

Study of the role of oxygen in the evolution of red wine colour under different ageing conditions in barrels and bottles

Rosario Sánchez-Gómez^a, María del Alamo-Sanza^{*a}, Víctor Martínez-Martínez^b and Ignacio Nevares^{*b}

^aDepartment of Analytical Chemistry, ^b Department of Agricultural and Forestry Engineering, UVaMOX-Group, Universidad de Valladolid, 34001 Palencia, Spain

*maria.delalamo.sanza@uva.es *ignacio.nevares@uva.es

Abstract

Wine ageing in barrels is conditioned, among other factors, by the amount of oxygen received during this process, which thus impacts its final properties. The aim of this study was to evaluate the effect of oxygen on wine colour during ageing in barrels and bottles during different times. The use of barrels with different and known rates of oxygenation allows the effect of different oxygenation conditions throughout the process in barrels and its later evolution in bottles. A simulation process of ageing in bottles was used to study the impact of bottling in wines after differing ageing periods in barrels. The study of wine's oxygen consumption capacity has been tied to colour modifications during ageing in barrels and bottles. Wines aged in barrels with a high oxygenation rate showed greater avidity to consume oxygen taking less time to consume that available, which is reflected in a greater increase in colour intensity.

Keywords: barrel OTR, bottle storage simulation, colour, oxygen consumption kinetics, red wine, vis spectroscopy

1. Introduction

Oxygen is an essential parameter to be taken into account during red wine ageing in barrels, since it determines the reactions that occur between the compounds of the wine and those provided by the wood during this process (polymerisation of tannins and anthocyanins, consumption of free sulphur dioxide, oxidation of ethanol to acetaldehyde, modifications in the aromatic profile of the wine...), and consequently directly affects the final properties of the wine. Therefore, the interaction between ageing wine and oxygen determines the process and the reactions that occur need to be understood (Cano-López, López-Roca, Pardo-Minguez, & Gómez Plaza, 2010; del Alamo-Sanza & Nevares, 2017; del Alamo, Nevares, Gallego, Fernández de Simón, & Cadahía, 2010). The barrel acts as an active vessel that allows the transfer of oxygen to the wine being aged (del Alamo-Sanza & Nevares, 2017), and that amount of oxygen is known as the oxygen transfer rate (OTR), which defines the oxygen reaching

38 the wine through the joints between the staves and throughout the wood as the main oxygen pathways
39 (del Alamo-Sanza & Nevares, 2017; Nevares Domínguez & del Alamo-Sanza, 2014). The OTR of the
40 oak wood used to make barrels depends on its species, geographical origin, density, anatomical
41 properties and cooperage process, among others (Nevares et al., 2019). For a long time, the choice of
42 oak barrels for wine ageing has been based on the type of oak and also its grain. Recently, Martínez-
43 Martínez et al. (2019) have proposed a non-destructive method to classify staves according to their
44 wood OTR in order to build barrels with low and high oxygenation rates. It has been demonstrated
45 that it is possible to make barrels with a high OTR, dosing the wine with more than twice the oxygen
46 provided by barrels with a low OTR (Prat-García, Nevares, Martínez-Martínez, & del Alamo-Sanza,
47 2020).

48 Colour is one of the most important characteristics in red wines (Heras-Roger, Díaz-Romero, &
49 Darias-Martín, 2016). In addition to being one of the first attributes to be appreciated by the consumer,
50 its stability during vinification and ageing can help to monitor wine quality, so it is used as an age
51 marker in wine (Atanasova, Fulcrand, Cheynier, & Moutounet, 2002). Although colour is determined
52 by many variables present throughout all the vinification process (grape variety, yeast strain used
53 during fermentation, among others), during wood and bottle ageing storage conditions one of the most
54 influential factors is oxygen. During wine ageing oxygen determines the formation of pigments derived
55 from anthocyanins and polymerized pigments, which leads to an increase in intensity and colour
56 stability (Heras-Roger et al., 2016). As wood ageing progresses, the concentration of anthocyanins and
57 copigments decreases due to the occurrence of various chemical reactions, resulting in the decreased
58 influence of copigmentation on wine colour expression. However, the number of new pigments
59 derived from chemical reactions continues to increase and is becoming increasingly important in
60 modifying red wine colour during ageing (Es-Safi & Cheynier, 2009). The change from red purple to
61 brick red hues is attributed to the progressive formation of new pigments, since anthocyanins react
62 with other compounds (Es-Safi & Cheynier, 2009; Fulcrand, Dueñas, Salas, & Cheynier, 2006; Wang,
63 Race, & Shrikhande, 2004). After barrel ageing, a bottle period is fundamental since wines undergo
64 changes that entail a continuation of those processes that begin during ageing in wood, which are
65 determined not only by their initial wine characteristics but also by those of the wood and the length
66 of the contact period (Guadalupe & Ayestarán, 2008). In relation to colour, the most important
67 phenomenon includes increased colour stability, since polymerisation reactions have continued,
68 showing a more stable colour, which could be a result of the beneficial effects of compounds extracted
69 from the wood (Oberholster et al., 2015).

70 Due to the importance of oxygen on wine evolution, several works have focused on the study
71 of the effect of oxygen addition during bottling, in most cases reducing the bottling volume in order to
72 amplify the oxidation phenomena (Caillé et al., 2010). There are several factors that have been taken
73 into account: different amounts of oxygen (Carrascón et al., 2018; Marrufo-Curtido, Carrascón, Bueno,
74 Ferreira, & Escudero, 2018; Petrozziello et al., 2018; Ugliano et al., 2012), providing oxygen in

75 different consecutive cycles (Carrascón, Bueno, Fernandez-Zurbano, & Ferreira, 2017; Gambuti,
76 Picariello, Rinaldi, & Moio, 2018) and also, oxygen exposures at different temperatures and times
77 (Oliveira, Barros, Silva Ferreira, & Silva, 2015). From among the ageing of wine bottle variables under
78 study, temperature exerts a significant effect on the kinetics of the reactions occurring during ageing
79 (Scrimgeour, Nordestgaard, Lloyd, & Wilkes, 2015). Several works have been and are being carried
80 out with the aim of studying the ageing process using higher temperatures than usual for bottle ageing,
81 in order to accelerate the processes that bottled wine undergoes due to the temperature-dependent rates
82 for different wine ageing reactions (Giuffrida de Esteban et al., 2019; Hopfer, Buffon, Ebeler, &
83 Heymann, 2013). However, no approximations have been revealed between the simulated time with
84 temperature and the real time under normal ageing conditions.

85 The main purpose of this work is to study the effect of the oxygenation level on red wine, on its
86 colour evolution during ageing in French oak barrels and its later storage in bottles. The use of barrels
87 with a known oxygenation level has allowed the effect on wine colour at different ageing times in
88 barrels and bottles to be verified.

89

90 **2. Materials and Methods**

91 **2.1. Wine samples and barrels**

92 A young red wine produced on an industrial scale in 2017 belonging to the Spanish appellation
93 of origin Ribera del Duero was used. The chemical parameters of the wine before ageing were: total
94 acidity 4.56 g/L (expressed as tartaric acid), volatile acidity 0.48 g/L (expressed as acetic acid), sugars
95 1.4 g/L, degree strength 15.16%, colour intensity 15, and total polyphenol index 61. For ageing, 8
96 French oak barrels (*Quercus petraea* Liebl.) with a capacity of 225-L and different OTR were used: 4
97 barrels with low OTR (from now on, L-OTR) and another 4 with high OTR (henceforth, H-OTR). For
98 their construction a protocol is fully described in a previous study (Prat-García et al., 2020), a seasoned
99 stave classification method based on the anatomical features of the wood by means of image analysis
100 and artificial neuronal network (Martínez-Martínez et al., 2019) was used. The oxygen rate of the 4 H-
101 OTR barrels was over twice that of the 4 L-OTR ones (Prat-García et al., 2020).

102 The wine was transferred into the barrels at the same moment and stored during the ageing
103 period in the same ageing room in the experimental cellar at the University of Valladolid (Palencia,
104 Spain), where humidity and temperature conditions were controlled at 65–75 % and 15–16 °C. Samples
105 from each barrel were taken every three months using an inert sample-taking method, always
106 maintaining a nitrogen atmosphere around the bung hole. In order to profile their colour evolution
107 throughout one year, 8 wine samples were studied every 3 months (4 from L-OTR barrels and 4 from
108 H-OTR barrels) up to 12 months during ageing, so a total of 32 wines (labelled as *Initial*, *I*) were
109 sampled (Figure 1S).

110

111 **2.2. Oxygen consumption kinetics and data analysis**

112 The oxygen consumption rate (OCR) of the wines from different oxygenation scenarios was
113 evaluated as defined by Nevares et al. (2017) as they had been subjected to different ageing times (3,
114 6, 9 and 12 months) in high and low oxygenation barrels. Thus, atmospheric air saturation processes
115 were performed on the *Initial (I)* wines from each of the barrels (4 from L-OTR barrels and 4 from H-
116 OTR barrels) and at each sampling time (3, 6, 9 and 12 months), 32 wines in total (8 x 4) (Figure 1S).
117 Once the wines were air saturated to study the oxygen consumption kinetics, 4 mL were transferred to
118 four SensorVials SV-PSt5 for each wine sample (PreSens Precision Sensing GmbH, Regensburg,
119 Germany). The oxygen consumption kinetics were then carried out in quadruplicate, measuring
120 dissolved oxygen (DO) in a multi SDR SensorDish Reader device (PreSens Precision Sensing GmbH,
121 Regensburg, Germany) ensuring that all samples were measured simultaneously in the same
122 conditions. The DO of the samples was measured every hour throughout the consumption process,
123 producing a total of 128 wine oxygen consumption kinetics (32 x 4) (Figure 1S). The wine samples
124 obtained after oxygen consumption were labelled as *final consumption (FC)*.

125 To study the oxygen consumption kinetics, the curve data were pre-processed in order to obtain
126 32 final curves: one for each sample. To this end, the first step was to remove the initial data before
127 the maximum value and the final data after the time with a derivative value greater than zero
128 considering a one-hour window of time. This procedure removes the possible initial noise of the DO
129 readings and the final static values. After that, the four consumed oxygen kinetics measured for each
130 wine sample were analysed and the remaining curves averaged in order to obtain the mean oxygen
131 kinetic curve for each sample. Several fitting models have been proposed by other authors (Ferreira,
132 Carrascon, Bueno, Ugliano, & Fernandez-Zurbano, 2015; Marrufo-Curtido et al., 2018), although in
133 this study the curves were fitted with a phenomenological equation (1) developed in previous work
134 (Nevares et al., 2017),

$$O_2(t) = \frac{a}{1 + b \cdot e^{c \cdot t}} \quad (1)$$

135 where t is the time in hours, e refers to the exponential function and a , b and c are the parameters of
136 the phenomenological equation. Finally, parameters presented in Table 1S were extracted from each
137 kinetic curve for their later analysis. Briefly, the total consumption process time (t_{end}) defines the total
138 time that the wine needs to consume the oxygen it is capable of consuming, this being lower for
139 samples that were able to consume the oxygen faster. The Area Under the Curve (AUC) is the integral
140 under the kinetic curve and is lower for the samples that consume the oxygen quickly but also for the
141 samples that are able to reach a final oxygen value lower than others. The minimum value of the first
142 derivative (min_der), as an absolute value, is a parameter that shows the maximum consumption
143 velocity of the sample, so the slower consumption samples are expected to have a lower value for the
144 min_der parameter than the faster consumption ones. Oxygen at half the consumption time (oxy_mid)
145 shows the oxygen level in the middle of the consumption process, giving an idea of the convexity of
146 the kinetic curve, this being lower for the samples that were able to consume more oxygen in the first

147 half of the time period, that is, samples with a high oxygen avidity at the beginning of the oxygen
148 consumption process. Finally, the t_{OCRI} parameter (Nevares et al., 2017) is the time where the area
149 under the curve is half of the total AUC , this being greater for the samples with a slow oxygen
150 consumption rate or for samples that are not capable of consuming all the oxygen dissolved in the air.
151

152 **2.3. Bottle simulation conditions**

153 In order to study the effect of oxygen in the bottle period of the red wines subjected to different
154 ageing times in barrels, the samples collected after 3, 6, 9 and 12 months underwent two periods in
155 bottles. It was decided to do this in small volumes taken from the samplings carried out to avoid
156 modifying the good development of ageing in barrels.

