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ABSTRACT. Considered here are systems of partial differential equations arising
in internal wave theory. The systems are asymptotic models describing the two-
way propagation of long-crested interfacial waves in the Benjamin-Ono and the
Intermediate Long-Wave regimes. Of particular interest will be solitary-wave
solutions of these systems. Several methods of numerically approximating these
solitary waves are put forward and their performance compared. The output
of these schemes is then used to better understand some of the fundamental
properties of these solitary waves.

The spatial structure of the systems of equations is non-local, like that
of their one-dimensional, unidirectional relatives, the Benjamin-Ono and the
Intermediate Long-Wave equations. As the non-local aspect is comprised of
Fourier multiplier operators, this suggests the use of spectral methods for the
discretization in space. Three iterative methods are proposed and implemented
for approximating traveling-wave solutions. In addition to Newton-type and
Petviashvili iterations, an interesting wrinkle on the usual Petviashvili method
is put forward which appears to offer advantages over the other two techniques.
The performance of these methods is checked in several ways, including using
the approximations they generate as initial data in time-dependent codes for
obtaining solutions of the Cauchy problem.

Attention is then turned to determining speed versus amplitude relations of
these families of waves and their dependence upon parameters in the models.
There are also provided comparisons between the unidirectional and bidirec-
tional solitary waves. It deserves remark that while small-amplitude solitary-
wave solutions of these systems are known to exist, our results suggest the
amplitude restriction in the theory is artificial.
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1. Introduction. Field observations and laboratory experiments provide evidence
of internal solitary waves in nature (see [43] for an extended review). Such wave
motion in the bulk of a fluid occurs because of density stratification. In an idealized
situation, where a homogeneous layer of light incompressible fluid rests upon a
similar layer of heavier fluid (see Figure 1), and surface tension and diffusion between
the two layers as well as damping are ignored, the full equations for internal wave
motion are usually taken to be a pair of Euler systems coupled through the interface
and with appropriate conditions specified at the lower and upper bounding surfaces.

Just as for surface water waves, in both practical and theoretical situations, it is
often fruitful to consider asymptotic approximations of these full equations. There
are many asymptotic models in the literature for approximating the propagation of
internal waves. Some recent examples are described in [30, 34, 35, 52], but the reader
is cautioned that there are many others. The various models depend upon the wave
regime, the geometry of the flow domain and the details of the stratification. If the
waves are long-crested, so that a one-dimensional description is appropriate, and
they are moving mainly in one direction, the extant models include some classical
approximations such as the Korteweg-de Vries (KdV) equation, the intermediate
long-wave (ILW) equation [44],

1
where the parameter § > 0 depends on the ratio of the depths of the two layers and
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and the Benjamin-Ono (BO) equation [16, 53],

Ct +Cw +CC€E +]H[sz =0,

where
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H¢ = lP.V. 7@(5,7&) d€ (2)
7r R ]

is the Hilbert transform. The latter equation obtains as a certain deep-water limit
in which 6 — oo in the ILW equation. In (1) and (2), ¢ stands for the small
amplitude deviation of the interface between the two fluids of different densities
and P.V. denotes the Cauchy Principal Value of the relevant integral. In these
highly simplified models, the fluids are taken to be bounded above by a horizontal,
impermeable top (the so-called rigid lid approzimation) and the bottom is either
flat and horizontal, or the fluid is taken to be infinitely deep. If the interface is
far from the bounding surfaces, the rigid lid approximation is not too bad, but this
changes depending upon the geometry of the flow domain and the relative scale of
the waves (see [36] for detailed commentary on this point).

A recent formulation in [26] of the Euler equations for the idealized, two-layer
situation with a horizontal bottom and the rigid lid condition on the surface involves
the Dirichlet-to-Neumann and another nonlocal operator. This formulation lends
itself to a systematic derivation of asymptotic models for long-crested internal waves
in various regimes. The resulting systems, which include the two studied here, can
be extended to more realistic cases with nontrivial bottom topography and a free
surface rather than a rigid lid, and with surface tension effects included if the scales
require it (see [15] and [39] for examples).
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Some of these asymptotic models have been analyzed, theoretically, numerically,
or both. The so-called shallow water/shallow water regime, which features long
wavelength, but interfacial amplitudes that are allowed to be relatively large with
respect to the depth of both fluid layers is studied in [42] and a local well-posedness
theory mounted. (The terminology shallow water/shallow water is taken from the
paper [26] where the various models are derived. Similar terminology to follow
derives from the same source.) The study [42] also includes development of a pseudo-
spectral method for approximating solutions of this model along with numerical
simulations supporting the local well-posedness results and indicating singularity
formation in finite time for certain initial conditions. Linear well-posedness for
the systems in the Boussinesq/Boussinesq regime, where the wave amplitude must
be small and the wavelength large with respect to the depth of both layers, is in
Duchene [39]. Further work in this regime, which included a free surface, is in his
later work [40]. This latter paper contains an analysis of the difference between the
rigid-lid and the free surface situation as well as an interesting KdV-approximation
of the waves. Especially relevant to the present script is work of Xu in [58], who
obtains well-posedness results for the ILW/ILW regime where the upper fluid layer
is shallow while the interfacial deviations are small with respect to both fluid depths.
This paper also justifies rigorously the convergence of the ILW system to the BO
system as the depth of the lower layer tends to infinity.

The present essay is devoted to a computational investigation of the model sys-
tems that obtain in the BO and ILW regimes. The principal goal of this study
is to put forward methods for approximating the solitary-wave solutions of these
systems. The existence of small-amplitude solitary-wave solutions of the ILW and
BO systems was recently proved in [14]. Other properties of these traveling waves
were also studied there. In particular, the solitary waves are shown to decay to zero
at infinity exponentially for the the ILW system and quadratically in the case of
the BO system. The present paper is focused on the numerical generation of the
solitary-wave profiles of both systems. This is of interest in its own right, but it
will be especially helpful in a companion paper [25] which will examine dynamic
properties of the solitary-wave solutions obtained in the present work.

