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Combining deep learning (DL) with eXplainable Artificial Intelligence (XAI) techniques has led to clinically
applicable models that simplify the diagnosis of pediatric obstructive sleep apnea (OSA) using a restricted
number of cardiorespiratory signals. However, no prior study has applied these techniques to concurrently
analyze electrocardiogram (ECG) and oxygen saturation (SpO;) data. Here, we present an explainable DL
approach integrating convolutional neural networks with overnight SpO, and ECG signals to identify pediatric
OSA. SHapley Additive exPlanations (SHAP) XAI technique was used to extract relevant patterns linked to pe-
diatric OSA and explain the model decisions. Patients (n = 3,320) from the semi-public Childhood Adeno-
tonsillectomy Trial (CHAT) and Pediatric Adenotonsillectomy Trial for Snoring (PATS), and the private
University of Chicago (UofC) databases were analyzed. Performance obtained Cohen’s 4-class kappa of 0.549,
0.457, and 0.378 in CHAT, PATS, and UofC, respectively. Shapley values increased with OSA severity and
highlighted the complementarity of SpO, and ECG, with SpO, being more relevant in moderate and severe cases
and ECG in mild or no OSA cases. SHAP visualizations identified SpOy desaturations linked to clusters of apneic
events and those occurring independently. It also highlighted bradycardia-tachycardia and ECG cardiovascular
risk patterns, including variations in P and T waves, PQ and QT intervals, and the QRS complex. Shapley values
identified correlations between respiratory and cardiac patterns, showing that desaturations in OSA are linked to
cardiac changes. Therefore, our interpretable DL approach may improve pediatric OSA diagnosis by integrating
breathing information and accompanying cardiac changes, supporting its effective adoption in clinical settings.

disturbances can increase the risk of neurocognitive and behavioral
impairments and reduced cardiovascular and metabolic function [3].

1. Introduction

Pediatric obstructive sleep apnea (OSA) is a common prevalent
condition affecting approximately 1 % to 5 % of children, presenting
unique challenges in its etiology, diagnosis, and treatment [1]. This
disorder is characterized by recurrent episodes of complete airway
obstruction (apneas) and/or significant airflow reduction (hypopneas)
during sleep, leading to transient hypoxemia, hypercapnia, increased
respiratory efforts, and arousal events [1,2]. Consequently, heightened
sympathetic activity elicited by the repeated episodes of oxygen desa-
turation and disrupted sleep associated with OSA have been linked to
various morbid consequences [1-3]. Indeed, if left untreated, these

Cardiovascular complications may include systemic and pulmonary
vascular hypertension, while the metabolic consequences may manifest
as dyslipidemia and insulin resistance [1,3-5]. As a result, well-being
and quality of life, academic performance, and developmental prog-
ress are diminished. Despite its widespread occurrence, pediatric OSA
remains significantly underdiagnosed, with only about 10 % of affected
children receiving a confirmed diagnosis [6]. Early detection and
treatment are essential to reducing associated health risks, as available
therapies are highly effective [7]. However, the combination of high
prevalence and low diagnosis rates leaves many children at risk of the
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aforementioned serious consequences.

The gold standard for diagnosing OSA is overnight polysomnography
(PSG), a comprehensive test conducted in a specialized laboratory [1].
During PSG, up to 32 biomedical signals from patients are recorded and
monitored during the night, including electrocardiogram (ECG), blood
oxygen saturation (SpO-), and airflow (AF), among others [2]. Sleep
specialists thoroughly analyze these physiological parameters to deter-
mine the apnea-hypopnea index (AHI). AHI reflects the average number
of respiratory abnormalities (apnea and hypopnea events per hour of
sleep (e/h)) and serves as the most widely used metric for assessing both
the presence and severity of OSA [2,8]. The effectiveness of PSG is well-
known, but it involves extensive monitoring, specialized equipment, and
highly trained personnel [2]. These requirements make PSG a costly,
complex, and often uncomfortable procedure with limited accessibility,
particularly in the pediatric population. These issues, combined with the
high prevalence of OSA in children, result in long waiting times and
limited access to diagnosis and treatment [1].

Over the last decade, researchers have focused on developing alter-
native automated methods to simplify and facilitate pediatric OSA
diagnosis [9]. Most of these studies have focused on analyzing signals
such as AF, SpO,, and ECG [10,11]. Specifically, the study of SpO; is
highly relevant as it can provide critical insights into oxygenation dis-
turbances during sleep, often linked to the respiratory events [12]. Its
analysis enables the identification of specific patterns, such as recurrent
oxyhemoglobin desaturations, which are related to recurrent airway
obstructions [12]. Moreover, SpO2 has demonstrated high diagnostic
yield in previous pediatric OSA-related studies, making it a valuable tool
for detecting OSA in children [10]. On the other hand, it is also essential
to consider the ECG signal because of the strong interdependencies be-
tween the cardiovascular and respiratory systems during apneic events
[13]. These episodes have been connected to changes in the heart rate
(HR) leading to characteristic bradycardia-tachycardia patterns [14,15].
Moreover, OSA has been linked to a higher risk of developing cardio-
vascular complications that could persist and worsen into adulthood,
especially when the condition is left untreated [1,3], which emphasizes
the importance and usefulness of including ECG in OSA research.

A few previous studies have explored the analysis of cardiac signals
using feature-engineering (FE) techniques such as photo-
plethysmography and heart rate variability (HRV), among others
[10,16]. Contrasting with these traditional approaches, DL methods can
process the complexities of raw signals directly, eliminating the need for
preprocessing and feature extraction and selection stages [17-19]. In
this regard, we previously integrated nocturnal one-lead ECG signals
with DL techniques using convolutional neural networks (CNN) to es-
timate the presence and severity of pediatric OSA [11,20]. Results
highlighted the effectiveness of CNN in automatically determining the
presence of OSA and its severity in children using ECG. Similarly, pre-
vious research has illustrated the usefulness of CNNs in assessing pedi-
atric OSA severity based on SpO; signals [21,22]. When taken together,
these previous advancements advocate for a combined assessment of
ECG and SpOs,. In this regard, the present study introduces a novel and
unexplored approach by integrating cardiac activity and oxygenation
data. This methodology could provide crucial diagnostic information,
offering a more comprehensive understanding of physiological re-
sponses during respiratory stress. Furthermore, the joint analysis of both
signals could reveal temporal relationships between desaturation events
and cardiac responses, capturing dynamics that might remain unnoticed
when the signals are analyzed separately, while also revealing suscep-
tibility to cardiovascular morbidities.

Although advanced DL techniques have shown potential for pre-
dicting pediatric OSA, their main limitation lies in their lack of
explainability [23]. This limitation is particularly important in the
medical field [24-26], where professionals need to comprehend the
reasoning behind automated decisions to trust and adopt these models.
In this regard, eXplainable Artificial Intelligence (XAI) approaches are
crucial in enhancing the interpretability and transparency of advanced

Measurement 264 (2026) 120259

computational models [23], especially within the healthcare domain
[24-26]. Specifically, we believe that the application of XAl is relevant
when analyzing ECG and SpO-, together in the context of pediatric OSA.
By discerning patterns in both signals, mainly those targeted by auto-
mated algorithms, valuable insights could be gained regarding the
assessment of pediatric OSA severity. Additionally, this approach may
help identify relationships between the pathophysiological patterns of
SpO; desaturations and how the cardiovascular system responds to these
events in relation to OSA disease [13]. Furthermore, it could uncover
novel respiratory and cardiovascular risk factors linked to these signals
in pediatric OSA. One widely used XAI technique for analyzing
biomedical signals is SHapley Additive exPlanations (SHAP) [24]. In the
context of sleep research, SHAP has proven effective in identifying
physiological features associated with sleep stages and apneic events in
adult and pediatric OSA [11,22,27-30]. However, no prior study has
applied any XAI method to the combined analysis of ECG and SpO data.
To streamline the reading of the following sections, a detailed list of the
main acronyms and definitions used throughout the manuscript has
been included in the Supplementary Material (Table S1 and Table S2).

This study hypothesizes that our proposal, based on integrated DL
models, together with SHAP, would simplify pediatric OSA diagnosis
and enhance interpretability. Accordingly, this study had two main
objectives. First, we aimed to evaluate a DL approach based on a stacked
generalization strategy that integrates CNNs fed with overnight SpO,
and ECG recordings to estimate the AHI and establish pediatric OSA
severity. Second, we wished to incorporate SHAP as an XAI method to
enhance interpretability and identify qualitative and quantitative com-
plementary patterns within SpO, and ECG signals, and their relationship
with pediatric OSA. Therefore, our study introduces two significant
novelties:

e Development of a novel DL regression approach based on a stacked
ensemble of CNNs to directly estimate the AHI from the combination
of overnight SpO2 and single-lead ECG recordings.

e Application of an XAI technique, specifically SHAP, to interpret the
decisions made by the model and evaluate the joint and individual
contributions of ECG and SpO2 signals to pediatric OSA estimation.

2. Subjects and signals

A total of 3,320 pediatric sleep studies involving children aged 0 to
13 years comprised the study population. Three distinct databases were
used for this study. The first was the Childhood Adenotonsillectomy
Trial (CHAT), a publicly available database accessible upon request,
which includes 1,609 valid ECG and SpO; recordings from PSG studies
conducted in children aged 5 to 9.9 years with symptoms of OSA [31].
The second database, the Pediatric Adenotonsillectomy Trial for Snoring
(PATS), also publicly available upon request, contains 731 valid ECG
and SpO; recordings from PSG studies performed in children between 3
and 12 years old [32]. CHAT and PATS are multicenter, randomized,
and single-masked design studies conducted in compliance with the
Declaration of Helsinki (CHAT clinical trial: NCT00560859; PATS clin-
ical trial: NCT02562040) [31-35]. Written consent was obtained from
children's caretakers, following the research protocols in Marcus et al.
[33] for CHAT and Redline et al. [32] for PATS. Children aged 7 or older
also gave their assent in both studies. Study recordings from both da-
tabases were partitioned into three sets. The training set comprised 60 %
of CHAT (n = 987) and 60 % of PATS (n = 426) and was used to train the
model (Ngqin = 1,413). The validation set consisted of 20 % of CHAT (n
= 323) and 20 % of PATS (n = 152) and was used to adjust the optimal
configuration of the model (n,, = 475). Finally, the test set included 20
% of CHAT (n = 299) and 20 % of PATS (n = 153) and was used to
evaluate model performance. Each dataset (CHAT and PATS) was par-
titioned independently, and it was conducted so that each subject was
exclusively assigned to one of the sets, avoiding duplication. The input
data was labeled with AHI values.
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Additionally, the study incorporated a private database from the
Pediatric Sleep Unit at Comer Children's Hospital, University of Chicago
(UofC), USA [36]. This dataset comprised 980 sleep studies of children
aged 0 to 13 years who were referred to the pediatric sleep laboratory
due to symptoms suggestive of clinically suspected OSA. The research
protocol was approved by the University of Chicago (UofC) Ethics
Committee (#11-0268-AM017, #09-115-B-AM031, and #IRB14-
1241), and informed consent was obtained from the legal guardians of
all participants. The database was de-identified and used exclusively for
external validation of the model trained and validated with CHAT and
PATS datasets, following the approach used in previous studies [11].
Consequently, all 980 SpO, and ECG recordings from the UofC dataset
were designated as the test set.

Sleep specialists scored PSG recordings from all databases according
to the American Academy of Sleep Medicine (AASM) guidelines [37,38].
The criterion used to diagnose the presence and severity of pediatric
OSA was the AHI. Based on AHI values, children were classified into one
of the four frequently used categories: AHI < 1 e/h (no OSA), 1 < AHI <
5 e/h (mild OSA), 5 < AHI < 10 e/h (moderate OSA), and AHI > 10 e/h
(severe OSA). The demographic and clinical variables of the children
included in the study are presented in Table 1.

