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Resumen. 

 

El presente trabajo fin de grado se centra en la detección y clasificación de la 

postura de personas en entornos domésticos mediante visión artificial, con 

especial atención a la identificación de caídas. El sistema desarrollado está 

orientado a personas que viven solas, permitiendo una posible integración en 

soluciones de asistencia y monitorización remota. 

Para ello, se ha desarrollo un programa en Python, empleado técnicas de visión 

artificial para analizar imágenes en las que aparece una única persona. Se 

utilizan modelos como MediaPipe y YOLO para la extracción de características 

relevantes, lo que permite clasificar la postura en distintas categorías. Como 

complemento, se ha explorado el uso de máquinas de soporte vectorial (SVM) 

para mejorar la precisión de la clasificación. 

Este proyecto sienta las bases para futuras aplicaciones en detección de caídas 

y vigilancia domiciliaria, contribuyendo a la seguridad de personas mayores o en 

situación de dependencia. 
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Abstract. 

 

This final degree project focuses on the detection and classification of human 

posture in domestic environments using computer vision, with special attention 

to fall detection. The developed system is designed for people living alone, 

allowing for potential integration into assistance and remote monitoring solutions. 

For this purpose, a Python program has been developed, employing computer 

vision techniques to analyze images containing a single person. Models such as 

MediaPipe and YOLO are used for feature extraction, enabling posture 

classification into different categories. Additionally, the use of support vector 

machines (SVM) has been explored to improve classification accuracy. 

This project lays the groundwork for future applications in fall detection and home 

monitoring, contributing to the safety of elderly individuals or people in dependent 

situations. 
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1. Introducción y objetivos. 
 

 

1.1. Motivación y justificación del proyecto. 

 

En el grado en Ingeniería Electrónica Industrial y Automática se abarcan 

numerosas áreas de estudio, de las cuales el presente proyecto se enmarca en 

el ámbito de la visión artificial (VA).  

El presente trabajo aborda el desarrollo de un sistema que, mediante técnicas 

de VA, sea capaz de identificar la postura o posición de personas en entornos 

domésticos. Más concretamente, este proyecto surge de la propuesta del grupo 

de investigación dentro del departamento de Ingeniería de Sistemas y 

Automática, el cual, está trabajando en la atención a personas mayores en el 

hogar. Para ello disponen de un robot móvil capaz de navegar por las distintas 

estancias de la casa, tomar imágenes e incluso realizar una primera detección 

de personas. El propósito final sería poder caracterizar la posición e identificar 

posibles caídas dentro del hogar. 

 

A continuación, se exponen algunos datos y cifras que subrayan la importancia 

de abordar este tema. 

 

 

1.1.1. Datos, cifras y magnitud del problema. 

 

Uno de los propósitos de este proyecto es tener la capacidad de identificar 

caídas, las cuales, según el Instituto Nacional de Seguridad y Salud en el Trabajo 

(INSS) [1], son el tipo de accidente más común en el hogar y representan casi la 

mitad de los accidentes domésticos y de ocio. En la figura 1 quedan 

representados estos datos, donde se pueden observar en el eje de ordenadas 

los tipos de accidentes y en el eje de abscisas el porcentaje en el que se dan.  
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Figura 1: Distribución de los tipos de accidentes domésticos y de ocio en porcentaje. ( Fuente: [1] ) 

 

Según la Organización Mundial de la Salud [2]: 

• Cada año se producen 37,3 millones de caídas cuya gravedad requiere 

atención médica. Un estudio publicado en la revista "Journal of Trauma 

and Acute Care Surgery" encontró que las personas que fueron atendidas 

dentro de la primera hora después de una caída tenían un 30% menos de 

probabilidades de morir que las que no lo fueron.  

 

• Las caídas son la segunda causa mundial de muerte por traumatismos 

involuntarios. Se calcula que anualmente fallecen en todo el mundo unas 

684 000 personas debido a caídas y que más de un 80% de estos 

accidentes se registran en países de ingresos medianos y bajos.  

 

 

Otro gran problema de la sociedad actual es el tiempo que se pasa sentados en 

casa. Según la Pontificia Universidad Católica de Chile [3], estudios 

internacionales recientes demuestran que los adultos pueden estar sentados 

entre 7 y 12 horas al día. Este nivel de sedentarismo está relacionado con el 

trabajo remoto, el ocio digital y la disminución de actividades físicas diarias, como 

desplazarse a la oficina o realizar tareas domésticas manuales.  

Todo esto tiene impactos negativos en la salud, destacando la vulnerabilidad de 

las personas mayores a sufrir mayor riesgo de enfermedades cardiovasculares, 

diabetes, pérdida de masa muscular y problemas de salud mental, como 

ansiedad o depresión. 

Para mitigar estos riesgos, se recomienda interrumpir periodos prolongados de 

estar sentado con pausas activas, como caminar cinco minutos cada hora, usar 

escritorios ajustables, o realizar ejercicios ligeros en casa.  
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Tal como se muestra en la figura 2, los hombres pasan la mayor parte del tiempo 

de su actividad personal sentados, siendo incluso superior el porcentaje al 

tiempo que pasan de pie. Las mujeres pasan de pie casi la mitad de su jornada, 

sin embargo, el tiempo que pasan sentadas también es considerablemente 

elevado, quedando muy cercano al tiempo de pie. 

 

Figura 2: Actividad física en el trabajo o actividad principal en población de 15 y más años ocupada, 
estudiante o dedicada a labores del hogar, según sexo (%). España 2017. ( Fuente: [4] ) 

 

Sin considerar la población entre 0-4 años, el sedentarismo aumenta con la edad 

hasta edades medias de la vida, es algo menor en décadas siguientes y remonta 

nuevamente con la edad. En edades avanzadas a partir de los 74, ambos sexos 

sufren un fuerte incremento, más acentuado en mujeres. (Figura 3). 

 

Figura 3: Sedentarismo en tiempo de ocio en población de 0 y más años según sexo y grupo de edad (%). 
España 2017. ( Fuente: [4] ) 
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1.1.2. Robot Temi. 

 

Las imágenes desde las que se analizará y clasificará la posición serán tomadas 

desde un robot asistente de IA personal 100% autónomo.  El nombre del modelo 

es “Temi” y está diseñado para la asistencia e interacción con los humanos. 

El robot consta de una pantalla multitáctil capacitiva para una interfaz intuitiva, la 

cual, se puede inclinar con un rango de movimiento – 15°~+55°. En la parte 

superior de esta pantalla se encuentra la cámara RGB desde la que está 

pensado tomar las fotos [5]. 

El sistema diseñado no solo será válido para el robot sino para cualquier otro tipo 

de cámara, teniendo en cuenta problemas como que la persona pueda quedar 

muy pequeña en la imagen. 

La figura 4 muestra una escena del robot Temi en el hogar, donde se puede ver 

también su estructura. 

 

 

Figura 4: Robot Temi en el hogar. ( Fuente: [5] ) 

 

Temi cuenta con varias funciones más como control remoto, seguimiento, 

navegación por el hogar y servicios web. 
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1.2. Objetivos. 

 

El objetivo general del presente trabajo consiste en desarrollar un sistema de 

visión que, a partir de la imagen de una persona, permita caracterizar su postura 

corporal. El sistema desarrollado deberá ser capaz, a grandes rasgos, de 

clasificar en una imagen la pose de una persona (“de pie”, “sentado”, “tumbado” 

o “caída”) y así poder “monitorizar” cómo se encuentra la persona, detectar estas 

posibles caídas y poder llegar a controlar la inactividad prolongada. 

Se analizarán imágenes que contengan únicamente a una persona, alineándose 

así con el objetivo principal de diseñar una solución optimizada para aquellos 

usuarios que viven solos, adecuando el sistema para este escenario particular. 

Esto permitirá un análisis más preciso y adaptado a las necesidades de este 

grupo específico. 

 

Se pasará por varias etapas: 

• Detección de personas: se hará uso de diferentes técnicas de VA como 

redes neuronales convolucionales o modelos preentrenados para 

garantizar una alta precisión y eficiencia.  

 

• Detección puntos clave: utilizando las técnicas anteriores y habiendo 

filtrado la detección de personas, se pasará a detectar diferentes puntos 

clave del cuerpo o extraer características que ayuden a poder clasificar la 

pose presente en la imagen. 

 

• Selección de características relevantes: se seleccionarán y filtrarán que 

características son más relevantes para utilizar en la clasificación, como 

ángulos de articulaciones, relaciones alto-ancho del cuerpo, etc. Se 

analizarán mediante algún método cuáles son las más significativas y 

distintivas de cada postura y así mejorar la robustez del sistema. 

 

• Métodos de clasificación: por último, se diseñará e implementará un 

modelo de clasificación mediante uno o varios métodos que, a partir de 

las características extraídas de la imagen, permitan determinar de manera 

eficiente la postura (“de pie”, “sentado”, “tumbado”, “caído”, “sin 

persona”…). Se explotarán enfoques como métodos de clasificación 

manual a partir de la selección de características relevantes y máquinas 

de soporte vectorial (SVM). 
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1.3. Impacto en la mejora de la sociedad. 

 

Los objetivos que se pretenden cumplir en el presente trabajo tienen un impacto 

significativo en la mejora de la sociedad y están alineados con varios valores de 

acuerdo con los objetivos presentes en la Agenda 2030. 

 

 

1.3.1. Salud y bienestar. 

 

La salud y el bienestar son el objetivo con el que se contribuye de manera más 

directa y sobre el cual se tiene un impacto más representativo.  

Este trabajo busca garantizar una mejora en el bienestar para todas las 

personas, más específicamente mediante la prevención y el monitoreo de 

situaciones de riesgo. Estos dos aspectos son claves y particularmente sensibles 

en personas de avanzada edad y que viven solas. 

• Detección de caídas, las cuales en una persona mayor o con movilidad 

reducida pueden tener consecuencias graves. El proyecto pretende 

abordar directamente este aspecto con una detección temprana 

ayudando a disminuir los riesgos del accidente incluso llegando a salvar 

vidas. 

 

• Por otro lado, está la monitorización. Como se ha dicho anteriormente, la 

inactividad prolongada está asociada con problemas graves de salud. 

Mediante poder identificar patrones sedentarios, se podrían emitir 

recomendaciones para fomentar el movimiento, contribuyendo al 

bienestar del usuario. 

 

• Al detectar posibles accidentes, el sistema puede dar mayor seguridad y 

tranquilidad tanto al usuario como a familiares. Este aspecto es 

especialmente relevante en el caso de personas mayores. 

 

 

1.3.2. Industria, innovación e infraestructura. 

 

Otro objetivo con el que se relaciona estrechamente es con el de industria, 

innovación e infraestructura, pues integra tecnologías avanzadas y fomenta la 

innovación en el ámbito de la salud y el bienestar. 
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• Al emplear herramientas avanzadas de VA para la detección de personas 

y extracción de características del cuerpo, el sistema que se desarrolla en 

el presente trabajo aplica tecnologías de última generación a un contexto 

directamente práctico. Esto refuerza y ayuda a demostrar cómo la 

innovación tecnológica puede abordar problemas y desafíos reales, 

impulsando a su vez la investigación y el desarrollo (I+D). 

 

• El proyecto tiene el potencial de ser implementado mediante un coste 

asumible. Se logra así fomentar una industria inclusiva, haciendo la 

tecnología y la innovación más accesibles al público general. 

 

• También se promueve la integración tecnológica en los hogares, 

convirtiéndolos en espacios más seguros y adaptados a las necesidades, 

dando un paso hacia la creación de infraestructuras domésticas 

resilientes. 

 

 

 

1.3.3. Reducción de desigualdades. 

 

El trabajo contribuye a este objetivo desde varios puntos, eliminando barreras 

sociales y no discriminando por género ni edad. 

• El modelo creado podrá llegar a ser implementado sin un alto costo, 

estando así disponible para personas con recursos limitados. Esto ayuda 

a cerrar la brecha tecnológica entre quienes pueden permitirse sistemas 

de seguridad avanzados y quienes no. 

 

• El sistema asegura que cualquier persona, independientemente de su 

edad o género, pueda beneficiarse de estas medidas preventivas que se 

ofrecen. 

 

 

 

1.3.4. Ciudades y comunidades sostenibles. 

 

Por último, como se ha citado anteriormente, el proyecto ayuda a la creación de 

hogares más seguros, inteligentes y adaptados a las necesidades, mejorando la 

calidad de vida. Además, fomenta la autonomía de las personas, reduciendo la 

necesidad de atención continua y favoreciendo el seguir formando parte activa 

de la comunidad sin depender de otros. 
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1.4. Estructura de la memoria. 

 

El presente trabajo se estructurará de aquí en adelante en diferentes partes, las 

cuales cada una de ellas abordará los diferentes puntos de estudio y etapas del 

proyecto. 

 

• Capítulo 2: Bases teóricas para la caracterización postural. 

En este capítulo se establecen los conceptos clave para comprender las 

tecnologías del proyecto, comenzando con la VA y sus aplicaciones. Se 

explorarán los métodos de aprendizaje automático y su evolución hacia el 

aprendizaje profundo, con énfasis en las redes convolucionales (CNN). 

Finalmente, se aborda el concepto de pose, la postura corporal y la detección de 

esta, aspectos fundamentales para la clasificación en el proyecto. 

 

• Capítulo 3: Panorama actual de la visión artificial en la 

caracterización de la postura corporal. 

Se analiza el panorama actual de la VA en la caracterización de la postura 

corporal, los avances recientes, metodologías clave y cómo estas tecnologías 

mejoran la precisión en la caracterización de posturas, además de discutir los 

retos y oportunidades en el campo, y cómo el presente proyecto aborda estos 

desafíos. 

 

• Capítulo 4: Desarrollo de un sistema para la clasificación de pose. 

El apartado de desarrollo de un sistema para clasificación de pose describe el 

diseño e implementación del sistema, comenzando con la definición de requisitos 

y la selección de la mejor estrategia. Se detallan las herramientas utilizadas, 

como OpenCV, MediaPipe Pose, YOLO y SVM. Luego, se explica el proceso de 

clasificación de la postura, que incluye la obtención de datos, el uso de 

MediaPipe y YOLO, el almacenamiento y análisis de características, y el 

entrenamiento del SVM, finalizando con la selección de características 

relevantes para optimizar el modelo. 

 

• Capítulo 5: Resultados obtenidos. 

En este apartado se muestran a los resultados del sistema de clasificación de 

postura desarrollado, evaluando el rendimiento de MediaPipe y YOLO de manera 

independiente y comparando ambos métodos. Se explica la implementación de 

un sistema de decisión que combina las fortalezas de cada método, y se analizan 

los resultados del SVM utilizando datos combinados y separados por ambos 
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métodos. Además, se describe la integración mediante la fusión de resultados y 

el uso del SVM para la clasificación final.  

La validación del sistema incluye la evaluación en imágenes de prueba y la 

comparación entre métodos individuales y la combinación final. Finalmente, se 

presentan los resultados en el conjunto de test, destacando la efectividad y el 

buen funcionamiento del sistema. 

 

• Capítulo 6: Conclusiones y líneas futuras. 

El apartado de conclusiones y líneas futuras resume los hallazgos clave del 

proyecto y las conclusiones obtenidas. También plantea posibles líneas de 

trabajo y mejoras futuras, indicando áreas de expansión y optimización del 

sistema, así como nuevas investigaciones o aplicaciones derivadas de los 

avances alcanzados. 

 

• Capítulo 7: Bibliografía. 

La Bibliografía recoge todas las fuentes consultadas y citadas en el trabajo, 

incluyendo artículos, libros, páginas webs y otros recursos que respaldan la 

investigación, garantizando la transparencia y validez del contenido. 

 

• Capítulo 8: Anexos. 

El apartado de Anexos proporciona información adicional que respalda el 

desarrollo del proyecto, incluyendo un resumen de los códigos desarrollados y la 

lista de librerías utilizadas. 
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2.  Marco teórico. 
 

 

2.1. Visión artificial. 

 

La Visión Artificial en sus distintas variantes (visión por computador, visión 

máquina, procesamiento de imágenes y VA propiamente dicha) es una disciplina 

en auge por sus innumerables aplicaciones en robótica, automatización, 

inspección, control de calidad, seguridad, aplicaciones espaciales, medicina, 

entretenimiento, etc. [6]. Persigue extraer información del mundo físico a partir 

de imágenes, utilizando un sistema de computación. Desde un punto de vista 

más ingenieril, un sistema de visión es un sistema autónomo que realiza algunas 

de las tareas del sistema visual humano. Las operaciones que desarrollan los 

sistemas de visión pueden ir desde la simple detección de objetos sencillos hasta 

la interpretación tridimensional de escenas complejas.  

El siguiente esquema, (figura 5), muestra cuáles son las etapas comunes que 

sigue un sistema de visión. 

 

 

Figura 5: Etapas de un sistema de visión. ( Fuente: Elaboración propia ) 

 

 

2.1.1. Progresos de la visión artificial. 

 

En la actualidad, la VA está presente en nuestras vidas en la mayoría de los 

ámbitos, desde la seguridad, la medicina, la inspección o la navegación 

automática. 

Dentro de la VA, uno de los avances más significativos es la incorporación del 

aprendizaje profundo. Este enfoque permite a las máquinas u ordenadores 

aprender de grandes conjuntos de datos y mejorar su capacidad para reconocer 

patrones y objetos en imágenes. En lugar de decirle al ordenador exactamente 

qué hacer, esta técnica le permite aprender y mejorar por sí mismo a medida que 

procesa más información. Esto ha revolucionado aplicaciones como la detección 
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de objetos, la clasificación de imágenes y la identificación de rostros, mejorando 

significativamente su precisión. 

 

 

2.2. Aprendizaje automático. 

 

El machine learning (aprendizaje automático) es una rama de la inteligencia 

artificial que se centra en la creación de sistemas capaces de aprender 

automáticamente a partir de datos, sin necesidad de ser programados 

explícitamente. Este aprendizaje se basa en algoritmos que identifican patrones 

en los datos y los utilizan para realizar predicciones o tomar decisiones. 

El aprendizaje automático clásico, o "no profundo", depende más de la 

intervención humana para aprender. Los expertos humanos determinan el 

conjunto de características para comprender las diferencias entre las entradas 

de datos, lo que suele requerir datos más estructurados para aprender. 

 

 

2.2.1. Métodos de machine learning. 

 

Los modelos de machine learning se dividen en tres categorías principales. [7] 

• Machine learning supervisado: El aprendizaje supervisado se define 

por su uso de conjuntos de datos etiquetados para entrenar algoritmos 

que clasifiquen datos o predigan resultados con precisión. A medida que 

se introducen datos de entrada en el modelo, este ajusta sus 

ponderaciones hasta que se han ajustado adecuadamente. Algunos 

métodos utilizados en el aprendizaje supervisado son las redes 

neuronales, el clasificador bayesiano ingenuo, la regresión lineal y 

logística, el bosque aleatorio y la máquina de vectores de soporte. 

