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ARTICLE INFO ABSTRACT
Keywords: Background and objectives: Timely treatment of pediatric obstructive sleep apnea (OSA) can prevent or reverse
Association network neurocognitive and cardiovascular morbidities. However, whether distinct phenotypes exist and account for

Childhood adenotonsillectomy trial
Obstructive sleep apnea
Phenotypes

Explainable artificial intelligence

divergent treatment effectiveness remains unknown. In this study, our goal is threefold: i) to define new data-
driven pediatric OSA phenotypes, ii) to evaluate possible treatment effectiveness differences among them, and
iii) to assess phenotypic information in predicting OSA resolution.

Methods: We involved 22 sociodemographic, anthropometric, and clinical data from 464 children (5-10 years
old) from the Childhood Adenotonsillectomy Trial (CHAT) database. Baseline information was used to auto-
matically define pediatric OSA phenotypes using a new unsupervised subject-based association network. Follow-
up data (7 months later) were used to evaluate the effects of the therapeutic intervention in terms of changes in
the obstructive apnea-hypopnea index (OAHI) and the resolution of OSA (OAHI < 1 event per hour). An
explainable artificial intelligence (XAI) approach was also developed to assess phenotypic information as OSA
resolution predictor at baseline.

Results: Our approach identified three OSA phenotypes (PHpsa1-PHpsas), with PHpga2 showing significantly
lower odds of OSA recovery than PHpsa1 and PHpsaz when treatment information was not considered (odds
ratios, OR: 1.64 and 1.66, 95 % confidence intervals, CI: 1.03-2.62 and 1.01-2.69, respectively). The odds of
OSA recovery were also significantly lower in PHpga2 than in PHpgas when adenotonsillectomy was adopted as
treatment (OR: 2.60, 95 % CI: 1.26-5.39). Our XAI approach identified 79.4 % (CI: 69.9-88.0 %) of children
reaching OSA resolution after adenotonsillectomy, with a positive predictive value of 77.8 % (CI: 70.3 %-86.0
%).

Conclusions: Our new subject-based association network successfully identified three clinically useful pediatric
OSA phenotypes with different odds of therapeutic intervention effectiveness. Specifically, we found that chil-
dren of any sex, >6 years old, overweight or obese, and with enlarged neck and waist circumference (PHopsa2)
have less odds of recovering from OSA. Similarly, younger female children with no enlarged neck (PHpgas) have
higher odds of benefiting from adenotonsillectomy.

1. Introduction respiratory events (apneas and hypopneas, respectively) during sleep
[1-5]. These events lead to inadequate gas exchange and sleep frag-

Obstructive sleep apnea (OSA) affects up to 5 % of children by mentation, triggering oxidative stress and inflammatory processes that
increasing upper airway collapsibility, resulting in complete or partial elevate the risk of cardiovascular, metabolic, and neurocognitive
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morbidities in these children [1,2]. These adverse effects can diminish
health and quality of life in childhood and may have lifelong conse-
quences [1].

Adenotonsillectomy (AT) is the primary treatment for pediatric OSA
and effectively reduces the number of obstructive apneic events per hour
of sleep (obstructive apnea-hypopnea index, OAHI), reversing other
OSA-related consequences [2,6]. However, treatment effectiveness
varies based on patient attributes such as body mass index [2,7-9].
Additionally, inconsistencies arise between OAHI -regularly used to
establish OSA and its severity- and the actual symptoms and morbidity
profiles of affected children [10]. These observations suggest different
pediatric OSA phenotypic clusters with shared clinical and treatment
response characteristics [10]. Accordingly, relying solely on a variable
like OAHI may obscure important clinically relevant sub-group char-
acteristics, making the identification of such phenotypes essential for
timely, accurate, and tailored diagnosis and treatment.

OSA phenotype identification has been extensively reviewed in adult
patients [11]. Data-driven methods enabling hierarchical unbiased
clustering have been effectively implemented [11-16]. Nonetheless,
similar efforts for pediatric OSA phenotypes are limited. Principal
component analysis and k-means were used with clinical variables from
polysomnography (PSG) to support a continuum in pediatric OSA
severity [17]. Another study applied k-means and PSG data to identify
characteristics of two fixed clusters for AT candidates among OSA pa-
tients [18]. Similarly, k-medoids clustering, alongside anthropometric
and respiratory variables, has aimed to objectivize pediatric OSA
severity groups [19]. Other studies focused on very specific pediatric
OSA-related issues such as neurocognitive or asthma phenotypes [20,
21]. Despite the advances achieved in these works, two main research
gaps have been identified. First, all these partition-based clustering
methods (k-means, k-modes, k-medoids) suffer from limitations such as
the a priori need to fix the number of subgroups (k), the assumption of
spherically shaped clusters, and sensitivity to outliers [22-24]. Second,
none of these studies evaluated the clinical usefulness of new pheno-
types in terms of the odds of treatment effectiveness.