3. Methods

Fig. 1 summarizes an overview of the methodological workflow of
this study. The present study implemented and evaluated an interpret-
able stacked ensemble-based DL model using one channel SpO, and ECG
recordings (S, ..., Sp) to directly estimate the AHI per subject (yy, ..., ¥n)-
The model was trained with minimally preprocessed ECG and SpO,
signals, which were first used to feed independent CNNs to extract
feature maps. The feature sequences extracted from these independent
CNNs were then combined and fed into a higher-level model using a
stacking strategy [39]. This approach enabled the model to combine
features from both signals to generate the final AHI estimation while
allowing appropriate sample rates for each signal. Finally, the SHAP
method was applied to qualitatively and quantitatively assess the
contribution of ECG and SpO- to the model’s decision. SHAP is a post-
hoc interpretability method that assigns importance values to each
input of a predictive model, offering a clearer understanding of the
decision-making process [23,40,41]. Additionally, SHAP was also used
to identify the most relevant ECG and SpOs regions on which the model
was fixed to perform AHI estimation, facilitating the extraction of pat-
terns associated with pediatric OSA.

3.1. ECG and SpO; signals preprocessing

Following the guidelines established by the AASM, SpO2 and ECG-II
lead data were collected from the CHAT, PATS, and UofC datasets
[37,38]. To ensure consistency, all databases underwent uniform

Table 1
Demographic and clinical variables of the study population.
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preprocessing. Nevertheless, the processing of the SpO, signals was
performed independently from the ECG signals, allowing for tailored
handling of each signal type while maintaining overall uniformity in
preprocessing. Consistent with previous works, raw ECG and SpOy sig-
nals were resampled at 100 Hz and 1 Hz, respectively [11,20,21,42-44].
No additional preprocessing steps were needed for the SpO, signal
beyond this resampling [21,22]. In contrast, the ECG underwent further
preprocessing, based on prior studies, to enhance signal quality [11,20].
First, the continuous component was adjusted by removing the mean
value within 30-second windows. Next, a band-pass linear-phase finite
impulse response filter with cut-off frequencies of 0.5 Hz and 50 Hz was
applied to minimize noise while preserving essential signal components,
particularly those related to QRS complexes [45].

SpO2 and ECG recordings were standardized to a duration of eight
hours, as this timeframe had previously demonstrated optimal perfor-
mance in the validation set in previous research [11]. For signals with
fewer samples, zero-padding was applied at the beginning of the
recording. Conversely, for longer recordings, excess data were removed
from the start of the signal, when children are more probably awake,
following methodologies used in prior OSA studies that analyzed un-
segmented cardiorespiratory signals [11,46-48].

Subsequently, ECG and SpOs signals were preprocessed to match the
input dimensions required by the DL-based model. SpO; signals from
each subject were divided into 20-minute segments. This segmentation
strategy aligned with the methodology used in previous studies [21].
Various segment durations (5, 10, 20, 30, and 60 min) and overlaps (50
% and 90 %) were evaluated to find the optimal segment duration [21].
The highest kappa was obtained using 20-minute non-overlapping seg-
ments. This duration was consistent to capture desaturation clusters,
which are typically 10 min long at least [49]. SpO, signals were resized
to match the input specifications of the corresponding CNN before being
fed into the model, generating matrices composed of 24 segments, each
representing 20 min (24 x 1,200 x 1 = 28,800 samples). This structure
was optimized for block processing within CNNs embedded in time-
distributed (TD) layers. Additionally, it facilitated the transfer of the
optimal architecture, including pre-trained weights and layers, from a
previously developed SpOj-based CNN model [21]. This model was
optimized for estimating the number of events per segment and was
integrated into the SpO,-CNN architecture developed in this study.
Similarly, ECG signals were transformed into arrays of 48 segments,
each lasting 10 min (48 x 60,000 x 1 = 2,880,000 samples). The se-
lection of 10-minute duration was made because 10-minute segments
were identified as optimal for training the previously developed CNN
[20], as they effectively captured clusters of apneic events [49]. This
structure allowed for the integration of overnight ECG recordings into
the model, while ensuring they matched the 8-hour duration of the
SpO,. Like SpOo, this format was also optimized for block processing
within the TD layers of the CNN. Furthermore, it allowed the adaptation
of the optimal architecture, along with its pre-trained weights and

Training set (Nyqin = 1,413)

Validation set (n,q = 475)

CHAT Validation set

PATS Validation set CHAT Test set PATS Test set UofC Test set

Variables CHAT Training set PATS Training set

Subjects (1) 987 (61.34) 426(58.28) 323 (20.07)
Age (years) 7.00 [2.00] 7.69 [0.00] 7.00 [2.00]
Males (n) 510 (51.67) 221(51.88) 164 (50.77)
BMI (kg/m?) 17.31[5.93] 18.98 [0.0] 17.12[6.25]
AHI (e/h) 2.64 [4.78] 1.30 [2.30] 2.45 [4.77]
AHI < 1 e/h™® (n) 212 (21.48) 163(38.26) 67 (20.74)

1 < AHI < 5 e/h®(n) 487 (49.34) 190(44.60) 167 (51.70)
5 < AHI < 10e/h®(n) 159 (16.11) 29 (6.81) 44 (13.62)

AHI > 10 e/h™ (n) 129 (13.07) 44 (10.33) 45 (13.93)

152 (20.79) 299 (18.58) 153 (20.93) 980 (100)

7.50 [0.00] 6.90 [2.00] 7.56 [0.00] 6.00 [6.00]
71(46.71 %) 161 (53.85) 86 (56.21) 379 (38.67)
18.37[0.00] 17.43[6.04] 17.95[0.00] 18.02[6.02]
1.00 [2.10] 2.32 [5.11] 1.00 [2.60] 3.8 [7.78]

72 (47.37) 65 (21.74) 75 (49.02) 173 (17.65)
62 (40.79) 144 (48.16) 53 (34.64) 401 (40.92)
11 (7.24) 49 (16.39) 14 (9.15) 177 (18.06)
7 (4.61) 41 (13.71) 11 (7.19) 229 (23.37)

Data are presented as median [interquartile range] or n (%). BMIL: body mass index; AHI: apnea-hypopnea index; e/h: events/hour; CHAT: Childhood Adeno-
tonsillectomy Trial; PATS: Pediatric Adenotonsillectomy Trial for Snoring; UofC: University of Chicago.
AHI < 1 e/h™: No OSA; 1 <AHI <5 e/h®: mild OSA; 5 < AHI < 10 e/h®: moderate OSA; AHI > 10 e/h™: severe OSA.
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layers, from a previously developed ECG-based CNN approach into the
ECG-CNN architecture implemented in this research [20]. A significant
advantage of this implementation lies in its ability to process the ECG

and SpO; signals independently, without the need for a uniform sam-
pling rate. This approach streamlines the workflow by allowing the use
of data with varying temporal resolutions while ensuring effective
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Fig. 2. Overall scheme of the proposed regression DL model based on a stacked ensemble strategy. The input data consists of each subject's nocturnal ECG and SpO,
recordings. The output (y,) corresponds to the AHI estimation per subject. CNN: convolutional neural network; ReLU: rectified linear unit activation; TD: time
distributed; AHI: apnea hypopnea index; FFN: feed forward network; FFL: feed forward layer; nz number of filters; kg.: kernel size; Py stacking dropout layer
probability; n,: FFL neuron counts; Ngp: Number of FFL; p: CNN dropout layer probability.
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integration of the signals at the final stage of processing.
3.2. Stacking-based DL architecture

Fig. 2 illustrates the proposed DL architecture developed for esti-
mating the AHI per subject from ECG and SpOs signals. The proposal is
based on a stacking strategy, also known as stacked generalization, a
machine-learning ensemble technique combining multiple models to
enhance overall performance [39]. The core concept of stacking in-
volves using the predictions from several base models as inputs to a
higher-level model, referred to as the meta-model or blender, which
aggregates them to generate the final prediction [39,50]. Following this
strategy, our model processes nocturnal ECG and SpO; signals inde-
pendently before integrating the extracted features to identify patterns
indicative of pediatric OSA. Specifically, the architecture consists of two
parallel base CNN models, each designed to process distinct physiolog-
ical signals (ECG-CNN and SpO3-CNN architectures, respectively, in
Fig. 2). After independent feature extraction, the outputs from ECG-CNN
and SpO3-CNN architectures are concatenated following the stacking
strategy. Subsequently, these combined features are passed through a
fusion module for further processing, ultimately generating the final AHI
estimation.

ECG-CNN architecture was implemented using a cluster of TD layers,
incorporating the previously presented CNN architecture (CNN-ECG in
Fig. 2) from a hybrid convolutional and recurrent neural network
trained using 8-hour ECG signals [11]. ECG-CNN module, composed of
14 convolutional blocks, was optimized to extract relevant temporal and
spatial patterns. Each of the blocks was encapsulated in TD layers,
preserving the sequence format of the data as they were processed in the
CNN-ECG layers. Within each CNN-ECG, a one-dimensional (1D) con-
volutional layer was applied with a specific number of filters (n9) and a
defined kernel size (ksiz.). This was followed by batch normalization, a
rectified linear unit (ReLU) activation function, and a 1D max-pooling
layer. Finally, a dropout layer with probability p was incorporated
[17]. In parallel, the SpO,-CNN architecture was implemented using a
clustering of TD layers, which consist of the previously presented CNN
layers trained on 20-minute SpO; signals (CNN-SpOs in Fig. 2) [21]. This
architecture, composed of 6 convolutional blocks, followed a similar
structure to those in the related CNN-ECG module, but optimized for
lower-resolution data. Each block was also encapsulated in TD layers,
which preserved the sequential format of the data as it was processed
through the CNN-SpO; layers. Once the feature extraction processes
were completed, the outputs from both the ECG-CNN and SpO,-CNN
architectures were concatenated to combine information and create a
unified feature representation, following a stacking strategy. This com-
bined feature vector was processed through a fusion module to refine the
learned patterns and identify relationships between the two physiolog-
ical signals. The fusion module began with an initial dropout layer with
probability Pr to reduce overfitting, followed by several feed-forward
layers (FFLs), where the number of layers is denoted as Npp and each
layer contains n, neurons. Each FFL was activated with a ReLU function
to enhance feature abstraction [17]. Finally, a dense output layer with a
linear activation function was implemented to estimate the AHI for each
subject.

3.3. Training, optimization, and evaluation process

The proposed DL model was trained on an NVIDIA GeForce RTX
4090 GPU and Keras 2.10.0 framework with TensorFlow-gpu 2.10.1
backend. The He-normal method was utilized for weight initialization,
and the adaptive moment estimation (Adam) optimizer was used with
an initial learning rate of 1x10* [17]. The training process was con-
ducted over 200 epochs with a batch size of 150 samples. Consistent
with previous studies [17,20], the Huber loss function with a delta
parameter (5§ = 1.5) was used in the Adam optimization, chosen for its
established robustness in regression tasks with large outliers. Finally, to
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prevent overfitting, early stopping was implemented based on validation
loss monitoring.

