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Resumen

Este artı́culo resume diversas iniciativas para implementar el control predictivo (MPC) en controladores lógicos programables
(PLCs), a partir de la experiencia acumulada, formulaciones de MPC utilizadas, algoritmos de optimización, sistemas de proceso
considerados y los estándares de programación y marcas comerciales de dispositivos PLCs empleadas. Los estudios demuestran la
viabilidad de implementar formulaciones de MPC clásicos junto con métodos de optimización en forma embebida. Destacan, en
particular, los algoritmos de optimización como el método de Hildreth y de conjuntos activos, que han demostrado ser eficientes y
codificables según el estándar IEC 61131-3. Además, los estudios resaltan la necesidad de reducir los requerimientos de memoria
y cálculos computacionales, y que esto permita escalar estos algoritmos desde simulaciones hardware-in-the-loop (HiL) y procesos
a escala de laboratorio hacia plantas industriales. Las tendencias actuales se orientan hacia la simplificación del uso de recursos
computacionales, la mejora en la codificación de las formulaciones de MPC y los algoritmos de optimización, y la integración de
estos en dispositivos modernos basados en internet de las cosas (PLCs-IoT).
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Advances in model predictive control for programmable logic controllers

Abstract

This article presents a synthesis of the varios initiatives undertaken to implement predictive control (MPC) in programmable
logic controllers (PLCs). It is based on an analysis of the accumulated experience, MPC formulations used, optimisation algorithms,
process systems considered and the programming standards and commercial brands of PLC devices employed. The studies indicate
the feasibility of implementing classical MPC formulations in conjunction with optimisation methods in an embedded form. It
is particularly noteworthy that optimisation algorithms such as the Hildreth and active sets method have been demostrated to be
both efficient and codable in accordance with the IEC 61131-3 standard. Furthemore, studies emphasise the necessity to reduce
memory and computational calculation requirements, which enables the scaling of these algorithms from hardware-in-the-loop
(HiL) simulations and laboratory-scale processes to industrial plants. Current trends are moving towards simplifying the use of
computational resources, improving MPC formulations and optimization algorithms, and integrating these into modern Internet of
Things devices (PLCs-IoT).
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1. Introducción

La automatización de los procesos industriales ha experi-
mentado un avance significativo desde sus inicios, a mediados

del siglo XX, hasta la actualidad (Samad et al., 2007). En prin-
cipio, la automatización se centró en el uso de relés electro-
mecánicos y controladores simples para realizar tareas repetiti-
vas y minimizar la intervención humana. Sin embargo, con la
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llegada de los controladores lógicos programables (PLCs) en la
década de 1960, la industria dio un paso significativo hacia la
flexibilidad y la fiabilidad en el control de procesos. Los PLCs
permitieron la programación y reconfiguración de las secuen-
cias de control de una manera fácil, lo que permitió incremen-
tar la eficiencia y la adaptabilidad de los sistemas industriales
(Alphonsus and Abdullah, 2016). En las décadas siguientes, el
desarrollo de los sistemas de control distribuido (DCS), y los
avances en instrumentación y tecnologı́as de medición mejora-
ron la precisión y el control de los procesos industriales. Estos
sistemas permitieron una supervisión y control más integrados
y centralizados, optimizando la producción y las gestión de los
recursos (Mohammadi, 2023).

Por otro lado, el control predictivo (MPC) ha emergido co-
mo una de las estrategias clave en la mejora de la producción
industrial. Desde hace varias décadas, el MPC ha sido amplia-
mente estudiado tanto en el ámbito académico como en la in-
dustria, consolidándose como una técnica avanzada de control
(Garcı́a et al., 1989; Lee, 2011; Mayne, 2014). Esta estrategia
de control se fundamenta en la resolución de un problema de
optimización, cuyo objetivo es determinar las acciones óptimas
para las variables manipuladas con el fin de llevar o mantener
las variables controladas en sus valores de consigna. Para lograr
esto, el MPC se basa en predicciones futuras del comportamien-
to del proceso (Camacho and Bordons, 2007a). Es de destacar
que el MPC, a diferencia de otras técnicas de control, conside-
ra restricciones explı́citas del sistema de proceso en el problema
de optimización. No obstante, la implementación del MPC con-
lleva una carga computacional considerable debido a la com-
plejidad de los algoritmos de optimización empleados (Saltık
et al., 2018). Por esta razón, la mayorı́a de las aplicaciones de
MPC y sus correspondientes métodos de optimización han sido
desarrolladas en ordenadores tipo PC (Qin and Badgwell, 2003;
Forbes et al., 2015). Esto se debe a la alta capacidad de procesa-
miento y almacenamiento de información que poseen este tipo
de ordenadores, en comparación con otros dispositivos existen-
tes en el mercado, y su facilidad de integración con los DCS y
otras arquitecturas de control disponibles en la industria (Asa-
dipooya and Safavi, 2016).

Las arquitecturas de control basadas en PLCs, DCS y PACs
(controladores autómatas programables) se encuentran integra-
das en el estándar IEC 62264-1 (International Electrotechnical
Commission, 2013b), el cual propone una estructura jerarqui-
zada de los diversos elementos que participan en un sistema de
gestión empresarial y control industrial. Estas arquitecturas se
definen en el nivel 2, debido a que se considera que ejecutan es-
trategias de control continuo, discreto y batch. Las estrategias
de MPC se incluyen en el nivel 3 del estándar IEC 62264-1, las
cuales pueden ser ejecutada en aquellos dispositivos adecuados
para su correcta implementación, sin discernir que no puedan
ser implementadas en los dispositivos mencionados en otros ni-
veles que define el estándar.

El éxito del MPC se ha basado, principalmente, en la ma-
ximización de los rendimientos de los productos en los proce-
sos productivos en los que se han implementado, relacionado
de forma directa con la reducción del consumo energético y
de las materias primas necesarias (Cutler and Ramaker, 1980;
Rawlings and Amrit, 2009), aplicado a sistemas multivariables.
Desde el punto de vista económico, la adquisición de una so-

lución comercial de este tipo de estrategias de control avanza-
do supone un coste elevado, que solo puede ser adoptado por
empresas con altos niveles de rentabilidad. Esto ilustra la rele-
vancia de poder adaptar esta estrategia de control avanzado en
dispositivos existentes y proporcionar una implementación de
bajo coste económico. De esta forma, algunas instituciones e
investigadores han estudiado la posibilidad de implementar el
MPC en los PLCs comerciales disponibles.

Esta revisión va a resumir las diversas iniciativas de investi-
gación y sus avances hasta el momento. El artı́culo se estructu-
ra de la siguiente manera: la sección 2 introduce las principales
definiciones y conceptos requeridos para comprender la temáti-
ca abordada, incluyendo definiciones matemáticas, requisitos
computacionales y de programación, y la configuración de los
PLCs; la sección 3 presenta los estudios realizados en los diver-
sos dispositivos comerciales existentes; la sección 4 resume las
patentes generadas y registradas relacionadas con el tema y las
aplicaciones comerciales disponibles; por último, la sección 5
resume en las conclusiones las principales contribuciones obte-
nidas y las posibles tendencias y futuros trabajos de investiga-
ción sobre el tema.