 

• Machine learning no supervisado: El aprendizaje no supervisado, utiliza 

algoritmos de machine learning para analizar y agrupar conjuntos de 

datos no etiquetados. Estos algoritmos descubren patrones ocultos o 

agrupaciones de datos sin necesidad de intervención humana. La 

capacidad de este método para descubrir similitudes y diferencias en la 

información lo hace ideal para el análisis exploratorio de datos, las 

estrategias de venta cruzada, la segmentación de clientes y el 

reconocimiento de imágenes y patrones. El análisis de componentes 

principales (PCA) y la descomposición en valores singulares (DVE) son 

dos métodos habituales para ello. Otros algoritmos utilizados en el 

https://www.ibm.com/es-es/topics/supervised-learning
https://www.ibm.com/es-es/topics/unsupervised-learning
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aprendizaje no supervisado son las redes neuronales, el k-means y los 

métodos de agrupación probabilística. 

 

• Aprendizaje semisupervisado: El aprendizaje semisupervisado ofrece 

un término medio entre el aprendizaje supervisado y el no supervisado. 

Durante el entrenamiento, utiliza un conjunto de datos etiquetados más 

pequeño para guiar la clasificación y la extracción de características a 

partir de un conjunto de datos más grande sin etiquetar. El aprendizaje 

semisupervisado puede resolver el problema de no disponer de 

suficientes datos etiquetados para un algoritmo de aprendizaje 

supervisado. El self-training y el co-training son métodos de aprendizaje 

semisupervisado. 

 

 

2.2.2. Aprendizaje profundo. Deep learning. 

 

El deep learning es un subconjunto del machine learning que utiliza redes 

neuronales multicapa, llamadas redes neuronales profundas, para simular el 

complejo poder de toma de decisiones del cerebro humano. Algunas formas de 

deep learning impulsan la mayoría de las aplicaciones de inteligencia artificial 

(IA) en nuestra vida actual. 

La principal diferencia entre el deep learning y el machine learning es la 

estructura de la arquitectura de red neuronal subyacente. Los 

modelos tradicionales de machine learning “no profundos” utilizan redes 

neuronales simples con una o dos capas computacionales. Los modelos de deep 

learning utilizan tres o más capas, pero normalmente cientos o miles de capas, 

para entrenar a los modelos. [8]. La arquitectura que siguen estas redes 

neuronales se muestra en el siguiente gráfico (figura 6). 

 

Figura 6: Arquitectura de red neuronal típica. ( Fuente: Elaboración propia ) 

https://www.ibm.com/es-es/topics/machine-learning
https://www.ibm.com/es-es/topics/neural-networks
https://www.ibm.com/es-es/topics/neural-networks
https://www.ibm.com/es-es/topics/artificial-intelligence
https://www.ibm.com/es-es/topics/artificial-intelligence
https://www.ibm.com/blog/machine-learning-types/
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2.2.3. Redes convolucionales (CNN). 

 

Una red neuronal convolucional (CNN) es un tipo de red neuronal diseñada 

específicamente para procesar datos con estructura espacial, como imágenes. 

Las CNN son uno de los pilares del deep learning en aplicaciones de VA debido 

a su capacidad para identificar patrones espaciales como bordes, texturas, y 

objetos en imágenes, y se construyen a partir de una combinación de capas 

especializadas que procesan las imágenes de forma jerárquica. [9]. 

• Capa convolucional: Es la base de las CNN. Esta capa aplica filtros 

(kernel) a la imagen de entrada para extraer características locales, como 

bordes o texturas. Cada filtro es una matriz pequeña que se desliza por la 

imagen (operación de convolución), generando un mapa de 

características.  

• Capa de activación: Se aplican después de la convolución para introducir 

no linealidad al modelo.  

• Capa de pooling: Reduce las dimensiones de los mapas de 

características, conservando la información más relevante. Esto 

disminuye el número de parámetros y evita el sobre ajuste. 

• Capa de normalización: Ayuda a mejorar la velocidad de convergencia 

durante el entrenamiento y a evitar problemas como el sobreajuste. 

Mantiene las activaciones dentro de un rango controlado, mejorando la 

estabilidad del entrenamiento. 

• Capas completamente conectadas: Estas capas están al final de la red 

y conectan todas las neuronas. Su función es combinar las características 

aprendidas para realizar la clasificación o regresión. 

• Capa de salida: Genera las predicciones finales, por ejemplo, la 

probabilidad de que una imagen pertenezca a una clase específica (como 

"de pie", "sentado", ”tumbado” o "caído"). 

Estas capas se estructuran típicamente como se muestra en la figura 7. 

 

 

Figura 7: Red con múltiples capas convolucionales. ( Fuente: [9] ) 
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2.3. Postura corporal. 

 

Concretamente, en este trabajo se hará uso de la VA para detectar y clasificar la 

postura corporal de una persona. 

La postura corporal es el resultado de la posición de todas las articulaciones del 

cuerpo y cómo estas consiguen situar las extremidades con respecto al tronco 

en un determinado momento, lo que hace entender cómo se encuentra situada 

la persona en el espacio que lo rodea [10]. 

La identificación de la pose humana es una habilidad natural que se desarrolla 

desde temprana edad. El cerebro humano está capacitado para reconocer y 

entender las posturas corporales de las personas que nos rodean y ser capaz de 

identificar si se encuentran “de pie”, “sentado”, “tumbado” o “caída” en una 

mínima fracción de segundo. Es una combinación de observación visual, 

experiencia previa, contexto y comprensión de la expresión corporal y gestual.  

El problema surge cuando se quiere que esto no lo haga una persona sino un 

ordenador mediante técnicas de VA. Es aquí donde hay que trasladarse al origen 

y a las técnicas básicas que se utilizan para determinar cómo se encuentra una 

persona situada en el espacio. 

 

Algunas de las técnicas básicas que utilizan las personas son: 

• Observación visual: Nuestros ojos observan la posición de las diferentes 

partes del cuerpo de una persona. 

• Patrones de movimiento: Podemos identificar la pose de alguien 

observando cómo se mueve y posiciona sus partes del cuerpo.  

• Contexto y experiencia previa: Nuestra experiencia y conocimiento del 

mundo ayudan a comprender la pose de una persona en un contexto 

específico. 

• Comparación con nuestro propio cuerpo: A menudo, nos relacionamos 

con la pose de una persona comparándola con nuestra propia experiencia 

corporal. Esto ayuda a comprender mejor la posición y el movimiento de 

los demás. 

 

 

2.3.1. Detección de la postura. 

 

La detección de la postura humana es una tarea bastante relevante en el campo 

de la visión por computador, que consiste en identificar la postura de una figura 

humana a partir de una imagen. Dicha pose se define a partir de una serie de 
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puntos clave, que habitualmente serán articulaciones, de forma que el objetivo 

será encontrar la posición (x, y) de cada uno de esos puntos. 

Es un campo emergente en la visión por ordenador en el que se utilizan 

algoritmos de aprendizaje automático para detectar y rastrear la orientación y 

disposición de diferentes partes del cuerpo en una imagen. La clasificación de 

postura puede ser utilizada para una variedad de aplicaciones, desde el análisis 

de movimiento en deportes y rehabilitación física hasta la interacción hombre-

máquina y la realidad aumentada. 

Una de las aplicaciones más importantes y prometedoras y en la que se centra 

en parte este trabajo, es la detección de caídas. Las caídas son un problema 

grave, especialmente para las personas mayores. La detección temprana y 

precisa de las caídas puede permitir una respuesta rápida y disminuir las 

consecuencias del accidente. La VA, combinada con la clasificación de postura, 

puede desempeñar un papel crucial para resolver este problema. 

 

El uso de la clasificación de postura para la detección de caídas tiene varias 

ventajas:  

• Es poco intrusivo, ya que no requiere que las personas lleven dispositivos 

de seguimiento.  

• Puede proporcionar una detección de caídas más precisa al analizar la 

postura del cuerpo y los movimientos en detalle.  

• También puede ayudar a entender el contexto de la caída, lo que puede 

ser útil para la prevención de caídas en el futuro. 

 

 

Figura 8: Ejemplo de detección de pose con VA. ( Fuente: [11] ) 

 

La imagen anterior (figura 8) muestra un ejemplo de cómo se visualiza la 

detección de la pose y los puntos clave del cuerpo mediante VA.  



28 
 

3. Panorama actual de la visión artificial en la 

caracterización de la postura corporal.  
 

El análisis corporal de personas mediante VA ha sido un área de creciente interés 

en los últimos años con aplicaciones en muchos campos, por ello, en este 

apartado se analizarán los enfoques más relevantes de la literatura sobre áreas 

de estudio similares a las de este proyecto, abarcando desde la extracción de 

características hasta la clasificación de posturas. 

En la actualidad existen numerosas técnicas que permiten reconocer la postura 

y han surgido muchos proyectos y aplicaciones que utilizan estas herramientas 

para poder realizar detecciones precisas sobre imágenes en diversas 

situaciones. La caracterización de la postura se utiliza en ámbitos, desde 

animación cinematográfica o videojuegos hasta aplicaciones en medicina. 

Existen varios factores que complican la correcta caracterización de la postura, 

como la visibilidad, la iluminación, la obstaculización, la variedad de tamaños del 

cuerpo o la mala calidad de imagen. Por ello, se han desarrollado técnicas tanto 

a nivel de software, con algoritmos de aprendizaje profundo, como a nivel de 

hardware, a través de cámaras y sensores. 

 

 

3.1. Algoritmos y sistemas para la detección de la 

postura. 

 

• MediaPipe Pose. 

En este proyecto se utilizará MediaPipe Pose como modelo para la estimación 

de la postura humana.  

Actualmente, existen otros algoritmos y modelos de detección de posturas como 

OpenPose o AlphaPose, pero se decide utilizar MediaPipe Pose por su eficiencia 

y bajos recursos computacionales comparado con otros modelos que, aunque 

más precisos, requieren más potencia, lo que puede ser un desafío en la 

detección de caídas la cual, exige procesamiento rápido. Aparte, se cuenta con 

experiencia previa trabajando con esta herramienta, lo que facilita su uso a lo 

largo del proyecto. 

Esta herramienta forma parte del entorno de trabajo de MediaPipe. Se 

profundizará más en detalle en el apartado correspondiente 4.4.3. 
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• OpenPose. 

Es un sistema de estimación de postura desarrollado por investigadores de la 

Universidad Carnegie Mellon (CMU) que puede detectar y rastrear el cuerpo 

humano en tiempo real y determinar con precisión su postura en un espacio 3D. 

Es conocido por ser el primer sistema de estimación de postura de varias 

personas en tiempo real que detecta con precisión los puntos clave del cuerpo 

humano, las manos, el rostro y los pies en imágenes individuales. [12]. 

La figura 9 muestra un ejemplo de estimación de la pose en 3D utilizando 

OpenPose y una cámara estéreo ZED que permite capturar imágenes en 3D y 

estimar la profundidad en tiempo real, siendo ideal para aplicaciones de visión 

artificial, robótica y realidad aumentada. 

 

 

Figura 9: Ejemplo de estimación de pose utilizando OpenPose. ( Fuente: [13] ) 

 

OpenPose utiliza una red neuronal convolucional (CNN) para analizar imágenes 

y extraer "mapas de características", que destacan aspectos como bordes y 

texturas. A continuación, procesa estos mapas mediante una CNN especializada 

en varias etapas para generar dos resultados clave: mapas de confianza de las 

partes (que indican la probabilidad de la ubicación de las partes del cuerpo) y 

campos de afinidad de las partes (que muestran la orientación y las conexiones 

entre las partes del cuerpo). Finalmente, un algoritmo toma la opción óptima más 

inmediata en cada paso con la esperanza de encontrar un óptimo global para la 

estimación de la pose. 

 

• AlphaPose. 

AlphaPose es una avanzada herramienta para la estimación de posturas 

humanas creada por la Academia China de Ciencias. Emplea un algoritmo de 

aprendizaje profundo para procesar imágenes o videos y determinar la postura 
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de una o más personas en tiempo real. Esta herramienta está optimizada para 

operar en diferentes condiciones, incluyendo escenarios con poca iluminación o 

posturas parcialmente ocultas. [14].  

Emplea una red neuronal convolucional (CNN) para calcular la postura de las 

personas en imágenes o videos. Procesa cada fotograma de la imagen o video, 

identificando partes del cuerpo humano como la cabeza, torso y extremidades. 

Luego, determina la posición y orientación de cada parte, generando una 

estimación global de la postura del cuerpo. 

 

Figura 10: Ejemplo de funcionamiento de AlphaPose. ( Fuente: [15] ) 

 

La figura 10 representa el funcionamiento de AlphaPose. Utilizando un enfoque 

ascendente, primero detecta las partes individuales del cuerpo antes de estimar 

la pose general, lo que le permite trabajar con múltiples personas en una misma 

imagen o video. Además, adopta una técnica basada en mapas de calor, 

evaluando la probabilidad de que cada píxel corresponda a una parte específica 

del cuerpo.  

 

 

3.2. Dispositivos para la detección de la postura. 

  

En el ámbito de la detección de la postura humana, no solo el software juega un 

papel fundamental, sino que también existen diversas tecnologías de hardware 

que permiten realizar esta tarea de manera eficiente. Un ejemplo destacado de 

ello es el sensor Kinect, [16].  

Desarrollado por Microsoft, ha sido utilizado no solo en videojuegos, sino también 

en aplicaciones de visión por computadora y análisis de movimiento. Este 

dispositivo integra cámaras, sensores de profundidad y micrófonos para ofrecer 

una captura detallada del cuerpo humano, permitiendo el seguimiento de la 
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postura y los movimientos en tiempo real. A través de su capacidad para 

reconocer gestos, detectar la posición de las articulaciones y proporcionar datos 

tridimensionales, Kinect se convierte en una herramienta esencial para estudios 

de biomecánica, rehabilitación, robótica y sistemas de interacción sin contacto, 

demostrando que el hardware y el software deben complementarse para lograr 

una detección precisa y funcional de la postura humana.  

 

Figura 11: Cámara Kinect en sus versiones 1 y 2. ( Fuente: [16] ) 

 

La figura 11 muestra cómo es la cámara en su versión 1 y 2. 

Kinect es capaz de capturar una cantidad increíble de datos. Siempre fijando su 

objetivo en las cosas que se mueven en su entorno. Gracias al procesamiento 

de estos datos a través de un algoritmo de inteligencia artificial y a métodos de 

aprendizaje de máquinas, Kinect puede llegar a mapear los datos visuales que 

obtiene a través de sus sensores. El objetivo es ser capaz de detectar a los seres 

humanos y entender en qué posición se encuentra cada persona detectada. 

 

La cámara consta de varias partes: 

• Cámara de vídeo de color RGB: Funciona a modo de webcam, capturando 

las imágenes en vídeo. El sensor Kinect utiliza esta información para 

obtener detalles sobre objetos y personas en la habitación. 

• Emisor IR: El emisor de infrarrojos es capaz de proyectar una luz infrarroja 

en una habitación. Según la luz infrarroja incide sobre una superficie, el 

patrón se distorsiona. Esta distorsión es leída gracias a su otro 

componente, una cámara de profundidad. 

• Cámara de profundidad: Analiza los patrones infrarrojos emitidos por el 

emisor y es capaz de construir un mapa 3D de la habitación y de todos 

los objetos y personas que se encuentran dentro de ella (figura 12). 

• Conjunto de micrófonos: El sensor Kinect tiene incorporado cuatro 

micrófonos de precisión capaces de determinar de dónde vienen los 

sonidos y las voces. También es capaz de filtrar el ruido de fondo. 

• Motor de inclinación: Este motor tiene la capacidad de ajustar sobre la 

base, el sensor Kinect. Es capaz de detectar el tamaño de la persona que 

está delante, para ajustarse arriba y abajo según convenga. 
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Figura 12: Imagen de profundidad captada por Kinect. ( Fuente: [17] ) 

 

Microsoft liberó el código de Kinect para facilitar su uso en aplicaciones más allá 

de los videojuegos, lo que permitió a los desarrolladores crear aplicaciones que 

aprovecharan las capacidades de Kinect, como el reconocimiento de gestos y la 

captura de movimiento en una variedad de aplicaciones, incluyendo aquellas 

para ordenadores, robótica, medicina, investigación y más. 

 

 

3.3. Trabajos relacionados. 

 

En este apartado, se analizarán dos trabajos que están estrechamente 

relacionados con el enfoque de este proyecto y que exploran aspectos similares 

en la detección y análisis de la postura humana. A través de la revisión de estos 

estudios, se podrá observar cómo se abordan desafíos similares a los del 

presente proyecto y se analizará la relevancia que poseen en él. 

 

 

3.3.1. Reconocimiento de posturas utilizando una 

cámara RGB-D. 

 

El trabajo de Elforaici et al. (2018), [18], se centra en la clasificación de posturas 

humanas utilizando cámaras RGB-D, una tecnología que combina imágenes en 

color (RGB) y en profundidad (D) para capturar una representación 3D de la 

escena. El estudio propone un enfoque innovador que integra modelado corporal 

3D y aprendizaje profundo para mejorar la precisión en la clasificación de 

posturas, incluso en escenarios complejos. 
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Los siguientes esquemas (figura 13 y figura 14), muestran los pasos seguidos 

para reconocer la postura a partir de imágenes a color y de profundidad 

respectivamente. 

 

 

Figura 13: Reconocimiento de la postura utilizando imágenes 2D y CNN. ( Fuente [18] ) 

 

 

Figura 14: Reconocimiento de la postura utilizando características 3D. ( Fuente [18] ) 

 

Metodología del estudio: 

El sistema combina técnicas avanzadas para lograr una clasificación precisa y 

robusta de posturas en 3D: 

• Cámaras RGB-D: Estas cámaras capturan tanto la información visual 

como la profundidad de la escena, lo que permite una mejor comprensión 

del contexto espacial y el análisis de las posturas humanas desde 

diferentes ángulos. 

• Redes Neuronales Convolucionales (CNN): Las CNN se utilizan para 

extraer características visuales relevantes de las imágenes RGB. 
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• Máquinas de Soporte Vectorial (SVM): Se emplean para clasificar las 

posturas extraídas por las redes neuronales, utilizando las características 

visuales y espaciales obtenidas a partir de las imágenes RGB-D. 

 

Resultados y aplicaciones: 

• Alta precisión en la clasificación de posturas, alcanzando niveles de 

exactitud superiores al 90 % en algunos casos. 