Three iterative techniques are presented for the numerical generation of solitary
waves, namely, the Petviashvili method [55], an extended fixed-point algorithm
based on the Petviashvilli method put forward in [9] and a Conjugate Gradient
Newton method [59]. The outcomes of using the three schemes are examined and
found to be almost identical, another indication that they are producing accurate
approximations. Once there is in hand reliable approximations, a variety of the soli-
tary waves’ more detailed properties, such as their shape and their speed-amplitude
relation are discussed. A comparison between the solitary-wave solutions of unidi-
rectional models of ILW and BO type and those of the associated systems is also
undertaken.

The structure of the paper is as follows. In Section 2, the ILW and BO systems
derived in [26] are introduced and some fundamental properties of the initial-value
problem for both the full (2-space dimensional) and the long-crested (1-dimensional)
versions are recalled. Also introduced are the unidirectional versions of these mod-
els. These are obtained formally by a standard procedure. They lead to equations
similar to, but not identical with the usual BO and ILW equations. The traveling-
wave solutions of the unidirectional models will later be compared with those of
the systems. Section 3 is devoted to the numerical computation of solitary-wave
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solutions using the three iterative techniques mentioned earlier. The fact that the
computed profiles are accurate approximations of traveling waves is confirmed in
two ways. First, the convergence of the iterations is analyzed by computing the
norm of the difference between two consecutive iterations and the norm of the
residual error. Second, when the generated profiles are used as initial data for a
fully discrete numerical scheme for the time-dependent systems, we check whether
or not the resulting time-dependent solutions appears to be a traveling wave. We
also check that the approximations behave properly under grid refinement. Com-
parisons of the approximate solitary waves of the BO and ILW systems are also
made with the solitary-wave solutions of associated unidirectional models in Sec-
tion 4. As already mentioned, the more detailed dynamics of these solitary wave
solutions will be reported in the second part of this study.

The conclusions drawn from our study do not reveal marked difference between
the BO-regime and the ILW-regime. To save space and avoid repetitive material,
we have chosen to focus more upon the BO systems. Commentary and a few select
details for the ILW systems are put in where they are warranted.

2. Mathematical models for internal waves. The model equations that are
the central focus of attention are introduced here.
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FIGURE 1. Sketch of an ideal fluid system for internal wave prop-
agation. The fluid layers are homogeneous with densities p; < ps.

2.1. The Benjamin-Ono (BO) and Intermediate Long-Wave (ILW) sys-
tems. The BO and the ILW systems are asymptotic models for internal waves
propagating along the interface of a two-layer system of fluids. Assuming that the
interfacial surface and the horizontal velocity are both graphs over the featureless
bottom, they were derived in [26] for the description of wave motion in particular
scaling regimes. The asymptotic derivation starts with the two-layer Euler system
of equations that is taken as a more complete rendition of the idealized situation
sketched in Figure 1. This idealized configuration consists of two inviscid, homoge-
neous fluids of depths d; and densities p;, j = 1,2, with py > p; for static stability.
The upper layer is taken to be bounded above by a horizontal rigid lid (the top is
an impenetrable bounding surface) while the lower layer is bounded below by an
impermeable, horizontal, flat bottom (ILW case) or is infinitely deep (BO case).
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The deviation of the interface from its rest position, denoted by (, is assumed to be
a graph over the bottom (in one or two spatial dimensions) and surface tension at
the interface and diffusion across it are ignored.

The derivation in [26] is based on a reformulation of the Euler system that in-
volves two nonlocal operators, a standard Dirichlet-to-Neumann operator and an
interfacial operator that relates the velocity potentials in the two layers. This refor-
mulation of the problem lends itself to the analysis of different asymptotic regimes.
Models for the various regimes are obtained by expanding the non-local operators
with respect to suitable small parameters. These parameters mainly depend on
the amplitude and wavelength of the motion and the depth ratio of the two layers.
Among the many physical regimes that can be obtained with this approach, the
systems considered here correspond to the assumptions that the interfacial wave is
of small amplitude with respect to the upper fluid layer, which in turn is assumed
to be shallow with respect to the wavelength. In the ILW regime, the amplitude of
the interface is also small compared to the depth of the lower layer, while in the BO
regime the lower layer is taken to be of infinite depth (i.e. do = 00). These systems
both take the form

[1 + \/E?;H} 0:C + %V ((1=eQ)v), — (1 — a)\égHV v =0,

¢ (3)

v+ (1 —~y)V¢— —V|v|*> =0,

2y
where the gradient V and the divergence V. are taken in the horizontal variables
z,y in a standard Cartesian coordinate system in which the vertical variable z
increases in the direction opposite to which gravity acts. In (3), v = p1/p2 < 1 is
the density ratio while ¢ = a/d; and u = d?/\? where a is a typical wave amplitude
and A a typical wavelength. The non-dimensional parameters € and p are assumed
to be small compared to one, corresponding to assuming the wave motion has small
amplitude and long-wavelength with regard to the depth of the upper fluid. The
parameter « is a modeling parameter which arises from the use of a BBM-type
remodeling of the dispersion (see [18], [26], [23]). It subsists on the lower-order
relation
(¢t = —V - v + higher—order terms,

which formally implies that

ﬂ%g = —\/—QE”HV - v + negligible—order terms.

v v
In principle, a can take any real value without changing the formal level of approx-
imation. However, the initial-value problem is not linearly well-posed unless o > 1.
In both BO and ILW regimes, j ~ €2 < 1 is assumed. The system (3) involves the

interfacial deviation ¢ and the quantity

v = H"[e(]y =1V,

which is a kind of horizontal velocity variable; ¢ is the trace on the interfacial
free surface of the velocity potential associated with the upper fluid and H*? an
interfacial operator that links the two velocity potentials in the case of a lower layer
of infinite depth. Finally, H is a nonlocal Fourier multiplier operator given in terms
of its symbol as ﬁ?(k) = g(k)f(k) where

(k) = k| in the BO case, (4)
I =1 k| coth(,/iz|k|)  in the ILW case,
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for wavenumbers k € R2. A circumflex adorning a function f denotes that function’s
Fourier transform with respect to the spatial variable and us = d3/\? is of order 1,
as mentioned previously.