2. Principales definiciones del MPC y PLCs

2.1. Control Predictivo (MPC)

El control predictivo (MPC) se considera un método de con-
trol óptimo, que toma acciones basadas en la optimización de
un criterio. Esta optimización se lleva a cabo en un intervalo de
tiempo discreto futuro denominado horizonte de predicción N2.
Además, el comportamiento futuro del sistema depende de las
acciones obtenidas durante un horizonte de control futuro Nu en
cada periodo de muestreo j, aplicando la técnica del horizonte
móvil (Figura 1). Como resultado, en cada instante de muestreo
se obtienen los valores de las acciones de las variables mani-
puladas u y comportamientos de las variables controladas y
durante un horizonte de predicción N2 , resolviendo un nuevo
problema de optimización. Este intervalo en el que se obtienen
las nuevas acciones de las variables manipuladas se denomina
horizonte de control Nu (Camacho and Bordons, 2007a).

EL MPC requiere de un modelo del proceso, el cual es un
modelo matemático que describe el comportamiento del sis-
tema y que puede obtenerse a partir de ecuaciones de prime-
ros principios o mediante técnicas de identificación de mode-
los aplicadas a datos experimentales obtenidos (Ljung, 2010).
Dado que los problemas de optimización se resuelven median-
te dispositivos electrónicos, se prefieren modelos matemáticos
discretos a los continuos, siendo algunos de ellos: variables en
espacio de estados (SS) (Rao and Arun, 1992), respuesta al es-
calón (Liu et al., 2013) o funciones de transferencias en retar-
do unitario (Fcn(q-1)) (Unbehauen and Rao, 1998), entre otros.
Por otro lado, la función de coste indica el criterio a optimizar
y, generalmente, toma la forma de una función cuadrática que
considera las ponderaciones de las diferencias entre la salida
prevista y la salida deseada de las variables controladas (tra-
yectoria de referencia w), durante el horizonte de coincidencia
(desde N1 hasta N2) y la ponderación de los cambios de las va-
riables manipuladas Δu en el horizonte de control Nu. En algu-
nos casos se considera el uso de restricciones, las cuales fijan
los lı́mites dentro los cuales debe operar el sistema, impuesto
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Figura 1: Principales definiciones del MPC.

por razones económicas, operativas o de seguridad; en el MPC
estas restricciones se definen de manera genérica en los lı́mi-
tes de operación de las variables controladas y, manipuladas u,
y en los cambios de las acciones de control Δu. Por último, la
optimización que se ejecuta en el control predictivo busca re-
solver un problema de optimización minimizando la función de
coste sujeta a las restricciones establecidas, resultando, de ma-
nera general, en un problema de programación cuadrática (QP)
para un sistema multivariable (Camacho and Bordons, 2007a)
(Ecuaciones (1) y (2)). Aunque existen en la literatura formula-
ciones MPC de carácter más general, por motivos de simplici-
dad y una exposición más clara y divulgativa, se ha optado por
expresar el problema de optimización del MPC a través de las
Ecuaciones (1) y (2) en base a la formulación de (Camacho and
Bordons, 2007a).

min
∆uK (t+ j|t)

N∑
k=1

N2k∑
j=N1k

γk (ŷk (t + j | t) − wk (t + j | t))2 +

M∑
K=1

NuK−1∑
j=0

βK

(
∆uK (t + j | t)2

) (1)

s.a.

∆uK (t + j | t) = 0, j ≥ NuK; K : 1, ..,M
∆uKmin ≤ ∆uK(t + j | t) ≤ ∆uKmax, j : 0, ..,NuK − 1
uKmin ≤ uK(t + j − 1 | t) ≤ uKmax, j : 0, ..,NuK − 1
ykmin ≤ ŷk(t + j | t) ≤ ykmax, j : N1k, ..,N2k; k : 1, ..,N

(2)
donde N es el número total de variables controladas; k es un

subı́ndice que representa cada una de las variables controladas;
N1k y N2k son el horizonte inicial y horizonte final de predicción
para cada variable controlada, respectivamente; 0 ≤ γk es el pe-
so ponderado de la variable controlada k en la función a minimi-
zar; ŷk (t + j | t) es el valor de la variable controlada predicho en

el periodo de muestreo t+j con las medidas disponibles hasta el
instante de tiempo actual t, en todo el horizonte de coincidencia,
usando algún tipo de modelo matemático del comportamiento
del sistema (modelo de respuesta salto, modelo en función de
transferencias, etc.); wk (t + j | t) es el valor de la trayectoria de
referencia deseada en el periodo de muestreo t + j generada
en el periodo de muestreo t; M es el número total de variables
manipuladas; K es un subı́ndice que representa cada una de las
variables manipuladas; NuK es el horizonte de control para cada
variable manipulada; 0 ≤ βK es el peso ponderado de la varia-
ble manipulada K en el horizonte de control; ∆uK (t + j | t) es
el incremento de la acción de control para la variable manipu-
lada K para el periodo de muestreo j calculado en el instante
actual t; ∆uKmin y ∆uKmax (∆uKmin < ∆uKmax) son los incremen-
tos mı́nimo y máximo para los valores de los incrementos de
cada variable manipulada; uKmin y uKmax (uKmin < uKmax) son
los lı́mites inferior y superior para cada variable manipulada;
ykmin y ykmax (ykmin < ykmax) son los lı́mites inferior y superior
para cada variable controlada.

Una vez resuelto el problema de optimización, de las NuK

soluciones ∆uK(t+ j | t) para cada variable manipulada K, apli-
camos al proceso la primera de ellas (uK(t | t) = uK(t − 1 |
t)+∆uK(t | t)), descartando el resto y volvemos a repetir la reso-
lución del problema de optimización en el periodo de muestreo
siguiente (estrategia de horizonte móvil).

2.2. Formulaciones de MPC

Desde los inicios del MPC, las formulaciones desarrolla-
das para esta estrategia de control han evolucionado de manera
significativa, generándose diversas variantes que se han podido
adaptar a algunas aplicaciones industriales y de investigación.
De manera general, entre las formulaciones de MPC más re-
levantes se encuentran: el MPC clásico, que utiliza un mode-
lo lineal del sistema y resuelve un problema de optimización
cuadrática (Muske and Rawlings, 1993); el MPC No Lineal
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(NMPC) empleado cuando el modelo matemático del proceso
es no lineal (Camacho and Bordons, 2007b); el MPC robus-
to, el cual garantiza el cumplimiento de las restricciones im-
puestas en presencia de perturbaciones (Bemporad and Morari,
2007); el MPC distribuido, el cual divide el problema de opti-
mización en subproblemas más pequeños ejecutados por con-
troladores comunicados entre sı́, siendo útil para sistemas com-
plejos (Christofides et al., 2013); el MPC adaptativo que ajusta
el modelo del sistema en tiempo real, basándose en la identifi-
cación continua del sistema para manejar posibles variaciones
en la dinámica del proceso (Rodellar and Sánchez, 1996); el
MPC económico, que optimiza indicadores del sistema como
el costo de operación o el consumo de energı́a, además de con-
siderar la estabilidad y seguimiento de las referencias de las
variables controladas (Ellis et al., 2014); el MPC estocástico, el
cual maneja las incertidumbres en el modelo y las mediciones
considerando probabilidades y distribuciones de las variables
(Mesbah, 2016); el MPC basado en redes neuronales y apren-
dizaje automático, el cual usa estas técnicas para modelar el
sistema para predecir su comportamiento, lo cual permite con-
trolar sistemas altamente no lineales y complejos (Ren et al.,
2022), entre otros.

