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Abstract— Obstructive sleep apnea (OSA) in children is a
prevalent and serious respiratory condition linked to
cardiovascular morbidity. Polysomnography, the standard
diagnostic approach, faces challenges in accessibility and
complexity, leading to underdiagnosis. To simplify OSA diagnosis,
deep learning (DL) algorithms have been developed using cardiac
signals, but they often lack interpretability. Our study introduces
a novel interpretable DL approach (SleepECG-Net) for directly
estimating OSA severity in at-risk children. A combination of
convolutional and recurrent neural networks (CNN-RNN) was
trained on overnight electrocardiogram (ECG) signals. Gradient-
weighted Class Activation Mapping (Grad-CAM), an eXplainable
Artificial Intelligence (XAl) algorithm, was applied to explain
model decisions and extract ECG patterns relevant to pediatric
OSA. Accordingly, ECG signals from the semi-public Childhood
Adenotonsillectomy Trial (CHAT, n=1610) and Cleveland Family
Study (CFS, n=64), and the private University of Chicago (UofC,
n=981) databases were used. OSA diagnostic performance reached
4-class Cohen's Kappa of 0.410, 0.335, and 0.249 in CHAT, UofC,
and CFS, respectively. The proposal demonstrated improved
performance with increased severity along with heightened
cardiovascular risk. XAl findings highlighted the detection of
established ECG features linked to OSA, such as bradycardia-
tachycardia events and delayed ECG patterns during
apnea/hypopnea occurrences, focusing on clusters of events.
Furthermore, Grad-CAM heatmaps identified potential ECG
patterns indicating cardiovascular risk, such as P, T, and U waves,
QT intervals, and QRS complex variations. Hence, SleepECG-Net
approach may improve pediatric OSA diagnosis by also offering
cardiac risk factor information, thereby increasing clinician
confidence in automated systems, and promoting their effective
adoption in clinical practice.

Index Terms— Pediatric obstructive sleep apnea (OSA), deep
learning (DL), eXplainable Artificial Intelligence (XAl),
electrocardiogram (ECG), Gradient-weighted Class Activation
Mapping (Grad-CAM).
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I. INTRODUCTION

EDIATRIC obstructive sleep apnea (OSA) is a frequent

respiratory disorder with a prevalence ranging from 1% to
5% [1]. It occurs when the upper airway is collapsible during
sleep, causing repeated episodes of apnea (no airflow) and
hypopnea (reduced airflow) [1], [2]. When untreated, pediatric
OSA can lead to a multitude of end-organ morbidities,
including long-term neurocognitive and behavioral deficits and
decreased metabolic function [3]. It also induces impaired
autonomic nervous system regulation, ventricular hypertrophy,
and high blood pressure in both the pulmonary and systemic
circulation. These conditions increase the risk of long-lasting
cardiovascular disease that may manifest in both childhood and
adulthood, while adversely impacting the overall health and
quality of life of affected children [1], [3], [4].

OSA is typically diagnosed by an overnight
polysomnography (PSG) test, performed in a specialized
laboratory while the patient sleeps [1]. During the test, different
biomedical signals, such as electrocardiogram (ECG),
electroencephalogram (EEG), electromyogram (EMG), blood
oxygen saturation (SpO), airflow (AF), and end-tidal
capnography are recorded synchronously to determine the
apnea-hypopnea index (AHI). This index is the rate of apneic
and hypopneic events per hour of sleep (e/h) [5]. According to
the guidelines of the American Academy of Sleep Medicine
(AASM), apneas in children are defined as a decrease of >90%
in AF signal for at least two respiratory cycles. In comparison,
hypopneas are defined as a decrease of >30% in AF
accompanied by at least a 3% reduction in SpO. or
electroencephalographic arousal [6]. Following these criteria,
once the AHI is established, it is used to measure the presence
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and severity of OSA. Despite its effectiveness, PSG requires
monitoring multiple biomedical signals, specialized facilities,
and qualified personnel [1], [2]. This makes PSG an expensive,
complex, and uncomfortable method with limited availability,
particularly in pediatric facilities. As a result, the disease is
often underdiagnosed or diagnosed late [1].

Over the last decade, researchers have been intensively
exploring the feasibility of alternative automated methods to
simplify the diagnosis of pediatric OSA [7]. Most studies have
focused solely on signals such as SpO and AF, thus limiting
their attention to respiratory information associated with the
disease [8]. However, it is essential to consider the ECG signal
because of the strong interdependencies between the
cardiovascular and respiratory systems during apneic events.
These episodes have been linked to bradycardia-tachycardia
patterns, highlighting the importance of incorporating the ECG
signal while studying OSA [3], [9]. Additionally, OSA has been
associated with an increased likelihood of developing
cardiovascular morbidity that may continue and progress into
adulthood, particularly when the condition remains untreated
[3], [4]. In past studies, several proposals have investigated
cardiac signals using feature-engineering (FE) techniques such
as heart rate variability (HRV) or photoplethysmography (PPG)
[10], [11].

Unlike traditional FE methods, deep learning (DL)
approaches can handle the complexities of signals directly
without the need for a prior characterization process [12]. We
previously combined the use of nocturnal ECG data along with
DL techniques based on a convolutional neural network (CNN)
to estimate pediatric OSA [13]. In adults with OSA, CNNs and
recurrent neural networks (RNNs) have been effectively
proposed to analyze various cardiorespiratory signals derived
from sleep studies, including ECG signals [14], [15]. On the one
hand, CNNs allow the automatic identification of complex
patterns in data [12], while RNNs were designed to capture
temporal  interdependences  [16]. Combining  both
computational architectures, CNNs allow for automatically
extracting features of apneic events, and RNNs allow capturing
temporal and sequential relationships that are crucial to
correctly identify the recurrence of apneic events and cardiac
patterns throughout the nocturnal recording [12], [16]. In this
regard, CNN-RNN architectures are a feasible option to directly
address AHI estimation and OSA detection, as they can
simulate the recurrence of cardiac patterns induced by apneic
events in the ECG signal [17].

Even though advanced DL methods have shown promise in
predicting OSA, their main drawback lies in the inherent
requirement for more explainability of their outcomes [18].
This shortcoming is crucial, especially in healthcare, where
professionals must understand the process and reasoning behind
automated decisions to fully trust them. In this context,
eXplainable Artificial Intelligence (XAI) techniques are
essential to provide transparency and interpretability to
complex computational models [18]. Specifically, we consider
the XAl application to be particularly relevant when analyzing

ECG in pediatric OSA context. The ability to discern the
patterns present in the signal, those on which automatic
algorithms focus, could offer important insights on how to
determine the severity of OSA in children. Furthermore, it
could generate new pathophysiological cardiovascular risk-
related features linked to the ECG signal in pediatric OSA. One
of the most popular XAl techniques used to analyze biomedical
signals is Gradient-weighted Class Activation Mapping (Grad-
CAM), which uses gradient information in the convolutional
layers to identify regions of the highest importance in the input
data, thereby informing the predictions of a CNN model [19].
Grad-CAM has already proven its usefulness in identifying
physiological features related to apneic events and sleep stages
in pediatric OSA, although no previous study has applied it to
ECG data [20], [21].