157 To simulate the ageing time in bottle and once the follow-up of the oxygen consumption kinetic
158 had finished, wine samples were stored under two different temperature conditions in 25 mL screwcap
159 airtight bottles, taking the temperature as the modulating parameter of the ageing time in bottle
160 (unpublished works). The Short Bottle Ageing Simulation time (*SBAS*) of the *final consumption (FC)*
161 wines was done by storing the containers at 15°C for 35 days and the Long Bottle Ageing Simulation
162 (*LBAS*) by storing them at 35 °C for 35 days, all in a controlled temperature chambers.
163

164 **2.4. Real bottle conditions**

165 After one year of ageing in barrels, the wine was bottled to go through its ageing period in the
166 bottle. For this, after the last sampling was carried out (12 month), all the wines were bottled using
167 750 mL bottles in the winery, for which a semi-automatic monoblock with filler and corker “modello
168 97/M4” (Officine Pesce, Bubbio, Italy) were used. Before that, and to reproduce the real winery
169 situation, wines from the barrels from the same OTR (4 L-OTR and 4 H-OTR barrels) were mixed and
170 labelled as L-OTR-MIX and H-OTR-MIX. Sübr closures (Vinventions Deutschland GmbH,
171 Fußgönheim, Germany) were used. All bottles were stored in the same bottle room under controlled
172 humidity (65–75 %) and temperature (15–16 °C) conditions. After 4 months in bottle, 5 bottles of each
173 type (L-OTR and H-OTR) were opened and analysed.
174

175 **2.5. Visible spectrum measurement and data analysis**

176 The visible spectra were analysed in a total of 130 wine samples: from each of the 4 barrel
177 ageing times (3, 6, 9 and 12 months), each of the 8 barrels (4 with L-OTR and 4 with H-OTR) and
178 each sampling moment (*I*, *FC*, *SBAS* and *LBAS*) (4 x 8 x 4), in addition to the two wines from the real
179 bottle conditions (Figure 1S). The visible spectrum of every wine sample was measured in duplicate
180 using quartz cells with a path-length of 1 mm and a PerkinElmer’s LAMBDA 25 UV/vis
181 Spectrophotometer (Waltham, MA, USA) interfaced to a computer. The spectra of all samples were
182 obtained by measuring the absorbance in the range of 320 – 780 nm at 5 nm intervals. Pure water was

183 used for the reference scan. The first step of the spectral signal processing was to average the signals
184 of the two measurements of each situation, since a total of 260 signals were obtained. Moreover, the
185 average of the 4 L-OTR and the 4 H-OTR barrels were also calculated respectively for each situation
186 for the graphical representation and the comparison between them.

187 The accepted colour analysis for red wines is that made by measurements at three wavelengths,
188 420, 520 and 620 nm, and the calculations of colour intensity (sum of these absorbances as defined by
189 (Glories, 1984); and tone as the ratio of absorbance at 420 to 520 nm) provide a useful method to
190 describe wine colour. The CIELab space has been used to describe wine colour using all visible
191 spectra. CIELab parameters were calculated using the “Method OIV-MA-AS2-11: Determination of
192 chromatic characteristics according to CIELab” (OIV, 2006). These parameters were: L*, describing
193 the lightness from black to white; b*, from blue to yellow; a*, from red to green; C*, chroma or
194 saturation; and H*, hue angle.

195 To calculate the relative gains of the different bottle ageing simulation times (*FC*, *SBAS* and
196 *LBAS*) the difference between the absorbance at the time of study and the absorbance at the previous
197 bottle time was divided by the absorbance at the previous bottle time. Thus, the relative gain for the
198 *FC* bottle time was obtained considering the *Initial* spectrum as the previous time and the relative gain
199 for the *SBAS* and *LBAS* bottle times were calculated considering *FC* as the previous time.

200

201 **2.6. Statistical analysis**

202 Regression and analysis of variance (ANOVA) at an alpha level of 5% with Fisher's least
203 significant difference were carried out using the Statgraphics Centurion statistical program (version
204 18.1.12; StatPoint, Inc., VA, USA).

205

206 **3. Results and Discussion**

207 **3.1. Kinetics of oxygen consumption**

208 Figure 1 represents the mean consumption curves obtained after this processing procedure
209 (section 2.2) and the error bars related to the standard deviation of the four replicates. The fitting curves
210 employed to obtain the phenomenological equation parameters had a R^2 between 0.9629 and 0.9999
211 (Nevares et al., 2017). Table 1 summarized the 1-way ANOVA tests performed on the parameters that
212 define the wine oxygen consumption kinetic curves in order to evaluate the significance of the
213 differences between the barrel OTRs (L-OTR and H-OTR) considering the barrel ageing time (3, 6, 9
214 and 12 months). After six months of barrel ageing, the *AUC* parameter was significantly higher in
215 wines from L-OTR barrels, which means less eagerness to consume oxygen and/or it is not able to
216 consume all of its dissolved oxygen. After nine months of barrel ageing *min_der* was significantly
217 lower in wines from H-OTR barrels, thus indicating a lower avidity for oxygen. Regarding the
218 *oxy_mid*, it was significantly higher in wines from L-OTR barrels in the samples of the first half of

219 the year in barrel. However, in the last sampling, H-OTR wine presented the highest value, which
220 means that in the first half of the year of ageing, wines from L-OTR were less avid to consume oxygen,
221 although at the end of the ageing this trend changes and these same wines showed a statistically
222 significant higher avidity for oxygen consumption.

223 On the other hand, 1-way ANOVA tests were performed with wines from each barrel OTR (L-
224 OTR and H-OTR) to evaluate the differences among the oxygen consumption kinetics of the barrel
225 ageing times (Table 2). For t_{end} and t_{OCRI} the same significant differences were observed for samples
226 after 3 and 6 months and those after 9 and 12 months for both OTR barrels, except for t_{OCRI} in wines
227 from L-OTR sampled after 9 months. This indicates that in the first half of the barrel ageing period all
228 the wines presented a greater avidity and oxygen consumption capacity, which slowed down towards
229 the end of the year of barrel ageing. Analysing the *oxy_mid* parameter, there were no significant
230 differences when considering the H-OTR samples, but in the case of those from L-OTR ones an
231 increase in the capacity of oxygen consumption when wines have high levels of DO was observed as
232 the barrel ageing time progressed. Finally, *min_der* also showed significant differences for both OTR
233 barrel groups: both, L-OTR and H-OTR samples had an oxygen consumption maximum speed higher
234 for the samples after 3 months and lower for the rest. Thus, the behaviour throughout the barrel ageing
235 period differed according to barrel OTR. More specifically, wines aged in L-OTR barrels presented
236 two moments of maximum initial avidity followed by moments in which this decreased, while those
237 in H-OTR barrels after 3 months of ageing presented the maximum oxygen consumption speed when
238 it was present in high concentrations with a strong decrease after 6 months. However, that avidity
239 gradually recovered over ageing time with high oxygen contents. This result indicates that wines are
240 more avid for oxygen in the first months of barrel ageing, and the wine-wood-oxygen interaction
241 reactions give rise to compounds that are more stable and more resistant to oxidation in the following
242 months. Furthermore, bearing in mind that in the first months of barrel ageing wines receive a
243 significant dose of oxygen (between 30 and 40 % of the oxygen they are to receive during a year) (del
244 Alamo-Sanza & Nevares, 2014), and which is higher in wines aged in H-OTR barrels (Prat-García et
245 al., 2020), the more oxygen the wines have at their disposal, the higher the speed of oxygen
246 consumption.

247

248 **3.2. Visible spectra study**

249 Spectral information of the wines from the L-OTR and H-OTR barrels after 3, 6, 9 and 12
250 months of barrel ageing are shown in Figure 2. Each graph in Figure 2 presents the data of one of these
251 four barrel ageing times, where 8 spectral signals can be seen reflecting the average of the wines from
252 the 4 barrels with the same OTR. Table 2 shows the relative gains calculated for some wavelengths
253 among those that define colour intensity in red wines (420, 520 and 620 nm), analysing the different
254 barrel ageing times of the two different oxygenation levels (L-OTR and H-OTR) for each bottle ageing
255 simulation (*FC*, *SBAS* and *LBAS*).

256 After 3 months of barrel ageing the *FC* wines suffered an absorbance increase for all the
257 wavelengths (Figure 2a), with a mean gain of around 40% compared to the *Initial* situation (Table 2),
258 the increase in the L-OTR wines being higher than in those from H-OTR barrels (Table 2). The same
259 was observed after 6 months of ageing (Figure 2b), but with a mean gain 10% lower than in the
260 previous ageing period. Finally, after 9 and 12 months of barrel ageing (Figures 2c and 2d,
261 respectively) the wines presented the greatest mean increments with 55% and 89%, respectively.
262 Moreover, these increments were significantly higher in the H-OTR wine samples compared with that
263 of the L-OTR ones for all the wavelengths analysed after 12 months of ageing, but not at 470 and 520
264 nm after 9 months. In contrast, there were no significant differences between the two oxidation levels
265 for the samples after 3 and 6 months (Table 2). This confirms that the amount of oxygen received by
266 the wine causes a significant increase in colour, increasing with the ageing time in barrels and with
267 this increment being greater for wines from L-OTR barrels (Table 1).

268 Several authors reported the importance of adding small doses of oxygen to increase or modify
269 the colouring matter (Atanasova et al., 2002) especially during the wine ageing process (Cano-López
270 et al., 2010), because controlled oxygenation improves the final wine quality since it stabilizes colour.
271 The wine spectrum was observed to suffer no significant change with the storage time in barrels.
272 However, after subjecting the wines to a saturation and oxygen consumption process, the time periods
273 in barrels can be differentiated (Figure 2). This result could be related to the chemical structure of the
274 wine, which is defined by the compounds released by the oak wood and the interactions of these
275 compounds with the wine (del Alamo-Sanza & Nevares, 2017). These processes, which are affected
276 by the oxygen received by the wine during ageing in the different oxidation barrels, is also reflected
277 in the capability of the wine to generate more stable compounds that appear after an air saturation
278 process. Thus, the results obtained suggest that the generation of new pigments and the compounds
279 extracted during the ageing process make the wine colour more stable after forced oxidation, showing
280 a colour intensity gain that is significantly higher when barrel ageing time increases (Figure 2 and
281 Table 2). Thus, *FC* wines presented an increase in the absorbance at 620 nm, being greater for longer
282 barrel ageing times, which means a higher effect on the compounds related to the purple hue promoted
283 by air saturation. This effect is linked to an increase in absorbance at 420 and 520 nm, which could be
284 explained by the increase in some pigments of the A and B type vitisins groups (He et al., 2012). This
285 evolution of the wine from red to purple was previously described for red wine subject to lower but
286 constant oxygen doses over longer periods of time by micro-oxygenation techniques (Atanasova et al.,
287 2002; del Alamo et al., 2010). Moreover, anthocyanin–alkyl/aryl–flavanol pigment compounds have
288 been linked to the red-purple colours of wine that appear during the maturation stages (Pissarra et al.,
289 2004), these pigments being responsible for the generation of the pyranoanthocyanin–flavanol
290 compounds that can be found in red wine during ageing (Francia-Aricha, Guerra, Rivas-Gonzalo, &
291 Santos-Buelga, 1997).