A partir de la clasificación descrita previamente, se han de-
sarrollado formulaciones especı́ficas en base al tipo de modelo
que se usa para predecir el comportamiento de la variable con-
trolada. En el caso de los estudios desarrollados en los PLCs
se pueden mencionar las formulaciones de control de matriz
dinámica (DMC) el cual se basa en la utilización de una res-
puesta al escalón para modelar el comportamiento dinámico
del proceso (Cutler and Ramaker, 1980); el control predictivo
generalizado (GPC) el cual considera como modelo del proce-
so la media móvil regresiva integrada (ARIMA) (Clarke et al.,
1987); el control predictivo funcional (PFC) que utiliza mode-
los simplificados obtenidos por diversos métodos utilizando el
principio de descomposición y define la función de costo en
términos de las variables controladas, simplificando el proce-
so de optimización (Richalet and O’Donovan, 2009); el MPC
considerando funciones de Laguerre (LOMPC) para modelar
y predecir el comportamiento del sistema, en el cual median-
te una serie ortogonal se representan dinámicas complejas con
un número reducido de parámetros, con el objetivo de mejo-
rar la eficiencia computacional (Wang, 2004); el MPC óptimo
(OMPC) en el cual el comportamiento óptimo sin restricciones
del sistema se incorpora en las predicciones, y las restriccio-
nes se manejan como perturbaciones alrededor del valor ópti-
mo (Rossiter et al., 1998); el MPC basado en el modelo Takagi-
Sugeno-Kang modificado (MTSK) el cual permite modelar las
reglas difusas SI-LUEGO sin aproximaciones, manteniendo el
comportamiento del sistema (P. G. Mendes et al., 2022), entre
otros.

Por otro lado, en el ámbito del MPC se distinguen dos en-
foques principales: el MCP explı́cito y el MPC implı́cito. El
MPC explı́cito divide el espacio de estados en regiones, en las
cuales se define una función por cada región que determina la
acción de control óptima; al ejecutarse, el controlador identifi-
ca la región en la que se encuentra el estado actual del sistema
y aplica la función definida para esta, lo que reduce el tiempo
de cálculo. No obstante, cuando los sistemas se vuelven com-
plejos, debido a la cantidad de dimensiones definidas o restric-

ciones consideradas, se necesita un almacenamiento mayor, lo
que limita la aplicación de este enfoque (Ju and Senlin, 2012).
En contraste, el MPC implı́cito es la forma tradicional, en la
cual se resuelve el problema de optimización en cada periodo
de muestreo, permitiendo una gran flexibilidad y la capacidad
de manejar sistemas complejos y no lineales, requiriendo un
mayor coste computacional (Lee, 2011).

2.3. Algoritmos de Optimización

Los algoritmos de optimización permiten encontrar la so-
lución optima a un problema determinado, maximizando o mi-
nimizando una función de coste sujeta a una serie de restric-
ciones. Estos algoritmos se pueden clasificar según el mode-
lo del proceso utilizado, la estructura de la función de coste y
los métodos matemáticos utilizados para resolverlos (Ali et al.,
2015). Hoy en dı́a, se han desarrollado cientos de algoritmos
de optimización, los cuales se encuentran disponibles en artı́cu-
los de investigación, y algunos de ellos se han implementado
en aplicaciones informáticas comerciales o libres (Ploskas and
Sahinidis, 2022).

En el caso de los estudios enfocados a los PLCs, se pueden
mencionar el método de Hildreth el cual es un algoritmo utiliza-
do para resolver problemas de optimización cuadrática sujeto a
restricciones lineales (Hildreth, 1957); el algoritmo de progra-
mación cuadrática multiparamétrica (mp-QP) donde se definen
ciertos parámetros, los cuales varı́an y van modificando la solu-
ción óptima, reduciendo el número de iteraciones y ahorrando
recursos computacionales (Bemporad et al., 2002); el método
de conjuntos activos que puede ser usado cuando se tienen res-
tricciones lineales y no lineales, y es capaz de adaptarse a los
cambios de los parámetros del problema de una iteración a otra,
incluido en el solver qpOASES (Ferreau et al., 2014); los méto-
dos primal-dual de primer orden incluidos en el solver FiOrdOs
(Ullmann and Richter, 2011); el algoritmo FISTA diseñado pa-
ra resolver problema de minimización de funciones compues-
tas, siendo una extensión del algoritmo iterativo de reducción y
umbralización (ISTA), e introduce una mejora para acelerar la
convergencia del proceso iterativo (Beck and Teboulle, 2009);
el algoritmo ADMM que permite descomponer un problema de
optimización complejo en partes sencillas, mediante descom-
posición de variables (Boyd and Vandenberghe, 2004); el al-
goritmo PCDM que permite resolver problemas con altas di-
mensiones mediante el enfoque de descenso de coordenadas en
paralelo, siendo útil para problemas donde la función objetivo
es separable Beck and Teboulle (2009); el algoritmo de árbol
de búsqueda binaria (BST) en el cual se puede organizar y bus-
car información de una manera eficiente, a partir de soluciones
precalculadas previamente(Ur Rehman et al., 2009); los algorit-
mos basados en estrategias evolutivas, los cuales son métodos
estocásticos basados en iteraciones sucesivas (Kramer, 2010),
dentro de los que destacan los algoritmos genéticos (Lambora
et al., 2019); los algoritmos basados en ecuaciones diferencia-
les ordinarias (ODE) los cuales modelan el problema como un
sistema dinámico que evoluciona hacia la solución óptima (Lin,
1991); el método de gradiente rápido de Nesterov (NFG) el cual
se basa en un esquema de aceleración que combina iteraciones
actuales y pasadas para predecir la mejor convergencia del gra-
diente y obtener una convergencia más rápida del problema de
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optimización (Nesterov, 2012); el método basado en el gradien-
te proyectado en el cual el gradiente comienza moviéndose en
la dirección opuesta al gradiente de la función objetivo, para
tratar de encontrar un punto que minimice la función (Newton
et al., 2018); los framework y aplicaciones CVXGEN (Mat-
tingley and Boyd, 2011), FORCES (Domahidi et al., 2012),
MINPACK (NETLIB, 2017), MIDACO (MIDACO-SOLVER,
2024) los cuales permiten ejecutar algoritmos de optimización
que pueden ser personalizados por el usuario y ser compilados
para ejecutarse en dispositivos externos (Mattingley and Boyd,
2011), entre otros.