Accordingly, our study presents two noteworthy novelties.
Firstly, we aimed to develop a novel CNN-RNN based
regression approach using the transfer learning technique to
directly estimate the AHI with overnight single-lead ECG
signals, thus enabling an automated and interpretable diagnosis
of pediatric OSA presence and severity. One of the main
reasons for selecting regression is the delay in cardiac
manifestations concerning apneic events [3]. Secondly, we
implemented the use of Grad-CAM to interpret a CNN-RNN
approach fed with ECG signals from the pediatric population.
This novelty facilitates the extraction of relevant ECG patterns,
allowing for the establishment of the assumed link between the
cardiovascular and autonomic systems and pediatric OSA. This
aspect also serves as an intriguing research gateway aiming to
assess the potential cardiovascular risk in pediatric OSA.

Thus, we hypothesized that our integrated SleepECG-Net
model, along with the Grad-CAM technique, would simplify
diagnosis and enhance interpretability. Consequently, the
objectives of this study were twofold: 1) To evaluate a CNN-
RNN regression approach using full-night ECG recordings for
estimating AHI and establishing the severity of pediatric OSA,
and 2) to apply Grad-CAM XAl algorithm as a method for
interpreting the decisions taken by the model and identify
relevant ECG patterns related to pediatric OSA.

Il. SUBJECTS AND SIGNALS

Three databases were used to conduct the present study. First,
we used the upon-request public database Childhood
Adenotonsillectomy Trial (CHAT), which contains 1610 valid
ECG recordings from PSG studies performed in pediatric
patients aged 5 to 9.9 years [22]. CHAT constitutes a
randomized, multicenter, and single-masked design study that
complied with the Declaration of Helsinki (clinical trial:
NCT00560859) [22], [23]. Study recordings were partitioned
into a training set (60%) to train the model, a validation set
(20%) to adjust the optimal configuration, and a test set (20%)
to evaluate model performance and interpret the results. This
partitioning was conducted so that each subject was exclusively
assigned to one of the sets, avoiding duplication. AHI values
were used as labels for the input data in the algorithm.
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The private database obtained from the Pediatric Sleep Unit
of the Medicine Comer Children's Hospital from University of
Chicago (UofC), USA, was also included [24]. This database
included 981 sleep studies of children aged between 0 and 13
years, who were referred to the pediatric sleep laboratory
following symptoms and complaints commensurate with
clinically suspected OSA. The UofC Ethics Committee
approved the research protocol (#11-0268-AM017, #09-115-B-
AMO031 and #IRB14-1241). Informed consent was obtained
from the legal caretakers of all children. This de-identified
database was only used for external validation of the model
developed with CHAT training dataset. Therefore, the 981 ECG
recordings in the UofC sample served as a test set.

Finally, the public database obtained from the Cleveland
Family Study (CFS) Coordinating Center was used [25].
Detailed information can be obtained from the National Sleep
Research Resource website (https://sleepdata.org/datasets/cfs).
The CFS is the world's most extensive family study dedicated
to the research of sleep apnea. The study covers 2284
individuals from 361 families, followed for up to 16 years over
five visits (1990-2006). Visit 5 involved complete overnight
PSGs used to extract ECG recordings. Study participants were
divided into 9 categories according to their age range. Because
our model is designed for pediatric OSA, ECG recordings
corresponding to the first age category, encompassing ages 5 to
14 years, were selected (n=64). Parents were asked to complete
a questionnaire for their children. This database was only used
for external validation of the model.

PSG recordings from the databases were visually assessed by
medical sleep specialists, who manually scored apneic and
hypopneic events and established AHI following the scoring
rules according to the AASM [5], [26]. Consequently, the AHI
was used for diagnosing and determining the severity of OSA
in children. For our study, we defined four OSA severity groups
based on three common AHI thresholds (AHI = 1, 5, and 10
e/h), in agreement with previous pediatric OSA studies [24],
[27]. Thus, the severity groups in this study included: no OSA
(AHI<1 e/h), mild OSA (1<AHI<5 e/h), moderate OSA
(5<AHI<10 e/h), and severe OSA (AHI>10 e/h). In CHAT and
CFS, the same scorers analyzed all recordings. Conversely, the
UofC dataset replicated real-world circumstances by including
many scorers as needed for the clinical operations of the sleep
center and by having different scoring standards throughout the
databases. Table | presents demographic and clinical data from
all children included in this study.

1. METHODS

Fig. 1 shows a general methodological workflow. Our
methodology involved implementing and evaluating an
interpretable CNN-RNN architecture using single-lead ECG
recordings (Sa,..., Sn) to estimate the AHI per subject (3s,...,
¥n). The model was fed with minimally preprocessed ECG
signals. Each signal was initially processed into CNN blocks to
obtain feature maps. Next, the CNN-derived feature sequences
were used to feed the RNN layers to obtain the AHI estimation.
Subsequently, an evaluation of the diagnostic ability of the
proposed algorithm was conducted. CHAT dataset was used for
SleepECG-Net training, hyperparameter tuning, and optimal
architecture selection, as well as to evaluate the diagnostic

Table |
Demographic and clinical information of the children under study.
CHAT UofC CFS
Training Validation Test Test Test
Subjects 988 323 299 981 64
(n) (61.37%)  (20.06%)  (18.57%) | (100%) | (100%)
Age 7.00 6.90 11.34
(ears) | [2oo) 10002001 poog f 80601 oo
Females 477 164 161 379 31
(n) (48.28%)  (50.77%)  (53.85%) | (38.63%) i (48.44%)
BMI 17.31 17.12 17.43 18.02 21.59
(kg/m?) [5.92] [6.25] [6.04] [5.86] [8.56]
AHI 2.64 2.45 2.32 3.8 0.57
(e/h) [4.77] [4.77] [5.11] [7.76] [1.18]
No 212 67 65 173 40
OSA®(n) | (21.46%)  (20.74%)  (21.74%) | (17.64%) | (62.5%)
Mild 488 167 144 401 21
OSA@(n) | (49.39%)  (51.70%)  (48.16%) | (40.88%) | (32.81%)
Moderate 159 44 49 178 0 (0%)
OSA®(n) | (16.09%)  (13.62%)  (16.39%) | (18.14%) 0
Severe 129 45 41 229 3
OSA®(n) | (13.06%)  (13.93%)  (13.71%) | (23.34%) | (4.69%)

Data are presented as number (percentage) or median [interquartile range].

BMI: body mass index; AHI: apnea-hypopnea index; e/h: events/hour.

®: AHI<1 (e/h): @: 1<AHI<S (e/h): ©: 5<AHI<10 (e/h): @: AHI>10 (e/h).
capability of the model (training, validation, and test sets,
respectively). UofC and CFS databases were used to externally
validate the model developed and tested with CHAT. Finally,
the Grad-CAM method was implemented to identify and
interpret the regions where the model was fixed to make the
AHI estimation.

