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A B S T R A C T

Background and objectives: Timely treatment of pediatric obstructive sleep apnea (OSA) can prevent or reverse 
neurocognitive and cardiovascular morbidities. However, whether distinct phenotypes exist and account for 
divergent treatment effectiveness remains unknown. In this study, our goal is threefold: i) to define new data- 
driven pediatric OSA phenotypes, ii) to evaluate possible treatment effectiveness differences among them, and 
iii) to assess phenotypic information in predicting OSA resolution.
Methods: We involved 22 sociodemographic, anthropometric, and clinical data from 464 children (5–10 years 
old) from the Childhood Adenotonsillectomy Trial (CHAT) database. Baseline information was used to auto
matically define pediatric OSA phenotypes using a new unsupervised subject-based association network. Follow- 
up data (7 months later) were used to evaluate the effects of the therapeutic intervention in terms of changes in 
the obstructive apnea-hypopnea index (OAHI) and the resolution of OSA (OAHI < 1 event per hour). An 
explainable artificial intelligence (XAI) approach was also developed to assess phenotypic information as OSA 
resolution predictor at baseline.
Results: Our approach identified three OSA phenotypes (PHOSA1-PHOSA3), with PHOSA2 showing significantly 
lower odds of OSA recovery than PHOSA1 and PHOSA3 when treatment information was not considered (odds 
ratios, OR: 1.64 and 1.66, 95 % confidence intervals, CI: 1.03–2.62 and 1.01–2.69, respectively). The odds of 
OSA recovery were also significantly lower in PHOSA2 than in PHOSA3 when adenotonsillectomy was adopted as 
treatment (OR: 2.60, 95 % CI: 1.26–5.39). Our XAI approach identified 79.4 % (CI: 69.9–88.0 %) of children 
reaching OSA resolution after adenotonsillectomy, with a positive predictive value of 77.8 % (CI: 70.3 %-86.0 
%).
Conclusions: Our new subject-based association network successfully identified three clinically useful pediatric 
OSA phenotypes with different odds of therapeutic intervention effectiveness. Specifically, we found that chil
dren of any sex, >6 years old, overweight or obese, and with enlarged neck and waist circumference (PHOSA2) 
have less odds of recovering from OSA. Similarly, younger female children with no enlarged neck (PHOSA3) have 
higher odds of benefiting from adenotonsillectomy.

1. Introduction

Obstructive sleep apnea (OSA) affects up to 5 % of children by 
increasing upper airway collapsibility, resulting in complete or partial 

respiratory events (apneas and hypopneas, respectively) during sleep 
[1–5]. These events lead to inadequate gas exchange and sleep frag
mentation, triggering oxidative stress and inflammatory processes that 
elevate the risk of cardiovascular, metabolic, and neurocognitive 
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morbidities in these children [1,2]. These adverse effects can diminish 
health and quality of life in childhood and may have lifelong conse
quences [1].

Adenotonsillectomy (AT) is the primary treatment for pediatric OSA 
and effectively reduces the number of obstructive apneic events per hour 
of sleep (obstructive apnea-hypopnea index, OAHI), reversing other 
OSA-related consequences [2,6]. However, treatment effectiveness 
varies based on patient attributes such as body mass index [2,7–9]. 
Additionally, inconsistencies arise between OAHI -regularly used to 
establish OSA and its severity- and the actual symptoms and morbidity 
profiles of affected children [10]. These observations suggest different 
pediatric OSA phenotypic clusters with shared clinical and treatment 
response characteristics [10]. Accordingly, relying solely on a variable 
like OAHI may obscure important clinically relevant sub-group char
acteristics, making the identification of such phenotypes essential for 
timely, accurate, and tailored diagnosis and treatment.

OSA phenotype identification has been extensively reviewed in adult 
patients [11]. Data-driven methods enabling hierarchical unbiased 
clustering have been effectively implemented [11–16]. Nonetheless, 
similar efforts for pediatric OSA phenotypes are limited. Principal 
component analysis and k-means were used with clinical variables from 
polysomnography (PSG) to support a continuum in pediatric OSA 
severity [17]. Another study applied k-means and PSG data to identify 
characteristics of two fixed clusters for AT candidates among OSA pa
tients [18]. Similarly, k-medoids clustering, alongside anthropometric 
and respiratory variables, has aimed to objectivize pediatric OSA 
severity groups [19]. Other studies focused on very specific pediatric 
OSA-related issues such as neurocognitive or asthma phenotypes [20,
21]. Despite the advances achieved in these works, two main research 
gaps have been identified. First, all these partition-based clustering 
methods (k-means, k-modes, k-medoids) suffer from limitations such as 
the a priori need to fix the number of subgroups (k), the assumption of 
spherically shaped clusters, and sensitivity to outliers [22–24]. Second, 
none of these studies evaluated the clinical usefulness of new pheno
types in terms of the odds of treatment effectiveness.