2.4. Controladores lógicos programables (PLCs)
Los PLCs son dispositivos electrónicos utilizados en la au-

tomatización industrial para ejecutar estrategias de control en
máquinas, procesos y sistemas de manufactura. Estos dispo-
sitivos están diseñados para ser robustos y duraderos, siendo
capaces de operar en entornos industriales hostiles y ejecutar
múltiples funciones de control en tiempo real (Koondhar et al.,
2023).

Un PLC tı́pico consta de varias partes fundamentales (Figu-
ra 2): la unidad central de procesamiento (CPU) que ejecuta el
programa codificado, procesa la información y establece la co-
municación con otros dispositivos; la memoria, que almacena el
código de programa configurado, datos de usuarios y variables
de proceso, pudiendo ser de diversos tipos como RAM, ROM,
EEPROM y flash; los módulos de entradas y salidas (E/S) que
reciben las señales asociadas a la instrumentación del proceso
y las envı́an a los actuadores, teniendo señales de tipo digitales
y/o analógicas en intensidad o voltaje; la fuente de alimentación
que proporciona la energı́a necesaria para el funcionamiento del
dispositivo y los módulos que lo integran, los módulos de co-
municación que permiten la interacción con otros dispositivos
y redes industriales existentes, entre otros (Bolton, 2015). El
estándar IEC 61131 (International Electrotechnical Commis-
sion, 2025) en sus partes define las caracterı́sticas, modelos e
interfases de comunicación, lenguajes de programación, entre
otros que deben seguir los dispositivos PLCs. No obstante, se
espera que estos dispositivos evolucionen y vayan adoptando
las especificaciones descritas en el estándar IEC 61499 (Inter-
national Electrotechnical Commission, 2012), el cual describe
una comunicación basada en eventos y la definición de bloques
funcionales a ser utilizados en las arquitecturas de control in-
dustrial distribuidas.

Figura 2: Componentes básicos de un PLC.

Los sistemas de control basados en PLCs permiten configu-
rar diversas arquitecturas, en función de la ubicación y confi-
guración de sus componentes. En la arquitectura centralizada,
todos los componentes del sistema de control están ubicados en
un solo lugar o chasis, lo que facilita la instalación y mante-
nimiento, reduciendo la latencia y disminuyendo los costos de
comunicación, siendo ideal para sistemas pequeños o medianos
donde los puntos de control se encuentran cercanos. En con-
traste, la arquitectura distribuida dispersa los componentes del
sistema de control, conectados mediante una red de comunica-
ción industrial, lo que permite una escalabilidad fácil, mejora la
redundancia y fiabilidad del sistema (Bolton, 2015).

Hoy en dı́a, existen numerosos fabricantes de PLCs en el
mercado, ofreciendo una amplia gama de marcas y modelos
adaptados a la diversas necesidades de la industria (Alphon-
sus and Abdullah, 2016). En los ultimos años, estos dispositivos
han evolucionado de manera significativa, aumentando su capa-
cidad de almacenamiento y procesamiento de la información, lo
que ha permitido la incorporación de caracterı́sticas adicionales
y nuevas tecnologı́as asociadas a la industria 4.0. Esta evolución
incluye la integración de capacidades de comunicación avanza-
das, además de ethernet y las redes inalámbricas, de protocolos
basados en OPC UA (International Electrotechnical Commis-
sion, 2020) e IoT (Mellado and Núñez, 2022), facilitando una
mayor conectividad y control remoto. Esto ha permitido que los
dispositivos PLCs puedan gestionar e integrar grandes volúme-
nes de datos en tiempo real, lo que los considera dispositivos re-
levantes para la implementación de soluciones inteligentes en la
industria, mejorando la eficiencia y productividad en un entorno
cada vez más competitivo. Además, los PLCs modernos están
diseñados para ser más seguros, ofreciendo protección contra
ciberataques y fallos de los sistemas de control, lo que garanti-
za la continuidad y confiabilidad de las operaciones industriales
(Ramirez et al., 2022). Por otro lado, los simuladores de PLCs
disponibles han evolucionado de tal manera que están comen-
zando a ofrecerse como dispositivos comerciales virtuales (Sie-
mens, 2024), ofreciendo las mismas capacidades y desempeño
de un dispositivo fı́sico, y que puede ser utilizado desde entor-
nos virtuales (Rivero-Contreras et al., 2025).

Los PLCs permiten ejecutar lógicas secuenciales, tempo-
rizadores, contadores, operaciones aritméticas, controladores
PID, entre otros, mediante librerı́as existentes en las aplicacio-
nes de programación y configuración. Inicialmente, la progra-
mación de los PLCs se realizó mediante el uso de diagramas
de contacto o escalera, conocidos como Ladder, con el objeti-
vo de replicar y facilitar la transición de los sistemas de control
analógicos basados en relés a dispositivos digitales. Este enfo-
que permitió a los ingenieros y técnicos familiarizados con los
sistemas de control mecánicos adaptarse a la nueva tecnologı́a
digital. En la actualidad, los PLCs comerciales han adoptado el
estándar IEC 61131-3 (International Electrotechnical Commis-
sion, 2013a) para su programación. Este estándar define cuatro
lenguajes de programación basados en textos y gráficos: lista
de instrucciones (IL), un lenguaje de bajo nivel similar al en-
samblador que permite una programación detallada y eficiente;
texto estructurado (ST), un lenguaje de alto nivel similar a Pas-
cal que facilita la escritura de programas complejos; diagramas
Ladder (LD), basado en las lógicas de relés; diagrama de blo-
ques funcionales (FBD), que utiliza bloques funcionales para
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representar funciones y operaciones, ideal para aplicaciones de
control continuo y procesamiento de señales. Esto ha permitido
la interoperabilidad entre diferentes marcas y modelos de PLCs,
facilitando la integración y expansión de los sistemas de control
en diversas industrias (Molina et al., 2007).

Es de destacar que la mayorı́a de los algoritmos y las es-
trategias de control se han desarrollado, de manera tradicional,
en entornos de simulación basados en ordenadores tipo PC. Es-
tos entornos ofrecen la flexibilidad y potencia necesaria para el
diseño y ajuste fino de algoritmos complejos. Sin embargo, la
implementación de estos algoritmos y estrategias de control en
los PLCs en sus lenguajes de programación nativos es poco in-
tuitiva. Es por ello que se han desarrollados herramientas como
el PLC Coder de MATLAB (MathWorks, 2024), la cual permi-
te generar códigos, de manera automática, en el estándar IEC
61131-3 a partir de Simulink, facilitando la traducción direc-
ta de los algoritmos desarrollados en MATLAB; y CODESYS
(CODESYS Group, 2025) el cual es un entorno de desarrollo
integrado que permite programar los dispositivos PLCs, permi-
tiendo ejecutar librerı́as implementadas en C, Matlab y otros
lenguajes.