• Robustez frente a variabilidad, demostrando ser resistente a diferentes 

condiciones de luz y a cambios en la postura o escala de la persona. 

• Aplicaciones potenciales en áreas como la rehabilitación médica, la 

monitorización de pacientes, y sistemas de interacción hombre-

computadora, donde la clasificación de posturas es crucial para la 

comprensión de las intenciones y el estado físico del usuario. 

 

Relevancia para este trabajo: 

Este estudio es particularmente relevante para este trabajo. Se enfoca en la 

clasificación de posturas humanas y utiliza tecnologías similares a las que se 

emplean en este proyecto, como las redes neuronales y la captura de 

características visuales de las personas.  

La idea de combinar información de cámaras RGB-D con modelos de 

aprendizaje profundo puede ser un punto de partida valioso para mejorar la 

precisión de la detección de posturas y caídas, especialmente al tratar de 

reconocer y clasificar posturas en un entorno doméstico con diversas 

condiciones de iluminación y disposición del espacio. 

 

Puntos de mejora y limitaciones: 

• El trabajo de Elforaici et al., se enfoca en un entorno controlado utilizando 

cámaras RGB-D, lo que garantiza condiciones de iluminación y espacios 

homogéneos. El presente proyecto está orientado a entornos domésticos 

con condiciones de iluminación y fondos variables y complejos y debe 

adaptarse de manera más autónoma a estas situaciones. 

• El estudio aquí presente no cubre la detección de caídas, sino que se 

centra únicamente en la clasificación de posturas más estáticas. 

• Otra limitación es el uso de redes neuronales convoluciones entrenadas 

para este propósito, lo que lo hace demasiado complejo para los requisitos 

que se buscan en este proyecto de simplicidad y robustez. 
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3.3.2. Extracción de características corporales con 

MediaPipe y YOLOv5 para la evaluación del rango de 

movimiento. 

 

Uno de los estudios más relevantes en la extracción de características corporales 

utilizando visión artificial es el trabajo de Zhu et al. (2024), [19], que presenta un 

sistema basado en la combinación de MediaPipe y YOLOv5 para evaluar el 

rango de movimiento en pacientes con afecciones musculo-esqueléticas, como 

problemas en la columna vertebral o el síndrome de hombro congelado. 

 

Metodología del estudio: 

El sistema propuesto combina dos enfoques principales para mejorar la precisión 

en la detección y análisis del movimiento corporal (figura 15): 

• MediaPipe: Se utiliza para la estimación de poses, extrayendo los puntos 

clave del cuerpo humano (landmarks) y permitiendo la medición de 

distancias, ángulos articulares y posiciones relativas de las extremidades. 

• YOLOv5: Actúa como un sistema de detección de objetos, asegurando la 

correcta identificación de la persona en la escena y ayudando a reducir el 

ruido en la segmentación del cuerpo. 

• CBAM (Módulo de Atención de Bloque Convolucional): Se incorpora en 

YOLOv5 para mejorar la extracción de información relevante y reducir la 

interferencia de elementos de fondo, optimizando la detección de las 

articulaciones y la precisión del análisis biomecánico. 

 

 

Figura 15: Funcionamiento principal del sistema ( Fuente: [19] ) 

https://www.nature.com/articles/s41598-024-66221-8
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Resultados y aplicaciones: 

El sistema desarrollado permite realizar una evaluación precisa del rango de 

movimiento de los pacientes en un entorno clínico sin necesidad de equipos 

especializados como sensores inerciales o cámaras infrarrojas. Gracias a la 

combinación de MediaPipe y YOLOv5, se consigue: 

• Una extracción robusta de ángulos de articulaciones y distancias entre 

puntos clave. 

• Un modelo capaz de generalizar bien a distintas condiciones de 

iluminación y variabilidad en las posturas. 

• Un método menos invasivo y más accesible que los sistemas tradicionales 

de análisis del movimiento. 

 

 

Figura 16: Evaluación de hombro congelado. ( Fuente: [19] ) 

 

La figura 16 muestra: (a) Imágenes de resultado del hombro congelado 

generadas al combinar YOLOv5 y MediaPipe; (b) Estructura esquelética humana 

generada a partir de la información de puntos clave extraída por MediaPipe; (c) 

Cálculo de los ángulos del rango de movimiento del hombro congelado 

proyectando los ángulos en planos anatómicos definidos. 
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Relevancia para este trabajo: 

Este estudio es particularmente relevante para el desarrollo de sistemas de 

caracterización de posturas humanas mediante VA, ya que demuestra la 

viabilidad de combinar MediaPipe y YOLO para extraer características del cuerpo 

con alta precisión. En el contexto de este trabajo, donde se busca detectar 

posturas y caídas en entornos domésticos, una metodología similar podría 

aplicarse para mejorar la detección de posiciones. 

 

Puntos de mejora y limitaciones: 

• Mientras que este estudio se centra en evaluar el riesgo de movimientos 

en pacientes, no cubre las necesidades de con el análisis de esos valores, 

clasificar las posturas y detectar caídas.  

• El estudio se centra en un contexto médico y clínico, pero no está pensado 

para entornos domésticos con el propósito de asistir a personas que viven 

solas. Esto implica desafíos adicionales, como condiciones de iluminación 

variadas, fondos más complejos y la necesidad de un sistema que 

funcione de manera autónoma sin supervisión médica. 
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4. Desarrollo de un sistema para la 

clasificación de pose. 
 

 

4.1. Alternativas analizadas. 

 

En este apartado se exponen las alternativas evaluadas y las distintas etapas 

por las que se ha pasado durante el desarrollo del proyecto para alcanzar los 

objetivos planteados, así como los criterios de selección que llevaron a la 

configuración final del sistema.  

Para el desarrollo se ha seguido una metodología de tipo incremental (figura 17), 

se ha partido de unas características básicas y según avanzaba el proyecto y se 

iban obteniendo distintos resultados satisfactorios, se realizaban cada vez 

versiones un poco más complejas y sofisticadas del código hasta conseguir los 

requisitos que se exigen. Esto es típico en el desarrollo de un programa, sobre 

todo aplicado a la VA, pues, se van probando soluciones nuevas y obteniendo 

distintos resultados que te hacen pensar a su vez en nuevas soluciones para los 

problemas que van surgiendo o para mejorar la calidad de los resultados 

obtenidos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

requisitos 

soluciones 

pruebasresultados

mejoras

Figura 17: Representación de la metodología aplicada. (Fuente: Elaboración propia). 
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4.1.1. Definición de requisitos. 

 

El objetivo inicial consiste en clasificar la postura de una persona en cuatro 

categorías principales: “de pie”, “sentado”, “tumbado” y “caída”. Se buscaba un 

enfoque simple y eficaz, que además pudiera implementarse en entornos 

domésticos con recursos computacionales limitados. 

Las situaciones elegidas para ser analizadas serán aquellas en las que en la 

imagen se encuentre una sola persona y principalmente en entornos domésticos. 

Esto surge por acercarse durante el desarrollo y las pruebas del programa a las 

situaciones reales en las que será implementado y conseguir con ello un mejor 

ajuste. 

El requisito principal y obligatorio es obtener como respuesta del sistema la 

postura detectada de la persona con una buena robustez y fiabilidad.  

 

 

4.1.2. Exploración inicial de soluciones. 

 

Este tipo de proyectos se puede implementar para trabajar con imágenes 

aisladas o con una secuencia definida de imágenes, lo que más comúnmente se 

conoce como video. El análisis de video permitiría monitorizar el movimiento 

continuo de una persona y detectar cambios bruscos de postura, sin embargo, 

este enfoque se aleja del objetivo inicial del proyecto y requiere un mayor 

consumo de recursos computacionales, lo que dificultaría su implementación. 

Dado que el sistema puede operar eficazmente con imágenes estáticas, se opta 

por esta alternativa para simplificar su ejecución, optimizar el uso de recursos y 

ajustarse mejor a las condiciones iniciales de las que parte el proyecto. 

También es necesario elegir qué clases posturales hay que detectar. Requisito 

indispensable del proyecto es detectar y clasificar la pose de una persona en 

cuatro clases diferentes, “de pie”, “sentado”, “tumbado” y “caído”, por lo que 

diferenciar firmemente las poses principales del proyecto es necesario para 

cumplir con el propósito.  

 

Por último, definir qué métodos y herramientas se han analizado para conseguir 

cumplir los requisitos que se han definido. 
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• MediaPipe: Usar MediaPipe Pose para obtener datos clave del esqueleto 

humano y clasificar posturas basándose en estas coordenadas. Ofrece 

una estructura bien definida de puntos clave y es relativamente fácil de 

integrar. Se comenzará a trabajar con esta herramienta como una 

alternativa prometedora. 

 

• YOLO: Emplear YOLO para detectar y clasificar posturas mediante un 

modelo de detección de objetos. Alta fiabilidad en detección de personas 

y adaptable para diferenciar entre posiciones generales. También se 

integrará al flujo de trabajo para evaluar su rendimiento frente y conjunto 

a MediaPipe. 

 

• Red neuronal: Entrenar una red neuronal capaz de clasificar posturas 

basándose en imágenes etiquetadas. Este enfoque otorgaría resultados 

mejores que otros métodos, pero implica una alta complejidad, requiere 

un gran volumen de datos etiquetados y un entrenamiento 

computacionalmente costoso. Se descarta debido a la complejidad 

innecesaria en comparación con el objetivo del proyecto. 

 

• SVM: Entrenar un clasificador SVM utilizando las características extraídas 

por MediaPipe y YOLO. Más sencillo y rápido de entrenar en comparación 

con redes neuronales. Ofrece resultados suficientemente precisos para el 

propósito del proyecto. Implementar este método logra un balance óptimo 

entre simplicidad y eficacia para un método de clasificación autónomo. 

 

Estos métodos y herramientas se explicarán y estudiarán más a fondo en los 

apartados siguientes del proyecto. 

 

 

4.1.3. Selección final. 

 

Tras analizar los métodos y sus combinaciones, se seleccionó el siguiente 

enfoque: 

▪ Uso conjunto de MediaPipe Pose y YOLO para obtener características 

robustas y fiables en diversos escenarios. 

▪ Clasificación mediante un SVM, aprovechando su simplicidad y 

capacidad de generalización. 

▪ Exclusión de métodos no relevantes (video, red neuronal) para 

optimizar recursos y alinearse con los objetivos del proyecto. 

 

Esta solución cumple con los requisitos de simplicidad, eficacia y bajo consumo 

de recursos. Además, se ajusta al contexto específico de analizar imágenes de 
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personas en entornos domésticos, garantizando un rendimiento adecuado en 

situaciones reales. 

 

 

4.2. Herramientas utilizadas. 

 

A continuación, se profundizará más sobre las herramientas y el entorno utilizado 

para la realización del proyecto. 

 

 

4.2.1. Entorno utilizado. 

 

Para facilitar la gestión de librerías y la aplicación de Python, el primer paso es 

realizar la instalación de Anaconda. Anaconda es una distribución de 

software libre y de código abierto de los lenguajes Python y R, utilizada 

en ciencia de datos y aprendizaje automático. Está orientado a simplificar el 

despliegue y administración de los paquetes de software. [20]. 

En Anaconda se deben instalar todas las librerías necesarias para que el servicio 

de Python y el programa realizado funcionen correctamente. Estas librerías se 

pueden comprimir en un archivo de instalación para introducirlas 

automáticamente, o, por el contrario, realizar la instalación de forma manual una 

a una. Las diferentes versiones de los paquetes se administran mediante 

el sistema de gestión de paquetes conda, el cual lo hace bastante sencillo de 

instalar, ejecutar y actualizar el software. La lista completa de todas las librerías 

con su correspondiente versión se podrá encontrar en los anexos.  

Una vez instalado Anaconda, debemos instalar una versión de Python.  

Python es un lenguaje de programación de alto nivel, interpretado, y de propósito 

general. Entre otras características, Python es conocido por ser fácil de aprender 

y usar debido a su sintaxis sencilla y legible. Puede utilizarse en diversas áreas 

de desarrollo y posee una gran comunidad muy activa y una vasta cantidad de 

bibliotecas. En este caso se ha trabajado en la versión Python 3.9.19. 

En Anaconda, para ejecutar Python se hará uso del entorno de desarrollo 

integrado Spyder, en su versión 5.5.1. 

 

 

 

https://es.wikipedia.org/wiki/Distribuci%C3%B3n_de_software
https://es.wikipedia.org/wiki/Distribuci%C3%B3n_de_software
https://es.wikipedia.org/wiki/Software_libre_y_de_c%C3%B3digo_abierto
https://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n
https://es.wikipedia.org/wiki/Python
https://es.wikipedia.org/wiki/R_(lenguaje_de_programaci%C3%B3n)
https://es.wikipedia.org/wiki/Ciencia_de_datos
https://es.wikipedia.org/wiki/Aprendizaje_autom%C3%A1tico
https://es.wikipedia.org/wiki/Paquete_de_software
https://es.wikipedia.org/wiki/Sistema_de_gesti%C3%B3n_de_paquetes
https://es.wikipedia.org/wiki/Conda_(gestor_de_paquetes)
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4.2.2. OpenCV. 

 

OpenCV es una biblioteca de visión por computadora de código abierto que 

permite trabajar con imágenes y videos de una manera muy versátil y eficiente. 

Es una herramienta ampliamente utilizada tanto en proyectos académicos como 

en aplicaciones comerciales, ya que ofrece funcionalidades para procesar 

imágenes, detectar objetos, analizar movimientos, reconocer rostros, entre 

muchas otras cosas. 

Una de las principales ventajas de OpenCV es su capacidad para procesar datos 

en tiempo real, algo esencial en aplicaciones donde la velocidad es clave, como 

la detección de personas. Además, es compatible con varios lenguajes de 

programación como Python, C++ y Java, lo que facilita su integración en distintos 

proyectos. [21]. 

En este trabajo se utiliza OpenCV para tareas como el preprocesamiento de 

imágenes y la visualización de resultados (dibujar cajas delimitadoras o 

esqueleto sobre las personas detectadas). También actúa como un puente para 

combinar otras herramientas, como MediaPipe y YOLO, permitiendo trabajar de 

manera conjunta y eficiente en la caracterización de las posturas de las 

personas. 

Un aspecto por destacar es cómo trabaja OpenCV con las imágenes, pues será 

útil entenderlo para el futuro tratamiento de las características extraídas. 

Interpreta cada imagen como una matriz de píxeles. En esta matriz, cada 

elemento representa un píxel, y su valor puede variar dependiendo del formato 

de la imagen. Por ejemplo, en imágenes a color cada píxel tiene tres valores (R, 

G, B), que corresponden a las intensidades de los canales rojo, verde y azul. La 

intensidad de cada canal se define en un rango [0-255], donde el 0 representa la 

mínima intensidad y el 255 representa la intensidad máxima para ese canal. Así, 

un píxel con los siguientes valores en cuanto a color (255,0,0) será plenamente 

rojo. 

Usa un sistema de coordenadas cartesianas adaptado a las imágenes cuyo 

origen (0,0) se fija en la esquina superior izquierda de la imagen, en 

consecuencia, el eje X crece hacia la derecha, representando las columnas de 

la matriz y el eje Y crece hacia abajo, representando las filas de la matriz. 

 

La siguiente ilustración (figura 18) representa el sistema de coordenadas que 

sigue OpenCV y el valor de color de 3 píxeles presentes en la imagen. 
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Figura 18: Sistema de coordenadas y matriz de píxeles de OpenCV. ( Fuente: Elaboración propia ) 

 

 

4.2.3. MediaPipe y MediaPipe Pose. 

 

MediaPipe es un conjunto de herramientas de código abierto diseñado para 

facilitar el desarrollo de soluciones de VA en tiempo real. Ofrece una colección 

de soluciones listas para usar en tareas como el reconocimiento facial, el 

seguimiento de gestos, la detección de objetos y el seguimiento del cuerpo 

humano. [22]. 

Gracias a su funcionalidad modular y a su compatibilidad con diversas 

plataformas, MediaPipe permite a los desarrolladores crear aplicaciones 

avanzadas con gran flexibilidad y eficacia. Lo que hace que MediaPipe sea 

especialmente importante (y útil) es su capacidad para simplificar el proceso de 

desarrollo de la VA, ofreciendo servicios optimizados para analizar flujos y 

mejorar la calidad de las soluciones. Al ofrecer soluciones preconfiguradas y 

optimizadas, se reduce el tiempo y el esfuerzo necesarios para integrar 

complejas funciones de procesamiento visual en las aplicaciones. Además, su 

arquitectura modular permite una personalización sencilla y una integración 

perfecta con otras tecnologías, lo que proporciona una potente plataforma para 

innovaciones en campos tan diversos como la realidad aumentada, las 

aplicaciones sanitarias y mucho más. 

En la figura 19 se muestra un esquema de cómo funciona MediaPipe y las etapas 

por las que pasa el procesamiento de la imagen, donde se transforma la imagen 

original para ajustarla al modelo, luego se convierte en un tensor (estructura 

numérica multidimensional) para su procesamiento, a continuación, el modelo 

realiza el análisis sobre el tensor, generando una salida que se traduce en 

landmarks (puntos clave) que se combinan con la imagen original para generar 

la imagen procesada. 
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Figura 19: Gráfico que muestra cómo funciona MediaPipe. ( Fuente: Elaboración propia ) 

 

En este caso se ha hecho uso de MediaPipe Pose. Este es un modelo de visión 

por computadora específico de MediaPipe diseñado para detectar la pose 

corporal de una persona en imágenes o videos en tiempo real. El modelo está 

entrenado para identificar puntos clave del cuerpo (figura 20), proporcionando 

una representación precisa de la posición y la orientación de una persona. Este 

modelo es muy útil para aplicaciones como el análisis de la postura, la detección 

de actividades deportivas, el seguimiento de movimientos y más. 

 

 

Figura 20: 33 Puntos de referencia corporales detectados por MediaPipe Pose. ( Fuente: [23] ) 

 

MediaPipe Pose recibe una imagen o video en tiempo real y se realiza una serie 

de transformaciones en la imagen como redimensión y normalización de colores 

para que sea adecuada para el proceso de detección y reducir así el tiempo de 
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procesamiento. Se identifica la región de interés (ROI) que contiene a la persona 

para limitar el espacio de búsqueda, permitiendo enfocarse en el cuerpo humano 

y no en toda la imagen. Se utiliza una red neuronal especializada para realizar la 

detección de los 33 puntos clave del cuerpo humano. A estos puntos clave 

detectados se les denomina “landmarks” y son las coordenadas que representan 

las ubicaciones específicas del cuerpo humano. 