The hyperparameters of each of the convolutional branches were
optimized in previous studies, obtaining models with high performance
[11,21]. Regarding the CNN-ECG module, the convolutional layers were
structured as follows: blocks; 4 consisted of ny = 16 with kg = 33;
blockss.g involved ny = 32 with ke = 17, blocksg.12 comprised ny = 64
with ksize = 7, and blocks3.14 consisted of nf = 64, but with kgie = 3. A
dropout layer was applied at the end of each module, with p = 0.1 for
blocks;.12, and p = 0.4 for blocksy3.14 [11]. In the CNN-SpO5 module, all
convolutional layers were composed of ny = 64 with kg = 5, and
dropout layers comprised p = 0.1 [21]. At this stage, we tuned a set of
hyperparameters from scratch. Following the application of the stacking
strategy, the fusion module began with a dropout layer, where Py was
varied within the range {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} to determine the
optimal setting. Afterward, a total of Ngg;, FFLs, each with a n, neurons,
were incorporated and trained from scratch. The value of Npp was
varied in the range {0, 1, 2, 3}, while n,, in each FFL was explored within
the range {8, 16, 32, 64, 128} to determine the optimal performance
configuration. We implemented a comprehensive fitting approach using
the grid search technique to optimize the remaining hyperparameters in
the fusion module after stacked generalization. This process involved
evaluating every possible combination of hyperparameters within the
specified search space. Finally, the performance of the algorithm was
assessed to identify the optimal hyperparameter configuration. To this
end, the four-class Cohen’s kappa coefficient (k) was used [51]. This
metric was calculated for subject-wise classification of OSA severity
within the validation set from CHAT and PATS. The architecture with
the highest k was then selected as the optimal model.

3.4. Model interpretability using SHAP

To enhance the interpretability of our DL-based model, we applied
XAI using SHAP, a post-hoc interpretability method founded on game
theory and local explanations [23]. This method is based on the inte-
gration of various explanation techniques, providing a unified approach
to model interpretability [23,52]. SHAP assigns importance values
(termed SHAP values) to each model input, turning its decision-making
process more transparent. In our case, it assigns Shapley values for each
sample of a signal [53]. These values measure the impact of individual
signal samples while considering all possible interactions, providing a
comprehensive understanding of their influence. The SHAP method
builds an additive attribution model, where the sum of the Shapley
values approximates the output of the model [23]. This approach en-
sures that the model identifies relevant features during training and
relies on appropriate inputs for inference.

In this study, we applied SHAP to interpret the decisions of the model
based on ECG and SpOs input signals. It evaluated both the joint and
individual contributions of these signals for pediatric OSA estimation
[53]. For this purpose, we utilized the DeepExplainer method to apply
SHAP, as it offers visualization maps and is compatible with our data
[53]. It is based on the Deep Learning Important Features (DeepLIFT)
algorithm, which assigns attribution values to individual nodes in a
neural network [54]. DeepExplainer enhances this approximation by
aggregating per-node attributions across multiple background samples,
ensuring that the sum of Shapley values accurately captures the differ-
ence in model outputs between the background signals and the input
being analyzed [52,53]. Specifically, we computed Shapley values for
each ECG and SpO; signal sample to gain a deeper understanding of the
mechanisms of the model in recognizing respiratory event-related in-
formation and identifying cardiorespiratory patterns associated with
pediatric OSA [55]. Since our model processed ECG and SpO; inde-
pendently, we calculated Shapley values separately for each input.
Particularly, Shapley values were assigned to each ECG and SpO, sam-
ple. In our architecture, the ECG and SpO, signals were first processed
independently and then fused through concatenation before the final



C. Garcia-Vicente et al.

layers. This fusion step allowed the model to learn complex, non-linear
relationships between both modalities. Therefore, any interdependence
between ECG and SpOs features was implicitly reflected in the Shapley
values of the fused representations. Thus, this analysis allowed us to
evaluate the joint and distinct contributions of ECG and SpOs to the
overall model performance, that is, how each signal influenced the AHI
estimations. Finally, after computing the Shapley values for each ECG
and SpOs signal sample concerning the AHI estimation, we aggregated
them at the subject level. Then, we summed the Shapley values of each
signal separately and categorized them by OSA severities (no OSA, mild
OSA, moderate OSA, and severe OSA).

3.5. Statistical analysis and diagnostic ability

To assess the performance of the proposed algorithm in diagnosing
pediatric OSA, subjects were classified into one of the four severity
categories based on their estimated AHI values. After categorizing the
subjects, we calculated the confusion matrix, followed by the four-class
accuracy (Accq), and the k coefficient [51]. Finally, we evaluated the
diagnostic effectiveness of the model by calculating several performance
metrics, including specificity (Sp), sensitivity (Se), negative and positive
predictive values (NPV and PPV), negative and positive likelihood ratios
(LR and LR™), as well as overall accuracy (Acc) for the different OSA
severity thresholds, considering AHI values of 1, 5 and 10 e/h.

4. Results
4.1. Optimal model configuration and ablation tests

The optimal model configuration was determined through an
extensive search of all possible hyperparameter combinations. The
chosen hyperparameters for the fusion model layers, based on the
stacking strategy, included a dropout rate of Py = 0.1. Fig. 3 illustrates
the search space of the fusion module, along with k values obtained on
the validation set for each specific hyperparameter. The fusion module
consisted of 3 FFLs, with specific configurations: n; = 16 for Ngg 7 = 1,
ngz = 32 for Npp2 = 2, and ng = 64 for Npp 3 = 3. This configuration
yielded the highest k value (k = 0.501) on the validation set (CHAT and
PATS). As a result, it was selected for model evaluation on the test sets
from CHAT, PATS, and UofC.

Finally, several ablation tests were conducted to evaluate the impact
of different architectural components on the performance of the model.
Initially, the ECG-CNN and SpO3-CNN architectures were tested
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separately, with their outputs concatenated for direct AHI prediction,
without the fusion model after the stacking strategy. This configuration
resulted in a k = 0.4835 on the validation set, which was lower
compared to the k = 0.5011 achieved by the proposed approach. Next, a
single FFL was introduced after the ECG-CNN and SpO,-CNN architec-
tures were concatenated, but this led to a slight decrease in performance,
with a k of 0.4653. A subsequent variant, which included 2 FFLs
following the concatenation, showed slight improvement, yielding a k of
0.4991. Finally, the optimal proposed model, incorporating 3 FFLs after
the stacking strategy, was trained and validated using the original
training and validation sets from CHAT and PATS, as well as data from
UofC (n = 587 for training and n = 197 for validation). This method-
ology enabled the evaluation of the influence of UofC data on the per-
formance of the model, resulting in a k = 0.4940 on the validation set
from CHAT, PATS, and UofC. Despite testing various configurations in
the ablation studies, none of them outperformed the optimal value of k
= 0.5011, which was achieved with the optimal architecture. This un-
derscores the significance of the selected architectural components.
Simplifying the architecture by removing the FFLs did not result in any
performance improvement, further reinforcing the robustness of the
proposed approach.

4.2. Diagnostic performance of the DL-based proposal

Fig. 4 displays the confusion matrices obtained in the test sets after
classifying OSA severity for each subject based on their estimated AHI
Additionally, the four-class classification metrics derived from the
confusion matrices were k = 0.549 and Acc4 = 70.23 % in the CHAT test
set, k = 0.457 and Acc4 = 64.05 % in the PATS test set, and k = 0.378 and
Accy = 56.43 % in the UofC test set. The diagnostic performance of
pediatric OSA severity in CHAT, PATS, and UofC test sets is shown in
Table 2 based on the standard AHI severity thresholds of 1, 5, and 10 e/
h. The model demonstrated high Acc across all datasets, with the highest
values obtained for the most severely affected children (AHI = 10 e/h),
achieving Acc = 94.98 % in CHAT, Acc = 98.08 % in PATS, and Acc =
88.98 % in UofC. This result is particularly significant, as these children
benefit the most from timely and accurate diagnosis. Se values remained
consistently high across all thresholds and datasets, ranging from 80 %
to 96 %, ensuring reliable detection of OSA at all severity levels. Sp
values remained notably strong for moderate and severe OSA, with
values ranging between 78 % and 98 % (96 % and 98 % for PATS and
CHAT, respectively) for moderate OSA and between 90 % to 99 % for
severe OSA. These results highlight the strong capability of the model in
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Fig. 3. Search space of the fusion module after the stacking strategy, as well as k values obtained in the validation set for each specific hyperparameter. The optimal
values for the hyperparameters are indicated by red stars. FFL: feed forward layer; n,: FFL neuron counts; Ngp;: Number of FFL.
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Fig. 4. Confusion matrices of the DL-based model in CHAT, PATS, and UofC test sets. *1: no OSA (AHI < 1 e/h); 2: mild OSA (1 < AHI < 5 e/h); 3: moderate OSA (5
< AHI < 10 e/h); 4: severe OSA (AHI > 10 e/h).

Table 2
Diagnostic performance of the combined DL-based approach in the CHAT, PATS, and UofC test sets.
AHI threshold Test set Sp (%) Se (%) NPV (%) PPV (%) LR LR* Acc (%)
le/h CHAT 56.92 88.46 57.81 88.09 0.20 2.05 81.61
PATS 48.00 91.03 83.72 64.55 0.19 1.75 69.93
UofC 17.92 96.28 50.82 84.55 0.21 1.17 82.45
5e/h CHAT 98.09 80.00 91.93 94.74 0.20 41.80 92.64
PATS 96.09 92.00 98.40 82.14 0.08 23.55 95.42
UofC 78.05 83.99 87.33 73.02 0.21 3.82 80.51
10 e/h CHAT 97.29 80.49 96.91 82.50 0.20 29.67 94.98
PATS 98.59 90.91 99.29 83.33 0.09 64.55 98.04
UofC 90.41 84.28 94.97 72.83 0.17 8.79 88.98

Sp (specificity); Se (sensitivity); NPV and PPV (negative and positive predictive value); LR~ and LR™ (negative and positive likelihood ratio); AHI (apnea-hypopnea
index); e/h (events per hour); CHAT (Childhood Adenotonsillectomy Trial); PATS (Pediatric Adenotonsillectomy Trial for Snoring); UofC (University of Chicago).

diagnosing clinically moderate-to-severe OSA. Significantly, the LR™" for both ECG and SpOs, signals, the total sum of Shapley values increases
values for 10 e/h were 29.67 in CHAT, 64.55 in PATS, and 8.79 in UofC, with higher severity levels. This reveals that the model attributes higher

further revealing significant diagnostic ability for severe OSA, especially importance to signal patterns in subjects with more severe disease,
in CHAT and PATS datasets. highlighting a relationship between OSA severity and the contribution

of these signals to AHI estimation. Additionally, boxplots show that the
4.3. Identification of ECG and SpO; patterns using SHAP overall sum of Shapley values is higher for SpO; signals compared to

ECG signals in moderate and severe OSA. However, for no OSA and mild
Fig. 5 presents boxplots showing the sum of the Shapley values OSA, the Shapley values are higher for ECG signals. This suggests that

assigned to ECG signals (left) and SpO, signals (right) for each subject ECG contributes more to AHI estimation in these lower-severity cases,
across the four pediatric OSA severity groups. The results indicate that, whereas SpO; becomes more relevant as OSA severity increases.
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Fig. 5. Boxplots showing the sum of the Shapley values assigned to the ECG (left) and SpO, (right) signals for each subject, grouped by pediatric OSA severity groups.
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Figs. 6-8 show examples of SHAP maps for SpO; and ECG signals
from different PSGs, with red-colored regions highlighting key patterns
that contribute to accurate AHI estimation and blue-colored regions
indicating patterns that reduce the AHI model prediction. Fig. 6 (a),
Fig. 7 (a, b), and Fig. 8 (a) display zoomed-in views of key regions
extracted from the SpO signals, while Fig. 6 (b, ¢), Fig. 7 (c, d, e), and
Fig. 8 (b, c) present a zoom of relevant areas from the ECG signals. The
annotations indicating the presence or absence of respiratory events, as
obtained from the PSG, are shown in brown.

Specifically, in Fig. 6 (a), the model has shown fixation in regions
with clusters of apneic events, where successive > 3 % desaturations in
the SpO,, signal are observed, as well as SpO5 drops of 2 %. Fig. 6 (b)
shows the same time region for the ECG, highlighting in green the area
shown in Fig. 6 (c), which also coincides with the time interval linked to
D3 (SpO; desaturations > 3 %) in Fig. 6 (a). Finally, in Fig. 6 (c), it is
observed how SHAP visualization identifies the QRS complexes of
different beats encompassing long PQ, and areas comprising long TP
segments. Particularly, blue-colored QRS complexes (negative Shapley
values) suggested morphologically normal cardiac patterns that drove
the model toward lower AHI estimates, whereas red-colored QRS com-
plexes (positive Shapley values) represented abnormal waveform
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patterns associated with more severe OSA, leading the model to predict
higher AHI values. Fig. 7 (a) and Fig. 7 (c) show a region of SpO2 and
ECG signals, respectively, referring to a subject with the presence of
apneic events. Fig. 7 (a) shows how the model focuses its attention
mainly on the region marked in green, containing a cluster of higher
than 3 % SpO» desaturations. Fig. 7 (b) corresponds to a zoom of the
region marked in green in Fig. 7 (a), referring to SpO». In this case, it can
be seen how SHAP maps highlight SpO5 drops higher than 3 % (D3) and
SpOs drops of 2 % (D2). Fig. 7 (d) corresponds to the first zoomed-in
region marked in green in Fig. 7 (c), referring to ECG. In this case, the
SHAP visualization emphasizes the delayed response of the regions
when these events occur, as well as the areas between events. Fig. 7 (e)
corresponds to the second ECG zoomed-in region marked in green in
Fig. 7 (c). Here, the SHAP map highlights regions associated with HR
variations, revealing a bradycardia-tachycardia pattern. Additionally,
the P and T waves are distinctly identified in red color. Fig. 8 (a) and
Fig. 8 (b) present SpO, and ECG regions, respectively, corresponding to a
subject experiencing apneic events. In Fig. 8 (a), the model focuses on a
cluster of higher than 3 % SpO, desaturations and offers a detailed
visualization of how SHAP emphasizes SpO» drops over 3 % (D). Fig. 8
(c) corresponds to the ECG zoomed-in region marked in green in Fig. 8
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Fig. 6. SHAP visualizations of some representative findings in SpO5 and ECG signals from the CHAT dataset corresponding to a child with mild OSA. Fig. 6 (a) and
Fig. 6 (b) show the map of the same ECG and SpO, regions. Fig. 6 (c) is a zoom of the ECG area marked in green in Fig. 6 (b). Areas with SpO, desaturations over 3%
are marked with D3, while areas with SpO, desaturation of 2% are marked with D2. QRS: ECG QRS complex. TP and PQ indicate intervals between T-P and P-Q
waves of the ECG. The color bar indicates the Shapley values linked to each ECG and SpO, sample. Blue-colored areas show patterns that lower the AHI estimation,
while red-colored regions indicate patterns that contribute to accurate AHI estimation.
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desaturations. Areas with SpO,, desaturation of over 3% are marked with D3, while areas with oxygen desaturation of 2% are marked with D2. Fig. 7 (d) and Fig. 7 (e)
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are indicated in green. The color bar indicates the Shapley values linked to each ECG and SpO, sample. Blue-colored areas show patterns that lower the AHI
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Fig. 8. SHAP maps of some representative findings in SpO5 and ECG signals from the CHAT dataset corresponding to a child with severe OSA. Fig. 8 (a) and Fig. 8 (b)
show the map of the same ECG and SpO, regions. Fig. 8 (a) is a SpO- region indicating an area with a cluster of SpO, desaturations. Areas with SpO, desaturation of
over 3% are marked with D. Fig. 8 (c) is a zoom of the ECG area marked in green in Fig. 8 (b). T: ECG T wave. TP indicates intervals between T-P waves of the ECG.
The color bar indicates the Shapley values linked to each ECG and SpO, sample. Blue-colored areas show patterns that lower the AHI estimation, while red-colored
regions indicate patterns that contribute to accurate AHI estimation.

(b), highlighting areas where the model identifies T waves and abnormal
TP intervals, despite the absence of annotations indicating respiratory
events. The SHAP map in this region emphasizes QRS complexes across
different beats, showing variations in their amplitude and duration.
Additional examples with visualization details are provided in

Section 2 of the supplementary material (Figs. S1-S3). Fig. S1 (a) il-
lustrates that the model does not focus on isolated regions with SpO,
desaturations over 3 %, where respiratory events are assumed not to
occur. Similarly, Fig. S1 (b) demonstrates how, in the ECG signal, the
model does not highlight the region corresponding to the SpO,
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desaturation event in Fig. S1 (a), even though it is not associated with an
apneic event. Figs. S2 (a, b) present SHAP visualizations related to SpO,
and ECG signals, respectively, in cases where the model made incorrect
predictions, with specific regions highlighted in green. Due to the
overlap between signal segments associated with apneic events and the
presence of artifacts, the model cannot identify clear patterns that
distinguish event from non-event zones. Instead, it primarily detects
noise, which prevents it from accurately recognizing event occurrences.
As a result, the model does not find key patterns in certain regions, ul-
timately leading to an underestimation of the AHI. In Fig. S3, the SHAP
method detects regions in both SpOy and ECG signals that exhibit sig-
nificant patterns, even though no respiratory events are assumed to
occur. The identification of relevant features in non-event regions causes
the model to overestimate the AHI. Specifically, in Fig. S3 (b), the model
recognizes areas of SpO, desaturation. Similarly, in Fig. S3 (d), SHAP
detects ECG variations in the amplitude of the QRS complex as well as
changes in TP segment durations.

5. Discussion

This study presents an innovative and explainable DL approach that
integrates ECG and SpO, data to directly estimate the AHI for each pa-
tient, enabling the assessment of pediatric OSA severity. Notably, this is
the first study to develop an interpretable DL-based model combining
ECG and SpO; to clarify how predictions are made and to identify key
SpO; and ECG patterns contributing to the decisions of the model. Using
SHAP analysis, we have uncovered significant patterns related to both
respiratory and cardiac activity by using full overnight SpO5 and ECG
signals, offering valuable insights into their role in pediatric OSA
severity estimations. This approach enables the direct use of ECG and
SpO; signals from nocturnal PSG recordings to estimate AHI and OSA
severity, effectively reducing both the time and cost associated with
traditional diagnostic methods. Furthermore, the combined DL model
processes these signals through ECG-CNN and SpO2-CNN architectures
and the subsequent fusion module after the stacking strategy, while also
capturing the temporal distribution of respiratory events throughout the
night.

5.1. Configuration of the combined DL approach

To date, the architecture proposed in the present study has not been
explored in either adult or pediatric OSA populations. Regarding the
architecture selection, it is noteworthy that two separate CNNs are used
for each signal (ECG-CNN and SpO,-CNN architectures), ensuring that
each signal is processed in a specific way. Thus, the proposed stacking-
based multimodal architecture was designed to capture the distinct
temporal characteristics of each physiological signal while ensuring
computational efficiency [17]. It is important to note that by processing
each signal separately, the model preserves the original sampling rates
from the ECG and SpO», as well as their physiological integrity, avoiding
distortions that could arise from resampling or signal alignment. The
independent feature extraction enables each branch to learn modality-
specific temporal patterns, such as QRS complexes in ECG or desatura-
tion events in SpOs, while the subsequent feature-level fusion allows the
model to integrate complementary information and model inter-signal
relationships without increasing architectural and computational
complexity. Additional blocks of CNNs could be useful after the stacking
strategy if the concatenated features required further hierarchical
refinement [17]. However, in this case, the concatenated representa-
tions already contain well-processed features, which are effectively
leveraged by a fusion module to model interactions between ECG and
SpO;, signals. Compared to including more complex architectures like
transformers or RNNs, the stacking-based module of CNNs combined
with a fusion module offers a trade-off between performance and
computational efficiency [56,57]. While RNNs excel at capturing long-
term temporal dependencies, these dependencies are already learned
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within the independent ECG-CNN and SpO»-CNN architectures [17,57].
Moreover, the stacking strategy, which concatenates CNN output fea-
tures, inherently removes the temporal relationships, making the in-
clusion of RNNs unnecessary [17,50]. Finally, this DL approach is highly
and easily adaptable and scalable. If additional biomedical signals or
clinical variables were to be introduced in future studies, independent
CNNs could be incorporated seamlessly, concatenating their outputs for
further processing.

5.2. SHAP explainability and ECG-SpO interpretation

This study introduces an innovative approach by integrating, for the
first time, a DL-based model with an XAI method for the analysis of
nocturnal SpOy and ECG signals to detect OSA. To the best of our
knowledge, only four previous studies have explored the use of XAI
techniques for pediatric OSA diagnosis based on cardiorespiratory sig-
nals [11,22,27,58]. One of these studies used a DL model with an
attention mechanism using SpO; signals [22], while another study
applied a DL approach with Gradient-weighted Class Activation Map-
ping (Grad-CAM) on SpOy and AF signals [27]. Consistent with this
study, their models primarily focused on regions exhibiting over 3 %
SpO; desaturation. In another study, authors combined FE techniques
along with SHAP using categorical data, including desaturation index,
HR-derived variables, and demographic information [58]. Finally, our
previous study proposed a DL-based approach using Grad-CAM with
ECG signals, aligning with this study in its focus on regions associated
with cardiac rhythm changes, as well as its specific attention to P waves,
T waves, and QRS complexes [11].

Fig. 5 shows how Shapley values increase with OSA severity for both
ECG and SpO,, indicating higher model importance for signal patterns in
severe cases. ECG dominates at lower severity levels, while SpOy be-
comes more influential as severity increases, reflecting meaningful
physiological interactions between respiratory and cardiac systems. This
supports the notion that SpO5 desaturations are accompanied by cardiac
responses, consistent with prior evidence [13,14,59].

Another advantage of SHAP lies in its ability to provide quantitative,
interpretable insights into model decisions. As shown in Table 2, model
Acc improves with OSA severity, indicating that SHAP contributions are
more reliable for severe cases, as these children would benefit most from
accurate and objective diagnosis and treatment. Importantly, unlike
methods such as Grad-CAM [23,40], SHAP provides both qualitative and
quantitative interpretability, enhancing confidence in the reasoning of
the model.

By focusing on specific aspects of OSA cases, the model effectively
uses desaturation and hypoxemia patterns in the SpO, signal for AHI
prediction, which reflects the physiological response to apneic events,
where repeated drops in oxygen levels serve as key indicators [1,60]. As
illustrated in Fig. 8 (a), severe cases exhibit higher Shapley values and
denser red regions, consistent with recurrent oxygen desaturations.
Fig. 7 (a) demonstrates how the model distinguishes OSA-related SpO,
drops from artifacts, prioritizing pathophysiological ranges. In this
sense, cyclical SpOy desaturations are closely linked to respiratory
obstruction events and their severity, especially in children with severe
OSA [12]. In children with mild and moderate OSA (Figs. 6 and 7),
desaturation patterns remain relevant but less pronounced. Variations in
amplitude and duration of these desaturations are shown in Fig. 6 (a),
Fig. 7 (b), and Fig. 8 (a). Those phenomena provide insight into oxygen
reduction and recovery times, which may reflect pulmonary functional
reserve and the extent of obstruction [59]. Additionally, signal frag-
mentation and fast oscillations may be associated with ventilatory
instability and cardiovascular strain [59], while prolonged recovery
after hypoxemia may suggest impaired compensatory capacity. More-
over, severe and recurrent SpO, desaturations, measured through hyp-
oxic burden, have been linked to metabolic disturbances and an
increased risk of cardiovascular complications in pediatric OSA [59] and
increased mortality in adults [61].
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In addition, the model also identifies synchronized patterns between
SpO; and ECG signals. As shown in Fig. 7 (c) and Fig. 7 (d), it focuses on
ECG regions that coincide with clusters of apneic events, capturing their
temporal dynamics rather than isolated features. Furthermore, attention
to P and T waves and their intervals during respiratory events, as
illustrated in Fig. 6 (c), Fig. 7 (e), and Fig. 8 (c), indicates its ability to
recognize changes in atrial and ventricular repolarization, which could
be linked to ventilation and respiratory effort [62]. These findings are
consistent with evidence of P-wave and QT interval dispersion in pedi-
atric OSA, especially in severe cases [63]. A prolongation in P wave
duration could point to a delay in atrial conduction, a mechanism linked
to atrial fibrillation in adult OSA [63]. Likewise, alterations in the T
wave or ST segment, together with increased QT interval dispersion,
reflect repolarization abnormalities associated with ventricular ar-
rhythmias and elevated cardiovascular risk. These alterations have also
been reported in severe pediatric OSA [59,62]. Alterations in QRS
complexes duration and/or amplitude, as seen in Fig. 6 (¢) and Fig. 8 (d),
may reflect ventricular alterations that may lead to ventricular hyper-
trophy or even changes in ventricular geometry, both conditions of
cardiovascular risk in pediatric OSA [3,64]. Moreover, the model’s focus
on such regions, as shown in Fig. 7 (e), suggests that it captures physi-
ologically meaningful bradycardia-tachycardia patterns typical of
apneic events [3].

Other interesting findings are shown in Figs. S1-S3 in the supple-
mentary material. Fig. S1 (a) shows that the model disregards isolated
desaturations unrelated to apneic events, distinguishing sleep-phase
changes from pathological patterns [65]. This could explain why ECG
contributes more than SpOs in distinguishing mild and no OSA, as subtle
cardiovascular variations may precede desaturations. Conversely,
Fig. S3 (b) shows SHAP highlighting SpO5 desaturations that may not
have been annotated by specialists or that could be linked to other pa-
thologies, such as chronic obstructive pulmonary disease (COPD) [66].
Fig. S1 (b) and Fig. S3 (d) highlight ECG areas without annotated apneic
events but with distinctive patterns, suggesting that the model could be
using additional cardiac information to improve OSA detection. Overall,
these results demonstrate that SHAP captures well-known cardiorespi-
ratory patterns and associations between ECG and SpO-. By learning
such representations, the model may contribute to identifying children
at elevated cardiovascular risk, expanding its potential clinical utility
[1].

Finally, to evaluate the reliability of SHAP, we conducted a quanti-
tative analysis comparing ECG and SpO, Shapley values during the
presence and absence of annotated apneic events across OSA severities
(see Fig. S4 and Fig. S5 of the supplementary material). For both ECG
and SpOs signals, Shapley values were consistently higher in regions
containing apneic events and near zero in non-event regions, indicating
higher model feature relevance during physiological disturbances. Sta-
tistical analysis using the Mann-Whitney U test confirmed statistically
significant differences between event and non-event occurrences across
all severities in both signals (p-value < 0.01). These findings suggest that
SHAP captures physiologically meaningful patterns rather than random
fluctuations, reinforcing their validity and potential clinical relevance.

5.3. Diagnostic ability and comparison with previous studies

To the best of our knowledge, no prior studies have directly used
SpO, and ECG data to estimate OSA presence and severity in children.
Therefore, the present approach emphasizes comparing the results ob-
tained in this study concerning previous research that evaluated SpO,
and ECG independently.

Considering the diagnostic ability, as illustrated in the confusion
matrices (see Fig. 4) and diagnostic metrics (see Table 2), the model
achieved higher performance in the CHAT and PATS datasets compared
to UofC. Nevertheless, the results in UofC remain noteworthy consid-
ering that the optimal stacking-based CNN model was trained and
optimized exclusively using CHAT and PATS data. Moreover, substantial
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variability exists in PSG scoring among sleep technologists, which could
have influenced the external evaluation of our DL approach across the
UofC independent dataset.

Beyond this factor, other specific differences may help explain the
observed variation in diagnostic performance. The mean AHI values
were 5.16 e/h for CHAT, 3.32 e/h for PATS, and 9.30 e/h for UofC.
Likewise, interquartile ranges differed, being 2.32 [5.11] in CHAT, 1.0
[2.60] in PATS, and 3.8 [7.76] in UofC. Thus, information reflects het-
erogeneity in disease severity distributions. Participant age also varied
across datasets. CHAT included children aged 5-10 years, PATS
included subjects aged 3-12 years, and UofC encompassed a broader
range from O to 13 years. Additionally, the sampling frequencies of ECG
and SpO, signals differed considerably. In CHAT, ECG ranged from
50-512 Hz and SpO from 1-512 Hz. In PATS, ECG was 128 Hz and SpO»
ranged from 10-200 Hz. In UofC, ECG ranged from 200-500 Hz and
SpO2 from 25-500 Hz. These variations are consistent with prior
research reporting differences in diagnostic performance when sleep
datasets differ in their clinical and technical characteristics [67].

To facilitate comparison with previous research, Table 3 provides an
exhaustive comparative overview of prior studies that focused on SpOs
and ECG for estimating the presence and severity of pediatric OSA,
alongside the findings of the current study
[11,15,16,20-22,36,58,68-74]. By comparing the studies based on DL
techniques, Vaquerizo-Villar et al. developed a CNN using SpO; to es-
timate apneic events within 20-minute segments [21]. The present study
analyzed 3,320 children, while Vaquerizo-Villar et al. used a slightly
smaller dataset comprising 3,196 subjects. Notably, their datasets were
used for both model validation and testing, whereas this study used the
UofC database exclusively for external validation, enhancing robustness
and generalizability. The present approach achieved a higher k4 value
(0.549 vs. 0.515) in CHAT. When comparing the results with the UofC
database, the k4 value was slightly lower (0.378 vs. 0.422). However,
this study evaluated a different test dataset (n = 980 vs. n = 392),
implementing a more extensive validation process. Finally, the previous
study lacked interpretability.

In another study, Mortazavi et al. developed a CNN-RNN model using
SpO, signals to estimate also apneic events in 20-minute segments [22].
Their study analyzed 844 PSGs from the CHAT database, whereas this
study used 3,320 PSGs from three different databases. Moreover, their
use of CHAT for training, validation, and testing limited the generaliz-
ability of their findings. Additionally, Mortazavi et al. incorporated an
attention mechanism into their model to enhance interpretability. While
attention-based methods can highlight relevant features within the input
data, the present approach, integrated with SHAP, offers a more
comprehensive interpretation of the decisions made by the model. SHAP
not only identifies the most influential features contributing to a given
prediction but also quantifies their impact, allowing for a deeper un-
derstanding of how SpO, and ECG signals in our study contribute to the
AHI estimation. This level of interpretability enhances clinical applica-
bility by providing more transparent insight.

In the context of ECG analysis, various studies have explored both
conventional and advanced FE methods to assess pediatric OSA severity
using cardiac signals beyond ECG. However, the most relevant com-
parison is with studies utilizing DL approaches, as previous research has
demonstrated the superiority of DL over traditional FE techniques when
using ECG for pediatric OSA diagnosis [11,20]. In an earlier study, we
developed a CNN model to assess pediatric OSA severity using ECG
signals from the same CHAT database [20]. The present approach ob-
tained a higher k4 value (0.549 vs. 0.373). Notably, the previous study
lacked interpretability. In a more recent study [11], we used a CNN-RNN
model to assess pediatric OSA severity using ECG signals. This approach
outperformed the previous model, achieving a k4 of 0.549 vs. 0.410 in
CHAT and a k4 of 0.378 vs. 0.335 in UofC. This study also improves
robustness and generalizability by incorporating the public PATS data-
base. Regarding model interpretability, the previous study implemented
Grad-CAM to provide a localized and visual representation of the ECG
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Table 3

State-of-the-art studies on using cardiorespiratory signals to establish pediatric OSA severity.
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Study Signal ML approach/Validation/Model/ #Total children/ #Test set ~ AHI (events/ Se Sp (%) LR" Acc
XAI hour) (%) (%)
Hornero et al. (2017) SpO. FE/-/MLP/- 4191/3602 1 84.0 53.2 1.79 75.2
[36] 68.2 87.2 5.32 81.7
10 68.7 94.1 11.64  90.2
Calder6n et al. (2020) SpO, (ODI) FE / 15-fold-cv / LR, AdaBoost / — 453/453 CHAT 5 62.0 96.0 - 79.0
[72]
Xu et al. (2019) [68] SpO, (ODI) FE/External validation/ MLP 432 1 95.3 19.1 1.18 79.6
regression / — /- 5 77.8 80.5 3.99 79.4
10 73.5 92.7 10.07  88.2
Vaquerizo-Villar et al. SpO, DL/Holdout/CNN/- 3,196/312 CHAT 1 71.2 81.8 3.92 77.6
(2021) [21] 5 83.7 100.0 N.D 97.4
10 83.9 99.3 117.8 97.8
3,196/392 UofC 1 90.8 36.4 1.43 80.1
5 76.0 88.6 6.68 83.9
10 79.5 95.8 18.90 92.3
3,196/231 BUH 1 88.8 53.2 1.90 79.2
5 61.1 93.7 9.72 83.5
10 65.0 96.9 20.69 91.3
Mortazavi et al. (2024) SpO, DL/3-fold-cv /CNN-RNN/Attention 844/253 CHAT 1 96.3 61.3 2.7 86.5
[22]* 5 77.8 97.2 29.9 93.3
10 76.6 98.8 65.0 96.2
Shouldice et al. (2004) RR? FE/Loo cv /QDA /- 50/25 1 85.7 81.80 4.7 84.0
[15]
Gil et al. (2010) [74] PPG * FE/-/QDA / — 21/21 >18 OSA 87.5 71.40 3.1 80.0
<5 No OSA
Lézaro et al. (2014) PPG ? FE/loo cv/LDA/- 21/21 >18 OSA 100.0 71.40 3.5 86.7
[73] <5No OSA
Garde et al. (2019) [71] SpO, (ODI) + PRV FE/loo-cv/LR (binary classification 207 15 80.0 65.0 75.0 N.D
(Spectral) for each threshold)/- 10 85.0 79.0 82.0 N.D
82.0 91.0 89.0 N.D
Martin-Montero et al. HRV ? FE/-/MLP/ — 1738/757 CHAT, UofC 1 76.3 3830 1.2 63.4
(2021) [70] 5 62.5 84.20 4.0 81.0
10 66.7 91.60 7.9 89.3
Martin-Montero et al. HRV ? FE/-/LDA/ — 1738/757 CHAT, UofC 1 85.5 3538 1.3 74.6
(2021) [69] 5 64.4 93.78 10.4 85.0
10 53.7 97.67  23.1 91.6
Ye et al. (2023) [58] SpO, (ODI) + HR FE/Holdout/XGBoost/SHAP 3,139/628 1 90.3 100.0 N.D 90.4
5 82.1 93.8 N.D 85.7
10 84.8 92.1 N.D 89.8
Martin-Montero et al. HRV ? FE/Holdout/LSBoost/ LIME 1610/296 CHAT 1 90.8 23.40 1.2 80.1
(2023) [16] 5 66.7 61.17 1.7 63.2
10 40.0 92.03 5.0 84.1
Garcia-Vicente et al. ECG DL/Holdout/CNN/- 1610/299 CHAT 1 84.2 46.15 1.6 75.9
(2023) [20] 5 76.7 91.39 8.9 87.0
10 53.7 98.06 27.7 92.0
Garcia-Vicente et al. ECG DL/Holdout/CNN-RNN/Grad-CAM 2,655/299 CHAT 1 89.7 46.2 1.7 80.3
(2025) [11] 5 72.2 93.8 11.6 87.3
10 58.8 97.7 25.2 92.3
2,655/64 CFS (external 1 83.3 42.5 1.45 57.8
validation) 5 66.7 100.0 N.D 98.4
10 66.7 100.0 N.D 98.4
2,655/981 UofC (external 1 88.5 33.0 1.3 78.7
validation) 5 66.3 89.2 6.1 79.7
10 63.8 95.9 15.5 88.4
This model ECG + SpO- DL/Holdout/Stacked ensemble 3,320/299 CHAT 1 88.5 56.9 2.1 81.6
CNNs/SHAP 5 80.0 98.1 41.8 92.6
10 80.5 97.3 29.7 95.0
3,320/153 PATS 1 91.0 48.0 1.8 69.9
5 92.0 96.1 23.6 95.4
10 90.9 98.6 64.6 98.0
3,320/980 UofC 1 96.3 17.9 1.2 82.5
(external validation) 5 84.0 78.1 3.8 80.5
10 84.3 90.4 8.8 89.0

RR: the period between two R peaks; PPG: photoplethysmography; HRV and PRV: heart and pulse rate variability; ECG: electrocardiogram; AHI: apnea-hypopnea
index; OSA: obstructive sleep apnea; Se: sensitivity; LR': positive likelihood ratio. N.D: Not defined; FE: Feature engineering; MLP: Multilayer perceptron; cv: cross
validation: Loo: leave one out; QDA and LDA: quadratic and linear discriminative analysis; LR: linear regression; ODI: Oxygen Desaturation Index; AdaBoost: Adaptive
Boosting; XGBoost: Extreme Gradient Boosting. ® Derived features from cardiac signals. *The results of Mortazavi et al. (2024) are obtained as the mean value of the
metrics obtained in the different folds.

regions influencing model decisions. However, relying solely on Grad-
CAM and ECG signals restricts the depth of interpretability. In
contrast, this study incorporates SHAP, which quantifies the precise
contribution of both ECG and SpO; signals to the predictions. This

approach enables the explanation of individual predictions and offers a
comprehensive analysis of overall model behavior, leveraging the
complementary information provided by both physiological signals.
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5.4. Limitations and future work

This study has several limitations that should be noted. First, we used
three databases to develop and evaluate our model. Particularly, we
used the CHAT and PATS datasets for model development and internal
validation, and the UofC dataset for external validation. In this sense, the
use of UofC to externally evaluate our proposal and the differences in
signal sampling rate values, age range, and AHI distribution may have
resulted in a lower diagnostic performance in this dataset. Thus, alter-
native strategies could be implemented to enhance the generalizability
of our approach. Nonetheless, the DL model showed a higher diagnostic
ability than the models previously proposed, in all the datasets. More-
over, the databases were annotated by different specialists, which may
represent a limitation in terms of consistent model learning and its
generalizability, particularly in the UofC database. This likely contrib-
uted to reduced Acc in the UofC external validation. However, this di-
versity also enhances objectivity by minimizing potential bias from any
single annotator. In this sense, while these datasets provided valuable
insights regarding pediatric OSA, prospective testing of the model in a
broader range of databases, as well as real-world home-based studies,
would be advantageous to evaluate its performance across various
contexts and populations. Additionally, further validation in specific
pediatric populations, such as individuals with Down syndrome or those
with complex medical conditions who are also at high risk for OSA,
could provide more targeted insights and improve the clinical applica-
bility of the model.

With respect to the design of the model, future works may explore
unifying both signals into a single input representation processed
through 2D convolutional architectures, thereby enabling the model to
better capture long-range and inter-segment temporal dependencies.
However, these extensions should be carefully evaluated, considering
their computational cost and scalability to ensure that the model re-
mains efficient and practical for large-scale clinical datasets. Regarding
the stacking-based DL approach, it could serve as a basis for future
research. In this context, additional models could be integrated along-
side databases containing other variables representing cardiorespiratory
risk factors, such as hypertension, obesity, and genetic predisposition, to
estimate both OSA and related comorbidities. Furthermore, while SHAP
proved useful for interpreting the model and identifying ECG and SpO»
patterns, future work should explore complementary XAI methods to
improve the explainability, reliability, and generalizability in complex
physiological contexts.

Our proposal has been validated in a laboratory setting, and the next
phase will focus on testing the system with prospectively collected
home-based data and in real clinical environments to evaluate its per-
formance, integration into sleep unit workflows, and comparison with
the PSG gold standard. A key step toward clinical deployment will be
creating a user-friendly interface that presents SHAP outputs in a format
aligned with medical workflows. This interface will display the auto-
matic diagnosis (estimated AHI), protocol-based recommendations, and
model annotations over the ECG and SpO; signals. Integrating these
elements into a desktop application, with the option to export clinical
reports, will help ensure that model interpretability supports practical
diagnostic use and strengthens clinician confidence in Al-assisted pedi-
atric OSA screening. In addition to technical and clinical validation, the
future deployment of the proposed system will also require careful
attention to ethical aspects related to data collection and patient pro-
tection. For potential clinical implementation, signal acquisition pro-
cedures would be designed to ensure complete safety for participants.
Informed consent would be obtained from all newly recruited subjects
for the use of their clinical, pulse oximetry, and ECG data. Recruitment
would follow the ethical principles of the Declaration of Helsinki and the
Council of Europe’s Resolution on Human Rights and Biomedicine
(CETS No. 195, 2005). All collected data would be anonymized, and
researchers would not have access to identifiable patient information to
guarantee privacy. Data processing would comply with the European
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General Data Protection Regulation (GDPR, EU 2016/679). These future
steps would be guided by a data management plan based on the FAIR
principles (Findable, Accessible, Interoperable, and Reusable), ensuring
secure storage, controlled access, full traceability, and ethically
compliant data reuse within the scientific community.

6. Conclusion

As far as we know, this is the first study to explore an interpretable
model that uses a stacking strategy combining CNNs with SpO, and ECG
input signals to directly predict AHI and assess OSA severity in children.
Our approach has demonstrated improved diagnostic ability than pre-
vious studies, particularly in severe OSA. This is crucial as that popu-
lation is closely linked to increased cardiovascular risk and other
complications, such as impaired cognitive function. Furthermore, XAI
results offered both visual and quantitative insights, identifying well-
known respiratory and cardiac patterns related to OSA. Our quantita-
tive XAl findings emphasized the distinct contributions of SpO, and ECG
signals in diagnosing OSA. ECG appears to be more critical for identi-
fying healthy populations and mild OSA, whereas SpO, assumes a pri-
mary role in detecting moderate and severe OSA. These findings suggest
that the ECG may identify subtle cardiovascular variations that SpOy
alone does not detect, especially in children with fewer respiratory
events. Moreover, this distinction highlights the complementary nature
of these signals, ultimately enhancing the model performance across
varying OSA severity levels. In conclusion, an interpretable DL tool
combining SpO; and ECG data emerges as a promising alternative to
PSG, offering a fast, reliable, and objective diagnosis of OSA in children.
Furthermore, the incorporation of XAI techniques increases model trust
and supports clinical adoption by providing both quantitative and visual
explanations of the model decisions.

CRediT authorship contribution statement

Clara Garcia-Vicente: Writing — review & editing, Writing — original
draft, Visualization, Validation, Software, Methodology, Investigation,
Formal analysis, Data curation, Conceptualization. Gonzalo C. Gutiér-
rez-Tobal: Writing - review & editing, Writing — original draft, Project
administration, Methodology, Investigation, Funding acquisition,
Formal analysis, Conceptualization. Fernando Vaquerizo-Villar:
Writing — review & editing, Writing — original draft, Software, Meth-
odology, Formal analysis. Adrian Martin-Montero: Writing — review &
editing, Writing — original draft, Investigation, Formal analysis. David
Gozal: Writing — review & editing, Writing — original draft, Funding
acquisition, Conceptualization. Roberto Hornero: Writing — review &
editing, Writing — original draft, Supervision, Resources, Project
administration, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This research is part of the project PID2023-1488950B-100, funded
by MICIU/AEI/10.13039/501100011033 and FSE+, and part of the
project CPP2022-009735, funded by MICIU/AEI/10.13039/
501100011033 and the European Union NextGenerationEU/PRTR. This
research was also supported by the project “0043_NET4SLEEP_2 E”,
cofunded by the European Union through the Interreg VI-A Spain-
Portugal Program (POCTEP) 2021-2027; and by “CIBER-Consorcio
Centro de Investigacion Biomédica en Red” (CB19/01,/00012) through
“Instituto de Salud Carlos III (ISCII)”, co-funded with European
Regional Development Fund. The Childhood Adenotonsillectomy Trial



C. Garcia-Vicente et al.

(CHAT) was supported by the National Institutes of Health (HL083075,
HL083129, UL1-RR-024134, UL1 RR024989). The National Sleep
Research Resource was supported by the National Heart, Lung, and
Blood Institute (R24 HL114473, 75N92019R002). The Pediatric Ade-
notonsillectomy Trial for Snoring (PATS) study was supported by the U.
S. National Institutes of Health, National Heart, Lung, and Blood Insti-
tute (1U01HL125307, 1U01HL125295). The National Sleep Research
Resource was supported by the U.S. National Institutes of Health, Na-
tional Heart, Lung, and Blood Institute (R24 HL114473,
75N92019R002).

C. Garcia-Vicente was supported by ‘Ayudas para contratos pre-
doctorales para la Formacién de Doctores’ grant (PRE2021-100792)
from the “Ministerio de Ciencia, Innovacién y Universidades”. David
Gozal was supported in part by NIH grants HL166617 and HL169266.

Ethical approval

The research adhered to the principles outlined in the Declaration of
Helsinki. The original CHAT and PATS databases clinical trials are
identified as NCT00560859 and NCT02562040, respectively. Written
consent was obtained from all parents under the research protocol,
which can be found in the supplementary material of Marcus et al. [33]
for CHAT and in the supplementary material of Redline et al. [32] for
PATS. Moreover, assent was given by children aged 7 or 8 and older in
both studies. Regarding the UofC database, the research protocol was
approved by the UofC Ethics Committee of the Comer Children’s Hos-
pital (#11-0268-AM017, #09-115-B-AM031, and #IRB14-1241), and
informed consent was obtained from the legal guardians of all
participants.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.measurement.2025.120259.

Data availability

The CHAT data is publicly available upon request at https://sleep-
data.org/datasets/chat. The PATS data is publicly available upon
request at https://sleepdata.org/datasets/pats.

References
[1] C.L.Marcus, L.J. Brooks, S.D. Ward, et al., Diagnosis and management of childhood
obstructive sleep apnea syndrome, Pediatrics 130 (2012) e714-€755, https://doi.
org/10.1542/peds.2012-1672.
H.L. Tan, D. Gozal, L. Kheirandish-Gozal, Obstructive sleep apnea in children: a
critical update, Nat. Sci. Sleep 5 (2013) 109-123, https://doi.org/10.2147/NSS.
S$51907.
C. Guilleminault, R. Winkle, S. Connolly, et al., Cyclical variation of the heart rate
in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h
electrocardiography as a screening technique, Lancet 323 (1984) 126-131, https://
doi.org/10.1016/50140-6736(84)90062-X.
R. Tauman, D. Gozal, Obstructive sleep apnea syndrome in children, Expert Rev.
Respir. Med. 5 (2011) 425-440, https://doi.org/10.1586/ers.11.7.
R. Bhattacharjee, L. Kheirandish-Gozal, G. Pillar, D. Gozal, Cardiovascular
complications of obstructive sleep apnea syndrome: evidence from children, Prog.
Cardiovasc. Dis. 51 (2009) 416-433, https://doi.org/10.1016/j.pcad.2008.03.002.
L. Kheirandish-Gozal, What is “abnormal” in pediatric sleep? Respir. Care 55
(2010) 1366-1374.
H.L. Tan, M.L. Alonso Alvarez, M. Tsaoussoglou, et al., When and why to treat the
child who snores? Pediatr. Pulmonol. 52 (2017) 399-412, https://doi.org/
10.1002/ppul.23658.
R.B. Berry, R. Brooks, C.E. Gamaldo, et al., The AASM manual for the scoring of
sleep and associated events, American Academy of Sleep Medicine, Darien, IL,
2013.
D. Bertoni, A. Isaiah, Towards patient-centered diagnosis of pediatric obstructive
sleep apnea—a review of biomedical engineering strategies, Expert Rev. Med.
Devices 16 (2019) 617-629, https://doi.org/10.1080/17434440.2019.16262.33.
G.C. Gutiérrez-Tobal, D. Alvarez, L. Kheirandish-Gozal, et al., Reliability of
machine learning to diagnose pediatric obstructive sleep apnea: systematic review
and meta-analysis, Pediatr. Pulmonol. 57 (2022) 1931-1943, https://doi.org/
10.1002/ppul.25423.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

14

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Measurement 264 (2026) 120259

C. Garcia-Vicente, G.C. Gutierrez-Tobal, F. Vaquerizo-Villar, et al., SleepECG-Net:
explainable deep learning approach with ECG for pediatric sleep apnea diagnosis,
IEEE J. Biomed. Heal Inform. 29 (2025) 1021-1034, https://doi.org/10.1109/
JBHI.2024.3495975.