A. Signal preprocessing

Following the guidelines established by the AASM, the
ECG-II lead was obtained in obtained in CHAT, UofC, and
CFS [5]. All databases were homogeneously preprocessed. The
raw signals were resampled at 100 Hz, as previously reported
[28], [29]. Subsequently, the continuous component was
corrected by removing the signal mean in 30-second windows.
A high-pass filter with a passband between 0.5 and 50 Hz was
then applied to reduce noise and avoid the loss of essential
frequency components, such as those related to the QRS
complexes [30].
All ECG recordings were empirically adjusted to 8 hours, as
this value yielded the highest performance in the validation set.
Recordings with fewer samples were padded including zeros at
the beginning of the signal, while those with more samples were
reduced by removing samples from the beginning, as was
implemented in previous OSA studies using unsegmented
cardiorespiratory signals [31], [32]. Then, ECG signals were

{Data: i Signals : { Preprocessing ! o
CHAT database Pedatic .
1610 recordings (SU ) ) { Deep
60% training - Resamplin N
20% validation ping SleepECGNet ™
20% test Nocturnal (100 Hz) P
UofC database BaE = CemifLes ECLINAH
D81 recordings signals component Lestlmat{on
CES databaseg extracted correction per subject
b4 recordings fromPSG - HPF(0.5-50 H2) (2]
inde endengt - Amplitude Explainable artificial
alidztion normalization i [intelligence
of the developed
SleepECG-Net

Fig. 1: Proposed workflow for developing, validating, and explaining
SleepECG-Net enabling prediction and interpretation of pediatric OSA
severity using ECG signal recordings. HPF: High pass filter; Sy: subject N;
i estimation of AHI in subject N.
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resized to have the input dimensions allowed by the SleepECG-
Net. This resulted in arrays of 48 segments, each lasting 10-min
(48x60,000x1 = 2,880,000 samples). This dimension is suitable
for block processing of CNNs encapsulated in time-distributed
(TD) layers. The 10-min segments were the optimal length
obtained to train the previously presented CNN model [13],
being appropriate to detect clusters of apneic events that have a
minimum duration of 10-min [33]. In addition, its dimension
allowed the transfer of the optimal architecture, including its
associated weights and layers from the CNN model presented
previously to the CNN-related blocks used in this study.
Finally, each segment was standardized [12]. As a data
augmentation method, we randomized 3 times the 48 segments
comprising ECG recordings in the CHAT training and
validation sets [34].

B. SleepECG-Net architecture

Fig. 2 shows the main components of the architecture
developed in this study. Below, the model process is outlined in
detail, showing the flow of data through each stage:

Input data: Overnight ECG recordings.

#Step 1: CNN component (conv blocks automatically discern

the intricate patterns within the ECG signal associated with

apneic events). The conv part was implemented using a

clustering of TD layers consisting of the previously presented

CNN layers trained with 10-min ECG signals [13].

1. Initialize CNN parameters: number of filters (Ng), kernel
size (Ksize), dropout probability (Pcnn)

2. Load pre-trained weights from previous study for transfer
learning.

3. For each 10-min ECG segment:

Pass through 14 conv blocks, each composed of:

a. 1D-conv layer comprised of a set of filters (Nr) with a
kernel size (Ksize) and zero padding.

Batch normalization

Rectified linear unit (ReLU) activation

Max-pooling

. Spatial dropout with probability Pcnn [12].

4, Repeat this for a total of 14 conv blocks (last 2 blocks
added and trained from scratch)

5. Flatten feature maps to 1D data for RNN processing.

#Step 2: RNN component (analyze the temporal distribution

of apneic events in the nocturnal sequence by identifying

characteristic ECG patterns).

6. Initialize bidirectional long short-term  memory
(BiLSTM) parameters: number BiLSTM units (Uistm),
dropout probability (Pistm)

7. Process each feature map from CNN output:

- Pass through 2 BiLSTM layers:

- Evaluate temporal dependencies in both forward and
backward directions.

- Output: refined sequence with temporal patterns
detected by LSTM [12].

8. Apply dropout with probability P stv after BILSTM.

9. Output: temporal features from the BiLSTM layers

#Step 3: Pass BiLSTM output to a fully connected (FC) layer

with a linear activation

Final output: AHI estimation per subject

©T o0 o

4
Input data: Overnight ECG recording
r A N\
10-min segment , ,,, (10-min segment ,,,, 10-min segment
T T T &
o
- Conv Conv Conv & x i _ Convblock
33 block block block 3*2 { cowip )
& g
* L ¥ ( Batch Norm |
(Flattenning] ... [(Flattenning] ... [Flattenning ] TD
- ( RelU ]
~ BiLSTM ( MaxPool _}
Q.
s i = Spatial
g BILSTM =
L Dropout
- FC
%— ¥
Q ¥;: AHI estimation per subject

Fig. 2: Overall scheme of the regression model based on a CNN-RNN
architecture proposed in the study. The input data to the CNN model consists
of the complete nocturnal ECG recordings of each subject. RELU = rectified
linear unit activation; TD = time distributed.
Specifically, an LSTM network is preferable over a basic RNN
since it can maintain relevant data in the sequence and preserve
it for several instances. Therefore, it maintains short-term
memory capabilities similar to conventional RNNs while
incorporating long-term memory functions. LSTM networks
comprise several units (Uistm) that determine the output
dimensionality and a dropout ratio with a certain probability
(PLstm). LSTM was chosen instead of the gated recurrent unit
(GRU) network because, in preliminary tests, higher
performance was observed.

Notably, the proposal is an improved approach to the CNN-
based model developed and validated in a previous study,
where the number of events per 10-min ECG segment was
estimated [13]. The optimal hyperparameters and weights of the
CNN from that study were transferred to the current model,
training and validating the SleepECG-Net as a transfer learning
process. CNN allows the model to learn complex patterns of the
ECG signal and RNN holds their temporal distribution
throughout the night. This enables the model to retain relevant
patterns across the time sequence while filtering out irrelevant
ones.

C. SleepECG-Net optimization and algorithm assessment

To achieve optimal algorithm performance, we tuned a set of
hyperparameters to minimize the generalization error of the
SleepECG-Net model and find the optimal-performing
configuration. Finally, an evaluation of the performance of the
algorithm was conducted to determine the optimal
hyperparameter configuration. For this purpose, 4-class
Cohen’s kappa coefficient (Ks) was considered [35]. Within the
validation set, we calculated the ki for subject-wise
classification of OSA severity. The selection process relied on
identifying the architecture with the highest ka.

D. SleepECG-Net interpretability using Grad-CAM

As a subsequent step in implementing SleepECG-Net, XAl
was applied using the Grad-CAM method. The purpose was to
analyze and comprehend the internal mechanisms of the model
in recognizing respiratory event-related information and
discerning cardiac patterns linked to pediatric OSA [36]. The
class activation mapping (CAM) technique emerged as an XAl
method to identify critical areas in the input that significantly
impact the output predicted by CNN used in image
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classification [36]. Effective implementation of CAM requires
a specific architecture incorporating a Global Average Pooling
layer to the final feature maps, followed by a fully connected
final layer that generates the predictions [18]. Grad-CAM
emerged in the context of improving the approach provided by
CAM. This approach extends the CAM method by using
gradients derived from convolutional layers, thus enabling the
identification of relevant areas in the input that impact the final
prediction. This method utilizes the gradient information
flowing into a specific convolutional layer by providing
gradient-based heatmaps. It offers detailed insight into
discriminative regions significantly influencing SleepECG-Net
decision-making [18], [36]. Heatmaps can be obtained for each
of the convolutional layers by following the steps below. First,
the gradients of the model output are determined concerning the
feature maps of the s-th convolutional layer. The resulting
gradients are averaged over all these feature maps according to
the following expression [36]:
as = £ Sk gur (1)

where T is the number of filters, corresponding to 64 features
maps in the s-th layer, y represents the output of the class of
interest and M¥ denotes the k-th feature map in the s-th layer.
Subsequently, heatmaps are obtained by a gradient-weighted
combination of the feature maps, which have been subjected to
ReLU activation. This process is expressed as follows [36]:

Lgraacam = ReLU (s as * M;() (2
A heatmap of the exact dimensions as the corresponding
convolutional layer feature maps is generated as a final step.
Then, this heatmap is normalized and resized to support a joint
display with the ECG signal. In this study, Grad-CAM was
calculated using the gradients obtained from each convolutional
layer to calculate a layer-specific heatmap. The final heatmap
was acquired by averaging all normalized and resized heatmaps
generated in each convolutional layer, as has been done in
previous studies [20], [21]. It allowed obtaining more detailed
representations with the contribution of all convolutional
layers. This approach improves the identification of specific
ECG patterns linked to pediatric OSA.