Analysing the differences between the two bottle simulation times, *SBAS* and *LBAS*, a great dependency on the barrel ageing time was seen (Figure 2 and Table 2). A decrease in the wavelength range between 370 and 470 nm and an increment in the range between 520 and 620 nm was observed for both L-OTR and H-OTR wines with 3 months of barrel ageing stored at *SBAS*, with no significant differences among them (Table 2). These results show the continuation in the evolution of colour during bottle storage time, generating compounds related to red and blue hues. This process could be favoured by the copigmentation processes, and also related to the loss of monomeric anthocyanin, which interacts with other wine compounds, causing the generation of other coloured compounds during the ageing process (Fernandes, Oliveira, Teixeira, Mateus, & de Freitas, 2016; He et al., 2012). Nevertheless, *SBAS* wines with 6, 9 and 12 months of barrel ageing reduced their absorbance in the wavelength range between 520 and 670 nm, being lower in H-OTR wines compared to L-OTR ones after 9 and 12 months of barrel ageing. This means that the instability of the wines increased with the barrel ageing time, which suggests that the compounds formed are favoured by forced air saturation, more numerous when the ageing time increases, and were more unstable during the *SBAS*, causing more losses in the absorbance wavelengths related to red and purple. These results can be linked to colour stabilization during the oxidation process and also to the phenolic compound reactions in different ways (Atanasova et al., 2002). Thus, oxidation eases the formation in the first period of anthocyanin-flavanol derived purple compounds linked by ethyl bridges, (Es-Safi & Cheynier, 2009) and intensely coloured at wine pH. After that, the formation of several pyranone-anthocyanin compounds are formed, whose more stable forms have yellow and orange hues (pyranone-anthocyanin), with $\lambda_{\text{max}} \sim 370$ nm. The first ones (anthocyanin-flavanol pigments) are very unstable in wine (He et al., 2012), which causes the pyranone-anthocyanin to gradually dominate, contributing to the colour modification to orange and yellow, which is related to a more evolved aged red. Nevertheless, the absorbance decreases in the wavelength range of the red and purple colours (520-620 nm) were not associated with an absorbance increase in the wavelengths related to yellow and orange hues (370-470 nm), so a continuous loss was observed, this being greater in wines with more barrel ageing time.

Focusing on the *LBAS* wines, several spectral differences can be observed when comparing with *SBAS* ones (Figure 2), because this longer bottle time caused the development of brown hues. Wines from L-OTR and H-OTR barrels stored at *LBAS* after 3 months of barrel ageing showed an increment in the wavelength ranges of 350 – 520 nm and 620 – 670 nm, mainly because of anthocyanin loss, flavonol oxidation and new compound formation. In this case, the small decrease in absorbance at 570 nm could be associated with a loss of vinylpyranoanthocyanins (also known as portisins) and normally generated due to the reaction of a type A vitisin with flavanols in the presence of acetaldehyde (Mateus, Silva, Rivas-Gonzalo, Santos-Buelga, & De Freitas, 2003), which are characterized by having a blue hue in high-pH solutions (with a $\lambda_{\text{max}} \sim 570$ nm). After 6 and 9 months of barrel ageing, *LBAS* wines showed similar results: an absorbance loss at 520 and 575 nm, with no significant

329 differences between L-OTR and H-OTR wines and an absorbance increase in the 350-470 nm range
330 and at 620 nm, with a mean gain of 10% and 3.5%, respectively, in relation to *FC*. Moreover, these
331 absorbance increases were significantly greater for the L-OTR wines in comparison with the H-OTR
332 ones. Finally, *LBAS* wines with a year of barrel ageing presented a general absorbance decrease for
333 both L-OTR and H-OTR wines, this being greater in the range between 520 nm and 670 nm, which is
334 related to larger losses of the red and purple compounds (Escribano-Bailón, Álvarez-García, Rivas-
335 Gonzalo, Heredia, & Santos-Buelga, 2001). This suggests that the colour increase recorded in the *FC*
336 wines is not stable during the bottle storage time. The small absorbance losses at 520 nm could be
337 explained by the greater colour stabilization caused by the copigmentation phenomena. Nevertheless,
338 it is interesting to emphasize that colour intensity was higher for *Initial* wines. For this reason, it could
339 be said that, regardless of the barrel ageing time, wine colour first changed from red to purple and then
340 to yellow and orange hues as a consequence of the ageing conditions. To conclude, it has been seen
341 that barrel oxygenation (L-OTR or H-OTR) affects the characteristics of the wine (Table 2): in general,
342 wine aged in H-OTR barrels showed greater variations in the spectra compared with L-OTR ones, with
343 higher losses or smaller increases for both bottle ageing conditions (*SBAS* and *LBAS*), except for *LBAS*
344 wines with 3 and 6 months of barrel ageing. In addition, as mentioned above, H-OTR wines had a
345 higher oxygen consumption speed (Table 1), that is, showed more oxygen avidity, which seems to
346 result in less generation of stable compounds.

347

348 **3.3. Colour parameter relationships**

349 The results of the relationships between the different colour parameters are presented in Figure
350 3 and Table 2S. This analysis has been performed for all the different barrel ageing periods (3, 6, 9
351 and 12 months) and for each bottle ageing time (*I*, *FC*, *SBAS* and *LBAS*). Results showed that L^*
352 (lightness) was inversely proportional to colour intensity (CI) (Figure 3a): it decreases with the creation
353 of new pigments and increases CI. It is interesting to note that, for the *Initial* wines, small modifications
354 in CI cause the greater changes in L^* compared to the rest of the bottle ageing stages (*FC*, *SBAS* or
355 *LBAS*), which can be seen in the regression equation (Table 2S). This relationship has been analysed
356 by several authors, finding that L^* can be transformed in the better-known and appreciated standard
357 parameter CI (Casassa & Sari, 2007). Thus, Almela et al. (1995) found a correlation coefficient of -
358 0.957 and Esparza, (2006) recorded similar results. As previously described (section 3.2.), *FC* wines
359 showed a significant increase in CI, reflecting a relationship similar to that obtained for the *SBAS*
360 wines, which means that in both cases L^* was similarly affected by the CI changes. This could be
361 observed by their similar smaller slopes, indicating that they were the least affected by the CI changes,
362 whereas wines from *LBAS* presented an intermediate scenario.

363 *Initial* wines were those with higher C^* levels (Figure 3b). Moreover, the CI increase
364 associated with barrel ageing time was significantly related to the reduction of the wine vivacity (Table
365 2S, slope -3.667, $R^2 = 0.9544$), as other authors described (Almela et al., 1995; Casassa & Sari, 2007;

366 Esparza, 2006; Gil-Muñoz, Gómez-Plaza, Martínez, & López-Roca, 1997). It has been seen that
367 oxidation processes facilitate the reduction of the C* parameter and the increase of CI, which means a
368 loss in the wine colour vivacity, with a better correlation for *FC* wines (Table 2S, $C^* = -4.956 \cdot CI + 115.170$, $R^2 = 0.9822$). Nevertheless, there was an increase of C* during the *SBAS*, with a
369 corresponding CI decrease, while after the *LBAS* the wines increased CI, maintaining an inverse
370 relation with C* (Table 2S). The H* (hue) parameter had a very significant relationship with CI when
371 *Initial* wines were considered (Table 2S and Figure 3c). H* decreased when CI increased and, because
372 of that, and in accordance with the previous observations, the increases in CI related to the ageing
373 process also caused a reduction in L*. In addition, small CI increases caused significant decreases in
374 H*, due to the greater increment of yellow pigments compared with that of red ones. This suggests
375 that the formation of yellow and orange stable compounds, such as pyranone-anthocyanin ones (He et
376 al., 2012), is greater than that of those responsible for the red colour. Nevertheless, as previously
377 mentioned, dosing high levels of oxygen also caused the formation of new red and blue hue pigments
378 (Es-Safi & Cheynier, 2009) and, because of that, the relationship between H* and CI in the wines after
379 the air saturation process (*FC*, *SBAS* or *LBAS*) was weaker (Table 2S, $R^2 = 0.5612$, $R^2 = 0.5236$ and R^2
380 = 0.6164, respectively) than that described for the *Initial* ones. Conversely, in the same way as what
381 happened with wine vivacity C*, for *FC* wines a small increment in H* could be observed, which was
382 lower for *LBAS*. When comparing the relationship between the L* loss and the H* increment, similar
383 results were obtained, because the correlation between both was positive and significant in the *Initial*
384 wines (Table 2S). For this reason, barrel ageing time was related to a loss of L* and a decrease in H*
385 (Figure 3d), but this did not happen in the stages after the air saturation process. These results do not
386 agree with other authors (Gil-Muñoz et al. 1997), who obtained a negative correlation between these
387 parameters.

389 A positive and significant correlation between L* and a* (redness) for the *Initial* wines was
390 observed (Figure 3e and Table 2S). The evolution of wines during the two bottle times (*SBAS* and
391 *LBAS*) showed that L* loss was related to a smaller decrease in a* (the slope of the regression equation
392 was 0.1490, 0.1665 and 0.1452 for the *FC*, *SBAS* and *LBAS* wines, respectively Table 2S). This trend
393 was also found by Gil-Muñoz et al., (1997) in experiments where wines with low L* were analysed,
394 and by Esparza (2006), who found a stronger relationship among both parameters ($r=0.905$) when
395 analysing red wines, though these results do not agree with the results reported by Almela et al. (1995).
396 The a* parameter shows the influence of the red and green colour range in red wine, where a high level
397 of this parameter indicates the importance of the red hues. Wines with greater CI were observed to
398 show the lower a* values, which were the samples associated with the *FC* wines and the subsequent
399 bottle ageing periods (*SBAS* and *LBAS*) (Figure 3f). For this reason, the greater CI compared with the
400 *Initial* wines is reflected in the lower level of the a* parameter for the *FC* wines. The correlations
401 between the absorbance at 520 nm and 370 nm reflect the importance of the pyranone-anthocyanin
402 compounds, the yellow and orange hues being more predominant than the red ones. These compounds

403 had their maximum absorbance wavelength at ~370 nm, (He et al., 2012). The relation between these
404 absorbances was $A370 = 1.108 \cdot A520$, $R^2 = 0.9933$, with a lower correlation after the bottle ageing
405 period, with slopes lower than those for the *SBAS* (0.565) or *LBAS* (0.293) wines (Table 2S). The b^*
406 parameter shows the influence of the yellow-blue hues in wine colour, the higher values being
407 associated with important brown hues and values close to or lower than 0 related to blue. The red wines
408 analysed obtained a regression graph for the b^* -CI very similar to the L^* -CI. It was because L^* is
409 related to the Y CIELab coordinate and b^* is related to both Y and Z CIELab coordinates, but for the
410 wines studied in this work the Z value was almost zero for all samples, which meant that the correlation
411 between L^* and b^* was very close to 1. Moreover, it has been seen that wines with a higher CI belong
412 to the *FC* wine samples, which also had lower values of b^* . This result suggests that the larger
413 compounds formed after the air saturation procedure when compared with the *Initial* wines produced
414 important blue tones which were reduced with the CI decrease for the *SBAS* wines. Furthermore, after
415 the *SBAS* period the importance of the yellow component increased, but then, after the *LBAS* period,
416 the blue component dominated wine colour again. There was also a significant correlation between the
417 b^* parameter and absorbance at 320 nm (Figure 3g and Table 2S), with the *Initial* wines having a
418 greater blue component and a lower b^* value, thus verifying the previous comments. After the air
419 saturation procedure (*FC*) and the bottle ageing process (*SBAS* and *LBAS*), the colour intensity
420 increment caused by the generation of new compounds was reflected in a greater increase for
421 absorbance at 620 nm compared with yellow wavelength absorbance (Figure 3h and Table 2S). The
422 same behaviour could be seen when analysing the red wavelength (Table 2S) with a regression
423 equation of $A520 = 1.537 \cdot A620 + 5.022$, $R^2 = 0.9892$ for the *FC* wines and $A520 = 1.117 \cdot A620 +$
424 6.06 , $R^2 = 0.2252$ for *SBAS* ones. Nevertheless, when analysing the long bottle ageing simulation time
425 (*LBAS*), blue colour loss was related to a greater increment of the yellow and red wavelengths (Table
426 2S). This observation shows the instability of the purple colour compounds that were present in the
427 *FC* wines.