Al codificar cualquier estrategia de control en los PLCs, es
necesario comprender la importancia que tiene la memoria de
almacenamiento y el ciclo de scan del dispositivo. El espacio
que ocupan las variables requeridas en el dispositivo depende
del tipo de variable que se declare al momento de definirla y
el arreglo de los datos que se considere; además, las lı́neas de
códigos de funciones definidas por el usuario o bloques de li-
brerı́a de software que se deseen usar, reservan espacio de la
capacidad máxima de almacenamiento y procesamiento de la
información que tienen estos dispositivos. En dispositivos anti-
guos, la capacidad máxima de una base de datos de memoria,
pudiendo definirse varias de estas, es de 64 kB, mientras que en
los modelos modernos puede llegar a varios megabytes. Algu-
nos bloques de memoria pueden ser retentivos, lo que significa
que retienen su valor después de un reinicio del sistema. Por
otro lado, el ciclo de scan es el proceso repetitivo en el cual un
dispositivo PLC verifica la correcta configuración del mismo,
lee las entradas, ejecuta el programa definido y actualiza las
salidas, realizando esta secuencia de manera continua, con la fi-
nalidad de asegurar una respuesta en tiempo real a los cambios
en el proceso controlado (Bolton, 2015).

3. Estudios realizados

La Tabla 1 proporciona un resumen de los diversos estu-
dios de investigación relacionados con las estrategias de control
MPC llevados a cabo en dispositivos PLCs comerciales (des-
de 2004 hasta 2025). Estos estudios se han realizado mediante
simulaciones hardware-in-the-loop (HiL) y en plantas reales a
escala de laboratorio usando dispositivos PLCs fı́sicos, lo que
permite evaluar resultados en diversos escenarios, antes de un
posible escalado a plantas piloto y a nivel industrial. Es impor-
tante destacar que en la Tabla 1 solo se consideran implementa-
ciones realizadas en PLCs, excluyendo a los PACs, al momento
de publicarse los estudios realizados; no obstante, algunos mo-
delos de dispositivos PLCs han evolucionado por lo que hoy en
dı́a son considerados PACs. Estos últimos combinan las capa-
cidades de los PLCs tradicionales con una mayor flexibilidad

y capacidad en la programación y almacenamiento de informa-
ción, logrando un desempeño similar a los DCS en cuanto a las
tareas y aplicaciones que pueden ejecutar (Chen and Luyang,
2018).

Algunos estudios realizados optaron por implementar el
MPC en su forma explı́cita, debido a las limitaciones de ca-
pacidad de almacenamiento y procesamiento de la información
de los dispositivos utilizados. Estas restricciones técnicas plan-
tearon la necesidad de desarrollar estrategias que permitieran
ejecutar las pruebas sin interrupciones y evitar la realización de
cálculos intensivos en tiempo real, para no comprometer el ren-
dimiento del sistema. El objetivo principal de estos estudios fue
garantizar la continuidad y la eficiencia de las pruebas, asegu-
rando que las operaciones de control se llevaran a cabo de ma-
nera fluida, evitando sobrecargar los recursos limitados de los
dispositivos. Para lograr estos objetivos, los investigadores con-
sideraron una variedad de formulaciones de MPC y algoritmos
de optimización que permiten obtener soluciones óptimas a par-
tir de conjuntos de soluciones precargadas en los dispositivos
PLCs. Dentro de estos estudios se encuentran los de (Valencia-
Palomo and Rossiter, 2010) y (Valencia-Palomo and Rossiter,
2012), quienes implementaron la formulación de MPC cono-
cida como LOMPC. De manera similar, (Valencia-Palomo and
Rossiter, 2011a) utilizó una variante basada en OMPC, mien-
tras que (P. G. Mendes et al., 2022) optó por la formulación de
MPC MTSK. Todos estos estudios hicieron uso del optimizador
mp-QP, demostrando su capacidad para gestionar las compleji-
dades de la optimización en tiempo real dentro de las limitacio-
nes del hardware disponible. Además, se realizaron implemen-
taciones que utilizaron el optimizador BST en conjunto con la
formulación de MPC clásico, como se observó en los estudios
de (Rauová et al., 2011) y (Velagić and Šabić, 2014). A partir
de estas investigaciones, se considera que las implementaciones
de MPC explı́cito en PLCs son factibles y efectivas.

En un enfoque diferente, (Tarnawski et al., 2022) imple-
mentaron una estrategia innovadora que involucraba el uso de
un servidor externo para resolver el problema de optimización,
lo cual representó un avance significativo en la gestión de pro-
cesos complejos. Este servidor, con una capacidad de procesa-
miento significativamente mayor, realizaba los cálculos inten-
sivos necesarios, liberando al PLC de esta carga computacio-
nal. Una vez obtenidos estos resultados, se transmitı́an al PLC
a través de una red de comunicación. Esta red aseguraba una
rápida transferencia de datos, permitiendo que el dispositivo
PLC realizara ajustes en tiempo real, garantizando un funciona-
miento óptimo en todo momento. La configuración desarrollada
integraba de manera eficiente el servidor y el PLC, asegurando
que el sistema funcionara de manera adecuada.

Los estudios restantes incluidos en la Tabla 1 se centraron
en la implementación de MPC en su forma implı́cita, con el
objetivo de que los algoritmos de optimización seleccionados
se ejecuten en lı́nea. Este enfoque es especialmente relevante
dado que los PLCs se encuentran instalados en entornos indus-
triales donde la adquisición de una solución de control avan-
zando basada en MPC no es viable por razones económicas o
por limitaciones de acceso o conectividad. En este contexto, los
estudios de (Laszczyk, 2004), (Metzger and Laszczyk, 2004),
(Bolzoni, 2017), (Laszczyk, 2006) y (Kreutz et al., 2014) se
destacaron por implementar formulaciones de MPC basadas en
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Tabla 1: Implementaciones de MPC en PLCs

Autor(es) PLC Tipo de Prueba Formulación MPC Algoritmo de Optimización

Marca Serie y Modelo HiL Laboratorio

(Laszczyk, 2004) Allen-Bradley ControlLogix 5550 X PFC Definido por PFC
(Metzger and Laszczyk, 2004) Allen-Bradley ControlLogix 5550 X PFC Definido por PFC
(Valencia-Palomo et al., 2009) Allen-Bradley SCL500 X GPC Definido por GPC
(Valencia-Palomo and Rossiter, 2010) Allen-Bradley SCL500 X LOMPC mp-QP
(Valencia-Palomo and Rossiter, 2011a) Allen-Bradley SCL500 X OMPC mp-QP
(Valencia-Palomo and Rossiter, 2011b) Allen-Bradley SCL500 X GPC Optimización por interporlación (definido en

referencia)
(Valencia-Palomo and Rossiter, 2012) Allen-Bradley SCL500 X LOMPC mp-QP
(P. G. Mendes et al., 2022) Allen-Bradley Micro850 X MTSK MPC mp-QP
(Bolzoni, 2017) Siemens S7-300 X PFC Definido por PFC