E. Statistical analysis and diagnostic performance

Test sets from CHAT, UofC, and CFS were used to estimate
the AHI. UofC was used to validate the SleepECG-Net model
independently from the database used to develop the model. To
assess the concordance between the estimated AHI and the
actual AHI, we computed the intraclass correlation coefficient
(ICC) [37]. To evaluate the efficacy of the proposed algorithm
in diagnosing pediatric OSA, subjects were assigned to one out
of the four OSA severities based on their estimated AHI.
Following the establishment of these categories, we computed
the confusion matrix and 4-class accuracy (Accs). Moreover, ks
was computed [35]. Finally, we computed the accuracy (Acc),
sensitivity (Se), specificity (Sp), positive and negative
predictive values (PPV and NPV), and positive and negative
likelihood ratios (LR* and LR") for OSA thresholds (AHI =1,
5, and 10 e/h).

IV. RESULTS

A. Optimal SleepECG-Net configuration

SleepECG-Net was trained on an NVIDIA GeForce RTX
4090 GPU. Training configuration utilized the He-normal
technique [12]. We optimized weight updates using the
adaptative moment estimation (Adam) method with an initial
learning rate of 10#[12]. Training data was fed in batches of 64
samples over 400 epochs [12]. The mean squared logarithmic
error was heuristically selected as the loss function to minimize
the Adam algorithm in the validation set [12]. Additionally,
early stopping was implemented to prevent overfitting.

Determining the optimal configuration for the model
involved exhaustive training with all combinations of
hyperparameter values, as outlined in Table Il. SleepECG-Net
training concluded with an early stop at epoch 57. A learning
rate value of 2.5 x 10* was reached to find the desirable
configuration of the model.

The convolutional layers in blocks:.s were composed of Ng =
16, Ksize = 33; blockss.g were composed of Ng = 32, Ksize = 17,
and blocksg.12 were composed of Ng = 64, Kgize = 7. A dropout
layer with a probability value Pcyn 0f 0.1 was applied in the last
layer of all blocks. To optimize the CNN architecture, an
exhaustive analysis was carried out. A detailed explanation of
this process can be found in a previous study [13]. Then,
additional convolutional blocks trained from scratch were
included. We varied the number of convolutional blocks (Ncnw)
in the range {1,2,3} to determine the optimal value.
Experimentation showed that an Ncnn Of 2 achieved the highest
performance in the validation set (ks = 0.316, ks = 0.350, and k4
= 0.344, adding 1, 2, and 3 layers, respectively). Accordingly,
increasing the value of Ncnn would not lead to an improvement
in capturing relevant patterns in the ECG. We also explored
training the CNN from scratch for AHI estimation (ks = 0.328).
However, higher performance was obtained using the transfer
learning process (ks = 0.350). Moreover, to find the optimal
number of LSTM layers (Nstm), we varied in the range {1,2,3},
obtaining the highest value of ks in the validation set using 2
layers (ka=0.343, ky= 0.344, and ks = 0.325, adding 1, 2, and 3
layers, respectively). Thus, increasing the complexity of the
model would not lead to better processing of the time domain
for identifying ECG regions linked to respiratory events. Once
the value of Nenn and Nistm was selected, we implemented an
exhaustive fitting strategy using the grid search method to
optimize the remaining hyperparameters in the Ncyn and Nistm
added layers. This involved testing all possible combinations of
the hyperparameters within the defined search space.
Specifically, the value Nr was varied in the range {64, 128,
256} for the additional convolutional blocks. Then, a search for
Ksize in range {1:2:7} and Pcnn in range {0.0:0.1:0.5} was
performed. Regarding BiLSTM layers, we varied Uistm in
range {2:2:12} and Pystm in range {0.0:0.1:0.5}. Lastly, Pprop
was explored within the range {0.0:0.1:0.5} regarding the final
dropout layer. The optimal hyperparameters of the 2 additional
convolutional blocks were Kgize = 3, and Pcww = 0.4.
Concerning LSTM layers, the optimal hyperparameters were
Uistm = 10, Pistm = 0.2, and Pprop = 0.3. This configuration
achieved the highest k4 value (ks = 0.350) in the validation set
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Table Il
Search space of the SleepECG-Net hyperparameters, optimal configuration, and highest 4-class kappa values obtained in the validation subset for each model

with each specific hyperparameter.

Model Hyperparameter ~ Search space 4-class kappa* Optimal
value
Nen 1,2,3 0.316,0.350,0.344 2
Additional Ne 64,128,256 0.350,0.322,0.323 64
CNN Ksize 13,57 0.349,0.350,0.343,0.344 3
blocks Ponn 0.1,0.2,0.3,0.4,0.5 0.342, 0.346, 0.334,0.350, 0.338 0.4
Nistm 12,3 0.343, 0.344, 0.325 2
Uistm 2,4,6,8,10,12 0.349,0.345,0.349,0.346,0.350,0.344 10
LST™M PLstm 0.1,0.2,0.3,0.4,05 0.349,0.350,0.349,0.345,0.349 0.2
Porop 0.1,0.2,0.3,0.4,05 0.343,0.349,0.350,0.349,0.343 0.3

4-class kappa

0.350

Nenn: number of conv blocks; Ksiz: kernel size of conv layers; Pcwn: the probability of dropout layers in CNN blocks; Nistm: number of LSTM layers; U stu:
units in LSTM layers; P stw: dropout probability of LSTM layers; Pg: the probability of the last dropout layer.
*Highest kappa value achieved by the model concerning each specific hyperparameter.

from CHAT. Consequently, it was chosen to evaluate
SleepECG-Net in the test sets from CHAT, UofC, and CFS.

In preliminary strategies, several tests were carried out to
obtain an optimal model and achieve the highest performance
of the algorithm. Initially, a model based on the pre-trained
CNN from the previous study, followed by a flattening layer
encapsulated in a TD layer combined with an RNN network,
was implemented. Different variants of RNN, including
bidirectional gated recurrent unit and BiLSTM networks, were
evaluated, and higher performance was achieved with a
BiLSTM in the validation set (ks = 0.310 vs. ks = 0.261). These
findings suggest that GRU intrinsic simplifications are
suboptimal for the complexity of our data. Once the RNN
architecture was optimized, preliminary tests were conducted to
reduce overfitting during training and facilitate optimal model
performance without applying data augmentation (ks = 0.310),
by doubling (ks = 0.317) and tripling (ks = 0.343) the signals by
randomizing the ECG segments of the input array. Further
increases in data generation resulted in unapproachable
computational costs. The highest value of ks = 0.343 in the
validation set was obtained with the model trained by tripling
the source data. Thus, applying data augmentation suggests the
improvement of the performance of SleepECG-Net and
generalization capability, as well as its ability to avoid
overfitting and improve robustness.