428

429 **3.4. Kinetics and CIELab relations**

430 *Initial* and *FC* spectral wine information and their relationship with the oxygen consumption
431 kinetics parameters were studied. Analysing the *Initial* wine spectra, only *min_der* had a R^2 greater
432 than 0.35 when doing a correlation analysis with the spectral parameters. The best correlation was
433 obtained with the absorbance at 670 nm (correlation coefficient of -0.6418 , $p\text{-value} = 7.53 \cdot 10^{-5}$). This
434 relationship was lower than zero, which means that wines with a high oxygen consumption avidity
435 (high *min_der*), have a low absorbance at 670 nm, and therefore less red and blue hues.

436 For the *FC* wine spectra, four parameters had a R^2 greater than 0.35: *min_der*, *AUC*,
437 *t_{end}*, and *t_{OCRI}*. The best correlation (correlation coefficient of 0.7845 , $p\text{-value} = 1.08 \cdot 10^{-7}$) was
438 obtained between *min_der* and H^* , which means that wines with a low oxygen consumption speed
439 were expected to have a lower H^* , causing the wines to have more blue and less yellow hues. The

440 correlation between t_{end} and b^* and L^* (correlation coefficients of -0.6687 and -0.5515, respectively,
441 $p\text{-value} = 2.87 \cdot 10^{-5}$ and $1.07 \cdot 10^{-3}$) suggests that wines with greater yellow component and lightness
442 will need less time to consume the oxygen available.

443 Finally, the absolute gain between the *Initial* and *FC* spectral parameters was also evaluated and
444 three parameters had a R^2 greater than 0.35: t_{end} , *oxy_mid* and t_{OCRI} . The best correlation was
445 obtained between t_{end} and a^* variation (correlation coefficient of -0.6953, $p\text{-value} = 1.00 \cdot 10^{-5}$),
446 indicating that wines that need more time to consume the available oxygen show a smaller redness
447 increment.

448

449 **3.5. Approximation of bottled simulation to a real situation**

450 Figure 4 shows the comparison between spectral data of wines after 12 barrel ageing months
451 that were bottled in winery conditions and stored at 15-16 °C for 4 months (labelled *MIX*) and the
452 wines with simulated bottled times: *SBAS* and *LBAS*. It can be seen that the spectral data of the *MIX*
453 samples of both L-OTR and H-OTR wines were close to the *SBAS* spectral data. L-OTR-*MIX* and H-
454 OTR-*MIX* wines showed a small absorbance increment between 350 and 420 nm and a small decrease
455 between ranges 350 – 420 nm and 450 – 530 nm when compared with the *SBAS* wines. This means
456 that L-OTR-*MIX* and H-OTR-*MIX* wines were more evolved than the *SBAS* ones, where some
457 compounds with red and purple hues were replaced by other compounds with yellow and orange ones.
458 So, related to the spectral properties, the short bottle ageing simulation (*SBAS*) seems to be similar to
459 a wine bottled for 4 months under real conditions. Moreover, spectral information data of L-OTR-*MIX*
460 and H-OTR-*MIX* wines were very similar, which also occurred with the *SBAS* wines (Figure 2). This
461 result would mean that from a spectral properties point of view the wines from L-OTR and H-OTR
462 barrels can be differentiated by their ageing time in bottle.

463

464 **4. Conclusions**

465 The oxygen consumed by the wine during its storage in barrels with different oxygenation rates
466 determines colour evolution in the bottle period. Wine significantly increased the absorbances related
467 to less stable compounds (blue or purple tones) for longer periods and more oxygen in barrel ageing,
468 but as bottle ageing progresses the absorbances associated with yellow and orange hues prevailed.
469 Equally, for the bottled simulation conditions studied, short bottle ageing simulation (*SBAS*) and long
470 bottle ageing simulation (*LBAS*), the results depended on barrel ageing time and also the barrel
471 oxygenation level (L-OTR or H-OTR). Although wines from barrels with different oxygenation rates
472 tend to be similar after a first simulated period in the bottle (*SBAS*), it was observed that they
473 differentiated again when time in the bottle was extended (*LBAS*). *LBAS* wines were characterized by
474 a greater evolution, related to the increase in yellow and loss of purple tones, more evident in wines
475 from H-OTR barrels which showed the highest oxygen avidity.

476 Finally, keeping the wines at 15 °C for 35 days (*SBAS*) after air saturation showed spectral
477 profiles similar to those aged for 4 months in real bottle ageing conditions. These first results of the
478 bottling simulation methodology used seem promising enough to initiate new studies that will allow
479 longer stays in the bottle to be reproduced.

480

481 **Acknowledgements**

482 This study was financed by MINECO (AGL2017-87373-C3-2-R project) and Junta de Castilla
483 y León (VA315P18 project), R.S.-G. Post-doctoral contract from Junta de Castilla y León and V.M.M.
484 post-doctoral contract from Interreg Spain-Portugal (Iberphenol project). The authors wish to thank
485 Ann Holliday for her services in revising the English and to INTONA cooperage for their collaboration
486 in oak wood selection and toasting.

487

488 **Declaration of Competing Interest**

489 The authors declare that they have no known competing financial interests or personal
490 relationships that could have appeared to influence the work reported in this paper.

491

492 **References**

493 Almela, L., Javaloy, S., Fernández-López, J. A., & López-Roca, J. M. (1995). Comparison between
494 the tristimulus measurements Yxy and $L^*a^*b^*$ to evaluate the colour of young red wines. *Food
495 Chemistry*, 53(3), 321–327. [https://doi.org/10.1016/0308-8146\(95\)93940-S](https://doi.org/10.1016/0308-8146(95)93940-S)

496 Atanasova, V., Fulcrand, H., Cheynier, V., & Moutounet, M. (2002). Effect of oxygenation on
497 polyphenol changes occurring in the course of wine-making. *Analytica Chimica Acta*, 458(1),
498 15–27. [https://doi.org/10.1016/S0003-2670\(01\)01617-8](https://doi.org/10.1016/S0003-2670(01)01617-8)

499 Caillé, S., Samson, A., Wirth, J., Diéval, J. B., Vidal, S., & Cheynier, V. (2010). Sensory
500 characteristics changes of red Grenache wines submitted to different oxygen exposures pre and
501 post bottling. *Analytica Chimica Acta*, 660(1–2), 35–42.
502 <https://doi.org/10.1016/j.aca.2009.11.049>

503 Cano-López, M., López-Roca, J. M., Pardo-Minguez, F., & Gómez Plaza, E. (2010). Oak barrel
504 maturation vs. micro-oxygenation: Effect on the formation of anthocyanin-derived pigments
505 and wine colour. *Food Chemistry*, 119(1), 191–195.

506 Carrascón, V., Bueno, M., Fernandez-Zurbano, P., & Ferreira, V. (2017). Oxygen and
507 SO₂ Consumption Rates in White and Rosé Wines: Relationship with and Effects on Wine
508 Chemical Composition. *Journal of Agricultural and Food Chemistry*, 65(43), 9488–9495.
509 <https://doi.org/10.1021/acs.jafc.7b02762>

510 Carrascón, V., Vallverdú-Queralt, A., Meudec, E., Sommerer, N., Fernandez-Zurbano, P., &
511 Ferreira, V. (2018). The kinetics of oxygen and SO₂ consumption by red wines. What do they
512 tell about oxidation mechanisms and about changes in wine composition? *Food Chemistry*,

513 241, 206–214. <https://doi.org/10.1016/j.foodchem.2017.08.090>

514 Casassa, F., & Sari, S. (2007). Aplicación Del Sistema Cie-Lab a Los Vinos Tintos. Correlación Con
515 Algunos Parámetros Tradicionales. *Revista Enología*, 5(May-Jun), 1–15. Retrieved from
516 http://www.researchgate.net/profile/L_Casassa/publication/259582055_APPLICACION_DEL_SI
517 STEMA_CIE-
518 LAB_A_LOS_VINOS_TINTOS_CORRELACION_CON_ALGUNOS_PARMETROS_TRADI
519 CIONALES/links/02e7e52cc2f09291a3000000.pdf

520 del Alamo-Sanza, M., & Nevares, I. (2014). Recent advances in the evaluation of the oxygen transfer
521 rate in oak barrels. *Journal of Agricultural and Food Chemistry*, 62(35), 8892–8899.
522 <https://doi.org/10.1021/jf502333d>

523 del Alamo-Sanza, M., & Nevares, I. (2017). Oak wine barrel as an active vessel: A critical review of
524 past and current knowledge. *Critical Reviews in Food Science and Nutrition*, 58(16), 2711–
525 2726. <https://doi.org/10.1080/10408398.2017.1330250>

526 del Alamo, M., Nevares, I., Gallego, L., Fernández de Simón, B., & Cadahía, E. (2010). Micro-
527 oxygenation strategy depends on origin and size of oak chips or staves during accelerated red
528 wine aging. *Analytica Chimica Acta*, 660(1–2), 92–101.
529 <https://doi.org/10.1016/j.aca.2009.11.044>

530 Es-Safi, N.-E., & Cheynier, V. (2009). Flavanols and Anthocyanins as Potent Compounds in the
531 Formation of New Pigments during Storage and Aging of Red Wine. In *Red Wine Color* (ACS
532 Sympos, pp. 143–159). <https://doi.org/10.1021/bk-2004-0886.ch009>

533 Escribano-Bailón, T., Álvarez-García, M., Rivas-Gonzalo, J. G., Heredia, F. J., & Santos-Buelga, C.
534 (2001). Color and stability of pigments derived from the acetaldehyde-mediated condensation
535 between malvidin 3-O-glucoside and (+)-catechin. *Journal of Agricultural and Food
536 Chemistry*, 49(3), 1213–1217. <https://doi.org/10.1021/jf0010811>

537 Esparza, I. S. J. . F. J. (2006). Chromatic characterisation of three consecutive vintages of. *Analytica
538 Chimica Acta*, 563, 331–337.

539 Fernandes, A., Oliveira, J., Teixeira, N., Mateus, N., & de Freitas, V. (2016). A review of the current
540 knowledge of red wine colour. *Journal International Des Sciences de La Vigne et Du Vin*,
541 51(1), 1–21.