If the wave motion in question is long-crested, then there is a preferred axis of
propagation, taken here to be the z-direction, and variations along the crest in
the y-direction can be ignored at this level of approximation. In this case, the
y-component of the ‘velocity’ v is zero and all derivatives with respect to the y-
variable can be ignored. One of the three equations in (3) is then trivially satisfied
and the other two devolve to a one-dimensional system,

@ ! —eQu), — —aﬂ Uy =
[H\/EV’H] G+ 3 (0=, = 1) = 5
T

where u is a horizontal velocity-like variable. Here, H is a one-dimensional Fourier
multiplier operator with symbol g(k) given by (4) with k = (k,0), or what is the
same, H = 0,T sz with T ;7 given by (1) in the case of the ILW system and
H = 0,H with H given by (2) for the BO system.

2.2. Mathematical properties. Reviewed in this subsection are some of the more
important mathematical features of the system (3). First, the well-posedness of
these models deserves comment. The linear dispersion relations for them are easily
derived. If w = w(k) is the frequency associated to the one-dimensional wavenumber
k, then

1-(1-a)g(k)
1+ ﬁ%g(k)

From this calculation, one can extract conclusions analogous to those appearing in
[30, 48, 51], which is that linear well-posedness of (5) obtains if and only if « > 1.

Indeed, Xu [58] studied the well-posedness of this ILW system when a > 1 for
both the 1-dimensional and 2-dimensional cases. His analysis allowed for a free
surface, but specialized to the rigid lid situation, he obtained local well-posedness
in lower-order Sobolev spaces on the short time-scale O(,/i) = O(e) and in higher-
order Sobolev spaces on the much longer time scale O(1/\/n) = O(1/¢). The
convergence of the solutions of the ILW system to those of the BO system was also
shown in the same paper, thereby suggesting that similar well-posedness results
hold for the BO system when o > 1.

In consequence of Xu’s results and the linear ill-posedness conclusion posited
earlier when a < 1, it will be presumed henceforth that « > 1 and that solutions
corresponding to smooth, localized initial data obtain and continue to be smooth
and localized, at least over some positive time interval. This is sufficient to rig-
orously justify the time-dependent numerical approximations put forward later in
this essay.

Nonlinear, dispersive wave equations often have invariant functionals, which is
to say, functionals which, when evaluated on solutions of the system, do not vary
with time. The present systems have the simple invariants

Il(C,u)—/:C dz, IQ(C,U):/Ooudx, (6)

— 00

w(k) = +k

which are time-independent when evaluated on smooth solutions that decay appro-
priately to zero at +00. The invariance of I; can be interpreted as conservation of
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mass. On the other hand, the quantities

o0
I :/ Cu dx and

7/Cd——/ Cu? dx

1
+ — u2d (1—a)f u?—[udx
2y —
which roughly correspond to momentum and energy, are not necessarily time-
independent, viz.

iI: M uH( dr  and
dt 7 S

o o0
%H - _Tﬂ 5 ((1 )¢ — 22&) 1, d.
They are preserved by the flow induced by (5) only when o« = 0. In this case, H
is a Hamiltonian for the system, as observed already in [36]. (However, in this case
the system (5) is not linearly well-posed. Indeed, using the method employed in
[12] to show the Kaup system for surface waves is ill posed, one can show that the
full nonlinear system (5) is ill-posed in smooth function spaces. This point is not
developed here.) So far as we are aware, the system (5) has only the very simple
conservation laws displayed in (6) for a # 0.

Next, attention is turned to the existence of solitary-wave solutions. These will
be traveling-wave solutions ((z,t) = {(x — ¢st), u(x,t) = u(x — cst) of (5), moving
with constant speed cg, whose profiles tend to 0 as x — +o00. After one integration,
the system (5) implies that the profiles {(X),u(X), X = x — ¢t, satisfy the system

—cs(l—l—@?{) l—|—(o¢—1)\/—2ﬁ’}-[ (C>6(Cu> .
gl gl gl =5 : (7)

u Tu?
1—7 —Cs

The second equation in (7) is quadratic in w which immediately implies two in-
teresting properties. First, since u is real, the discriminant must be nonnegative,
which leads to a lower bound for the profile (, specifically,

2

2502 ’

d=c§+2€ci§20 = (>-

where

ey =V (1 =7)/ (8)
remember, v < 1 because the quiescent system is assumed to be statically stable.
A second consequence is that the deviation ¢ of the free interface can be solved in
terms of the velocity u and this can be used to reduce the system (7) to a single
equation for u, namely

[—c?(l—i-a\v/ﬁ?-l)—&-c {1—1—( )\,/YEHHu

2
— (3 + ﬂ%) u? + E—u?’.
2y gl 22

Once u is determined, ¢ may be obtained from the formula

1 € o
C_il—'y (csu—l—%u >

(9)
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Note that if (cg, ¢, u) is a solution of (9) then (—cs,(, —u) is also a solution with
the same profile, but traveling in the opposite direction.
The corresponding system for the Fourier transform of the profiles is

e 1 VH i Cu
—cs (14 Y——g(lk]) ) =+ (a=1)T5g(k) | (Ck)) _ e ( Cuk)
( ( 15 ) ' ) COME <<;u2><k>> "

for wavenumbers k € R, where g(k) = g(k) is as in (4) with k = (k,0).

Assuming the right-hand side is known, this linear system may be “solved”.
Taking the inverse Fourier transform of the result leads to a system of convolution
equations of the general form

C = ]{511 * (CU) + %klg * (U2) + %mlg * (Hu?) ,
1 1
u = koy*(Cu)+ 5]{:22 * (u2) + §m22 * (”Huz) 7

for some kernel functions k;;, m;j;, 7, = 1, 2. The latter formulation could be useful
in proving existence of the solitary-wave solutions, e.g. by use of techniques such as
described in [16, 17, 22, 27, 56], but this is not pursued here. The iterative methods
used here to obtain approximations to solitary waves will rely upon the formulations
(9) and (10). Note that the solitary-wave solutions of both the ILW and BO systems
that are shown to exist in [14] were obtained via the implicit function theorem, so
being limited to small amplitudes.

2.3. Unidirectional regularized BO and ILW equations. Going back to the
19" century in the work of Boussinesq in the 1870’s, it was known how to formally
reduce two-way models to corresponding unidirectional models. A good account of
the classical theory can be found in Whitham’s text [57]. Rigorous theory justi-
fying the classical formal reduction of the two-way surface water wave models to
unidirectional models may be found in [2]. However, no such theory is currently
available for the ILW and BO systems being considered here.

An indication of the application of the classical approach to deriving unidirec-
tional models as it applies to the ILW and BO systems is now described. The
important first observation is that if higher-order terms are neglected, these models
come down to a factorized version of the linear wave equation. The solution consists
of waves moving to the left and to the right at speed ¢, (see (8)). Once the waves
have separated, the right- and left-propagating waves no longer interact and one
expects that a pair of unidirectional models could approximate their further evolu-
tion. For waves moving to the right, say, this results in v = ¢ and (; + ¢,(z = 0.
The decomposition into right and left moving waves can be made exactly for the
linear system obtained from (5) by simply dropping the quadratic terms, but this
appears not to be the case when nonlinearity is present (compare with the discus-
sion in [21]). Without going into details, which follow very much as in the paper [2]
on Boussinesq systems for surface water waves mentioned above, the way forward
is to consider higher-order corrections to u of the form

w= A1 =7) ((+ A= + BV, (1)

with A and B to be determined as functions of ¢. Substituting (11) into the system
(5), ignoring all terms of higher order than linear in € and ,/zz and demanding the
resulting two equations be consistent yield A = %CZ and B = %’H,C , and so to a
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single unidirectional equation for {, namely

{1 + \/ﬁ:’)’—[} Gt + Gy — EZCW(CQ)QE - \2/75%(1 —20)H¢, = 0. (12)
By taking a = 0 in (12) and the appropriate choice of the operator #, the original
versions of the BO and ILW equations are recovered as in [33] and [45] (see [36]
for more details). If instead, & = 1/2, then the regularized or BBM version of
these equations emerges, as described in [47]. Note, however, that for neither « =0
nor @« = 1/2 is the two-way model well posed. The model (12), which varies with
the choice of «, will be referred to as the rBO or rILW equation, depending upon
which operator H is being discussed. As remarked, there is no theory comparing
solutions of this model and the associated solutions of the systems in (5) as in the
theory developed in [2] for surface waves. However, the comparisons made of the
solitary-wave solutions of the system versus those of the the pertinent unidirectional
model in Section 4 provide some hope that such a result may in fact be true. Part
of our companion paper [25] will deal with this issue in a dynamical setting.

Local well-posedness for the equations displayed in (12) holds in the Ls-based
Sobolev spaces H*(R) for any o > 0 and s > 3/2. Theorem 1 in [3] suffices for
our purposes, though sharper results have since been obtained. As our simulations
all feature smooth initial data, superior results are not needed here. As far as
the dependence of the unidirectional models on the parameter « is concerned, a
comparison between model equations for nonlinear dispersive long waves of KdV
type and associated regularized versions, which include both the ILW and BO cases,
was carried out in [3] (see the related work in [6], [46] and [47]). A more systematic
comparison between KdV-type equations when the nonlinearity and dispersion are
varied appears in [28]. The upshot of these studies is that over time scales of order
O(1/e), small variations in the choice of o do not make a lot of difference.

The unidirectional equation (12) has the conservation laws

co=[ ¢ D=y [ (¢ vitenc)a

& [T 2 (1 —20) L3
p0=5 [ (- vat 3 emc - 5¢*)an
For a > 0, these are helpful in deducing global in time well-posedness for the
models, a conclusion not established for the system (5). They are also helpful in
tracking the accuracy of numerical schemes; if one of these functionals is applied
to an approximate solution, then its temporal variation provides an indication of
how well the scheme is adhering to the exact solution. The functional E furnishes
a Hamiltonian structure for these equations, but this is not needed in the present
discussion.

Finally, we mention that for the family of equations (12) where the operator H
is of Benjamin-Ono type, a simple rescaling of the results in [47] shows that there
are exact solitary-wave solutions ((z,t) = {(x — ¢st) having the form,

AB?
= 13
C(g) 52 +B27 ( )
with
—cq 2acs + (1 -2
LA R Y R e Bl Gt (14)
3 ¢y 2y Cy — Cs
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When o = 0, the solitary-wave solutions of the usual BO equation are recovered.
These are known to be stable and unique, up to spatial translations (see [19] and
[13]). A similar analysis as that appearing in [19] shows the solitary-wave solutions
of the rBO-equation are also stable. When # in (12) has the ILW symbol, there
are also exactly known solitary-wave solutions, namely

B asin(a,/fi2)
C&) = cosh(a&) + cos(a\/iz) ’

(15)

where ¢ is the unique solution of

ay/pz cot(ay/pz) =1 — (1 +¢5)y/2  with  a € (0,7/y/112). (16)

Unlike their BO counterparts, these decrease to zero at an exponential rate as the
spatial variable becomes large [7, 33, 44, 45]. They, too, are stable and unique (see
[4] and [7]). A bit of further analysis together with rescaling allows one to conclude
the same for the rILW equation. With appropriate scaling, the limit ps — oo
recovers BO solitary waves, while the limit s — 0 leads to KdV solitary waves (see
[33] and [45])).

3. Numerical approximation of solitary waves. In this section, iterative meth-
ods are developed to approximate traveling-wave solutions of the equations under
study. Strong evidence is developed that there are indeed large amplitude solitary-
wave solutions for the ILW and BO systems, just as there are for the unidirectional
models.

As solitary waves decay rapidly to zero away from their peak, it has become
common practice to approximate them by way of a related periodic problem posed
on a sufficiently large period domain (—I,1). That this actually works is born out
by experience, but there is theory justifying it in particular cases, e.g. [17], [20], [32]
and the references contained therein. This approach will be followed here. Recall
that in the periodic case, the corresponding Hilbert transform acting on 2/—periodic
functions f can be represented by

Hif(2) = 2PV, /_l ot (T2 fa)ay,

while in the ILW case, the periodic version of the operator Ty is given in terms of
the Fourier series

Tsfia) =i Y corn (550 ) Fibert=,
keZx*

~

where f(k) denotes the k—th Fourier coefficient of f and Z* = Z \ {0} (see [1]).
The periodic perspective leads naturally to the use of finite Fourier series to
provide approximations. The first step is to rescale the period domain by way of
the simple change of variables < wa /¢ that maps [—¢, ¢] to [—m, «]. This alters
the symbol ¢ of the operator H appearing in (10) and (9), but does not change
its basic structure (the new symbol is g(wk/¢)). For N > 1, consider the finite-
dimensional space Sy = span{eikw : ke€Z, —N <k < N}. Given the Fourier
nodes z; = (j — N)n/N, j =0,...,2N, and given v and v in Sy, define the inner

27
2N+1

then 4 = ﬁ Z?ZO u(z;)e k¥ k = —N,--- /N and the approximation of a

product (u,v) = Z?fo u(z;)v(z;). The discrete Fourier coefficients of u are
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periodic function w on [—£¢, ¢] is the usual finite Fourier series
N
~ kT
u(z) = E uge' € .
k=—N

3.1. The Petviashvili method. Three iterative numerical methods for the com-
putation of approximate solitary-wave profiles for the system (5) are considered.
The first is the well known Petviashvili scheme [55]. A brief description of this
method in our context follows.

Note first that the system (7) for the putative solitary-wave profiles contains
nonlinearities that are homogeneous functions of the variables ¢ and u of degree
two. Consider a classical fixed-point algorithm

—Uu

Cu
LUp1 =NU,), n=0,1,---, WithN(U)zN(C,u)zi(l 5

N 1 Vi 2 (17)
and L= —05(14—77{) ;+(a_1)?7{ ;
11—~ —Cs

for the iterative resolution of (7), where U, = ((n,u,)T. This will not converge
in general. The reason for this is that the corresponding iteration matrix has the
degree of homogeneity of N, which is two, as an eigenvalue, thereby indicating
divergence of general initial guesses. The Petviashvili modification introduces a
stabilizing factor to get around this problem. In detail, the modified procedure
consists of defining

(LU, Uy) . . .
———————, and then using the iteration
N(U),Un) (18)

LUns1 = M2N(Uy,), n=0,1,--.

M, =

The stabilizing factor M? acts as filter on the spectrum of the iteration matrix of
the classical fixed-point algorithm, removing the eigenvalue associated to the degree
of homogeneity and preserving the rest of the spectrum (see [10]). This property
will be illustrated below.

Our implementation of the Petviashvili iteration is applied to the formulation (10)
in terms of the Fourier components of ¢ and u. Let Z = (Z_n, -+ ,Zp, -+ ,ZN)
and U = (U_n, -+ ,Up,--- ,Un) be the Fourier components of the approximations
in Sy of ¢ and u, respectively. Then the equation

« 1

S (R (i) IR ACER () (2) == ({2 )

1—77 7 _CZ Up gl %(U*U)p ’
is imposed for —N < p < N, where k, = inp/{, the symbol g is as in (4) with k =
(k,0) and * denotes the periodic convolution in R?"*!, In this form, the iteration
(18) requires the solution of a 2 x 2 system of nonlinear equations for each Fourier
component of the numerical approximation. In practice, the periodic convolutions
on the right-hand side are carried out by using the fast Fourier transform (FFT) as
in [41].
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3.2. The e-Petviashvili method. A modification of the classical Petviashvili
method leads to an interesting extended version of the basic idea. It is here used
to solve the equation (9) for the u profile instead of the system (7). The method is
applied to the equation written in the form

Lu = Ni(u) + Na(u), where

«a
L= {ci (1 + \/'EH) —03 (1 + (o — 1)\/EH)],
Y Y

Cs€ oy 2 _ & g
2 <3+ ,yH)u and Ny (u) = Wu .
This equation contains nonlinearities homogeneous of degree two and three. The
idea here is the same as for the standard Petviashvili method, namely to filter out
the unstable eigenvalues with stabilizing factors. Because of the mixed homogeneity,
different powers of the stabilizing factor are attached to the two nonlinearities (see
[9, 54]). The resulting scheme will be referred to as the e-Petviashvili method. In
detail, it has the form

(19)
Nl (u) =

Ly, u
{Lttn, un) coupled with the iteration

(N1 (ug) + Na(up), un)’ (20)
Lupi1 = M2N7(uy) + ]\473{/2/\/'2(un)7 n=20,1,... .

If the procedure succeeds, then the final iterate for the approximation of u can
be used to obtain an approximation to the (-profile via formula (9). The imple-
mentation is via the FFT just as for the standard Petviashvili method described
above.

M, =

3.3. The Conjugate-Gradient-Newton method. The third iterative method
considered here is the standard Conjugate-Gradient-Newton (CGN) method. As in
the case of the e-Petviashvili method, the CGN method is applied to the equation
(9) written in the form

F(U) =Lu *Nl(u) 7./\/2(711) = 0,

where £, N7 and N> are defined in (19). The (n + 1)¢ iterate is obtained from the
nt" by the Newton procedure,

Fl (up)Au, = —F(uy), (21)
Unt1 = Up+ Aup. (22)

The operator F’ is the usual Fréchet derivative
2
F'(u)v = Lv — & (3—1— W”H) (uv) — giu% )
gl gl 27?2
of F. Due to the translational invariance of the equation, F’(u) is always singular.
Consequently, the system (21) is ill-conditioned. Following [49, 59], this problem
can be obviated by use of preconditioning operators of the form M = z — 9?2 for an
appropriate value of the parameter z. On the other hand, the computation of the
Jacobian is avoided by using a conjugate gradient implementation of (21). Thus,
the technique contains a coupled pair of iterative processes, an inner one for the
resolution of the system for the increments Aw, and an outer one that advances
to the next level of approximation via (22). The reader may consult [38] for more
discussion and other alternatives. As in the two previous algorithms, the computa-
tions are carried out in the Fourier space with the same discrete operators. Once
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(21) and (22) lead to the final approximation to the u-profile, an approximation of
( is obtained by use of (9) as in the case of the e-Petviashvili method.

3.4. Accuracy of the iterative methods. Presented here is a set of numeri-
cal experiments that compare the accuracy and performance of the three iterative
schemes designed to generate approximations of solutions of (7). To get started,
a good initial guess is needed. One choice is to use the analytic solitary-wave so-
lutions in formulas (13)-(14) for the unidirectional rBO equation or in (15)-(16)
for the rILW equation. Another possible initial approximation can be obtained by
linearizing the second equation in (7) to obtain

U+ ZeH] ¢+ bu— 2u— (- a) B Hu =0,

—csu+ (1 —v)¢ =0.

Solving the second equation in the last display for u, to wit,

_ 11—y
w=— ¢, (23)

and substituting this into (23) yields
A - ch B 503/42 B Vi(act + (1 - o))
Cs Cs Cs”Y
Equation (24) can be solved analytically and then u determined from (23), leading
to formulas similar to those for the solitary-wave solution of the corresponding
unidirectional equation. For example, in the case of the BO system, the solution of
(24) takes the form (13) with
Ao gc?y —203 ond |B| = Vi ac? —|—2(1 —zoc)c,%.
e A G —a
Notice that when c¢; > c,, these solutions are negative. In any event, the latter
formula and its ILW counterpart are the ones used as initial guesses to start all three
algorithms. It transpires that this choice leads to convergence of the iterations in a
sufficiently robust way so as not to require alternative approaches, such as numerical
continuation or acceleration techniques (see [5] and [11], respectively).
The iterative procedures are stopped when either the L.,-norm of the difference
between two consecutive iterations or the L,-norm of the residual error given by

RE, = ||LU, = NU,|| _, (25)

is less than a prescribed tolerance. In our experiments, this is chosen to be of
order 10715, In (25), £ and A are given by (17) or (19), depending on which
iterative method is being considered, and the implementation is performed with the
corresponding discrete operators described earlier.

Results of our simulations are first presented for the BO system. The computa-
tions were performed using the spatial interval [—35, 35]. Figure 2 shows the form
of the approximate profiles obtained with the Petviashvili method for the values
v = 0.8, = 1.2 and ¢; = 0.57. They are negative waves. An indication that the
iteration is converging may be obtained by observing the eigenvalues of the iter-
ation matrix (see Table 1). The first column shows the absolute value of the six
eigenvalues of the iteration matrix having the largest magnitude, for the classical
fixed-point algorithm (17) evaluated at the approximate profiles shown in Figure
2. The second column reveals the same information for the Petviashvili iteration.
The first column shows the presence of the homogeneity A = 2 as the dominant

HC =0. (24)
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eigenvalue and the eigenvalue A = 1 also appears. Both of these are simple. The
rest of the spectrum is less than one in absolute value. The second column in Table
1 shows the spectrum of the Petviahsvili iteration. We observe that the dominant
eigenvalue has been completely filtered while the rest of the spectrum is preserved.
The presence of the eigenvalue A = 1 is associated with the translational invariance
of the system (7). Its only effect would be the displacement of the profiles to the
right or left. This aspect can be controlled by starting with an even initial guess.
One checks straightforwardly that the iteration preserves evenness, thereby obvi-
ating the possible effect of translation. As far as the e-Petviashvili method (20) is
concerned, it has the same filtering effect on the spectrum as does the Petviashvili
method and the leading eigenvalues of its iteration matrix are the same as those
displayed in Column 2 in Table 1, to order 107 1.

0
—
-—
-4
-15 15

T

FIGURE 2. Solitary-wave solutions of the BO system. Approximate
¢ and u profiles generated using the Petviashvili method (18) with
v=0.8a=12and ¢, = 0.57.

Classical fixed point method | Petviashvili method
1.9999999 0.9999999
0.9999999 0.8192378
0.8192378 0.6840761
0.6840761 0.6220421
0.6220421 0.5686637
0.5686637 0.5454789

TABLE 1. The six eigenvalues largest in magnitude of the iteration
matrices evaluated at the profiles shown in Figure 2: (left) classical
fixed point algorithm (17) and (right) the Petviashvili method (18).

The performance of the methods is further illuminated in Figures 3 and 4. Figure
3 shows in a logarithmic scale the behaviour of the stabilizing factor (see (18) and
(20)) as a function of the number of iterations. If either Petviashvili method is
to converge to an exact solution, it must be the case that the sequence {M,,}
approaches one. This is indeed what is observed. The algorithms are also checked
by computing the residual error (25). This error has been measured as a function
of the number of iterations as well as the computational time (in seconds). The
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FIGURE 3. Discrepancy |1 — M,| of the stabilizing factor vs. num-
ber of iterations for the BO system using the Petviashvili-type
methods (18) and (20).
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FIGURE 4. Logarithm of residual errors (25) vs. the number Ny,
of iterations and vs. CPU time for the BO system and for the three
iterative methods.

results are shown in Figure 4. As far as the number of iterations is concerned, the
Petviashvili type methods give similar results while the CGN method performs much
better. However, the CGN method is considerably more computationally intensive
than the Petviashvili methods, owing to having to solve a nonlinear system at each
iteration. The graph of computational time reveals the e-Petviashvili method to be
the best in terms of accuracy achieved for effort expended.

The numerical generation of solitary waves for the ILW system presents perfor-
mance properties that are, in all aspects discussed here, quite similar to those for
the BO system. The conclusions about it are thus the same as those just enunciated
for the BO system. Taking v = 0.8, = \/p = 0.1 and a = 1.2, Figure 5 shows
examples of ILW sytem solitary waves with speeds ¢; = 0.475 and 0.52, obtained
by using the Petviashvili method.

3.5. Time dependent discretizations. A further test of the computed solitary-
wave profiles consists of measuring their accuracy as approximations of traveling-
wave solutions of the time-dependent system (5). To this end, these profiles are used
as initial conditions for the numerical integration of (5). The propagation of the
resulting numerical solution is studied using several error indicators to be described
momentarily.
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FIGURE 5. Graph of an approximate solitary-wave solution of the
ILW system. The approximate profiles {,u were generated using
the Petviashvili method (18) with v = 0.8.

We start with a description of the numerical scheme used to approximate time-
dependent solutions of the ILW and BO systems. The periodic initial-value prob-
lem for (5) on a sufficiently large spatial interval [—¢, ¢] is considered, just as for
the analysis of solitary-wave solutions. After rescaling to [—m, |, the problem is
approximated numerically using Fourier collocation in the spatial variable. The
resulting semidiscrete scheme, ¢f. [31, 50], that approximates the solution (¢, u) of
the system (5) on [—m, 7] by ¢V, u’v € Sy, is defined by the Galerkin equations

([1+ vaes] o + [20 - e — (1 - ) FHaY] x) =0,
(" + [ =1 = F@V?] x) =0, ¥xe S,

for t > 0, with initial data ¢(N(2,0) = InCo, u™N(z,0) = Inug, where Iy is
the trigonometric interpolant defined for a function h = h(x), say, as Iyh(x) =
Z]kvzfzv hyelF®. By choosing x = e ** for k = —N,---, N, there obtains the
initial-value problem for the system

%ék + a(k)iy + b(k)(C * 4), = 0,
(26)

%ak (k)G + d(k) (i ) = 0,
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of 2N + 1 ordinary differential equations for the Fourier coefficients ék, Gy, of ¢N
and vV, respectively, k = —N, --- | N. Here, the initial data fk(O) and g (0) for the
system (26) are the k*" Fourier coefficients of In(y and Iyug, respectively, while
a(k),b(k),c(k) and d(k) are the symbols of the various Fourier multiplier operators
appearing in (5), namely

v — (1 —a)y/pg(lk]) : £

a(k) =ik Y+ Jag(k) b(k) = —1km7
. €
c(k) = ik(1 —~), d(k) = —1k%,

with g the symbol of the operator H corresponding to the rescaled problem.

The initial-value problem for the system (26) of ordinary differential equations
is now discretized in time. Letting T be the final time, the constant time step is
At = T/K for suitably chosen values of the integer K. For each time ¢, = nAt,n =
1,2,--- K, the approximation (Z, (), U,(z)) of (¢(N(z,t,),u™ (x,t,)) are computed
as an element in Sy by solving (26) using various time stepping techniques. We
began with the four-step, fourth-order Runge Kutta method [29] and then compared
the results with those obtained using two A-stable DIRK (diagonally implicit Runge-
Kutta) methods of orders three and four. Details of these time-stepping methods
can be found in [24]. We observed no significant difference in the outcome using
any of these fully discrete schemes. Convergence studies not reported here were
undertaken as well and showed the expected fourth-order convergence rate for the
Runge-Kutta method.

By way of illustration, an approximate solitary wave with speed ¢, = 0.57 for
the BO system with o = 1.2, v = 0.8 and ¢ = /u = 0.1 on the spatial interval
[—32,32] is constructed using one of our iterative methods. The resulting profiles
for ¢ and w are then used as initial conditions for the time-dependent approximation
just described with the time step taken to be At = 0.01. Indeed, the solitary-wave
profiles generated by all three of our iterative approximation procedures were used
as initial data in the time-dependent code. There were no appreciable differences in
the outcomes, so only one of them is reported here, namely the Petviashvili method
(18) with N = 4096. The profile of the ¢ component of the solitary wave at T = 0,
50 and 100 is presented in Figure 6. (Observe that the solitary wave at ¢ = 100 has
crossed the periodic boundary and is located mainly on the negative portion of the
x-axis.) Spurious oscillations of the numerical solution were not observed at any
time during this time-dependent simulation. Similar results obtained for the case
of the ILW system.

To investigate quantitatively the accuracy of the approximations of solitary waves
using the time-dependent scheme, various measures of error were computed. The
measures used here are the normalized amplitude {AF,}, shape {SE,}, phase
{PE,} and speed {CE,} errors at time step n,n =1,2,--- K.

The amplitude error is computed by comparing, at each timestep, the initial
amplitude of the approximate profile with the corresponding time-dependent am-
plitude of the numerical solution. These amplitudes were computed using Newton’s
method to find the root z* = x*(t,) of the equation %Zn (z) = 0 near the max-
imum value of Z,, as in [37]. The normalized speed error CE, is the difference
between the speed of the computed solitary wave pulse ¢ and the exact speed of the
solitary wave c;, i.e. CE, = (¢ — ¢5)/cs. The numerical speed ¢ is obtained as
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FIGURE 6. Propagation of an approximate solitary-wave solution
for the BO system. The profile was generated using the Petviashvili
method (18) with ¢, = 0.57.

tm AE, SE, PE,, CE,
10  0.1091 x 10~% 0.0768 x 10~ —0.0437 x 10~% —0.4905 x 10~8
20  0.1256 x 1079 0.0871 x 1076 —0.0750 x 106 —0.5884 x 10~
30 0.1356 x 107 0.0932 x 1076 —0.1106 x 10~ —0.6482 x 10~
40 0.1431 x 107 0.0974 x 1075 —0.1494 x 106 —0.7026 x 108
50 0.1492 x 1076 0.1007 x 107% —0.1910 x 106 —0.7536 x 108
60 0.1546 x 1075 0.1035 x 1075 —0.2354 x 10~6 —0.8017 x 108
70 0.1596 x 1075 0.1059 x 1076 —0.2825 x 1076 —0.8461 x 10~
80 0.1642 x 1076 0.1081 x 1076 —0.3322 x 107% —0.8982 x 108
90 0.1686 x 107 0.1101 x 1075 —0.3844 x 10~ —0.9366 x 108
100 0.1728 x 1076 0.1121 x 107% —0.4392 x 106 —0.9815 x 108
TABLE 2. Normalized amplitude error AFE,, shape error SE,,
phase error PFE, and speed error C'E, in the case of a solitary
wave with v = 0.8, = 1.2 and ¢, = 0.57 for the BO system.

x*(tn) — x* (tn—m)

tn - tn—m
for n > m. In our calculations, we chose m = 100. Other values of m were also
tried. It did not make a lot of difference to the outcome provided m was large
enough that mAt was of order one. The corresponding phase error is defined as
PE,, = x*(t,) — ¢st,. Finally, the Lo-based, normalized shape error SFE,, is aimed
at finding how well the computed solution resembles the initial data in shape, but

without regard to phase. It is defined at each time step n for, lets say, the component
¢, to be

E:

|1 Zn(2) = Zo(z — 7)||L,

SE, = inf

T 1Z0()|l .
For the computation of the shape error, the translation 7* for which %52 (t*) =0,
where £(7) == ||Z™(x) — Z°(x — 7)||1, /|| Z0o(%)|L,, is computed using Newton’s

method and the obvious initial guess (the value of 7* at the previous time step).
The discrete shape error is the quantity SE,, = £(7*). A detailed discussion of the
implementation of this type of computation is provided in [37].
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Table 2 presents the amplitude, speed, shape and phase errors up to 7' = 100
for the propagation of this approximate solitary wave. This provides convincing
evidence that our iterative approximations are converging to solitary-wave solutions
of the relevant system.

4. Comparisons between systems and unidirectional equations. In this sec-
tion, a comparison is undertaken of the solitary-wave solutions of the ILW and BO
systems with the exact solutions of the unidirectional rBO and rILW equations.
The results shown are for the BO case; results for the ILW equation are very sim-
ilar. It will be seen that solitary-wave solutions of the systems and those of the
unidirectional models, while not identical, are very similar in shape.

BO System rBO equation
— Op
o
|
?;
O
_8,
-16 0 16 -16 0 16
0 0 0
o
Il
F\
- =1.01
Ay =1.1
-8t = 1.25 -8
-16 0 16 -16 0 16
o 0 0 Z
o
Il
?\
- == c,=0.51
o - = =-c,=0.57
gl ci=0.62|] _g
-16 16 -16 16

0 0

x x

FIGURE 7. Solitary waves of the BO system (left) and the rBO
equation (right) for various values of v and c;.

Figures 7, 9 and 10 show the computed solitary-wave profiles ¢ of the BO system
and rBO equation for o = 1.2 and various values of the parameters v and ¢;. The
dependence of the form of the waves on the parameter v can be observed in Figure
7 while the dependence of the peak amplitude of the solitary waves on the speed
is presented in Figure 8. For both the BO system and the rBO equation (and also
for the usual version (12) with a = 0 of the BO equation, although it is not shown
here), the peak amplitude of the solitary waves increases as 7 increases, which is
to say that for a fixed speed c,, the amplitude of the wave is larger when the
density jump across the two homogeneous layers is smaller. In oceanic situations,
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FIGURE 8. Peak amplitude of the computed solitary waves as a
function of the speed c¢s; f or BO system and rBO equation for
various values of 7.

the density jump across a pycnocline is small, so v is quite close to one and thus
the theory here would predict large amplitudes. Indeed, this is what is observed
(see for example the report [8] about very large internal solitary waves in the South
China Sea).

Comparing the solitary waves of the BO system and rBO equation in a little
more detail, it is observed that for values of v near 1, the two profiles very nearly
agree. As mentioned, the density jump across oceanic pycnoclines is quite small, so
at least as far as solitary-wave solutions are concerned, the use of the unidirectional
model appears to be justified in this context.

As v decreases, the solitary waves of the BO system becomes narrower and have
slightly larger amplitude than do the corresponding solutions of rBO. This is crudely
illustrated in Figures 9 and 10, corresponding to v = 0.8 and v = 0.1, respectively.

A final experiment was carried out to illustrate the convergence of the ILW
solitary waves to those of the BO system, as the depth of the lower layer becomes
indefinitely large, a fact established rigorously by Xu in [58]. This was observed for
a range of the parameters in the problem, but we content ourselves with displaying
one typical example in Figure 11.

5. Conclusions. Presented here is a computational study of the solitary-wave so-
lutions of the ILW and the BO systems for internal wave propagation derived in
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FIGURE 9. Comparison of solitary-wave solutions of the BO system
and the rBO equation with v = 0.8.

[26]. To generate appoximations of solitary-wave solutions, the relevant systems of
ordinary pseudo-differential equations for the profiles are discretized and solved by a
Fourier pseudospectral method on a spatial interval large enough that imposing pe-
riodic boundary conditions does not degrade the result. Three iterative techniques
are applied to the corresponding discrete systems.

The results of our computations, whose accuracy is checked in Section 3, suggest
that these systems possess solitary-wave solutions of all amplitues, so adding weight
to the heuristic remarks made in Section 2. Comparison between solitary-wave
solutions of the bi-directional systems with those of the regularized versions of the
unidirectional ILW and BO models are presented in Sections 4.
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FiGUrE 10. Comparison of some solitary waves of the BO system
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FIGURE 11. Convergence of the solitary waves of the ILW system
to a solitary wave solution of the BO system for large values of the
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