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The development of advanced hydrogen storage materials is
essential for the adoption of hydrogen-powered vehicles as a
sustainable alternative to fossil fuels. Metal-organic
frameworks (MOFs) have emerged as promising candidates
for meeting the Department Of Energy (DOE) storage targets.
This study employs grand canonical Monte Carlo simulations
to evaluate the usable gravimetric and volumetric storage
capacities of hydrogen in newly synthesized Zn- or Cd-based
MRT (Moldova Research Team) MOFs. These results are
systematically compared to those of carefully selected MOFs
that share either similar metal compositions or analogous pore
structures and densities. Among the four MRT MOFs
examined, MRT2 and MRT4 stand out as the most promising,
exhibiting remarkable hydrogen storage capacities at ambient
and low temperature and moderate pressures (25-35 MPa).
In particular, the total volumetric and gravimetric storage
capacities of MRT2 and MRT4 exceed the DOE targets at

77 K and ~5 MPa. Their hydrogen storage performance at
room temperature proves highly competitive when assessed
against MOFs with comparable metal compositions or
porosity-density characteristics. The autonomy range of a

hydrogen vehicle using MRT2 or MRT4 has been assessed,
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system while operating at lower pressures, but requiring a

larger tank volume.
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