Tras la detección de los puntos clave, se realiza un proceso de inferencia para 

determinar con precisión las posiciones de los puntos, lo que permite que el 

modelo prediga la posición de las articulaciones y extremidades de una persona 

en relación con el cuerpo entero, incluso si la persona está parcialmente oculta 

o en una posición difícil de ver.  

Por último, se realiza un posprocesamiento para evitar fluctuaciones o ruido en 

los resultados utilizando filtros de suavizado que mejoran la estabilidad de los 

landmarks y se dibujan los puntos clave extraídos sobre la imagen original, 

mostrando visualmente la posición de las articulaciones y las partes del cuerpo.  

Con estos resultados obtenidos se puede hacer uso de las coordenadas de cada 

landmark para utilizarlo en diferentes aplicaciones como el análisis de postura.  

 

En la figura 21 se muestran los puntos clave dibujados en una imagen ejemplo. 

 

 

Figura 21: Puntos de referencia de la postura corporal en una imagen. ( Fuente: Elaboración propia ) 
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MediaPipe es extremadamente eficiente incluso en dispositivos con recursos 

limitados gracias a su diseño optimizado. Tiene herramientas y bibliotecas que 

facilitan la integración en proyectos de VA y es compatible con plataformas como 

Python. Está entrenando con grandes conjuntos de datos de imágenes de 

personas, lo que permite obtener resultados precisos sin necesidad de entrenar 

un modelo desde cero. 

 

La tabla 1 recoge algunas de las ventajas y desventajas de trabajar con 

MediaPipe Pose: 

 

VENTAJAS DESVENTAJAS 

Utiliza modelos avanzados de 
aprendizaje profundo que proporcionan 
estimaciones precisas de las poses 
humanas, incluso en escenarios 
desafiantes como posiciones ociosas o 
dinámicas. 

Está diseñado para analizar una sola 
persona por imagen o cuadro, lo que lo 
hace inadecuado para escenarios con 
múltiples sujetos. 

MediaPipe Pose está optimizado para 
funcionar en tiempo real, incluso en 
dispositivos con recursos limitados como 
smartphones. 

Su precisión puede disminuir en 
entornos con poca luz o iluminación 
desigual. 

Funciona en diferentes plataformas, 
incluyendo Android, iOS, Python y 
JavaScript, lo que facilita la 
implementación en diversas 
aplicaciones. 

Requiere imágenes o videos de alta 
resolución para un rendimiento óptimo, 
lo que puede no ser práctico en 
dispositivos de baja gama. 

Ofrece un modelo listo para usar, 
reduciendo el esfuerzo de 
entrenamiento y etiquetado de datos. 

Puede fallar al estimar poses cuando 
partes del cuerpo están ocluidas (por 
ejemplo, cuando los brazos cruzan el 
torso). 

Incluye una API bien documentada y 
fácil de implementar, lo que permite a 
los desarrolladores integrar pose 
estimation rápidamente en proyectos. 

Está entrenado principalmente en datos 
que reflejan poses humanas generales; 
puede no ser preciso en poses muy 
inusuales o extremas. 

Tabla 1: Ventajas y desventajas de MediaPipe Pose.  

 

 

4.2.4. YOLO y YOLOv3. 

 

Los sistemas de clasificación de objetos, utilizados por los programas 

de inteligencia artificial, tienen como objetivo percibir objetos específicos de una 

clase como sujetos de interés. Estos sistemas clasifican los objetos de las 

https://viso.ai/deep-learning/artificial-intelligence-types/
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imágenes en grupos que colocan juntos a los objetos con características 

similares y dejan de lado a los demás, a menos que estén programados para 

hacer lo contrario. Los grupos resultantes ayudan a identificar y categorizar los 

objetos en función de sus características, lo que contribuye a una comprensión 

más matizada de la clase prevista a la que pertenece cada objeto. 

El algoritmo You Only Look Once (YOLO), es un sistema de código abierto 

para detección de objetos en tiempo real, el cual hace uso de una única red 

neuronal convolucional para detectar objetos en imágenes [24]. Para su 

funcionamiento, la red neuronal divide la imagen en regiones, prediciendo 

cuadros de identificación y probabilidades por cada región. Las cajas, son 

ponderadas a partir de las probabilidades predichas. Estas cajas también 

denominadas “bounding boxes”, encierran al objeto detectado y se definen 

mediante cuatro parámetros principales, coordenada x del centro de la caja, 

coordenada y del centro de la caja, ancho de la caja y alto de la caja (figura 22). 

El algoritmo aprende representaciones generalizables de los objetos, 

permitiendo un bajo error de detección para entradas nuevas, diferentes al 

conjunto de datos de entrenamiento. 

 

 

Figura 22: Ejemplo de resultado de detección de YOLO. ( Fuente: [25] ) 

 

Como es habitual en los detectores de objetos, las características aprendidas 

por las capas convolucionales se pasan a un clasificador que realiza la predicción 

de detección. YOLO tiene la ventaja de ser mucho más rápida que otras redes y, 

aun así, mantiene la precisión.  

https://es.wikipedia.org/wiki/Detecci%C3%B3n_de_objetos
https://es.wikipedia.org/wiki/Red_neuronal_artificial
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El modelo de detección de objetos puede observar la imagen completa en el 

momento de la prueba. YOLO y otros algoritmos “puntúan” las regiones en 

función de sus similitudes con clases predefinidas. Las regiones con 

puntuaciones altas se consideran detecciones positivas de la clase con la que 

se identifican más estrechamente. Este mecanismo de puntuación, que implica 

propuestas regionales, permite la detección precisa y eficiente de objetos en 

varias escenas. 

Una de las versiones de YOLO y la utilizada en este trabajo es YOLOv3. Joseph 

Redmon y Ali Farhadi crearon la primera versión de los algoritmos YOLO en 

2016. Los dos lanzaron la versión 3 dos años después, en 2018. YOLOv3 es una 

versión mejorada de YOLO y YOLOv2.  

YOLOv3 es una versión plenamente probada por científicos y desarrolladores y 

existen numerosos datasets o conjuntos de datos que han sido optimizados para 

esta versión en concreto. Es una versión estable y madura que ha estado en 

circulación durante un periodo más prolongado, sometiéndose a extensas 

pruebas y validaciones en diversas aplicaciones.  

Otro punto por destacar es que YOLOv3 es un modelo comparativamente ligero, 

lo que lo convierte en una opción adecuada para la implementación en 

dispositivos con recursos limitados, ya que otras versiones posteriores como 

YOLOv11 requieren más recursos de almacenamiento y computación, aunque 

sean más precisas. 

 

La figura 23 muestra las etapas principales del algoritmo YOLOv3 aplicado a la 

detección de un objeto, en este caso un coche. 

 

 

Figura 23: Etapas sucesivas de la detección de YOLOv3. ( Fuente: [26] ) 
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El algoritmo YOLOv3 primero separa una imagen en una cuadrícula. Cada celda 

de la cuadrícula predice una cierta cantidad de cuadros delimitadores (a veces 

denominados cuadros de anclaje) alrededor de los objetos que tienen una 

puntuación alta en las clases predefinidas mencionadas anteriormente. 

YOLOv3 es rápido y preciso en términos de precisión media promedio (mAP) y 

valores de intersección sobre unión ( IOU ). Funciona significativamente más 

rápido que otros métodos de detección con un rendimiento comparable.  

Además, se puede equilibrar fácilmente la velocidad y la precisión simplemente 

modificando el tamaño del modelo, sin necesidad de volver a entrenarlo, lo que 

demuestra la versatilidad de la extracción de características dentro de la 

arquitectura YOLOv3. [27]. 

 

Algunas ventajas y desventajas de utilizar YOLO para el presente trabajo se 

resumen en la tabla 2: 

 

VENTAJAS DESVENTAJAS 

Alta velocidad de procesamiento debido 
a su arquitectura basada en redes 
neuronales convolucionales que 
procesan toda la imagen en un solo 
paso. 

Tiene dificultades para detectar objetos 
pequeños en imágenes grandes, ya que 
estos pueden no ser suficientemente 
representados en las cuadrículas de la 
red. 

Analiza toda la imagen, lo que ayuda a 
minimizar errores relacionados con el 
solapamiento de objetos o detecciones 
duplicadas. 

Aunque es rápido, puede sacrificar 
precisión en comparación con modelos 
más lentos. 

Puede detectar múltiples objetos en una 
imagen con alta precisión, haciéndolo útil 
en aplicaciones como vigilancia, 
conducción autónoma y robótica. 

En imágenes con gran densidad de 
objetos o ruido, YOLO puede generar 
detecciones incorrectas. 

Es más rápido y menos demandante en 
recursos que otros métodos como R-
CNN o Fast R-CNN, especialmente en 
versiones más recientes. 

Su rendimiento depende mucho de la 
calidad y cantidad de datos utilizados 
para entrenarlo, y puede no generalizar 
bien a dominios diferentes del conjunto 
de datos original. 

La comunidad ofrece soporte extenso, 
bibliotecas preentrenadas y 
documentación que facilita su 
integración en proyectos. 

YOLO divide la imagen en cuadrículas 
para predecir objetos, lo que puede 
dificultar la detección precisa de objetos 
cuya posición o escala no se ajusta bien 
a esta división. Esto puede causar 
problemas en imágenes donde los 
objetos están muy cercanos o se 
solapan. 

Tabla 2: Ventajas y desventajas de YOLO. 

 

 

https://viso.ai/computer-vision/intersection-over-union-iou/
https://viso.ai/deep-learning/feature-extraction-in-python/
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4.2.5. Máquina se vectores de soporte. SVM. 

 

Durante el desarrollo del proyecto, surge la idea de no solo trabajar la 

clasificación mediante técnicas de puro análisis de características de manera 

“manual”, sino también, profundizar en alguna técnica de clasificación 

automática que sea sencilla y fácil de implementar y que ayude a manejar la 

caracterización desde otro punto de vista. 

Se opta por una máquina de vectores de soporte (del inglés support-vector-

machine, SVM). El SVM es un potente algoritmo de aprendizaje 

automático ampliamente utilizado tanto para la clasificación lineal como para la 

no lineal, así como para tareas de regresión y detección de valores atípicos. Las 

SVM son altamente adaptables, lo que las hace adecuadas para diversas 

aplicaciones. 

Las máquinas de vectores de soporte son particularmente eficaces porque se 

centran en encontrar el hiperplano de separación máximo en un espacio N-

dimensional que pueda separar eficazmente los puntos de datos en diferentes 

clases en el espacio de características destino, lo que las hace robustas tanto 

para la clasificación binaria como para la multiclase.  

El algoritmo garantiza que se maximice el margen entre los puntos más cercanos 

de diferentes clases, conocidos como vectores de soporte. 

La dimensión del hiperplano depende del número de características. Por 

ejemplo, si hay dos características de entrada, el hiperplano es simplemente una 

línea, y si hay tres características de entrada, el hiperplano se convierte en un 

plano 2D. A medida que el número de características aumenta más allá de tres, 

también aumenta la complejidad de visualización del hiperplano. [28]. 

 

 

Figura 24: Datos separables linealmente. SVM. ( Fuente: Elaboración propia ) 

https://www.geeksforgeeks.org/separating-hyperplanes-in-svm/
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Se consideran dos variables independientes, x1 y x2, y una variable dependiente 

representada como un círculo azul o un círculo rojo (figura 24).  

En este escenario, se intenta separar los círculos azules de los rojos, por lo tanto, 

el problema es linealmente separable. El hiperplano será una línea porque 

estamos trabajando con dos características (x1 y x2).  

De la figura anterior se desprende claramente que existen múltiples líneas que 

separan los puntos de datos o realizan una clasificación entre círculos rojos y 

azules. Una opción razonable para el mejor hiperplano en un SVM es aquella 

que maximiza el margen de separación entre las dos clases. El hiperplano de 

margen máximo, también conocido como margen duro, se selecciona en función 

de maximizar la distancia entre el hiperplano y el punto de datos más cercano en 

cada lado. 

 

 

Figura 25: Clasificadores lineales. SVM. ( Fuente: Elaboración propia ) 

 

En la figura 25, se tienen 3 clasificadores: la línea verde, la línea azul y la línea 

roja.  

El clasificador verde es el peor, pues, teniendo un problema sencillo de separar 

y una distribución sencilla, no consigue separar las variables. Por otro lado, los 

clasificadores azul y rojo son perfectos, pero el rojo es mejor que el azul, puesto 

que va a generalizar mejor. Esto se debe a que deja más espacio entre los 

elementos de ambos grupos, dando más margen a nuevas instancias para 

clasificarlas correctamente.  
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Algunas ventajas y desventajas del uso de SVM se resumen en la siguiente tabla 

(tabla 3): 

 

VENTAJAS DESVENTAJAS 

Rendimiento de alta dimensión: SVM se 

destaca en espacios de alta dimensión, 

lo que lo hace adecuado para la 

clasificación de imágenes y el análisis de 

expresión genética. 

Entrenamiento lento: SVM puede ser 

lento para conjuntos de datos grandes, 

lo que afecta el rendimiento de SVM 

en tareas de minería de datos. 

Capacidad no lineal: al utilizar funciones 

de kernel, SVM maneja 

exitosamente relaciones no lineales. 

Dificultad de ajuste de parámetros: 

seleccionar el kernel correcto y ajustar 

cuidadosamente parámetros, lo que 

impacta en los algoritmos SVM. 

Resiliencia de valores atípicos: la 

función de margen suave permite a SVM 

ignorar los valores atípicos, lo que 

mejora la solidez en la detección de 

anomalías. 

Sensibilidad al ruido: SVM tiene 

dificultades con conjuntos de datos 

ruidosos y clases superpuestas, lo que 

limita la eficacia en escenarios del 

mundo real. 

Soporte binario y multiclase: SVM es 

eficaz tanto para la clasificación 

binaria como para la clasificación 

multiclase, adecuado para aplicaciones 

en clasificación de texto. 

Interpretabilidad limitada: la complejidad 
del hiperplano en dimensiones 
superiores hace que SVM sea menos 
interpretable que otros modelos. 

 

Tabla 3: Ventajas y desventajas de SVM. 

 

 

4.3. Clasificación de la pose. 

 

4.3.1. Idea inicial. 

 

1. Utilización de MediaPipe para la detección y caracterización de posiciones 

corporales. 

MediaPipe es una herramienta de visión artificial altamente eficiente para la 

detección de puntos clave del cuerpo humano. Estos puntos clave, representan 

ubicaciones específicas del cuerpo, como articulaciones o extremidades. En este 

proyecto, se utilizará MediaPipe para identificar y rastrear estos landmarks 

proporcionando información crítica sobre la postura de una persona. 
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Esta información se utilizará para calcular ángulos entre extremidades, 

proporciones del cuerpo, y otras características relevantes que permitan 

diferenciar posturas como estar “de pie”, “sentado”, “tumbado” o “caído”. 

MediaPipe también permite evaluar la confianza de cada punto clave, lo que 

facilita descartar datos poco fiables debido a oclusiones. 

 

2. YOLO para la detección y caracterización de posiciones corporales. 

YOLO sobresale por su velocidad y precisión. Este modelo se usará en el 

proyecto para identificar a la persona y objetos presentes en la imagen. Con el 

bounding box de YOLO también se podrán extraer ciertas características como 

el alto, ancho o proporciones que ayudarán a proporcionar información sobre la 

postura. Mediante esta herramienta se llevará a cabo la clasificación de la clase 

tumbado. Para lograr esta distinción, se tomará en cuenta el contexto del 

entorno, pues, YOLO puede detectar objetos como sofás o comas y basándose 

en la presencia de estos objetos y la relación que tienen con la persona 

detectada, se conseguirá una idea sobre si la persona está tumbada en un sofá 

o caída en el suelo. 

 

3. Combinación de YOLO y MediaPipe para mejorar la precisión 

Aunque MediaPipe es extremadamente útil para extraer detalles del cuerpo, 

tiene limitaciones en casos donde la visión de las extremidades está parcial o 

totalmente obstruida. Por otro lado, YOLO es más robusto para detectar la 

presencia de una persona en condiciones complejas, como baja iluminación o 

posiciones no convencionales. 

El sistema combinará ambas herramientas aprovechando sus fortalezas. En 

situaciones donde MediaPipe no logre identificar todos los Landmarks (por 

ejemplo, en una postura tumbada donde las piernas están parcialmente fuera del 

marco), el modelo podrá apoyarse en la detección de YOLO para inferir la 

postura de forma más confiable. En resumen, se utilizarán ambos métodos para 

cada caso, contando con ambas detecciones y ambos resultados, tomando 

decisiones basadas en reglas predefinidas para seleccionar el resultado más 

confiable entre ambos métodos, pues hay situaciones en las que un método 

presenta fortalezas frente a otro. 

 

4. Uso de SVM entrenado con datos recopilados. 

A mayores del método de clasificación mediante MediaPipe y YOLO, se utilizará 

un modelo de clasificación basado en SVM, que se entrenará con las 

características extraídas de MediaPipe y YOLO. Estas características incluirán 

posición de puntos clave, distancias entre puntos, ángulos de articulaciones, 

proporciones corporales, información sobre los bounding boxes... El modelo 
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SVM permitirá clasificar de forma automática las posturas en las categorías 

principales.  

 

5. Resultado final: clasificación manual y automática. 

El sistema generará dos tipos de resultados para cada evaluación. 

• Clasificación manual: Una combinación de reglas lógicas basadas en los 

datos obtenidos de YOLO y MediaPipe. Por ejemplo, si MediaPipe 

identifica una distribución específica de puntos clave, pero YOLO no 

detecta a la persona dentro de una región de interés consistente, se 

podría etiquetar como "caído". 

 

• Clasificación automática: El resultado del modelo SVM entrenado, que 

tomará como entrada los datos procesados para asignar una de las clases 

predeterminadas. 

 

Finalmente, se evaluará la precisión y eficiencia de ambos enfoques, 

identificando fortalezas y áreas de mejora. El resultado será desarrollar un 

sistema robusto que combine detección manual y automática para aplicaciones 

en entornos domésticos, brindando apoyo a personas que viven solas. 

 

 

4.3.2. Desarrollo del sistema. 

 

En este apartado se profundizará en los pasos seguidos en el desarrollo del 

proyecto, desde la fase inicial hasta la versión final. Este apartado es de gran 

importancia, pues explica de manera detallada cómo se han tomado las 

decisiones y cómo se ha llegado a las soluciones elegidas.  

 

 

4.3.2.1. Obtención de datos. 

 

Se empezará por encontrar y elegir uno o varios conjuntos de datos o “datasets” 

de imágenes que ayuden a realizar el entreno, extraer distintas características 

de muchas imágenes y realizar las pruebas de test una vez tengamos una 

versión completa del código. 