542 Ferreira, V., Carrascon, V., Bueno, M., Ugliano, M., & Fernandez-Zurbano, P. (2015). Oxygen
543 Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical
544 Composition, and Role of SO₂. *Journal of Agricultural and Food Chemistry*, 63(51), 10928–
545 10937. <https://doi.org/10.1021/acs.jafc.5b02988>

546 Francia-Aricha, E. M., Guerra, M. T., Rivas-Gonzalo, J. C., & Santos-Buelga, C. (1997). New
547 anthocyanin pigments formed after condensation with flavanols. *Journal of Agricultural and
548 Food Chemistry*, 45(6), 2262–2266. <https://doi.org/10.1021/jf9609587>

549 Fulcrand, H., Dueñas, M., Salas, E., & Cheynier, V. (2006). Phenolic Reactions during Winemaking

550 and Aging. *American Journal of Enology and Viticulture*, 3(57), 289–297. Retrieved from
551 <http://search.ebscohost.com/login.aspx?direct=true%7B&%7Ddb=bth%7B&%7DAN=3176778>
552 3%7B&%7Dsite=ehost-live

553 Gambuti, A., Picariello, L., Rinaldi, A., & Moio, L. (2018). Evolution of Sangiovese wines with
554 varied tannin and anthocyanin ratios during oxidative aging. *Frontiers in Chemistry*, 6, 1–11.
555 <https://doi.org/10.3389/fchem.2018.00063>

556 Gil-Muñoz, R., Gómez-Plaza, E., Martínez, A., & López-Roca, J. M. (1997). Evolution of the
557 CIELAB and other spectrophotometric parameters during wine fermentation. Influence of some
558 pre and postfermentative factors. *Food Research International*, 30(9), 699–705.
559 [https://doi.org/10.1016/S0963-9969\(98\)00029-5](https://doi.org/10.1016/S0963-9969(98)00029-5)

560 Giuffrida de Esteban, M. L., Ubeda, C., Heredia, F. J., Catania, A. A., Assof, M. V., Fanzone, M. L.,
561 & Jofre, V. P. (2019). Impact of closure type and storage temperature on chemical and sensory
562 composition of Malbec wines (Mendoza, Argentina) during aging in bottle. *Food Research
563 International*, 125(May). <https://doi.org/10.1016/j.foodres.2019.108553>

564 Glories, Y. (1984). La couleur des vins rouges 2. Mesure, origine et interprétation. *OENO One*, 18,
565 253–271.

566 Guadalupe, Z., & Ayestarán, B. (2008). Changes in the color components and phenolic content of
567 red wines from *Vitis vinifera* L. Cv. “Tempranillo” during vinification and aging. *European
568 Food Research and Technology*, 228(1), 29–38. <https://doi.org/10.1007/s00217-008-0902-2>

569 He, F., Liang, N. N., Mu, L., Pan, Q. H., Wang, J., Reeves, M. J., & Duan, C. Q. (2012).
570 Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color
571 evolution. *Molecules*, 17(2), 1483–1519. <https://doi.org/10.3390/molecules17021483>

572 Heras-Roger, J., Díaz-Romero, C., & Darias-Martín, J. (2016). What Gives a Wine Its Strong Red
573 Color? Main Correlations Affecting Copigmentation. *Journal of Agricultural and Food
574 Chemistry*, 64(34), 6567–6574. <https://doi.org/10.1021/acs.jafc.6b02221>

575 Hopfer, H., Buffon, P. A., Ebeler, S. E., & Heymann, H. (2013). The combined effects of storage
576 temperature and packaging on the sensory, chemical, and physical properties of a cabernet
577 sauvignon wine. *Journal of Agricultural and Food Chemistry*, 61(13), 3320–3334.
578 <https://doi.org/10.1021/jf3051736>

579 Marrufo-Curtido, A., Carrascón, V., Bueno, M., Ferreira, V., & Escudero, A. (2018). A procedure
580 for the measurement of Oxygen Consumption Rates (OCRs) in red wines and some
581 observations about the influence of wine initial chemical composition. *Food Chemistry*, 248,
582 37–45. <https://doi.org/10.1016/j.foodchem.2017.12.028>

583 Martínez-Martínez, V., del Alamo-Sanza, M., & Nevares, I. (2019). Application of image analysis
584 and artificial neural networks to the prediction in-line of OTR in oak wood planks for
585 cooperage. *Materials & Design*, 181, 107979. <https://doi.org/10.1016/j.matdes.2019.107979>

586 Mateus, N., Silva, A. M. S., Rivas-Gonzalo, J. C., Santos-Buelga, C., & De Freitas, V. (2003). A

587 new class of blue anthocyanin-derived pigments isolated from red wines. *Journal of*
588 *Agricultural and Food Chemistry*, 51(7), 1919–1923. <https://doi.org/10.1021/jf020943a>

589 Nevares Domínguez, I., & del Alamo-Sanza, M. (2014). Oxygène et barriques: Actualisation des
590 connaissances Quantité et voies de pénétration de l’oxygène dans la barrique. *Revue des*
591 *oenologues et des techniques vitivinicoles et oenologiques*, 41(153), 41–44.

592 Nevares, I., del Alamo-Sanza, M., Martínez-Martínez, V., Menéndez-Miguélez, M., Van den Bulcke,
593 J., & Van Acker, J. (2019). Influence of *Quercus petraea* Liebl. wood structure on the
594 permeation of oxygen through wine barrel staves. *Wood Research and Technology*.
595 *Holzforschung*, 73(9), 859–870. <https://doi.org/10.1515/hf-2018-0299>

596 Nevares, I., Martínez-Martínez, V., Martínez-Gil, A., Martín, R., Laurie, V. F., & del Álamo-Sanza,
597 M. (2017). On-line monitoring of oxygen as a method to qualify the oxygen consumption rate
598 of wines. *Food Chemistry*, 229, 588–596. <https://doi.org/10.1016/j.foodchem.2017.02.105>

599 Oberholster, A., Elmendorf, B. L., Lerno, L. A., King, E. S., Heymann, H., Brenneman, C. E., &
600 Boulton, R. B. (2015). Barrel maturation, oak alternatives and micro-oxygenation: Influence on
601 red wine aging and quality. *Food Chemistry*, 173, 1250–1258.
602 <https://doi.org/10.1016/j.foodchem.2014.10.043>

603 OIV. (2006). Compendium of international analysis of methods – OIV Chromatic Characteristics.
604 Retrieved October 31, 2019, from Method OIV-MA-AS2-11. website:
605 <http://www.oiv.int/public/medias/2478/oiv-ma-as2-11.pdf>

606 Oliveira, C. M., Barros, A. S., Silva Ferreira, A. C., & Silva, A. M. S. (2015). Influence of the
607 temperature and oxygen exposure in red Port wine: A kinetic approach. *Food Research*
608 *International*, 75, 337–347. <https://doi.org/10.1016/j.foodres.2015.06.024>

609 Petrozziello, M., Torchio, F., Piano, F., Giacosa, S., Ugliano, M., Bosso, A., & Rolle, L. (2018).
610 Impact of increasing levels of oxygen consumption on the evolution of color, phenolic, and
611 volatile compounds of Nebbiolo wines. *Frontiers in Chemistry*, 6(APR), 1–15.
612 <https://doi.org/10.3389/fchem.2018.00137>

613 Pissarra, J., Lourenço, S., González-Paramás, A. M., Mateus, N., Santos Buelga, C., Silva, A. M. S.,
614 & De Freitas, V. (2004). Structural characterization of new malvidin 3-glucoside-catechin
615 aryl/alkyl-linked pigments. *Journal of Agricultural and Food Chemistry*, 52(17), 5519–5526.
616 <https://doi.org/10.1021/jf0494433>

617 Prat-García, S., Nevares, I., Martínez-Martínez, V., & del Alamo-Sanza, M. (2020). Customized
618 oxygenation barrels as a new strategy for controlled wine aging. *Food Research International*,
619 131(May), 108982. <https://doi.org/10.1016/j.foodres.2020.108982>

620 Scrimgeour, N., Nordestgaard, S., Lloyd, N. D. R., & Wilkes, E. N. (2015). Exploring the effect of
621 elevated storage temperature on wine composition. *Australian Journal of Grape and Wine*
622 *Research*, 21, 713–722. <https://doi.org/10.1111/ajgw.12196>

623 Ugliano, M., Dieval, J., Siebert, T. E., Kwiatkowski, M., Aagaard, O., & Waters, E. J. (2012).

Oxygen Consumption and Development of Volatile Sulfur Compounds during Bottle Aging of Two Shiraz Wines. Influence of Pre- and Postbottling Controlled Oxygen Exposure. *Journal of Agricultural and Food Chemistry*, 60, 8561–8570.

Wang, H., Race, E. J., & Shrikhande, A. J. (2004). Anthocyanin transformation in Cabernet Sauvignon wine during aging. *ACS Symposium Series*, 886, 198–216.

<https://doi.org/10.1021/jf034501q>

FIGURE CAPTIONS

Figure 1. Mean oxygen consumption kinetic curves of wines from both barrel oxygenation levels, low (L-OTR) and high (H-OTR) with an ageing time of a) 3 months; b) 6 months; c) 9 months; and d) 12 months.

Figure 2. Visible spectral information in wines from both barrel oxygenation levels, low (L-OTR) and high (H-OTR) at different study moments (initial, after oxygen consumption, short bottle ageing simulation and long bottle ageing simulation) with an ageing time of: a) 3 months; b) 6 months; c) 9 months; and d) 12 months.

Figure 3. Linear regressions for several pairs of spectral and CIELab parameters for wines at different study moments (initial, after oxygen consumption, short bottle ageing simulation and long bottle ageing simulation).

Figure 4. Visible spectral comparative between bottle simulation and real conditions for wines after 12 months of ageing.

TABLES

Table 1. Value of the parameters that define the oxygen consumption kinetic curves of wines from both barrel oxygenation levels, low (L-OTR) and high (H-OTR) for each barrel ageing time (3, 6, 9 and 12 months)

Table 2. Percentage of relative gain and/or loss of the selected wavelengths of the spectra made for wines from both barrel oxygenation levels, low (L-OTR) and high (H-OTR), each barrel ageing time (3, 6, 9 and 12 months) and each bottle ageing simulation moment (after oxygen consumption, short bottle ageing simulation and long bottle ageing simulation).

SUPPLEMENTARY MATERIAL

Figure 1S. Experimental design.

Table 1S. Parameters extracted from the oxygen consumption kinetic curves.

Table 2S. Regression equations and coefficient of determination (R^2) for several pairs of spectral and CIELab parameters considering the different moment of study.

1 **Table 1.** Value of the parameters that define the oxygen consumption kinetic curves of wines from both barrel oxygenation levels, low (L-OTR)
 2 and high (H-OTR) for each barrel ageing time (3, 6, 9 and 12 months).

3

Barrel time (months)	Barrel oxygenation rate	t_{end}	AUC	min_der	oxy_mid	t_{OCRI}
3	L-OTR	46.06 ± 0.13 a, A	2887 ± 388 a, A	16.49 ± 2.11 a, C	93.15 ± 4.44 b, C	11.06 ± 1.05 a, A
3	H-OTR	46.00 ± 0.00 a, α	2540 ± 127 a, α	18.16 ± 1.79 a, γ	77.44 ± 1.72 a, α	11.13 ± 0.32 a, α
6	L-OTR	45.06 ± 0.75 a, A	3114 ± 416 b, A	7.43 ± 3.07 a, A	83.93 ± 5.13 b, B	13.00 ± 1.37 a, A
6	H-OTR	44.50 ± 0.29 a, α	2562 ± 160 a, α	6.13 ± 0.19 a, α	75.24 ± 2.93 a, α	11.38 ± 0.48 a, α
9	L-OTR	75.31 ± 12.43 a, B	3173 ± 482 a, A	13.18 ± 1.77 b, B	74.73 ± 4.09 a, A	16.25 ± 2.84 a, AB
9	H-OTR	70.81 ± 9.51 a, β	2860 ± 422 a, α	7.78 ± 0.85 a, $\alpha\beta$	74.71 ± 2.29 a, α	14.63 ± 2.45 a, β
12	L-OTR	87.06 ± 22.32 a, B	3608 ± 953 a, A	7.79 ± 0.13 a, A	74.82 ± 1.46 a, A	19.88 ± 6.65 a, B
12	H-OTR	66.19 ± 6.47 a, β	3032 ± 319 a, α	8.55 ± 0.87 a, β	81.41 ± 4.82 b, α	14.94 ± 1.94 a, β

Barrel oxygenation rate: a) L-OTR: low oxygen transfer rate; and b) H-OTR: high oxygen transfer rate.

t_{end} : total consumption time (h); AUC: area under the curve (hPa·h); min_der: absolute value of the minimum of the first derivative (hPa/h); oxy_mid: oxygen at half consumption time (hPa); tocri: time when the area under the kinetic curve is half the total area under the curve (h). For each parameter, different small letters indicate significant differences among barrel oxygenations for each bottle time, capital letters indicate significant differences among bottle times for wines aged in L-OTR barrels and Greek letters indicate significant differences among bottle times for wines aged in H-OTR barrels according to the Fisher's LSD test ($\alpha < 0.05$). The mean values are shown with their standard deviation.