X DMC Hildreth
(Huyck et al., 2012a) Siemens S7-300 X MPC clásico Hildreth

X Método de conjuntos activos en qpOASES
simplificado

(Huyck et al., 2014) Siemens S7-300 X MPC clásico Hildreth
X Método de conjuntos activos en qpOASES

simplificado
(Huyck et al., 2012b) Siemens S7-300 X MPC clásico Hildreth

X Método de conjuntos activos en qpOASES
simplificado

(Kreutz et al., 2014) Siemens S7-300 X PFC Definido por PFC
(Laszczyk, 2006) Siemens S7-300 X PFC Definido por PFC
(Mrosko and Miklovičová, 2012) Siemens S7-200 X GPC Definido por GPC
(Necoara and Clipici, 2013) Siemens S7-1200 X MPC clásico PCDM
(Rauová et al., 2011) Siemens S7-200 X MPC clásico BST
(Zielonacki and Tarnawski, 2024) Siemens S7-1200 X MPC clásico Estrategias evolutivas
(Rivero-Contreras et al., 2023b) Siemens S7-1200 X MPC clásico Algoritmos genéticos
(Rivero-Contreras et al., 2023a) Siemens S7-1500 X MPC clásico Algoritmos genéticos
(Gracia et al., 2025) Siemens S7-1500 X MPC clásico ADMM
(Yuwono and Schwung, 2023) Siemens ET200SP X MPC adaptativo Optimización distribuida
(Binder et al., 2015) ABB AC500 X MPC clásico Método de conjuntos activos en qpOASES

X Métodos primal-dual en FiOrdOS
(Binder et al., 2014) ABB AC500 X MPC clásico Métodos primal-dual en FiOrdOS
(Kufoalor et al., 2017) ABB AC500 X MPC clásico Algoritmo 1 (definido en referencia)
(Kufoalor et al., 2014) ABB AC500 X MPC clásico Métodos primal-dual en FiOrdOS
(Purohit and Buch, 2015) ABB AC500 X MPC clásico Método de conjuntos activos en qpOASES

X Optimización convexa en CVXGEN
X Optimización distribuida en MIDACO
X Método de mı́nimos cuadrados en MINPACK

(Torrisi et al., 2017) ABB SC800 X NMPC SQP
(Seman et al., 2013) B&R Automation X20 X OMPC Método de conjuntos activos en qpOASES
(Carvalho Henriques et al., 2023) B&R Automation X20 X DMC No especificado
(Serkies and Gorla, 2021) B&R Automation X20 X MPC clásico No especificado
(Bonne et al., 2017) Schneider Electric TSX X MPC clásico Método de conjuntos activos en qpOASES

X Optimizador ODE
(Krupa et al., 2018) Schneider Electric Modicon M340 X MPC clásico FISTA
(Krupa et al., 2021) Schneider Electric Modicon M340 X MPC clásico FISTA

X ADMM
(Krupa et al., 2020) Schneider Electric Modicon M340 X MPC clásico Método de conjuntos activos
(Pereira et al., 2015) Schneider Electric Modicon M340 X MPC clásico NFG
(Velagić and Šabić, 2014) Schneider Electric Modicon M340 X MPC clásico BST
(Plamowski, 2020) Mitsubishi FX5 X DMC No especificado
(Syaichu-Rohman and Sirius, 2011) Mitsubishi MELSEC-Q X MPC clásico Algoritmo 2 definido en referencia
(Wojtulewicz and Ławryńczuk, 2018) Mitsubishi iQ-R X DMC No especificado
(Käpernick and Graichen, 2014) Festo CECX-X-C1 X NMPC Gradiente descendente proyectado
(Hýl and Wagnerova, 2016) Bachman MC210 X MPC clásico Método de conjuntos activos en qpOASES
(Aslam et al., 2017) Delta Group DVP20 X GPC Definido por GPC
(Tange et al., 2020) Fuji Group MICREX SX X MPC Edge (definido

en referencia)
No especificado

(Tarnawski et al., 2022) GE Fanuc RX3i X MPC adaptativo Gradiente normalizado (definido en referen-
cia)

PFC. Mientras tanto, (Valencia-Palomo et al., 2009), (Valencia-
Palomo and Rossiter, 2011b) , (Mrosko and Miklovičová, 2012)
y (Hýl and Wagnerova, 2016) consideraron formulaciones de
MPC basados en GPC. Estas formulaciones de MPC requie-
ren menos cálculos computacionales debido a que simplifican
la manera en que se resuelve la función de coste. Además, al-
gunos de estos estudios optaron por no considerar restricciones
en sus modelos, lo que simplificó aún más el proceso de imple-
mentación y permitió una mayor eficiencia en la ejecución en
tiempo real.

El resto de las implementaciones de MPC implı́cito consi-
deraron algoritmos de optimización en lı́nea. La mayorı́a de las
formulaciones de MPC se basaron en el MPC clásico, con al-
gunas implementaciones en DMC (Bolzoni, 2017; Wojtulewicz
and Ławryńczuk, 2018; Plamowski, 2020; Carvalho Henriques
et al., 2023), OMPC (Seman et al., 2013), MPC SQP (Torrisi
et al., 2017) y NMPC (Käpernick and Graichen, 2014). Res-

pecto a los algoritmos de optimización considerados, se puede
indicar que la mayorı́a de los MPC clásicos implementaron en
mayor medida los algoritmos de Hildreth, métodos de conjun-
tos activos en el solver qpOASES y FISTA, con algunas excep-
ciones que tomaron en cuenta los optimizadores NFG, ADMM
y algoritmos propios definidos en las referencias.

La codificación de estas formulaciones de MPC y algorit-
mos de optimización se realizó en su mayorı́a en el estándar
IEC 61131-3 de forma nativa. No obstante, algunos investiga-
dores (Huyck et al., 2012a,b, 2014) utilizaron la herramienta
PLC Coder disponible en MATLAB, para convertir el algorit-
mo de métodos de conjuntos activos basados en el solver qpOA-
SES, incluido en MATLAB, al estándar IEC 61131-3. Sin em-
bargo, el uso de esta herramienta no garantiza que la conversión
al estándar de los PLCs se realice de manera óptima, y en algu-
nos casos se optó por versiones simplificadas de los algoritmos
para poder ejecutarlos. Es importante destacar que el PLC Co-
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der realiza la conversión de cualquier simulación de proceso,
formulación de MPC y algoritmo de optimización, pudiendo
ejecutarse o no de forma satisfactoria en los dispositivos PLCs.
No obstante, el PLC Coder no considera el tamaño de la memo-
ria de almacenamiento y de trabajo que tienen estos dispositi-
vos, lo que en algunos casos impide incluso cargar el resultado
del PLC Coder a los dispositivos PLCs considerados. Respec-
to a los dispositivos que se codifican mediante el entorno de
desarrollo CODESYS, estos permitieron ejecutar sin inconve-
nientes los algoritmos de optimización que se incluyen en los
solvers qpOASES, CVXGEN, FORCES, MINPACK, MIDA-
CO y FiOrdOS, debido a su fácil integración que proporciona
esta herramienta en los PLCs.