In this study, we hypothesized that sociodemographic, anthropo
metric, and clinical variables can classify OSA-affected children into 
distinct phenotypes that may differ in treatment response. Accordingly, 
our threefold objective was to i) define new data-driven pediatric OSA 
phenotypes, ii) evaluate treatment effects in each of the phenotypes 
identified, and iii) assess the new phenotypic information for predicting 
pediatric OSA resolution. In this context, we propose a novel subject- 
based association network approach to identify these phenotypic clus
ters. Association and correlation networks are graphical analyses that, 
combined with modularity algorithms, do not make prior assumptions 
about the number of clusters or their form [25]. Moreover, they have 
been successfully used to establish relationships between variables in 
different health-related problems like schizophrenia [26], gene in
teractions in breast cancer [27], spontaneous breathing prediction [28], 
and pediatric OSA [20]. However, we propose using association net
works to analyze relationships between subjects, each of them repre
sented by a pattern composed of the individual values of 22 clinically 
relevant variables, permitting the detection of associations that could 
lead to new OSA phenotypes. We also evaluate this potential new 
phenotypic information by applying odds ratios for OSA resolution after 
treatment, and by developing a Gentle Boost-based explainable 
machine-learning algorithm to predict OSA resolution. To the best of our 
knowledge, this approach and its application to pediatric OSA are novel. 
Moreover, new phenotype discovery has the potential to guide clinicians 
towards more tailored clinical protocols and their prompt application, 
thus improving the positive effects on patients’ health and quality of life.

2. Dataset: the childhood adenotonsillectomy trial

The study involved 464 children (5–9.9 years old, 219 boys | 245 
girls) from the Childhood Adenotonsillectomy Trial (CHAT) database 

(clinical trial NCT00560859) [9]. The protocol followed the Declaration 
of Helsinki, with written consent obtained from all parents and assent 
from children over 7. Participants suspected of suffering from OSA un
derwent a baseline overnight polysomnography (PSG) to determine 
OAHI and reach the diagnosis. Sociodemographic and clinical data were 
also collected. Of the 464 children, 453 with OSA were randomized to 
early adenotonsillectomy (eAT) or watchful waiting with supportive 
care (WWSC) to evaluate differences between the two interventions [9]. 
From here on, both interventions will be referred to as ‘treatment’. Most 
children (N = 407) had follow-up data acquired seven months 
post-treatment. Detailed information on the original CHAT study design 
and its goals can be found in prior publications [9,29]. Beyond these 
initial studies, the robustness and reproducibility of the CHAT database 
to advance pediatric OSA knowledge have been well-demonstrated in a 
range of subsequent investigations [30–33]. Sociodemographic and 
clinical variables from children involved in the study are presented in 
Table 1 from Section 3.1, and a summary of baseline variables is pre
sented in Table 2 from Section 4.1.

Table 1 
Variables used to define the pediatric OSA subgroups. Mode imputation was 
used for all of them. Daytime sleepiness was measured through the Epworth 
Sleepiness Scale for Children [36] and directly obtained from the answers of 
children’s parents to the Pediatric Sleep Questionary [37].

Variables Categories Categorization rule Imputed 
data (%)

Sex Male (M) | Female 
(F)

Direct from CHAT study 2.40

Age 5–6 | 7–8 | 9–10 
(years old)

Age equally distributed 2.40

HT High blood 
pressure | Normal 
blood pressure

High if systolic or 
diastolic blood pressure 
percentile ≥ 95 % 
according to age, sex, and 
height [38]

2.60

BMI Underweight | 
Normal | 
Overweight | 
Obese

Percentile according to 
age and sex < 5 % | 5–85 
% | 85–95 % | ≥ 95 % 
[39,40]

2.40

Asthma Yes (Y) | No (N) Direct from CHAT study 2.60
Daytime sleepiness 

(ESS)
Y | N Increased if ESS > 10 

[36]
2.60

Enlarged Neck 
Circumference

Y | N Enlarged if ≥ 32.5 cm in 
males and ≥ 31 cm in 
females [41]

2.60

High total 
cholesterol level

Y | N High if ≥ 200 mg/dl [42] 20.00

Morning 
Headaches

Y | N Direct from CHAT study 3.70

Morning Fatigue Y | N Direct from CHAT study 9.90
Insomnia Y | N Direct from CHAT study 2.60
Daytime sleepiness 

(PSQ)
Y | N Direct from CHAT study 2.80

Allergic Rhinitis Y | N Direct from CHAT study 2.60
Gasp and Chokes Y | N Direct from CHAT study 3.00
Depression Y | N Direct from CHAT study 3.20
Mallampati score 

[43,44]
I | II | III | IV Direct from CHAT study 2.40

Irritability Y | N Direct from CHAT study 3.70
Race Black | White | 

Other
Direct from CHAT study 2.40

Anxiety Y | N Direct from CHAT study 5.20
Reflux Y | N Direct from CHAT study 2.60
Enlarged Waist 

circumference
Y | N Enlarged if percentile ≥

75 % according to age 
and sex [45]