In this study, we hypothesized that sociodemographic, anthropo-
metric, and clinical variables can classify OSA-affected children into
distinct phenotypes that may differ in treatment response. Accordingly,
our threefold objective was to i) define new data-driven pediatric OSA
phenotypes, ii) evaluate treatment effects in each of the phenotypes
identified, and iii) assess the new phenotypic information for predicting
pediatric OSA resolution. In this context, we propose a novel subject-
based association network approach to identify these phenotypic clus-
ters. Association and correlation networks are graphical analyses that,
combined with modularity algorithms, do not make prior assumptions
about the number of clusters or their form [25]. Moreover, they have
been successfully used to establish relationships between variables in
different health-related problems like schizophrenia [26], gene in-
teractions in breast cancer [27], spontaneous breathing prediction [28],
and pediatric OSA [20]. However, we propose using association net-
works to analyze relationships between subjects, each of them repre-
sented by a pattern composed of the individual values of 22 clinically
relevant variables, permitting the detection of associations that could
lead to new OSA phenotypes. We also evaluate this potential new
phenotypic information by applying odds ratios for OSA resolution after
treatment, and by developing a Gentle Boost-based explainable
machine-learning algorithm to predict OSA resolution. To the best of our
knowledge, this approach and its application to pediatric OSA are novel.
Moreover, new phenotype discovery has the potential to guide clinicians
towards more tailored clinical protocols and their prompt application,
thus improving the positive effects on patients’ health and quality of life.

2. Dataset: the childhood adenotonsillectomy trial

The study involved 464 children (5-9.9 years old, 219 boys | 245
girls) from the Childhood Adenotonsillectomy Trial (CHAT) database
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(clinical trial NCT00560859) [9]. The protocol followed the Declaration
of Helsinki, with written consent obtained from all parents and assent
from children over 7. Participants suspected of suffering from OSA un-
derwent a baseline overnight polysomnography (PSG) to determine
OAHI and reach the diagnosis. Sociodemographic and clinical data were
also collected. Of the 464 children, 453 with OSA were randomized to
early adenotonsillectomy (eAT) or watchful waiting with supportive
care (WWSC) to evaluate differences between the two interventions [9].
From here on, both interventions will be referred to as ‘treatment’. Most
children (N = 407) had follow-up data acquired seven months
post-treatment. Detailed information on the original CHAT study design
and its goals can be found in prior publications [9,29]. Beyond these
initial studies, the robustness and reproducibility of the CHAT database
to advance pediatric OSA knowledge have been well-demonstrated in a
range of subsequent investigations [30-33]. Sociodemographic and
clinical variables from children involved in the study are presented in
Table 1 from Section 3.1, and a summary of baseline variables is pre-
sented in Table 2 from Section 4.1.

Table 1

Variables used to define the pediatric OSA subgroups. Mode imputation was
used for all of them. Daytime sleepiness was measured through the Epworth
Sleepiness Scale for Children [36] and directly obtained from the answers of
children’s parents to the Pediatric Sleep Questionary [37].

Variables Categories Categorization rule Imputed
data (%)
Sex Male (M) | Female  Direct from CHAT study 2.40
(6]
Age 5-6 | 7-8 | 9-10 Age equally distributed 2.40
(years old)
HT High blood High if systolic or 2.60
pressure | Normal diastolic blood pressure
blood pressure percentile > 95 %
according to age, sex, and
height [38]
BMI Underweight | Percentile according to 2.40
Normal | age and sex < 5 % | 5-85
Overweight | % | 85-95 % | > 95 %
Obese [39,40]
Asthma Yes (Y) | No (N) Direct from CHAT study 2.60
Daytime sleepiness Y|N Increased if ESS > 10 2.60
(ESS) [36]
Enlarged Neck Y|N Enlarged if > 32.5 cm in 2.60
Circumference males and > 31 cm in
females [41]
High total Y|N High if > 200 mg/dl [42]  20.00
cholesterol level
Morning Y|N Direct from CHAT study 3.70
Headaches
Morning Fatigue Y|N Direct from CHAT study 9.90
Insomnia YI|N Direct from CHAT study 2.60
Daytime sleepiness Y|N Direct from CHAT study 2.80
(PSQ)
Allergic Rhinitis Y|N Direct from CHAT study 2.60
Gasp and Chokes Y|N Direct from CHAT study 3.00
Depression Y|N Direct from CHAT study 3.20
Mallampati score I|mju|iv Direct from CHAT study 2.40
[43,44]
Irritability YN Direct from CHAT study 3.70
Race Black | White | Direct from CHAT study 2.40
Other
Anxiety Y|N Direct from CHAT study 5.20
Reflux Y|N Direct from CHAT study 2.60
Enlarged Waist Y|N Enlarged if percentile > 2.60
circumference 75 % according to age
and sex [45]
Restless sleep or Y|N Direct from CHAT study 3.00
frequent
awakenings from
sleep

BMI: body mass index; CHAT: Childhood Adenotonsillectomy Trial; ESS:
Epworth Sleepiness Score; HT: Hypertension; PSQ: Pediatric Sleep Questionary.
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Table 2
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Proportion of subjects in each phenotype for the variables showing significant differences between any pair of phenotypes and y-square value of the comparison

between each pair of them.