4

5

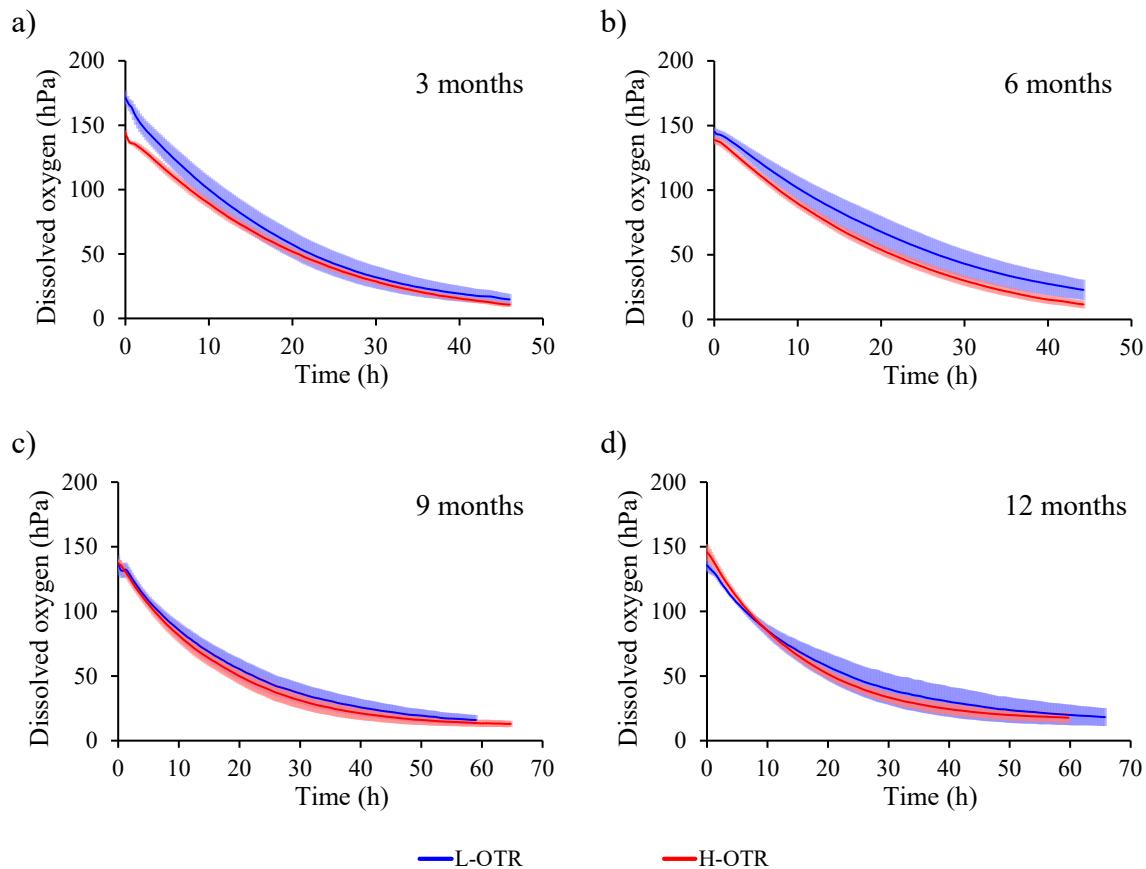
6

7

8

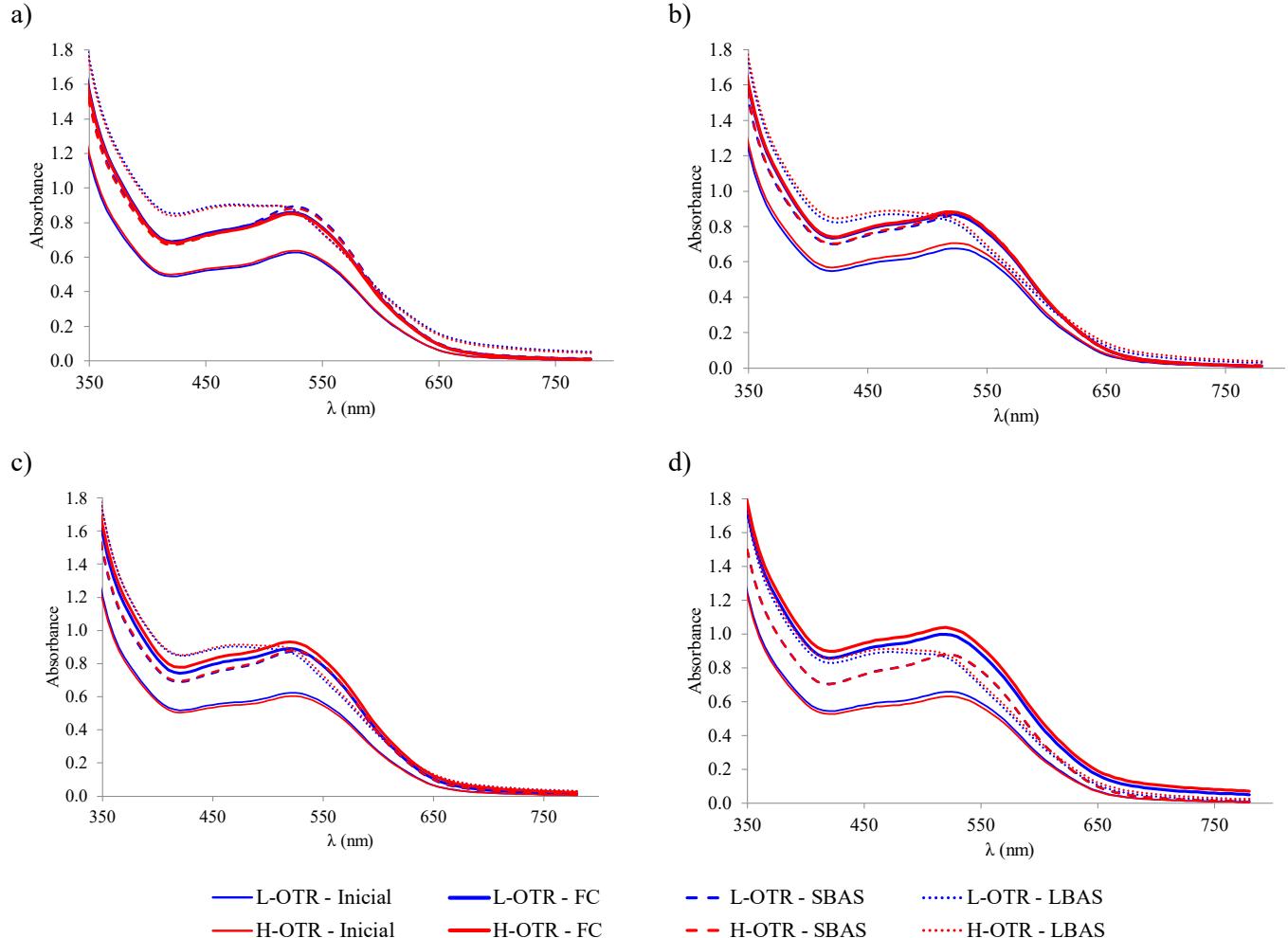
9

10

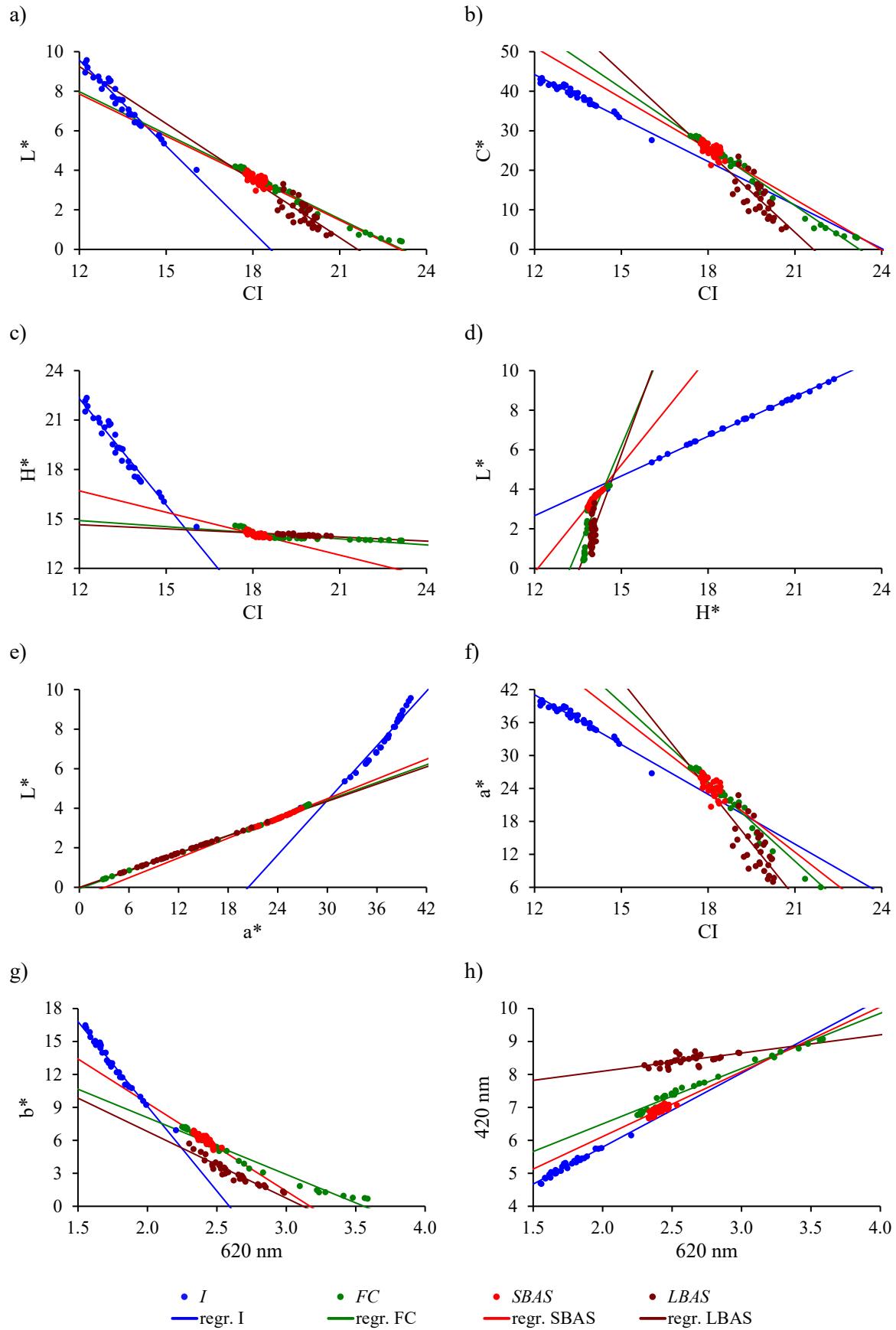

11 **Table 2.** Percentage of relative gain and/or loss of the selected wavelengths of the spectra made for wines from both barrel oxygenation levels,
 12 low (L-OTR) and high (H-OTR), each barrel ageing time (3, 6, 9 and 12 months) and each bottle ageing simulation moment (after oxygen
 13 consumption, short bottle ageing simulation and long bottle ageing simulation).

