 
2: MTVI2 

𝑚𝑡𝑣𝑖2

=
1.5 ∗ [1.2 ∗ (𝜌800 − 𝜌550) − 2.5 ∗ (𝜌670 − 𝜌550)]

√(2 ∗ 𝜌800 + 1)2 − (6 ∗ 𝜌800 − (5 ∗ √𝜌670)) − 0.5

 H 
(Xue & Su, 

2017) 

Improved SAVI 
with self-

adjustment factor 
L: MSAVI 

𝑚𝑠𝑎𝑣𝑖
= 0.5 ∗ [2 ∗ 𝜌800 + 1

− √((2 ∗ 𝜌800 + 1)2 − 8 ∗ (𝜌800 − 𝜌670))] 

H 
(Wan et al., 

2019) 

Enhanced 
Vegetation Index 

2: EVI2 

𝑒𝑣𝑖2 = 2.5 ∗
𝜌800 − 𝜌670

𝜌800 + 2.4 ∗ 𝜌670 + 1
 H 

(Xue & Su, 
2017) 

Combine 
Mangrove 

Recognition Index 
(CMRI) 

𝑐𝑚𝑟𝑖 =
(𝜌865 − 𝜌660)

(𝜌865 + 𝜌660)
+

(𝜌857 − 𝜌1241)

(𝜌857 + 𝜌1241)
 H 

(Xue & Su, 
2017) 

Temperature 
Condition Index: 

TCI 
𝑡𝑐𝑖 =

𝜌887 + 1.5 ∗ 𝜌524 − 𝜌678

𝜌887 + 𝜌701
 H 

(Zhou et al., 
2018) 
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Normalized Red 
Green Difference 
Vegetation Index: 

NDIG 

𝑛𝑑𝑖𝑔 =
𝜌650 − 𝜌560

𝜌650 + 𝜌560 + 0.01
 H 

(W. Wu, 
2016) 

Normalized Red 
Blue Difference 

Vegetation Index: 
NDIB 

𝑛𝑑𝑖𝑏 =
𝜌650 − 𝜌485

𝜌650 + 𝜌485 + 0.01
 H 

(W. Wu, 
2016) 

Soil-adjusted 
Vegetation Index 

with Green: 
SAVIGRE 

𝑠𝑎𝑣𝑖𝑔𝑟𝑒 = 1.5 ∗
𝜌865 − 𝜌560

𝜌865 + 𝜌560 + 0.5
 H 

(Huete, 
1988) 

Visible 
Atmospherically 
Resistant Index: 

VARI2 

𝑣𝑎𝑟𝑖2 =
𝜌560 − 𝜌650

𝜌560 + 𝜌650 − 𝜌485
 H 

(A. A. 
Gitelson, 
Kaufman, 

et al., 2002) 
Green 

Atmospherically 
Resistant Index: 

GARI 

𝑔𝑎𝑟𝑖 =
𝜌865 − 𝜌560 + 1.7 ∗ (𝜌485 − 𝜌650)

𝜌865 + 𝜌560 − 1.7 ∗ (𝜌485 − 𝜌650)
 H 

(A. A. 
Gitelson 

et al., 1996) 

Carbon Dioxide 
Continuum 

Interpolated Band 
Ratio: CO2-CIBR 

𝑐𝑜2 − 𝑐𝑖𝑏𝑟 =
𝜌2010

0.666 ∗ 𝜌1990 + 0.334 ∗ 𝜌2040
 H 

(Dennison, 
2006) 

Vegetation Index 
1: VI1 

𝑣𝑖1 =
𝜌712

𝜌998 + 𝜌693
 H 

(Jiang et al., 
2022) 

Vegetation Index 
3: VI3 

𝑣𝑖3 =
𝜌708 − 𝜌693

𝜌758
 H 

(Jiang et al., 
2022) 

Plant Senescence 
Reflectance Index: 

PSRI 

𝑝𝑠𝑟𝑖 =
𝜌660 − 𝜌554

𝜌729
 H 

(Merzlyak 
et al., 1999) 

Vegetation Index 
6: VI6 

𝑣𝑖6 =
1

𝜌1000
−

1

𝜌713
 H 

(Jiang et al., 
2022) 

Anthocyanin 
Reflectance Index 

1: ARI1 
𝑎𝑟𝑖1 =

1

𝜌554
−

1

𝜌699
 H 

(A. A. 
Gitelson 

et al., 2001) 

Carotenoid 
Reflectance Index 

1: CRI1 
𝑐𝑟𝑖1 =

1

𝜌507
−

1

𝜌546
 H 

(A. A. 
Gitelson, 

Stark, et al., 
2002) 

Carotenoid 
Reflectance Index 

2: CRI2 

𝑐𝑟𝑖2 =
1

𝜌507
−

1

𝜌699
 H 

(A. A. 
Gitelson, 

Stark, et al., 
2002) 

Chlorophyll Index 
red-edge: Clre 

𝑐𝑙𝑟𝑒 =
𝜌780

𝜌699
− 1 H 

(A. A. 
Gitelson 

et al., 2003) 
Normalized 

Difference red-
edge 1 modified: 

NDre1m 

𝑛𝑑𝑟𝑒1𝑚 =
𝜌729 − 𝜌699

𝜌729 + 𝜌699 − 2 ∗ 𝜌441
 H 

(Sims & 
Gamon, 
2002) 
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Normalized 
Difference red-

edge 2 modified: 
NDre2m 

𝑛𝑑𝑟𝑒2𝑚 =
𝜌780 − 𝜌699

𝜌780 + 𝜌699 − 2 ∗ 𝜌441
 H 

(Sims & 
Gamon, 
2002) 

Modified Simple 
Ratio red-edge: 

MSRre 

𝑚𝑠𝑟𝑟𝑒 =

𝜌833
𝜌699

⁄ − 1

√𝜌833
𝜌699

⁄ + 1

 H 
(J. M. Chen, 

1996) 

Modified Simple 
Ratio red-edge 

narrow: MSRren 

𝑚𝑠𝑟𝑟𝑒𝑛 =

𝜌865
𝜌699

⁄ − 1

√𝜌865
𝜌699

⁄ + 1

 H 
(Fernández-

Manso 
et al., 2016) 

Atmospherically 
Resistant 

Vegetation Index: 
ARVI 

𝑎𝑟𝑣𝑖 =
𝜌801 − (𝜌679 − (𝜌449 − 𝜌679))

𝜌801 + (𝜌679 − (𝜌449 − 𝜌679))
 H 

(A. A. 
Gitelson, 

Stark, et al., 
2002) 

Modified Red 
Edge Normalized 

Difference 
Vegetation Index: 

MRENDVI 

𝑚𝑟𝑒𝑛𝑑𝑣𝑖 =
𝜌749 − 𝜌708

𝜌749 + 𝜌708 − 2 ∗ 𝜌441
 H 

(Sims & 
Gamon, 
2002) 

Normalized 
Difference 

Nitrogen Index: 
NDNI 

𝑛𝑑𝑛𝑖 =
log

1
𝜌1512

− log
1

𝜌1677

log
1

𝜌1512
+ log

1
𝜌1677

 H 
(Serrano 

et al., 2002) 

Normalized 
Difference Lignin 

Index: NDLI 
𝑛𝑑𝑙𝑖 =

log
1

𝜌1755
− log

1
𝜌1677

log
1

𝜌1755
+ log

1
𝜌1677

 H 
(Serrano 

et al., 2002) 

Cellulose 
Absorption Index: 

CAI 
𝑐𝑎𝑖 = 0.5 ∗ (𝜌1993 + 𝜌2206) − 𝜌2102 H 

(Nagler 
et al., 2000) 

Lignin Cellulose 
Absorption Index: 

LCAI 

𝑙𝑐𝑎𝑖 = 100 ∗ ((𝜌2206 − 𝜌2159) + (𝜌2206

− 𝜌2335)) 
H 

(Daughtry 
et al., 2005) 

Anthocyanin 
Reflectance Index 

2: ARI2 
𝑎𝑟𝑖2 = 𝜌801 ∗ ((

1

𝜌554
) − (

1

𝜌699
)) H 

(A. A. 
Gitelson 

et al., 2001) 
Normalized Multi-

band Drought 
Index: NMDI 

𝑛𝑚𝑑𝑖 =
𝜌855 − (𝜌1636 − 𝜌2127)

𝜌855 + (𝜌1636 − 𝜌2127)
 H 

(Wang & 
Qu, 2007) 
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ANNEX 4 – Pearson and R2 metrics 

A4.1. Pearson correlation and Coefficient of determination for vegetation indices derived from hyperspectral imagery across ecosystem and CBI 

type. 

Vegetation 
Indices 

Coniferous forest Broadleaf forest Shrubland 

vegetation CBI soil CBI site CBI vegetation CBI soil CBI site CBI vegetation CBI soil CBI site CBI 

r R2 r R2 r R2 r R2 r R2 r R2 r R2 r R2 r R2 

ARI1 0.288 0.083 0.192 0.037 0.266 0.071 0.357 0.127 0.407 0.166 0.401 0.161 0.270 0.073 0.405 0.164 0.336 0.113 

ARI2 -0.660 0.435 -0.355 0.126 -0.566 0.320 -0.340 0.116 -0.452 0.204 -0.412 0.170 -0.490 0.240 -0.421 0.178 -0.465 0.217 

ARVI -0.789 0.622 -0.593 0.352 -0.749 0.560 -0.403 0.163 -0.611 0.374 -0.526 0.277 -0.461 0.212 -0.473 0.224 -0.472 0.223 

BAI 0.728 0.531 0.383 0.147 0.619 0.384 0.676 0.457 0.602 0.362 0.672 0.451 0.724 0.524 0.768 0.589 0.751 0.564 

BGR 0.630 0.397 0.321 0.103 0.458 0.210 0.488 0.238 0.485 0.236 0.419 0.175 0.642 0.412 0.693 0.480 0.674 0.454 

Blue 0.252 0.064 0.142 0.020 0.219 0.048 -0.322 0.104 -0.221 0.049 -0.291 0.084 -0.213 0.045 -0.346 0.120 -0.276 0.076 

CAI -0.666 0.444 -0.413 0.170 -0.599 0.358 -0.867 0.752 -0.840 0.705 -0.875 0.766 -0.894 0.798 -0.878 0.770 -0.899 0.808 

CIGREEN -0.744 0.554 -0.453 0.205 -0.659 0.434 -0.438 0.192 -0.543 0.295 -0.513 0.264 -0.646 0.417 -0.547 0.299 -0.605 0.366 

CIREDGE -0.820 0.672 -0.547 0.299 -0.748 0.559 -0.764 0.584 -0.659 0.435 -0.718 0.516 -0.571 0.326 -0.531 0.282 -0.542 0.294 

CIVE -0.525 0.276 0.428 0.183 -0.430 0.185 0.459 0.210 0.581 0.337 0.543 0.295 -0.428 0.183 -0.283 0.080 -0.363 0.132 

Clre -0.812 0.660 -0.547 0.299 -0.739 0.545 -0.385 0.148 -0.552 0.304 -0.485 0.235 -0.537 0.288 -0.571 0.326 -0.560 0.313 

CMRI -0.199 0.040 -0.149 0.022 -0.191 0.037 -0.243 0.059 -0.492 0.242 -0.372 0.139 -0.232 0.054 -0.079 0.006 -0.164 0.027 

CO2-CIBR 0.711 0.506 0.407 0.165 0.622 0.387 0.242 0.058 0.363 0.131 0.314 0.099 0.385 0.148 0.281 0.079 0.343 0.117 

CRI1 -0.396 0.157 -0.080 0.006 -0.259 0.067 -0.200 0.040 -0.268 0.072 -0.224 0.050 -0.331 0.110 -0.334 0.112 -0.337 0.114 

CRI2 -0.152 0.023 0.088 0.008 -0.098 0.010 0.220 0.048 0.230 0.053 0.237 0.056 0.216 0.047 0.353 0.125 0.280 0.079 

Ctr1 -0.624 0.390 -0.301 0.091 -0.486 0.236 -0.362 0.131 -0.339 0.115 -0.370 0.137 -0.530 0.281 -0.461 0.213 -0.506 0.256 

Ctr2 0.780 0.608 0.537 0.289 0.720 0.519 0.455 0.207 0.599 0.358 0.544 0.296 0.547 0.299 0.580 0.337 0.570 0.325 

DVI -0.853 0.728 -0.511 0.261 -0.755 0.570 -0.615 0.378 -0.657 0.432 -0.666 0.443 -0.763 0.581 -0.787 0.620 -0.781 0.609 

DVIGRE -0.839 0.704 -0.488 0.238 -0.738 0.544 -0.651 0.424 -0.659 0.434 -0.680 0.463 -0.775 0.601 -0.806 0.649 -0.800 0.640 

DVIRED -0.860 0.739 -0.522 0.272 -0.765 0.585 -0.823 0.677 -0.751 0.564 -0.780 0.608 -0.711 0.506 -0.746 0.556 -0.727 0.528 
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DWI -0.742 0.551 -0.424 0.179 -0.643 0.414 -0.584 0.341 -0.647 0.419 -0.643 0.413 -0.652 0.425 -0.736 0.542 -0.700 0.489 

DWSI -0.767 0.588 -0.442 0.195 -0.670 0.449 -0.506 0.256 -0.576 0.331 -0.563 0.317 -0.713 0.508 -0.751 0.564 -0.740 0.548 

ENDVI -0.638 0.407 -0.346 0.120 -0.517 0.267 -0.404 0.163 -0.432 0.187 -0.407 0.166 -0.550 0.302 -0.484 0.235 -0.525 0.275 

EVI -0.831 0.691 -0.666 0.443 -0.782 0.611 -0.494 0.244 -0.643 0.414 -0.574 0.330 -0.632 0.400 -0.595 0.355 -0.624 0.390 

EVI2 -0.786 0.618 -0.498 0.248 -0.710 0.504 -0.401 0.161 -0.567 0.321 -0.504 0.254 -0.574 0.329 -0.537 0.289 -0.560 0.313 

EXB -0.531 0.282 0.304 0.092 -0.430 0.185 0.326 0.106 0.517 0.267 0.438 0.192 -0.429 0.184 -0.302 0.091 -0.374 0.140 

EXG -0.687 0.471 -0.510 0.260 -0.640 0.410 -0.521 0.271 -0.617 0.380 -0.568 0.323 -0.595 0.354 -0.599 0.359 -0.583 0.340 

EXG2 -0.732 0.535 -0.524 0.275 -0.674 0.454 0.662 0.439 0.669 0.447 0.664 0.441 0.634 0.402 -0.728 0.530 -0.672 0.452 

EXGR -0.731 0.535 -0.460 0.212 -0.643 0.414 -0.565 0.319 -0.640 0.409 -0.594 0.352 -0.702 0.493 -0.729 0.531 -0.724 0.524 

EXR 0.638 0.407 0.334 0.112 0.495 0.245 0.438 0.192 0.463 0.214 0.400 0.160 0.637 0.406 0.646 0.418 0.637 0.406 

FRI1 0.771 0.595 0.538 0.290 0.723 0.523 0.558 0.311 0.638 0.407 0.614 0.378 0.540 0.292 0.534 0.285 0.545 0.297 

FRI2 -0.651 0.424 -0.410 0.168 -0.588 0.346 -0.376 0.142 -0.474 0.225 -0.439 0.192 -0.563 0.317 -0.508 0.258 -0.545 0.297 

G 0.438 0.192 0.206 0.042 0.361 0.130 -0.263 0.069 -0.473 0.223 -0.380 0.145 0.280 0.079 0.168 0.028 0.233 0.054 

GARI -0.799 0.638 -0.611 0.373 -0.756 0.571 -0.407 0.165 -0.627 0.393 -0.533 0.284 -0.455 0.207 -0.437 0.191 -0.448 0.201 

GB -0.570 0.324 -0.216 0.047 -0.433 0.188 -0.329 0.108 -0.362 0.131 -0.336 0.113 -0.621 0.386 -0.624 0.389 -0.622 0.387 

GLI -0.687 0.471 -0.505 0.255 -0.638 0.407 -0.520 0.271 -0.619 0.383 -0.572 0.327 -0.594 0.353 -0.599 0.359 -0.583 0.340 

GM1 -0.700 0.490 -0.410 0.168 -0.617 0.381 -0.355 0.126 -0.481 0.231 -0.432 0.186 -0.562 0.316 -0.497 0.247 -0.540 0.292 

GM2 -0.791 0.626 -0.547 0.299 -0.733 0.537 -0.385 0.148 -0.548 0.300 -0.485 0.235 -0.537 0.288 -0.571 0.326 -0.560 0.313 

GNDVI -0.757 0.573 -0.498 0.248 -0.679 0.461 -0.571 0.326 -0.592 0.351 -0.597 0.357 -0.653 0.426 -0.597 0.356 -0.636 0.405 

GR 0.155 0.024 -0.138 0.019 -0.101 0.010 -0.263 0.069 -0.502 0.252 -0.385 0.149 0.121 0.015 -0.151 0.023 -0.073 0.005 

Green -0.438 0.192 -0.188 0.035 -0.347 0.120 -0.490 0.240 -0.311 0.097 -0.429 0.184 -0.450 0.203 -0.580 0.336 -0.516 0.266 

GRVI -0.657 0.432 -0.369 0.136 -0.567 0.321 -0.334 0.112 -0.496 0.246 -0.431 0.186 -0.437 0.191 -0.328 0.108 -0.387 0.150 

GSAVI -0.694 0.482 -0.441 0.194 -0.629 0.395 -0.430 0.185 -0.546 0.299 -0.506 0.256 -0.519 0.269 -0.427 0.183 -0.484 0.234 

HFDI 0.206 0.043 0.138 0.019 0.167 0.028 0.631 0.398 0.676 0.457 0.671 0.450 0.797 0.635 0.695 0.484 0.762 0.580 

IPVI -0.810 0.657 -0.529 0.280 -0.735 0.540 -0.483 0.233 -0.598 0.357 -0.562 0.316 -0.657 0.432 -0.598 0.357 -0.626 0.392 

IRGBVI -0.688 0.474 -0.505 0.255 -0.636 0.404 -0.502 0.252 0.632 0.400 -0.550 0.302 -0.611 0.374 -0.627 0.393 -0.622 0.386 

LCAI -0.643 0.413 -0.438 0.192 -0.582 0.339 0.820 0.673 -0.758 0.575 -0.786 0.618 -0.871 0.758 -0.833 0.694 -0.866 0.749 

LCI -0.808 0.652 -0.554 0.307 -0.743 0.552 -0.410 0.168 -0.643 0.413 -0.547 0.299 -0.483 0.233 -0.404 0.163 -0.452 0.204 
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Lic1 -0.802 0.644 -0.510 0.260 -0.724 0.524 -0.415 0.172 -0.577 0.333 -0.517 0.267 -0.576 0.332 -0.540 0.291 -0.562 0.315 

Lic2 0.535 0.286 0.272 0.074 0.441 0.195 0.313 0.098 0.195 0.038 0.248 0.062 0.428 0.183 0.358 0.128 0.402 0.162 

LWVI1 -0.186 0.034 -0.125 0.016 -0.170 0.029 0.463 0.215 -0.423 0.179 0.405 0.164 0.226 0.051 0.468 0.219 0.339 0.115 

LWVI2 -0.469 0.220 -0.261 0.068 -0.407 0.165 -0.487 0.238 -0.659 0.434 -0.590 0.348 -0.278 0.077 -0.302 0.091 -0.291 0.085 

MCARI1 -0.727 0.528 -0.459 0.211 -0.657 0.432 -0.506 0.256 -0.611 0.374 -0.585 0.343 -0.655 0.429 -0.708 0.501 -0.688 0.474 

MCARI2 -0.835 0.698 -0.541 0.293 -0.756 0.571 -0.421 0.177 -0.587 0.345 -0.521 0.271 -0.613 0.375 -0.644 0.415 -0.636 0.404 

MCARI3 -0.797 0.634 -0.566 0.320 -0.731 0.535 -0.418 0.174 -0.629 0.396 -0.532 0.283 -0.459 0.211 -0.495 0.245 -0.476 0.227 

MGRVI 0.513 0.263 -0.398 0.159 0.433 0.188 -0.463 0.215 -0.579 0.335 -0.545 0.297 0.400 0.160 0.243 0.059 0.323 0.105 

MNLI 0.376 0.141 -0.319 0.102 0.361 0.131 0.505 0.255 -0.451 0.203 -0.485 0.235 0.518 0.268 0.509 0.259 0.520 0.270 

MRENDVI -0.773 0.598 -0.590 0.348 -0.719 0.517 -0.617 0.381 -0.623 0.388 -0.630 0.397 0.425 0.180 0.512 0.262 0.470 0.221 

MRESR -0.820 0.672 -0.547 0.299 -0.748 0.559 -0.764 0.584 -0.659 0.435 -0.718 0.516 -0.571 0.326 -0.531 0.282 -0.542 0.294 

MRGBVI -0.647 0.419 -0.348 0.121 -0.520 0.271 -0.411 0.169 -0.441 0.195 -0.414 0.172 -0.577 0.333 -0.519 0.269 -0.551 0.304 

MSAVI -0.778 0.605 -0.499 0.249 -0.704 0.495 -0.423 0.179 -0.594 0.353 -0.527 0.277 -0.552 0.305 -0.516 0.266 -0.541 0.293 

MSI 0.753 0.567 0.465 0.216 0.672 0.451 0.612 0.375 0.635 0.404 0.650 0.423 0.459 0.211 0.593 0.352 0.526 0.276 

MSR -0.780 0.608 -0.496 0.246 -0.704 0.496 -0.373 0.139 -0.573 0.328 -0.490 0.240 -0.519 0.269 -0.448 0.201 -0.490 0.240 

MSR2 -0.787 0.619 -0.498 0.248 -0.710 0.505 -0.392 0.153 -0.559 0.312 -0.495 0.245 -0.572 0.328 -0.536 0.287 -0.559 0.312 

MSRre -0.801 0.642 -0.535 0.286 -0.736 0.542 -0.392 0.153 -0.583 0.340 -0.495 0.245 -0.551 0.304 -0.536 0.287 -0.552 0.305 

MSRREG -0.815 0.664 -0.543 0.295 -0.745 0.554 -0.430 0.185 -0.659 0.434 -0.553 0.306 -0.470 0.221 -0.394 0.155 -0.441 0.194 

MSRren -0.816 0.666 -0.544 0.296 -0.746 0.556 -0.377 0.142 -0.592 0.350 -0.494 0.244 -0.507 0.257 -0.452 0.205 -0.488 0.238 

MTCI -0.805 0.648 -0.548 0.300 -0.734 0.539 -0.466 0.217 -0.647 0.419 -0.546 0.299 -0.483 0.233 -0.404 0.163 -0.452 0.204 

MTVI1 -0.835 0.698 -0.541 0.293 -0.756 0.571 -0.421 0.177 -0.587 0.345 -0.521 0.271 -0.613 0.375 -0.644 0.415 -0.636 0.404 

MTVI2 -0.791 0.626 -0.555 0.308 -0.732 0.536 -0.415 0.172 -0.628 0.394 -0.534 0.285 -0.496 0.246 -0.492 0.242 -0.487 0.237 

MVI -0.773 0.598 -0.444 0.197 -0.676 0.457 -0.464 0.215 -0.583 0.340 -0.545 0.298 -0.542 0.294 -0.621 0.385 -0.586 0.343 

NBR -0.743 0.552 -0.443 0.196 -0.653 0.427 -0.725 0.526 -0.736 0.541 -0.731 0.534 -0.814 0.663 -0.878 0.771 -0.847 0.717 

NDIB -0.399 0.159 -0.118 0.014 -0.288 0.083 -0.142 0.020 0.178 0.032 0.108 0.012 -0.364 0.133 -0.288 0.083 -0.331 0.109 

NDIG -0.180 0.033 -0.140 0.020 -0.149 0.022 0.247 0.061 0.492 0.242 0.373 0.139 -0.202 0.041 -0.116 0.013 -0.149 0.022 

NDII -0.770 0.592 -0.454 0.206 -0.676 0.457 -0.544 0.296 -0.612 0.375 -0.603 0.364 -0.475 0.225 -0.610 0.372 -0.541 0.293 

NDLI 0.731 0.534 0.412 0.169 0.631 0.398 0.715 0.511 0.790 0.625 0.764 0.584 0.794 0.631 0.835 0.696 0.824 0.678 
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NDMI -0.780 0.608 -0.499 0.249 -0.696 0.485 -0.689 0.474 -0.720 0.519 -0.667 0.444 -0.636 0.404 -0.760 0.578 -0.701 0.492 

NDNI 0.402 0.162 0.395 0.156 0.407 0.166 0.289 0.083 0.565 0.319 0.440 0.194 -0.243 0.059 -0.210 0.044 -0.231 0.053 

NDRE -0.812 0.659 -0.545 0.297 -0.743 0.551 -0.768 0.589 -0.666 0.443 -0.721 0.519 -0.563 0.317 -0.533 0.284 -0.543 0.295 

NDre1 -0.783 0.613 -0.509 0.259 -0.711 0.506 -0.445 0.198 -0.571 0.326 -0.523 0.274 -0.534 0.286 -0.613 0.376 -0.571 0.326 

NDre1m -0.773 0.598 -0.555 0.308 -0.719 0.517 -0.488 0.238 -0.618 0.382 -0.559 0.312 -0.552 0.305 -0.624 0.390 -0.592 0.350 

NDre2 -0.806 0.649 -0.541 0.293 -0.734 0.539 -0.426 0.181 -0.580 0.337 -0.520 0.270 -0.543 0.295 -0.577 0.333 -0.566 0.321 

NDre2m -0.804 0.646 -0.614 0.377 -0.757 0.573 -0.445 0.198 -0.630 0.397 -0.553 0.306 -0.414 0.171 -0.495 0.245 -0.457 0.209 

NDVI -0.810 0.657 -0.529 0.280 -0.735 0.540 -0.483 0.233 -0.598 0.357 -0.562 0.316 -0.657 0.432 -0.598 0.357 -0.626 0.392 

NDVIre1 -0.797 0.635 -0.534 0.285 -0.732 0.536 -0.415 0.172 -0.599 0.359 -0.517 0.267 -0.557 0.310 -0.540 0.291 -0.557 0.310 

NDVIre1n -0.812 0.659 -0.545 0.297 -0.743 0.551 -0.399 0.160 -0.607 0.368 -0.515 0.265 -0.510 0.260 -0.450 0.203 -0.489 0.239 

NDVIre2 -0.791 0.626 -0.534 0.285 -0.732 0.536 -0.560 0.314 -0.666 0.443 -0.608 0.370 -0.506 0.256 -0.470 0.221 -0.497 0.247 

NDVIre2n -0.812 0.659 -0.545 0.297 -0.743 0.551 -0.446 0.199 -0.666 0.443 -0.561 0.315 -0.449 0.202 -0.322 0.104 -0.397 0.158 

NDVIre3 -0.568 0.322 -0.381 0.145 -0.485 0.235 0.261 0.068 -0.336 0.113 0.296 0.088 -0.296 0.087 -0.266 0.071 -0.286 0.082 

NDVIre3n -0.568 0.322 -0.381 0.145 -0.485 0.235 -0.260 0.068 -0.336 0.113 0.162 0.026 -0.327 0.107 -0.287 0.082 -0.313 0.098 

NDWI -0.769 0.592 -0.456 0.207 -0.678 0.460 -0.541 0.293 -0.602 0.362 -0.595 0.355 -0.457 0.208 -0.596 0.355 -0.527 0.277 

NDWI2 -0.474 0.225 -0.282 0.079 -0.413 0.171 -0.540 0.291 -0.592 0.351 -0.575 0.330 -0.313 0.098 -0.480 0.230 -0.393 0.154 

NGBDI -0.651 0.424 -0.345 0.119 -0.470 0.221 -0.494 0.244 -0.492 0.242 -0.428 0.183 -0.641 0.411 -0.691 0.478 -0.673 0.453 

NGI -0.687 0.471 -0.510 0.260 -0.640 0.410 -0.521 0.271 -0.617 0.380 -0.568 0.323 -0.595 0.354 -0.599 0.359 -0.583 0.340 

NGRDI 0.512 0.263 -0.398 0.159 0.431 0.185 -0.463 0.215 -0.579 0.335 -0.545 0.297 0.406 0.165 0.250 0.062 0.330 0.109 

NIR -0.829 0.688 -0.453 0.205 -0.714 0.509 -0.686 0.471 -0.658 0.432 -0.700 0.490 -0.718 0.515 -0.762 0.580 -0.738 0.545 

NIRV -0.854 0.729 -0.519 0.269 -0.759 0.577 -0.572 0.327 -0.641 0.411 -0.635 0.404 -0.753 0.567 -0.772 0.596 -0.769 0.591 

NLI 0.376 0.141 -0.319 0.102 0.361 0.131 0.505 0.255 -0.451 0.203 -0.485 0.235 0.518 0.268 0.509 0.259 0.520 0.270 

NMDI 0.206 0.043 0.119 0.014 0.181 0.033 0.800 0.641 0.752 0.566 0.818 0.669 0.784 0.615 0.815 0.665 0.808 0.652 

NPCI -0.527 0.277 -0.250 0.062 -0.411 0.169 -0.264 0.070 -0.161 0.026 -0.205 0.042 -0.403 0.162 -0.325 0.105 -0.367 0.135 

NPQI 0.769 0.592 0.456 0.207 0.678 0.460 0.541 0.293 0.611 0.373 0.599 0.359 0.459 0.211 0.596 0.355 0.527 0.277 

NREI 0.808 0.653 0.581 0.337 0.762 0.581 -0.517 0.267 0.654 0.428 0.602 0.362 -0.642 0.412 -0.656 0.430 -0.656 0.430 

NRI -0.534 0.285 -0.261 0.068 -0.425 0.181 -0.294 0.087 0.370 0.137 -0.288 0.083 -0.424 0.180 -0.355 0.126 -0.396 0.157 

OSAVI -0.784 0.615 -0.498 0.248 -0.708 0.502 -0.415 0.172 -0.577 0.333 -0.517 0.267 -0.576 0.332 -0.540 0.291 -0.562 0.315 
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OSAVIREG -0.812 0.659 -0.545 0.297 -0.743 0.551 -0.446 0.199 -0.666 0.443 -0.562 0.315 -0.474 0.224 -0.394 0.155 -0.443 0.196 

PRI1 0.375 0.141 0.204 0.041 0.297 0.088 -0.241 0.058 -0.477 0.228 -0.370 0.137 -0.153 0.023 -0.270 0.073 -0.205 0.042 

PSRI 0.658 0.434 0.504 0.254 0.624 0.390 0.401 0.161 0.616 0.379 0.514 0.265 0.221 0.049 0.327 0.107 0.263 0.069 

RDVI -0.787 0.619 -0.498 0.248 -0.710 0.505 -0.389 0.151 -0.557 0.310 -0.493 0.243 -0.572 0.327 -0.536 0.287 -0.558 0.312 

RDVI2 -0.793 0.630 -0.506 0.256 -0.719 0.517 -0.374 0.140 -0.574 0.329 -0.491 0.241 -0.523 0.274 -0.452 0.205 -0.494 0.244 

RDVIREG -0.817 0.667 -0.544 0.296 -0.746 0.557 -0.446 0.199 -0.662 0.438 -0.558 0.311 -0.475 0.226 -0.399 0.159 -0.446 0.198 

Red -0.643 0.413 -0.285 0.081 -0.521 0.271 -0.565 0.319 -0.322 0.104 -0.477 0.228 -0.581 0.338 -0.656 0.430 -0.623 0.389 

Red Edge -0.820 0.672 -0.442 0.196 -0.704 0.495 -0.663 0.439 -0.608 0.370 -0.641 0.411 -0.666 0.444 -0.735 0.540 -0.704 0.496 

REP 0.834 0.696 0.577 0.333 0.773 0.598 0.531 0.282 0.647 0.419 0.607 0.369 -0.644 0.415 -0.659 0.434 -0.647 0.418 

RGBVI -0.709 0.503 -0.467 0.218 -0.623 0.389 -0.594 0.353 -0.660 0.435 -0.624 0.389 -0.692 0.479 -0.731 0.534 -0.702 0.493 

RGR -0.510 0.260 0.395 0.156 -0.425 0.180 0.464 0.215 0.578 0.335 0.545 0.297 -0.420 0.176 -0.264 0.070 -0.346 0.119 

RVI -0.816 0.666 -0.522 0.272 -0.740 0.547 -0.368 0.135 -0.561 0.315 -0.480 0.230 -0.531 0.282 -0.455 0.207 -0.500 0.250 

SAVI -0.810 0.657 -0.521 0.271 -0.735 0.540 -0.400 0.160 -0.597 0.357 -0.515 0.265 -0.532 0.283 -0.450 0.203 -0.497 0.247 

SAVIGRE -0.697 0.486 -0.450 0.202 -0.634 0.402 -0.413 0.171 -0.563 0.317 -0.506 0.256 -0.478 0.228 -0.359 0.129 -0.430 0.185 

SIPI -0.695 0.483 -0.408 0.167 -0.606 0.368 -0.430 0.185 -0.508 0.258 -0.470 0.221 -0.548 0.300 -0.470 0.221 -0.517 0.267 

SIPI1 0.743 0.553 0.609 0.371 0.721 0.520 0.513 0.263 0.710 0.504 0.632 0.399 0.418 0.175 0.445 0.198 0.436 0.190 

SR -0.787 0.619 -0.498 0.248 -0.710 0.504 -0.375 0.140 -0.547 0.299 -0.480 0.230 -0.568 0.323 -0.532 0.283 -0.556 0.309 

SRPI 0.508 0.258 0.244 0.059 0.411 0.169 0.262 0.068 -0.164 0.027 0.194 0.038 0.389 0.151 0.307 0.094 0.352 0.124 

SRre1 -0.776 0.603 -0.563 0.317 -0.727 0.529 0.499 0.249 -0.581 0.338 0.554 0.307 -0.548 0.301 -0.620 0.384 -0.588 0.345 

SRre2 -0.776 0.603 -0.563 0.317 -0.727 0.529 0.499 0.249 -0.581 0.338 0.554 0.307 -0.548 0.301 -0.620 0.384 -0.588 0.345 

SVI -0.783 0.613 -0.495 0.245 -0.708 0.502 -0.438 0.192 -0.571 0.326 -0.523 0.274 -0.641 0.411 -0.637 0.406 -0.627 0.393 

SWIR 1 -0.676 0.457 -0.361 0.131 -0.578 0.334 -0.728 0.530 -0.666 0.443 -0.723 0.522 -0.700 0.490 -0.737 0.544 -0.724 0.524 

SWIR 2 0.446 0.199 0.310 0.096 0.416 0.173 0.661 0.437 0.697 0.485 0.666 0.443 0.635 0.403 0.702 0.492 0.674 0.454 

TCARI -0.725 0.526 -0.452 0.204 -0.653 0.426 -0.535 0.286 -0.631 0.398 -0.611 0.374 -0.660 0.436 -0.706 0.498 -0.690 0.476 

TCI 0.687 0.473 0.451 0.204 0.624 0.389 0.490 0.240 0.624 0.389 0.548 0.301 0.478 0.228 0.385 0.148 0.442 0.195 

TVI 0.613 0.375 0.426 0.181 0.541 0.293 0.654 0.428 0.790 0.624 0.710 0.505 -0.591 0.350 -0.613 0.376 -0.608 0.370 

VARI 0.198 0.039 -0.137 0.019 0.134 0.018 -0.247 0.061 -0.462 0.213 -0.366 0.134 0.186 0.035 -0.138 0.019 0.128 0.016 

VARI2 -0.295 0.087 -0.294 0.086 -0.320 0.103 -0.373 0.139 -0.582 0.339 -0.488 0.238 0.159 0.025 -0.190 0.036 -0.144 0.021 
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VI1 -0.266 0.071 -0.163 0.027 -0.236 0.056 -0.403 0.163 0.544 0.295 0.461 0.213 0.435 0.189 -0.383 0.146 0.395 0.156 

VI3 -0.304 0.092 -0.077 0.006 -0.217 0.047 0.026 0.001 0.076 0.006 0.052 0.003 -0.220 0.049 -0.352 0.124 -0.284 0.081 

VI6 -0.675 0.456 -0.338 0.114 -0.549 0.302 -0.545 0.297 -0.434 0.189 -0.521 0.271 -0.463 0.215 -0.608 0.369 -0.536 0.287 

VI7 0.124 0.015 0.077 0.006 0.109 0.012 -0.350 0.123 -0.541 0.292 -0.456 0.208 -0.408 0.166 -0.284 0.081 -0.357 0.127 

VI8 -0.467 0.218 -0.290 0.084 -0.420 0.176 -0.338 0.114 -0.536 0.287 -0.444 0.197 -0.410 0.168 -0.294 0.086 -0.363 0.132 

Vog1 -0.578 0.334 -0.464 0.215 -0.572 0.327 -0.230 0.053 -0.531 0.282 -0.390 0.152 -0.097 0.009 0.029 0.001 -0.041 0.002 

Vog2 0.486 0.237 0.275 0.076 0.424 0.180 0.350 0.123 0.247 0.061 0.319 0.102 0.186 0.035 0.348 0.121 0.263 0.069 

Vog3 0.473 0.224 0.264 0.070 0.411 0.169 0.356 0.126 0.248 0.061 0.322 0.104 0.186 0.034 0.348 0.121 0.262 0.069 

WBI 0.570 0.325 0.421 0.177 0.530 0.281 0.447 0.199 0.580 0.336 0.513 0.263 0.305 0.093 0.407 0.165 0.325 0.106 

WDRVI -0.814 0.663 -0.532 0.283 -0.738 0.545 -0.460 0.211 -0.581 0.337 -0.540 0.291 -0.658 0.433 -0.600 0.361 -0.628 0.395 

WI1 -0.572 0.328 -0.415 0.172 -0.539 0.291 -0.444 0.197 -0.581 0.338 -0.514 0.264 -0.307 0.094 -0.408 0.167 -0.327 0.107 

WI2 0.753 0.567 0.465 0.216 0.672 0.451 0.612 0.375 0.635 0.404 0.650 0.423 0.459 0.211 0.593 0.352 0.526 0.276 

ZM -0.781 0.610 -0.514 0.264 -0.717 0.514 -0.334 0.112 -0.544 0.296 -0.456 0.208 -0.367 0.135 -0.311 0.096 -0.347 0.120 
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A4.2. Pearson correlation and Coefficient of determination for vegetation indices derived from multispectral imagery across ecosystem and CBI 

type. 