Los datasets contienen imágenes que no se ajustan a las especificaciones del 

proyecto, como imágenes en las que aparecen varias personas, por ello, se 

realiza un filtrado del conjunto entero de imágenes. Para conseguir este filtrado 



55 
 

de una manera rápida y eficiente, se ha elaborado un programa (“clasificador de 

imágenes en carpetas.py”) en Python para clasificar las imágenes en las clases 

predominantes. La estructura básica de este clasificador se podría resumir con 

el siguiente diagrama de bloques (figura 26): 

 

 

Figura 26: Diagrama de flujo del programa "clasificador de imágenes en carpetas.py". ( Fuente: 
Elaboración propia ) 

 

El programa de clasificación básicamente recorre las carpetas origen mostrando 

al usuario las imágenes y moviéndolas a la subcarpeta correspondiente a las 

clases predominantes a clasificar (“de pie”, “sentado”, “caída”, “tumbado”, 

“vacío”) según la entrada del usuario por teclado (“1”, ”2”, ”3”, ”4”, ”5”) 

correspondientemente.  

 

Inicio

Definir rutas origen y 
destino

Crear carpetas de 
clasificación

Recorrer carpeta origen

Mostrar imagen

Solicitar clasificación

Mover imagen a carpeta 
correspondiente

Repitir hasta procesar 
todas las imágenes

Fin
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A las clases básicas se añade también una correspondiente a imágenes vacías, 

es decir, sin personas, para poder comprobar que el sistema no detecta personas 

donde no las hay. Este programa ha sido muy útil permitiendo el 

preprocesamiento de los datasets. Con las imágenes ya filtradas y clasificadas 

se puede comenzar a trabajar con las detecciones de MediaPipe y YOLO. 

 

Entrenamiento y validación: 

El dataset utilizado para la fase de entrenamiento y validación es el siguiente: 

• Fallen People Detection Capabilities Using Assistive Robot. S. 

Maldonado-Bascón, C. Iglesias-Iglesias, P. Martín-Martín, S. Lafuente-

Arroyo. Electronics 2019. 

Se opta por utilizar este dataset en particular debido a su adecuación para el 

problema de clasificación de posturas, ya que ha sido desarrollado para tareas 

de detección de caídas mediante un robot asistente [29] y proporciona datos 

etiquetados de alta calidad que permiten entrenar y validar el modelo de manera 

eficiente.  

 

 

Figura 27: Ejemplo de imágenes del dataset FPDs. ( Fuente: [29] ) 

 

Está formado por 6982 imágenes, con un total de 5023 caídas y 2275 no caídas 

correspondientes a personas en situaciones convencionales (de pie, sentadas, 

tumbadas en el sofá o la cama, andando, etc.). Casi todas las imágenes han sido 

captadas en entornos interiores con situaciones muy diferentes como variación 

de poses y tamaños, oclusiones, cambios de iluminación, etc. En la imagen 

superior (figura 27) se muestra un ejemplo de algunas imágenes que contiene 

este dataset. 

El dataset ha sido optimizado con pesos en YOLOv3. Esta es la razón por la que 

se utiliza esa versión de YOLO en este proyecto, aparte de ofrecer robustez y 

fiabilidad al ser una versión testada a fondo por una gran parte de la comunidad 

y desarrolladores. 
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Test: 

Para la fase de test del proyecto se utiliza un dataset completamente distinto al 

utilizado en las pruebas y entrenamiento. Esto garantiza que el modelo creado 

generaliza bien y no se cometen errores de sobreajuste o resultados falseados 

por utilizar las mismas imágenes que en el entreno. 

El dataset utilizado para el conjunto de test está formado por la unión de varios 

debido a la escasa diversidad de datos de algunos de ellos, poder cubrir más 

escenarios con condiciones o contextos diferentes y aumentar en algunos casos 

la cantidad de ejemplos de algunas de las clases. 

 

• IASLAB-RGBD (Antonello, M.; Carraro, M.; Pierobon, M.; Menegatti, E. 

Fast and robust detection of fallen people from a mobile robot. 2017 

IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS)).  

 

 

Figura 28: Ejemplo de imágenes del dataset IASLAB-RGBD. ( Fuente: [30] ) 

 

Este dataset contiene 342 imágenes en las que están presentes las cuatro poses 

predominantes del proyecto. Al igual que en el dataset de entrenamiento, se 

seleccionan las imágenes según los requisitos del proyecto. En la imagen 

superior (figura 28) se muestra un ejemplo de algunas imágenes que contiene 

este dataset. 

 

 

 

 

 

 

https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/ETKEt1J-g6lJjkqUOFV13C4BGE5SayAS-QAy9P7wGcel1g?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/ETKEt1J-g6lJjkqUOFV13C4BGE5SayAS-QAy9P7wGcel1g?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/ETKEt1J-g6lJjkqUOFV13C4BGE5SayAS-QAy9P7wGcel1g?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/ETKEt1J-g6lJjkqUOFV13C4BGE5SayAS-QAy9P7wGcel1g?&Download=1
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• Up-Fall Detection (Kwolek, B.; Kepski, M. Human fall detection on 

embedded platform using depth maps and wireless accelerometer. 

Computer methods and programs in biomedicine 2014).  

 

 

 

Figura 29: Ejemplo de imágenes del dataset Up-Fall Detection. ( Fuente: [31] ) 

 

En este dataset hay presentes 2097 imágenes correspondientes a secuencias 

de movimientos de una persona, desde estar de pie, andar, caerse, sentarse… 

Al estar formado por secuencias de movimientos, muchas de las imágenes son 

demasiado similares, por lo que en el filtrado de este dataset se eliminan muchas 

de ellas, pues, esto podría llegar a falsear en cierta manera los resultados 

obtenidos. En la imagen superior (figura 29) se muestra un ejemplo de algunas 

imágenes que contiene este dataset. 

 

 

 

• Elderly Set. S. Maldonado-Bascón, C. Iglesias-Iglesias, P. Martín-Martín, 

S. Lafuente-Arroyo. Electronics 2019. 

 

 

Figura 30: Contenido del dataset Elderly Set. ( Fuente: [32] ) 

 

https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/EbpD59iTrctBuO3KhIHGnBsBtOmtSpGJgr93hRHYitj-4A?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/EbpD59iTrctBuO3KhIHGnBsBtOmtSpGJgr93hRHYitj-4A?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/EbpD59iTrctBuO3KhIHGnBsBtOmtSpGJgr93hRHYitj-4A?&Download=1
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Por último, este dataset contiene 413 imágenes, exclusivamente con voluntarios 

mayores de 65 años y en situaciones domésticas. Este conjunto se ajusta muy 

bien a las necesidades que pretende cumplir este proyecto. En la imagen 

superior (figura 30) se muestra un ejemplo de algunas imágenes que contiene 

este dataset. 

 

 

4.3.2.2. Uso de MediaPipe. 

 

Para empezar a hacer uso de MediaPipe hay que instalarlo en el entorno de 

trabajo en Anaconda. Esto se puede hacer de dos maneras, a través del sistema 

de gestión de paquetes conda navegando por él, buscando e instalando 

MediaPipe, o, a través del prompt de Anaconda.  

En este caso se utiliza el segundo método, a través del prompt. También es una 

tarea muy sencilla, pues solo hay que ejecutar los dos siguientes comandos. 

Conda activate (“nombre del entorno creado”) 

      Pip install MediaPipe 

Con estos dos comandos ya tenemos en nuestro entorno el paquete de 

MediaPipe, en este caso la versión 10.8. 

MediaPipe es capaz de detectar hasta 33 puntos clave del cuerpo humano. Para 

poder llevar a cabo estas detecciones en el código, primero hay que inicializar el 

modelo, configurándolo para que esté listo para detectar las poses y dibujarlas. 

 

 

También es importante convertir la imagen a RGB, pues, es el espacio de color 

que utiliza MediaPipe. Esto es fácil de conseguir utilizando las funciones de 

OpenCV. 

Para detectar los puntos clave del cuerpo humano en la imagen, se hace uso de 

la función “process” de MediaPipe. Esta función es la que consigue analizar la 

imagen y devolver un objeto que contiene las coordenadas de los puntos clave 

detectados. 

 

 

Por último, siempre que se quieran visualizar los puntos clave y las conexiones 

entre ellos, se hace uso de la función de dibujo que posee MediaPipe. 
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Estas funciones serán siempre necesarias para poder realizar las detecciones 

de los puntos clave. 

Tras realizar un pequeño script para familiarizarse con el entorno y resultados de 

MediaPipe se muestran los primeros resultados obtenidos (figura 31). 

 

 

Figura 31: Resultados primeras pruebas MediaPipe. ( Fuente: Elaboración propia ) 

 

Analizando las primeras detecciones de MediaPipe se ve cómo detecta con 

bastante precisión la posición de las articulaciones y puntos clave del cuerpo 

humano como era previsto.  

Este potencial de detección se explotará para poder caracterizar la pose de la 

persona, pues se puede acceder a las coordenadas de cada landmark detectado, 

por ejemplo: 

 

coordenadas rodilla_izq= [0.45501429 0.74344283] 

coordenadas cadera_izq= [0.52214921 0.74060017] 
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Las coordenadas de las articulaciones, como en este caso, se almacenan en un 

array de NumPy para facilitar las operaciones y cálculos sobre estos puntos 

posteriormente. Se intuye, por lo tanto, el potencial que ofrece MediaPipe 

utilizando estos landmarks y sus coordenadas para poder hacer cálculos de 

ángulos de articulaciones, distancias entre puntos, incluso, relaciones corporales 

que serán indicativo de una pose u otra. 

La extracción de características es un paso fundamental en el análisis de 

posturas y movimientos humanos mediante VA. El cuerpo humano se modela 

frecuentemente como un conjunto de puntos clave que representan 

articulaciones principales, como los hombros, codos, muñecas, caderas, rodillas 

y tobillos. En el contexto de este proyecto, se utilizan estos puntos clave para 

caracterizar la postura.  

Las siguientes son las articulaciones consideradas: hombros, muñecas, caderas, 

rodillas y tobillos. Aparte se utilizan también puntos clave como la cabeza.  

La selección de estos indicadores permite una representación eficiente del 

cuerpo humano al minimizar redundancias y capturar información clave para el 

análisis, ayudando a distinguir las posturas mediante ángulos de flexión, posición 

respecto a otros indicadores, distancias entre ellos, etc. 

 

A partir de las posiciones de los puntos clave, se han seleccionado varias 

características relevantes: 

1. Distancias entre articulaciones: 

o Se calculan distancias entre pares de articulaciones clave, como 

hombro-cadera, cadera-rodilla y cadera-tobillo. 

o Estas distancias permiten evaluar la extensión de extremidades y 

detectar posturas específicas. 

2. Ángulos entre segmentos corporales: 

o Se calculan ángulos utilizando las posiciones de tres articulaciones 

consecutivas (por ejemplo, hombro-cadera-rodilla o cadera-rodilla-

tobillo). 

o Los ángulos proporcionan información sobre la flexión y extensión 

de las extremidades. 

3. Relaciones espaciales: 

o Posiciones relativas de los puntos clave. 

o Relación entre partes del cuerpo como el torso y las piernas para 

caracterizar mejor algunas de las posturas. 
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A continuación, se muestra un listado completo sobre las características 

concretas extraídas de cada imagen (tablas 4, 5, 6 y 7). 

 

Distancias y relaciones 

Hombro - rodilla derecha en eje y 

Hombro – rodilla izquierda en eje y 

Hombro – rodilla derecha en eje x 

Hombro -  rodilla izquierda en eje x 

Cadera  – rodilla derecha en eje y 

Cadera -  rodilla izquierda en eje y 

Cadera – rodilla derecha en eje x 

Cadera - rodilla izquierda en eje x 

Hombro – cadera derecha en eje y 

Hombro -  cadera izquierda en eje y 

Hombro -  cadera derecha en eje x 

Hombro – cadera izquierda en eje x 

Entre rodillas 

Cabeza – rodilla 

Rodilla – mano derecha en eje y 

Rodilla – mano izquierda en eje y 

Rodilla – mano derecha en eje x 

Rodilla – mano izquierda en eje x 

Cadera – tobillo derecha en eje y 

Cadera – tobillo izquierda en eje y 

Cadera – tobillo derecha en eje x 

Cadera – tobillo izquierda en eje x 

Altura cabeza 

Altura cadera 

Altura hombro 
 

Tabla 4: Distancias calculadas entre puntos clave. 

 

 

Coordenadas de puntos clave 

Cadera derecha 

Cadera izquierda 

Rodilla derecha 

Rodilla izquierda 

Hombro derecho 

Hombro izquierdo 

Tobillo derecho 

Tobillo izquierdo 

Cabeza (nariz) 

Cadera derecha 

Cadera izquierda 
 

Tabla 5: Posiciones extraídas de puntos clave. 
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Ángulos de articulaciones 

Rodilla derecha 

Rodilla izquierda 

Cadera derecha 

Cadera izquierda 
 

Tabla 6: Ángulos calculados de puntos clave. 

 

Relaciones 

Torso – pierna derecha 

Torso – pierna izquierda 
 

Tabla 7: Relaciones calculadas de puntos clave. 

 

MediaPipe será útil también para detectar la presencia o no de persona en la 

imagen, pues si no hay detección de landmarks, la persona no estará presente 

en la imagen o, si lo está, no es de una forma evidente. 

 

 

4.3.2.3. Uso de YOLO. 

 

Para hacer uso de YOLO y detectar personas u objetos en la imagen, se necesita 

una serie de archivos. 

Uno de estos archivos será el de los pesos (.weight), el cual contiene los 

parámetros entrenados del modelo de YOLO. Otro es el archivo de configuración 

(.cfg) que contiene la estructura del modelo, es decir, cómo se organiza la red 

neuronal. Por último, un archivo que puede ser útil es el archivo de clases 

(.names), el cual contiene los nombres de las clases que el modelo puede 

detectar (persona, cama, perro, sofá, coche…) 

En este proyecto, como se ha citado anteriormente, se hace uso de la versión 3 

de YOLO por lo que se necesitarán los archivos de configuración y pesos propios 

de esta versión.  

 

 

 

 



64 
 

Al igual que con MediaPipe se realiza un script para familiarizarse con las 

funciones y resultados. 

 

 

Figura 32: Resultados primeras pruebas YOLO. ( Fuente: Elaboración propia ) 

 

Analizando los primeros resultados de las detecciones de YOLO (figura 32), se 

ve que para algunas detecciones se generan múltiples bounding boxes para el 

mismo sujeto. Este fenómeno es normal en modelos de detección de objetos y 

se soluciona mediante una técnica llamada NMS, de las siglas en inglés “Non-

Maximum Suppression” (filtro de supresión de no máximos). Esta técnica analiza 

cuando los bounding boxes se solapan y elimina aquellos con una confianza de 

detección más baja hasta que solamente queda uno. Esto asegura que solo se 

conserve la detección más confiable para cada detección. 

Una vez aplicado este algoritmo, se consiguen los siguientes resultados (figura 

33): 

 

Figura 33: Resultado aplicar NMS a YOLO. ( Fuente: Elaboración propia ) 
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Los resultados de YOLO se muestran dibujando un bounding box alrededor de 

la detección. De este tipo de detección se puede sacar potencial, pues en función 

de las características del bounding box se puede hacer una distinción inicial entre 

las poses principales. 

El modelo genera una serie de bounding boxes, cada uno con las siguientes 

características: Coordenadas (x, y) del vértice superior izquierdo del bounding 

box. Ancho (w) y alto (h) del bounding box. Confianza asociada a la detección 

(probabilidad de que el objeto sea una persona). Es importante filtrar las 

detecciones con baja probabilidad, en este caso 50 %. 

 

A partir de los valores proporcionados por YOLO, se calculan las características 

necesarias para ayudar a clasificar las posturas: 

1. Medidas del bounding box: 

o Altura y anchura, representan la extensión del bounding box y dan 

una idea de su tamaño. 

2. Relaciones espaciales: 

o La relación altura/anchura ayudará a distinguir entre distintas 

posturas. 

3. Áreas: 

o Áreas tanto de ocupación como de intersección entre bounding box 

ayudarán a diferenciar clases como “tumbado”. 

 

 

Las características extraídas permiten analizar la forma y orientación de la 

persona en la imagen: 

De pie y sentado: En esta postura, la altura del bounding box será 

significativamente mayor que su ancho, resultando evidente la distinción con el 

resto de las poses. El refinamiento y la distinción entre estas dos posturas se 

hará con el análisis de MediaPipe, pues, las características de YOLO no 

definen con robustez ninguna de las dos. 

Caído: En esta postura, la anchura será mayor a la altura, incluso en casos 

complicados en los que la persona no esté orientada lateralmente a la cámara. 

Por ello, es un método robusto para diferenciar estas poses del resto. 

Tumbado: Se intentará distinguir y filtrar de las poses clasificadas como “caída” 

aquellas en las que la persona esté “tumbada”. Para ello, mediante YOLO se 

detectará la clase sofá y la clase cama. Mediante la detección del bounding box 

de ambas clases y la posición del bounding box respecto al de la clase persona, 

se podrá realizar una primera distinción en casos en los que la persona se 
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encuentre tumbada y no caída. Con estas características se podrá definir qué 

personas se encuentran tumbadas cuando se detecte la clase sofá/cama en la 

imagen. Aquellas personas que se encuentren predominantemente en la parte 

inferior del sofá/cama se clasificarán como caídas, (correspondientes, p. ej. a 

caídas justo a los pies del sofá/cama). También se rechazan detecciones de la 

clase “tumbado” en aquellas ocasiones en las que la persona se encuentre 

predominantemente fuera del área de detección del sofá/cama. 

 

Un ejemplo gráfico de qué detecciones se clasificarán como “tumbado” y cuáles 

no, sería el siguiente (figura 34): 

 

 

Figura 34: Distinción clase "tumbada" de clase "caída". ( Fuente: Elaboración propia ) 

 

• En azul: Clase sofá o cama. 

• En verde: Clase persona “tumbada”. 

• En rojo: Clase persona “caída”. 

 

 

A continuación, se muestra un listado completo sobre las características 

concretas extraídas de cada imagen (tabla 8). 
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Altura del bounding box de la clase persona 

Anchura del bounding box de la clase persona 

Altura del bounding box de la clase sofá/cama 

Anchura del bounding box de la clase sofá/cama 

Relación altura/anchura del bounding box de la persona 

Área de la persona 

Intersección persona con sofá/cama 

Área de la mitad superior del sofá/cama 

Área de la mitad inferior del sofá/cama 

Intersección persona con mitad superior sofá/cama 

Intersección persona con mitad inferior sofá/cama 

Ocupación de la persona en el sofá/cama 

Ocupación de la persona en la mitad superior sofá/cama 

Ocupación de la persona en la mitad inferior sofá/cama 

Tabla 8: Características extraídas por YOLO. 