Barrel time (months)	Bottle time	Barrel	λ (nm)						Colour intensity	
			370	420	470	520	570	620		
3	FC	L-OTR	38.52 \pm 6.95 a	41.55 \pm 7.45 a	42.35 \pm 7.48 a	37.84 \pm 7.28 a	35.24 \pm 7.35 a	41.96 \pm 9.24 a	65.52 \pm 15.05 a	39.79 \pm 7.59 a
	FC	H-OTR	33.62 \pm 3.07 a	36.54 \pm 3.04 a	37.74 \pm 3.37 a	33.96 \pm 3.88 a	31.22 \pm 4.00 a	36.96 \pm 3.43 a	57.55 \pm 5.41 a	35.34 \pm 3.45 a
	SBAS	L-OTR	-3.88 \pm 1.04 a	-1.17 \pm 1.61 a	0.02 \pm 1.22 a	3.62 \pm 1.16 a	5.89 \pm 1.61 a	3.96 \pm 3.37 a	8.53 \pm 10.99 a	1.81 \pm 1.60 a
	SBAS	H-OTR	-4.22 \pm 0.67 a	-1.58 \pm 0.86 a	-0.32 \pm 0.66 a	3.26 \pm 0.81 a	5.40 \pm 1.11 a	3.59 \pm 1.37 a	7.41 \pm 4.91 a	1.43 \pm 0.82 a
	LBAS	L-OTR	13.78 \pm 1.16 a	23.66 \pm 1.90 a	18.84 \pm 1.34 a	3.54 \pm 0.63 a	-2.92 \pm 1.08 a	24.41 \pm 4.95 a	114.98 \pm 23.50 a	14.05 \pm 1.62 a
	LBAS	H-OTR	13.25 \pm 2.13 a	23.27 \pm 3.13 a	19.26 \pm 2.35 a	4.37 \pm 1.30 a	-2.49 \pm 1.67 a	22.64 \pm 5.82 a	104.90 \pm 25.58 a	14.05 \pm 2.54 a
6	FC	L-OTR	33.16 \pm 4.91 a	34.31 \pm 5.75 a	33.84 \pm 5.70 a	29.02 \pm 5.70 a	24.92 \pm 5.66 a	31.59 \pm 7.17 a	43.23 \pm 12.84 a	31.42 \pm 5.92 a
	FC	H-OTR	30.32 \pm 7.04 a	30.60 \pm 7.89 a	30.15 \pm 7.89 a	25.59 \pm 8.24 a	21.68 \pm 8.13 a	26.45 \pm 9.99 a	32.35 \pm 16.96 a	27.64 \pm 8.35 a
	SBAS	L-OTR	-6.69 \pm 0.57 a	-4.86 \pm 0.93 a	-3.73 \pm 0.81 a	-1.14 \pm 1.29 a	1.18 \pm 2.02 a	-0.95 \pm 3.21 a	0.08 \pm 8.10 a	-2.59 \pm 1.31 a
	SBAS	H-OTR	-6.75 \pm 0.32 a	-5.11 \pm 0.49 a	-3.83 \pm 0.44 a	-1.05 \pm 0.40 a	0.79 \pm 0.32 a	-2.01 \pm 0.86 a	-3.07 \pm 3.56 a	-2.78 \pm 0.47 a
	LBAS	L-OTR	8.43 \pm 0.86 a	12.19 \pm 0.35 a	7.00 \pm 0.67 a	-4.89 \pm 1.55 a	-13.27 \pm 1.61 a	1.02 \pm 1.86 a	41.77 \pm 9.66 a	2.67 \pm 0.72 a
	LBAS	H-OTR	9.75 \pm 0.47 b	14.55 \pm 0.43 b	8.72 \pm 0.50 b	-3.94 \pm 1.14 a	-11.66 \pm 1.02 a	6.50 \pm 1.19 b	62.70 \pm 8.52 b	4.75 \pm 0.44 b
9	FC	L-OTR	38.31 \pm 5.22 a	43.37 \pm 6.41 a	45.21 \pm 6.60 a	43.02 \pm 7.11 a	39.33 \pm 7.43 a	46.41 \pm 9.92 a	71.35 \pm 23.34 a	43.59 \pm 7.15 a
	FC	H-OTR	47.03 \pm 4.79 b	54.23 \pm 5.62 b	55.88 \pm 5.89 a	54.56 \pm 6.75 a	51.90 \pm 6.97 b	64.30 \pm 8.53 b	118.28 \pm 20.94 b	55.70 \pm 6.49 b
	SBAS	L-OTR	-8.54 \pm 0.35 b	-7.27 \pm 0.35 b	-5.87 \pm 0.38 b	-2.08 \pm 0.69 b	-0.07 \pm 1.16 b	-3.42 \pm 1.74 b	-9.19 \pm 4.89 b	-4.30 \pm 0.69 b
	SBAS	H-OTR	-11.03 \pm 0.92 a	-10.64 \pm 1.34 a	-9.02 \pm 1.26 a	-5.56 \pm 1.24 a	-4.52 \pm 1.58 a	-10.09 \pm 2.63 a	-23.04 \pm 6.32 a	-8.18 \pm 1.46 a
	LBAS	L-OTR	8.80 \pm 0.84 b	14.27 \pm 0.63 b	10.07 \pm 0.95 b	-2.25 \pm 1.39 a	-11.25 \pm 0.99 a	2.51 \pm 1.03 b	41.57 \pm 9.02 b	4.89 \pm 0.51 b
	LBAS	H-OTR	4.95 \pm 1.09 a	9.69 \pm 1.62 a	6.97 \pm 1.44 a	-4.20 \pm 1.33 a	-13.33 \pm 1.70 a	-3.51 \pm 3.77 a	15.30 \pm 12.13 a	1.34 \pm 1.75 a
12	FC	L-OTR	48.78 \pm 5.30 a	58.04 \pm 6.93 a	56.52 \pm 6.90 a	51.77 \pm 6.83 a	51.04 \pm 7.12 a	78.59 \pm 11.74 a	196.21 \pm 34.34 a	57.73 \pm 7.43 a
	FC	H-OTR	57.72 \pm 3.91 b	70.72 \pm 4.58 b	68.91 \pm 4.74 b	64.34 \pm 5.14 b	65.96 \pm 5.11 b	104.37 \pm 6.68 b	278.32 \pm 14.89 b	72.04 \pm 5.09 b
	SBAS	L-OTR	-16.50 \pm 1.09 b	-17.91 \pm 1.60 b	-15.22 \pm 1.33 b	-12.01 \pm 1.00 b	-12.93 \pm 1.41 b	-24.90 \pm 2.85 b	-52.29 \pm 4.73 b	-16.24 \pm 1.53 b
	SBAS	H-OTR	-19.36 \pm 0.68 a	-21.61 \pm 1.02 a	-18.61 \pm 1.02 a	-15.23 \pm 0.74 a	-17.11 \pm 0.76 a	-31.37 \pm 1.34 a	-60.64 \pm 1.89 a	-20.21 \pm 0.95 a
	LBAS	L-OTR	-3.58 \pm 1.01 a	-3.16 \pm 1.00 a	-4.42 \pm 0.70 b	-13.55 \pm 0.55 a	-24.41 \pm 0.61 a	-26.47 \pm 1.41 a	-41.65 \pm 2.72 a	-11.36 \pm 0.81 b
	LBAS	H-OTR	-4.98 \pm 1.23 a	-4.84 \pm 0.98 a	-6.09 \pm 1.07 a	-15.08 \pm 1.70 a	-25.77 \pm 1.68 a	-28.08 \pm 1.42 a	-42.50 \pm 2.00 a	-13.06 \pm 1.01 a

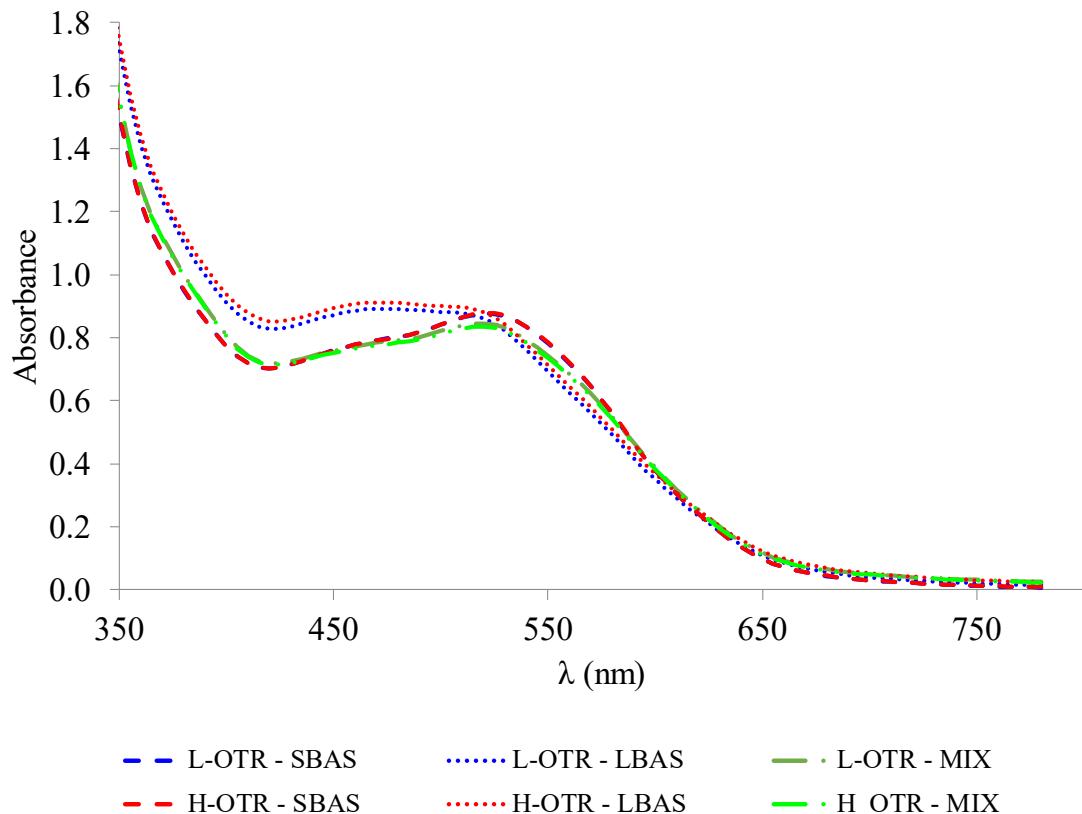
FC: after oxygen consumption; SBAS: short bottle ageing simulation; LBAS: long bottle ageing simulation. Wine ageing in barrel with: a) L-OTR: low oxygen transfer rate; H-OTR: high oxygen transfer rate.


For each wavelength, different letters indicate significant differences among barrel oxygenations for each bottle time according to the LSD test ($\alpha < 0.05$). The mean values are shown with their standard deviation.

1 **Figure 1.** Mean oxygen consumption kinetic curves of wines from both barrel oxygenation
2 levels, low (L-OTR) and high (H-OTR) with an ageing time of a) 3 months; b) 6 months;
3 c) 9 months; and d) 12 months.


4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21 **Figure 2.** Visible spectral information in wines from both barrel oxygenation levels, low (L-
22 OTR) and high (H-OTR) at different study moments (initial, after oxygen consumption, short
23 bottle ageing simulation and long bottle ageing simulation) with an ageing time of a) 3 months;
24 b) 6 months; c) 9 months; and d) 12 months.