Vegetation 
Indices 

Coniferous forest Broadleaf forest Shrubland 

vegetation CBI soil CBI site CBI vegetation CBI soil CBI site CBI vegetation CBI soil CBI site CBI 

r R2 r R2 r R2 r R2 r R2 r R2 r R2 r R2 r R2 

BAI 0.787 0.619 0.454 0.207 0.690 0.476 0.625 0.390 0.544 0.296 0.620 0.384 0.565 0.319 0.447 0.200 0.519 0.269 

BGR 0.836 0.699 0.521 0.271 0.752 0.566 0.660 0.436 0.623 0.388 0.678 0.460 0.483 0.234 0.388 0.150 0.446 0.199 

Blue -0.193 0.037 0.059 0.003 -0.084 0.007 0.060 0.004 0.220 0.048 0.142 0.020 0.283 0.080 0.377 0.142 0.330 0.109 

CIGREEN -0.855 0.731 -0.541 0.293 -0.774 0.599 -0.577 0.333 -0.633 0.401 -0.636 0.405 -0.851 0.724 -0.785 0.616 -0.832 0.693 

CIREDGE -0.881 0.776 -0.556 0.309 -0.796 0.634 -0.669 0.447 -0.653 0.426 -0.698 0.487 -0.787 0.619 -0.691 0.478 -0.754 0.569 

CIVE 0.348 0.121 0.176 0.031 0.293 0.086 0.006 0.000 0.284 0.081 0.143 0.020 -0.763 0.583 -0.703 0.494 -0.746 0.557 

DVI -0.849 0.720 -0.526 0.277 -0.763 0.582 -0.524 0.274 -0.604 0.365 -0.592 0.350 -0.816 0.666 -0.737 0.543 -0.791 0.626 

DVIGRE -0.850 0.723 -0.530 0.280 -0.765 0.586 -0.577 0.333 -0.622 0.387 -0.631 0.398 -0.820 0.672 -0.738 0.544 -0.794 0.630 

DVIRED -0.869 0.755 -0.542 0.294 -0.783 0.612 -0.616 0.380 -0.646 0.417 -0.665 0.442 -0.783 0.613 -0.719 0.517 -0.752 0.566 

ENDVI -0.840 0.706 -0.532 0.283 -0.761 0.579 -0.714 0.509 -0.665 0.442 -0.729 0.532 -0.730 0.534 -0.658 0.432 -0.707 0.500 

EVI -0.461 0.213 -0.343 0.118 -0.443 0.196 -0.099 0.010 -0.317 0.101 -0.211 0.045 0.191 0.036 0.127 0.016 0.164 0.027 

EXB 0.219 0.048 0.094 0.009 0.176 0.031 -0.053 0.003 0.240 0.058 0.088 0.008 -0.753 0.567 -0.685 0.469 -0.732 0.536 

EXG -0.762 0.580 -0.453 0.205 -0.675 0.455 -0.299 0.090 -0.478 0.228 -0.403 0.163 0.197 0.039 0.259 0.067 0.228 0.052 

EXG2 0.737 0.543 0.368 0.135 0.618 0.381 0.215 0.046 0.381 0.145 0.308 0.095 0.171 0.029 0.225 0.050 0.198 0.039 

EXGR -0.833 0.693 -0.508 0.258 -0.744 0.554 -0.470 0.221 -0.567 0.321 -0.543 0.295 -0.299 0.089 -0.205 0.042 -0.260 0.068 

EXR 0.830 0.688 0.520 0.271 0.749 0.560 0.696 0.484 0.626 0.391 0.700 0.490 0.514 0.264 0.419 0.176 0.478 0.228 

GLI -0.762 0.581 -0.452 0.204 -0.675 0.455 -0.297 0.088 -0.477 0.227 -0.401 0.161 0.197 0.039 0.259 0.067 0.228 0.052 

GNDVI -0.858 0.737 -0.539 0.290 -0.775 0.600 -0.675 0.456 -0.661 0.437 -0.706 0.498 -0.859 0.738 -0.790 0.624 -0.840 0.705 

Green -0.618 0.382 -0.278 0.077 -0.503 0.253 -0.302 0.091 -0.164 0.027 -0.251 0.063 -0.039 0.002 0.071 0.005 0.011 0.000 

IPVI -0.854 0.729 -0.529 0.280 -0.767 0.589 -0.549 0.301 -0.624 0.389 -0.616 0.379 -0.847 0.718 -0.774 0.599 -0.826 0.682 

IRGBVI -0.828 0.685 -0.503 0.253 -0.739 0.546 -0.439 0.193 -0.551 0.303 -0.518 0.268 -0.246 0.061 -0.154 0.024 -0.207 0.043 
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MGRVI -0.340 0.115 -0.171 0.029 -0.286 0.082 -0.010 0.000 -0.288 0.083 -0.147 0.022 0.760 0.578 0.700 0.490 0.743 0.552 

MNLI -0.366 0.134 -0.079 0.006 -0.255 0.065 0.310 0.096 0.178 0.032 0.218 0.047 -0.322 0.103 -0.339 0.115 -0.334 0.112 

MRESR -0.881 0.776 -0.556 0.309 -0.796 0.634 -0.669 0.447 -0.653 0.426 -0.698 0.487 -0.787 0.619 -0.691 0.478 -0.754 0.569 

MRGBVI -0.844 0.712 -0.534 0.285 -0.763 0.583 -0.709 0.503 -0.662 0.439 -0.725 0.526 -0.697 0.485 -0.619 0.383 -0.671 0.450 

NBR 0.683 0.466 0.414 0.171 0.609 0.371 0.391 0.153 0.449 0.201 0.428 0.183 0.196 0.038 0.070 0.005 0.141 0.020 

NDMI 0.731 0.534 0.312 0.097 0.586 0.344 0.514 0.264 0.517 0.267 0.544 0.295 0.586 0.343 0.466 0.217 0.539 0.291 

NDRE -0.882 0.778 -0.549 0.301 -0.794 0.630 -0.670 0.449 -0.649 0.421 -0.697 0.485 -0.785 0.616 -0.689 0.475 -0.752 0.566 

NDVI -0.854 0.729 -0.529 0.280 -0.767 0.589 -0.549 0.301 -0.624 0.389 -0.616 0.379 -0.847 0.718 -0.774 0.599 -0.826 0.682 

NGBDI -0.837 0.700 -0.521 0.272 -0.753 0.567 -0.660 0.435 -0.626 0.392 -0.680 0.462 -0.489 0.239 -0.395 0.156 -0.453 0.205 

NGI -0.762 0.580 -0.453 0.205 -0.675 0.455 -0.299 0.090 -0.478 0.228 -0.403 0.163 0.197 0.039 0.259 0.067 0.228 0.052 

NGRDI -0.339 0.115 -0.171 0.029 -0.285 0.081 -0.008 0.000 -0.286 0.082 -0.145 0.021 0.760 0.578 0.700 0.490 0.743 0.553 

NIR -0.833 0.695 -0.499 0.249 -0.740 0.548 -0.577 0.333 -0.595 0.354 -0.618 0.382 -0.624 0.390 -0.515 0.265 -0.583 0.340 

NIRV -0.843 0.711 -0.527 0.277 -0.760 0.577 -0.496 0.246 -0.591 0.349 -0.570 0.325 -0.814 0.663 -0.737 0.543 -0.790 0.624 

NLI -0.366 0.134 -0.079 0.006 -0.255 0.065 0.310 0.096 0.178 0.032 0.218 0.047 -0.322 0.103 -0.339 0.115 -0.334 0.112 

NREI 0.871 0.758 0.538 0.290 0.782 0.611 -0.531 0.282 -0.600 0.360 -0.585 0.342 -0.682 0.466 -0.672 0.452 -0.687 0.472 

NRI -0.214 0.046 -0.174 0.030 -0.213 0.045 -0.261 0.068 0.070 0.005 -0.113 0.013 -0.706 0.499 -0.626 0.392 -0.679 0.462 

Red -0.419 0.175 -0.179 0.032 -0.336 0.113 -0.260 0.068 0.039 0.002 -0.128 0.016 -0.255 0.065 -0.142 0.020 -0.207 0.043 

Red Edge -0.816 0.666 -0.493 0.243 -0.727 0.528 -0.571 0.326 -0.572 0.327 -0.587 0.345 -0.573 0.329 -0.475 0.226 -0.537 0.288 

REP -0.803 0.645 -0.468 0.219 -0.707 0.500 -0.605 0.366 -0.565 0.319 -0.617 0.380 -0.512 0.262 -0.398 0.158 -0.467 0.218 

RGBVI -0.775 0.601 -0.462 0.213 -0.687 0.472 -0.327 0.107 -0.495 0.245 -0.427 0.182 0.070 0.005 0.141 0.020 0.103 0.011 

RGR 0.332 0.110 0.161 0.026 0.276 0.076 -0.015 0.000 0.269 0.073 0.124 0.015 -0.762 0.581 -0.702 0.493 -0.745 0.556 

SVI 0.095 0.009 0.157 0.025 0.134 0.018 -0.508 0.258 -0.598 0.358 -0.580 0.337 -0.774 0.599 -0.737 0.544 -0.768 0.590 

SWIR 1 -0.352 0.124 -0.039 0.001 -0.227 0.051 -0.459 0.211 -0.092 0.009 -0.305 0.093 -0.555 0.308 -0.444 0.197 -0.512 0.262 

SWIR 2 0.566 0.321 0.448 0.200 0.557 0.310 0.397 0.158 0.598 0.358 0.518 0.268 0.012 0.000 0.121 0.015 0.062 0.004 

WDRVI -0.850 0.723 -0.530 0.281 -0.766 0.586 -0.514 0.265 -0.607 0.368 -0.588 0.346 -0.846 0.715 -0.773 0.598 -0.824 0.680 
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ANNEX 5 – Scripts in Python and R 

A5.1. Python script for calculating vegetation indices from PRISMA hyperspectral 

imagery aligned with CBI plots  

# Calculate indices from HYPERSPECTRAL image 

#### Install libraries 

# !pip install rasterio matplotlib pyproj 

#### Import libraries and read hyperspectral image (.tiff) 

from math import log 

import numpy as np 

import pandas as pd 

import rasterio 

from rasterio.plot import show 

from rasterio.transform import rowcol 

import matplotlib.pyplot as plt 

from pyproj import Proj, transform 

import openpyxl 

import shutil 

# Path to the .tiff file 

working_dir = "C:/Users/User/OneDrive - UVa/1_ASIGNATURAS/TFM/1_DataProcessing/" 

tiff_file_orig = working_dir + "2_SatellitalImages/2_HYP/inicial_2_mtotal.tiff" 

tiff_file = working_dir + 

"2_SatellitalImages/2_HYP/z_CoRegisteredImage/imagen_coregistered_global_191band.ti

f" 

#### Open hyperspectral image and classify wavelengths by landsat approach 

def open_tiff(tiff_file): 

    # Open the GeoTIFF file 

    with rasterio.open(tiff_file) as src: 

        # Read the custom metadata (wavelengths) 

        wavelengths = src.tags().get('Wavelengths', 'No wavelengths information found') 

        if wavelengths != 'No wavelengths information found': 

            wavelengths = eval(wavelengths)  # Convert string representation back to list 

 

        # Convert a list of strings to a list of numbers 

        wavelength = [] 

        for wv in wavelengths: 

            wavelength.append(float(wv)) 

    return wavelength 

 

def classify_wavelength(wl): 

    if 1900 <= wl < 2500: 

        return 'SWIR 2' 

    elif 1050 <= wl < 1900: 

        return 'SWIR 1' 

    elif 750 <= wl < 1050: 

        return 'NIR' 
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    elif 700 <= wl < 750: 

        return 'Red Edge' 

    elif 600 <= wl < 700: 

        return 'Red' 

    elif 500 <= wl < 600: 

        return 'Green' 

    elif 400 <= wl < 500: 

        return 'Blue' 

    else: 

        return '***' 

     

def create_band_list(wavelength): 

    band_lst = [] 

    count = 1 

    for wl in wavelength: 

        bandL9 = classify_wavelength(wl) 

        band_classL9_tuples = (count, bandL9, wl) 

        band_lst.append(band_classL9_tuples) 

        count += 1 

    return band_lst 

 

# Run the classification 

wavelength = open_tiff(tiff_file_orig) 

band_lst = create_band_list(wavelength) 

for m in band_lst: 

    print(m) 

#### Vegetation Indices Formulas 

# Normalized Difference Vegetation Index: NDVI 

def calculate_ndvi(red, nir): 

    ndvi = (nir - red) / (nir + red) 

    return ndvi 

# Normalized Burn Ratio: NBR 

def calculate_nbr(nir, swir2): 

    nbr = (nir - swir2) / (nir + swir2) 

    return nbr 

# Normalized Difference Moisture Index: NDMI 

def calculate_ndmi(nir, swir1): 

    ndmi = (nir - swir1) / (nir + swir1) 

    return ndmi 

# Difference Vegetation Index: DVI 

def calculate_dvi(red, nir): 

    dvi = nir - red 

    return dvi 

# Green Difference Vegetation Index: DVIGRE o GDVI 

def calculate_dvigre(green, nir): 

    dvigre = nir - green 

    return dvigre 
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# Red Difference Vegetation Index: DVIRED 

def calculate_dvired(redge, nir): 

    dvired = nir - redge 

    return dvired 

# Chlorophyll Index With Red Edge: CIREDGE 

def calculate_ciredge(redge, nir): 

    ciredge = (nir / redge) - 1 

    return ciredge 

# Chlorophyll Index With Green: CIGREEN 

def calculate_cigreen(green, nir): 

    cigreen = (nir / green) - 1 

    return cigreen 

# Infrared Percentage Vegetation Index: IPVI 

def calculate_ipvi(red, nir): 

    ipvi = nir / (nir + red) 

    return ipvi 

# Near-Infrared Reflectance of Vegetation: NIRV 

def calculate_nirv(red, nir): 

    nirv = nir * ((nir - red) / (nir + red)) 

    return nirv 

# Modified Non-Linear Index: MNLI 

def calculate_mnli(nir, red):  

    mnli = 1.5 * (nir ** 2 - red) / (nir ** 2 + red + 0.5) 

    return mnli 

# Non-Linear Index: NLI 

def calculate_nli(nir, red):  

    nli = (nir ** 2 - red) / (nir ** 2 + red) 

    return nli 

# Wide Dynamic Range Vegetation Index: WDRVI 

def calculate_wdrvi(nir, red):  

    wdrvi = (0.2 * nir - red) / (0.2 * nir + red) 

    return wdrvi 

# Normalized Difference Red Edge Index: NDRE 

def calculate_ndre(redge, nir): 

    ndre = (nir - redge) / (nir + redge) 

    return ndre 

# Burn Area Index: BAI 

def calculate_bai(redge, nir): 

    bai = 1 / (((redge - 0.1) ** 2) + ((nir - 0.06) ** 2)) 

    return bai 

# Structural Vegetation Index: SVI 

def calculate_svi(redge, red): 

    svi = (redge - red) / (redge + red) 

    return svi 

# Modified Red-Edge Simple Ratio: MRESR 

def calculate_mresr(redge, nir): 

    mresr = nir / redge 
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    return mresr 

# Three-Band Difference Vegetation Index: TBDVI 

def calculate_tbdvi(red, nir, swir1): 

    tbdvi = nir - (red - swir1) / 2 

    return tbdvi 

# Enhanced Vegetation Index: EVI 

def calculate_evi(blue, red, nir): 

    evi = 2.5 * ((nir - red)/(nir + 6 * red - 7.5 * blue + 1)) 

    return evi 

# Excess Green Index: EXG2 

def calculate_exg2(blue, green, red): 

    exg2 = 2 * green - red - blue 

    return exg2 

# Red Light Normalized Value: NRI 

def calculate_nri(blue, green, red): 

    nri = red / (red + green + blue) 

    return nri 

# Green Light Normalized Value: NGI 

def calculate_ngi(blue, green, red): 

    ngi = green / (red + green + blue) 

    return ngi 

# Green Normalized Difference Vegetation Index: GNDVI 

def calculate_gndvi(green, redge, nir): 

    gndvi = (nir - green) / (nir + redge) 

    return gndvi 

# Enhances Normalized Difference Vegetation Index: ENDVI 

def calculate_endvi(redge, green, blue):  

    endvi = (redge + green - 2 * blue) / (redge + green + 2 * blue) 

    return endvi 

# Modified Red Green- Blue Vegetation Index: MRGBVI 

def calculate_mrgbvi(redge, green, blue):  

    mrgbvi = (redge + 2 * green - 2 * blue) / (redge + 2 * green + 2 * blue) 

    return mrgbvi 

# Nitrogen Reflectance Index: NREI 

def calculate_nrei(green, redge, nir): 

    nrei = redge / (redge + nir + green) 

    return nrei 

# Red Edge Position Index: REP 

def calculate_rep(red, redge, nir): 

    rep = 700 + 40 * ((red + nir)/(2 - redge)) 

    return rep 

######################################### 

def normalized_band (red, green, blue): 

    R = red / (red + green + blue) 

    G = green / (red + green + blue) 

    B = blue / (red + green + blue) 

    return R, G, B 
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######################################### 

# Excess Green Index: EXG 

def calculate_exg(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    exg = 2 * G - R - B 

    return exg 

# Excess Blue Index: EXB 

def calculate_exb(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    exb = 1.4 * R - G 

    return exb 

# Excess Red Index: EXR 

def calculate_exr(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    exr = 1.4 * B - G 

    return exr 

# Red / Green Ratio: RGR 

def calculate_rgr(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    rgr = R / G 

    return rgr 

# Blue / Green Ratio: BGR 

def calculate_bgr(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    bgr = B / G 

    return bgr 

# Normalized Green-Red Difference Index: NGRDI 

def calculate_ngrdi(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    ngrdi = (G - R) / (G + R) 

    return ngrdi 

# Normalized Green-Blue Difference Index: NGBDI 

def calculate_ngbdi(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    ngbdi = (G - B) / (G + B) 

    return ngbdi 

# Modified Green-Red Vegetation Index: MGRVI 

def calculate_mgrvi(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    mgrvi = (G**2 - R**2) / (G**2 + R**2) 

    return mgrvi 

# Red Green- Blue Vegetation Index: RGBVI 

def calculate_rgbvi(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    rgbvi = (G**2 - R * B) / (G**2 + R * B) 

    return rgbvi 

# Green Leaf Index: GLI 
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def calculate_gli(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    gli = (2*G - R - B) / (2*G + R + B) 

    return gli 

# Color Index of Vegetation Extraction: CIVE 

def calculate_cive(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    cive = 0.441*R - 0.881*G + 0.385*R + 18.78745 

    return cive 

# Excess Green Minus Excess Red Index: ExGR 

def calculate_exgr(red, green, blue): 

    exg = calculate_exg(red, green, blue) 

    exr = calculate_exr(red, green, blue) 

    exgr = exg - exr 

    return exgr 

# Improved Red Green- Blue Vegetation Index: IRGBVI 

def calculate_irgbvi(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    irgbvi = (5*G**2 - 2*R**2 - 5*B**2) / (5*G**2 + 2*R**2 + 5*B**2) 

    return irgbvi 

# Model 1 in Vegetation Index 

def calculate_vi_model1(band_a, band_b, band_c, band_d): 

    vi_model1 = band_a / band_b 

    return vi_model1 

    # Greenness Index: G = r554/r677 

    # Simple R. Pigment Ind.: SRPI = r430/r680 

    # Lichtenthaler Index 2: Lic2 = r440 / r690 

    # Carter Index 1: Ctr1 = r695 / r420 

    # Carter Index 2: Ctr2 = r695 / r760 

    # Vogelmann Index 1: Vog1 = r740 / r720 

    # Gitelson and Merzlyak Index 1: GM1 = r750 / r550 

    # Gitelson and Merzlyak Index 2: GM2 = r750 / r700 

    # Zarco-Tejada & Miller: ZM = r750 / r710 

    # Fluorescence Ratio Index 1: FRI1 = r740 / r800 

    # Fluorescence Ratio Index 2: FRI2 = r690 / r600 

    # Simple Ratio Index: SR = r800 / r670 

    # Water Index: WI1 = r900 / r970 

    # Water Index: WI2 = r1600 / r820 

    # Moisture Stress Index: MSI = r1599 / r819 

    # Ratio Vegetation Index: RVI = r887 / r678 

    # Green Ratio Vegetation Index: GRVI = r865/r550 

    # Green Red Ratio Vegetation Index: GR = r550/r650 

    # Green Blue Ratio Vegetation Index: GB = r550/r485 

    # VI8 = r998 / r713 

    # Water Band Index: WBI = wl_970 / wl_900 

# Model 2a in Vegetation Index 

def calculate_vi_model2a(band_a, band_b, band_c, band_d): 
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    vi_model2a = (band_a - band_b) / (band_a + band_b) 

    return vi_model2a 

    # Normalized Phaeophytinization Index: NPQI = (r415 - r435) / (r415 + r435) 

    # Photochemical Reflectance Index 1: PRI1 = (r528 - r567) / (r528 + r567) 

    # Normalized Pigment Chlorophyll Index: NPCI = (r680 - r430) / (r680 + r430) 

    # Lichtenthaler Index 1: Lic1 = (r800 - r680) / (r800 + r680) 

    # Visible Atmospherically Resistant Index: VARI = (r550 - r670) / (r550 + r670) 

    # Normalized Difference Water Index: NDWI = (r800 - r1600) / (r800 + r1600) 

    # Normalized Difference Water Index 2: NDWI2 = (r857 - r1241) / (r857 + r1241) 

    # Depth Water Index: DWI = (r816 - r2218) / (r816 + r2218) 

    # Hyperspectral Fire Detection Index: HFDI = (r2430 - r2060) / (r2430 + r2060) 

    # VI7 = (r998 - r713) / (r998 + r713) 

    # Normalized Difference Vegetation Index red-edge 1: NDVIre1 = (r833 - r699) / (r833 + 

r699) 

    # Normalized Difference Vegetation Index red-edge 1: NDVIre1n = (r865 - r699) / (r865 + 

r699) 

    # Normalized Difference Vegetation Index red-edge 2: NDVIre2 = (r833 - r729) / (r833 + 

r729) 

    # Normalized Difference Vegetation Index red-edge 2: NDVIre2n = (r865 - r729) / (r865 + 

r729) 

    # Normalized Difference Vegetation Index red-edge 3: NDVIre3 = (r833 - r780) / (r833 + 

r780) 

    # Normalized Difference Vegetation Index red-edge 3: NDVIre3n = (r865 - r780) / (r865 + 

r780) 

    # Normalized Difference red-edge 1: NDre1 = (r729 - r699) / (r729 + r699) 

    # Normalized Difference red-edge 2: NDre2 = (r780 - r699) / (r780 + r699) 

    # Leaf Water Vegetation Index 1: LWVI1 = (r1099 - r988) / (r1099 + r988) 

    # Leaf Water Vegetation Index 2: LWVI2 = (r1099 - r1207) / (r1099 + r1205) 

    # Normalized Difference Infrared Index: NDII = (r823 - r1646) / (r823 + r1646) 

# Model 2b in Vegetation Index 

def calculate_vi_model2b(band_a, band_b, band_c, band_d): 

    vi_model2b = (band_a - band_b) / (band_a + band_c) 

    return vi_model2b 

    # Structure Intensive Pigment Index: SIPI = (r800 - r450) / (r800 + r650) 

    # Meris Terrestrial Chlorophyll Index: MTCI = (r865 - r717) / (r865 - r650) 

    # Leaf Chlorophyll Index: LCI = (r855 - r708) / (r855 + r679) 

# Model 2c in Vegetation Index 

def calculate_vi_model2c(band_a, band_b, band_c, band_d): 

    vi_model2c = (band_a - band_b) / (band_c - band_b) 

    return vi_model2c 

    # Mangrove Vegetation Index: MVI = (r842 - r561) / (r1610 - r561) 

# Model 2d in Vegetation Index 

def calculate_vi_model2d(band_a, band_b, band_c, band_d): 

    vi_model2d = (band_a - band_b) / (band_c + band_d) 

    return vi_model2d 

    # Vogelmann Index 2: Vog2 = (r734 - r747) / (r715 + r726) 

    # Vogelmann Index 3: Vog3 = (r734 - r747) / (r715 + r720) 
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    # Disease Water Stress Index: DWSI = (r801 - r546) / (r1656 + r879) 

# Model 2e in Vegetation Index 

def calculate_vi_model2e(band_a, band_b, band_c, band_d): 

    vi_model2e = (band_a ** 2- band_b ** 2) / (band_a ** 2 + band_b ** 2) 

    return vi_model2e 

    # VI5 = (r513 ** 2 - r504 **2) / (r513 ** 2 + r504 ** 2) 

# Model 2f in Vegetation Index 

def calculate_vi_model2f(band_a, band_b, band_c, band_d): 

    vi_model2f = (band_a- band_b) / (band_c - band_b) 

    return vi_model2f 

    # Simple Ratio red-edge 1: SRre1 = (r729 - r441) / (r699 - r441) 

    # Simple Ratio red-edge 2: SRre2 = (r780 - r441) / (r699 - r441) 

    # Structure Independent Pigment Index: SIPI1 = (r445 - r800) / (r670 + r800) 

# Model 3a in Vegetation Index 

def calculate_vi_model3a(band_a, band_b, band_c, band_d): 

    vi_model3a = (band_a / band_b) / ((band_a / band_b)**0.5) 

    return vi_model3a 

    # Renormalized Difference Vegetation Index: RDVI = (r800 / r670) / ((r800 / r670)**0.5) 

    # Renormalized Difference Vegetation Index: RDVI2 = (r865 / r670) / ((r865 / r670)**0.5) 

    # Red Difference Vegetation Index With Red Edge: RDVIREG = (r865 - r717) / ((r865 + 

r717) ** 0.5) 

# Model 3b in Vegetation Index 

def calculate_vi_model3b(band_a, band_b, band_c, band_d): 

    vi_model3b = (band_a / (band_b - 1)) / ((band_a / (band_b + 1))**0.5) 

    return vi_model3b 

    # Modified Simple Ratio: MSR = (r865 / (r660 - 1))/(r865 / (r660 + 1)) ** 0.5 

    # Modified Simple Ratio With Red Edge: MSRREG = (r865 / (r717 - 1))/(r865 / (r717 + 

1)) ** 0.5 

# Model 4 in Vegetation Index 

def calculate_vi_model4(band_a, band_b, band_c, band_d):  

    vi_model4 = ((band_a / band_b) - 1) / (((band_a / band_b) + 1)**0.5) 

    return vi_model4 

    # Modified Simple Ratio Index: MSR2 = ((r800 / r670) - 1) / (((r800 / r670) + 1)**0.5) 

# Model 5a in Vegetation Index 

def calculate_vi_model5a(band_a, band_b, band_c, band_d):  

    vi_model5a = (1 + 0.16) * (band_a - band_b) / (band_a + band_b + 0.16) 

    return vi_model5a 

    # Optimized Soil-Adjusted Vegetation Index: OSAVI = (1 + 0.16) * (r800 - r670) / (r800 + 

r670 + 0.16) 

    # Soil-Adjusted Vegetation Index: SAVI = (1 + 0.16) * (r887 - r678) / (r887 + r678 + 0.16) 

    # Optimized Soil-adjusted Vegetation Index With Red Edge: OSAVIREG = (1 + 0.16) * 

(r865 - r717) / (r865 + r717 + 0.16) 

# Model 5b in Vegetation Index 

def calculate_vi_model5b(band_a, band_b, band_c, band_d):  

    vi_model5b = 1.5 * (band_a - band_b) / (band_a + band_b + 0.5) 

    return vi_model5b 

    # Green Soil Adjusted Vegetation Index: GSAVI = 1.5 * (r800 - r560) / (r800 + r560 + 0.5) 
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# Model 6 in Vegetation Index 

def calculate_vi_model6(band_a, band_b, band_c, band_d):  

    vi_model6 = ((band_a - band_b) - 0.2 * (band_a - band_c)) * (band_c / band_b) 

    return vi_model6 

    # Modified Chlorophyll Absorption in Reflectance Index 1: MCARI1 = ((r700 - r670) - 0.2 

* (r700 - r550)) * (r700 / r670) 

# Model 7 in Vegetation Index 

def calculate_vi_model7(band_a, band_b, band_c, band_d):  

    vi_model7 = 1.2 * (2.5 * (band_a - band_b) - 1.3 * (band_a - band_c)) 

    return vi_model7 

    # Modified Chlorophyll Absorption in Reflectance Index 2: MCARI2 = 1.2 * (2.5 * (r800 - 

r670) - 1.3 * (r800 - r550)) 

# Model 8 in Vegetation Index 

def calculate_vi_model8(band_a, band_b, band_c, band_d):  

    vi_model8 = 1.5 * (2.5 * (band_a - band_b) - 1.3 * (band_a - band_c)) / ((((2 * band_a + 

1) ** 2) - (6 * band_a - 5 * (band_b ** 0.5)) - 0.5) ** 0.5) 

    return vi_model8 

    # Modified Chlorophyll Absorption in Reflectance Index 3: MCARI3 = 1.5 * (2.5 * (r800 - 

r670) - 1.3 * (r800 - r550)) / ((((2 * r800 + 1) ** 2) - (6 * r800 - 5 * (r670 ** 0.5)) - 0.5) ** 0.5) 

# Model 9 in Vegetation Index 

def calculate_vi_model9(band_a, band_b, band_c, band_d):  

    vi_model9 = 3 * ((band_a - band_b) - 0.2 * (band_a - band_c) * (band_a / band_b)) 

    return vi_model9 

    # Transformed CARI: TCARI = 3 * ((r700 - r670) - 0.2 * (r700 - r550) * (r700 / r670)) 

# Model 10 in Vegetation Index 

def calculate_vi_model10(band_a, band_b, band_c, band_d):  

    vi_model10 = 0.5 * (120 * (band_a - band_b) - 200 * (band_c - band_b)) 

    return vi_model10 

    # Triangular Vegetation Index: TVI = 0.5 * (120 * (r750 - r550) - 200 * (r670 - r550)) 

# Model 11 in Vegetation Index 

def calculate_vi_model11(band_a, band_b, band_c, band_d):  

    vi_model11 = 1.2 * (1.2 * (band_a - band_b) - 2.5 * (band_c - band_b)) 

    return vi_model11 

    # Modified Triangular Vegetation Index 1: MTVI1 = 1.2 * (1.2 * (r800 - r550) - 2.5 * (r670 - 

r550)) 

# Model 12 in Vegetation Index 

def calculate_vi_model12(band_a, band_b, band_c, band_d):  

    vi_model12 = (1.5 * (1.2 * (band_a - band_b) - 2.5 * (band_c - band_b))) / ((((2 * band_a 

+ 1) ** 2 - (6 * band_a - (5 * (band_c ** 0.5)))) - 0.5) ** 0.5) 

    return vi_model12 

    # Modified Triangular Vegetation Index 2: MTVI2 = 1.5 * (1.2 * (r800 - r550) - 2.5 * (r670 - 

r550)) / ((((2 * r800 + 1) ** 2 - (6 * r800 - (5 * (r670 ** 0.5)))) - 0.5) ** 0.5) 

# Model 13 in Vegetation Index 

def calculate_vi_model13(band_a, band_b, band_c, band_d):  

    vi_model13 = 0.5 * (2 * band_a + 1 - (((2 * band_a + 1) ** 2) - 8 * (band_a - band_b)) ** 

0.5) 

    return vi_model13 
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    # Improved SAVI with self-adjustment factor L: MSAVI = 0.5 * (2 * r800 + 1 - (((2 * r800 + 

1) ** 2) - 8 * (r800 - r670)) ** 0.5) 

# Model 14 in Vegetation Index 

def calculate_vi_model14(band_a, band_b, band_c, band_d):  

    vi_model14 = 2.5 * ((band_a - band_b) / (band_a + 2.4 * band_b + 1)) 

    return vi_model14 

    # Enhanced Vegetation Index 2: EVI2 = 2.5 * ((r800 - r670) / (r800 + 2.4 * r670 + 1)) 

# Model 15 in Vegetation Index 

def calculate_vi_model15(band_a, band_b, band_c, band_d):  

    vi_model15 = ((band_a - band_b)/(band_a + band_b)) - ((band_a - band_c)/(band_a + 

band_c)) 

    return vi_model15 

    # Combine Mangrove Recognition Index (CMRI = NDVI - NDWI): CMRI = ((r865 - 

r660)/(r865 + r660)) - ((r857 - r1241)/(r857 + r1241)) 

# Model 16 in Vegetation Index 

def calculate_vi_model16(band_a, band_b, band_c, band_d):  

    vi_model16 = ((band_a + 1.5 * band_b) - band_c) / (band_a - band_d) 

    return vi_model16 

    # Temperature Condition Index: TCI = ((r887 + 1.5 * r524) - r678) / (r887 - r701) 

# Model 17 in Vegetation Index 

def calculate_vi_model17(band_a, band_b, band_c, band_d):  

    vi_model17 = (band_a - band_b) / (band_a + band_b + 0.01) 

    return vi_model17 

    # Normalized Red Green Difference Vegetation Index: NDIG = (r650 - r560)/(r650 + r560 

+ 0.01) 

    # Normalized Red Blue Difference Vegetation Index: NDIB = (r650 - r485)/(r650 + r485 + 

0.01) 

# Model 18 in Vegetation Index 

def calculate_vi_model18(band_a, band_b, band_c, band_d):  

    vi_model18 = 1.5 * (band_a - band_b) / (band_a + band_b + 0.5) 

    return vi_model18 

    # Soil-adjusted Vegetation Index With Green: SAVIGRE = 1.5 * (r865 - r560) / (r865 + 

r560 + 0.5) 

# Model 19 in Vegetation Index 

def calculate_vi_model19(band_a, band_b, band_c, band_d):  

    vi_model19 = (band_a - band_b) / (band_a + band_b - band_c) 

    return vi_model19 

    # Visible Atmospherically Resistant Index: VARI2 = (r560 - r650) / (r560 + r650 - r485)   

# Model 20 in Vegetation Index 

def calculate_vi_model20(band_a, band_b, band_c, band_d):  

    vi_model20 = (band_a - band_b + 1.7 * (band_c - band_d)) /(band_a + band_b - 1.7 * 

(band_c - band_d)) 

    return vi_model20 

    # Green Atmospherically Resistant Index: GARI = (r865 - r560 + 1.7 * (r485 - r650)) 

/(r865 + r560 - 1.7 * (r485 - r650)) 

# Model 21 in Vegetation Index 

def calculate_vi_model21(band_a, band_b, band_c, band_d):  
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    vi_model21 = (band_a) / (0.666 * band_b + 0.334 * band_c) 

    return vi_model21 

    # Carbon Dioxide Continuum Interpolated Band Ratio: CO2-CIBR = (r2010) / (0.666 * 

r1990 + 0.334 * r2040) 

# Model 22 in Vegetation Index 

def calculate_vi_model22(band_a, band_b, band_c, band_d):  

    vi_model22 = band_a / (band_b + band_c) 

    return vi_model22 

    # VI1 = r712 / (r998 + r693) 

# Model 23 in Vegetation Index 

def calculate_vi_model23(band_a, band_b, band_c, band_d):  

    vi_model23 = (band_a - band_b) / band_c 

    return vi_model23 

    # VI3 = (r708 - r693) / r758 

    # Plant Senescence Reflectance Index: PSRI = (r660 - r554) / (r729) 

# Model 24 in Vegetation Index 

def calculate_vi_model24(band_a, band_b, band_c, band_d):  

    vi_model24 = (1 / band_a) - (1 / band_b) 

    return vi_model24 

    # VI6 = (1 / r1000) - (1 / r713) 

    # Anthocyanin Reflectance Index 1: ARI1 =  (1 / r554) - (1 / r699) 

    # Carotenoid Reflectance Index 1: CRI1 =  (1 / r507) - (1 / r546) 

    # Carotenoid Reflectance Index 2: CRI2 =  (1 / r507) - (1 / r699) 

# Model 25 in Vegetation Index 

def calculate_vi_model25(band_a, band_b, band_c, band_d):  

    vi_model25 = (band_a / band_b) - 1 

    return vi_model25 

    # Chlorophyll Index red-edge: Clre = (r780 / r699) - 1 

# Model 26 in Vegetation Index 

def calculate_vi_model26(band_a, band_b, band_c, band_d):  

    vi_model26 = (band_a - band_b) / (band_a + band_b - 2 * band_c) 

    return vi_model26 

    # Normalized Difference red-edge 1 modified: NDre1m = (r729 - r699) / (r729 + r699 - 2 * 

r441) 

    # Normalized Difference red-edge 2 modified: NDre2m = (r780 - r699) / (r780 + r699 - 2 * 

r441) 

# Model 27 in Vegetation Index 

def calculate_vi_model27(band_a, band_b, band_c, band_d):  

    vi_model27 = ((band_a / band_b) - 1 ) / ((band_a / band_b) + 1) ** 0.5 

    return vi_model27 

    # Modified Simple Ratio red-edge: MSRre = ((r833 / r699) - 1 ) / ((r833 / r699) + 1) ** 0.5 

    # Modified Simple Ratio red-edge narrow: MSRren = ((r865 / r699) - 1 ) / ((r865 / r699) + 

1) ** 0.5 

# Model 28 in Vegetation Index 

def calculate_vi_model28(band_a, band_b, band_c, band_d):  

    vi_model28 = (band_a - (band_b - (band_c - band_b))) / (band_a + (band_b - (band_c - 

band_b))) 
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    return vi_model28 

    # Atmospherically Resistant Vegetation Index: ARVI = (r801 - (r679 - (r449 - r679))) / 

(r801 + (r679 - (r449 - r679))) 

# Model 29 in Vegetation Index 

def calculate_vi_model29(band_a, band_b, band_c, band_d):  

    vi_model29 = (band_a - band_b) / (band_a + band_b - 2 * band_c) 

    return vi_model29 

    # Modified Red Edge Normalized Difference Vegetation Index: MRENDVI = (r749 - r708) 

/ (r749 + r708 - 2 * r441) 

# Model 30 in Vegetation Index 

def calculate_vi_model30(band_a, band_b, band_c, band_d):  

    vi_model30 = (np.log(1/band_a) - np.log(1/band_b)) / (np.log(1/band_a) + 

np.log(1/band_b)) 

    return vi_model30 

    # Normalized Difference Nitrogen Index: NDNI =  (log(1/r1512) - log(1/r1677)) / 

(log(1/r1512) + log(1/r1677)) 

    # Normalized Difference Lignin Index: NDLI =  (log(1/r1755) - log(1/r1677)) / 

(log(1/r1755) + log(1/r1677)) 

# Model 31 in Vegetation Index 

def calculate_vi_model31(band_a, band_b, band_c, band_d):  

    vi_model31 = 0.5 * (band_a + band_b) - band_c 

    return vi_model31 

    # Cellulose Absorption Index: CAI =  0.5 * (r1993 + r2206) - r2102 

# Model 32 in Vegetation Index 

def calculate_vi_model32(band_a, band_b, band_c, band_d):  

    vi_model32 = 100 * ((band_a - band_b) + (band_a - band_c)) 

    return vi_model32 

    # Lignin Cellulose Absorption Index: LCAI =  100 * ((r2206 - r2159) + (r2206 - r2335)) 

# Model 33 in Vegetation Index 

def calculate_vi_model33(band_a, band_b, band_c, band_d):  

    vi_model33 = band_a * ((1 / band_b) - (1 / band_c)) 

    return vi_model33 

    # Anthocyanin Reflectance Index 2: ARI2 =  r801 * ((1 / r554) - (1 / r699)) 

# Model 34 in Vegetation Index 

def calculate_vi_model34(band_a, band_b, band_c, band_d):  

    vi_model34 = (band_a - (band_b - band_c)) / (band_a + (band_b - band_c)) 

    return vi_model34 

    # Normalized Multi-band Drought Index: NMDI = (r855 - (r1636 - r2127)) / (r855 + (r1636 

- r2127)) 

def select_model(vi, band_a, band_b, band_c, band_d): 

    model1 = ["G", "SRPI", "Lic2", "Ctr1", "Ctr2", "Vog1", "GM1", "GM2", "ZM", "FRI1", 

"FRI2", "SR", "WI1", "WI2", "MSI", "RVI", "GRVI", "GR", "GB", "P1", "P2", "VI8","WBI"] 

    model2a = ["NPQI", "PRI1", "PRI2", "NPCI", "Lic1", "VARI", "NDWI", "NDWI2", "DWI", 

"HFDI", "VI7", "NDVIre1", "NDVIre1n", "NDVIre2", "NDVIre2n", "NDVIre3", "NDVIre3n", 

"NDre1", "NDre2","LWVI1","LWVI2","NDII"] 

    model2b = ["SIPI", "MTCI", "LCI"] 

    model2c = ["MVI"] 
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    model2d = ["Vog2", "Vog3","DWSI"] 

    model2e = ["VI5"] 

    model2f = ["SRre1","SRre2","SIPI1"] 

    model3a = ["RDVI", "RDVI2", "RDVIREG"] 

    model3b = ["MSR", "MSRREG"] 

    model4 = ["MSR2"] 

    model5a = ["OSAVI", "SAVI", "OSAVIREG"] 

    model5b = ["GSAVI"] 

    model6 = ["MCARI1"] 

    model7 = ["MCARI2"] 

    model8 = ["MCARI3"] 

    model9 = ["TCARI"] 

    model10 = ["TVI"] 

    model11 = ["MTVI1"] 

    model12 = ["MTVI2"] 

    model13 = ["MSAVI"] 

    model14 = ["EVI2"] 

    model15 = ["CMRI"] 

    model16 = ["TCI"] 

    model17 = ["NDIG", "NDIB"] 

    model18 = ["SAVIGRE"] 

    model19 = ["VARI2"] 

    model20 = ["GARI"] 

    model21 = ["CO2-CIBR"] 

    model22 = ["VI1"] 

    model23 = ["VI3", "PSRI"] 

    model24 = ["VI6","ARI1","CRI1","CRI2"] 

    model25 = ["Clre"] 

    model26 = ["NDre1m", "NDre2m"] 

    model27 = ["MSRre", "MSRren"] 

    model28 = ["ARVI"] 

    model29 = ["MRENDVI"] 

    model30 = ["NDNI", "NDLI"] 

    model31 = ["CAI"] 

    model32 = ["LCAI"] 

    model33 = ["ARI2"] 

    model34 = ["NMDI"] 

 

    if vi in model1: 

        veg_index_values = calculate_vi_model1(band_a, band_b, band_c, band_d) 

    elif vi in model2a: 

        veg_index_values = calculate_vi_model2a(band_a, band_b, band_c, band_d) 

    elif vi in model2b: 

        veg_index_values = calculate_vi_model2b(band_a, band_b, band_c, band_d) 

    elif vi in model2c: 

        veg_index_values = calculate_vi_model2c(band_a, band_b, band_c, band_d) 

    elif vi in model2d: 
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        veg_index_values = calculate_vi_model2d(band_a, band_b, band_c, band_d) 

    elif vi in model2e: 

        veg_index_values = calculate_vi_model2e(band_a, band_b, band_c, band_d) 

    elif vi in model2f: 

        veg_index_values = calculate_vi_model2f(band_a, band_b, band_c, band_d) 

    elif vi in model3a: 

        veg_index_values = calculate_vi_model3a(band_a, band_b, band_c, band_d) 

    elif vi in model3b: 

        veg_index_values = calculate_vi_model3b(band_a, band_b, band_c, band_d) 

    elif vi in model4: 

        veg_index_values = calculate_vi_model4(band_a, band_b, band_c, band_d) 

    elif vi in model5a: 

        veg_index_values = calculate_vi_model5a(band_a, band_b, band_c, band_d) 

    elif vi in model5b: 

        veg_index_values = calculate_vi_model5b(band_a, band_b, band_c, band_d) 

    elif vi in model6: 

        veg_index_values = calculate_vi_model6(band_a, band_b, band_c, band_d) 

    elif vi in model7: 

        veg_index_values = calculate_vi_model7(band_a, band_b, band_c, band_d) 

    elif vi in model8: 

        veg_index_values = calculate_vi_model8(band_a, band_b, band_c, band_d) 

    elif vi in model9: 

        veg_index_values = calculate_vi_model9(band_a, band_b, band_c, band_d) 

    elif vi in model10: 

        veg_index_values = calculate_vi_model10(band_a, band_b, band_c, band_d) 

    elif vi in model11: 

        veg_index_values = calculate_vi_model11(band_a, band_b, band_c, band_d) 

    elif vi in model12: 

        veg_index_values = calculate_vi_model12(band_a, band_b, band_c, band_d) 

    elif vi in model13: 

        veg_index_values = calculate_vi_model13(band_a, band_b, band_c, band_d) 

    elif vi in model14: 

        veg_index_values = calculate_vi_model14(band_a, band_b, band_c, band_d) 

    elif vi in model15: 

        veg_index_values = calculate_vi_model15(band_a, band_b, band_c, band_d) 

    elif vi in model16: 

        veg_index_values = calculate_vi_model16(band_a, band_b, band_c, band_d) 

    elif vi in model17: 

        veg_index_values = calculate_vi_model17(band_a, band_b, band_c, band_d) 

    elif vi in model18: 

        veg_index_values = calculate_vi_model18(band_a, band_b, band_c, band_d) 

    elif vi in model19: 

        veg_index_values = calculate_vi_model19(band_a, band_b, band_c, band_d) 

    elif vi in model20: 

        veg_index_values = calculate_vi_model20(band_a, band_b, band_c, band_d) 

    elif vi in model21: 

        veg_index_values = calculate_vi_model21(band_a, band_b, band_c, band_d) 
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    elif vi in model22: 

        veg_index_values = calculate_vi_model22(band_a, band_b, band_c, band_d) 

    elif vi in model23: 

        veg_index_values = calculate_vi_model23(band_a, band_b, band_c, band_d) 

    elif vi in model24: 

        veg_index_values = calculate_vi_model24(band_a, band_b, band_c, band_d) 

    elif vi in model25: 

        veg_index_values = calculate_vi_model25(band_a, band_b, band_c, band_d) 

    elif vi in model26: 

        veg_index_values = calculate_vi_model26(band_a, band_b, band_c, band_d) 

    elif vi in model27: 

        veg_index_values = calculate_vi_model27(band_a, band_b, band_c, band_d) 

    elif vi in model28: 

        veg_index_values = calculate_vi_model28(band_a, band_b, band_c, band_d) 

    elif vi in model29: 

        veg_index_values = calculate_vi_model29(band_a, band_b, band_c, band_d) 

    elif vi in model30: 

        veg_index_values = calculate_vi_model30(band_a, band_b, band_c, band_d) 

    elif vi in model31: 

        veg_index_values = calculate_vi_model31(band_a, band_b, band_c, band_d) 

    elif vi in model32: 

        veg_index_values = calculate_vi_model32(band_a, band_b, band_c, band_d) 

    elif vi in model33: 

        veg_index_values = calculate_vi_model33(band_a, band_b, band_c, band_d) 

    elif vi in model34: 

        veg_index_values = calculate_vi_model34(band_a, band_b, band_c, band_d) 

    return veg_index_values 

#### Dictionaries of vegetation indices bands 

# Classed bands to calculate vegetatio index 

vi_classed_band_dict = { 

    "NDVI": ("Red", "NIR"), 

    "NBR": ("NIR", "SWIR 2"), 

    "NDMI": ("NIR", "SWIR 1"), 

    "DVI": ("Red", "NIR"), 

    "DVIGRE": ("Green", "NIR"), 

    "DVIRED": ("Red Edge", "NIR"), 

    "CIREDGE": ("Red Edge", "NIR"), 

    "CIGREEN": ("Green", "NIR"), 

    "IPVI": ("Red", "NIR"), 

    "NIRV": ("Red", "NIR"), 

    "MNLI": ("NIR", "Red"), 

    "NLI": ("NIR", "Red"), 

    "WDRVI": ("NIR", "Red"), 

    "NDRE": ("Red Edge", "NIR"), 

    "BAI": ("Red Edge", "NIR"), 

    "SVI": ("Red Edge", "Red"), 

    "MRESR": ("Red Edge", "NIR"), 
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} 

 

vi_classed_band_dict2 = { 

    "TBDVI": ("Red", "NIR", "SWIR 1"), 

    "EVI": ("Blue", "Red", "NIR"), 

    "EXG2": ("Blue", "Green", "Red"), 

    "NRI": ("Blue", "Green", "Red"), 

    "NGI": ("Blue", "Green", "Red"), 

    "GNDVI": ("Green", "Red Edge", "NIR"), 

    "ENDVI": ("Red Edge", "Green", "Blue"), 

    "MRGBVI": ("Red Edge", "Green", "Blue"), 

    "NREI": ("Green", "Red Edge", "NIR"), 

    "EXG": ("Red", "Green", "Blue"), 

    "EXB": ("Red", "Green", "Blue"), 

    "EXR": ("Red", "Green", "Blue"), 

    "RGR": ("Red", "Green", "Blue"), 

    "BGR": ("Red", "Green", "Blue"), 

    "NGRDI": ("Red", "Green", "Blue"), 

    "NGBDI": ("Red", "Green", "Blue"), 

    "MGRVI": ("Red", "Green", "Blue"), 

    "RGBVI": ("Red", "Green", "Blue"), 

    "GLI": ("Red", "Green", "Blue"), 

    "CIVE": ("Red", "Green", "Blue"), 

    "EXGR": ("Red", "Green", "Blue"), 

    "IRGBVI": ("Red", "Green", "Blue"), 

    "REP": ("Red", "Red Edge", "NIR"), 

} 

# Fixed bands to calculate vegetation index 

vi_fixed_band_dict = { 

    "Vog1": (37, 35, 0, 0), 

    "ZM": (38, 34, 0, 0), 

    "Vog2": (37, 38, 35, 36), 

    "Vog3": (37, 38, 35, 35), 

    "MCARI1": (33, 30, 16, 0), 

    "TCARI": (33, 30, 16, 0), 

    "P1": (2, 189, 0, 0), 

    "P2": (3, 190, 0, 0), 

    "CO2-CIBR": (134, 133, 135, 0), 

    "VI3": (34, 32, 39, 0), 

    "VI3": (12, 10, 0, 0), 

} 

# Variable bands to calculate vegetation index 

vi_variable_band_dict = { 

    "G": (17, 31, 0, 0), 

    "SRPI": (1, 31, 0, 0), 

    "Lic2": (2, 32, 0, 0), 

    "Ctr1": (33, 1, 0, 0), 
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    "Ctr2": (33, 39, 0, 0), 

    "GM1": (38, 17, 0, 0), 

    "GM2": (38, 33, 0, 0), 

    "FRI1": (37, 43, 0, 0), 

    "FRI2": (32, 22, 0, 0), 

    "SR": (43, 30, 0, 0), 

    "WI1": (52, 59, 0, 0), 

    "WI2": (112, 45, 0, 0), 

    "NPQI": (112, 45, 0, 0), 

    "PRI1": (14, 19, 0, 0), 

    "NPCI": (31, 1, 0, 0), 

    "Lic1": (43, 31, 0, 0), 

    "VARI": (16, 30, 0, 0), 

    "NDWI": (43, 112, 0, 0), 

    "NDWI2": (48, 88, 0, 0), 

    "DWI": (44, 156, 0, 0), 

    "SIPI": (43, 3, 28, 0), 

    "RDVI": (43, 30, 0, 0), 

    "MSR2": (43, 30, 0, 0), 

    "OSAVI": (43, 30, 0, 0), 

    "MCARI2": (43, 30, 16, 0), 

    "MCARI3": (43, 30, 16, 0), 

    "TVI": (38, 16, 30, 0), 

    "MTVI1": (43, 16, 30, 0), 

    "MTVI2": (43, 16, 30, 0), 

    "MSAVI": (43, 30, 0, 0), 

    "EVI2": (43, 30, 0, 0), 

    "MSI": (112, 45, 0, 0), 

    "MVI": (47, 18, 113, 0), 

    "CMRI": (49, 29, 88, 0), 

    "SAVI": (51, 31, 0, 0), 

    "RVI": (51, 31, 0, 0), 

    "TCI": (51, 13, 31, 33), 

    "GRVI": (49, 16, 0, 0), 

    "GR": (16, 28, 0, 0), 

    "GB": (16, 8, 0, 0), 

    "MTCI": (49, 35, 28, 0), 

    "MVI": (47, 18, 113, 0), 

    "RDVI2": (49, 30, 0, 0), 

    "RDVIREG": (49, 35, 0, 0), 

    "MSR": (49, 29, 0, 0), 

    "MSRREG": (49, 35, 0, 0), 

    "MSR2": (43, 30, 0, 0), 

    "OSAVIREG": (49, 35, 0, 0), 

    "NDIG": (28, 18, 0, 0), 

    "NDIB": (28, 8, 0, 0), 

    "SAVIGRE": (49, 18, 0, 0), 
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    "VARI2": (18, 28, 0, 0), 

    "GARI": (49, 18, 8, 28), 

    "GSAVI": (43, 18, 0, 0), 

    "HFDI": (185, 137, 0, 0), 

    "VI7": (65, 34, 0, 0), 

    "VI1": (34, 65, 32, 0), 

    "VI6": (65, 34, 0, 0), 

    "VI8": (65, 34, 0, 0), 

    "NDVIre1": (46, 33, 0, 0), 

    "NDVIre1n": (49, 33, 0, 0), 

    "NDVIre2": (46, 36, 0, 0), 

    "NDVIre2n": (49, 36, 0, 0), 

    "NDVIre3": (46, 41, 0, 0), 

    "NDVIre3n": (49, 41, 0, 0), 

    "NDre1": (36, 33, 0, 0), 

    "NDre2": (41, 33, 0, 0), 

    "LCI": (48, 34, 31, 0), 

    "PSRI": (29, 17, 36, 0), 

    "Clre": (41, 33, 0, 0), 

    "NDre1m": (36, 33, 2, 0), 

    "NDre2m": (41, 33, 2, 0), 

    "SRre1": (36, 2, 33, 0), 

    "SRre2": (36, 2, 33, 0), 

    "MSRre": (46, 33, 0, 0), 

    "MSRren": (49, 33, 0, 0), 

    "SIPI1": (2, 43, 30, 0), 

    "WBI": (59, 52, 0, 0), 

    "LWVI1": (75, 64, 0, 0), 

    "LWVI2": (75, 85, 0, 0), 

    "NDII": (45, 117, 0, 0), 

    "DWSI": (43, 16, 118, 50), 

    "ARI1": (17, 33, 0, 0), 

    "CRI1": (11, 16, 0, 0), 

    "CRI2": (11, 33, 0, 0), 

    "ARVI": (43, 31, 3, 0), 

    "MRENDVI": (38, 34, 2, 0), 

    "NDNI": (104, 120, 0, 0), 

    "NDLI": (128, 120, 0, 0), 

    "CAI": (133, 155, 142, 0), 

    "LCAI": (155, 149, 172, 0), 

    "ARI2": (43, 17, 33, 0), 

    "NMDI": (48, 116, 145, 0), 

} 

#### Read the excel file 

# Read the Excel file 

excel_file = working_dir + "CulebraPointsCBI.xlsx" 

points = pd.read_excel(excel_file) 
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# Initialize lists to store results 

cb_results_lst = 0 

cb2_results_lst = 0 

fb_results_lst = 0 

vb_results_lst = 0 

rb_results_lst = 0 

### FOR CLASSED BANDS 

#### Combination of bands of CLASSED BANDS 

def bands_combinations(tiff_file, band_lst, vi_classed_band_dict): 

    for i in vi_classed_band_dict: 

        print(i) 

    vi_name = input("Insert the index name: ") 

    combination_lst = [] 

    band_names = vi_classed_band_dict[vi_name] 

    with rasterio.open(tiff_file) as src: 

        for band_a in band_lst: 

            if band_a[1] == band_names[0]: 

                band_ax = band_a[0] 

                for band_b in band_lst: 

                    if band_b[1] == band_names[1]: 

                        band_bx = band_b[0] 

                        combination_lst.append((band_ax, band_bx)) 

    for i in combination_lst: 

        print(i) 

    return combination_lst, vi_name 

 

def bands_combinations2(tiff_file, band_lst, vi_classed_band_dict2): 

    for i in vi_classed_band_dict2: 

        print(i) 

    vi_name = input("Insert the index name: ") 

    combination_lst2 = [] 

    band_names = vi_classed_band_dict2[vi_name] 

    with rasterio.open(tiff_file) as src: 

        for band_a in band_lst: 

            if band_a[1] == band_names[0]: 

                band_ax = band_a[0] 

                for band_b in band_lst: 

                    if band_b[1] == band_names[1]: 

                        band_bx = band_b[0] 

                        for band_c in band_lst: 

                            if band_c[1] == band_names[2]: 

                                band_cx = band_c[0] 

                                combination_lst2.append((band_ax, band_bx, band_cx)) 

    for i in combination_lst2: 

        print(i) 

    return combination_lst2, vi_name 

#### Calculate vegetation index values for CLASSED BANDS 
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def get_vi_cb_image(tiff_file, vi_name, band_a, band_b): 

    with rasterio.open(tiff_file) as dataset: 

        band_1 = dataset.read(band_a) 

        band_2 = dataset.read(band_b) 

        if vi_name == "NDVI": 

            vi_values = calculate_ndvi(band_1, band_2) 

        elif vi_name == "NBR": 

            vi_values = calculate_nbr(band_1, band_2) 

        elif vi_name == "NDMI": 

            vi_values = calculate_ndmi(band_1, band_2) 

        elif vi_name == "DVI": 

            vi_values = calculate_dvi(band_1, band_2) 

        elif vi_name == "DVIGRE": 

            vi_values = calculate_dvigre(band_1, band_2) 

        elif vi_name == "DVIRED": 

            vi_values = calculate_dvired(band_1, band_2) 

        elif vi_name == "CIREDGE": 

            vi_values = calculate_ciredge(band_1, band_2) 

        elif vi_name == "CIGREEN": 

            vi_values = calculate_cigreen(band_1, band_2) 

        elif vi_name == "IPVI": 

            vi_values = calculate_ipvi(band_1, band_2) 

        elif vi_name == "NIRV": 

            vi_values = calculate_nirv(band_1, band_2) 

        elif vi_name == "MNLI": 

            vi_values = calculate_mnli(band_1, band_2) 

        elif vi_name == "NLI": 

            vi_values = calculate_nli(band_1, band_2) 

        elif vi_name == "WDRVI": 

            vi_values = calculate_wdrvi(band_1, band_2) 

        elif vi_name == "NDRE": 

            vi_values = calculate_ndre(band_1, band_2) 

        elif vi_name == "BAI": 

            vi_values = calculate_bai(band_1, band_2) 

        elif vi_name == "SVI": 

            vi_values = calculate_svi(band_1, band_2) 

        elif vi_name == "MRESR": 

            vi_values = calculate_mresr(band_1, band_2) 

        else: 

            print("Insert other vegetation index name") 

    return vi_values, dataset 

 

def get_vi_cb_at_points(vi_values, dataset, points): 

    veg_index_values = [] 

    for _, row in points.iterrows(): 

        name, x, y = row['Parcela'], row['Coord_X'], row['Coord_Y'] 

        row_idx, col_idx = rasterio.transform.rowcol(dataset.transform, x, y) 
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        veg_index_value = vi_values[row_idx, col_idx] 

        veg_index_values.append((name, veg_index_value)) 

    return veg_index_values 

 

def get_cb_comparative_points(tiff_file, band_lst, vi_classed_band_dict, points): 

    cb_results_lst = [] 

    combination_lst, vi_name = bands_combinations(tiff_file, band_lst, 

vi_classed_band_dict) 

    for paired_bands in combination_lst: 

        band_a = paired_bands[0] 

        band_b = paired_bands[1] 

        vi_values, dataset = get_vi_cb_image(tiff_file, vi_name, band_a, band_b) 

        veg_index_values = get_vi_cb_at_points(vi_values, dataset, points) 

        cb_results_lst.append((vi_name, band_a, band_b, veg_index_values)) 

    return cb_results_lst 

def get_vi_cb2_image(tiff_file, vi_name, band_a, band_b, band_c): 

    with rasterio.open(tiff_file) as dataset: 

        band_1 = dataset.read(band_a) 

        band_2 = dataset.read(band_b) 

        band_3 = dataset.read(band_c) 

        if vi_name == "TBDVI": 

            vi_values = calculate_tbdvi(band_1, band_2, band_3) 

        elif vi_name == "EVI": 

            vi_values = calculate_evi(band_1, band_2, band_3) 

        elif vi_name == "EXG2": 

            vi_values = calculate_exg2(band_1, band_2, band_3) 

        elif vi_name == "NRI": 

            vi_values = calculate_nri(band_1, band_2, band_3) 

        elif vi_name == "NGI": 

            vi_values = calculate_ngi(band_1, band_2, band_3) 

        elif vi_name == "GNDVI": 

            vi_values = calculate_gndvi(band_1, band_2, band_3) 

        elif vi_name == "ENDVI": 

            vi_values = calculate_endvi(band_1, band_2, band_3) 

        elif vi_name == "MRGBVI": 

            vi_values = calculate_mrgbvi(band_1, band_2, band_3) 

        elif vi_name == "NREI": 

            vi_values = calculate_nrei(band_1, band_2, band_3) 

        elif vi_name == "EXG": 

            vi_values = calculate_exg(band_1, band_2, band_3) 

        elif vi_name == "EXB": 

            vi_values = calculate_exb(band_1, band_2, band_3) 

        elif vi_name == "EXR": 

            vi_values = calculate_exr(band_1, band_2, band_3) 

        elif vi_name == "RGR": 

            vi_values = calculate_rgr(band_1, band_2, band_3) 

        elif vi_name == "BGR": 
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            vi_values = calculate_bgr(band_1, band_2, band_3) 

        elif vi_name == "NGRDI": 

            vi_values = calculate_ngrdi(band_1, band_2, band_3) 

        elif vi_name == "NGBDI": 

            vi_values = calculate_ngbdi(band_1, band_2, band_3) 

        elif vi_name == "MGRVI": 

            vi_values = calculate_mgrvi(band_1, band_2, band_3) 

        elif vi_name == "RGBVI": 

            vi_values = calculate_rgbvi(band_1, band_2, band_3) 

        elif vi_name == "GLI": 

            vi_values = calculate_gli(band_1, band_2, band_3) 

        elif vi_name == "CIVE": 

            vi_values = calculate_cive(band_1, band_2, band_3) 

        elif vi_name == "EXGR": 

            vi_values = calculate_exgr(band_1, band_2, band_3) 

        elif vi_name == "IRGBVI": 

            vi_values = calculate_irgbvi(band_1, band_2, band_3) 

        elif vi_name == "REP": 

            vi_values = calculate_rep(band_1, band_2, band_3) 

        else: 

            print("Insert other vegetation index name") 

    return vi_values, dataset 

 

def get_cb2_comparative_points(tiff_file, band_lst, vi_classed_band_dict2, points): 

    cb2_results_lst = [] 

    combination_lst2, vi_name = bands_combinations2(tiff_file, band_lst, 

vi_classed_band_dict2) 

    for paired_bands in combination_lst2: 

        band_a = paired_bands[0] 

        band_b = paired_bands[1] 

        band_c = paired_bands[2] 

        vi_values, dataset = get_vi_cb2_image(tiff_file, vi_name, band_a, band_b, band_c) 

        veg_index_values = get_vi_cb_at_points(vi_values, dataset, points) 

        cb2_results_lst.append((vi_name, band_a, band_b, band_c, veg_index_values)) 

    return cb2_results_lst 

#### Extract results of wavelength and vegetation index of CLASSED BANDS 

cb_results_lst = get_cb_comparative_points(tiff_file, band_lst, vi_classed_band_dict, 

points) 

for i in cb_results_lst: 

    print(i) 

cb2_results_lst = get_cb2_comparative_points(tiff_file, band_lst, vi_classed_band_dict2, 

points) 

for i in cb2_results_lst: 

    print(i) 

### FOR FIXED BANDS 

#### Calculate vegetation index values for FIXED BANDS 

def get_vi_fb_image(tiff_file, vi_fixed_band_dict): 
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    vi_list = [] 

    for vi in vi_fixed_band_dict: 

        band = vi_fixed_band_dict[vi] 

        band = tuple(1 if b == 0 else b for b in band) 

        with rasterio.open(tiff_file) as dataset: 

            band_a = dataset.read(band[0]) 

            band_b = dataset.read(band[1]) 

            band_c = dataset.read(band[2]) 

            band_d = dataset.read(band[3]) 

 

        veg_index_values = select_model(vi, band_a, band_b, band_c, band_d) 

        vi_list.append((veg_index_values, dataset)) 

    return vi_list 

 

def get_vi_fb_at_points(veg_index, dataset, points): 

    veg_index_values = [] 

    for _, row in points.iterrows(): 

        name, x, y = row['Parcela'], row['Coord_X'], row['Coord_Y'] 

        row_idx, col_idx = rasterio.transform.rowcol(dataset.transform, x, y) 

        veg_index_value = veg_index[row_idx, col_idx] 

        veg_index_values.append((name, veg_index_value)) 

    return veg_index_values 

 

def get_fb_comparative_points(tiff_file, vi_fixed_band_dict, points): 

    fb_results_lst = [] 

     

    vi_list = get_vi_fb_image(tiff_file, vi_fixed_band_dict) 

 

    iv_keys = [] 

    for key in vi_fixed_band_dict: 

        iv_keys.append(key) 

    cnt = 0 

 

    for tup in vi_list: 

        veg_index = tup[0] 

        dataset = tup[1] 

        veg_index_values = get_vi_fb_at_points(veg_index, dataset, points) 

 

        band_tup = vi_fixed_band_dict[iv_keys[cnt]] 

        fb_results_lst.append((iv_keys[cnt], band_tup[0], band_tup[1], band_tup[2], 

band_tup[3], veg_index_values)) 

        cnt += 1 

    return fb_results_lst 

#### Extract results of wavelength and vegetations index of FIXED BANDS 

fb_results_lst = get_fb_comparative_points(tiff_file, vi_fixed_band_dict, points) 

for i in fb_results_lst: 

    print(i) 
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### FOR VARIABLE BANDS 

#### Combination of bands of VARIABLE BANDS 

import itertools 

 

def get_vb_combination_bands(vi_variable_band_dict): 

    vi_combination_lst = [] 

     

    for key, val_tup in vi_variable_band_dict.items(): 

        total_neighborhood = [[] for _ in range(len(val_tup))]  # Create a list of empty lists for 

each value in the tuple 

        for idx, val in enumerate(val_tup): 

            if val != 0: 

                band_neighborhood = [val + i for i in range(-2, 3)]  # Generate values from val-2 

to val+2 

            else: 

                band_neighborhood = [val]  # If the value is zero, keep it as zero in all 

combinations 

            total_neighborhood[idx] = band_neighborhood 

         

        # Generate all possible combinations from the neighborhoods 

        combinations = list(itertools.product(*total_neighborhood)) 

         

        # Add the key to each combination and filter out combinations with negative values 

        for combination in combinations: 

            if all(x >= 0 for x in combination): 

                vi_combination_lst.append((key, *combination)) 

     

    return vi_combination_lst 

#### Calculate vegetation index values for VARIABLE BANDS 

def get_vi_vb_image(tiff_file, vi_variable_band_dict): 

    vi_list = [] 

     

    vb_combination_band = get_vb_combination_bands(vi_variable_band_dict) 

    for val_tup in vb_combination_band: 

        val_tup = tuple(1 if b == 0 else b for b in val_tup) 

        with rasterio.open(tiff_file) as dataset: 

            band_a = dataset.read(val_tup[1]) 

            band_b = dataset.read(val_tup[2]) 

            band_c = dataset.read(val_tup[3]) 

            band_d = dataset.read(val_tup[4]) 

 

        veg_index_values = select_model(val_tup[0], band_a, band_b, band_c, band_d) 

        vi_list.append((veg_index_values, dataset)) 

    return vi_list, vb_combination_band 

 

def get_vi_vb_at_points(veg_index, dataset, points): 

    veg_index_values = [] 
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    for _, row in points.iterrows(): 

        name, x, y = row['Parcela'], row['Coord_X'], row['Coord_Y'] 

        row_idx, col_idx = rasterio.transform.rowcol(dataset.transform, x, y) 

        veg_index_value = veg_index[row_idx, col_idx] 

        veg_index_values.append((name, veg_index_value)) 

    return veg_index_values 

 

def get_vb_comparative_points(tiff_file, vi_variable_band_dict, points): 

    vb_results_lst = [] 

     

    vi_list, vb_combination_band = get_vi_vb_image(tiff_file, vi_variable_band_dict) 

 

    count = 0 

 

    for tup in vi_list: 

        veg_index = tup[0] 

        dataset = tup[1] 

        veg_index_values = get_vi_vb_at_points(veg_index, dataset, points) 

 

        band_tup = vb_combination_band[count] 

        vb_results_lst.append((band_tup[0], band_tup[1], band_tup[2], band_tup[3], 

band_tup[4],veg_index_values)) 

        count += 1 

    return vb_results_lst 

####  Extract results of wavelength and vegetation index of VARIABLE BANDS 

vb_results_lst = get_vb_comparative_points(tiff_file, vi_variable_band_dict, points) 

# for i in vb_results_lst: 

#     print(i) 

### FOR RAW BANDS 

#### Calculate vegetation index values for RAW BANDS 

def get_rb_image(tiff_file, band_number): 

    with rasterio.open(tiff_file) as dataset: 

        band_values = dataset.read(band_number) 

    return band_values, dataset 

 

def get_rb_at_points(band_values, dataset, points): 

    band_values_lst = [] 

    for _, row in points.iterrows(): 

        name, x, y = row['Parcela'], row['Coord_X'], row['Coord_Y'] 

        row_idx, col_idx = rasterio.transform.rowcol(dataset.transform, x, y) 

        band_value = band_values[row_idx, col_idx] 

        band_values_lst.append((name, band_value)) 

    return band_values_lst 

 

def get_rb_comparative_points(tiff_file, band_lst, points): 

    rb_results_lst = [] 

 



Fire severity analysis in Sierra de La Culebra wildfire from hyperspectral satellite data 
 

 
José Alberto Cipra Rodriguez 
Máster en Gestión Forestal basada en Ciencia de Datos - Master on Forest Management based on Data 
Science (DATAFOREST) 

96 

    for band_number in range(1,192): 

        band_values, dataset = get_rb_image(tiff_file, band_number) 

        band_values_lst = get_rb_at_points(band_values, dataset, points) 

        rb_results_lst.append((band_lst[band_number-1][1], band_number, 

band_lst[band_number-1][2], band_values_lst)) 

 

    return rb_results_lst 

#### Extract results of wavelength and vegetation index of RAW BANDS 

rb_results_lst = get_rb_comparative_points(tiff_file, band_lst, points) 

# for i in rb_results_lst: 

#     print(i) 

### SAVE INDICES VALUES 

#### Save vegetation indices values in an excel file (.xlsx) 

def save_xlsx(input_file, results_lst): 

    # Creamos un diccionario para almacenar los datos 

    data_dict = {} 

 

    for elm in results_lst: 

        if results_lst == cb_results_lst: 

            col_name = f"{elm[0]}_{elm[1]}_{elm[2]}" 

            type_name = "classed_bands" 

        elif results_lst == cb2_results_lst: 

            col_name = f"{elm[0]}_{elm[1]}_{elm[2]}_{elm[3]}" 

            type_name = "classed_bands" 

        elif results_lst == fb_results_lst: 

            col_name = f"{elm[0]}_{elm[1]}_{elm[2]}_{elm[3]}_{elm[4]}" 

            type_name = "fixed_bands" 

        elif results_lst == vb_results_lst: 

            col_name = f"{elm[0]}_{elm[1]}_{elm[2]}_{elm[3]}_{elm[4]}" 

            type_name = "variable_bands" 

        elif results_lst == rb_results_lst: 

            col_name = f"{elm[0]}_{elm[1]}_{elm[2]:.0f}nm" 

            type_name = "raw_bands" 

        data_dict[col_name] = [value for point, value in elm[len(elm)-1] ] 

 

    # Convertimos el diccionario en un DataFrame 

    df = pd.DataFrame(data_dict) 

 

    ### PARA DATAFRAMES CON MÁS DE 16000 COLUMNAS ### 

    # Si el DataFrame tiene más de 16000 columnas, dividirlo en partes 

    max_columns = 16000 

    num_parts = (df.shape[1] // max_columns) + 1 

 

    for part in range(num_parts): 

        start_col = part * max_columns 

        end_col = start_col + max_columns 

        df_part = df.iloc[:, start_col:end_col] 
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        # Define the output file name for each part 

        if type_name == "classed_bands": 

            output_file = input_file[:-5] + f"_hyp_{type_name}_{results_lst[0][0]}_p{part+1}.xlsx" 

        else: 

            output_file = input_file[:-5] + f"_hyp_{type_name}_p{part+1}.xlsx" 

 

        # Copia el archivo original al nuevo archivo 

        shutil.copyfile(input_file, output_file) 

 

        # Abre el nuevo archivo 

        wb = openpyxl.load_workbook(output_file) 

        sheet = wb.active 

 

        # Encuentra la última columna con datos en la hoja existente 

        last_col = sheet.max_column 

 

        # Escribe los datos del DataFrame en las columnas nuevas a partir de la última 

columna existente 

        for col_idx, col_name in enumerate(df_part.columns, start=last_col + 1): 

            sheet.cell(row=1, column=col_idx, value=col_name) 

            for row_idx, value in enumerate(df_part[col_name], start=2): 

                sheet.cell(row=row_idx, column=col_idx, value=value) 

 

        # Guarda el archivo con las nuevas columnas 

        wb.save(output_file) 

 

    # # Copia el archivo original al nuevo archivo 

    # if type_name == "classed_bands": 

    #     output_file = input_file[:-5] + "_hyp_" + type_name + "_" + results_lst[0][0] + ".xlsx" 

    # else: 

    #     output_file = input_file[:-5] + "_hyp_" + type_name + ".xlsx" 

    # shutil.copyfile(input_file, output_file) 

 

    # # Abre el nuevo archivo 

    # wb = openpyxl.load_workbook(output_file) 

    # sheet = wb.active 

 

    # # Encuentra la última columna con datos en la hoja existente 

    # last_col = sheet.max_column 

 

    # # Escribe los datos del DataFrame en las columnas nuevas a partir de la última 

columna existente 

    # for col_idx, col_name in enumerate(df.columns, start=last_col + 1): 

    #     sheet.cell(row=1, column=col_idx, value=col_name) 

    #     for row_idx, value in enumerate(df[col_name], start=2): 

    #         sheet.cell(row=row_idx, column=col_idx, value=value) 
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    # # Guarda el archivo con las nuevas columnas 

    # wb.save(output_file) 

    return output_file 

 

## Options to save file 

# save_xlsx(excel_file, cb_results_lst) 

save_xlsx(excel_file, cb2_results_lst) 

# save_xlsx(excel_file, fb_results_lst) 

# save_xlsx(excel_file, vb_results_lst) 

# save_xlsx(excel_file, rb_results_lst) 
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A5.2. Python script for calculating vegetation indices from SENTINEL-2 multispectral 

imagery aligned with CBI plots  

# Calculate indices from MULTISPECTRAL image 

#### Import libraries and read multispectral image (.tiff) 

from math import log 

import numpy as np 

import pandas as pd 

import rasterio 

from rasterio.plot import show 

from rasterio.transform import rowcol 

import matplotlib.pyplot as plt 

from pyproj import Proj, transform 

import openpyxl 

import shutil 

 

# Path to the .tiff file 

working_dir = "C:/Users/User/OneDrive - UVa/1_ASIGNATURAS/TFM/1_DataProcessing/" 

tiff_file = working_dir + "2_SatellitalImages/1_MLT/S2_post_clip.tif" 

#### Open multispectral image and classify wavelengths 

# Sentinel 2 bands 

band_lst = [ 

    (1, "Blue", "B2", 450, 520), 

    (2, "Green", "B3", 540, 570), 

    (3, "Red", "B4", 650, 680), 

    (4, "Red Edge", "B5", 690, 710), 

    (5, "Red Edge", "B6", 730, 740), 

    (6, "Red Edge", "B7", 770, 790), 

    (7, "NIR", "B8", 780, 900), 

    (8, "NIR", "B8A", 850, 870), 

    (9, "SWIR 1", "B11", 1560, 1650), 

    (10, "SWIR 2", "B12", 2100, 2280), 

] 

 

# Display band information for the 10 bands assumed to be in your TIFF file 

print(f"{'Band':<5} {'Name':<25} {'Wavelength (nm)':<15}") 

print("="*50) 

for band in band_lst: 

    print(f"{band[2]:<5} {band[1]:<25} {band[3]} - {band[4]:<15}") 

#### Vegetation Indices Equations 

# Normalized Difference Vegetation Index: NDVI 

def calculate_ndvi(red, nir): 

    ndvi = (nir - red) / (nir + red) 

    return ndvi 

# Normalized Burn Ratio: NBR 

def calculate_nbr(nir, swir2): 

    nbr = (nir - swir2) / (nir + swir2) 
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    return nbr 

# Normalized Difference Moisture Index: NDMI 

def calculate_ndmi(nir, swir1): 

    ndmi = (nir - swir1) / (nir + swir1) 

    return ndmi 

# Difference Vegetation Index: DVI 

def calculate_dvi(red, nir): 

    dvi = nir - red 

    return dvi 

# Green Difference Vegetation Index: DVIGRE o GDVI 

def calculate_dvigre(green, nir): 

    dvigre = nir - green 

    return dvigre 

# Red Difference Vegetation Index: DVIRED 

def calculate_dvired(redge, nir): 

    dvired = nir - redge 

    return dvired 

# Chlorophyll Index With Red Edge: CIREDGE 

def calculate_ciredge(redge, nir): 

    ciredge = (nir / redge) - 1 

    return ciredge 

# Chlorophyll Index With Green: CIGREEN 

def calculate_cigreen(green, nir): 

    cigreen = (nir / green) - 1 

    return cigreen 

# Infrared Percentage Vegetation Index: IPVI 

def calculate_ipvi(red, nir): 

    ipvi = nir / (nir + red) 

    return ipvi 

# Near-Infrared Reflectance of Vegetation: NIRV 

def calculate_nirv(red, nir): 

    nirv = nir * ((nir - red) / (nir + red)) 

    return nirv 

# Modified Non-Linear Index: MNLI 

def calculate_mnli(nir, red):  

    mnli = 1.5 * (nir ** 2 - red) / (nir ** 2 + red + 0.5) 

    return mnli 

# Non-Linear Index: NLI 

def calculate_nli(nir, red):  

    nli = (nir ** 2 - red) / (nir ** 2 + red) 

    return nli 

# Wide Dynamic Range Vegetation Index: WDRVI 

def calculate_wdrvi(nir, red):  

    wdrvi = (0.2 * nir - red) / (0.2 * nir + red) 

    return wdrvi 

# Normalized Difference Red Edge Index: NDRE 

def calculate_ndre(redge, nir): 
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    ndre = (nir - redge) / (nir + redge) 

    return ndre 

# Burn Area Index: BAI 

def calculate_bai(redge, nir): 

    bai = 1 / (((redge - 0.1) ** 2) + ((nir - 0.06) ** 2)) 

    return bai 

# Structural Vegetation Index: SVI 

def calculate_svi(redge, red): 

    svi = (redge - red) / (redge + red) 

    return svi 

# Modified Red-Edge Simple Ratio: MRESR 

def calculate_mresr(redge, nir): 

    mresr = nir / redge 

    return mresr 

# Three-Band Difference Vegetation Index: TBDVI 

def calculate_tbdvi(red, nir, swir1): 

    tbdvi = nir - (red - swir1) / 2 

    return tbdvi 

# Enhanced Vegetation Index: EVI 

def calculate_evi(blue, red, nir): 

    evi = 2.5 * ((nir - red)/(nir + 6 * red - 7.5 * blue + 1)) 

    return evi 

# Excess Green Index: EXG2 

def calculate_exg2(blue, green, red): 

    exg2 = 2 * green - red - blue 

    return exg2 

# Red Light Normalized Value: NRI 

def calculate_nri(blue, green, red): 

    nri = red / (red + green + blue) 

    return nri 

# Green Light Normalized Value: NGI 

def calculate_ngi(blue, green, red): 

    ngi = green / (red + green + blue) 

    return ngi 

# Green Normalized Difference Vegetation Index: GNDVI 

def calculate_gndvi(green, redge, nir): 

    gndvi = (nir - green) / (nir + redge) 

    return gndvi 

# Enhances Normalized Difference Vegetation Index: ENDVI 

def calculate_endvi(redge, green, blue):  

    endvi = (redge + green - 2 * blue) / (redge + green + 2 * blue) 

    return endvi 

# Modified Red Green- Blue Vegetation Index: MRGBVI 

def calculate_mrgbvi(redge, green, blue):  

    mrgbvi = (redge + 2 * green - 2 * blue) / (redge + 2 * green + 2 * blue) 

    return mrgbvi 

# Nitrogen Reflectance Index: NREI 
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def calculate_nrei(green, redge, nir): 

    nrei = redge / (redge + nir + green) 

    return nrei 

# Red Edge Position Index: REP 

def calculate_rep(red, redge, nir): 

    rep = 700 + 40 * ((red + nir)/(2 - redge)) 

    return rep 

############################################## 

def normalized_band (red, green, blue): 

    R = red / (red + green + blue) 

    G = green / (red + green + blue) 

    B = blue / (red + green + blue) 

    return R, G, B 

############################################## 

# Excess Green Index: EXG 

def calculate_exg(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    exg = 2 * G - R - B 

    return exg 

# Excess Blue Index: EXB 

def calculate_exb(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    exb = 1.4 * R - G 

    return exb 

# Excess Red Index: EXR 

def calculate_exr(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    exr = 1.4 * B - G 

    return exr 

# Red / Green Ratio: RGR 

def calculate_rgr(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    rgr = R / G 

    return rgr 

# Blue / Green Ratio: BGR 

def calculate_bgr(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    bgr = B / G 

    return bgr 

# Normalized Green-Red Difference Index: NGRDI 

def calculate_ngrdi(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    ngrdi = (G - R) / (G + R) 

    return ngrdi 

# Normalized Green-Blue Difference Index: NGBDI 

def calculate_ngbdi(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 
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    ngbdi = (G - B) / (G + B) 

    return ngbdi 

# Modified Green-Red Vegetation Index: MGRVI 

def calculate_mgrvi(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    mgrvi = (G**2 - R**2) / (G**2 + R**2) 

    return mgrvi 

# Red Green- Blue Vegetation Index: RGBVI 

def calculate_rgbvi(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    rgbvi = (G**2 - R * B) / (G**2 + R * B) 

    return rgbvi 

# Green Leaf Index: GLI 

def calculate_gli(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    gli = (2*G - R - B) / (2*G + R + B) 

    return gli 

# Color Index of Vegetation Extraction: CIVE 

def calculate_cive(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    cive = 0.441*R - 0.881*G + 0.385*R + 18.78745 

    return cive 

# Excess Green Minus Excess Red Index: ExGR 

def calculate_exgr(red, green, blue): 

    exg = calculate_exg(red, green, blue) 

    exr = calculate_exr(red, green, blue) 

    exgr = exg - exr 

    return exgr 

# Improved Red Green- Blue Vegetation Index: IRGBVI 

def calculate_irgbvi(red, green, blue): 

    R,G,B = normalized_band(red, green, blue) 

    irgbvi = (5*G**2 - 2*R**2 - 5*B**2) / (5*G**2 + 2*R**2 + 5*B**2) 

    return irgbvi 

#### Dictionaries of vegetation indices bands 

# Classed bands to calculate vegetatio index 

vi_classed_band_dict = { 

    "NDVI": ("Red", "NIR"), 

    "NBR": ("NIR", "SWIR 2"), 

    "NDMI": ("NIR", "SWIR 1"), 

    "DVI": ("Red", "NIR"), 

    "DVIGRE": ("Green", "NIR"), 

    "DVIRED": ("Red Edge", "NIR"), 

    "CIREDGE": ("Red Edge", "NIR"), 

    "CIGREEN": ("Green", "NIR"), 

    "IPVI": ("Red", "NIR"), 

    "NIRV": ("Red", "NIR"), 

    "MNLI": ("NIR", "Red"), 
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    "NLI": ("NIR", "Red"), 

    "WDRVI": ("NIR", "Red"), 

    "NDRE": ("Red Edge", "NIR"), 

    "BAI": ("Red Edge", "NIR"), 

    "SVI": ("Red Edge", "Red"), 

    "MRESR": ("Red Edge", "NIR"), 

} 

 

vi_classed_band_dict2 = { 

    "TBDVI": ("Red", "NIR", "SWIR 1"), 

    "EVI": ("Blue", "Red", "NIR"), 

    "EXG2": ("Blue", "Green", "Red"), 

    "NRI": ("Blue", "Green", "Red"), 

    "NGI": ("Blue", "Green", "Red"), 

    "GNDVI": ("Green", "Red Edge", "NIR"), 

    "ENDVI": ("Red Edge", "Green", "Blue"), 

    "MRGBVI": ("Red Edge", "Green", "Blue"), 

    "NREI": ("Green", "Red Edge", "NIR"), 

    "EXG": ("Red", "Green", "Blue"), 

    "EXB": ("Red", "Green", "Blue"), 

    "EXR": ("Red", "Green", "Blue"), 

    "RGR": ("Red", "Green", "Blue"), 

    "BGR": ("Red", "Green", "Blue"), 

    "NGRDI": ("Red", "Green", "Blue"), 

    "NGBDI": ("Red", "Green", "Blue"), 

    "MGRVI": ("Red", "Green", "Blue"), 

    "RGBVI": ("Red", "Green", "Blue"), 

    "GLI": ("Red", "Green", "Blue"), 

    "CIVE": ("Red", "Green", "Blue"), 

    "EXGR": ("Red", "Green", "Blue"), 

    "IRGBVI": ("Red", "Green", "Blue"), 

    "REP": ("Red", "Red Edge", "NIR"), 

} 

#### Read the excel file 

# Read the Excel file 

excel_file = working_dir + "CulebraPointsCBI.xlsx" 

points = pd.read_excel(excel_file) 

# Initialize lists to store results 

cb_results_lst = 0 

cb2_results_lst = 0 

cb3_results_lst = 0 

fb_results_lst = 0 

vb_results_lst = 0 

### FOR CLASSED BANDS 

#### Combination of bands of CLASSED BANDS 

def bands_combinations(tiff_file, band_lst, vi_classed_band_dict): 

    for i in vi_classed_band_dict: 
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        print(i) 

    vi_name = input("Insert the index name: ") 

    combination_lst = [] 

    band_names = vi_classed_band_dict[vi_name] 

    with rasterio.open(tiff_file) as src: 

        for band_a in band_lst: 

            if band_a[1] == band_names[0]: 

                band_ax = band_a[0] 

                for band_b in band_lst: 

                    if band_b[1] == band_names[1]: 