 

Usar estas características proporciona varias ventajas: 

• Simples y robustas: El ancho y alto del bounding box son datos directos y 

confiables proporcionados por YOLO. Son fáciles de calcular y tienen un 

impacto directo en la clasificación de posturas. 

• Interpretabilidad: La relación altura/anchura es intuitiva y permite tomar 

decisiones lógicas para clasificar las posturas. 

• Eficiencia computacional: Los cálculos son rápidos, lo que es ideal para 

aplicaciones en tiempo real o con bajos recursos. 

 

YOLO será útil también para detectar la presencia o no de persona en la 

imagen, pues si no hay evidencias de bounding box de la clase persona, esta 

no estará presente en la imagen o, si lo está, no es de una forma evidente. 

 

 

4.3.2.4. Almacenamiento de características en fichero de texto. 

 

El almacenamiento de las características extraídas es un paso importante para 

garantizar que puedan ser utilizadas posteriormente en los procesos de 

entrenamiento del modelo. Para este propósito, se desarrolla un programa en 

Python que automatiza el proceso de extracción y registro de las características. 

(“características YOLO a txt.py y características MediaPipe a txt.py”). 
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El siguiente diagrama muestra resumida la estructura básica del programa de 

almacenamiento de características (figura 35): 

 

 

Figura 35: Diagrama de flujo del programa "características YOLO a txt.py y características MediaPipe a 
txt.py". ( Fuente: Elaboración propia ) 

 

Se recorrerán las distintas carpetas seleccionadas, según se quiera analizar y 

extraer características de las imágenes, en el caso “tumbado”, “caída”, “sentado” 

o “de pie”. 

• Para cada imagen, se aplica el algoritmo de MediaPipe o YOLO para 

detectar las posiciones de los puntos clave y de los bounding boxes. 

• Se realizan los cálculos necesarios. 

• Se extraen las características relevantes (distancias, ángulos, relaciones 

espaciales, alto, ancho, etc.). 

• Los valores calculados se escriben en un fichero de texto. 

• Cada línea del fichero corresponde a una imagen y cada columna a una 

característica extraída. 

Inicio

Cargar bibliotecas y 
definir variables

Abrir archivo de salida y 
escribir cabeceras

Inicializar Mediapipe o 
YOLO

Recorrer carpeta orgien

Extraer caracterisiticas 
de la imagen 

Guardar 
caracterisiticas en el txt

Repetir hasta procesar 
todas las imagenes

Fin
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Estos pasos se realizan para cada carpeta de imágenes, consiguiendo así tener 

las características relevantes de cada imagen para las distintas poses. Será muy 

útil para poder realizar una distinción robusta entre posturas, analizando los 

resultados obtenidos. 

El fichero txt obtenido (figura 36) para cada una de las carpetas y para cada uno 

de los métodos, contiene el nombre de las características extraídas (ángulos, 

distancias, relaciones…) y sus valores. Estos valores se recogen con todos los 

decimales disponibles para asegurar que se capturan todos los detalles posibles 

para el análisis y no se pierde información valiosa, especialmente cuando se 

trata de diferencias sutiles entre posiciones o movimientos.  

 

 

Figura 36: Fichero de texto con características extraídas de la detección de MediaPipe y YOLO. ( Fuente: 
Elaboración propia ) 

  

Estos ficheros de texto muestran los datos extraídos, pero para poder realizar un 

buen análisis con los datos es necesario organizarlos en forma de tabla. En este 

caso se ha utilizado Excel al ser una herramienta conocida y porque facilita la 

visualización, análisis y manipulación de la información de manera clara y 

ordenada. También es importante la compatibilidad que ofrece Excel con el 

análisis estadístico, pues será determinante para el desarrollo de umbrales y 

selección de características. 
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4.3.2.5. Análisis de datos. 

 

Primero se introducen los datos en una tabla Excel desde los ficheros de texto 

que contienen las características extraídas. Se organizan en filas para cada 

imagen y en columnas para cada característica, añadiendo una columna más en 

la que se etiquetarán los datos de la siguiente manera, según provengan de la 

carpeta de pie (0), sentado (1), caída (2), desconocido (3) y tumbado (4). 

Ordenar los datos en la tabla Excel es realmente útil, pues, se puede acceder al 

dato o al conjunto de datos deseados de manera rápida y eficaz, incluso si es 

necesario reemplazar algún conjunto de datos por alguna modificación en el 

método de detección se puede hacer sin demasiado problema gracias a este 

orden. 

Una pequeña representación de cómo quedaría organizada la tabla Excel con 

los datos de entrenamiento sería la siguiente (tabla 9): 

 

Imágenes 
 

Característica 1 … Característica N Etiqueta 

Imagen_1_tumbado …(valores) … …(valores) 4 

Imagen_n_tumbado …(valores) … …(valores) 4 

Imagen_1_desconocido …(valores) … …(valores) 3 

Imagen_n_desconocido …(valores) … …(valores) 3 

Imagen_1_caída …(valores) … …(valores) 2 

Imagen_n_caída …(valores) … …(valores) 2 

Imagen_1_sentado …(valores) … …(valores) 1 

Imagen_n_sentado …(valores) … …(valores) 1 

Imagen_1_depie …(valores) … …(valores) 0 

Imagen_n_depie …(valores) … …(valores) 0 

Tabla 9: Representación de la tabla de características extraídas. 

 

Con los datos ya organizados se realiza cálculos para obtener información 

estadística que facilite la comprensión del comportamiento de las características 

para cada clase. En este caso, se ha optado por extraer para cada conjunto de 

imágenes separado por clases, calcular los siguientes valores: 
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• Promedio: pues, ayudará a identificar el comportamiento “típico” de la 

característica para cada clase y reforzar la diferenciación entre estas. 

• Valor máximo: identifica los casos extremos o límites superiores de cada 

característica para cada clase. 

• Valor mínimo: identifica los límites inferiores de cada característica para 

cada clase. 

• Desviación: da una idea sobre lo dispersos que son los datos en una 

clase, identificando si son muy variados o no. 

• Media + desviación: identifica el límite superior típico de los datos y 

puede ayudar a establecer un umbral máximo de referencia para cada 

característica. 

• Media – desviación: identifica el límite inferior típico de los datos y puede 

ayudar a establecer un umbral mínimo de referencia para cada 

característica. 

 

Con esta extracción de métricas para cada característica se puede llevar a cabo 

una diferenciación entre clases.  

Se comparan los promedios, máximos y mínimos para ver qué características 

son significativamente diferentes entre clases y se usan los valores de media ± 

desviación para identificar rangos típicos de cada clase y establecer unos 

umbrales iniciales. 

Si una clase tiene una desviación estándar alta, los datos son más variados, lo 

que podría indicar que esa clase es más difícil de definir con ciertos umbrales. 

Las clases con desviaciones estándar bajas son más consistentes, lo que puede 

hacerlas más fáciles de identificar. Por otro lado, los valores que superan la 

media + desviación o caen por debajo de la media - desviación pueden 

considerarse fuera de rango, datos extraños u outliners por lo que es necesario 

analizarlos para ver si tienen sentido, son casos extremos o son errores en las 

detecciones. 

Analizando estas métricas y fijándose bien en si una característica tiene un rango 

de valores no superpuesto entre clases (por ejemplo, alturas máximas en "de 

pie" son mayores que en "tumbado"), se puede usar esta métrica para diseñar 

unas reglas de clasificación inicial. Esto junto a identificar los patrones en los 

datos para cada clase incluso visualizando mediante gráficos para destacar las 

características más representativas de cada clase, ayudará a conseguir una 

clasificación inicial mediante ciertos umbrales obtenidos del análisis. 

 

Un ejemplo de cómo se trabaja analizando las métricas obtenidas serían los 

siguientes casos: 
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1. Media de la distancia desde el hombro a la rodilla detectada por 

MediaPipe medida en el eje vertical para cada clase (tabla 10 y figura 37). 

 

Clase Media distancia hombro – rodilla en y 

Tumbado 0,03781 

Caída 0,00652 

Sentado 0,18219 

De pie 0,34284 
 

Tabla 10: Media de la distancia hombro - rodilla en el eje y por clases. 

 

Figura 37: Gráfico de la media de la distancia hombro - rodilla en el eje y por clases. ( Fuente: Elaboración 
propia ) 

 

Analizando un poco esta métrica, se ve que valores altos por encima de 0,05 son 

muy representativos de las clases “sentado” y “de pie”, y valores inferiores se 

quedan más reservados para las poses tumbadas y caídas. Al igual, se aprecia 

una diferencia entre las poses “sentado” y “de pie”, donde la media de la clase 

“sentado” (0,18) es inferior a la de la clase “de pie” (0,34), aproximadamente la 

mitad. 
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2. Valores máximos y mínimos de la resta del alto menos el ancho del 

bounding box de la persona detectada por YOLO para cada clase (tabla 

11 y figura 38). 

 

Clase Máximo alto_bb - ancho_bb Mínimo alto_bb - ancho_bb 

Tumbado 11 -296 

Caída 141 -493 

Sentado 227 19 

De pie 334 40 
 

Tabla 11: Máximos y mínimos del alto menos ancho del bounding box de la persona detectada por clase. 

 

 

Figura 38: Gráfico de máximos y mínimos del alto menos ancho del bounding box de la persona por clase. 
( Fuente: Elaboración propia ) 

 

En este caso se aprecia una notable diferencia entre las clases, pues son muy 

representativos los valores negativos para las poses “tumbado” y “caída”, 

dejando reservados casi exclusivamente los valores positivos para las clases 

“sentado” y “de pie”. 

 

Este paso se realiza para varias métricas de características de cada pose, pues, 

resulta interesante conocer desde que valores pueden o no partir los umbrales 

de distinción para la clasificación final. 
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4.3.2.6. Entrenamiento del SVM. 

 

Con las características extraídas de todas las imágenes de entrenamiento y 

ordenadas en una tabla Excel se plantea la opción de entrar un algoritmo SVM 

que sea capaz de buscar el hiperplano que separa los puntos de datos de las 

diferentes clases de manera que el margen entre las clases sea el menor posible. 

Esta clasificación mediante el SVM ayudará a elegir mejores umbrales de 

decisión para la clasificación “manual” y será otro método de análisis que 

devolverá un resultado a mayores. Así se podrá contar con dos resultados, el 

derivado de la clasificación puramente empírica y el del método automático del 

modelo entrenado.  

Lo primero es organizar el archivo Excel de manera que pueda ser convertido en 

un archivo CSV (command separated values) el cual pueda leer el SVM. El CSV 

es un formato de archivos utilizado para almacenar datos en forma de texto 

plano, donde cada valor está separado por una coma. 

Cada fila dentro del archivo representa una entrada de datos nueva y cada 

columna separada por comas u otros delimitadores como punto y coma, 

representan una característica o un valor nuevo. Generalmente, la primera fila 

contiene los nombres de las columnas (características) y la última de las 

columnas contiene la etiqueta del tipo de dato, en este caso la etiqueta 4,3,2,1,0 

correspondiente a las poses “tumbado”, “desconocido”, “caída”, “sentado” y “de 

pie”, respectivamente. 

Una vez se tiene el archivo ordenado de manera que cada columna sea una 

característica, cada fila una nueva imagen y la última columna contenga la 

etiqueta de la clase correspondiente, se puede pasar a entrenar el modelo SVM 

con los datos extraídos por MediaPipe y YOLO. 

Para entrenar y crear el SVM es necesario realizar un código (“SVM con 

datos.py”) en el que se pueda pasar el archivo con los datos de entreno y 

configurar la división entre conjuntos de entrenamiento y prueba. 

Para cada SVM creado será necesario importar las librerías necesarias, leer el 

archivo CSV y cargarlo en un “dataframe”. Este dataframe es una tabla de datos 

bidimensional en la que cada fila representa, en este caso, una imagen y cada 

columna representa una característica. Se realiza un preprocesamiento del 

archivo de datos y se separan las características y etiquetas, pues el SVM 

necesita diferenciar entre los datos de entrada y la respuesta esperada. 

 

 

• X: Se obtienen todas las columnas del dataframe,  excepto la última, que 

se usan como características (entrada para el modelo). 
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• y: Se obtiene solo la última columna del dataframe, que se utiliza como 

etiquetas (salida para el modelo). 

• class_names: Se almacenan los nombres únicos de las clases de la última 

columna para usarlos más adelante en la matriz de confusión. 

 

Se dividen los datos en conjuntos de entrenamiento y prueba, pues el objetivo 

es poder evaluar de manera objetiva el rendimiento del modelo para no entrenar 

con todos los datos y luego evaluar con los mismos, pues se estaría cometiendo 

un error de sobreajuste. Así, el conjunto de entrenamiento se utiliza para ajustar 

los parámetros del modelo y el conjunto de prueba se utiliza para evaluar el 

modelo una vez que ha sido entrenado. Con esta separación se puede medir la 

capacidad del modelo para generalizar, pues un buen rendimiento del modelo 

sobre el conjunto de prueba refleja que ha aprendido de manera efectiva las 

relaciones subyacentes en los datos y posee una buena capacidad de 

generalización. 

La división de los datos se consigue de la siguiente forma: 

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, 

random_state=42) 

En este caso, el tamaño seleccionado para el conjunto de test es del 30% de los 

datos totales. El uso del parámetro random_state nos ayuda a replicar siempre 

el mismo ensayo controlando la aleatoriedad. 

 

Se crea un SVM con un tipo de kernel en este caso “lineal”. El kernel, es la 

función matemática que transforma los datos para que el SVM pueda clasificarlos 

y el tipo “lineal” pues los datos son linealmente separables. 

Una vez obtenido, el modelo se evalúa y se guarda, obteniendo las predicciones, 

midiendo la precisión del modelo y mostrando un reporte detallado con las 

siguientes métricas: 

• Precisión: muestra qué porcentaje de las predicciones de una clase son 

correctas.  

• Recall: muestra qué porcentaje de los ejemplos reales de una clase son 

correctamente clasificados. 

• F1-score: muestra el promedio armónico de la precisión y el recall, es útil, 

pues, los datos no están balanceados. 

• Support: muestra el número de ejemplos reales de cada clase. 
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Como en el modelo final se pueden dar casos en los que MediaPipe detecte 

landmarks y YOLO no encuentre la clase persona en la imagen o viceversa, se 

entrenan tres SVM, cada uno con un conjunto de datos que contiene distintas 

características: 

• SVM global: contiene todas las características, las extraídas por 

MediaPipe y por YOLO, utilizado para cuando en la imagen a analizar 

ambos modelos sean capaces de detectar. 

 

• SVM MediaPipe: contiene únicamente las características extraídas de los 

landmarks de MediaPipe, pues será útil para el caso en el que en el 

modelo final YOLO no sea capaz de detectar en la imagen la clase 

persona y MediaPipe si sea capaz de detectar los puntos clave. 

 

• SVM YOLO: caso contrario al anterior, contiene únicamente las 

características extraídas del bounding box de YOLO para cuando este sea 

capaz de detectar persona y MediaPipe no. 

 

Con estos tres SVM se eliminan falsas predicciones en el caso de que alguno de 

los métodos no aporte los datos correspondientes para la clasificación. 

Para cada SVM se obtiene un gráfico denominado matriz de confusión. Es una 

herramienta fundamental en el análisis de desempeño de los modelos de 

clasificación, pues proporciona una visión detallada de las predicciones 

realizadas por el modelo en comparación con las clases verdaderas o reales. 

Esta matriz es particularmente útil cuando el modelo tiene múltiples clases como 

este, ya que muestra no solo cuántas predicciones fueron correctas, sino 

también en qué clases se cometieron errores. 

La matriz de confusión es una tabla que compara las predicciones del modelo 

contra las etiquetas reales (verdaderas) de los datos. En una matriz de confusión, 

cada fila representa las etiquetas reales y cada columna representa las etiquetas 

predichas por el modelo. 

A continuación, en la tabla 12, se muestra un ejemplo de matriz de confusión 

básica: 

 

 Predicción positiva Predicción negativa 

Real positiva TP FN 

Real negativa FP TN 
 

Tabla 12: Estructura básica de una matriz de confusión. 

 

•  (TP): Casos en los que el modelo predijo correctamente la clase positiva 

(realmente positivo y predicho positivo). 
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•  (TN): Casos en los que el modelo predijo correctamente la clase negativa 

(realmente negativo y predicho negativo). 

•  (FP): Casos en los que el modelo predijo incorrectamente la clase positiva 

(realmente negativo pero predicho positivo). 

•  (FN): Casos en los que el modelo predijo incorrectamente la clase 

negativa (realmente positivo pero predicho negativo). 

 

La matriz de confusión obtenida para cada SVM nos da una idea sobre lo bien 

que generaliza y lo bien que realiza la clasificación autónoma.  

 

Del entrenamiento y creación del SVM se ha diseñado un procedimiento que 

facilita mucho elegir qué características son relevantes para la clasificación 

“manual” y qué umbrales se deberían elegir para cada una de estas 

características en función de la clase. Para ello, se han creado una serie de 

gráficos que se obtienen graficando para cada característica (columna de X) un 

histograma que muestra cómo se distribuyen los valores de esa característica 

para cada clase (y). Esto, como se ha dicho anteriormente, ayuda a entender las 

características de los datos y cómo se distribuyen entre las diferentes clases de 

manera visual y clara. 

La figura 39 muestra un ejemplo del histograma diseñado a partir de una 

característica para todas las clases: 

 

Figura 39: Distribución de altura de la cabeza por clase extraída del SVM. ( Fuente: Elaboración propia ) 

 

El eje x muestra los valores que alcanza la variable y en el eje y la frecuencia 

con la que se alcanza cada valor. 
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4.3.2.7. Selección de características relevantes. 

 

Para la clasificación que se quiere realizar, es necesario filtrar qué características 

de todas las disponibles por MediaPipe y YOLO son útiles y cuáles no.  

Para ello se trabaja juntamente, por un lado, con las métricas extraídas de la 

tabla Excel, las cuales son más útiles para fijar un valor más concreto de los 

umbrales de clasificación y, por otro lado, con las gráficas extraídas del entreno 

del SVM que resultan útiles para de manera visual y rápida decidir qué 

características son relevantes para cada clase y como dependiendo de la clase 

la característica toma unos valores u otros.  

 

Hay tres tipos predominantes de distribuciones en las características 

representadas en los gráficos: 

1. En las que se diferencian claramente dos o más clases directamente. 

2. En las que una de las clases se diferencia del resto, pero no de manera 

directa o clara.  

3. En las que no se diferencia de manera representativa la característica 

para ninguna de las clases. 