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

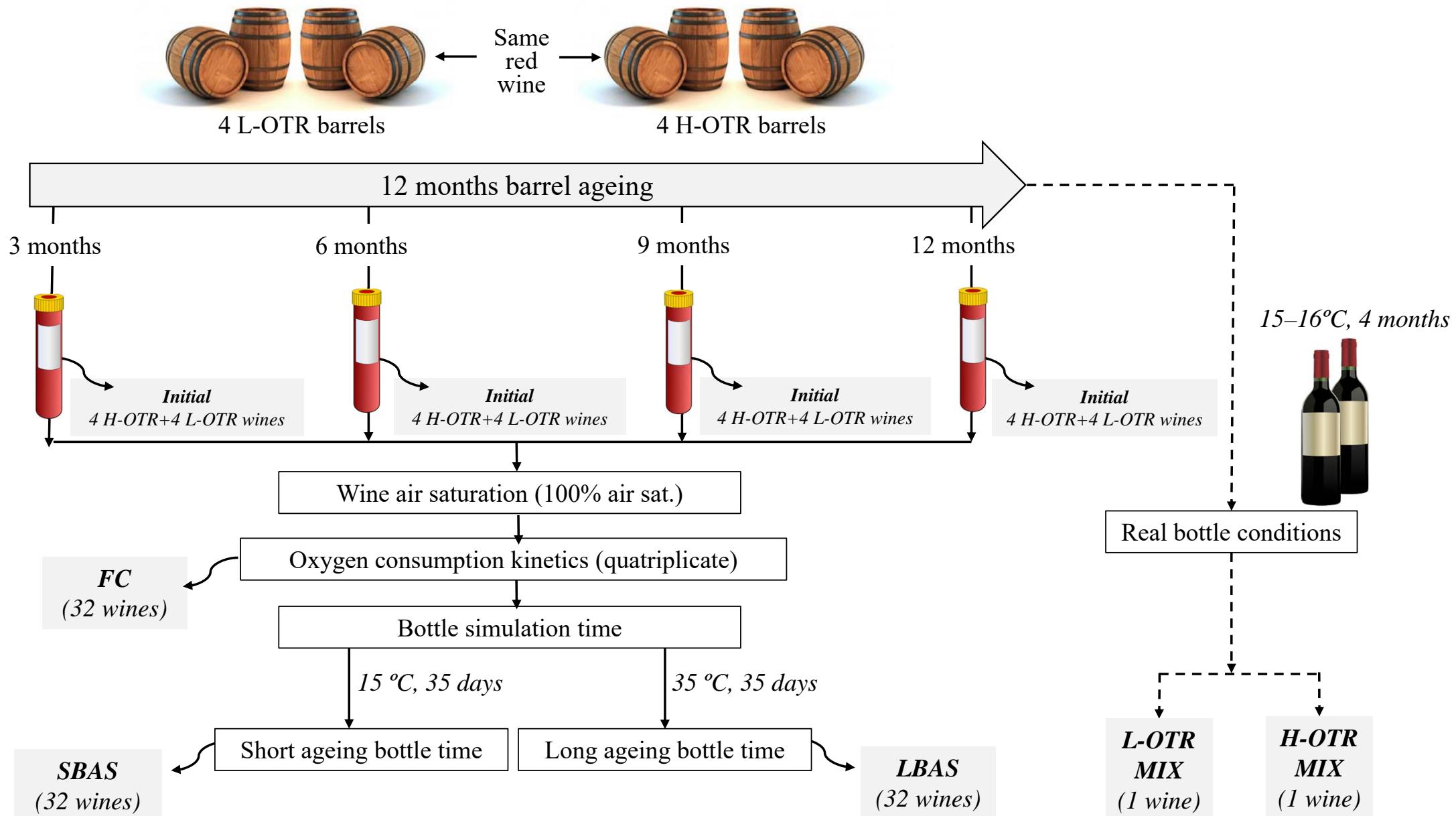
40 **Figure 3.** Linear regressions for several pairs of spectral and CIELab parameters for wines at
 41 different study moments (initial, after oxygen consumption, short bottle ageing simulation and
 42 long bottle ageing simulation).

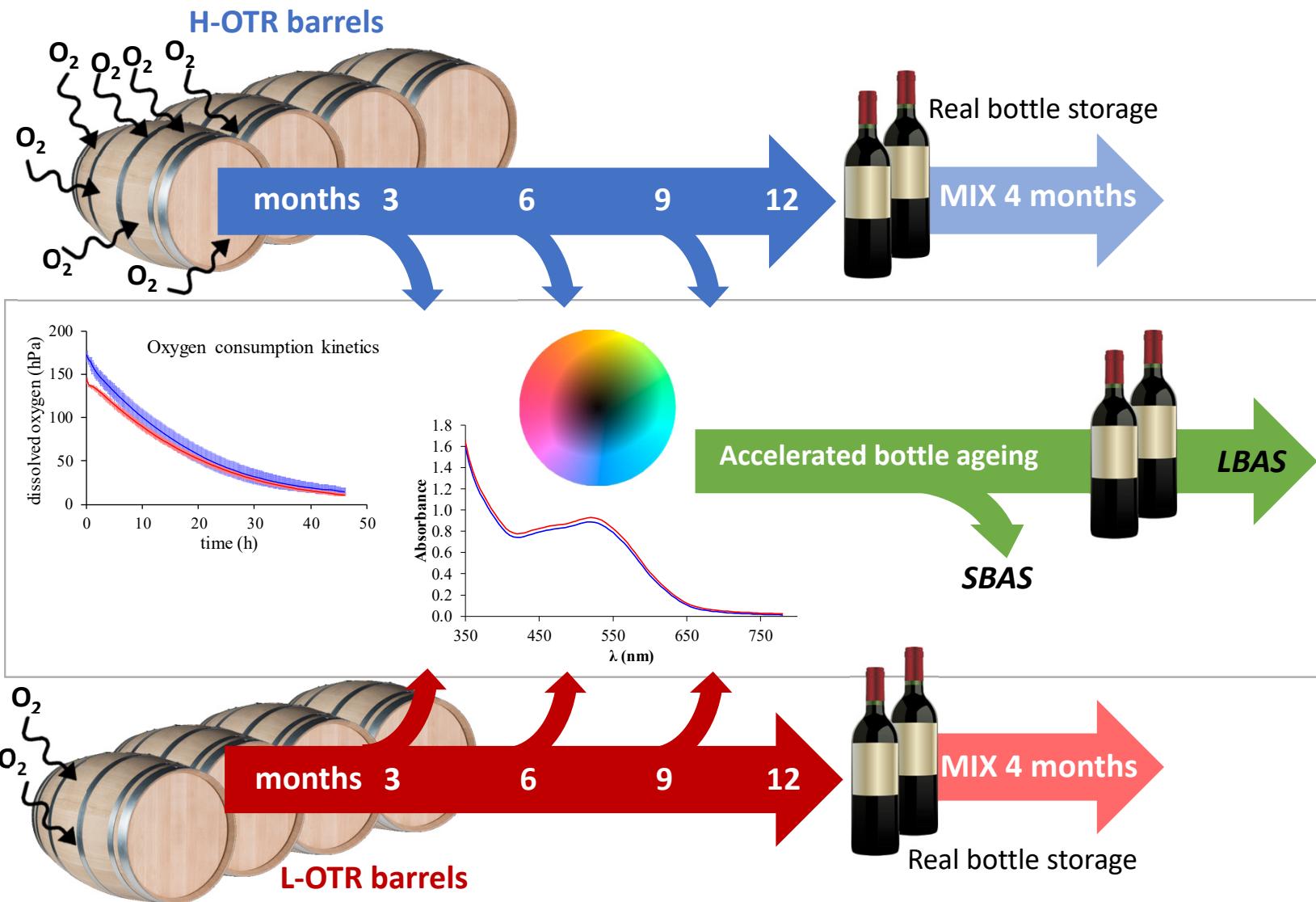
44 **Figure 4.** Visible spectral comparative between bottle simulation and real conditions for wines
45 from 12 months of ageing.

46
47
48

1 **Table 1S.** Parameters extracted from the oxygen consumption kinetic curves.

Name	Parameter	Name and equation/description
t_{end}	Total consumption time (h)	t_{end} : time of the last point of the oxygen curve
AUC	Area under the curve (hPa·h)	$AUC = \int_{t=0}^{t_{end}} O_2(t)dt$
min_der	Absolute value of the minimum of the first derivative (hPa/h)	$min_der = \left \min \left\{ \frac{\partial O_2(t)}{\partial t} \right\} \right $
Oxy_min	Oxygen at half consumption time (hPa)	$oxy_mid = O_2 \left(t = \frac{t_{end}}{2} \right)$
t_{OCRI}	Time when the area under the kinetic curve is half the total area under the curve (h)	$t_{OCRI} \text{ so that } \int_{t=0}^{t_{OCRI}} O_2(t)dt = \frac{1}{2} \cdot \int_{t=0}^{t_{end}} O_2(t)dt$


2


3 **Table 2S.** Regression equations and coefficient of determination (R^2) for several pairs of spectral and CIELab parameters considering the different
 4 moment of study.

5

	<i>Initial wine (I)</i>	<i>R</i> ²	<i>Final consumption wine (FC)</i>	<i>R</i> ²	<i>Short Bottle Simulation (SBAS)</i>	<i>R</i> ²	<i>Longt Bottle Simulation (LBAS)</i>	<i>R</i> ²
CI vs L*	$L^* = -1.448 \cdot CI + 26.948$	0.9575	$L^* = -0.715 \cdot CI + 16.556$	0.9784	$L^* = -0.709 \cdot CI + 16.369$	0.3888	$L^* = -0.961 \cdot CI + 20.786$	0.5127
CI vs C*	$C^* = -3.667 \cdot CI + 88.214$	0.9544	$C^* = -4.956 \cdot CI + 115.170$	0.9822	$C^* = -4.272 \cdot CI + 102.373$	0.3630	$C^* = -6.774 \cdot CI + 146.587$	0.5050
CI vs H*	$H^* = -2.150 \cdot CI + 48.100$	0.9485	$H^* = -0.123 \cdot CI + 16.381$	0.5612	$H^* = -0.433 \cdot CI + 21.898$	0.5236	$H^* = -0.083 \cdot CI + 15.641$	0.6164
H* vs L*	$L^* = 0.669 \cdot H^* - 5.370$	0.9968	$L^* = 3.485 \cdot H^* - 46.085$	0.6295	$L^* = 1.812 \cdot H^* - 21.953$	0.9089	$L^* = 3.982 \cdot H^* - 53.962$	0.0978
a* vs L*	$L^* = 0.460 \cdot a^* - 9.398$	0.9383	$L^* = 0.149 \cdot a^* - 0.064$	0.9978	$L^* = 0.167 \cdot a^* - 0.514$	0.9968	$L^* = 0.145 \cdot a^* - 0.006$	0.9999
CI vs a*	$a^* = -3.021 \cdot CI + 77.315$	0.9391	$a^* = -4.801 \cdot CI + 111.576$	0.9823	$a^* = -4.098 \cdot CI + 98.465$	0.3611	$a^* = -6.568 \cdot CI + 142.139$	0.5045
A520 vs A370	$A370 = 0.847 \cdot A520 + 2.974$	0.9095	$A370 = 1.108 \cdot A520 + 1.737$	0.9933	$A370 = 0.565 \cdot A520 + 5.74$	0.4095	$A370 = 0.293 \cdot A520 + 10.022$	0.1099
CI vs b*	$b^* = -2.493 \cdot CI + 46.402$	0.9575	$b^* = -1.233 \cdot CI + 28.545$	0.9784	$b^* = -1.223 \cdot CI + 28.221$	0.3888	$b^* = -1.658 \cdot CI + 35.838$	0.5127
A620 vs b*	$b^* = -15.415 \cdot A620 + 39.931$	0.9776	$b^* = -5.174 \cdot A620 + 18.420$	0.9649	$b^* = -8.022 \cdot A620 + 25.44$	0.7512	$b^* = -6.072 \cdot A620 + 18.954$	0.9083
A620 vs A420	$A420 = 2.243 \cdot A620 + 1.308$	0.9638	$A420 = 1.678 \cdot A620 + 3.144$	0.9810	$A420 = 1.969 \cdot A620 + 2.18$	0.5435	$A420 = 0.552 \cdot A620 + 6.994$	0.3741
A620 vs A520	$A520 = 2.829 \cdot A620 + 1.483$	0.9306	$A520 = 1.537 \cdot A620 + 5.022$	0.9892	$A520 = 1.117 \cdot A620 + 6.06$	0.2252	$A520 = 0.772 \cdot A620 + 6.681$	0.3323

6