O. Vitelli, M. Del Pozzo, G. Baccari, et al., Autonomic imbalance during apneic
episodes in pediatric obstructive sleep apnea, Clin. Neurophysiol. 127 (2016)
551-555, https://doi.org/10.1016/j.clinph.2015.05.025.

T. Penzel, J.W. Kantelhardt, R.P. Bartsch, et al., Modulations of heart rate, ECG,
and cardio-respiratory coupling observed in polysomnography, Front. Physiol. 7
(2016), https://doi.org/10.3389/fphys.2016.00460.

G. Aljadeff, D. Gozal, V.L. Schechtman, et al., Heart rate variability in children with
obstructive sleep apnea, Sleep 20 (1997) 151-157, https://doi.org/10.1093/sleep/
20.2.151.

R.B. Shouldice, L.M. O’Brien, C. O’Brien, et al., Detection of obstructive sleep
apnea in pediatric subjects using surface lead electrocardiogram features, Sleep 27
(2004) 784-792, https://doi.org/10.1093/sleep/27.4.784.

A. Martin-Montero, P. Armanac-Julidn, E. Gil, et al., Pediatric sleep apnea:
characterization of apneic events and sleep stages using heart rate variability,
Comput. Biol. Med. 154 (2023) 106549, https://doi.org/10.1016/j.
compbiomed.2023.106549.

I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, 2016.

K. Cao, X. Lv, Multi-task feature fusion network for Obstructive sleep apnea
detection using single-lead ECG signal, Meas. J. Int. Meas. Confed. 202 (2022)
111787, https://doi.org/10.1016/j.measurement.2022.111787.

B. Ganguly, D. Dey, An improved time-frequency representation aided deep
learning framework for automated diagnosis of sleep apnea from ECG signals,
Meas. J. Int. Meas. Confed. 242 (2025) 116170, https://doi.org/10.1016/j.
measurement.2024.116170.

C. Garcia-Vicente, G.C. Gutiérrez-Tobal, J. Jiménez-Garcia, et al., ECG-based
convolutional neural network in pediatric obstructive sleep apnea diagnosis,
Comput. Biol. Med. 167 (2023) 107628, https://doi.org/10.1016/j.
compbiomed.2023.107628.

F. Vaquerizo-Villar, D. Alvarez, L. Kheirandish-Gozal, et al., A convolutional neural
network architecture to enhance oximetry ability to diagnose pediatric obstructive
sleep apnea, IEEE J. Biomed. Heal Inform. 25 (2021) 2906-2916, https://doi.org/
10.1109/JBHI.2020.3048901.

E. Mortazavi, B. Tarvirdizadeh, K. Alipour, M. Ghamari, Deep learning approaches
for assessing pediatric sleep apnea severity through SpO2 signals, Sci. Rep. 14
(2024) 22696, https://doi.org/10.1038/541598-024-67729-9.

A. Barredo Arrieta, N. Diaz-Rodriguez, J. Del Ser, et al., Explainable artificial
intelligence (XAI): concepts, taxonomies, opportunities and challenges toward
responsible Al, Inf. Fusion 58 (2020) 82-115, https://doi.org/10.1016/j.
inffus.2019.12.012.

A. Chaddad, J. Peng, J. Xu, A. Bouridane, Survey of explainable Al techniques in
healthcare, Sensors 23 (2023) 634, https://doi.org/10.3390/523020634.

F. Di Martino, F. Delmastro, Explainable Al for clinical and remote health
applications: a survey on tabular and time series data, Springer, Netherlands, 2023.
K. Shkileva, N. Zolotykh, Explainable artificial intelligence techniques in medical
signal processing, Procedia Comput. Sci. 212 (2022) 474-484, https://doi.org/
10.1016/j.procs.2022.11.031.

J. Jiménez-Garcia, M. Garcia, G.C. Gutiérrez-Tobal, et al., An explainable deep-
learning architecture for pediatric sleep apnea identification from overnight
airflow and oximetry signals, Biomed. Signal Process. Control 87 (2024), https://
doi.org/10.1016/j.bspc.2023.105490.

A.S. Alarcén, N.M. Madrid, R. Seepold, J.A. Ortega, Obstructive sleep apnea event
detection using explainable deep learning models for a portable monitor, Front.
Neurosci. 17 (2023) 1-19, https://doi.org/10.3389/fnins.2023.1155900.

F. Vaquerizo-Villar, G.C. Gutiérrez-Tobal, E. Calvo, et al., An explainable deep-
learning model to stage sleep states in children and propose novel EEG-related
patterns in sleep apnea, Comput. Biol. Med. 165 (2023) 107419, https://doi.org/
10.1016/j.compbiomed.2023.107419.

Y. Shi, Y. Zhang, Z. Cao, et al., Application and interpretation of machine learning
models in predicting the risk of severe obstructive sleep apnea in adults, BMC Med.
Inform. Decis. Mak. 23 (2023) 1-15, https://doi.org/10.1186/512911-023-02331-
Z.
S. Redline, R. Amin, D. Beebe, et al., The childhood adenotonsillectomy trial
(CHAT): rationale, design, and challenges of a randomized controlled trial
evaluating a standard surgical procedure in a pediatric population, Sleep 34 (2011)
1509-1517, https://doi.org/10.5665/sleep.1388.

S. Redline, K. Cook, R.D. Chervin, et al., Adenotonsillectomy for snoring and mild
sleep apnea in children: a randomized clinical trial, JAMA 330 (2023) 2084-2095,
https://doi.org/10.1001/jama.2023.22114.

C.L. Marcus, R.H. Moore, C.L. Rosen, et al., A randomized trial of
adenotonsillectomy for childhood sleep apnea, N. Engl. J. Med. 368 (2013)
2366-2376, https://doi.org/10.1056/NEJMoal215881.

G.Q. Zhang, L. Cui, R. Mueller, et al., The national sleep research resource: towards
a sleep data commons, J. Am. Med. Inform. Assoc. 25 (2018) 1351-1358, https://
doi.org/10.1093/jamia/ocy064.

R. Wang, J.P. Bakker, R.D. Chervin, et al., Pediatric adenotonsillectomy trial for
snoring (PATS): protocol for a randomised controlled trial to evaluate the effect of
adenotonsillectomy in treating mild obstructive sleep-disordered breathing, BMJ
Open 10 (2020) e033889, https://doi.org/10.1136/bmjopen-2019-033889.

R. Hornero, L. Kheirandish-Gozal, G.C. Gutiérrez-Tobal, et al., Nocturnal
oximetry-based evaluation of habitually snoring children, Am. J. Respir. Crit. Care
Med. 196 (2017) 1591-1598, https://doi.org/10.1164/rcem.201705-09300C.


https://doi.org/10.1016/j.measurement.2025.120259
https://doi.org/10.1016/j.measurement.2025.120259
https://doi.org/10.1542/peds.2012-1672
https://doi.org/10.1542/peds.2012-1672
https://doi.org/10.2147/NSS.S51907
https://doi.org/10.2147/NSS.S51907
https://doi.org/10.1016/S0140-6736(84)90062-X
https://doi.org/10.1016/S0140-6736(84)90062-X
https://doi.org/10.1586/ers.11.7
https://doi.org/10.1016/j.pcad.2008.03.002
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0030
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0030
https://doi.org/10.1002/ppul.23658
https://doi.org/10.1002/ppul.23658
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0040
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0040
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0040
https://doi.org/10.1080/17434440.2019.1626233
https://doi.org/10.1002/ppul.25423
https://doi.org/10.1002/ppul.25423
https://doi.org/10.1109/JBHI.2024.3495975
https://doi.org/10.1109/JBHI.2024.3495975
https://doi.org/10.1016/j.clinph.2015.05.025
https://doi.org/10.3389/fphys.2016.00460
https://doi.org/10.1093/sleep/20.2.151
https://doi.org/10.1093/sleep/20.2.151
https://doi.org/10.1093/sleep/27.4.784
https://doi.org/10.1016/j.compbiomed.2023.106549
https://doi.org/10.1016/j.compbiomed.2023.106549
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0085
https://doi.org/10.1016/j.measurement.2022.111787
https://doi.org/10.1016/j.measurement.2024.116170
https://doi.org/10.1016/j.measurement.2024.116170
https://doi.org/10.1016/j.compbiomed.2023.107628
https://doi.org/10.1016/j.compbiomed.2023.107628
https://doi.org/10.1109/JBHI.2020.3048901
https://doi.org/10.1109/JBHI.2020.3048901
https://doi.org/10.1038/s41598-024-67729-9
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.3390/s23020634
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0125
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0125
https://doi.org/10.1016/j.procs.2022.11.031
https://doi.org/10.1016/j.procs.2022.11.031
https://doi.org/10.1016/j.bspc.2023.105490
https://doi.org/10.1016/j.bspc.2023.105490
https://doi.org/10.3389/fnins.2023.1155900
https://doi.org/10.1016/j.compbiomed.2023.107419
https://doi.org/10.1016/j.compbiomed.2023.107419
https://doi.org/10.1186/s12911-023-02331-z
https://doi.org/10.1186/s12911-023-02331-z
https://doi.org/10.5665/sleep.1388
https://doi.org/10.1001/jama.2023.22114
https://doi.org/10.1056/NEJMoa1215881
https://doi.org/10.1093/jamia/ocy064
https://doi.org/10.1093/jamia/ocy064
https://doi.org/10.1136/bmjopen-2019-033889
https://doi.org/10.1164/rccm.201705-0930OC

C. Garcia-Vicente et al.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]
[51]
[52]

[53]

[54]

[55]

[56]

[571

R.B. Berry, R. Budhiraja, D.J. Gottlieb, et al., Rules for scoring respiratory events in
sleep: update of the 2007 AASM manual for the scoring of sleep and associated
events, J. Clin. Sleep Med. 08 (2012) 597-619, https://doi.org/10.5664/
jesm.2172.

C. Iber, S. Ancoli-Israel, A. Chesson, S. Quan, The AASM manual for scoring of sleep
and associated events: rules terminology and technical specification, American
Academy of Sleep Medicine, Westchester, IL, 2007.

A.1. Naimi, L.B. Balzer, Stacked generalization: an introduction to super learning,
Eur. J. Epidemiol. 33 (2018) 459-464, https://doi.org/10.1007/s10654-018-0390-
z.
S. Ali, T. Abuhmed, S. El-Sappagh, et al., Explainable artificial intelligence (XAI):
what we know and what is left to attain trustworthy artificial intelligence, Inf.
Fusion 99 (2023) 101805, https://doi.org/10.1016/j.inffus.2023.101805.

D. Rothman, Hands-On Explainable AI (XAI) with Python: Interpret, visualize,
explain, and integrate reliable Al for fair, secure, and trustworthy Al apps, (2020).
F.R. Mashrur, M.S. Islam, D.K. Saha, et al., SCNN: Scalogram-based convolutional
neural network to detect obstructive sleep apnea using single-lead
electrocardiogram signals, Comput. Biol. Med. 134 (2021) 104532, https://doi.
0rg/10.1016/j.compbiomed.2021.104532.