To corroborate the suitability of the regression approach for
our problem, we also implemented the SleepECG-Net
architecture for a binary (presence or absence of OSA) and
quaternary classification (presence and severity of OSA) task.
Comparing these results with those obtained in our proposed
regression approach, we found that, in the case of CHAT, in
general terms the results with our approach were superior (Accs
= 61.54% vs. 56.52% and ks = 0.410 vs. 0.335). For UofC, the
results with our approach were similar (Accs = 53.82% vs.
53.21% and ks = 0.335 vs. 0.333). In the case of CFS, we
obtained slightly higher values with this approach (Accs =
56.25% vs. 57.81% and ks = 0.249 vs. 0.259). Regarding the
binary classification results, if we compare the 2-class kappa
(ko) obtained with this model and those obtained with our
proposal for the 5 e/h threshold, we found that in CHAT we
obtained a higher performance (k. = 0.684 vs. 0.669), in UofC
database the performance was slightly lower (k; = 0.571 vs.
0.582), and the performance was the same in CFS (k; = 0.792).
Thus, AHI estimation is considered more reliable than direct

classification methods that require fixed AHI thresholds.
Relying solely on the classification agreement for model
evaluation and optimization could lead to disadvantages if the
AHI criteria change, which could result in less accurate AHI
estimates and less information for clinicians.

Finally, several ablation tests were conducted to assess the
contribution of different architectural components to the
performance of the model. When the RNN was replaced with a
feedforward network (FFN) while retaining the pretrained
CNN and the Ncnn additional layers, the ks value on the
validation set dropped to 0.295, compared to the proposed
approach, which achieved a ks of 0.350. Further, when both the
RNN and the last additional Ncnn were removed, the ks value
decreased even more, reaching 0.283. Moreover, removing both
the RNN and the two additional Ncny led to a slight
improvement, with the ks = 0.296. Finally, removing the last
layers of the pre-trained CNN resulted in a reduced ks value of
0.286. These findings indicate that the additional Ncnn, When
used in isolation, does not significantly enhance the model’s
performance. Instead, the features extracted by these blocks
must be processed by the RNN module to unlock their full
potential.

B. Diagnostic ability of the CNN-RNN approach

The agreement between the estimated and actual AHI was
indicated with ICC of 0.76 in the CFS test set, being higher than
in CHAT (1CC=0.73) and UofC (ICC=0.66). The ICC results
suggest that SleepECG-Net has a moderate to acceptable
predictive ability in all three databases. Furthermore, in global
computation, the ICC ranges between 0.6 and 0.7 in the three
databases, suggesting that the model generalizes well and is
robust to different data samples [37]. Fig. 3 presents the
confusion matrices obtained after classifying the severity of
OSA for each subject based on their estimated AHI. The 4-class
metrics obtained were Accs = 61.54% and ks = 0.410 in the
CHAT test set, Accs = 53.82% and ks = 0.335 in the UofC test
set, and Accs = 56.25% and ks = 0.249 in the CFS test set.
Analyzing the severity of subjects correctly classified, it is
observed that in the three databases, SleepECG-Net presents the
optimal performance for mild OSA, followed by severe OSA,
no OSA, and moderate OSA. Table Il reveals the diagnostic
performance of pediatric OSA severity according to the
conventional AHI cutoffs (1, 5, and 10 e/h) in CHAT, UofC,
and CFS test sets. High to very high Acc are reached for 5 and
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CHAT: Accs= 61.54%, ks= 0.410

UofC: Accs= 53.82%, ks= 0.335

CFS: Accy= 56.25%, ks= 0.249
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Fig. 3: Confusion matrices of the model in the CHAT, UofC, and CFS test sets. no OSA: AHI<I (e/h); mild OSA: I<AHI<S5 (e/h); moderate OSA: S<AHI<10

(e/h); severe OSA: AHI>10 (e/h).

Table Il
Diagnostic performance of the SleepECG-Net model in the test set.

PPV NPV LR* Acc  2class

AHI Test Se Sp

cutoff et (%) (%) (%) (%) (%)  kappa

1 CHAT 897 462 857 556 167 8026 038

oh UofC 885 330 860 380 132 7870 0.23

CFs 833 425 465 810 145 5781 022

5 CHAT 722 938 833 887 1161 8729 0.9

e/h UofC 663 892 813 789 614 7971 057

CFS 66.7 100 100 984 N.D 9844 0.79

10 CHAT 585 977 800 937 2517 9231 0.63

e/h UofC 638 959 825 89.7 1547 8838 0.65

CFS 667 100 100 984 N.D 9844 0.79

Se (sensitivity); Sp (specificity); PPV and NPV (positive and negative

predictive value); LR* and LR~ (positive and negative likelihood ratio); N.D

(not defined).
10 e/h cutoffs. Moreover, increasing performance with OSA
severity is observed, with SleepECG-Net reaching 92.31%,
88.38%, and 98.44% Acc for 10 e/h in CHAT, UofC, and CFS
respectively. Based on the established criteria for interpreting k
values [38], we can conclude that for 5 and 10 e/h cutoffs we
have moderate to substantial agreement in the three databases.

C. Identification of ECG patterns using Grad-CAM

The Grad-CAM method was implemented after conducting
the diagnostic evaluation of SleepECG-Net. Fig. 4, 5, and 6
illustrate the heatmaps obtained using Grad-CAM on various
examples of ECG signals, showing relevant patterns for
accurate AHI estimation. On the one hand, Fig. 4 (a), Fig. 5 (a),
and Fig. 6
(.1, b.1) correspond to heatmaps and examples of full-night
ECG signals. On the other hand, Fig. 4 (b, ¢), Fig. 5 (b, c, d),
and Fig. 6 (a.2, b.2) show a zoom of relevant regions extracted
from the ECG signals. In all heatmaps, the annotations of the
presence and absence of respiratory events obtained from the
PSG are highlighted in red with overlapping dotted lines.

In Fig. 4 (a), Grad-CAM highlights the region containing a
cluster of apneic events. Fig. 4 (b) identifies areas characterized
by heart rate (HR) variations evidencing bradycardia-
tachycardia pattern. Furthermore, in Fig. 4 (c), it is observed
how Grad-CAM identifies regions in event transition zones
encompassing PQ and QT segments, and areas comprising TP
segments. Regarding Fig. 5 (a), Grad-CAM highlights regions

where clusters of respiratory events exist. Fig. 5 (b) shows a
delay of regions when such events are manifest. Fig. 5 (c) and
Fig. 5 (d) identify with dark color the PQ, QT, and TP segments
illustrated in Fig. 4. Moreover, different patterns are also noted.
Fig. 5 (c) shows relevant areas where the presence of the U
wave is discernable. Finally, the heatmap emphasizes the QRS
complexes of different beats in Fig. 5 (d). Fig. 6 (a.1, b.1)
highlights areas where the model identifies relevant patterns,
although in those regions, no annotations indicating the
presence of respiratory events were provided. Fig. 6 (a.2) shows
regions with changes in the amplitude of QRS complexes. In
Fig. 6 (b.2), changes in HR can be seen, although they are not
associated with the presence of annotated events. Fig. 7 (a, b)
shows heatmaps associated with ECG signals in which
SleepECG-Net made a wrong prediction, along with a zoom of
relevant regions. In Fig. 7 (a), the method finds regions of
decreasing QRS complex amplitude and changes in HR in
regions where respiratory events are assumed not to occur.
Identifying relevant patterns in regions without events leads
SleepECG-Net to overestimate AHI. In Fig. 7 (b), due to the
dense occurrence of adjacent events, the model does not find
distinctive patterns to discriminate between event and non-
event zones. This fact leads the model to incorrectly identify
regions where events occur, resulting in underestimation of the
AHI.

V. DISCUSSION

This study introduces a novel approach to evaluate an
interpretable CNN-RNN model using nocturnal ECG signals to
directly estimate the AHI per subject and thus determine
pediatric OSA severity. This is the first study using an
interpretable DL model focused on explaining the decision of
the model and interpreting relevant ECG patterns. It is
noteworthy that using single-channel ECG signals allows the
use of nocturnal recordings from PSG to estimate OSA severity,
reducing the time and cost of diagnosis. Moreover, SleepECG-
Net allows the extraction of intricate ECG patterns through
CNN while determining the temporal distribution of respiratory
episodes in the nocturnal sequence using RNN. The findings
underscore the potential of using a DL approach with ECG
signals for accurately establishing the severity of pediatric
OSA. Grad-CAM facilitates the identification of cardiac
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Fig. 4: Grad-CAM visualizations of some representative findings in an ECG signal of the CHAT dataset. Fig. 4 (a) shows the heatmap of the nocturnal ECG
signal. Fig. 4 (b) and 4 (c) are zooms of the cluster (C) marked in Fig.4 (a). Zones of change in heart rate (HR) increase and decrease (1HR and |HR) are indicated
in circles. The color bar indicates at 0 (yellow) the zones of lower relevance and at 1 (brown) the zones of higher relevance.

patterns linked to pediatric OSA. This approach could serve as
a valuable starting point to assess risk of cardiovascular co-
morbidities, a clinically relevant issue in children with OSA[1].

A. Configuration of SleepECG-Net approach

This study implemented a novel regression-based model
using a combination of CNN and RNN to directly estimate the
AHI and subsequent pediatric OSA severity by analyzing
nocturnal ECG recordings. This type of architecture has been
previously evaluated in adults [14], [15]. However, in the
pediatric OSA context, a CNN-RNN approach had only been
used once and applied to AF and SpO, signals, but not to ECG
tracings [20]. Our approach demonstrates a moderate to high
level of accuracy in predicting pediatric OSA, thus revealing its
diagnostic usefulness.

Nocturnal ECG recordings with dimensions of 48 x 60000
are suitable for block processing of CNNs encapsulated in TD
layers, as demonstrated in a prior study [13]. This dimensional
choice enabled the transfer of the optimal architecture, along
with its associated weights and layers, from the model used in
the previous study to the CNN-related blocks used in this
research. The transfer learning process using a fine-tuning
approach was performed by training the model, leveraging
previously acquired knowledge while reducing model training
time and complexity.

Finally, although training the SleepECG-Net model is
computationally expensive, the training process is performed
offline, allowing the trained model to be efficiently tested in
real-time (online) with reduced computational cost (6x1072
seconds per subject).

B. Diagnostic performance

Looking at the confusion matrices, it can be seen that 98.5%
(CHAT), 94.8% (UofC), and 100% (CFS) of no OSA patients
have an estimated AHI (AHles) <5 e/h (no OSA or mild OSA).
In addition, of the subjects with actual AHI (AHlpsg) <5 e/h,
93.8% (CHAT), 89.2% (UofC), and 100% (CFS) were
estimated as AHIe<5 e/h. Additionally, 99.5% (CHAT), 97.9%
(UofC), and 100% (CFS) of subjects belonging to the no OSA
or mild OSA were estimated with an AHlex<10 e/h. Finally,
100% (CFS), 93.2% (UofC), and 96.6% (CHAT) predicted as
severe OSA (AHles>10 e/h) are at least moderate OSA patients.
Hence, a possible screening protocol can be derived to show the
clinical usefulness of our proposal as follows: i) If AHlex<1 e/h,
discard the presence of OSA because most of these patients
(91.3% in UofC, 100% in CFS, and 100% in CHAT) will have
an AHlpse<5 e/h. If symptoms persist, these children may be
eventually referred to PSG [39]; ii) if 1<AHIex<5 e/h, suggest
PSG since doubts arise about the actual diagnosis of the
patients; iii) if 5< AHIlex<10 e/h, consider treatment, since most
probably (95.5% in UofC, and 97.9% in CHAT) these subjects
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Fig. 5: Grad-CAM visualizations of some representative findings in different regions of one single ECG signal of the CHAT test set illustrating correct predictions.
Fig. 5 (a) shows the heatmap of the overnight ECG signal. Fig. 5 (b), 5 (c), and 5 (d) are zooms of the clusters (C) 1, 3, and 4, as noted in Fig. 5 (a). U: ECG U
wave; QRS: ECG QRS complex. The color bar indicates at 0 (yellow) the zones of lower relevance and at 1 (brown) the zones of higher relevance.

have at least a mild OSA. This threshold does not apply to the
CFS database, because there are no patients with moderate
OSA,; iv) if AHIese>10 e/h, suggest treatment since most of these
children (93.2% in UofC, 96.7% in CHAT, and 100% in CFS)
have an AHlpsc>5 e/h. Additionally, it should be considered a
further observation of these patients since they are likely to have
residual OSA after treatment [1]. This screening protocol would
present an innovation in the context of pediatric OSA diagnosis.
In this respect, this protocol would avoid the need for 49.1%
(UofC), 44.1% (CHAT), and 35.9% (CFS) of complete PSGs.
Moreover, only 1.5% (CHAT), 5.2% (UofC), and 0% (CFS) of
children with an AHIpse<1 e/h would be indicated for treatment
and 0% (CHAT), 3.2% (UofC), and 0% (CFS) of children with
an AHlpsc>5 e/h would not be referred to PSG/treatment in the
first visit to the specialist. This solution helps reduce waiting
lists and medical costs for diagnosing OSA, while also offering
a more appropriate diagnostic procedure for children.

C. SleepECG-Net explicability using Grad-CAM

This study introduces a novel approach by presenting, for the
first time, the combination of a DL model and the application
of an XAl method with nocturnal ECG signals to detect
pediatric OSA. Analyzing the XAl results, it seems obvious that