Algunos investigadores han adoptado un enfoque diferente
para mejorar la implementación de los algoritmos de optimi-
zación en lı́nea, considerando las limitaciones de memoria de
almacenamiento de los dispositivos PLCs. Ası́, (Krupa et al.,
2020, 2021) desarrollaron un módulo que se ejecuta en un or-
denador PC y simplifica las ecuaciones de la formulación de
MPC y algoritmo de optimización que deben cargarse al dispo-
sitivo PLC para que ejecute la optimización en lı́nea. Por otro
lado, (Rivero-Contreras et al., 2023b,a) definieron una metodo-
logı́a de programación, en la cual la gestión del almacenamiento
de los datos y las funciones de programación que realizan los
cálculos necesarios para ejecutar las formulaciones de MPC y
los algoritmos de optimización se segmentan de tal manera que
permiten la ejecución de cualquier algoritmo seleccionado para
cualquier sistema de proceso, garantizando que no se supere las
limitaciones de memoria de trabajo que tienen los dispositivos
PLCs; además, consideran que el uso de la memoria retentiva
permite ejecutar los cálculos requeridos sin la limitación que el
ciclo de scan de los PLCs tiene por defecto.

En el ámbito del MPC, los sistemas estudiados se dividen en
dos categorı́as: sistemas SISO (Entrada Simple, Salida Simple)
y sistemas MIMO (Entradas Múltiples, Salidas Múltiples). Los
sistemas SISO son más sencillos en la identificación del mode-
lo, configuración y control. No obstante, los estudios recientes
han puesto un mayor énfasis en los sistemas MIMO, y represen-
tan el 57 % de los estudios resumidos en la Tabla 1, debido a su
relevancia en aplicaciones industriales donde es necesario opti-
mizar los rendimientos manejando múltiples variables de mane-
ra simultánea. La complejidad de los sistemas MIMO radica en
la interacción entre varias entradas y salidas, lo que requiere un
enfoque de control más sofisticado. En estos sistemas donde el
MPC ha demostrado ser especialmente útil, ejecutado en orde-
nadores PC, se pueden gestionar estas interacciones de manera
efectiva, asegurando un rendimiento óptimo del proceso.

Los sistemas de proceso SISO considerados en los estudios
mostrados en la Tabla 1 se resumen en la Tabla 2. Dentro de
este grupo, se destaca que una gran proporción de los estudios
se centran en el control de la temperatura. Esto se debe a que
la temperatura, en comparación con otras variables de proceso
como la presión o el caudal, tiene un comportamiento dinámico
más lento, lo que permite que las estrategias de MPC pueden
ser aplicadas con mayor eficacia, debido al tiempo que conlleva
que los algoritmos de optimización generen una solución ópti-
ma para el comportamiento que debe tener la variable manipu-
lada.

Tabla 2: Estudios realizados en sistemas de procesos SISO

Proceso Cantidad

Control de temperatura en un intercambiador de calor 2
Control de temperatura en un sistema de calefacción con
soplador centrı́fugo y resistencia calefactora

5

Control de temperatura en un sistema de ventilación HVAC 5
Control de temperatura en una unidad de incubación 5
Control de velocidad de un motor 6
Control de posición de un péndulo invertido 1
Control de caudal en un reactor quı́mico 2
Control de presión en un compresor 1
Control de nivel en un tanque 2

Total 29

Por otro lado, la Tabla 3 proporciona un resumen de los sis-
temas MIMO. Estos sistemas son de particular interés debido
a la complejidad inherente a la interacción entre las variables.
En los estudios considerados, se consideran cantidades bajas
de variables manipuladas y controladas, respectivamente, cuan-
do se tienen plantas reales a escala de laboratorio. En cambio,
cuando se tienen simulaciones HiL, los estudios consideran un
mayor número de variables en función del sistema de proceso y
la capacidad de almacenamiento del PLC seleccionado.

Tabla 3: Estudios realizados en sistemas de procesos MIMO

Proceso Cantidad

Reactor quı́mico 4
Planta quı́mica compuesta de reactores y separadores 1
Columna de destilación 1
Sistema de cuatro tanques interconectados 3
Sistema de distribución de agua potable 1
Unidad de fabricación de manufactura inteligente 1
Unidad de calentamiento y envasado de manufactura 1
Sistema de producción de petroleo submarino 1
Bomba sumergible elécttrica en un pozo petrolero 1
Separador compacto submarino 1
Tren de compresión en paralelo 1
Sistema de compresión de aire centrı́gufo 1
Sistema de acoplamiento elástico, compuesto por dos mo-
tores eléctricos

1

Grúa de laboratorio 1
Refrigerador criogénico 1
Planta simulada sin detalles 1
Sistema de calefacción en edificio 1
Sistema acondicionador de temperatura 2
Sistema de iluminación de laboratorio 1
Modelo de laboratorio con ventiladores y bulbos de voltaje 1

Total 26

En los estudios realizados, se ha utilizado una variedad de
dispositivos PLCs comerciales, tal como se muestra en la Tabla
1, lo que refleja la diversidad de opciones disponibles por parte
de los principales proveedores de este tipo de tecnologı́a. Es-
ta variedad no solo permite una evaluación comparativa de las
capacidades de cada dispositivo en relación con la formulación
de MPC y el algoritmo de optimización implementado, sino que
facilita la identificación de las mejores opciones para un posible
escalado a nivel industrial. Al considerar dispositivos de dife-
rentes proveedores, se pueden obtener datos relevantes sobre el
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rendimiento y las limitaciones especı́ficas de cada PLC, lo que
es crucial al momento de decidir cuál va a ser el más adecua-
do para aplicaciones industriales más complejas y exigentes.
Además, se verifica el uso de códigos estandarizados, lo que
permite la interoperabilidad e integración de los algoritmos de-
sarrollados en los diversos PLCs comerciales.

Por último, los estudios se enfocaron en verificar el correcto
funcionamiento de las formulaciones de MPC y los algoritmos
de optimización seleccionados, evaluando rigurosamente el uso
de la memoria de almacenamiento de los dispositivos PLCs y el
tiempo necesario para que los algoritmos implementados obtu-
vieras las soluciones y convergencias de iteraciones necesarias
para generar las mejores acciones de control. En general, estos
estudios han demostrado que, a medida que aumenta la com-
plejidad del sistema – ya sea por el mayor número de variables
manipuladas, controladas y restricciones o por la extensión de
los horizontes de predicción y control definidos en los paráme-
tros del MPC– se incrementa el tiempo de cálculo y el requeri-
miento de almacenamiento para ejecutar de manera correcta las
operaciones matemáticas requeridas. Esto es relevante, ya que
sugiere la necesidad de optimizar tanto los algoritmos, criterios
de programación, configuración y la infraestructura de hardwa-
re que deberı́an tener los dispositivos para que las soluciones
generadas cumplan con los requisitos de rendimiento en aplica-
ciones industriales.