A continuación, se detalla con unos ejemplos la metodología seguida para todas 

las características, seleccionando aquellas que resultan interesantes y 

descartando aquellas que no lo son. 

 

• Tipo 1: Diferencia evidente y clara entre dos o más clases. 

 

Figura 40: Distribución característica tipo 1. ( Fuente: Elaboración propia ) 
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En el gráfico de esta característica (figura 40) se aprecia de manera clara una 

diferencia evidente entre las clases 0, 1 y 2, las tres poses principales y 

necesarias a la hora de clasificar, pues es visible que prácticamente donde 

acaban los valores de una de ellas empieza otra.  

Analizando más en profundidad los valores de las métricas (tabla 13) para elegir 

de manera correcta los umbrales que se seleccionarán en la clasificación final, 

se aprecia que las diferencias evidentes entre estas quedan reflejadas en el 

gráfico, separando con cierta precisión las tres clases. 

 

 DE PIE SENTADO CAÍDA 

Media 0,35 0,57 2,8 

Máximo 0,66 0,95 5,54 

Mínimo 0,18 0,32 0,36 

Desviación 0,07 0,14 1,09 
 

Tabla 13: Métricas de una característica tipo 1. 

Se tomarán así pues, valores, por ejemplo superiores a 1 para clasificar la pose 

caída, valores inferiores a 0,5 para clasificar la pose “de pie”, y valores 

intermedios para clasificar la pose “sentado”. 

 

 

• Tipo 2: Diferencia no evidente de alguna de las clases. 

 

Figura 41: Distribución característica tipo 2. ( Fuente: Elaboración propia ) 

 

En esta ocasión, en el histograma (figura 41), se aprecia que esta característica 

toma valores muy variados en todas las clases, pero se ve claramente que la 

clase 0 (de pie) no toma valores inferiores a 140º-145º en ninguno de los casos 
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(frecuencia de casos en el eje y), agrupándose los casos más comunes incluso 

alrededor de valores todavía más altos cercanos a la extensión completa (180º). 

Esta característica, por lo tanto, se elegiría como representativa de la clase 0 

para valores superiores a 140-145. 

Para afinar más el valor que posteriormente se utilizará como umbral, hay que 

fijarse en las métricas extraídas para esta característica (tabla 14), por ejemplo, 

en los valores mínimos y máximos, en la media y en la dispersión para la clase 

0 (de pie) pues es de la que hemos determinado que es representativa.  

 

DE PIE 

Valor máximo 179,97 

Valor mínimo 147,86 

Media 172,52 

Desviación 7,45 
 

Tabla 14: Métricas de una característica tipo 2. 

 

Estas métricas muestran con más precisión que se estaba en lo cierto al 

determinar un valor de umbral cercano a 140º-145º y que la dispersión de esta 

característica tiene un valor muy pequeño, por lo que no se va a salir 

“normalmente” de estos valores típicos. 

 

 

• Tipo 3: No hay suficiente evidencia representativa en ninguna de las 

clases. 

 

Figura 42: Distribución característica tipo 3. ( Fuente: Elaboración propia ) 
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Por último, analizando el gráfico (figura 42), se ve claramente que esta 

característica no es representativa de ninguna clase, los valores están muy 

superpuestos y alcanzando valores muy similares para todas ellas.  

Este sería un ejemplo de descarte de característica, pues, no es útil para la 

clasificación final. Aun descartándola de primera vista, se analizan las métricas 

extraídas para esta característica (tabla 15). 

 

 Media Máximo Mínimo Desviación 

DE PIE 0,021 0,124 0,107 0,036 

SENTADO 0,051 0,169 -0,028 0,039 

CAÍDA 0,003 0,110 -0,181 0,053 
 

Tabla 15: Métricas de una característica tipo 3. 

 

Se aprecia claramente ya con el análisis final de las métricas que esta 

característica no es suficientemente representativa de ninguna de las clases, 

pues ninguna de ellas destaca lo suficiente por encima de las demás, como ya 

se veía en el gráfico. 

 

Esta metodología se sigue para todas las características extraídas, 

seleccionando aquellas interesantes y representativas y analizando las métricas 

para fijar unos valores de umbral.  La unión de todas las características 

seleccionadas (tabla 16) de la manera correcta fijará las sentencias de decisión 

y clasificación de poses en el código final.  

 

Ángulo rodillas x>140: de pie 

Ángulo caderas  x>140: de pie 

Distancia vertical hombro-rodillas x<0,1: caída, x<0: caída 

Distancia horizontal hombro-rodillas x<0,1: de pie, x>0,1: caída 

Distancia vertical hombro-caderas x<0,1: caída 

Distancia horizontal hombro-caderas x>0,05: caída 

Distancia vertical cabeza-rodilla x<0,14 

Relación torso-pierna 1<x<2: de pie 

Distancia vertical cadera-tobillos x<0: caída 

Altura de la cabeza x>0,6: caída 

Diferencia alto-ancho del bounding box x<15: caída 

Relación ancho/alto del bounding box  x<0,5: de pie 

Ocupación persona x>0,5  

Ocupación mitad superior del sofá/cama x>(ocupación persona/2): tumbado 

 
Tabla 16: Características y umbrales seleccionados. 
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4.3.3. Arquitectura general del sistema. 

 

Así pues, la estructura final del programa desarrollado se muestra a continuación 

con el diagrama de bloques de la figura 43: 

 

 

Figura 43: Diagrama de bloques del modelo desarrollado. ( Fuente: Elaboración propia ) 

 

El código se ha dividido en diferentes partes que se explicarán a continuación 

con algo más de detalle. 
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Bloque 1: 

• Se importan las librerías necesarias para la correcta ejecución del código. 

• Se crea la función principal a la que se le pasa como argumento la imagen 

a analizar. Esta imagen se lee desde la ubicación del archivo donde se 

encuentra y se verifica si existe. 

• También se cargan los tres modelos de SVM preentrenados. 

 

Bloque 2: 

• Se convierte la imagen a RGB, formato necesario para trabajar con ella 

en MediaPipe. 

• Se inicializa MediaPipe Pose y la detección de landmarks. 

• Si la detección es válida y se encuentran landmarks con la suficiente 

confianza: 

o Se extraen las coordenadas de todos los puntos clave que se 

consideran necesarios. 

o Se realizan los cálculos como ángulos de articulaciones, relaciones 

geométricas y distancias entre diferentes puntos del cuerpo. 

o Se pasan las características extraídas al SVM global y al SVM de 

MediaPipe. 

o Se realiza la predicción del SVM de MediaPipe. 

o Se clasifica la postura y se asigna una etiqueta (“de pie”, “sentado” 

o “caída”) según las reglas y umbrales de decisión propuestos. Esta 

clasificación se guarda en la variable “resultado MediaPipe”.  

• Si no se detectan landmarks se retorna “desconocido”. 

 

Bloque 3: 

• Se inicializa el modelo de YOLO para detectar objetos en la imagen. 

• Si se ha detectado la clase persona en la imagen con la suficiente 

confianza: 

o Se extraen los bounding boxes y se calculan las características 

asociadas a ellos como la altura o la relación alto/ancho… 

o Se analiza la posibilidad de clasificar la pose como “tumbado” 

mediante la intersección y ocupación con la clase sofá/cama. 

o Se pasan las características extraídas al SVM global y al SVM de 

YOLO. 

o Se realiza la predicción del SVM de YOLO. 

o Se clasifica la postura y se le asigna una etiqueta (“de pie”, 

“sentado”, “tumbado” o “caída”) según las reglas y umbrales 

propuestos. Esta clasificación se guarda en la variable “resultado 

YOLO”.  

• Si no se detecta la clase persona con la suficiente confianza, se retorna 

“desconocido”. 
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1 

2 

Bloque 4: 

• Según los resultados obtenidos y siguiendo el sistema de decisión 

diseñado (figura 42) se obtiene un resultado final para la clasificación de 

la postura presente en la imagen. Este resultado solo podrá ser uno de 

entre las 5 clases (“de pie”, “sentado”, “tumbado”, “caída” o 

“desconocido”). 

 

Bloque 5: 

• Se muestran los siguientes resultados: 

o El del método empírico resultante del sistema de decisión entre la 

clasificación realizada en el método basado en las características 

extraídas de los landmarks de MediaPipe y el método basado en 

las características extraídas de los bounding boxes de YOLO. 

o La predicción del SVM, mostrando si se ha realizado por el SVM 

global (ambos métodos han detectado o no persona en la imagen), 

o por el SVM de MediaPipe (YOLO no detecta persona), o por el 

SVM de YOLO (MediaPipe no detecta persona). 

o También se muestran las imágenes con los landmarks y bounding 

boxes dibujados. 

 

La arquitectura general del sistema desarrollado se resume en el siguiente 

pseudocódigo: 

1: Inicio del programa 

2: Librerías necesarias: OpenCV, NumPy, MediaPipe, Sys, Joblib 

 

3: Función analizar pose(imagen): 
4:     Cargar imagen     

5:     Cargar modelos SVM y escaladores para: 

6:         - Modelo general 

7:         - Modelo MediaPipe 
8:         - Modelo YOLO 

 

9:     Función método MediaPipe(imagen):         

10:         Inicializar MediaPipe Pose 
11:         Detectar poses 

12:         Si se detectan landmarks: 
13:             Verificar visibilidad 

14:             Función calculo ángulos (a, b, c): 

15:                 Calcular ángulo entre tres puntos 

16:             Obtener coordenadas de: 
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3 

17:                 - Caderas, rodillas, tobillos 

18:                 - Hombros, cabeza, muñecas 

19:             Calcular características: 

20:                 - Ángulos de rodilla y cadera 

21:                 - Distancias relativas entre puntos clave 
22:                 - Relaciones de torso y piernas 

23:             Normalizar características con el escalador 

24:             Predecir postura con el SVM MediaPipe 

25:             Clasificar postura según umbrales de: 

26:                 - Ángulos de cadera y rodilla 

27:                 - Proporciones del torso y piernas 

28:                 - Altura de la cabeza respecto a las rodillas 

29:             Dibujar landmarks sobre la imagen 

30:             Retornar:  

31:                 - Clasificación MediaPipe 

32:                 - Imagen con landmarks 

33:                 - Características extraídas 

34:                 - Predicción SVM MediaPipe 

35:         Si no se detectan landmarks: 

36:             Retornar: "desconocido" con valores por defecto 

 

 
37:     Función método yolo(imagen): 

38:         Cargar modelo YOLO 

39:         Obtener etiquetas de clases         

40:        Procesar imagen para detectar objetos 

41:         Inicializar listas necesarias 

42:         Recorrer detecciones: 

43:            - Si detección es persona, almacenar sus coordenadas 
44:            - Si detección es sofá/cama, almacenar sus coordenadas 

45:         Supresión de no máximos (NMS)  

46:         Si se detecta una persona: 

47:             Calcular características: 

48:                 - Altura menos ancho de la caja (umbral) 

49:                 - Relación ancho/altura (ratio) 
50:                 - Posición relativa respecto a muebles detectados 

51:             Si hay un sofá/cama detectado: 

52:                 Calcular intersección con la persona 

53:                 Determinar si la persona está tumbada 

54:             Normalizar características con el escalador 

55:             Predecir postura con el SVM YOLO 

 

2 
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3 

4 

5 

56:             Clasificar postura en: 

57:                 - "Tumbado" si la ocupación del sofá/cama es alta 

58:                 - "Caída" si el umbral es bajo 
59:                 - "Sentado" si la relación ancho/altura es alta 

60:             Dibujar boundingboxes sobre la imagen 

61:             Retornar:  

62:                 - Clasificación YOLO 

63:                 - Imagen con detecciones 
64:                 - Características extraídas 

65:                 - Predicción SVM YOLO 

 

66:      Sistema de decisión:   

67:      1. Si ambos métodos clasifican igual → Resultado final   

68:   2. Si hay conflicto → Priorizar el resultado del método más  
    fiable   

 

69:      Resultados finales:   

70:   - Mostrar imagen con detecciones   

71:    - Imprimir resultados finales de la clasificación: 

72:               - SVM que ha clasificado la imagen y su predicción 

73:               - Resultado de la clasificación final y  
                    porcentaje de fiabilidad 

74: Fin del programa  
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5. Resultados obtenidos. 
 

Como se ha citado con anterioridad, el modelo contará de 2 métodos de 

clasificación diferentes:  

1. Un método utilizando MediaPipe Pose y YOLO y las características 

calculadas a través de los landmarks o puntos clave extraídos del cuerpo 

de la persona detectada y de las características extraídas de los bounding 

boxes detectados. 

 

2. Otro método de clasificación automática realizado por el SVM entrenado 

con todas las características extraídas por MediaPipe y YOLO. Esta 

clasificación, como ya se ha comentado, contará de 3 SVM, uno 

entrenado con todas las características extraídas por MediaPipe y YOLO, 

otro entrenado solo con las características extraídas por MediaPipe y un 

último entrenado solo con las características extraídas por YOLO. Esto se 

hace para poder evitar falsos resultados cuando uno de los métodos no 

sea capaz de detectar persona en el caso en el que sí la haya. 

Cada método se ha trabajado por separado hasta conseguir una clasificación 

robusta para cada uno de ellos y poder implementarlos juntos en el modelo final. 

 

Para todas las pruebas se ha trabajado siempre con el mismo conjunto de 

imágenes. Este conjunto de prueba se ha construido a partir de las imágenes 

seleccionadas del dataset FPDs y consta de las siguientes imágenes: 

 

DE PIE (0) SENTADO (1) CAÍDA (2) DESCONOCIDO (3) TUMBADO (4) 

109 65 164 63 22 

Normales (0,1,4) No normales (2) 

196 164 
 

Tabla 17: Distribución del conjunto de prueba. Dataset FPDs. 

 

No es un conjunto balanceado debido a la selección realizada en el dataset y a 

la prioridad de la clase crítica, en este caso la clase “caída”. Se aprecia un mejor 

balanceo en la unión de las clases “de pie”, “sentado” y “tumbado”, (“normales”) 

y la clase crítica “caída”, (“no normal”). Las posturas más comunes en el día a 

día se identifican como posturas “normales” pues no suponen situaciones de 

riesgo y la clase “caída” se identifica como “no normal”, pues corresponde a una 

clase anómala que no tiene que darse. 
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Luego se añade una cantidad de imágenes en las que no hay personas 

presentes para ver la eficacia del sistema con respecto a falsos positivos en la 

detección. 

Para el análisis de los resultados se va a seguir una metodología parecida a la 

que se utiliza en el artículo del cual se ha extraído el dataset FPDs. 

o Hay persona 

▪ Se detecta persona (TP_d) 

• Se clasifica bien (TP_c) 

• Se clasifica mal (FP_c) 

▪ No se detecta persona (FN_d) 

 

o No hay persona 

▪ No se detecta persona (TN_d) 

▪ Se detecta persona (FP_d) 

 

• TP_d: verdadero positivo en la fase de detección de persona. 

• FN_d: falso negativo en la fase de detección de persona. 

• TN_d: verdadero negativo en la fase de detección de persona. 

• FP_d: falso positivo en la fase de detección de persona. 

• TP_c: verdadero positivo en la fase de clasificación de pose. 

• FP_c: falso positivo en la clase de clasificación de pose. 

 

Es interesante separar el análisis de los resultados en la parte de detección y la 

parte de clasificación, pues que el sistema detecte o no la presencia de persona 

en la imagen no depende directamente del trabajo realizado en este proyecto si 

no depende del funcionamiento de los métodos MediaPipe y YOLO 

preentrenados, en cambio, el acierto o fallo en la clasificación de la pose sí que 

depende plenamente del funcionamiento del sistema desarrollado en este 

trabajo. 

 

 

5.1. Clasificación con MediaPipe y YOLO. 

 

Se trabaja primero con los métodos de clasificación por separado. Cada método 

se evaluará con el conjunto de pruebas seleccionado, obteniendo unos 

resultados que serán analizados y comparados para elegir el mejor sistema de 

decisión para la clasificación final y unión de ambos métodos. 
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5.1.1. Resultados de la clasificación usando 

MediaPipe. 

 

El conjunto de prueba se evalúa con la clasificación realiza en MediaPipe, acorde 

a las características y umbrales seleccionados para este método de la siguiente 

manera: 

 

1: if 140<(angle_knee) and 140<(angle_hip) and 
1<(rel_torso_pierna)<2 and 0.1>(hombro_rodilla_x): 

2:  mensaje="de pie" 

3: elif 0.1>(hombro_rodilla_y) and (hombro_rodilla_x)>0.1 and 
(hombro_cadera_y)<0.1 and (hombro_cadera_x)>0.05 and 
cabeza_rodilla_y<0.14 and altura_cabeza>0.6 : 

4:  mensaje="caida" 

5: else: 

6:  if (hombro_cadera)<0.1: 

7:   mensaje="caida" 

8:  else: 

9:   if(hombro_rodilla_y<0) or (cadera_tobillo_y<0): 

10:    mensaje="caida" 

11:   else: 

12:    mensaje="sentado" 

 

Se hace un primer filtrado para saber si la pose cumple con los umbrales 

seleccionados para la clase “de pie” y “caída”, las más genéricas y fáciles de 

distinguir. Por último, si no se cumple ninguno de estos requisitos anteriores, se 

clasifica la pose como “sentado”. 

 

Tras pasar por esta clasificación todas las imágenes del conjunto de prueba y 

organizarlos en una tabla Excel, se obtienen los siguientes resultados para la 

clasificación con MediaPipe (figura 44). 
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Estos resultados, como se ha citado anteriormente en la metodología a seguir, 

se separan entre la parte de detección (tabla 18) del modelo y la parte de 

clasificación (tabla 19), los cuales desglosados se muestran a continuación: 

 

• Detección:  

 

Detección de MediaPipe 

TP_d 72% 

FN_d 28% 

TN_d 100% 

FP_d 0% 
 

Tabla 18: Resultados detección MediaPipe. 

 

• Clasificación: 

 

MEDIAPIPE De pie Sentado Caída 

De pie 98,92% 0,00% 1,08% 

Sentado 5,77% 90,38% 3,85% 

Caída 0,00% 7,14% 92,86% 
 

Tabla 19: Matriz de confusión de clasificación de MediaPipe. 

Figura 44: Matriz de confusión normalizada. Método Mediapipe. ( Fuente: Elaboración propia ) 
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El análisis en profundidad de los resultados obtenidos se muestra en el apartado 

comparativo entre los resultados de ambos métodos (MediaPipe y YOLO). 

En esta prueba no se ha evaluado el subconjunto correspondiente a la clase 

“tumbado” pues esta clasificación se realizará únicamente a través de los 

métodos que ofrece YOLO. 