A. Sheta, H. Turabieh, T. Thaher, et al., Diagnosis of obstructive sleep apnea from
ECG signals using machine learning and deep learning classifiers, Appl. Sci. 11
(2021) 6622, https://doi.org/10.3390/app11146622.

J. Jiménez-Garcia, M. Garcia, G.C. Gutiérrez-Tobal, et al., A 2D convolutional
neural network to detect sleep apnea in children using airflow and oximetry,
Comput. Biol. Med. 147 (2022), https://doi.org/10.1016/j.
compbiomed.2022.105784.

L. Sornmo, P. Laguna, The electrocardiogram—a brief background, in: L. Sérnmo,
Laguna PBT-BSP in C and NA (Eds.), Processing in Cardiac and Neurological
Applications, Elsevier, Burlington, 2005, pp. 411-452.

J.-W. Chen, S.-T. Lin, C.-Y. Wang, et al., A signal segmentation-free model for
electrocardiogram-based obstructive sleep apnea severity classification, Adv. Intell.
Syst. 5 (2023) 1-10, https://doi.org/10.1002/aisy.202200275.

J.W. Chen, C.Y. Wang, C.C. Lin, et al., Predicting apnea-hypopnea index in patients
with obstructive sleep apnea using unsegmented ECG-signal-based algorithms,
IEEJ Trans. Electr. Electron. Eng. 18 (2023) 1550-1552, https://doi.org/10.1002/
tee.23868.

J.W. Chen, C.M. Liu, C.Y. Wang, et al., A deep neural network-based model for OSA
severity classification using unsegmented peripheral oxygen saturation signals,
Eng. Appl. Artif. Intell. 122 (2023) 106161, https://doi.org/10.1016/j.
engappai.2023.106161.

R.T. Brouillette, A. Morielli, A. Leimanis, et al., Nocturnal pulse oximetry as an
abbreviated testing modality for pediatric obstructive sleep apnea, Pediatrics 105
(2000) 405-412, https://doi.org/10.1542/peds.105.2.405.

D. Wolpert, Stacked generalization (stacking), Neural Netw. 5 (1992) 241-259.
J. Cohen, A coefficient of agreement for nominal scales. Educ. Psychol. Meas., 20
(1960) 37-46. https://doi.org/Doi: 10.1177/001316446002000104.

K. Zhang, Y. Zhang, M. Wang, A unified approach to interpreting model predictions
scott, Nips 16 (2012) 426-430.

S. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions. Adv.
Neural Inf. Process Syst., (2017) 4766-4775. https://doi.org/Doi:10.48550/
arXiv.1705.07874.

A. Shrikumar, P. Greenside, A. Kundaje, Learning important features through
propagating activation differences. 34th Int Conf Mach Learn, 2017.

R.R. Selvaraju, M. Cogswell, A. Das, et al., Grad-CAM: visual explanations from
deep networks via gradient-based localization, Int. J. Comput. Vis. 128 (2020)
336-359, https://doi.org/10.1007/s11263-019-01228-7.

Z. Ebrahimi, M. Loni, M. Daneshtalab, A. Gharehbaghi, A review on deep learning
methods for ECG arrhythmia classification, Expert Syst. with Appl. X 7 (2020)
100033, https://doi.org/10.1016/j.eswax.2020.100033.

H. Ismail Fawaz, G. Forestier, J. Weber, et al., Deep learning for time series
classification: a review, Data Min. Knowl. Discov. 33 (2019) 917-963.

15

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Measurement 264 (2026) 120259

P. Ye, H. Qin, X. Zhan, et al., Diagnosis of obstructive sleep apnea in children based
on the XGBoost algorithm using nocturnal heart rate and blood oxygen feature,
Am. J. Otolaryngol. 44 (2023) 103714, https://doi.org/10.1016/j.
amjoto.2022.103714.

S. Ebrahimian, S. Sillanméki, S. Hietakoste, et al., Beat-to-beat cardiac
repolarization lability increases during hypoxemia and arousals in obstructive
sleep apnea patients, Am. J. Physiol. Circ. Physiol. (2024), https://doi.org/
10.1152/ajpheart.00760.2023.

R. Hornero, L. Kheirandish-Gozal, G.C. Gutiérrez-Tobal, et al., Nocturnal oximetry-
based evaluation of habitually snoring children, Am. J. Respir. Crit. Care Med. 196
(2017) 1591-1598, https://doi.org/10.1164/rccm.201705-09300C.

A. Azarbarzin, S.A. Sands, K.L. Stone, et al., The hypoxic burden of sleep apnoea
predicts cardiovascular disease-related mortality: the osteoporotic fractures in men
study and the sleep heart health study, Eur. Heart J. 40 (2019) 1149-1157, https://
doi.org/10.1093/eurheartj/ehy624.

S. Solhjoo, M.C. Haigney, N.M. Punjabi, Sleep-disordered breathing destabilizes
ventricular repolarization: cross-sectional, longitudinal, and experimental
evidence, Hear Rhythm (2024), https://doi.org/10.1016/j.hrthm.2024.08.054.

C. Kraikriangsri, A. Khositseth, T. Kuptanon, P-wave dispersion as a simple tool for
screening childhood obstructive sleep apnea syndrome, Sleep Med. 54 (2019)
159-163, https://doi.org/10.1016/j.sleep.2018.09.032.

R.S. Amin, T.R. Kimball, J.A. Bean, et al., Left ventricular hypertrophy and
abnormal ventricular geometry in children and adolescents with obstructive sleep
apnea, Am. J. Respir. Crit. Care Med. 165 (2002) 1395-1399, https://doi.org/
10.1164/rccm.2105118.

F. Vaquerizo-Villar, D. Alvarez, G.C. Gutiérrez-Tobal, et al., Accurate and
interpretable deep learning model for sleep staging in children with sleep apnea
from pulse oximetry. In: IFMBE Proceedings, 2024. pp 38-47.

A.M. Andrés-Blanco, D. Alvarez, A. Crespo, et al., Assessment of automated
analysis of portable oximetry as a screening test for moderate-to-severe sleep apnea
in patients with chronic obstructive pulmonary disease, PLoS One 12 (2017)
0188094, https://doi.org/10.1371/journal.pone.0188094.

H. Korkalainen, T. Leppanen, J. Aakko, et al., Accurate deep learning-based sleep
staging in a clinical population with suspected obstructive sleep apnea, IEEE J.
Biomed. Heal Inform. 24 (2019) 1, https://doi.org/10.1109/JBHI.2019.2951346.
Z. Xu, G.C. Gutiérrez-Tobal, Y. Wu, et al., Cloud algorithm-driven oximetry-based
diagnosis of obstructive sleep apnoea in symptomatic habitually snoring children,
Eur. Respir. J. 53 (2019) 1801788, https://doi.org/10.1183/13993003.01788-
2018.

A. Martin-Montero, G.C. Gutiérrez-Tobal, D. Gozal, et al., Bispectral analysis of
heart rate variability to characterize and help diagnose pediatric sleep apnea,
Entropy 23 (2021) 1016, https://doi.org/10.3390/e23081016.

A. Martin-Montero, G.C. Gutiérrez-Tobal, L. Kheirandish-Gozal, et al., Heart rate
variability spectrum characteristics in children with sleep apnea, Pediatr. Res. 89
(2021) 1771-1779, https://doi.org/10.1038/s41390-020-01138-2.

A. Garde, X. Hoppenbrouwer, P. Dehkordi, et al., Pediatric pulse oximetry-based
OSA screening at different thresholds of the apnea-hypopnea index with an
expression of uncertainty for inconclusive classifications, Sleep Med. 60 (2019)
45-52, https://doi.org/10.1016/j.sleep.2018.08.027.

J.M. Calderén, J. Alvarez-Pitti, I. Cuenca, et al., Development of a minimally
invasive screening tool to identify obese Pediatric population at risk of obstructive
sleep Apnea/Hypopnea syndrome, Bioengineering 7 (2020) 1-13, https://doi.org/
10.3390/bioengineering7040131.

J. Lazaro, E. Gil, J.M. Vergara, P. Laguna, Pulse rate variability analysis for
discrimination of sleep-apnea-related decreases in the amplitude fluctuations of
pulse photoplethysmographic signal in children, IEEE J. Biomed. Heal Inform. 18
(2014) 240-246, https://doi.org/10.1109/JBHI.2013.2267096.

E. Gil, R. Bailon, J.M. Vergara, P. Laguna, PTT variability for discrimination of
sleep apnea related decreases in the amplitude fluctuations of PPG signal in
children, L.E.E.E. Trans. Biomed. Eng. 57 (2010) 1079-1088, https://doi.org/
10.1109/TBME.2009.2037734.


https://doi.org/10.5664/jcsm.2172
https://doi.org/10.5664/jcsm.2172
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0190
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0190
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0190
https://doi.org/10.1007/s10654-018-0390-z
https://doi.org/10.1007/s10654-018-0390-z
https://doi.org/10.1016/j.inffus.2023.101805
https://doi.org/10.1016/j.compbiomed.2021.104532
https://doi.org/10.1016/j.compbiomed.2021.104532
https://doi.org/10.3390/app11146622
https://doi.org/10.1016/j.compbiomed.2022.105784
https://doi.org/10.1016/j.compbiomed.2022.105784
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0225
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0225
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0225
https://doi.org/10.1002/aisy.202200275
https://doi.org/10.1002/tee.23868
https://doi.org/10.1002/tee.23868
https://doi.org/10.1016/j.engappai.2023.106161
https://doi.org/10.1016/j.engappai.2023.106161
https://doi.org/10.1542/peds.105.2.405
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0250
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0260
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0260
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0270
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0270
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1016/j.eswax.2020.100033
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0285
http://refhub.elsevier.com/S0263-2241(25)03619-X/h0285
https://doi.org/10.1016/j.amjoto.2022.103714
https://doi.org/10.1016/j.amjoto.2022.103714
https://doi.org/10.1152/ajpheart.00760.2023
https://doi.org/10.1152/ajpheart.00760.2023
https://doi.org/10.1164/rccm.201705-0930OC
https://doi.org/10.1093/eurheartj/ehy624
https://doi.org/10.1093/eurheartj/ehy624
https://doi.org/10.1016/j.hrthm.2024.08.054
https://doi.org/10.1016/j.sleep.2018.09.032
https://doi.org/10.1164/rccm.2105118
https://doi.org/10.1164/rccm.2105118
https://doi.org/10.1371/journal.pone.0188094
https://doi.org/10.1109/JBHI.2019.2951346
https://doi.org/10.1183/13993003.01788-2018
https://doi.org/10.1183/13993003.01788-2018
https://doi.org/10.3390/e23081016
https://doi.org/10.1038/s41390-020-01138-2
https://doi.org/10.1016/j.sleep.2018.08.027
https://doi.org/10.3390/bioengineering7040131
https://doi.org/10.3390/bioengineering7040131
https://doi.org/10.1109/JBHI.2013.2267096
https://doi.org/10.1109/TBME.2009.2037734
https://doi.org/10.1109/TBME.2009.2037734

	Combined explainable deep learning model to predict pediatric sleep apnea from ECG and SpO2
	1 Introduction
	2 Subjects and signals
	3 Methods
	3.1 ECG and SpO2 signals preprocessing
	3.2 Stacking-based DL architecture
	3.3 Training, optimization, and evaluation process
	3.4 Model interpretability using SHAP
	3.5 Statistical analysis and diagnostic ability

	4 Results
	4.1 Optimal model configuration and ablation tests
	4.2 Diagnostic performance of the DL-based proposal
	4.3 Identification of ECG and SpO2 patterns using SHAP

	5 Discussion
	5.1 Configuration of the combined DL approach
	5.2 SHAP explainability and ECG-SpO2 interpretation
	5.3 Diagnostic ability and comparison with previous studies
	5.4 Limitations and future work

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Ethical approval
	Appendix A Supplementary data
	Data availability
	References