2.60

Restless sleep or 
frequent 
awakenings from 
sleep

Y | N Direct from CHAT study 3.00

BMI: body mass index; CHAT: Childhood Adenotonsillectomy Trial; ESS: 
Epworth Sleepiness Score; HT: Hypertension; PSQ: Pediatric Sleep Questionary.
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3. Methods

3.1. Study design, variables, and data imputation

Fig. 1 illustrates the study design. Yellow cylinders indicate available 
data for phenotype definition and comparison. Light blue (baseline) and 

orange (follow-up) boxes are analyses conducted on these data or re
sults. Red figures highlight key results, including newly identified sub
groups, their defining characteristics, and their differences before and 
after treatment. Sociodemographic, anthropometric, and clinical data of 
the 464 children within the baseline subgroup of CHAT were used to 
define the pediatric OSA phenotypes. To this effect, we included the 

Table 2 
Proportion of subjects in each phenotype for the variables showing significant differences between any pair of phenotypes and χ-square value of the comparison 
between each pair of them.

Variables PHOSA1 

(red, N =155)
PHOSA2 

(purple, N = 168)
PHOSA3 

(blue, N = 141)
χ-square 
PHOSA1 vs PHOSA2

χ-square 
PHOSA1 vs PHOSA3

χ-square 
PHOSA2 vs PHOSA3

Sex 5.8 % | F 
(0.0 % i.d.)

58.3 % | F 
(0.0 % i.d.)

97.9 % | F 
(7.8 % i.d. Female)

98.0 246.7 64.3

Age 83.9 % | 5–6 y 
13.5 % | 7–8 y 
2.6 % | 9–10 y 
(0.0 % i.d.)

10.1 % | 5–6 y 
58.9 % | 7–8 y 
31.0 % | 9–10 y 
(0.0 % i.d.)

80.2 % | 5–6 y 
18.4 % | 7–8 y 
1.4 % | 9–10 y 
(7.8 % i.d. 5–6 y)

178.4 1.7 158.7

BMI 3.9 % | Under 
67.7 % | Normal 
7.7 % | Over 
20.7 % | Obese 
(0.0 % i.d.)

0.0 % | Under 
18.5 % | Normal 
20.2 % | Over 
61.3 % | Obese 
(0.0 % i.d.)

6.4 % | Under 
70.2 % | Normal 
12.8 % | Over 
10.6 % | Obese 
(7.8 % i.d. Normal)

93.8 7.5 113.6

Asthma 32.9 % 
(3.9 % i.d. No)

38.7 % 
(1.8 % i.d. No)

19.1 % 
(8.5 % i.d., No)

0.9 6.5 13.1

Enlarged Neck Circumference 1.3 % 
(0.0 % i.d.)

35.1 % 
(0.6 % i.d. No)

0.0 % 
(7.8 % i.d. No)

58.0 0.4 58.9

Gasp and chokes 65.2 % 
(0.7 % i.d. Yes)

49.4 % 
(0.6 % i.d. Yes)

74.5 % 
(8.5 % i.d. Yes)

7.5 2.6 19.2

Mallampati score [43,44] 5.8 % | I 
36.8 % | II 
48.4 % | III 
9.0 % | IV 
(2.5 % i.d. II)

20.2 % | I 
45.2 % | II 
27.4 % | III 
7.2 % | IV 
(0.6 % i.d. II)

8.5 % | I 
52.5 % | II 
33.3 % | III 
5.7 % | IV 
(8.5 % i.d. II)

23.9 10.1 9.1

Enlarged Waist circumference 41.9 % 
(0.0 % i.d.)

92.3 % 
(0.6 % i.d. Yes)

45.4 % 
(7.8 % i.d. Yes)

91.7 0.23 79.3

Italic values are the percentage of imputed data within each phenotype, as well as the category assigned as imputed data. Bold χ-square values and variables represent 
statistically significant at p-value 0.05 after Bonferroni’s correction. BMI: body mass index.

Fig. 1. Schematic of the study design. Yellow cylinders represent data. Light blue and orange boxes represent analyses. Red figures represent important results of the 
study. After defining the phenotypes, only 407 subjects with complete datasets at both baseline and follow-up were used in our analyses.
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available 22 variables. The selection of the 22 variables was adapted 
from those used in prior adult studies and based on standard measures in 
children [12,13]. Continuous variables were categorized according to 
previously defined clinically relevant thresholds in the literature. For the 
sake of simplicity, a mode-based imputation strategy was followed for 
the missed categories [34]. Previous studies involving clinical and 
sociodemographic categorical data have shown that this method reaches 
consistently high imputation accuracy for up to 50 % of missing data, 
equaling the performance of more complex methods [35]. Table 1
specifies the 22 variables, their categories, rules for continuous variables 
categorization, the studies proposing these rules, and the percentage of 
imputed data. Each child under study was then defined by a pattern (or 
vector) of 22 values. Association networks conducted a modularity 
analysis on these patterns to search for pediatric OSA phenotypic clus
ters. OAHI values from the 407 children included in both baseline and 
follow-up groups were evaluated for possible differences in the treat
ment effects on each phenotype. This was conducted by comparing pre- 
and post-treatment OAHI values and calculating odds ratios for pediatric 
OSA resolution (OAHI<1 events/hour total sleep time) by phenotype.