 

 

5.1.2. Resultados de la clasificación usando YOLO. 

 

El conjunto de prueba se evalúa con la clasificación realizada en MediaPipe, 

acorde a las características y umbrales seleccionados para este método de la 

siguiente manera: 

 

1:  if sofa_cama: 

2:   area_persona = alto_bb*ancho_bb 

3:   interseccion = calcular_interseccion([x, y, ancho_bb, 
   alto_bb], [x2, y2, ancho_bb2, alto_bb2]) 

4:   y_mitad_sofa = int(y2 + alto_bb2 / 2) 

5:   mitad_superior_sofa = [x2, y2, ancho_bb2,  
     y_mitad_sofa - y2] 

6:   mitad_inferior_sofa = [x2, y_mitad_sofa, x2+ ancho_bb2,  
     y2 + alto_bb2] 

7:  interseccion50s = calcular_interseccion([x, y, ancho_bb,  
alto_bb], mitad_superior_sofa) 

8:  interseccion50i = calcular_interseccion([x, y, ancho_bb, 
alto_bb], mitad_inferior_sofa) 

9:  ocupacion_persona = interseccion/area_persona 

10:  ocupacion50s=interseccion50s/area_persona 

11:  ocupacion50i=interseccion50i/area_persona 

12:  if ocupacion_persona > 0.5: 

13:   if ocupacion50s > (ocupacion_persona/2):  

14:    tumbado =True 

15:   else: 

16:    tumbado=False 
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17: if umbral < 15: 

18:  if tumbado: 

19:   mensaje ="tumbado" 

20:  else: 

21:   mensaje="caida" 

22: else: 

23:  if ratio > 0.5:      

24:   mensaje="sentado" 

25:  else: 

26:   mensaje="de pie" 

 

En esta ocasión se empieza por determinar si existe la clase “sofá” o “cama” en 

la imagen y a continuación se calculan los parámetros necesarios para 

posteriormente realizar la clasificación en base a la posibilidad de la existencia 

de la clase “tumbado”. Si esta es posible que exista, las poses que se detectarían 

como “caída” se clasificarán como “tumbado”, de lo contrario se distingue 

únicamente “caída”, “de pie” y “sentado”. 

Tras pasar por esta clasificación todas las imágenes del conjunto de prueba y 

organizarlos en una tabla Excel, se obtienen los siguientes resultados (figura 45) 

para la clasificación con YOLO. 

 

Figura 45: Matriz de confusión normalizada. Método YOLO. ( Fuente: Elaboración propia ) 
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Al igual que para MediaPipe, se separan estos resultados entre detección (tabla 

20) y clasificación (tabla 21). 

 

• Detección:  

 

Detección de YOLO 

TP_d 87% 

FN_d 13% 

TN_d 100% 

FP_d 0% 
 

Tabla 20: Resultados detección YOLO. 

 

• Clasificación: 

 

YOLO De pie Sentado Caída Tumbado 

De pie 94,50% 5,50% 0,00% 0,00% 

Sentado 32,31% 67,69% 0,00% 0,00% 

Caída 0,00% 0,83% 99.17% 0,00% 

Tumbado 0,00% 0,00% 0,00% 99,9% 
 

Tabla 21: Matriz de confusión de clasificación de YOLO. 

 

 

5.1.3. Comparativa de los métodos individuales. 

 

En este apartado se compararán los resultados obtenidos para sendos métodos 

(MediaPipe y YOLO), pues es esencial para conseguir una clasificación robusta 

y lo más eficaz posible. 

 

• Comparativa en la detección. 

 

 MEDIAPIPE YOLO 

TP_d 72% 87% 

FN_d 28% 13% 

TN_d 100% 100% 

FP_d 0% 0% 

Tabla 22: Comparativa resultados clasificación de métodos individuales. 
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Comparando los resultados obtenidos en ambos métodos (tabla 22), se observa 

que YOLO es mucho más eficaz a la hora de realizar la detección de persona 

cuando sí que la hay, lo que se ha clasificado como TP_d, más concretamente, 

una mejora del 15% respecto a la detección de MediaPipe. Con respecto a los 

falsos positivos en la detección cuando no hay persona, ambos métodos se 

comportan siempre de manera muy robusta, obteniendo un 100% de acierto. 

Para visualizar mejor la diferencia en la detección, cuando sí que hay persona 

entre los dos métodos, se puede observar el gráfico inferior (figura 46): 

 

Figura 46: Gráfico comparativo clasificación de métodos individuales. ( Fuente: Elaboración propia ) 

Tras observar los resultados en la detección, se elige como prioritaria la 

detección mediante YOLO. 

 

• Comparativa caída. 

Se pasará a realizar una comparativa en la parte de clasificación para ambos 

métodos, separándolos por poses. Se empieza por la clase crítica, la pose 

“caída” (tabla 23). 

 

 De pie Sentado Caída Tumbado 

MediaPipe 0,00% 7,14% 92,86% -- 

YOLO 0,00% 0,83% 99.17% 0,00% 

Tabla 23: Comparativa en la clasificación de pose caída de métodos individuales. 

Ambos métodos muestran un acierto superior al del 90%, lo que es muy positivo. 

Aun así, se aprecia cómo YOLO se acerca mucho más al 100% de eficacia. Por 

lo tanto, se priorizará la clasificación de esta pose mediante este método. Para 

visualizar mejor la diferencia entre ambos métodos, se observa el gráfico inferior 

(figura 47). 

MediaPipe

1 2

YOLO

1 2
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Figura 47: Gráfico comparativo de clasificación de pose caída de métodos individuales. ( Fuente: 
Elaboración propia ) 

 

• Comparativa resto poses. 

Se pasa a comparar los resultados obtenidos para las poses que se podrían 

clasificar como normales. 

 

 De pie Sentado Caída Tumbado 

MediaPipe 98,92% 0,00% 1,08% -- 

YOLO 94,50% 5,50% 0,00% 0,00% 

Tabla 24: Comparativa clasificación de pie de métodos individuales. 

Comenzando por la pose “de pie” (tabla 24), en la que ambos métodos obtienen 

un acierto superior al 90%, se puede considerar que la clasificación es correcta. 

Se aprecia una pequeña diferencia a favor del método MediaPipe, obteniendo 

un 4,42% más de acierto y acercándose a ese 100% de efectividad. Aunque 

ambos métodos demuestran ser robustos, se prioriza la clasificación de 

MediaPipe para esta pose. La diferencia se puede apreciar en el gráfico inferior 

(figura 48). 

 

 

Figura 48: Gráfico comparativo clasificación de pie de métodos individuales. ( Fuente: Elaboración propia ) 

MediaPipe

1 2 3

YOLO

1 2 3 4

MediaPipe

1 2 3 4

YOLO

1 2 3 4
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Por último, se analiza la clasificación en la pose “sentado” para ambos métodos 

(tabla 25): 

 

 De pie Sentado Caída Tumbado 

MediaPipe 5,77% 90,38% 3,85% 5,77% 

YOLO 32,31% 67,69% 0,00% 0,00% 

Tabla 25: Comparativa clasificación pose sentado de métodos individuales. 

En esta ocasión sí que se aprecia una notable diferencia en los resultados 

obtenidos por ambos métodos. MediaPipe ofrece una eficacia del 90%, mientras 

que YOLO cae hasta el 67%. Esto es debido a la hora de cómo ambos métodos 

clasifican las poses. MediaPipe es capaz de extraer información de 

articulaciones, relaciones corporales y demás pudiendo ser mucho más preciso 

a la hora de diferenciar poses, mientras que YOLO solo es capaz de extraer 

información de las medidas del boundingbox, por lo que es muy fácil que se 

confunda con la pose “de pie” como es evidente en los resultados obtenidos. 

Por estas razones se priorizará la respuesta de MediaPipe para esta pose. La 

diferencia entre los resultados de ambos métodos se muestra en el gráfico 

inferior (figura 49). 

 

 

Figura 49: Gráfico comparativo clasificación pose sentado de métodos individuales. ( Fuente: Elaboración 
propia ) 

 

Basándose en los resultados obtenidos en la detección y clasificación individual 

de ambos métodos en las pruebas, se crea un sistema de decisión para el 

modelo. 

 

 

MediaPipe

1 2 3

YOLO

1 2 3 4
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5.1.4. Implementación de un sistema de decisión 

basado en las fortalezas de cada método. 

 

Se desarrolla un sistema de decisión basándose en las fortalezas y resultados 

de cada método. El siguiente esquema (figura 50) lo muestra con claridad: 

 

 

Figura 50: Árbol de decisión para la clasificación final. ( Fuente: Elaboración propia ) 
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5.2. Clasificación del SVM. 

 

Para el método de clasificación automático se entrena un algoritmo SVM que, 

acorde a las características extraídas de cada imagen, clasificará la pose 

presente. 

El primer paso es entrenarla y obtener unas medidas de los resultados que 

ayudarán a saber cómo generaliza el algoritmo entrenado y si ha separado bien 

las clases. 

 

 

5.2.1. Entrenamiento y uso del SVM con datos 

combinados de MediaPipe y YOLO. 

 

Se empieza por el algoritmo SVM entrenado con las características extraídas 

tanto de MediaPipe como de YOLO, se denominará SVM_Global, pues se 

ejecutará cuando ambos métodos sean capaces de extraer información de la 

imagen. 

 

1: nombres_caracteristicas = [“angle_knee_r”, “angle_knee_l”, 

“angle_hip_r”, “angle_hip_l”, “hombro_rodilla_r_y”, 

“hombro_rodilla_l_y”, “hombro_rodilla_r_x”, 

“hombro_rodilla_l_x”, “cadera_rodilla_r_x”, 

“cadera_rodilla_l_x”, “cadera_rodilla_r_y”, 

“cadera_rodilla_l_y”, “hombro_cadera_r_y”, “hombro_cadera_l_y”, 

“hombro_cadera_r_x”, “hombro_cadera_l_x”, “rel_torso_pierna_r”, 

“rel_torso_pierna_l”, “distancia_rodillas”, “cabeza_rodilla_y”, 

“rodilla_mano_l_y”, “rodilla_mano_r_y”, “rodilla_mano_l_x”, 

“rodilla_mano_r_x”, “cadera_tobillo_l_y”, “cadera_tobillo_r_y”,     

“cadera_tobillo_l_x”, “cadera_tobillo_r_x”, “altura_cabeza”, 

“altura_cadera_l”, “altura_cadera_r”, “hombro_cadera”, “umbral”, 

“ratio”, “x_sofa”, “x”, “y_sofa”, “y”, “ancho_sofa”, “ancho_bb”, 

“alto_sofa”, “alto_bb”] 

 

Entrenando y probando el SVM con el conjunto de imágenes de prueba, se 

obtienen siguientes resultados (tabla 26): 

 

Precisión del modelo: 0,9820 
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Reporte de clasificación: 

 precision recall f1-score support 

0 0,97 1,00 0,98 32 

1 1,00 0,95 0,97 19 

2 0,98 1,00 0,99 48 

3 1,00 1,00 1,00 4 

4 1,00 0,88 0,93 8 

Macro avg 0,99 0,96 0,98 111 

Weighted avg 0,98 0,98 0,98 111 

Tabla 26: Reporte de clasificación SVM global. 

 

La precisión es la exactitud general del modelo, es una métrica global del 

modelo, no específica de cada clase y muestra que clasifica correctamente el 

98.20% de las muestras totales. 

Basándose en el análisis de las métricas, se puede deducir que las clases 2 y 3 

son perfectamente clasificadas (recall y f1-score de 1,00). La clase 4 tiene el 

peor desempeño, con un recall de 0,88 (fallando en reconocer un 12% de las 

muestras). 

 

También se genera la matriz de confusión, que muestra cómo se distribuyen las 

predicciones para cada clase de manera gráfica (figura 51): 

 

 

Figura 51: Matriz de confusión normalizada rango [0-1]. SVM global. ( Fuente: Elaboración propia ) 
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Como conclusión, el modelo entrenado tiene un desempeño excelente con una 

accuracy general del 98,2%. La clase 4 (con menos soporte) es la más 

problemática, con un recall más bajo y errores pequeños. Se da como bueno el 

entreno de este SVM y se usará para la clasificación definitiva. 

 

 

5.2.2. Clasificación en escenarios específicos. 

 

También se entrena un algoritmo SVM únicamente con características de cada 

uno de los métodos para cuando uno de ellos no sea capaz de extraer 

información de la imagen. Esto ayudará a evitar errores en la clasificación por 

parte del SVM global al faltarle características. 

 

 

5.2.2.1. SVM con datos únicamente de MediaPipe. 

 

En este primer caso, se entrena un SVM con las características extraídas a 

través de MediaPipe para cuando YOLO no sea capaz de detectar la clase 

persona. 

 

1: nombres_caracteristicas = [“angle_knee_r”, “angle_knee_l”, 

“angle_hip_r”, “angle_hip_l”, “hombro_rodilla_r_y”, 

“hombro_rodilla_l_y”, “hombro_rodilla_r_x”, 

“hombro_rodilla_l_x”, “cadera_rodilla_r_x”, 

“cadera_rodilla_l_x”, “cadera_rodilla_r_y”, 

“cadera_rodilla_l_y”, “hombro_cadera_r_y”, “hombro_cadera_l_y”, 

“hombro_cadera_r_x”, “hombro_cadera_l_x”, “rel_torso_pierna_r”, 

“rel_torso_pierna_l”, “distancia_rodillas”, “cabeza_rodilla_y”, 

“rodilla_mano_l_y”, “rodilla_mano_r_y”, “rodilla_mano_l_x”, 

“rodilla_mano_r_x”, “cadera_tobillo_l_y”, “cadera_tobillo_r_y”,     

“cadera_tobillo_l_x”, “cadera_tobillo_r_x”, “altura_cabeza”, 

“altura_cadera_l”, “altura_cadera_r”, “hombro_cadera”] 

 

Entrenando y probando el SVM con el conjunto de imágenes de prueba, se 

obtienen siguientes resultados (tabla 27 y figura 52): 

 

Precisión del modelo: 0,9725 
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Reporte de clasificación: 

        precision recall f1-score support 

0 1,00 0,94 0,97 35 

1 0,88 0,94 0,91 16 

2 0,98 1,00 0,99 58 

Macro avg 0,96 0,96 0,96 109 

Weighted avg 0,97 0,97 0,97 109 

Tabla 27: Reporte de clasificación SVM MediaPipe.  

 

Figura 52: Matriz de confusión normalizada rango [0-1]. SVM MediaPipe. ( Fuente: Elaboración propia ) 

 

Analizando las métricas, se puede decir que el modelo tiene un desempeño 

general muy bueno, pues clasifica correctamente el 97,25% de las muestras y 

posee un balance fuerte entre precisión y recall. La clase 0 posee una excelente 

precisión, aunque pierde algunos casos reales (recall 94%), la clase 2 se clasifica 

casi a la perfección, probablemente por su mayor soporte. La clase 1 es la más 

problemática con la precisión más baja del 88%, esto puede deberse a que tiene 

el menor soporte. 

 

 

5.2.2.2. SVM con datos únicamente de YOLO. 

 

Por último, se entrena un SVM solamente con las características extraídas por 

YOLO para cuando MediaPipe no detecte landmarks en la imagen. 



102 
 

1: nombres_caracteristicas = ['umbral','ratio', 'x_sofa', 'x', 

'y_sofa', 'y', 'ancho_sofa', 'ancho_bb', 'alto_sofa', 'alto_bb'] 

 

Entrenando y probando el SVM con el conjunto de imágenes de prueba, se 

obtienen siguientes resultados (tabla 28 y figura 53): 

 

Precisión del modelo: 0,9355 

Reporte de clasificación: 

 precision recall f1-score support 

0 0,97 0,91 0,94 35 

1 0,84 0,95 0,89 22 

2 1,00 0,97 0,98 32 

4 0,75 0,75 0,75 4 

Macro avg 0,89 0,90 0,89 93 

Weighted avg 0,94 0,94 0,94 93 

Tabla 28: Reporte de clasificación SVM YOLO.  
 

 

Figura 53: Matriz de confusión normalizada rango [0-1]. SVM YOLO. ( Fuente: Elaboración propia ) 

 

Aunque el desempeño general del modelo es bueno (93% de precisión), hay un 

desbalance en el rendimiento entre algunas clases. Las clases 0, 1 y 2 tienen 

buenos desempeños, pero la clase 4 tiene problemas debido posiblemente al 

bajo número de muestras.  
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5.3. Validación. 

 

En este apartado se validarán los resultados del modelo final implementado en 

su conjunto a través del conjunto de imágenes de prueba para ver su rendimiento 

en general y si fuera necesario realizar algún cambio. Se lleva a cabo la 

validación con el conjunto de prueba, pues será indispensable comparar los 

resultados obtenidos del modelo completo con los obtenidos por los métodos 

individuales, para verificar que las decisiones tomadas en la lógica del código 

han sido correctas. 

 

 

5.3.1. Evaluación del rendimiento del sistema en 

imágenes de prueba. 

 

Como se ha dicho anteriormente, se extraen los resultados obtenidos por el 

modelo final sobre el conjunto de prueba. 

Se recuerda la estructura de dicho conjunto (tabla 29): 

 

DE PIE SENTADO CAÍDA DESCONOCIDO TUMBADO 

109 65 164 63 22 

 

Tabla 29: Conjunto de prueba. 

 

La matriz de confusión ofrece los resultados globales obtenidos por el modelo 

(figura 54). Como en ocasiones anteriores, se separarán los resultados de la 

parte de detección (tabla 30 y figura 55) y de la parte de clasificación (tabla 31 y 

figura 56). 
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Figura 54: Matriz de confusión conjunto de prueba método manual. ( Fuente: Elaboración propia ) 

 

 

• Detección. 

 

TP_d 92,78% 

FN_d 7,22% 

TN_d 100,00% 

FP_d 0,00% 
 

Tabla 30: Resultados detección conjunto de prueba. 

 

 

Figura 55: Gráfico resultados detección conjunto de prueba. ( Fuente: Elaboración propia ) 

Persona

1 2

No persona

1 2
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• Clasificación. 

 

 De pie Sentado Caída Tumbado 

De pie 99,08% 0,92% 0,00% 0,00% 

Sentado 6,15% 93,85% 0,00% 0,00% 

Caída 0,00% 0,61% 99,39% 0,00% 

Tumbado 0,00% 0.00% 11,11% 88,89% 
 

Tabla 31: Resultados clasificación conjunto de prueba método manual. 

 

 

 

Figura 56: Gráfico resultados clasificación conjunto de prueba método manual. ( Fuente: Elaboración 
propia ) 

 

También se muestran los resultados finales de la clasificación automática 

mediante el algoritmo SVM entrenado (figura 57). