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Abstract— Obstructive sleep apnea (OSA) in children is a 

prevalent and serious respiratory condition linked to 

cardiovascular morbidity. Polysomnography, the standard 

diagnostic approach, faces challenges in accessibility and 

complexity, leading to underdiagnosis. To simplify OSA diagnosis, 

deep learning (DL) algorithms have been developed using cardiac 

signals, but they often lack interpretability. Our study introduces 

a novel interpretable DL approach (SleepECG-Net) for directly 

estimating OSA severity in at-risk children. A combination of 

convolutional and recurrent neural networks (CNN-RNN) was 

trained on overnight electrocardiogram (ECG) signals. Gradient-

weighted Class Activation Mapping (Grad-CAM), an eXplainable 

Artificial Intelligence (XAI) algorithm, was applied to explain 

model decisions and extract ECG patterns relevant to pediatric 

OSA. Accordingly, ECG signals from the semi-public Childhood 

Adenotonsillectomy Trial (CHAT, n=1610) and Cleveland Family 

Study (CFS,  n=64), and the private University of Chicago (UofC, 

n=981) databases were used. OSA diagnostic performance reached 

4-class Cohen's Kappa of 0.410, 0.335, and 0.249 in CHAT, UofC, 

and CFS, respectively. The proposal demonstrated improved 

performance with increased severity along with heightened 

cardiovascular risk. XAI findings highlighted the detection of 

established ECG features linked to OSA, such as bradycardia-

tachycardia events and delayed ECG patterns during 

apnea/hypopnea occurrences, focusing on clusters of events.  

Furthermore, Grad-CAM heatmaps identified potential ECG 

patterns indicating cardiovascular risk, such as P, T, and U waves, 

QT intervals, and QRS complex variations. Hence, SleepECG-Net 

approach may improve pediatric OSA diagnosis by also offering 

cardiac risk factor information, thereby increasing clinician 

confidence in automated systems, and promoting their effective 

adoption in clinical practice.  

 
Index Terms— Pediatric obstructive sleep apnea (OSA), deep 

learning (DL), eXplainable Artificial Intelligence (XAI), 

electrocardiogram (ECG), Gradient-weighted Class Activation 

Mapping (Grad-CAM).  
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I. INTRODUCTION 

EDIATRIC obstructive sleep apnea (OSA) is a frequent 

respiratory disorder with a prevalence ranging from 1% to 

5% [1]. It occurs when the upper airway is collapsible during 

sleep, causing repeated episodes of apnea (no airflow) and 

hypopnea (reduced airflow) [1], [2]. When untreated, pediatric 

OSA can lead to a multitude of end-organ morbidities, 

including long-term neurocognitive and behavioral deficits and 

decreased metabolic function [3]. It also induces impaired 

autonomic nervous system regulation, ventricular hypertrophy, 

and high blood pressure in both the pulmonary and systemic 

circulation. These conditions increase the risk of long-lasting 

cardiovascular disease that may manifest in both childhood and 

adulthood, while adversely impacting the overall health and 

quality of life of affected children [1], [3], [4]. 

OSA is typically diagnosed by an overnight 

polysomnography (PSG) test, performed in a specialized 

laboratory while the patient sleeps [1]. During the test, different 

biomedical signals, such as electrocardiogram (ECG), 

electroencephalogram (EEG), electromyogram (EMG), blood 

oxygen saturation (SpO2), airflow (AF), and end-tidal 

capnography are recorded synchronously to determine the 

apnea-hypopnea index (AHI). This index is the rate of apneic 

and hypopneic events per hour of sleep (e/h) [5]. According to 

the guidelines of the American Academy of Sleep Medicine 

(AASM), apneas in children are defined as a decrease of ≥90% 

in AF signal for at least two respiratory cycles. In comparison, 

hypopneas are defined as a decrease of ≥30% in AF 

accompanied by at least a 3% reduction in SpO2 or 

electroencephalographic arousal [6]. Following these criteria, 

once the AHI is established, it is used to measure the presence 
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and severity of OSA. Despite its effectiveness, PSG requires 

monitoring multiple biomedical signals, specialized facilities, 

and qualified personnel [1], [2]. This makes PSG an expensive, 

complex, and uncomfortable method with limited availability, 

particularly in pediatric facilities. As a result, the disease is 

often underdiagnosed or diagnosed late [1].  

Over the last decade, researchers have been intensively 

exploring the feasibility of alternative automated methods to 

simplify the diagnosis of pediatric OSA [7]. Most studies have 

focused solely on signals such as SpO2 and AF, thus limiting 

their attention to respiratory information associated with the 

disease [8]. However, it is essential to consider the ECG signal 

because of the strong interdependencies between the 

cardiovascular and respiratory systems during apneic events. 

These episodes have been linked to bradycardia-tachycardia 

patterns, highlighting the importance of incorporating the ECG 

signal while studying OSA [3], [9]. Additionally, OSA has been 

associated with an increased likelihood of developing 

cardiovascular morbidity that may continue and progress into 

adulthood, particularly when the condition remains untreated 

[3], [4]. In past studies, several proposals have investigated 

cardiac signals using feature-engineering (FE) techniques such 

as heart rate variability (HRV) or photoplethysmography (PPG) 

[10], [11].  

Unlike traditional FE methods, deep learning (DL) 

approaches can handle the complexities of signals directly 

without the need for a prior characterization process [12]. We 

previously combined the use of nocturnal ECG data along with 

DL techniques based on a convolutional neural network (CNN) 

to estimate pediatric OSA [13]. In adults with OSA, CNNs and 

recurrent neural networks (RNNs) have been effectively 

proposed to analyze various cardiorespiratory signals derived 

from sleep studies, including ECG signals [14], [15]. On the one 

hand, CNNs allow the automatic identification of complex 

patterns in data [12], while RNNs were designed to capture 

temporal interdependences [16]. Combining both 

computational architectures, CNNs allow for automatically 

extracting features of apneic events, and RNNs allow capturing 

temporal and sequential relationships that are crucial to 

correctly identify the recurrence of apneic events and cardiac 

patterns throughout the nocturnal recording [12], [16]. In this 

regard, CNN-RNN architectures are a feasible option to directly 

address AHI estimation and OSA detection, as they can 

simulate the recurrence of cardiac patterns induced by apneic 

events in the ECG signal [17].  

Even though advanced DL methods have shown promise in 

predicting OSA, their main drawback lies in the inherent 

requirement for more explainability of their outcomes [18]. 

This shortcoming is crucial, especially in healthcare, where 

professionals must understand the process and reasoning behind 

automated decisions to fully trust them. In this context, 

eXplainable Artificial Intelligence (XAI) techniques are 

essential to provide transparency and interpretability to 

complex computational models [18]. Specifically, we consider 

the XAI application to be particularly relevant when analyzing 

ECG in pediatric OSA context. The ability to discern the 

patterns present in the signal, those on which automatic 

algorithms focus, could offer important insights on how to 

determine the severity of OSA in children. Furthermore, it 

could generate new pathophysiological cardiovascular risk-

related features linked to the ECG signal in pediatric OSA. One 

of the most popular XAI techniques used to analyze biomedical 

signals is Gradient-weighted Class Activation Mapping (Grad-

CAM), which uses gradient information in the convolutional 

layers to identify regions of the highest importance in the input 

data, thereby informing the predictions of a CNN model [19]. 

Grad-CAM has already proven its usefulness in identifying 

physiological features related to apneic events and sleep stages 

in pediatric OSA, although no previous study has applied it to 

ECG data [20], [21]. 

Accordingly, our study presents two noteworthy novelties. 

Firstly, we aimed to develop a novel CNN-RNN based 

regression approach using the transfer learning technique to 

directly estimate the AHI with overnight single-lead ECG 

signals, thus enabling an automated and interpretable diagnosis 

of pediatric OSA presence and severity. One of the main 

reasons for selecting regression is the delay in cardiac 

manifestations concerning apneic events [3]. Secondly, we 

implemented the use of Grad-CAM to interpret a CNN-RNN 

approach fed with ECG signals from the pediatric population. 

This novelty facilitates the extraction of relevant ECG patterns, 

allowing for the establishment of the assumed link between the 

cardiovascular and autonomic systems and pediatric OSA. This 

aspect also serves as an intriguing research gateway aiming to 

assess the potential cardiovascular risk in pediatric OSA. 

Thus, we hypothesized that our integrated SleepECG-Net 

model, along with the Grad-CAM technique, would simplify 

diagnosis and enhance interpretability. Consequently, the 

objectives of this study were twofold: 1) To evaluate a CNN-

RNN regression approach using full-night ECG recordings for 

estimating AHI and establishing the severity of pediatric OSA, 

and 2) to apply Grad-CAM XAI algorithm as a method for 

interpreting the decisions taken by the model and identify 

relevant ECG patterns related to pediatric OSA.  

II. SUBJECTS AND SIGNALS  

Three databases were used to conduct the present study. First, 

we used the upon-request public database Childhood 

Adenotonsillectomy Trial (CHAT), which contains 1610 valid 

ECG recordings from PSG studies performed in pediatric 

patients aged 5 to 9.9 years [22]. CHAT constitutes a 

randomized, multicenter, and single-masked design study that 

complied with the Declaration of Helsinki (clinical trial: 

NCT00560859) [22], [23]. Study recordings were partitioned 

into a training set (60%) to train the model, a validation set 

(20%) to adjust the optimal configuration, and a test set (20%) 

to evaluate model performance and interpret the results. This 

partitioning was conducted so that each subject was exclusively 

assigned to one of the sets, avoiding duplication. AHI values 

were used as labels for the input data in the algorithm. 
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The private database obtained from the Pediatric Sleep Unit 

of the Medicine Comer Children's Hospital from University of 

Chicago (UofC), USA, was also included [24]. This database 

included 981 sleep studies of children aged between 0 and 13 

years, who were referred to the pediatric sleep laboratory 

following symptoms and complaints commensurate with 

clinically suspected OSA. The UofC Ethics Committee 

approved the research protocol (#11-0268-AM017, #09-115-B-

AM031 and #IRB14-1241). Informed consent was obtained 

from the legal caretakers of all children. This de-identified 

database was only used for external validation of the model 

developed with CHAT training dataset. Therefore, the 981 ECG 

recordings in the UofC sample served as a test set. 

Finally, the public database obtained from the Cleveland 

Family Study (CFS) Coordinating Center was used [25]. 

Detailed information can be obtained from the National Sleep 

Research Resource website (https://sleepdata.org/datasets/cfs). 

The CFS is the world's most extensive family study dedicated 

to the research of sleep apnea. The study covers 2284 

individuals from 361 families, followed for up to 16 years over 

five visits (1990-2006). Visit 5 involved complete overnight 

PSGs used to extract ECG recordings. Study participants were 

divided into 9 categories according to their age range. Because 

our model is designed for pediatric OSA, ECG recordings 

corresponding to the first age category, encompassing ages 5 to 

14 years, were selected (n=64). Parents were asked to complete 

a questionnaire for their children. This database was only used 

for external validation of the model. 

PSG recordings from the databases were visually assessed by 

medical sleep specialists, who manually scored apneic and 

hypopneic events and established AHI following the scoring 

rules according to the AASM [5], [26]. Consequently, the AHI 

was used for diagnosing and determining the severity of OSA 

in children. For our study, we defined four OSA severity groups 

based on three common AHI thresholds (AHI = 1, 5, and 10 

e/h), in agreement with previous pediatric OSA studies [24], 

[27]. Thus, the severity groups in this study included: no OSA 

(AHI<1 e/h), mild OSA (1≤AHI<5 e/h), moderate OSA 

(5≤AHI<10 e/h), and severe OSA (AHI≥10 e/h). In CHAT and 

CFS, the same scorers analyzed all recordings. Conversely, the 

UofC dataset replicated real-world circumstances by including 

many scorers as needed for the clinical operations of the sleep 

center and by having different scoring standards throughout the 

databases. Table I presents demographic and clinical data from 

all children included in this study.  

III. METHODS 

Fig. 1 shows a general methodological workflow. Our 

methodology involved implementing and evaluating an 

interpretable CNN-RNN architecture using single-lead ECG 

recordings (S1,…, SN) to estimate the AHI per subject (ŷ1,…, 

ŷN). The model was fed with minimally preprocessed ECG 

signals. Each signal was initially processed into CNN blocks to 

obtain feature maps. Next, the CNN-derived feature sequences 

were used to feed the RNN layers to obtain the AHI estimation. 

Subsequently, an evaluation of the diagnostic ability of the 

proposed algorithm was conducted. CHAT dataset was used for 

SleepECG-Net training, hyperparameter tuning, and optimal 

architecture selection, as well as to evaluate the diagnostic 

capability of the model (training, validation, and test sets, 

respectively). UofC and CFS databases were used to externally 

validate the model developed and tested with CHAT. Finally, 

the Grad-CAM method was implemented to identify and 

interpret the regions where the model was fixed to make the 

AHI estimation.  

 

A. Signal preprocessing 

Following the guidelines established by the AASM, the 

ECG-II lead was obtained in obtained in CHAT, UofC, and 

CFS [5]. All databases were homogeneously preprocessed. The 

raw signals were resampled at 100 Hz, as previously reported 

[28], [29]. Subsequently, the continuous component was 

corrected by removing the signal mean in 30-second windows. 

A high-pass filter with a passband between 0.5 and 50 Hz was 

then applied to reduce noise and avoid the loss of essential 

frequency components, such as those related to the QRS 

complexes [30].  

All ECG recordings were empirically adjusted to 8 hours, as 

this value yielded the highest performance in the validation set. 

Recordings with fewer samples were padded including zeros at 

the beginning of the signal, while those with more samples were 

reduced by removing samples from the beginning, as was 

implemented in previous OSA studies using unsegmented 

cardiorespiratory signals [31], [32]. Then, ECG signals were 

 
Fig. 1: Proposed workflow for developing, validating, and explaining 

SleepECG-Net enabling prediction and interpretation of pediatric OSA 
severity using ECG signal recordings. HPF: High pass filter; SN: subject N; 

ŷN: estimation of AHI in subject N. 

 
 

           

          
   
       
         
        

             
               
            
              
        
             
              
            
             
           
          
                
            

            
             
            
           
             
                 
           
             

                        

      

         

     

        

                      
                   

          
        
           

        
          
           

            
         

Table I  

Demographic and clinical information of the children under study. 

CHAT UofC CFS 

 Training Validation Test Test Test 

Subjects 

(n) 

988 
(61.37%) 

323 
(20.06%) 

299 
(18.57%) 

981 
(100%) 

64 
(100%) 

Age 

(years) 

7.00 

[2.00] 
7.00 [2.00] 

6.90 

[2.00] 
6.0 [6.0] 

11.34 

[3.25] 
Females 

(n) 

477 

(48.28%) 

164 

(50.77%) 

161 

(53.85%) 

379 

(38.63%) 

31 

(48.44%) 

BMI 

(kg/m2) 

17.31 
[5.92] 

17.12 
[6.25] 

17.43 
[6.04] 

18.02 
[5.86] 

21.59 
[8.56] 

AHI  

(e/h) 

2.64 

[4.77] 

2.45  

[4.77] 

2.32 

[5.11] 

3.8 

[7.76] 

0.57 

[1.18] 
No 

OSA(1) (n) 

212 

(21.46%) 

67 

(20.74%) 

65 

(21.74%) 

173 

(17.64%) 

40 

(62.5%) 

Mild 

OSA(2) (n) 

488 
(49.39%) 

167 
(51.70%) 

144 
(48.16%) 

401 
(40.88%) 

21 
(32.81%) 

Moderate 

OSA(3) (n) 

159 

(16.09%) 

44 

(13.62%) 

49 

(16.39%) 

178 

(18.14%) 
0 (0%) 

Severe 

OSA(4) (n) 

129 

(13.06%) 

45 

(13.93%) 

41 

(13.71%) 

229 

(23.34%) 

3 

(4.69%) 

Data are presented as number (percentage) or median [interquartile range]. 

BMI: body mass index; AHI: apnea-hypopnea index; e/h: events/hour. 
(1): AHI<1 (e/h); (2): 1≤AHI<5 (e/h); (3): 5≤AHI<10 (e/h); (4): AHI≥10 (e/h). 
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resized to have the input dimensions allowed by the SleepECG-

Net. This resulted in arrays of 48 segments, each lasting 10-min 

(48x60,000x1 = 2,880,000 samples). This dimension is suitable 

for block processing of CNNs encapsulated in time-distributed 

(TD) layers. The 10-min segments were the optimal length 

obtained to train the previously presented CNN model [13], 

being appropriate to detect clusters of apneic events that have a 

minimum duration of 10-min [33]. In addition, its dimension 

allowed the transfer of the optimal architecture, including its 

associated weights and layers from the CNN model presented 

previously to the CNN-related blocks used in this study. 

Finally, each segment was standardized [12]. As a data 

augmentation method, we randomized 3 times the 48 segments 

comprising ECG recordings in the CHAT training and 

validation sets [34].  

B. SleepECG-Net architecture 

Fig. 2 shows the main components of the architecture 

developed in this study. Below, the model process is outlined in 

detail, showing the flow of data through each stage: 

Specifically, an LSTM network is preferable over a basic RNN 

since it can maintain relevant data in the sequence and preserve 

it for several instances. Therefore, it maintains short-term 

memory capabilities similar to conventional RNNs while 

incorporating long-term memory functions. LSTM networks 

comprise several units (ULSTM) that determine the output 

dimensionality and a dropout ratio with a certain probability 

(PLSTM). LSTM was chosen instead of the gated recurrent unit 

(GRU) network because, in preliminary tests, higher 

performance was observed. 

Notably, the proposal is an improved approach to the CNN-

based model developed and validated in a previous study, 

where the number of events per 10-min ECG segment was 

estimated [13]. The optimal hyperparameters and weights of the 

CNN from that study were transferred to the current model, 

training and validating the SleepECG-Net as a transfer learning 

process. CNN allows the model to learn complex patterns of the 

ECG signal and RNN holds their temporal distribution 

throughout the night. This enables the model to retain relevant 

patterns across the time sequence while filtering out irrelevant 

ones. 

C. SleepECG-Net optimization and algorithm assessment 

To achieve optimal algorithm performance, we tuned a set of 

hyperparameters to minimize the generalization error of the 

SleepECG-Net model and find the optimal-performing 

configuration. Finally, an evaluation of the performance of the 

algorithm was conducted to determine the optimal 

hyperparameter configuration. For this purpose, 4-class 

Cohen’s kappa coefficient (k4) was considered [35]. Within the 

validation set, we calculated the k4 for subject-wise 

classification of OSA severity. The selection process relied on 

identifying the architecture with the highest k4.  

D. SleepECG-Net interpretability using Grad-CAM 

As a subsequent step in implementing SleepECG-Net, XAI 

was applied using the Grad-CAM method. The purpose was to 

analyze and comprehend the internal mechanisms of the model 

in recognizing respiratory event-related information and 

discerning cardiac patterns linked to pediatric OSA [36]. The 

class activation mapping (CAM) technique emerged as an XAI 

method to identify critical areas in the input that significantly 

impact the output predicted by CNN used in image 

Input data: Overnight ECG recordings.  

#Step 1: CNN component (conv blocks automatically discern 

the intricate patterns within the ECG signal associated with 

apneic events). The conv part was implemented using a 

clustering of TD layers consisting of the previously presented 

CNN layers trained with 10-min ECG signals [13].  

1. Initialize CNN parameters: number of filters (NF), kernel 

size (KSIZE), dropout probability (PCNN) 

2. Load pre-trained weights from previous study for transfer 

learning. 

3. For each 10-min ECG segment: 

Pass through 14 conv blocks, each composed of: 

a. 1D-conv layer comprised of a set of filters (NF) with a 

kernel size (KSIZE) and zero padding. 

b. Batch normalization 

c. Rectified linear unit (ReLU) activation  

d. Max-pooling 

e. Spatial dropout with probability PCNN [12].  

4. Repeat this for a total of 14 conv blocks (last 2 blocks 

added and trained from scratch) 

5. Flatten feature maps to 1D data for RNN processing. 

#Step 2: RNN component (analyze the temporal distribution 

of apneic events in the nocturnal sequence by identifying 

characteristic ECG patterns). 

6. Initialize bidirectional long short-term memory 

(BiLSTM) parameters: number BiLSTM units (ULSTM), 

dropout probability (PLSTM)  

7. Process each feature map from CNN output:  

 - Pass through 2 BiLSTM layers:  

- Evaluate temporal dependencies in both forward and 

backward directions.  

- Output: refined sequence with temporal patterns  

detected by LSTM [12]. 

8. Apply dropout with probability PLSTM after BiLSTM.  

9. Output: temporal features from the BiLSTM layers 

#Step 3: Pass BiLSTM output to a fully connected (FC) layer 

with a linear activation 

Final output: AHI estimation per subject  

 
Fig. 2: Overall scheme of the regression model based on a CNN-RNN 

architecture proposed in the study. The input data to the CNN model consists 
of the complete nocturnal ECG recordings of each subject. RELU = rectified 

linear unit activation; TD = time distributed. 
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classification [36]. Effective implementation of CAM requires 

a specific architecture incorporating a Global Average Pooling 

layer to the final feature maps, followed by a fully connected 

final layer that generates the predictions [18]. Grad-CAM 

emerged in the context of improving the approach provided by 

CAM. This approach extends the CAM method by using 

gradients derived from convolutional layers, thus enabling the 

identification of relevant areas in the input that impact the final 

prediction. This method utilizes the gradient information 

flowing into a specific convolutional layer by providing 

gradient-based heatmaps. It offers detailed insight into 

discriminative regions significantly influencing SleepECG-Net 

decision-making [18], [36]. Heatmaps can be obtained for each 

of the convolutional layers by following the steps below. First, 

the gradients of the model output are determined concerning the 

feature maps of the s-th convolutional layer. The resulting 

gradients are averaged over all these feature maps according to 

the following expression [36]:  

                                     𝑎𝑠 =
1

𝑇
∑

𝜕𝑦̂

𝜕𝑀𝑠
𝑘𝑘             (1) 

where T is the number of filters, corresponding to 64 features 

maps in the s-th layer, ŷ represents the output of the class of 

interest and 𝑀𝑠
𝑘 denotes the k-th feature map in the s-th layer. 

Subsequently, heatmaps are obtained by a gradient-weighted 

combination of the feature maps, which have been subjected to 

ReLU activation. This process is expressed as follows [36]: 

                        𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈(∑ 𝑎𝑠 ∗ 𝑀𝑠
𝑘

𝑠 )        (2) 

A heatmap of the exact dimensions as the corresponding 

convolutional layer feature maps is generated as a final step. 

Then, this heatmap is normalized and resized to support a joint 

display with the ECG signal. In this study, Grad-CAM was 

calculated using the gradients obtained from each convolutional 

layer to calculate a layer-specific heatmap. The final heatmap 

was acquired by averaging all normalized and resized heatmaps 

generated in each convolutional layer, as has been done in 

previous studies [20], [21]. It allowed obtaining more detailed 

representations with the contribution of all convolutional 

layers. This approach improves the identification of specific 

ECG patterns linked to pediatric OSA.  

E. Statistical analysis and diagnostic performance 

Test sets from CHAT, UofC, and CFS were used to estimate 

the AHI. UofC was used to validate the SleepECG-Net model 

independently from the database used to develop the model. To 

assess the concordance between the estimated AHI and the 

actual AHI, we computed the intraclass correlation coefficient 

(ICC) [37]. To evaluate the efficacy of the proposed algorithm 

in diagnosing pediatric OSA, subjects were assigned to one out 

of the four OSA severities based on their estimated AHI. 

Following the establishment of these categories, we computed 

the confusion matrix and 4-class accuracy (Acc4). Moreover, k4 

was computed [35]. Finally, we computed the accuracy (Acc), 

sensitivity (Se), specificity (Sp), positive and negative 

predictive values (PPV and NPV), and positive and negative 

likelihood ratios (LR+ and LR-) for OSA thresholds (AHI = 1, 

5, and 10 e/h). 

IV. RESULTS 

A. Optimal SleepECG-Net configuration 

SleepECG-Net was trained on an NVIDIA GeForce RTX 

4090 GPU. Training configuration utilized the He-normal 

technique [12]. We optimized weight updates using the 

adaptative moment estimation (Adam) method with an initial 

learning rate of 10-4 [12]. Training data was fed in batches of 64 

samples over 400 epochs [12]. The mean squared logarithmic 

error was heuristically selected as the loss function to minimize 

the Adam algorithm in the validation set [12]. Additionally, 

early stopping was implemented to prevent overfitting.  

Determining the optimal configuration for the model 

involved exhaustive training with all combinations of 

hyperparameter values, as outlined in Table II. SleepECG-Net 

training concluded with an early stop at epoch 57. A learning 

rate value of 2.5 x 10-4 was reached to find the desirable 

configuration of the model.  

The convolutional layers in blocks1-4 were composed of NF = 

16, KSIZE = 33; blocks5-8 were composed of NF = 32, KSIZE = 17, 

and blocks9-12 were composed of NF = 64, KSIZE = 7. A dropout 

layer with a probability value PCNN of 0.1 was applied in the last 

layer of all blocks. To optimize the CNN architecture, an 

exhaustive analysis was carried out. A detailed explanation of 

this process can be found in a previous study [13]. Then, 

additional convolutional blocks trained from scratch were 

included. We varied the number of convolutional blocks (NCNN) 

in the range {1,2,3} to determine the optimal value. 

Experimentation showed that an NCNN of 2 achieved the highest 

performance in the validation set (k4 = 0.316, k4 = 0.350, and k4 

= 0.344, adding 1, 2, and 3 layers, respectively). Accordingly, 

increasing the value of NCNN would not lead to an improvement 

in capturing relevant patterns in the ECG. We also explored 

training the CNN from scratch for AHI estimation (k4 = 0.328). 

However, higher performance was obtained using the transfer 

learning process (k4 = 0.350). Moreover, to find the optimal 

number of LSTM layers (NLSTM), we varied in the range {1,2,3}, 

obtaining the highest value of k4 in the validation set using 2 

layers (k4 = 0.343, k4 = 0.344, and k4 = 0.325, adding 1, 2, and 3 

layers, respectively). Thus, increasing the complexity of the 

model would not lead to better processing of the time domain 

for identifying ECG regions linked to respiratory events. Once 

the value of NCNN and NLSTM was selected, we implemented an 

exhaustive fitting strategy using the grid search method to 

optimize the remaining hyperparameters in the NCNN and NLSTM 

added layers. This involved testing all possible combinations of 

the hyperparameters within the defined search space. 

Specifically, the value NF was varied in the range {64, 128, 

256} for the additional convolutional blocks. Then, a search for 

KSIZE in range {1:2:7} and PCNN in range {0.0:0.1:0.5} was 

performed. Regarding BiLSTM layers, we varied ULSTM in 

range {2:2:12} and PLSTM in range {0.0:0.1:0.5}. Lastly, PDROP 

was explored within the range {0.0:0.1:0.5} regarding the final 

dropout layer. The optimal hyperparameters of the 2 additional 

convolutional blocks were KSIZE = 3, and PCNN = 0.4. 

Concerning LSTM layers, the optimal hyperparameters were 

ULSTM = 10, PLSTM = 0.2, and PDROP = 0.3. This configuration 

achieved the highest k4 value (k4 = 0.350) in the validation set 
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from CHAT. Consequently, it was chosen to evaluate 

SleepECG-Net in the test sets from CHAT, UofC, and CFS. 

In preliminary strategies, several tests were carried out to 

obtain an optimal model and achieve the highest performance 

of the algorithm. Initially, a model based on the pre-trained 

CNN from the previous study, followed by a flattening layer 

encapsulated in a TD layer combined with an RNN network, 

was implemented. Different variants of RNN, including 

bidirectional gated recurrent unit and BiLSTM networks, were 

evaluated, and higher performance was achieved with a 

BiLSTM in the validation set (k4 = 0.310 vs. k4 = 0.261). These 

findings suggest that GRU intrinsic simplifications are 

suboptimal for the complexity of our data. Once the RNN 

architecture was optimized, preliminary tests were conducted to 

reduce overfitting during training and facilitate optimal model 

performance without applying data augmentation (k4 = 0.310), 

by doubling (k4 = 0.317) and tripling (k4 = 0.343) the signals by 

randomizing the ECG segments of the input array. Further 

increases in data generation resulted in unapproachable 

computational costs. The highest value of k4 = 0.343 in the 

validation set was obtained with the model trained by tripling 

the source data. Thus, applying data augmentation suggests the 

improvement of the performance of SleepECG-Net and 

generalization capability, as well as its ability to avoid 

overfitting and improve robustness.  

To corroborate the suitability of the regression approach for 

our problem, we also implemented the SleepECG-Net 

architecture for a binary (presence or absence of OSA) and 

quaternary classification (presence and severity of OSA) task. 

Comparing these results with those obtained in our proposed 

regression approach, we found that, in the case of CHAT, in 

general terms the results with our approach were superior (Acc4 

= 61.54% vs. 56.52% and k4 = 0.410 vs. 0.335). For UofC, the 

results with our approach were similar (Acc4 = 53.82% vs. 

53.21% and k4 = 0.335 vs. 0.333). In the case of CFS, we 

obtained slightly higher values with this approach (Acc4 = 

56.25% vs. 57.81% and k4 = 0.249 vs. 0.259). Regarding the 

binary classification results, if we compare the 2-class kappa 

(k2) obtained with this model and those obtained with our 

proposal for the 5 e/h threshold, we found that in CHAT we 

obtained a higher performance (k2 = 0.684 vs. 0.669), in UofC 

database the performance was slightly lower (k2 = 0.571 vs. 

0.582), and the performance was the same in CFS (k2 = 0.792). 

Thus, AHI estimation is considered more reliable than direct 

classification methods that require fixed AHI thresholds. 

Relying solely on the classification agreement for model 

evaluation and optimization could lead to disadvantages if the 

AHI criteria change, which could result in less accurate AHI 

estimates and less information for clinicians. 

Finally, several ablation tests were conducted to assess the 

contribution of different architectural components to the 

performance of the model. When the RNN was replaced with a 

feedforward network (FFN) while retaining the pretrained 

CNN and the NCNN additional layers, the k4 value on the 

validation set dropped to 0.295, compared to the proposed 

approach, which achieved a k4 of 0.350. Further, when both the 

RNN and the last additional NCNN were removed, the k4 value 

decreased even more, reaching 0.283. Moreover, removing both 

the RNN and the two additional NCNN led to a slight 

improvement, with the k4 = 0.296. Finally, removing the last 

layers of the pre-trained CNN resulted in a reduced k4 value of 

0.286. These findings indicate that the additional NCNN, when 

used in isolation, does not significantly enhance the model’s 

performance. Instead, the features extracted by these blocks 

must be processed by the RNN module to unlock their full 

potential.  

B. Diagnostic ability of the CNN-RNN approach  

The agreement between the estimated and actual AHI was 

indicated with ICC of 0.76 in the CFS test set, being higher than 

in CHAT (ICC=0.73) and UofC (ICC=0.66). The ICC results 

suggest that SleepECG-Net has a moderate to acceptable 

predictive ability in all three databases. Furthermore, in global 

computation, the ICC ranges between 0.6 and 0.7 in the three 

databases, suggesting that the model generalizes well and is 

robust to different data samples [37]. Fig. 3 presents the 

confusion matrices obtained after classifying the severity of 

OSA for each subject based on their estimated AHI. The 4-class 

metrics obtained were Acc4 = 61.54% and k4 = 0.410 in the 

CHAT test set, Acc4 = 53.82% and k4 = 0.335 in the UofC test 

set, and Acc4 = 56.25% and k4 = 0.249 in the CFS test set. 

Analyzing the severity of subjects correctly classified, it is 

observed that in the three databases, SleepECG-Net presents the 

optimal performance for mild OSA, followed by severe OSA, 

no OSA, and moderate OSA. Table III reveals the diagnostic 

performance of pediatric OSA severity according to the 

conventional AHI cutoffs (1, 5, and 10 e/h) in CHAT, UofC, 

and CFS test sets. High to very high Acc are reached for 5 and 

Table II 
Search space of the SleepECG-Net hyperparameters, optimal configuration, and highest 4-class kappa values obtained in the validation subset for each model 

with each specific hyperparameter. 

Model Hyperparameter Search space 4-class kappa* Optimal  

value 

 

Additional 
CNN 

blocks 

NCNN 1, 2, 3 0.316,0.350,0.344 2 

NF 64,128,256 0.350,0.322,0.323 64 

KSIZE 1,3,5,7 0.349,0.350,0.343,0.344 3 

pCNN 0.1,0.2,0.3,0.4,0.5 0.342, 0.346, 0.334,0.350, 0.338 0.4 

 

 
LSTM 

NLSTM 1,2,3 0.343, 0.344, 0.325 2 

ULSTM 2,4,6,8,10,12 0.349,0.345,0.349,0.346,0.350,0.344 10 

PLSTM 0.1,0.2,0.3,0.4,0.5 0.349,0.350,0.349,0.345,0.349 0.2 

PDROP 0.1,0.2,0.3,0.4,0.5 0.343,0.349,0.350,0.349,0.343 0.3 

4-class kappa   0.350  

NCNN: number of conv blocks; KSIZE: kernel size of conv layers; PCNN: the probability of dropout layers in CNN blocks; NLSTM: number of LSTM layers; ULSTM: 

units in LSTM layers; PLSTM: dropout probability of LSTM layers; PF: the probability of the last dropout layer. 

*Highest kappa value achieved by the model concerning each specific hyperparameter. 
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10 e/h cutoffs. Moreover, increasing performance with OSA 

severity is observed, with SleepECG-Net reaching 92.31%, 

88.38%, and 98.44% Acc for 10 e/h in CHAT, UofC, and CFS 

respectively. Based on the established criteria for interpreting k 

values [38], we can conclude that for 5 and 10 e/h cutoffs we 

have moderate to substantial agreement in the three databases.  

C. Identification of ECG patterns using Grad-CAM 

The Grad-CAM method was implemented after conducting 

the diagnostic evaluation of SleepECG-Net. Fig. 4, 5, and 6 

illustrate the heatmaps obtained using Grad-CAM on various 

examples of ECG signals, showing relevant patterns for 

accurate AHI estimation. On the one hand, Fig. 4 (a), Fig. 5 (a), 

and Fig. 6 

(a.1, b.1) correspond to heatmaps and examples of full-night 

ECG signals. On the other hand, Fig. 4 (b, c), Fig. 5 (b, c, d), 

and Fig. 6 (a.2, b.2) show a zoom of relevant regions extracted 

from the ECG signals. In all heatmaps, the annotations of the 

presence and absence of respiratory events obtained from the 

PSG are highlighted in red with overlapping dotted lines. 

In Fig. 4 (a), Grad-CAM highlights the region containing a 

cluster of apneic events. Fig. 4 (b) identifies areas characterized 

by heart rate (HR) variations evidencing bradycardia-

tachycardia pattern. Furthermore, in Fig. 4 (c), it is observed 

how Grad-CAM identifies regions in event transition zones 

encompassing PQ and QT segments, and areas comprising TP 

segments. Regarding Fig. 5 (a), Grad-CAM highlights regions 

where clusters of respiratory events exist. Fig. 5 (b) shows a 

delay of regions when such events are manifest. Fig. 5 (c) and 

Fig. 5 (d) identify with dark color the PQ, QT, and TP segments 

illustrated in Fig. 4.  Moreover, different patterns are also noted. 

Fig. 5 (c) shows relevant areas where the presence of the U                                                     

wave is discernable. Finally, the heatmap emphasizes the QRS 

complexes of different beats in Fig. 5 (d). Fig. 6 (a.1, b.1) 

highlights areas where the model identifies relevant patterns, 

although in those regions, no annotations indicating the 

presence of respiratory events were provided. Fig. 6 (a.2) shows 

regions with changes in the amplitude of QRS complexes. In 

Fig. 6 (b.2), changes in HR can be seen, although they are not 

associated with the presence of annotated events. Fig. 7 (a, b) 

shows heatmaps associated with ECG signals in which 

SleepECG-Net made a wrong prediction, along with a zoom of 

relevant regions. In Fig. 7 (a), the method finds regions of 

decreasing QRS complex amplitude and changes in HR in 

regions where respiratory events are assumed not to occur. 

Identifying relevant patterns in regions without events leads 

SleepECG-Net to overestimate AHI. In Fig. 7 (b), due to the 

dense occurrence of adjacent events, the model does not find 

distinctive patterns to discriminate between event and non-

event zones. This fact leads the model to incorrectly identify 

regions where events occur, resulting in underestimation of the 

AHI.  

V. DISCUSSION  

This study introduces a novel approach to evaluate an 

interpretable CNN-RNN model using nocturnal ECG signals to 

directly estimate the AHI per subject and thus determine 

pediatric OSA severity. This is the first study using an 

interpretable DL model focused on explaining the decision of 

the model and interpreting relevant ECG patterns. It is 

noteworthy that using single-channel ECG signals allows the 

use of nocturnal recordings from PSG to estimate OSA severity, 

reducing the time and cost of diagnosis. Moreover, SleepECG-

Net allows the extraction of intricate ECG patterns through 

CNN while determining the temporal distribution of respiratory 

episodes in the nocturnal sequence using RNN. The findings 

underscore the potential of using a DL approach with ECG 

signals for accurately establishing the severity of pediatric 

OSA. Grad-CAM facilitates the identification of cardiac 

 
Fig. 3: Confusion matrices of the model in the CHAT, UofC, and CFS test sets. no OSA: AHI<1 (e/h); mild OSA: 1≤AHI<5 (e/h); moderate OSA: 5≤AHI<10 

(e/h); severe OSA: AHI≥10 (e/h). 
 

 Table III  
Diagnostic performance of the SleepECG-Net model in the test set. 

AHI 

cutoff 

Test 

set 

Se 

(%) 

Sp 

(%) 

PPV 

(%) 

NPV 

(%) 

LR+ Acc 

(%) 

2class 

kappa 

1 

e/h 

CHAT 89.7 46.2 85.7 55.6 1.67 80.26 0.38 

UofC 88.5 33.0 86.0 38.0 1.32 78.70 0.23 

CFS 83.3 42.5 46.5 81.0 1.45 57.81 0.22 

5 

e/h 

CHAT 72.2 93.8 83.3 88.7 11.61 87.29 0.69 

UofC 66.3 89.2 81.3 78.9 6.14 79.71 0.57 

CFS 66.7 100 100 98.4 N. D 98.44 0.79 

10 

e/h 

CHAT 58.5 97.7 80.0 93.7 25.17 92.31 0.63 

UofC 63.8 95.9 82.5 89.7 15.47 88.38 0.65 

CFS 66.7 100 100 98.4 N. D 98.44 0.79 

Se (sensitivity); Sp (specificity); PPV and NPV (positive and negative 

predictive value); LR⁺ and LR⁻ (positive and negative likelihood ratio); N.D 

(not defined). 
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patterns linked to pediatric OSA. This approach could serve as 

a valuable starting point to assess risk of cardiovascular co-

morbidities, a clinically relevant issue in children with OSA [1].  

A. Configuration of SleepECG-Net approach  

This study implemented a novel regression-based model 

using a combination of CNN and RNN to directly estimate the 

AHI and subsequent pediatric OSA severity by analyzing 

nocturnal ECG recordings. This type of architecture has been 

previously evaluated in adults [14], [15]. However, in the 

pediatric OSA context, a CNN-RNN approach had only been 

used once and applied to AF and SpO2 signals, but not to ECG 

tracings [20]. Our approach demonstrates a moderate to high 

level of accuracy in predicting pediatric OSA, thus revealing its 

diagnostic usefulness.  

Nocturnal ECG recordings with dimensions of 48 x 60000 

are suitable for block processing of CNNs encapsulated in TD 

layers, as demonstrated in a prior study [13]. This dimensional 

choice enabled the transfer of the optimal architecture, along 

with its associated weights and layers, from the model used in 

the previous study to the CNN-related blocks used in this 

research. The transfer learning process using a fine-tuning 

approach was performed by training the model, leveraging 

previously acquired knowledge while reducing model training 

time and complexity.  

Finally, although training the SleepECG-Net model is 

computationally expensive, the training process is performed 

offline, allowing the trained model to be efficiently tested in 

real-time (online) with reduced computational cost (6x10-2 

seconds per subject).   

B. Diagnostic performance 

Looking at the confusion matrices, it can be seen that 98.5% 

(CHAT), 94.8% (UofC), and 100% (CFS) of no OSA patients 

have an estimated AHI (AHIest) <5 e/h (no OSA or mild OSA). 

In addition, of the subjects with actual AHI (AHIPSG) <5 e/h, 

93.8% (CHAT), 89.2% (UofC), and 100% (CFS) were 

estimated as AHIest<5 e/h. Additionally, 99.5% (CHAT), 97.9% 

(UofC), and 100% (CFS) of subjects belonging to the no OSA 

or mild OSA were estimated with an AHIest<10 e/h. Finally, 

100% (CFS), 93.2% (UofC), and 96.6% (CHAT) predicted as 

severe OSA (AHIest≥10 e/h) are at least moderate OSA patients. 

Hence, a possible screening protocol can be derived to show the 

clinical usefulness of our proposal as follows:  i) If AHIest<1 e/h, 

discard the presence of OSA because most of these patients 

(91.3% in UofC, 100% in CFS, and 100% in CHAT) will have 

an AHIPSG<5 e/h. If symptoms persist, these children may be 

eventually referred to PSG [39]; ii) if 1≤AHIest<5 e/h, suggest 

PSG since doubts arise about the actual diagnosis of the 

patients; iii) if 5≤ AHIest<10 e/h, consider treatment, since most 

probably (95.5% in UofC, and 97.9% in CHAT) these subjects 

 
Fig. 4: Grad-CAM visualizations of some representative findings in an ECG signal of the CHAT dataset. Fig. 4 (a) shows the heatmap of the nocturnal ECG 

signal. Fig. 4 (b) and 4 (c) are zooms of the cluster (C) marked in Fig.4 (a). Zones of change in heart rate (HR) increase and decrease (↑HR and ↓HR) are indicated 

in circles. The color bar indicates at 0 (yellow) the zones of lower relevance and at 1 (brown) the zones of higher relevance.  
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have at least a mild OSA. This threshold does not apply to the 

CFS database, because there are no patients with moderate 

OSA; iv) if AHIest≥10 e/h, suggest treatment since most of these 

children (93.2% in UofC, 96.7% in CHAT, and 100% in CFS) 

have an AHIPSG≥5 e/h. Additionally, it should be considered a 

further observation of these patients since they are likely to have 

residual OSA after treatment [1]. This screening protocol would 

present an innovation in the context of pediatric OSA diagnosis. 

In this respect, this protocol would avoid the need for 49.1% 

(UofC), 44.1% (CHAT), and 35.9% (CFS) of complete PSGs. 

Moreover, only 1.5% (CHAT), 5.2% (UofC), and 0% (CFS) of 

children with an AHIPSG<1 e/h would be indicated for treatment 

and 0% (CHAT), 3.2% (UofC), and 0% (CFS) of children with 

an AHIPSG>5 e/h would not be referred to PSG/treatment in the 

first visit to the specialist. This solution helps reduce waiting 

lists and medical costs for diagnosing OSA, while also offering 

a more appropriate diagnostic procedure for children.     

C.  SleepECG-Net explicability using Grad-CAM  

This study introduces a novel approach by presenting, for the 

first time, the combination of a DL model and the application 

of an XAI method with nocturnal ECG signals to detect 

pediatric OSA. Analyzing the XAI results, it seems obvious that 

SleepECG-Net uses the bradycardia-tachycardia patterns (Fig. 

4 (b)  and Fig. 6 (b.2)) as these are well-known physiological 

responses of the heart to respiratory events, particularly when 

such events are obstructive in nature [3]. Similarly, the use of 

information from QT segments, T, and P waves (Fig. 4 (c) and 

Fig. 5 (d)) coincides with evidence on P wave and QT interval 

dispersion in pediatric OSA, mainly in the most severely 

affected cases [40]. Prolonged P wave duration could indicate a 

delay in atrial conduction related to the pathophysiological 

mechanisms contributing to the development of atrial 

fibrillation in adult OSA [40], [41]. Concerning the T-wave, 

this presents a contractile property associated with increased 

HR. However, abnormalities in this wave and changes in the ST 

segment could suggest possible cardiac alterations [30], [41], 

[42]. Likewise, QT interval dispersion may be associated with 

an increased risk of ventricular arrhythmia and be linked to a 

higher probability of sudden death [30], [43], [44]. These facts 

have also been evidenced in severe pediatric OSA [45]. 

Moreover, Grad-CAM focus on the U wave (Fig. 5 (c)) is 

supported by evidence indicating its dependence on HR [46]. 

The prominent presence of this wave can be correlated with 

bradycardia and long QT syndrome, both clinical conditions 

documented in pediatric OSA [3], [40]. In addition, Grad-CAM 

 
Fig. 5: Grad-CAM visualizations of some representative findings in different regions of one single ECG signal of the CHAT test set illustrating correct predictions. 

Fig. 5 (a) shows the heatmap of the overnight ECG signal. Fig. 5 (b), 5 (c), and 5 (d) are zooms of the clusters (C) 1, 3, and 4, as noted in Fig. 5 (a). U: ECG U 
wave; QRS: ECG QRS complex.  The color bar indicates at 0 (yellow) the zones of lower relevance and at 1 (brown) the zones of higher relevance. 
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focus on QRS duration and amplitude (Fig. 5 (d) and Fig. 6 

(a.2)) responds to evidence of the occurrence of cardiac 

arrhythmias related to pediatric OSA due to changes in HR in 

the form of bradycardia-tachycardia patterns [3], [45]. 

Alterations in the QRS complexes are likely related to 

ventricular hypertrophy or even altered ventricular geometry 

[47], [48]. This condition increases the risk of cardiovascular 

abnormalities in pediatric OSA, preferentially in the most 

severe cases [3], [4].  

Taken together, Grad-CAM results show that SleepECG-Net 

is focusing on not only well-known cardiac OSA-pediatric 

patterns but also on ECG patterns coherent with the risk of 

cardiovascular disease, thus paving the way towards the 

identification of pediatric OSA instances in which a higher 

cardiac risk may be present.   

D. Comparison with previous studies  

Focusing on pediatric OSA, several studies have evaluated 

conventional and advanced FE methods to estimate pediatric 

OSA severity by analyzing cardiac signals other than ECG. 

Gutiérrez-Tobal et al. [8] conducted a systematic review which 

noted that most ML research on pediatric OSA diagnosis has 

centered around SpO2 signals. Their review, which did not 

include any studies based on ECG signals, conducted a meta-

analysis to compile Se and Sp metrics from 19 studies. While 

comparisons between different biological signals should be 

approached cautiously, a comparison with the performance 

metrics in our proposal is still valid. This study reported 

diagnostic performance at 1, 5, and 10 e/h, with Se values of 

84.9%, 71.4%, and 65.2%, respectively, and Sp values of 

49.9%, 83.2%, and 93.1%.  When compared to our model, 

SleepECG-Net achieved a higher Se at the 1 e/h cutoff in CHAT 

and UofC. At the 5 and 10 e/h cutoffs, the Sp values of our 

model were higher in CHAT, UofC, and CFS than those in the 

meta-analysis, as well as the Se in CHAT and CFS at 5 e/h and 

10e/h, respectively. A comparison between the current study 

and previous studies is presented in Table IV. Our DL approach 

exhibited higher Se for CHAT and UofC when compared to 

Shouldice et al. [9] (88.5-89.7% vs. 85.7%) for 1 e/h, and higher 

LR+ in CHAT and UofC for 10 e/h (LR+ = 15.5-25.2 vs. LR+ = 

3-3.5) [11], [49], [50]. It should be noted that our study 

incorporated 2,655 subjects, providing statistically more robust 

and generalizable results compared to previous studies that 

included relatively restricted data samples consisting of 21 to 

50 subjects/cohort. In terms of Acc, the current DL approach 

achieved higher values at all thresholds in CHAT compared to 

 
Fig. 6: Grad-CAM visualizations of some representative findings in an ECG signal of the CHAT test set illustrating accurate predictions. Fig. 6 (a.1) and 6 (b.1) 
show the heatmaps of two different nocturnal ECG signals. Fig. 6 (a.2) and 6 (b.2) are zooms of the areas marked in blue rectangles. Zones of change in HR 

increase and decrease (↑HR and ↓HR) are indicated in circles. Colorbar indicates at 0 (yellow) the zones of lower relevance and at 1 (brown) the zones of higher 

relevance. ↓A: Decrease in the amplitude of QRS complexes. D: ECG segment duration; h: hours; s: seconds. 
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those reported by Martín-Montero et al. [51], [52]. This study 

obtained Acc<80% in 1 e/h, Acc<87% in 5 e/h, and Acc<92% 

in 10 e/h. Of note, Martín-Montero et al. [10] used the same 

CHAT database as in the present study. Overall, our algorithm 

presented higher values of k4 (0.410 vs. 0.166) and Acc4 

(61.54% vs. 41.89%), highlighting the superiority of DL over 

traditional FE methods.    

In a previous study [13], we applied a CNN-based model to 

estimate apneic events and pediatric OSA severity using single-

lead ECG signals and the same CHAT database. The approach 

we propose here is an improved version of that earlier model. 

We obtained higher overall performance by evaluating the 

current proposal using this database, reaching higher k4 (0.410 

vs. 0.373) and Acc4 (61.54% vs. 57.86%), and higher Acc at 1, 

5, and 10 e/h. Furthermore, we obtained higher values in all 

metrics for 1 e/h apart from Se. This finding demonstrates the 

validity of our proposal to discern between pediatric OSA and 

unaffected children. Additionally, some LR+ values obtained 

from 5 e/h onwards are remarkable, and SleepECG-Net 

presents high reliability in detecting moderate OSA (LR+ = 11.6 

vs. LR+ =8.9). Comparing k2 results, we obtained the same value 

for 5 e/h (k2 = 0.69) and higher values at 1 e/h (k2 = 0.38 vs. k2 

= 0.30) and 10 e/h (k2 = 0.63 vs. k2 = 0.60). This difference in 

both thresholds is noteworthy because it indicates that this 

proposal can better discern at the more restrictive threshold and 

differentiate between the presence or absence of disease. 

Furthermore, a higher k2 value at the 10 e/h threshold suggests 

that SleepECG-Net performs better in detecting the most severe 

subjects. This is very encouraging given that children with 

moderate to severe OSA are more likely to experience 

cardiovascular and neurocognitive morbidities [3]. This 

improvement in diagnostic performance is indicative that 

SleepECG-Net is better suited to the analysis of long ECG 

sequences with possible apneic clusters and signal patterns 

linked to the presence of the events. Accordingly, the proposal 

performs better at identifying OSA, providing more accurate 

predictions when using ECG signals. Finally, it is essential to 

highlight that the previous study could not justify the decisions 

made by the model, which limits its confidence in clinical 

practice settings. The application of XAI herein interprets the 

results obtained while opening the way to acquiring new 

knowledge in the field of OSA and discovering new clinically 

relevant ECG patterns.  

Table IV also show previous studies that have used various 

traditional machine learning (ML) approaches, combining the 

use of SpO2 signals with features derived from cardiac 

information (HR and pulse rate variability) and achieving 

encouraging performance [53]–[55]. Ye et al. [53] achieved an 

Acc = 90.4% at 1 e/h using the XGBoost method, but their 

reduced test set limited generalizability. Garde et al. [54] 

 
Fig. 7: Grad-CAM visualizations for some representative findings in ECG signals of the CHAT test set incorrectly predicted. Fig. 7 (a) depicts the heatmap of a 

nocturnal ECG signal and a zoom region associated with model overestimation. Fig. 7 (b) shows the heatmap of a nocturnal ECG signal and a zoom region 

related to underestimating the model. The colorbar indicates at 0 (yellow) the zones of lower relevance and at 1 (brown) the zones of higher relevance.  
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reported Acc of 75%, 82%, and 89% at 1, 5, and 10 e/h, 

respectively, using a binary logistic regression model. Our 

study showed higher Acc across all thresholds. Dehkordi et al. 

[55] achieved an Acc = 71% and Se = 76% sensitivity at 5 e/h 

using PRV signal analysis, our model surpassing these metrics. 

Moreover, the limited accessibility of the data in these studies 

hinders the generalization of their results. Additionally, our 

study improves technical complexity and simplification by 

using only one signal instead of two. 
Despite the most interesting discussion relying on comparing 

our results with those studies using cardiac information, other 

previous studies have implemented various traditional ML 

approaches [7], [56]. Moreover, some studies used the same 

CHAT and UofC databases along with DL alternatives for 

diagnosing pediatric OSA, demonstrating higher performance 

in pediatric OSA‐related diagnosis than previous ML 

approaches [20], [57], [58]. All these studies mainly focused on 

the analysis of overnight SpO2 and/or AF signals and reached 

promising results. However, by analyzing ECG signals, we can 

consider the possible OSA pathophysiological effects on the 

cardiac system, including those associated with cardiac 

morbidities. In addition, our approach enhanced diagnostic 

simplification compared to the methods proposed by Bertoni et 

al. [7], and  Jiménez-García et al. [20], [57], which relied on 

two signals.   

Finally, regarding the state of the art using XAI techniques 

for healthcare, most studies interpreting FE models with 

categorical input data used Shapley Additive Explanations 

(SHAP), while those implementing CNN-based methods with 

time series or images typically used Grad-CAM [59]. Our study 

involves overnight ECG recordings acting as time series data, 

where temporal relationships are crucial. The high 

computational load of SHAP, especially with DL models, and 

its additive nature may oversimplify the complex relationships 

in ECG data, potentially providing incomplete explanations 

[18]. Preliminary tests using SHAP revealed a computational 

cost 2.4 times higher than that of Grad-CAM. This point, 

combined with our objective of highlighting specific patterns in 

Table IV 

State-of-the-art studies on using cardiac signals to diagnose pediatric OSA. 

Author Signal 
#Total 

children/#Test 
 

ML approach/Model/ 
Validation 

/XAI method  

AHI (e/h) 
Se 
(%) 

Acc 
(%) 

LR⁺ 

Shouldice et al. [9]  RRa 50/25 FE/QD /Loo cv /- 1 85.7 84.0 4.7 

Gil et al. [49] 
PPG+HRVa 21/21 

FE/QD / - 
/ -  

>18 OSA 
<5 No 
OSA 

87.5 80.0 3.1 

Gil et al. [50] 
PPG+PTTVa 21/21 

FE/QD / - 
/ - 
 

>18 OSA 
<5 No 
OSA 

75.0 80.0 3.1 

Lázaro et al. [11] 
PPGa 21/21 

FE/LDA/ 
Loo cv /- 

>18 OSA 
<5 No 
OSA 

100.0 86.7 3.5 

Martín-Montero et 
al.[52] HRVa 

1738/757  
(CHAT, UofC) 

FE/MLP / - / - 
 

1 
 5 

 10 

76.3 
62.5 
66.7 

63.4 
81.0 
89.3 

1.2 
4.0 
7.9 

Martín-Montero et al. 
[51]  HRVa 

1738/757 
(CHAT, UofC) 

FE/LDA / - / - 
1 
 5 

 10 

85.5 
64.4 
53.7 

74.6 
85.0 
91.6 

1.3 
10.4 
23.1 

Ye et al. (2023). [53] 
SpO2 (ODI)+ HRa 3,139/628 FE/XGBoost/Holdout/SHAP 

1 
5 

10 

90.3 
82.1 
84.8 

90.4 
85.7 
89.8 

N.D 
N.D 
N.D 

Garde et al. [54] 
SpO2  (ODI)+ PRV 

(Spectral) 
207 

FE/LR (for each threshold) / 
Holdout/- 

1 
5 

10 

80.0 
85.0 
82.0 

75.0 
82.0 
89.0 

N.D 
N.D 
N.D 

Dehkordi et al. [55] PRV 146/146 FE/LASSO/ -/- 5 76.0 71.0 N.D 

Martín-Montero et al. 
[10] HRVa 

1610/296 
(CHAT) 

FE/LSboost/ 
Holdout / 

LIME 

1 
 5 

 10 

90.8 
66.7 
40.0 

80.1 
63.2 
84.1 

1.2 
1.7 
5.0 

García-Vicente et al. 
[13]  ECG 

1610/299 
(CHAT) 

DL/CNN / 
Holdout / - 

1 
 5 

 10 

84.2 
76.7 
53.7 

75.9 
87.0 
92.0 

1.6 
8.9 

27.7 

 
 
 

Our proposal 
 
 
 

ECG 

1610/299 
(CHAT) 

DL/CNN-BiLSTM / 
Holdout / 
Grad-CAM  

 
 

1 
 5 

 10 

89.7 
72.2 
58.8 

80.3 
87.3 
92.3 

1.7 
11.6 
25.2 

981/981 
(UofC) 

88.5 
66.3 
63.8 

78.7 
79.7 
88.4 

1.3 
6.1 

15.5 

 
64/64 
(CFS) 

83.3 
66.7 
66.7 

57.8 
98.4 
98.4 

1.45 
N.D 
N.D 

RR = the period between two R peaks; PPG = photoplethysmography; HRV = heart rate variability; HR = heart rate; PTTV = pulse transit time variability; PRV 

= pulse rate variability, LASSO = least absolute shrinkage operating characteristic curves. a Features derived from these signals. N.D: Not defined. 
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the ECG signal that influence AHI estimation, led to the 

preference for using Grad-CAM. Grad-CAM effectively 

visualizes the areas of the ECG signal that contribute the most 

to the model's decisions, making it more suitable for our study 

than SHAP, which would be better for a detailed quantitative 

interpretation of sample importance. Therefore, although we 

recognize the existence of multiple techniques for 

explainability in DL, we chose Grad-CAM because of its 

balance between transparency, performance, computational 

burden, ease of use, and clinical applicability. In this sense, 

Grad-CAM has been notably applied to explain models using 

ECG signals to diagnose cardiac diseases [59]. However, 

limited studies have used XAI methods for diagnosing OSA, 

mainly focusing on FE models rather than direct DL on raw 

signals. In pediatric OSA diagnosis, only three studies used 

XAI, with methods including SHAP for demographic and heart 

rate variables and Grad-CAM for localization maps over AF 

and SpO2 signals [10], [20], [53].   

E. Limitations and future work 

Several limitations should be mentioned. We used CHAT to 

develop and internally validate SleepECG-Net and UofC and 

CFS to externally validate SleepECG-Net. However, other 

strategies could be used to increase the generalizability of our 

approach. Moreover, the different databases were annotated by 

various specialists. This may be a limitation for SleepECG-Net 

to learn properly, but at the same time, it increases the 

objectivity of the method by not being biased to a single 

specialist. Thus, validating the algorithm on a more extensive 

set of databases and ambulatory overnight/daytime Holter ECG 

recordings would be beneficial to assess its performance in 

different circumstances and populations. Furthermore, despite 

the adequacy of the DL algorithm used, novel architectures, like 

other hybrid models and transformers, could be explored. 

Another future work could consist of implementing a multiclass 

regression model where the AHI and other variables related to 

cardiac risk factors are jointly estimated. Relative to this 

approach, exploring the use of ECG patterns to identify specific 

phenotypes OSA would allow for better classification and 

understanding of the disease, facilitating the development of 

more accurate and effective diagnostic and treatment strategies. 

Additionally, it would be interesting to develop DL algorithms 

for directly detecting abnormalities in ECG data to identify 

possible apneic events. In terms of model interpretability, 

although Grad-CAM is suitable for our proposal, other global 

XAI methods could also be evaluated in the future.  

 

VI. CONCLUSIONS  

To the best of our knowledge, this study is the first to evaluate 

an interpretable model based on a combination of CNN and 

RNN networks using overnight one-lead ECG signals to 

directly estimate the AHI and the OSA severity in pediatric 

patients. Our approach demonstrated higher diagnostic 

performance for pediatric OSA than in prior studies, especially 

in severe cases, which are closely linked to heightened heart 

cardiovascular risk. In relation, XAI results indicated 

recognition of both known ECG patterns associated with OSA 

and potential patterns related to cardiovascular morbidity. 

These findings pave the way for automated ECG analysis to 

identify cardiovascular end-organ dysfunction. In conclusion, 

implementing an interpretable DL approach using nocturnal 

ECG signals could offer an alternative tool to PSG with a high 

potential to facilitate timely, objective, and accurate diagnosis 

of the disease. Furthermore, integrating XAI techniques to 

demonstrate the decisions generated by the models contributes 

to strengthening confidence in such systems, promoting their 

effective adoption in clinical practice.  
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