3.2. Subject-based association networks and modularity analysis

Association networks are graphs where nodes typically represent 
variables and links measure their pairwise relationships [46]. In our 
adaptation, nodes represent children characterized by 22 variables, with 
links measuring the similarity between subjects’ information, aiding 
children’s subgroup definition. Correlation typically evaluates associa
tions between continuous data [20,46]. However, since we have cate
gorical and continuous information, we categorized the 22 variables, 
enabling the use of the χ-square test to measure associations between 
nodes. The algorithm visualizing the association networks was Force
Atlas2 [47], which emulates physical attraction and repulsion forces as 
reflections of association strength [47]. According to the distance of 
connected nodes (subjects), and the sum of all the χ-square values 
reaching each node (node degree), ForeceAtlas2 transforms structural 
proximities into visual ones. Thus, subjects with stronger associations 
tend to be positioned closer together.

Once the association network is built, a modularity (cluster) analysis 
is conducted to define subgroups of nodes with higher association. We 
used an unsupervised learning algorithm for data clustering, which does 
not require prior information about the number of clusters or assump
tions about relationships within the data. Specifically, we used Blondel’s 
modularity (also known as the Louvain method), which has shown 
robust performance regarding computation time [25], being important 
in large networks. The algorithm relies on the modularity parameter Q, 
which measures the density of the (weighted) links within a given 
module (cluster) compared to the (weighted) links between all different 
given modules [25]. It can be computed as follows [25,48]: 

Q =
1

2m
∑

i,j

[

χi,j −
kikj

2m

]

δ
(
ci, cj

)
, (1) 

with 

ki =
∑

j
χi,j (2) 

where χi,j represents the χ-square value (weight of the link) between i 
and j nodes, ci is the community to which node i is assigned, with: 

δ =

{
1 if ci = cj
0 otherwise (3) 

and 

m =
1
2
∑

i, j
χi,j (4) 

Using Q modularity, the algorithm follows two iterative stages [25]. 
First, each node is assigned to a unique community (or module), 
resulting in as many communities as nodes. Then, for each node i, the 
modularity gain (ΔQ) of removing i from its community and placing it in 
the communities of all its j neighbors is evaluated. If ΔQ is positive, node 
i joins the community with the highest gain. Otherwise, i remains in its 
current community. This process continues until no gain is observed in 
any node, completing the first stage. The second stage involves creating 
a new network where the discovered communities act as nodes, with 
weighted links between these new nodes being the sum of the weighted 
links between the old nodes included within each pair of communities. 
After this second stage, the first iterative stage can be applied again to 
maximize Q in the new network. The two stages combined are iterated 
until no more changes in Q are observed, reaching maximum modularity 
and assigning a module to each original node [25].

3.3. Statistical analysis: connectivity matrix, statistical differences, odds 
ratios

The χ-square test of independence measured the relationship be
tween nodes to build association networks. However, χ-square values 
were not directly used but derived from a bootstrap procedure of 1000 
runs for the sake of results robustness [20]. Accordingly, a random se
lection of 22 variables with replacement was conducted 1000 times, 
allowing for repeated variables. Then, χ-square for each pair of nodes 
(subjects from baseline CHAT) was computed to form the full connec
tivity matrix of each bootstrap run. After the 1000 runs, the connectivity 
matrix of χ-square mean values was used to feed the ForceAtlas2 algo
rithm, build the final association network, and conduct the modularity 
analysis.

Once subgroups (potential phenotypic clusters) were obtained, the 
χ-square goodness of fit test with p-values (<0.05 with Bonferroni’s 
correction) was used to evaluate differences between variables from 
each subgroup at baseline, allowing phenotype description based on 
differential characteristics. Boxplots and Wilcoxon signed rank test (p- 
value <0.05 after Bonferroni’s correction) evaluated differences in 
OAHI within the new subgroups, before (baseline) and after (follow-up) 
OSA treatment in the 407 subjects with follow-up data. Mann-Whitney U 
test assessed differences between phenotypes at baseline and follow-up. 
These analyses considered subjects who underwent eAT or WWSC 
separately, as well as in aggregate. Odds ratios (OR) alongside 95 % 
confidence intervals evaluated the relative chance of each newly defined 
phenotype recovering after OSA treatment, also differentiated by 
treatment arm and in aggregate. Finally, two machine learning models 
(GentleBoost [49]) were trained to predict OSA resolution based on the 
main variables defining phenotypes.