                        band_bx = band_b[0] 

                        combination_lst.append((band_ax, band_bx)) 

    for i in combination_lst: 

        print(i) 

    return combination_lst, vi_name 

 

def bands_combinations2(tiff_file, band_lst, vi_classed_band_dict2): 

    for i in vi_classed_band_dict2: 

        print(i) 

    vi_name = input("Insert the index name: ") 

    combination_lst2 = [] 

    band_names = vi_classed_band_dict2[vi_name] 

    with rasterio.open(tiff_file) as src: 

        for band_a in band_lst: 

            if band_a[1] == band_names[0]: 

                band_ax = band_a[0] 

                for band_b in band_lst: 

                    if band_b[1] == band_names[1]: 

                        band_bx = band_b[0] 

                        for band_c in band_lst: 

                            if band_c[1] == band_names[2]: 

                                band_cx = band_c[0] 

                                combination_lst2.append((band_ax, band_bx, band_cx)) 

    for i in combination_lst2: 

        print(i) 

    return combination_lst2, vi_name 

#### Calculate vegetation index values for CLASSED BANDS 

def get_vi_cb_image(tiff_file, vi_name, band_a, band_b): 

    with rasterio.open(tiff_file) as dataset: 

        band_1 = dataset.read(band_a) 

        band_2 = dataset.read(band_b) 

        if vi_name == "NDVI": 

            vi_values = calculate_ndvi(band_1, band_2) 

        elif vi_name == "NBR": 

            vi_values = calculate_nbr(band_1, band_2) 

        elif vi_name == "NDMI": 

            vi_values = calculate_ndmi(band_1, band_2) 
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        elif vi_name == "DVI": 

            vi_values = calculate_dvi(band_1, band_2) 

        elif vi_name == "DVIGRE": 

            vi_values = calculate_dvigre(band_1, band_2) 

        elif vi_name == "DVIRED": 

            vi_values = calculate_dvired(band_1, band_2) 

        elif vi_name == "CIREDGE": 

            vi_values = calculate_ciredge(band_1, band_2) 

        elif vi_name == "CIGREEN": 

            vi_values = calculate_cigreen(band_1, band_2) 

        elif vi_name == "IPVI": 

            vi_values = calculate_ipvi(band_1, band_2) 

        elif vi_name == "NIRV": 

            vi_values = calculate_nirv(band_1, band_2) 

        elif vi_name == "MNLI": 

            vi_values = calculate_mnli(band_1, band_2) 

        elif vi_name == "NLI": 

            vi_values = calculate_nli(band_1, band_2) 

        elif vi_name == "WDRVI": 

            vi_values = calculate_wdrvi(band_1, band_2) 

        elif vi_name == "NDRE": 

            vi_values = calculate_ndre(band_1, band_2) 

        elif vi_name == "BAI": 

            vi_values = calculate_bai(band_1, band_2) 

        elif vi_name == "SVI": 

            vi_values = calculate_svi(band_1, band_2) 

        elif vi_name == "MRESR": 

            vi_values = calculate_mresr(band_1, band_2) 

        else: 

            print("Insert other vegetation index name") 

    return vi_values, dataset 

 

def get_vi_cb_at_points(vi_values, dataset, points): 

    veg_index_values = [] 

    for _, row in points.iterrows(): 

        name, x, y = row['Parcela'], row['Coord_X'], row['Coord_Y'] 

        row_idx, col_idx = rasterio.transform.rowcol(dataset.transform, x, y) 

        veg_index_value = vi_values[row_idx, col_idx] 

        veg_index_values.append((name, veg_index_value)) 

    return veg_index_values 

 

def get_cb_comparative_points(tiff_file, band_lst, vi_classed_band_dict, points): 

    cb_results_lst = [] 

    combination_lst, vi_name = bands_combinations(tiff_file, band_lst, 

vi_classed_band_dict) 

    for paired_bands in combination_lst: 

        band_a = paired_bands[0] 
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        band_b = paired_bands[1] 

        vi_values, dataset = get_vi_cb_image(tiff_file, vi_name, band_a, band_b) 

        veg_index_values = get_vi_cb_at_points(vi_values, dataset, points) 

        cb_results_lst.append((vi_name, band_a, band_b, veg_index_values)) 

    return cb_results_lst 

def get_vi_cb2_image(tiff_file, vi_name, band_a, band_b, band_c): 

    with rasterio.open(tiff_file) as dataset: 

        band_1 = dataset.read(band_a) 

        band_2 = dataset.read(band_b) 

        band_3 = dataset.read(band_c) 

        if vi_name == "TBDVI": 

            vi_values = calculate_tbdvi(band_1, band_2, band_3) 

        elif vi_name == "EVI": 

            vi_values = calculate_evi(band_1, band_2, band_3) 

        elif vi_name == "EXG2": 

            vi_values = calculate_exg2(band_1, band_2, band_3) 

        elif vi_name == "NRI": 

            vi_values = calculate_nri(band_1, band_2, band_3) 

        elif vi_name == "NGI": 

            vi_values = calculate_ngi(band_1, band_2, band_3) 

        elif vi_name == "GNDVI": 

            vi_values = calculate_gndvi(band_1, band_2, band_3) 

        elif vi_name == "ENDVI": 

            vi_values = calculate_endvi(band_1, band_2, band_3) 

        elif vi_name == "MRGBVI": 

            vi_values = calculate_mrgbvi(band_1, band_2, band_3) 

        elif vi_name == "NREI": 

            vi_values = calculate_nrei(band_1, band_2, band_3) 

        elif vi_name == "EXG": 

            vi_values = calculate_exg(band_1, band_2, band_3) 

        elif vi_name == "EXB": 

            vi_values = calculate_exb(band_1, band_2, band_3) 

        elif vi_name == "EXR": 

            vi_values = calculate_exr(band_1, band_2, band_3) 

        elif vi_name == "RGR": 

            vi_values = calculate_rgr(band_1, band_2, band_3) 

        elif vi_name == "BGR": 

            vi_values = calculate_bgr(band_1, band_2, band_3) 

        elif vi_name == "NGRDI": 

            vi_values = calculate_ngrdi(band_1, band_2, band_3) 

        elif vi_name == "NGBDI": 

            vi_values = calculate_ngbdi(band_1, band_2, band_3) 

        elif vi_name == "MGRVI": 

            vi_values = calculate_mgrvi(band_1, band_2, band_3) 

        elif vi_name == "RGBVI": 

            vi_values = calculate_rgbvi(band_1, band_2, band_3) 

        elif vi_name == "GLI": 
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            vi_values = calculate_gli(band_1, band_2, band_3) 

        elif vi_name == "CIVE": 

            vi_values = calculate_cive(band_1, band_2, band_3) 

        elif vi_name == "EXGR": 

            vi_values = calculate_exgr(band_1, band_2, band_3) 

        elif vi_name == "IRGBVI": 

            vi_values = calculate_irgbvi(band_1, band_2, band_3) 

        elif vi_name == "REP": 

            vi_values = calculate_rep(band_1, band_2, band_3) 

        else: 

            print("Insert other vegetation index name") 

    return vi_values, dataset 

 

def get_cb2_comparative_points(tiff_file, band_lst, vi_classed_band_dict2, points): 

    cb2_results_lst = [] 

    combination_lst2, vi_name = bands_combinations2(tiff_file, band_lst, 

vi_classed_band_dict2) 

    for paired_bands in combination_lst2: 

        band_a = paired_bands[0] 

        band_b = paired_bands[1] 

        band_c = paired_bands[2] 

        vi_values, dataset = get_vi_cb2_image(tiff_file, vi_name, band_a, band_b, band_c) 

        veg_index_values = get_vi_cb_at_points(vi_values, dataset, points) 

        cb2_results_lst.append((vi_name, band_a, band_b, band_c, veg_index_values)) 

    return cb2_results_lst 

#### Extract results of wavelength and vegetation index of CLASSED BANDS 

cb_results_lst = get_cb_comparative_points(tiff_file, band_lst, vi_classed_band_dict, 

points) 

for i in cb_results_lst: 

    print(i) 

cb2_results_lst = get_cb2_comparative_points(tiff_file, band_lst, vi_classed_band_dict2, 

points) 

for i in cb2_results_lst: 

    print(i) 

### FOR RAW BANDS 

#### Calculate vegetation index values for RAW BANDS 

def get_rb_image(tiff_file, band_number): 

    with rasterio.open(tiff_file) as dataset: 

        band_values = dataset.read(band_number) 

    return band_values, dataset 

 

def get_rb_at_points(band_values, dataset, points): 

    band_values_lst = [] 

    for _, row in points.iterrows(): 

        name, x, y = row['Parcela'], row['Coord_X'], row['Coord_Y'] 

        row_idx, col_idx = rasterio.transform.rowcol(dataset.transform, x, y) 

        band_value = band_values[row_idx, col_idx] 
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        band_values_lst.append((name, band_value)) 

    return band_values_lst 

 

def get_rb_comparative_points(tiff_file, band_lst, points): 

    rb_results_lst = [] 

 

    for band_number in range(1,11): 

        band_values, dataset = get_rb_image(tiff_file, band_number) 

        band_values_lst = get_rb_at_points(band_values, dataset, points) 

        rb_results_lst.append((band_lst[band_number-1][1], band_number, 

band_lst[band_number-1][3], band_lst[band_number-1][4], band_values_lst)) 

 

    return rb_results_lst 

#### Extract results of wavelength and vegetation index of RAW BANDS 

rb_results_lst = get_rb_comparative_points(tiff_file, band_lst, points) 

for i in rb_results_lst: 

    print(i) 

### SAVE INDICES VALUES 

#### Save vegetation indices values in an excel file (.xlsx) 

def save_xlsx(input_file, results_lst): 

    # Creamos un diccionario para almacenar los datos 

    data_dict = {} 

 

    for elm in results_lst: 

        if results_lst == cb_results_lst: 

            col_name = f"{elm[0]}_{elm[1]}_{elm[2]}" 

            type_name = "classed_bands" 

        elif results_lst == cb2_results_lst: 

            col_name = f"{elm[0]}_{elm[1]}_{elm[2]}_{elm[3]}" 

            type_name = "classed_bands" 

        elif results_lst == cb3_results_lst: 

            col_name = f"{elm[0]}_{elm[1]}_{elm[2]}_{elm[3]}_{elm[4]}" 

            type_name = "classed_bands" 

        elif results_lst == rb_results_lst: 

            col_name = f"{elm[0]}_{elm[1]}_{elm[2]}-{elm[3]}nm" 

            type_name = "raw_bands" 

        data_dict[col_name] = [value for point, value in elm[len(elm)-1] ] 

 

    # Convertimos el diccionario en un DataFrame 

    df = pd.DataFrame(data_dict) 

 

    # Copia el archivo original al nuevo archivo 

    if type_name == "classed_bands": 

        output_file = input_file[:-5] + "_mlt_" + type_name + "_" + results_lst[0][0] + ".xlsx" 

    else: 

        output_file = input_file[:-5] + "_mlt_" + type_name + ".xlsx" 

    shutil.copyfile(input_file, output_file) 
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    # Abre el nuevo archivo 

    wb = openpyxl.load_workbook(output_file) 

    sheet = wb.active 

 

    # Encuentra la última columna con datos en la hoja existente 

    last_col = sheet.max_column 

 

    # Escribe los datos del DataFrame en las columnas nuevas a partir de la última columna 

existente 

    for col_idx, col_name in enumerate(df.columns, start=last_col + 1): 

        sheet.cell(row=1, column=col_idx, value=col_name) 

        for row_idx, value in enumerate(df[col_name], start=2): 

            sheet.cell(row=row_idx, column=col_idx, value=value) 

 

    # Guarda el archivo con las nuevas columnas 

    wb.save(output_file) 

    return output_file 

## Options to save file 

# save_xlsx(excel_file, cb_results_lst) 

save_xlsx(excel_file, cb2_results_lst) 

# save_xlsx(excel_file, cb3_results_lst) 

# save_xlsx(excel_file, fb_results_lst) 

# save_xlsx(excel_file, vb_results_lst) 

# save_xlsx(excel_file, rb_results_lst) 
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A5.3. R Script for computing Pearson correlation coefficients from the CBI-Vegetation 

Index dataset 

Load libraries 

# install.packages("readxl") 
library(readxl) 
library(dplyr) 
library(writexl) 
library(ggplot2) 
Load Data 

# Leer los datos desde el archivo Excel 
wd <- "C:/Users/User/OneDrive - UVa/1_ASIGNATURAS/TFM/1_DataProcessing/" 
 
# Desactivar código: Ctrl + Shift + C 
# data_file <- paste0(wd, "CulebraPointsCBIvgbj_mlt_classed_bands_TBDVI.xlsx") 
data_file <- paste0(wd, "CulebraPointsCBI_hyp_variable_bands.xlsx") 
# data_file <- paste0(wd, "CulebraPointsCBIvgbj_hyp_fixed_bands.xlsx") 
# data_file <- paste0(wd, "CulebraPointsCBIpnvb_mlt_raw_bands.xlsx") 
# data_file <- paste0(wd, "CulebraPointsCBI_hyp_classed_bands_TBDVI_p2_ok.xlsx") 
 
sheet <- "Hoja1"  # Nombre de la hoja de cálculo 
 
data <- read_excel(data_file, sheet = sheet) 

Check data 

# Function to convert data types 
convert_columns <- function(data, factor_cols) { 
  data[factor_cols] <- lapply(data[factor_cols], as.factor) 
  return(data) 
} 
 
# Columns to convert to numeric and to factor 
factor_cols <- c('Parcela','Ecosistema','Estado_de') 
 
# Apply the conversion function 
sig_data <- convert_columns(data, factor_cols) 
# Ensure that phenotype_data is a data.frame 
sig_data <- as.data.frame(sig_data) 
# Check the structure of the modified data 
# head(sig_data) 
# str(sig_data) 

Subset 

#### FOR CBI_vegeta ##### 
# # Subset the data to select variables starting from column 8 
# sig_data <- sig_data %>% 
#   select(1:5, 7, 8, 6, everything()) 
#  
# sig_data_vars <- sig_data[, 8:ncol(sig_data)] 
# str(sig_data_vars) 
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#### FOR CBI_Suelo ##### 
# Subset the data to select variables starting from column 8 
sig_data <- sig_data %>% 
  select(1:5, 6, 8, 7, everything()) 
 
sig_data_vars <- sig_data[, 8:ncol(sig_data)] 

#### FOR CBI_prom ##### 
# sig_data_vars <- sig_data[, 8:ncol(sig_data)] 

Pearson correlation 

### VEGETACIÓN ### 
# # Calculate Pearson correlations based on normality -- "CBI_Suelo", "CBI_vegeta", "
CBI_Promed" 
# pearson_corr <- sapply(sig_data_vars[-which(names(sig_data_vars) == "CBI_vegeta
")], 
#                        function(x) cor(x, sig_data_vars$CBI_vegeta, method = "pearson")) 
#  
# # Create a dataframe for correlation results 
# pearson_corr_df <- data.frame(Variable = names(pearson_corr), Correlation = pears
on_corr) 
#  
# # Sort the results by correlation 
# result_corr_df <- pearson_corr_df %>% arrange(desc(Correlation)) 
# output_name <- "pearson_corr_veg.xlsx" 
# # View the correlation results 
# print(result_corr_df) 

### SUELO ### 
# Calculate Pearson correlations based on normality -- "CBI_Suelo", "CBI_vegeta", "C
BI_Promed" 
pearson_corr <- sapply(sig_data_vars[-which(names(sig_data_vars) == "CBI_Suelo")
], 
                       function(x) cor(x, sig_data_vars$CBI_Suelo, method = "pearson")) 
 
# Create a dataframe for correlation results 
pearson_corr_df <- data.frame(Variable = names(pearson_corr), Correlation = pearso
n_corr) 
 
# Sort the results by correlation 
result_corr_df <- pearson_corr_df %>% arrange(desc(Correlation)) 
output_name <- "pearson_corr_suelo.xlsx" 
# View the correlation results 
print(result_corr_df) 

### PROMEDIO ### 
# # Calculate Pearson correlations based on normality -- "CBI_Suelo", "CBI_vegeta", "
CBI_Promed" 
# pearson_corr <- sapply(sig_data_vars[-which(names(sig_data_vars) == "CBI_Prome
d")], 
#                        function(x) cor(x, sig_data_vars$CBI_Promed, method = "pearson")) 
#  
# # Create a dataframe for correlation results 
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# pearson_corr_df <- data.frame(Variable = names(pearson_corr), Correlation = pears
on_corr) 
#  
# # Sort the results by correlation 
# result_corr_df <- pearson_corr_df %>% arrange(desc(Correlation)) 
# output_name <- "pearson_corr_prom.xlsx" 
# # View the correlation results 
# print(result_corr_df) 

Create an output file 

# Write the results to an Excel file 
data_file_subst <- substr(data_file, 1, nchar(data_file) - 5) 
output_file <- paste(data_file_subst, output_name, sep = "_") 
write_xlsx(result_corr_df, output_file) 

Graph scatterplot 

# Specify the indices for the two variables you want to plot 
# x_index <- 1  # column for the x-axis 
# y_index <- 101  # column for the y-axis 
 
# Create the scatterplot using ggplot2 
# ggplot(sig_data_vars, aes(x = sig_data_vars[[x_index]], 
#                             y = sig_data_vars[[y_index]])) + 
#   geom_point() + 
#   labs(x = colnames(sig_data_vars)[x_index], 
#        y = colnames(sig_data_vars)[y_index], 
#        title = paste("Scatterplot of", 
#                      colnames(sig_data_vars)[x_index], 
#                      "vs", 
#                      colnames(sig_data_vars)[y_index])) + 
#   theme_minimal() 

 