SleepECG-Net uses the bradycardia-tachycardia patterns (Fig.
4 (b) and Fig. 6 (b.2)) as these are well-known physiological
responses of the heart to respiratory events, particularly when
such events are obstructive in nature [3]. Similarly, the use of
information from QT segments, T, and P waves (Fig. 4 (c) and
Fig. 5 (d)) coincides with evidence on P wave and QT interval
dispersion in pediatric OSA, mainly in the most severely
affected cases [40]. Prolonged P wave duration could indicate a
delay in atrial conduction related to the pathophysiological
mechanisms contributing to the development of atrial
fibrillation in adult OSA [40], [41]. Concerning the T-wave,
this presents a contractile property associated with increased
HR. However, abnormalities in this wave and changes in the ST
segment could suggest possible cardiac alterations [30], [41],
[42]. Likewise, QT interval dispersion may be associated with
an increased risk of ventricular arrhythmia and be linked to a
higher probability of sudden death [30], [43], [44]. These facts
have also been evidenced in severe pediatric OSA [45].
Moreover, Grad-CAM focus on the U wave (Fig. 5 (c)) is
supported by evidence indicating its dependence on HR [46].
The prominent presence of this wave can be correlated with
bradycardia and long QT syndrome, both clinical conditions
documented in pediatric OSA [3], [40]. In addition, Grad-CAM
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Fig. 6: Grad-CAM visualizations of some representative findings in an ECG signal of the CHAT test set illustrating accurate predictions. Fig. 6 (a.1) and 6 (b.1)
show the heatmaps of two different nocturnal ECG signals. Fig. 6 (a.2) and 6 (b.2) are zooms of the areas marked in blue rectangles. Zones of change in HR
increase and decrease (1HR and |HR) are indicated in circles. Colorbar indicates at O (yellow) the zones of lower relevance and at 1 (brown) the zones of higher
relevance. |A: Decrease in the amplitude of QRS complexes. D: ECG segment duration; h: hours; s: seconds.

focus on QRS duration and amplitude (Fig. 5 (d) and Fig. 6
(a.2)) responds to evidence of the occurrence of cardiac
arrhythmias related to pediatric OSA due to changes in HR in
the form of bradycardia-tachycardia patterns [3], [45].
Alterations in the QRS complexes are likely related to
ventricular hypertrophy or even altered ventricular geometry
[47], [48]. This condition increases the risk of cardiovascular
abnormalities in pediatric OSA, preferentially in the most
severe cases [3], [4].

Taken together, Grad-CAM results show that SleepECG-Net
is focusing on not only well-known cardiac OSA-pediatric
patterns but also on ECG patterns coherent with the risk of
cardiovascular disease, thus paving the way towards the
identification of pediatric OSA instances in which a higher
cardiac risk may be present.

D. Comparison with previous studies

Focusing on pediatric OSA, several studies have evaluated
conventional and advanced FE methods to estimate pediatric
OSA severity by analyzing cardiac signals other than ECG.
Gutiérrez-Tobal et al. [8] conducted a systematic review which
noted that most ML research on pediatric OSA diagnosis has
centered around SpO: signals. Their review, which did not

include any studies based on ECG signals, conducted a meta-
analysis to compile Se and Sp metrics from 19 studies. While
comparisons between different biological signals should be
approached cautiously, a comparison with the performance
metrics in our proposal is still valid. This study reported
diagnostic performance at 1, 5, and 10 e/h, with Se values of
84.9%, 71.4%, and 65.2%, respectively, and Sp values of
49.9%, 83.2%, and 93.1%. When compared to our model,
SleepECG-Net achieved a higher Se at the 1 e/h cutoff in CHAT
and UofC. At the 5 and 10 e/h cutoffs, the Sp values of our
model were higher in CHAT, UofC, and CFS than those in the
meta-analysis, as well as the Se in CHAT and CFS at 5 e/h and
10e/h, respectively. A comparison between the current study
and previous studies is presented in Table IV. Our DL approach
exhibited higher Se for CHAT and UofC when compared to
Shouldice et al. [9] (88.5-89.7% vs. 85.7%) for 1 e/h, and higher
LR* in CHAT and UofC for 10 e/h (LR* = 15.5-25.2 vs. LR* =
3-3.5) [11], [49], [50]. It should be noted that our study
incorporated 2,655 subjects, providing statistically more robust
and generalizable results compared to previous studies that
included relatively restricted data samples consisting of 21 to
50 subjects/cohort. In terms of Acc, the current DL approach
achieved higher values at all thresholds in CHAT compared to
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Fig. 7: Grad-CAM visualizations for some representative findings in ECG signals of the CHAT test set incorrectly predicted. Fig. 7 (a) depicts the heatmap of a
nocturnal ECG signal and a zoom region associated with model overestimation. Fig. 7 (b) shows the heatmap of a nocturnal ECG signal and a zoom region
related to underestimating the model. The colorbar indicates at 0 (vellow) the zones of lower relevance and at 1 (brown) the zones of higher relevance.

those reported by Martin-Montero et al. [51], [52]. This study
obtained Acc<80% in 1 e/h, Acc<87% in 5 e/h, and Acc<92%
in 10 e/h. Of note, Martin-Montero et al. [10] used the same
CHAT database as in the present study. Overall, our algorithm
presented higher values of ks (0.410 vs. 0.166) and Accs
(61.54% vs. 41.89%), highlighting the superiority of DL over
traditional FE methods.

In a previous study [13], we applied a CNN-based model to
estimate apneic events and pediatric OSA severity using single-
lead ECG signals and the same CHAT database. The approach
we propose here is an improved version of that earlier model.
We obtained higher overall performance by evaluating the
current proposal using this database, reaching higher ks (0.410
vs. 0.373) and Accs (61.54% vs. 57.86%), and higher Acc at 1,
5, and 10 e/h. Furthermore, we obtained higher values in all
metrics for 1 e/h apart from Se. This finding demonstrates the
validity of our proposal to discern between pediatric OSA and
unaffected children. Additionally, some LR* values obtained
from 5 e/h onwards are remarkable, and SleepECG-Net
presents high reliability in detecting moderate OSA (LR*=11.6
vs. LR*=8.9). Comparing k» results, we obtained the same value
for 5 e/h (k. = 0.69) and higher values at 1 e/h (ko = 0.38 vs. k>
=0.30) and 10 e/h (k> = 0.63 vs. k, = 0.60). This difference in
both thresholds is noteworthy because it indicates that this
proposal can better discern at the more restrictive threshold and

differentiate between the presence or absence of disease.
Furthermore, a higher k2 value at the 10 e/h threshold suggests
that SleepECG-Net performs better in detecting the most severe
subjects. This is very encouraging given that children with
moderate to severe OSA are more likely to experience
cardiovascular and neurocognitive morbidities [3]. This
improvement in diagnostic performance is indicative that
SleepECG-Net is better suited to the analysis of long ECG
sequences with possible apneic clusters and signal patterns
linked to the presence of the events. Accordingly, the proposal
performs better at identifying OSA, providing more accurate
predictions when using ECG signals. Finally, it is essential to
highlight that the previous study could not justify the decisions
made by the model, which limits its confidence in clinical
practice settings. The application of XAl herein interprets the
results obtained while opening the way to acquiring new
knowledge in the field of OSA and discovering new clinically
relevant ECG patterns.

Table IV also show previous studies that have used various
traditional machine learning (ML) approaches, combining the
use of SpO, signals with features derived from cardiac
information (HR and pulse rate variability) and achieving
encouraging performance [53]-[55]. Ye et al. [53] achieved an
Acc = 90.4% at 1 e/h using the XGBoost method, but their
reduced test set limited generalizability. Garde et al. [54]
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reported Acc of 75%, 82%, and 89% at 1, 5, and 10 e/h,
respectively, using a binary logistic regression model. Our
study showed higher Acc across all thresholds. Dehkordi ef al.
[55] achieved an Acc = 71% and Se = 76% sensitivity at 5 e/h
using PRV signal analysis, our model surpassing these metrics.
Moreover, the limited accessibility of the data in these studies
hinders the generalization of their results. Additionally, our
study improves technical complexity and simplification by
using only one signal instead of two.