3.4. Explainable Gentleboost

GentleBoost, or gentle adaptive boosting (gentle AdaBoost), is an 
ensemble-learning algorithm known for its robustness against outliers 
[49]. It aims to train and combine the classification performance of 
multiple base learners of the same type to create more generalizable 
models [49,50]. An iterative process trains each new base learner, giving 
more importance to observations misclassified in previous iterations 
[50]. The final prediction is conducted by combining the predictions of 
each base classifier, which are weighted by their individual perfor
mance. In this study, GentleBoost was used with decision trees as base 
learners to predict recovery from OSA after two interventions (eAT or 
WWSC). Specifically, the purpose was to predict at baseline whether 
children would normalize their OAHI after intervention, i.e., at 
follow-up. The predictors included for training the GentleBoost models 
were those variables that showed statistical differences between at least 
two phenotypes derived from the modularity analysis. Moreover, we 
assessed whether adding a variable with the Phenotype category would 
improve performance. For GentleBoost, the number of base learners is a 
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hyperparameter that we optimized after a leave-one-out cross-validation 
procedure. Another validation method (bootstrap with 100 runs) was 
used to estimate GentleBoost’s performance. The relative importance 
measure served as a global explainable method for assessing each vari
able’s contribution to the obtained GentleBoost models [51]

4. Results

4.1. Baseline: pediatric OSA phenotypes definition

Fig. 2 displays the association network after applying the Force
Atlast2 algorithm to the 22 variables and the subsequent modularity 
analysis. Each node represents a pediatric subject, while the three colors 
(red, purple, blue) indicate the three OSA clusters as automatically ob
tained. Table 2 summarizes the 8 out of the 22 categorical variables that 
reached statistical significance differences between 2 of the subgroups at 
least, along with the χ-square value (with p-value after Bonferroni’s 
correction). The imputed data percentage for each subgroup and vari
able is also shown.

The three subgroups, or phenotypes (PHOSA1- PHOSA3), have similar 
sizes. Only the variable Sex is significantly different among the three 
phenotypes and is also the only significantly different between PHOSA1 
and PHOSA3. Five variables (Sex, Age, BMI, Waist circumference, and 
Neck circumference) show significant differences in PHOSA2 compared to 
both PHOSA1 and PHOSA3. Additionally, PHOSA2 is significantly different 
from PHOSA1 in Mallampati score, and from PHOSA3 in Asthma presence 
and nighttime Gasps and Chokes. No significant differences were found 
in the remaining 14 variables (supplementary Table S1), including hy
pertension, total cholesterol level, daytime sleepiness (either ESS or 
PSQ), and race. Based on this, the expected features of a child in each 
phenotype are: 

■ PHOSA1: male (94.2 %); pediatric subjects 5 or 6 years old (83.9 %); 
non-obese (79.4 %); normal neck circumference (98.7 %); no class I 
Mallampati score (94.2 %).

■ PHOSA2: pediatric subjects between 7 and 10 years old (89.9 %); 
overweight or obese (81.6 %); enlarged waist circumference (92.3 
%).

■ PHOSA3: female (97.87 %) pediatric subjects 5 or 6 years old (80.1 
%); non-obese (89.4 %); no asthma (80.85 %); and normal neck 
circumference (100.0 %).

4.2. Follow-up: differences in treatment effectiveness

Fig. 3 presents boxplots of the differences in OAHI among the three 
phenotypes before and after treatment. The differences within treatment 
arms (eAT and WWSC) are also included. OAHI values were significantly 
lower (Wilcoxon signed rank test p-value < 0.05 after Bonferroni’s 
correction) at follow-up regardless of the treatment arm or phenotype, 
except for WWSC of PHOSA3. Conversely, there were no OAHI statistical 
differences at baseline among phenotypes, nor between PHOSA1 and 
PHOSA3 at follow-up

(Mann-Whitney U test p-value > 0.05 after Bonferroni’s correction). 
PHOSA2 did show significantly higher OAHI after treatment compared to 
PHOSA1 and PHOSA3, when assessing the whole groups, and significantly 
higher OAHI compared to PHOSA3 when only assessing eAT subjects. 
Table 3 details the number of pediatric subjects per phenotype whose 
OSA resolved (OAHI < 1 e/h) or not (OAHI ≥ 1 e/h). The ORs of OSA 
resolution after treatment are shown in Table 4. No statistically signif
icant differences were found in the OR of OSA resolution between 
PHOSA1 and PHOSA3. However, the odds of OSA resolution after treat
ment for PHOSA1 or PHOSA3 were 1.64 and 1.65 times the odds for 
PHOSA2. The largest difference was in the eAT arm between PHOSA2 and 
PHOSA3, where PHOSA3 had 2.6 times greater odds of normalizing their 
OAHI with eAT treatment.

4.3. OSA resolution prediction using phenotypic cluster information

As mentioned above, 8 out of the 22 variables (Sex, Age, BMI, 
Asthma presence, Enlarged Neck circumference, Gasp and Choke pres
ence, Mallampati score, and Enlarged Waist circumference) reached 

Fig. 2. Association network of the three clusters in pediatric OSA (red, purple, and blue) automatically defined after the modularity analysis.
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statistically significant differences between at least two phenotypes, 
thereby being included as predictors in the training and validation of the 
GentleBoost models. Besides, Fig. 4 shows the procedure to optimize the 
number of base learners and evaluate the convenience of the Phenotype 
variable as a ninth predictor. A total of 50 base learners for WWSC and 
15 for eAT were obtained as optimum after a leave-one-out cross-vali
dation procedure used alongside the two-class Cohen’s kappa value. 
Phenotype variable was shown to reach improved performance for the 
models of both treatments, so it was also included as a predictor in the 
final models.

Table 5 presents the performance of the GentleBoost algorithm for 
the two cases: eAT (N = 199) and WWSC (N = 208). Both models were 

trained using 9 characteristics: the 8 with statistically significant dif
ferences in any of the 3 defined phenotypes (sex, age,

BMI, asthma presence, enlarged neck circumference, gasp and 
chokes presence, Mallampati score, and enlarged waist circumference) 
and a ninth categorical variable codifying the phenotype (1, 2 or 3). 
Each statistic is shown as median and 95 % confidence interval, obtained 
via bootstrap validation with 100 repetitions. Both models showed 
moderate predictive ability, with the eAT model presenting higher Se, 
PPV, and LR-, and WWSC higher Sp, NPV, and LR+. However, only Se 
and PPV showed statistically significant differences, as indicated by no 
overlap in the corresponding 95 % CI. Thus, the eAT model demon
strated improved overall performance.

Fig. 5 shows the relative importance of the predictor variables for 
each model [51]. These values were obtained as the median from the 
bootstrap validation procedure and scaled to represent percentages. 
Similarities in the relative importance of the variables in both models 
are observed, with the main differences being the Mallampati score and 
Gasp and Cokes presence. The Mallampati score shows the highest 
relative importance (18.3 % for WWSC and 20.4 % for eAT), while other 
variables in eAT do not exceed 13.8 % (BMI). Additionally, Gasp and 
Cokes presence reaches 11.5 % in eAT and 7.8 % in WWSC. In both 
models, Mallampati score, Age, and BMI account for about 50 % of the 
relative importance: 51.0 % for WWSC and 46.8 % for eAT. The 
Phenotype Cluster has similar relative importance in both models (9.6 % 
and 10.1 %, respectively).

5. Discussion

We have developed and evaluated a robust subject-based association 
network that has automatically identified 3 pediatric OSA phenotypes 
based on 22 sociodemographic, anthropometric, and clinical variables. 
The phenotypic clusters show varying odds of OSA recovery after 
treatment. Notably, a phenotype linked to increased BMI (PHOSA2) 
exhibited significantly higher OAHI and lower odds of recovering from 
OSA than the two other phenotypes (PHOSA1 and PHOSA3), which were 
associated with normal BMI, neck, and waist circumferences. This 
finding was observed at follow-up when the OSA treatment arm was not 
considered, as well as when comparing eAT subjects from PHOSA2 and 
PHOSA3.

Unveiling a phenotype (PHOSA2) with a marked obesity profile is 
consistent with both the specific characteristics of this subgroup within 

Fig. 3. Boxplots comparing OAHI at baseline (dark colors) and follow-up (light colors) by the new phenotypes and treatment arm (WWSC and eAT). Dashed lines 
connect the three significant comparisons between phenotypes after Bonferroni’s correction, which only appeared at follow-up. As noted, all comparisons within 
phenotypes (between baseline and follow-up) were significant, except for WWSC of PHOSA3.

Table 3 
Number of subjects at follow-up and for each phenotype who showed OSA 
resolution or lack thereof. Overall numbers are presented as well as split into 
treatment arms.

Phenotype 
(# at follow-up)

Resolved (OAHI < 1 e/h) Non-resolved (OAHI ≥ 1 e/h)

All eAT WWSC All eAT WWSC

PHOSA1 (N = 139) 67 42 25 72 26 46
PHOSA2 (N = 152) 55 35 20 97 36 61
PHOSA3 (N = 116) 56 43 13 60 17 43

eAT: early Adenotonsillectomy; OAHI: Obstructive Apnea-Hypopnea Index; 
WWSC: Watchful Waiting with Supportive Care.

Table 4 
Odds ratio and 95 % confidence interval of normalizing their OAHI at follow-up 
according to phenotypic clusters. Overall results are presented as well as split 
into treatment arms.

Treatment 
arm

PHOSA1 relative to 
PHOSA2

PHOSA3 relative to 
PHOSA2

PHOSA1 relative to 
PHOSA3

OR (95 % CI) OR (95 % CI) OR (95 % CI)

All 1.64 (1.03–2.62) 1.65 (1.00–2.69) 1.00 (0.61–1.64)
eAT 1.66 (0.85–3.26) 2.60(1.25–5.39) 0.64 (0.30–1.34)
WWSC 1.65 (0.82–3.34) 0.92 (0.41–2.05) 1.80 (0.82–3.96)

Bold values represent statistical significance at 5 % level according to the 95 % 
CI. eAT: early Adenotonsillectomy; CI: Confidence interval; OAHI: Obstructive 
Apnea-Hypopnea Index; OR: Odds ratio; WWSC: Watchful Waiting with Sup
portive Care.
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pediatric OSA patients and their difficulty in resolving OSA [52,53]. This 
finding, accordingly, supports the suitability of our subject-based asso
ciation network for identifying clinically relevant subgroups or pheno
types. Moreover, adding to the connections between metabolic 
syndrome and pediatric OSA [54], it reinforces the clinical importance 
of considering obesity as a distinct condition that requires a differential 
protocol within the sleep apnea context, which, according to our current 
results, could include specific (possibly personalized) therapeutic in
terventions and preventive strategies like closer monitoring or adjunc
tive therapies beyond eAT. Another interesting finding relates to a 
female-sex-related phenotype. Prepubertal children, as those involved 
in this study, show no or minimal differences in male vs. female preva
lence [55,56]. However, combined with normal-weight characteristics, 
being 5–6 years old, and the absence of asthma, our results suggest 

another distinctive profile (PHOSA3) that could benefit the most from 
eAT intervention.

The use of automatic methods for defining OSA phenotypes in adults 
is well-documented in the literature [11–14]. A recent review summa
rized findings from various clustering methods, identifying 4 OSA sub
types (A, B, C, and D) distinguished mainly by age, weight, and sex [11]. 
Similar results were reached in a study involving 23,000 OSA adult 
patients in Europe, with only 1 out of the 7 identified phenotypes 
(“Pulmonary disease”) not relying on weight, age, or sex [14]. However, 
similar studies in children are limited. Spruyt et al. identifyed 6 pediatric 
OSA categories, from non-pathological to more abnormal polysomno
graphic indices of apneic events, blood oxygen desaturations, and 
arousals [17]. While their age range aligns with ours (5–9 years old), 
they aimed to support and objectivize different pediatric OSA severity 

Fig. 4. Base learner hyperparameter optimization and Phenotype variable evaluation for a) the WWSC model and b) the eAT model.

Table 5 
Performance of the GentleBoost models on pediatric OSA resolution prediction after the bootstrap validation procedure (median and 95 % CI).

Treatment arm Se Sp PPV NPV LR+ LR-

eAT 79.4 (69.9–88.0) 65.0 (51.7–77.3) 77.8 (70.3–86.0) 66.5 (57.7–76.2) 5.6 (3.4–27.0) 0.4 (0.3–0.7)
WWSC 49.5 (34.0–63.1) 82.7 (74.0–90.0) 51.4 (41.2–63.4) 81.5 (75.7–86.6) 7.0 (4.0–20.9) 0.7 (0.5–0.8)

Bold values represent statistical significance at 5 % level according to the 95 % CI. eAT: early Adenotonsillectomy; CI: Confidence interval; LR+/LR-: positive and 
negative likelihood ratios; NPV: negative predictive value; PPV: positive predictive value; Se: sensibility; Sp: specificity; WWSC: Watchful Waiting with Supportive 
Care.

Fig. 5. Relative importance ( %) of the 9 variables used as predictors for a) the WWSC model and b) the eAT model.
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degrees, whereas we intentionally left aside sleep indices such as OAHI 
to search for clinical phenotypes. Liu et al. applied k-means on OAHI, 
heart periodicity during N2 and REM sleep, and thoracic-abdominal 
asynchrony during N3 to cluster pediatric OSA subjects [18]. Like our 
study, they utilized the CHAT study database but aimed to identify 
criteria to prevent unnecessary AT in OSA-affected children, thus 
restricting the cluster subgroups to two: treat or not treat. Lastly, Zaf
fannello et al. used k-medoids clustering to identify three clusters among 
326 habitually snoring children based on anthropometric variables and 
respiratory indices from overnight tests [19]. They found weight and 
age-related differences in some comparisons between the 3 clusters, 
aligning with our findings. They also reported significant differences in 
respiratory-related indices that, as explained above, were intentionally 
excluded from our study. However, no sex differences were noted, and 
waist or neck circumference was not evaluated alongside other charac
teristics. Furthermore, the treatment response in these subgroups was 
not evaluated, focusing instead on objectifying severity categories 
traditionally used in pediatric OSA [19].

Marked differences in the objectives of these studies make it chal
lenging to compare our results. However, we believe these studies 
highlight the potential clinical usefulness of clustering approaches in 
pediatric OSA phenotyping. Beyond this, some methodological aspects 
deserve mention when comparing our different approaches. First, the k- 
means, k-medoids, and k-modes methods require a prior setting of the 
number (k) of clusters to be defined [22]. In contrast, our association 
network approach involves no prior assumptions, enhancing the objec
tivity of the findings. K-means and k-modes also are known to be sen
sitive to outliers when defining the clusters [23]. Additionally, all 
partition-based clustering methods (k-means, k-modes, k-medoids) as
sume that detected clusters, if indeed found, are spherically shaped [24]. 
Finally, k-medoids is inefficient with large datasets [23], unlike the 
Blonde’s method used in our modularity analysis [25].

Another way to enhance the usefulness of our phenotype cluster 
analysis is through the performance of the two machine learning models 
trained to predict the intervention’s success. The eAT model demon
strated higher robustness, achieving 79.4 % Se and 77.8 % PPV. 
Although insufficient for clinical use, it illustrates the additional po
tential of pediatric OSA phenotypes information. Moreover, the relative 
importance of the predictor variables showed similar patterns in eAT 
and WWSC models, with a higher Mallampati score and presence of Gasp 
and Choke identifying key differences favoring the eAT model. Relative 
importance also showed the convenience of the phenotypic information 
gathered in the Phenotype variable.

Nevertheless, aspects that limit our results must be acknowledged. 
While our sample size is large, a larger cohort would enhance general
izability, especially regarding the age span of children (5–9 years), as 
age has emerged as an important feature in defining our phenotypes. 
Thus, including subjects outside this range is a desirable target for future 
studies before a potential clinical adoption. This should be done in 
conjunction with the evaluation of data from other sleep centers for 
further external validation. Although CHAT is a multi-center dataset, 
this future approach could strengthen our conclusions. Related to the 
design of CHAT study, future approaches should consider evaluating 
OSA resolution in different periods after AT, as the 7 months established 
is also a limitation of our results and conclusions. Similarly, children 
showing extreme OSA-related findings [9] -presumably needing imme
diate intervention-, severe obesity (z-score BMI ≥ 3), recurrent tonsilitis, 
or taking medication for attention deficit-hyperactivity syndrome, were 
not included or were excluded from the CHAT study. This strategy might 
have affected our definition of OSA-related phenotypes. However, in 
agreement with our results and the established lack of OSA resolution 
linked to obesity and OSA severity [52,53], we speculate that excluding 
these cohorts did not compromise our findings on the differential odds of 
OSA resolution, nor did it overestimate the effectiveness of our methods 
for identifying phenotypes (modularity analysis) and predicting OSA 
resolution (machine learning models). The 22 variables used in our 

study also limit our results and conclusions. We adapted the design of 
previous studies to the specific case of the available data in CHAT 
dataset. However, other clinical variables, like tonsil size, were not 
included in our study. Although tonsil size has been questioned 
regarding its OSA-related predictive ability [57,58], particularly in the 
case of children with abnormal weight [58], it has been commonly 
evaluated in the pediatric OSA context, so its inclusion may have led to 
different phenotype definitions. Another clear limitation is missing data; 
while relatively minor (see Table 1), the total cholesterol level had 20 % 
missing values. We used a mode-based data imputation technique to 
minimize this issue. Despite its simplicity and proven efficiency [35], it 
has limitations that might lead to the underestimation of the variance of 
the imputed variable [35]. Accordingly, more complex methods, such as 
multiple imputation or model-based approaches, or eventual data 
availability, could have led to different outcomes for this variable. 
Similar limitations apply to the percentage of imputed data assigned to 
each phenotype. However, our results (see Table 2) indicate that sig
nificant differences among phenotypes are likely preserved, with only 
the Gasp and Choke variable having realistic chances of being impacted. 
Similarly, imputed data is unlikely to affect the trend of variables that 
did not show significant differences between phenotypes (supplemen
tary Table S1). Additionally, a future goal is to associate our phenotypes 
with co-morbidities, including evaluating relationships between clusters 
and specific end-organ dysfunction. The applicability of the GentleBoost 
models is another limitation. This study aimed to show whether the 
baseline data used to define the phenotypes contained useful informa
tion about OSA resolution after intervention. Our results support this 
idea but also show that further research is needed to reach a reliable, 
fully automated prediction on OSA resolution. Future evaluation of 
other machine-learning methods could be an interesting approach to 
overcome this limitation. Finally, using information from overnight 
signals from PSG to define pediatric OSA phenotypes constitutes another 
future working avenue.

6. Conclusions

Our new subject-based association network methodology has 
revealed pediatric OSA phenotypes with significantly different odds of 
recovery after treatment. Unlike previous research, our modularity 
approach was conducted without assuming any prior conditions on the 
number of phenotypes or their related data shape. Moreover, it is 
particularly useful when databases are large. Therefore, an important 
conclusion is that our method is an objective solution that could be 
extendable to other health problems, being those complex ones with 
multifactorial and large datasets, which might benefit the most. More
over, we can draw two key conclusions specific to pediatric OSA. First, 
regardless of sex and therapeutic intervention, affected children aged 7 
to 9 years, overweight or obese, with enlarged waist circumference 
(PHOSA2) have reduced odds of normalizing their OAHI. Second, 
younger, non-obese females (5–6 years) with no enlarged neck (PHOSA3) 
have higher odds of benefiting from adenotonsillectomy. Thus, our 
study has contributed to both refining modularity analysis and defining 
clinically useful pediatric OSA phenotypes, paving the way for more 
precise clinical management decisions.
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