Variables PHosa1 PHosaz PHosas y-square y-square y-square
(red, N =155) (purple, N = 168) (blue, N = 141) PHosa1 Vs PHosaz PHosa1 Vs PHosas PHosaz Vs PHpsas

Sex 5.8% | F 58.3% | F 97.9% | F 98.0 246.7 64.3
(0.0 % id.) (0.0 % id.) (7.8 % i.d. Female)

Age 83.9% |56y 10.1% |56y 80.2% |56y 178.4 1.7 158.7
13.5% | 7-8 y 58.9% | 7-8 y 18.4% | 7-8y
2.6%|9-10y 31.0% | 9-10y 1.4%|9-10y
(0.0 % i.d.) (0.0 % i.d.) (7.8%id 5-6y)

BMI 3.9 % | Under 0.0 % | Under 6.4 % | Under 93.8 7.5 113.6
67.7 % | Normal 18.5 % | Normal 70.2 % | Normal
7.7 % | Over 20.2 % | Over 12.8 % | Over
20.7 % | Obese 61.3 % | Obese 10.6 % | Obese
(0.0 % id.) (0.0 % id.) (7.8 % i.d. Normal)

Asthma 329 % 38.7 % 19.1 % 0.9 6.5 13.1
(3.9 % id. No) (1.8 % i.d. No) (8.5 % i.d., No)

Enlarged Neck Circumference 1.3% 35.1 % 0.0 % 58.0 0.4 58.9
(0.0 % id.) (0.6 % i.d. No) (7.8 % i.d. No)

Gasp and chokes 65.2 % 49.4 % 74.5 % 7.5 2.6 19.2
(0.7 % i.d. Yes) (0.6 % i.d. Yes) (8.5 % i.d. Yes)

Mallampati score [43,44] 58% |1 20.2% | I 85% |1 23.9 10.1 9.1
36.8 % | 1 45.2% |11 52.5% | 1
48.4 % | 11 27.4 % | 1L 33.3% | III
92.0% | IV 7.2% |1V 5.7% | IV
2.5%id. 1) (0.6 % id. I (8.5 %id. I

Enlarged Waist circumference 41.9 % 92.3 % 45.4 % 91.7 0.23 79.3
(0.0 % id.) (0.6 % i.d. Yes) (7.8 % i.d. Yes)

Italic values are the percentage of imputed data within each phenotype, as well as the category assigned as imputed data. Bold y-square values and variables represent

statistically significant at p-value 0.05 after Bonferroni’s correction. BMI: body
3. Methods
3.1. Study design, variables, and data imputation

Fig. 1 illustrates the study design. Yellow cylinders indicate available
data for phenotype definition and comparison. Light blue (baseline) and

22
variables
with
missed
data

1
Association Network ;

Comparison of new Phenotypes’ differences in
Imputation of missed data ! phenotypes before

mass index.

orange (follow-up) boxes are analyses conducted on these data or re-
sults. Red figures highlight key results, including newly identified sub-
groups, their defining characteristics, and their differences before and
after treatment. Sociodemographic, anthropometric, and clinical data of
the 464 children within the baseline subgroup of CHAT were used to
define the pediatric OSA phenotypes. To this effect, we included the

terms of OAHI (Boxplots,

treatment p-values)

| Fouenue inssor)

OSA
subgroups
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ROV

Subgroup variable differences

Comparison of new
phenotypes after

Phenotypes’ Odds Ratio
and Relative Risk of
treatment recovering after treatment
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Fig. 1. Schematic of the study design. Yellow cylinders represent data. Light blue and orange boxes represent analyses. Red figures represent important results of the
study. After defining the phenotypes, only 407 subjects with complete datasets at both baseline and follow-up were used in our analyses.
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available 22 variables. The selection of the 22 variables was adapted
from those used in prior adult studies and based on standard measures in
children [12,13]. Continuous variables were categorized according to
previously defined clinically relevant thresholds in the literature. For the
sake of simplicity, a mode-based imputation strategy was followed for
the missed categories [34]. Previous studies involving clinical and
sociodemographic categorical data have shown that this method reaches
consistently high imputation accuracy for up to 50 % of missing data,
equaling the performance of more complex methods [35]. Table 1
specifies the 22 variables, their categories, rules for continuous variables
categorization, the studies proposing these rules, and the percentage of
imputed data. Each child under study was then defined by a pattern (or
vector) of 22 values. Association networks conducted a modularity
analysis on these patterns to search for pediatric OSA phenotypic clus-
ters. OAHI values from the 407 children included in both baseline and
follow-up groups were evaluated for possible differences in the treat-
ment effects on each phenotype. This was conducted by comparing pre-
and post-treatment OAHI values and calculating odds ratios for pediatric
OSA resolution (OAHI<1 events/hour total sleep time) by phenotype.

3.2. Subject-based association networks and modularity analysis

Association networks are graphs where nodes typically represent
variables and links measure their pairwise relationships [46]. In our
adaptation, nodes represent children characterized by 22 variables, with
links measuring the similarity between subjects’ information, aiding
children’s subgroup definition. Correlation typically evaluates associa-
tions between continuous data [20,46]. However, since we have cate-
gorical and continuous information, we categorized the 22 variables,
enabling the use of the y-square test to measure associations between
nodes. The algorithm visualizing the association networks was Force-
Atlas2 [47], which emulates physical attraction and repulsion forces as
reflections of association strength [47]. According to the distance of
connected nodes (subjects), and the sum of all the y-square values
reaching each node (node degree), ForeceAtlas2 transforms structural
proximities into visual ones. Thus, subjects with stronger associations
tend to be positioned closer together.

Once the association network is built, a modularity (cluster) analysis
is conducted to define subgroups of nodes with higher association. We
used an unsupervised learning algorithm for data clustering, which does
not require prior information about the number of clusters or assump-
tions about relationships within the data. Specifically, we used Blondel’s
modularity (also known as the Louvain method), which has shown
robust performance regarding computation time [25], being important
in large networks. The algorithm relies on the modularity parameter Q,
which measures the density of the (weighted) links within a given
module (cluster) compared to the (weighted) links between all different
given modules [25]. It can be computed as follows [25,48]:

1 kik;
Q= ﬂ%j[xirz—,ﬂ&(ci,cj), ¢h)

ki = Z]- Xij @

where y;; represents the y-square value (weight of the link) between i
and j nodes, c; is the community to which node i is assigned, with:

_lifa=g
0 = {0 otherwise @)
and
1
m = EZ Xij (4
i j
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Using Q modularity, the algorithm follows two iterative stages [25].
First, each node is assigned to a unique community (or module),
resulting in as many communities as nodes. Then, for each node i, the
modularity gain (AQ) of removing i from its community and placing it in
the communities of all its j neighbors is evaluated. If AQ is positive, node
i joins the community with the highest gain. Otherwise, i remains in its
current community. This process continues until no gain is observed in
any node, completing the first stage. The second stage involves creating
a new network where the discovered communities act as nodes, with
weighted links between these new nodes being the sum of the weighted
links between the old nodes included within each pair of communities.
After this second stage, the first iterative stage can be applied again to
maximize Q in the new network. The two stages combined are iterated
until no more changes in Q are observed, reaching maximum modularity
and assigning a module to each original node [25].

3.3. Statistical analysis: connectivity matrix, statistical differences, odds
ratios

The y-square test of independence measured the relationship be-
tween nodes to build association networks. However, y-square values
were not directly used but derived from a bootstrap procedure of 1000
runs for the sake of results robustness [20]. Accordingly, a random se-
lection of 22 variables with replacement was conducted 1000 times,
allowing for repeated variables. Then, y-square for each pair of nodes
(subjects from baseline CHAT) was computed to form the full connec-
tivity matrix of each bootstrap run. After the 1000 runs, the connectivity
matrix of y-square mean values was used to feed the ForceAtlas2 algo-
rithm, build the final association network, and conduct the modularity
analysis.

Once subgroups (potential phenotypic clusters) were obtained, the
y-square goodness of fit test with p-values (<0.05 with Bonferroni’s
correction) was used to evaluate differences between variables from
each subgroup at baseline, allowing phenotype description based on
differential characteristics. Boxplots and Wilcoxon signed rank test (p-
value <0.05 after Bonferroni’s correction) evaluated differences in
OAHI within the new subgroups, before (baseline) and after (follow-up)
OSA treatment in the 407 subjects with follow-up data. Mann-Whitney U
test assessed differences between phenotypes at baseline and follow-up.
These analyses considered subjects who underwent eAT or WWSC
separately, as well as in aggregate. Odds ratios (OR) alongside 95 %
confidence intervals evaluated the relative chance of each newly defined
phenotype recovering after OSA treatment, also differentiated by
treatment arm and in aggregate. Finally, two machine learning models
(GentleBoost [49]) were trained to predict OSA resolution based on the
main variables defining phenotypes.

3.4. Explainable Gentleboost

GentleBoost, or gentle adaptive boosting (gentle AdaBoost), is an
ensemble-learning algorithm known for its robustness against outliers
[49]. It aims to train and combine the classification performance of
multiple base learners of the same type to create more generalizable
models [49,50]. An iterative process trains each new base learner, giving
more importance to observations misclassified in previous iterations
[50]. The final prediction is conducted by combining the predictions of
each base classifier, which are weighted by their individual perfor-
mance. In this study, GentleBoost was used with decision trees as base
learners to predict recovery from OSA after two interventions (eAT or
WWSC). Specifically, the purpose was to predict at baseline whether
children would normalize their OAHI after intervention, i.e., at
follow-up. The predictors included for training the GentleBoost models
were those variables that showed statistical differences between at least
two phenotypes derived from the modularity analysis. Moreover, we
assessed whether adding a variable with the Phenotype category would
improve performance. For GentleBoost, the number of base learners is a
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hyperparameter that we optimized after a leave-one-out cross-validation
procedure. Another validation method (bootstrap with 100 runs) was
used to estimate GentleBoost’s performance. The relative importance
measure served as a global explainable method for assessing each vari-
able’s contribution to the obtained GentleBoost models [51]

4. Results
4.1. Baseline: pediatric OSA phenotypes definition

Fig. 2 displays the association network after applying the Force-
Atlast2 algorithm to the 22 variables and the subsequent modularity
analysis. Each node represents a pediatric subject, while the three colors
(red, purple, blue) indicate the three OSA clusters as automatically ob-
tained. Table 2 summarizes the 8 out of the 22 categorical variables that
reached statistical significance differences between 2 of the subgroups at
least, along with the y-square value (with p-value after Bonferroni’s
correction). The imputed data percentage for each subgroup and vari-
able is also shown.

The three subgroups, or phenotypes (PHpsa1- PHosas), have similar
sizes. Only the variable Sex is significantly different among the three
phenotypes and is also the only significantly different between PHpga1
and PHpgas. Five variables (Sex, Age, BMI, Waist circumference, and
Neck circumference) show significant differences in PHoga2 compared to
both PHpga1 and PHpgas. Additionally, PHpgao is significantly different
from PHopga1 in Mallampati score, and from PHpgpas in Asthma presence
and nighttime Gasps and Chokes. No significant differences were found
in the remaining 14 variables (supplementary Table S1), including hy-
pertension, total cholesterol level, daytime sleepiness (either ESS or
PSQ), and race. Based on this, the expected features of a child in each
phenotype are:

Hl PHosai: male (94.2 %); pediatric subjects 5 or 6 years old (83.9 %);
non-obese (79.4 %); normal neck circumference (98.7 %); no class I
Mallampati score (94.2 %).

Computer Methods and Programs in Biomedicine 275 (2026) 109209

M PHosao: pediatric subjects between 7 and 10 years old (89.9 %);
overweight or obese (81.6 %); enlarged waist circumference (92.3
%).

W PHosas: female (97.87 %) pediatric subjects 5 or 6 years old (80.1
%); non-obese (89.4 %); no asthma (80.85 %); and normal neck
circumference (100.0 %).

4.2. Follow-up: differences in treatment effectiveness

Fig. 3 presents boxplots of the differences in OAHI among the three
phenotypes before and after treatment. The differences within treatment
arms (eAT and WWSC) are also included. OAHI values were significantly
lower (Wilcoxon signed rank test p-value < 0.05 after Bonferroni’s
correction) at follow-up regardless of the treatment arm or phenotype,
except for WWSC of PHpgps. Conversely, there were no OAHI statistical
differences at baseline among phenotypes, nor between PHgpsa; and
PHOSA3 at follow-up

(Mann-Whitney U test p-value > 0.05 after Bonferroni’s correction).
PHoga2 did show significantly higher OAHI after treatment compared to
PHosa1 and PHpgas, when assessing the whole groups, and significantly
higher OAHI compared to PHpgps when only assessing eAT subjects.
Table 3 details the number of pediatric subjects per phenotype whose
OSA resolved (OAHI < 1 e/h) or not (OAHI > 1 e/h). The ORs of OSA
resolution after treatment are shown in Table 4. No statistically signif-
icant differences were found in the OR of OSA resolution between
PHosa1 and PHpgas. However, the odds of OSA resolution after treat-
ment for PHoga; or PHogaz were 1.64 and 1.65 times the odds for
PHosa2. The largest difference was in the eAT arm between PHpsa2 and
PHosas, where PHpgas had 2.6 times greater odds of normalizing their
OAHI with eAT treatment.

4.3. OSA resolution prediction using phenotypic cluster information

As mentioned above, 8 out of the 22 variables (Sex, Age, BMI,
Asthma presence, Enlarged Neck circumference, Gasp and Choke pres-
ence, Mallampati score, and Enlarged Waist circumference) reached

Fig. 2. Association network of the three clusters in pediatric OSA (red, purple, and blue) automatically defined after the modularity analysis.
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Fig. 3. Boxplots comparing OAHI at baseline (dark colors) and follow-up (light colors) by the new phenotypes and treatment arm (WWSC and eAT). Dashed lines
connect the three significant comparisons between phenotypes after Bonferroni’s correction, which only appeared at follow-up. As noted, all comparisons within
phenotypes (between baseline and follow-up) were significant, except for WWSC of PHpsas.

Table 3

Number of subjects at follow-up and for each phenotype who showed OSA
resolution or lack thereof. Overall numbers are presented as well as split into
treatment arms.

Phenotype Resolved (OAHI < 1 e/h) Non-resolved (OAHI > 1 e/h)
(# at follow-up) All eAT WWSC All eAT WWSC
PHosa1 (N = 139) 67 42 25 72 26 46

PHosaz (N = 152) 55 35 20 97 36 61

PHopsas (N = 116) 56 43 13 60 17 43

eAT: early Adenotonsillectomy; OAHI: Obstructive Apnea-Hypopnea Index;
WWSC: Watchful Waiting with Supportive Care.

Table 4

Odds ratio and 95 % confidence interval of normalizing their OAHI at follow-up
according to phenotypic clusters. Overall results are presented as well as split
into treatment arms.

Treatment PHosa relative to PHosas relative to PHogsa relative to
arm PHosa2 PHosaz2 PHosas

OR (95 % CI) OR (95 % CI) OR (95 % CI)
All 1.64 (1.03-2.62) 1.65 (1.00-2.69) 1.00 (0.61-1.64)
eAT 1.66 (0.85-3.26) 2.60(1.25-5.39) 0.64 (0.30-1.34)
WWSC 1.65 (0.82-3.34) 0.92 (0.41-2.05) 1.80 (0.82-3.96)

Bold values represent statistical significance at 5 % level according to the 95 %
CIL eAT: early Adenotonsillectomy; CI: Confidence interval; OAHI: Obstructive
Apnea-Hypopnea Index; OR: Odds ratio; WWSC: Watchful Waiting with Sup-
portive Care.

statistically significant differences between at least two phenotypes,
thereby being included as predictors in the training and validation of the
GentleBoost models. Besides, Fig. 4 shows the procedure to optimize the
number of base learners and evaluate the convenience of the Phenotype
variable as a ninth predictor. A total of 50 base learners for WWSC and
15 for eAT were obtained as optimum after a leave-one-out cross-vali-
dation procedure used alongside the two-class Cohen’s kappa value.
Phenotype variable was shown to reach improved performance for the
models of both treatments, so it was also included as a predictor in the
final models.

Table 5 presents the performance of the GentleBoost algorithm for
the two cases: eAT (N = 199) and WWSC (N = 208). Both models were

trained using 9 characteristics: the 8 with statistically significant dif-
ferences in any of the 3 defined phenotypes (sex, age,

BMI, asthma presence, enlarged neck circumference, gasp and
chokes presence, Mallampati score, and enlarged waist circumference)
and a ninth categorical variable codifying the phenotype (1, 2 or 3).
Each statistic is shown as median and 95 % confidence interval, obtained
via bootstrap validation with 100 repetitions. Both models showed
moderate predictive ability, with the eAT model presenting higher Se,
PPV, and LR-, and WWSC higher Sp, NPV, and LR+. However, only Se
and PPV showed statistically significant differences, as indicated by no
overlap in the corresponding 95 % CI. Thus, the eAT model demon-
strated improved overall performance.

Fig. 5 shows the relative importance of the predictor variables for
each model [51]. These values were obtained as the median from the
bootstrap validation procedure and scaled to represent percentages.
Similarities in the relative importance of the variables in both models
are observed, with the main differences being the Mallampati score and
Gasp and Cokes presence. The Mallampati score shows the highest
relative importance (18.3 % for WWSC and 20.4 % for eAT), while other
variables in eAT do not exceed 13.8 % (BMI). Additionally, Gasp and
Cokes presence reaches 11.5 % in eAT and 7.8 % in WWSC. In both
models, Mallampati score, Age, and BMI account for about 50 % of the
relative importance: 51.0 % for WWSC and 46.8 % for eAT. The
Phenotype Cluster has similar relative importance in both models (9.6 %
and 10.1 %, respectively).

5. Discussion

We have developed and evaluated a robust subject-based association
network that has automatically identified 3 pediatric OSA phenotypes
based on 22 sociodemographic, anthropometric, and clinical variables.
The phenotypic clusters show varying odds of OSA recovery after
treatment. Notably, a phenotype linked to increased BMI (PHgsa2)
exhibited significantly higher OAHI and lower odds of recovering from
OSA than the two other phenotypes (PHpsa1 and PHopgas), which were
associated with normal BMI, neck, and waist circumferences. This
finding was observed at follow-up when the OSA treatment arm was not
considered, as well as when comparing eAT subjects from PHpga2 and
PHogas-

Unveiling a phenotype (PHpsa2) with a marked obesity profile is
consistent with both the specific characteristics of this subgroup within
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Fig. 4. Base learner hyperparameter optimization and Phenotype variable evaluation for a) the WWSC model and b) the eAT model.

Table 5

Performance of the GentleBoost models on pediatric OSA resolution prediction after the bootstrap validation procedure (median and 95 % CI).
Treatment arm Se Sp PPV NPV LR+ LR-
eAT 79.4 (69.9-88.0) 65.0 (51.7-77.3) 77.8 (70.3-86.0) 66.5 (57.7-76.2) 5.6 (3.4-27.0) 0.4 (0.3-0.7)
WWSC 49.5 (34.0-63.1) 82.7 (74.0-90.0) 51.4 (41.2-63.4) 81.5 (75.7-86.6) 7.0 (4.0-20.9) 0.7 (0.5-0.8)

Bold values represent statistical significance at 5 % level according to the 95 % CI. eAT: early Adenotonsillectomy; CI: Confidence interval; LR+/LR-: positive and
negative likelihood ratios; NPV: negative predictive value; PPV: positive predictive value; Se: sensibility; Sp: specificity; WWSC: Watchful Waiting with Supportive

Care.
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Fig. 5. Relative importance ( %) of the 9 variables used as predictors for a) the WWSC model and b) the eAT model.

pediatric OSA patients and their difficulty in resolving OSA [52,53]. This
finding, accordingly, supports the suitability of our subject-based asso-
ciation network for identifying clinically relevant subgroups or pheno-
types. Moreover, adding to the connections between metabolic
syndrome and pediatric OSA [54], it reinforces the clinical importance
of considering obesity as a distinct condition that requires a differential
protocol within the sleep apnea context, which, according to our current
results, could include specific (possibly personalized) therapeutic in-
terventions and preventive strategies like closer monitoring or adjunc-
tive therapies beyond eAT. Another interesting finding relates to a
female-sex-related phenotype. Prepubertal children, as those involved
in this study, show no or minimal differences in male vs. female preva-
lence [55,56]. However, combined with normal-weight characteristics,
being 5-6 years old, and the absence of asthma, our results suggest

another distinctive profile (PHpgas) that could benefit the most from
eAT intervention.

The use of automatic methods for defining OSA phenotypes in adults
is well-documented in the literature [11-14]. A recent review summa-
rized findings from various clustering methods, identifying 4 OSA sub-
types (A, B, C, and D) distinguished mainly by age, weight, and sex [11].
Similar results were reached in a study involving 23,000 OSA adult
patients in Europe, with only 1 out of the 7 identified phenotypes
(“Pulmonary disease”) not relying on weight, age, or sex [14]. However,
similar studies in children are limited. Spruyt et al. identifyed 6 pediatric
OSA categories, from non-pathological to more abnormal polysomno-
graphic indices of apneic events, blood oxygen desaturations, and
arousals [17]. While their age range aligns with ours (5-9 years old),
they aimed to support and objectivize different pediatric OSA severity
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degrees, whereas we intentionally left aside sleep indices such as OAHI
to search for clinical phenotypes. Liu et al. applied k-means on OAHI,
heart periodicity during N2 and REM sleep, and thoracic-abdominal
asynchrony during N3 to cluster pediatric OSA subjects [18]. Like our
study, they utilized the CHAT study database but aimed to identify
criteria to prevent unnecessary AT in OSA-affected children, thus
restricting the cluster subgroups to two: treat or not treat. Lastly, Zaf-
fannello et al. used k-medoids clustering to identify three clusters among
326 habitually snoring children based on anthropometric variables and
respiratory indices from overnight tests [19]. They found weight and
age-related differences in some comparisons between the 3 clusters,
aligning with our findings. They also reported significant differences in
respiratory-related indices that, as explained above, were intentionally
excluded from our study. However, no sex differences were noted, and
waist or neck circumference was not evaluated alongside other charac-
teristics. Furthermore, the treatment response in these subgroups was
not evaluated, focusing instead on objectifying severity categories
traditionally used in pediatric OSA [19].

Marked differences in the objectives of these studies make it chal-
lenging to compare our results. However, we believe these studies
highlight the potential clinical usefulness of clustering approaches in
pediatric OSA phenotyping. Beyond this, some methodological aspects
deserve mention when comparing our different approaches. First, the k-
means, k-medoids, and k-modes methods require a prior setting of the
number (k) of clusters to be defined [22]. In contrast, our association
network approach involves no prior assumptions, enhancing the objec-
tivity of the findings. K-means and k-modes also are known to be sen-
sitive to outliers when defining the clusters [23]. Additionally, all
partition-based clustering methods (k-means, k-modes, k-medoids) as-
sume that detected clusters, if indeed found, are spherically shaped [24].
Finally, k-medoids is inefficient with large datasets [23], unlike the
Blonde’s method used in our modularity analysis [25].

Another way to enhance the usefulness of our phenotype cluster
analysis is through the performance of the two machine learning models
trained to predict the intervention’s success. The eAT model demon-
strated higher robustness, achieving 79.4 % Se and 77.8 % PPV.
Although insufficient for clinical use, it illustrates the additional po-
tential of pediatric OSA phenotypes information. Moreover, the relative
importance of the predictor variables showed similar patterns in eAT
and WWSC models, with a higher Mallampati score and presence of Gasp
and Choke identifying key differences favoring the eAT model. Relative
importance also showed the convenience of the phenotypic information
gathered in the Phenotype variable.

Nevertheless, aspects that limit our results must be acknowledged.
While our sample size is large, a larger cohort would enhance general-
izability, especially regarding the age span of children (5-9 years), as
age has emerged as an important feature in defining our phenotypes.
Thus, including subjects outside this range is a desirable target for future
studies before a potential clinical adoption. This should be done in
conjunction with the evaluation of data from other sleep centers for
further external validation. Although CHAT is a multi-center dataset,
this future approach could strengthen our conclusions. Related to the
design of CHAT study, future approaches should consider evaluating
OSA resolution in different periods after AT, as the 7 months established
is also a limitation of our results and conclusions. Similarly, children
showing extreme OSA-related findings [9] -presumably needing imme-
diate intervention-, severe obesity (z-score BMI > 3), recurrent tonsilitis,
or taking medication for attention deficit-hyperactivity syndrome, were
not included or were excluded from the CHAT study. This strategy might
have affected our definition of OSA-related phenotypes. However, in
agreement with our results and the established lack of OSA resolution
linked to obesity and OSA severity [52,53], we speculate that excluding
these cohorts did not compromise our findings on the differential odds of
OSA resolution, nor did it overestimate the effectiveness of our methods
for identifying phenotypes (modularity analysis) and predicting OSA
resolution (machine learning models). The 22 variables used in our
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study also limit our results and conclusions. We adapted the design of
previous studies to the specific case of the available data in CHAT
dataset. However, other clinical variables, like tonsil size, were not
included in our study. Although tonsil size has been questioned
regarding its OSA-related predictive ability [57,58], particularly in the
case of children with abnormal weight [58], it has been commonly
evaluated in the pediatric OSA context, so its inclusion may have led to
different phenotype definitions. Another clear limitation is missing data;
while relatively minor (see Table 1), the total cholesterol level had 20 %
missing values. We used a mode-based data imputation technique to
minimize this issue. Despite its simplicity and proven efficiency [35], it
has limitations that might lead to the underestimation of the variance of
the imputed variable [35]. Accordingly, more complex methods, such as
multiple imputation or model-based approaches, or eventual data
availability, could have led to different outcomes for this variable.
Similar limitations apply to the percentage of imputed data assigned to
each phenotype. However, our results (see Table 2) indicate that sig-
nificant differences among phenotypes are likely preserved, with only
the Gasp and Choke variable having realistic chances of being impacted.
Similarly, imputed data is unlikely to affect the trend of variables that
did not show significant differences between phenotypes (supplemen-
tary Table S1). Additionally, a future goal is to associate our phenotypes
with co-morbidities, including evaluating relationships between clusters
and specific end-organ dysfunction. The applicability of the GentleBoost
models is another limitation. This study aimed to show whether the
baseline data used to define the phenotypes contained useful informa-
tion about OSA resolution after intervention. Our results support this
idea but also show that further research is needed to reach a reliable,
fully automated prediction on OSA resolution. Future evaluation of
other machine-learning methods could be an interesting approach to
overcome this limitation. Finally, using information from overnight
signals from PSG to define pediatric OSA phenotypes constitutes another
future working avenue.

6. Conclusions

Our new subject-based association network methodology has
revealed pediatric OSA phenotypes with significantly different odds of
recovery after treatment. Unlike previous research, our modularity
approach was conducted without assuming any prior conditions on the
number of phenotypes or their related data shape. Moreover, it is
particularly useful when databases are large. Therefore, an important
conclusion is that our method is an objective solution that could be
extendable to other health problems, being those complex ones with
multifactorial and large datasets, which might benefit the most. More-
over, we can draw two key conclusions specific to pediatric OSA. First,
regardless of sex and therapeutic intervention, affected children aged 7
to 9 years, overweight or obese, with enlarged waist circumference
(PHpsp2) have reduced odds of normalizing their OAHIL Second,
younger, non-obese females (5-6 years) with no enlarged neck (PHpsas)
have higher odds of benefiting from adenotonsillectomy. Thus, our
study has contributed to both refining modularity analysis and defining
clinically useful pediatric OSA phenotypes, paving the way for more
precise clinical management decisions.
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