Despite the most interesting discussion relying on comparing
our results with those studies using cardiac information, other
previous studies have implemented various traditional ML
approaches [7], [56]. Moreover, some studies used the same
CHAT and UofC databases along with DL alternatives for
diagnosing pediatric OSA, demonstrating higher performance
in pediatric OSA-related diagnosis than previous ML
approaches [20], [57], [58]. All these studies mainly focused on
the analysis of overnight SpO; and/or AF signals and reached
promising results. However, by analyzing ECG signals, we can
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consider the possible OSA pathophysiological effects on the
cardiac system, including those associated with cardiac
morbidities. In addition, our approach enhanced diagnostic
simplification compared to the methods proposed by Bertoni et
al. [7], and Jiménez-Garcia et al. [20], [57], which relied on
two signals.

Finally, regarding the state of the art using XAl techniques
for healthcare, most studies interpreting FE models with
categorical input data used Shapley Additive Explanations
(SHAP), while those implementing CNN-based methods with
time series or images typically used Grad-CAM [59]. Our study
involves overnight ECG recordings acting as time series data,
where temporal relationships are crucial. The high
computational load of SHAP, especially with DL models, and
its additive nature may oversimplify the complex relationships
in ECG data, potentially providing incomplete explanations
[18]. Preliminary tests using SHAP revealed a computational
cost 2.4 times higher than that of Grad-CAM. This point,
combined with our objective of highlighting specific patterns in

Table IV
State-of-the-art studies on using cardiac signals to diagnose pediatric OSA.
#Total ML approach/Model/ se Acc
Author Signal children/#Test Validation AHl (e/h) (%) (%) LR*
/XAl method 5
Shouldice et al. [9] RR? 50/25 FE/QD /Loo cv /- 1 85.7 84.0 4.7
Gil et al. [49] >18 OSA
PPG+HRV? 21/21 FE/?_D /- <5 No 87.5 80.0 3.1
OSA
Gil et al. [50] FE/QD /- >18 OSA
PPG+PTTV? 21/21 /- <5 No 75.0 80.0 3.1
OSA
Ldzaroetal. [11] >18 OSA
PPG? 21/21 E(ZLC?IA}/_ <5 No 100.0 86.7 35
OSA
Martin-Montero et 1 76.3 63.4 1.2
al.[52] HRV? ( Clg:‘?/JEZC) FE/MLP/-/- 5 62.5 810 4.0
! 10 66.7 89.3 7.9
Martin-Montero et al. 1 85.5 74.6 1.3
[51] HRV? ( Clg jTS/J zzc) FE/LDA/-/- 5 644 850 104
! 10 53.7 91.6 23.1
Ye et al. (2023). [53] 1 90.3 90.4 N.D
SpO; (ODI)+ HR? 3,139/628 FE/XGBoost/Holdout/SHAP 5 82.1 85.7 N.D
10 84.8 89.8 N.D
Garde et al. [54] SpO: (ODI)+ PRV FE/LR (for each threshold) / ! 80.0 750 N.D
(Spectral) 207 Holdout/- > 85.0 82.0 N.D
P 10 820 890 ND
Dehkordi et al. [55] PRV 146/146 FE/LASSO/ -/- 5 76.0 71.0 N.D
Martin-Montero et al. FE/LSboost/ 1 90.8 80.1 1.2
[10] HRV? 1?5%?6 Holdout / 5 66.7 632 1.7
LIME 10 40.0 84.1 5.0
Garcia-Vicente et al. 1610/299 DL/CNN / 1 84.2 75.9 1.6
[13] ECG (CHAT) Holdout / - 5 76.7 87.0 8.9
10 53.7 92.0 27.7
1610/299 89.7 80.3 1.7
(CHAT) 72.2 87.3 11.6
58.8 92.3 25.2
Our proposal DL/CNN-BiLSTM / 88.5 78.7 1.3
9(8;({?31 Holdout / 1 66.3 79.7 6.1
ECG Grad-CAM 5 63.8 88.4 15.5
10 83.3 57.8 1.45
G(z{:g;‘ 66.7 98.4 N.D
66.7 98.4 N.D

RR = the period between two R peaks; PPG = photoplethysmography; HRV = heart rate variability; HR = heart rate; PTTV = pulse transit time variability; PRV
= pulse rate variability, LASSO = least absolute shrinkage operating characteristic curves.  Features derived from these signals. N.D: Not defined.
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the ECG signal that influence AHI estimation, led to the
preference for using Grad-CAM. Grad-CAM effectively
visualizes the areas of the ECG signal that contribute the most
to the model's decisions, making it more suitable for our study
than SHAP, which would be better for a detailed quantitative
interpretation of sample importance. Therefore, although we
recognize the existence of multiple techniques for
explainability in DL, we chose Grad-CAM because of its
balance between transparency, performance, computational
burden, ease of use, and clinical applicability. In this sense,
Grad-CAM has been notably applied to explain models using
ECG signals to diagnose cardiac diseases [59]. However,
limited studies have used XAl methods for diagnosing OSA,
mainly focusing on FE models rather than direct DL on raw
signals. In pediatric OSA diagnosis, only three studies used
XA, with methods including SHAP for demographic and heart
rate variables and Grad-CAM for localization maps over AF
and SpO; signals [10], [20], [53].

E. Limitations and future work

Several limitations should be mentioned. We used CHAT to
develop and internally validate SleepECG-Net and UofC and
CFS to externally validate SleepECG-Net. However, other
strategies could be used to increase the generalizability of our
approach. Moreover, the different databases were annotated by
various specialists. This may be a limitation for SleepECG-Net
to learn properly, but at the same time, it increases the
objectivity of the method by not being biased to a single
specialist. Thus, validating the algorithm on a more extensive
set of databases and ambulatory overnight/daytime Holter ECG
recordings would be beneficial to assess its performance in
different circumstances and populations. Furthermore, despite
the adequacy of the DL algorithm used, novel architectures, like
other hybrid models and transformers, could be explored.
Another future work could consist of implementing a multiclass
regression model where the AHI and other variables related to
cardiac risk factors are jointly estimated. Relative to this
approach, exploring the use of ECG patterns to identify specific
phenotypes OSA would allow for better classification and
understanding of the disease, facilitating the development of
more accurate and effective diagnostic and treatment strategies.
Additionally, it would be interesting to develop DL algorithms
for directly detecting abnormalities in ECG data to identify
possible apneic events. In terms of model interpretability,
although Grad-CAM is suitable for our proposal, other global
XAl methods could also be evaluated in the future.

VI. CONCLUSIONS

To the best of our knowledge, this study is the first to evaluate
an interpretable model based on a combination of CNN and
RNN networks using overnight one-lead ECG signals to
directly estimate the AHI and the OSA severity in pediatric
patients. Our approach demonstrated higher diagnostic
performance for pediatric OSA than in prior studies, especially
in severe cases, which are closely linked to heightened heart
cardiovascular risk. In relation, XAl results indicated
recognition of both known ECG patterns associated with OSA
and potential patterns related to cardiovascular morbidity.
These findings pave the way for automated ECG analysis to
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identify cardiovascular end-organ dysfunction. In conclusion,
implementing an interpretable DL approach using nocturnal
ECG signals could offer an alternative tool to PSG with a high
potential to facilitate timely, objective, and accurate diagnosis
of the disease. Furthermore, integrating XAl techniques to
demonstrate the decisions generated by the models contributes
to strengthening confidence in such systems, promoting their
effective adoption in clinical practice.
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