4. Patentes relacionadas y Aplicaciones Comerciales

4.1. Patentes generadas

La patente (Ji, 2014) describe un sistema y método para im-
plementar MPC en un PLC. Este método permite realizar cálcu-
los de control óptimos directamente en un bloque de función
MPC en tiempo real, considerando las limitaciones compu-
tacionales inherentes a los PLCs tradicionales. Esta patente de-
fine una aplicación de ingenierı́a que permite generar mode-
los de predicción mediante una herramienta de identificación
y ajusta los parámetros de la formulación de MPC y algoritmo
de optimización, generando bloques predefinidos que se pueden
descargar al PLC y ejecutarse en el dispositivo.

La formulación de MPC que es utilizada en la patente es
el DMC con un modelo de respuesta salto, aunque sugiere que
puede adaptarse a otros modelos como espacios de estados o
funciones de transferencias en retardo unitario, en función de la
formulación de MPC que se desee implementar. Además, la op-
timización se va a ejecutar en lı́nea y considera una función de
coste que incluye coeficientes de ponderación, lo que permite
ajustar la optimización en función de las limitaciones y objeti-
vos del proceso. El autor de esta patente parece estar relaciona-
do con SIEMENS, lo que sugiere que puede estar optimizado
para funcionar en el ecosistema de hardware y software de este
proveedor.

4.2. Aplicaciones comerciales y librerı́as disponibles

Además de las herramientas PLC Coder de MATLAB y el
entorno de desarrollo CODESYS, ası́ como los desarrollos pro-
pios de investigadores en sus estudios, se han encontrados po-
cos componentes o librerı́as en software comerciales que indi-
can un desarrollo avanzando del tema. Entre ellas, destaca la

librerı́a de control predictivo (Scheneider Electric, 2021) dis-
ponible en el software EcoStruxure Control Expert, compatible
con dispositivos de Scheneider Electric.

Por otro lado, Spiro Control ha presentado una solución de-
nominada SPIRO-MPC (Spiro Control Ltd, 2022), en la cual
el proveedor indica que se puede ejecutar control predictivo en
dispositivos PLCs de manera nativa y mediante dispositivos ed-
ge de bajo costo. Esta solución indica que ejecuta los algorit-
mos de control mediante formulaciones de espacios de estados,
y han sido codificadas utilizando CODESYS y ejecutándose en
los dispositivos mediante el estándar IEC-61131-3.

5. Conclusiones

5.1. Principales contribuciones
Los estudios realizados han demostrado que la implemen-

tación de MPC en PLCs es viable, aunque presentan desafı́os
relacionados con la capacidad de almacenamiento y procesa-
miento de estos dispositivos. Por otro lado, se han identificado
diversas formulaciones de MPC y algoritmos de optimización
que pueden ejecutarse en estos dispositivos, considerando las
limitaciones que presentan. En particular, las formulaciones de
MPC como el DMC, GPC y PFC se han implementado con éxi-
to en multiples estudios, utilizado algoritmos de optimización
como el método de Hildreth, los métodos de conjuntos activos,
FISTA, ADMM, entre otros. Además, la mayorı́a de los estu-
dios han codificado las formulaciones de MPC y algoritmos
de optimización de forma nativa en el estándar IEC-61131-3,
aunque en algunos casos, y debido a la complejidad que es-
te presenta, se ha recurrido a herramientas como PLC Coder y
CODESYS para facilitar la conversión del código.

Es de destacar que al implementar el MPC en sistemas MI-
MO, el incremento en el número de variables manipuladas y
controladas, junto con la definición de horizontes de predic-
ción y control más amplios, genera un aumento en los tiem-
pos de cómputo y en los requerimientos de memoria. Por esta
razón, algunos estudios han optado por enfoques como el MPC
explı́cito, para reducir la carga computacional en tiempo real.

Finalmente, la diversidad de estudios y dispositivos utiliza-
dos indica que la implementación del MPC en PLCs se encuen-
tra en constante evolución y desarrollo. Aunque los dispositi-
vos PLCs modernos han mejorado en términos de capacidad de
procesamiento y almacenamiento, sigue existiendo la necesi-
dad de optimizar tanto los algoritmos de optimización como las
estrategias de programación para garantizar implementaciones
eficientes.

5.2. Tendencias
Las tendencias en el desarrollo del MPC en PLCs se orien-

ta hacia la optimización de los recursos computacionales y la
integración con tecnologı́as emergentes. En particular, se espe-
ra un avance en la implementación de algoritmos de optimiza-
ción más eficientes, capaces de reducir los tiempos de cálculo
y minimizar los requerimientos de memoria, sin comprometer
la calidad del control. Asimismo, se espera que la adopción del
estándar IEC 61499 en los dispositivos de control, basado en
una arquitectura orientada a eventos y no de ciclos de tiempo,
va a permitir superar las limitaciones de tiempos de cálculos
requeridos que poseen los dispositivos en la actualidad.
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Por otro lado, se hace necesario considerar el escalado in-
dustrial de estas implementaciones para verificar su eficacia en
sistemas de procesos reales, lo que va a proporcionar informa-
ción relevante sobre su rendimiento en condiciones operativas.
Finalmente, la convergencia del MPC con tecnologı́as de in-
dustria 4.0 va a generar nuevas oportunidades. El uso de dispo-
sitivos PLCs habilitados para IoT, junto con la integración de
soluciones edge computing va a facilitar la ejecución de formu-
laciones de MPC y algoritmos de optimización en dispositivos
de bajo costo, ofreciendo un equilibrio entre rendimiento, cos-
tos y accesibilidad a la tecnologı́a.
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Rauová, I., Valo, R., Kvasnica, M., Fikar, M., 2011. Real-time model predictive
control of a fan heater via PLC.

Rawlings, J. B., Amrit, R., 2009. Nonlinear Model Predictive Control To-
wards New Challenging Application. Springer Berlin Heidelberg, DOI:

Rivero-Contreras, R.E. et al. / Revista Iberoamericana de Automática e Informática Industrial 23 (2026) 13-24 23



10.1007/978-3-642-01094-1-10.
Ren, Y. M., Alhajeri, M. S., Luo, J., Chen, S., Abdullah, F., Wu, Z., Christofi-

des, P. D., 2022. A tutorial review of neural network modeling approaches
for model predictive control. Computers & Chemical Engineering 165, Ar-
ticle ID 107956, DOI: 10.1016/j.compchemeng.2022.107956.

Richalet, J., O’Donovan, D., 2009. Predictive Functional Control. Springer
London, DOI: 10.1007/978-1-84882-493-5.

Rivero-Contreras, R., Merino, A., Zamarreño, J. M., Vila, C., Tadeo, F., 2025. A
virtual environment with programmable logic controllers: an application in
the evaluation of control strategies. Revista Iberoamericana de Automática
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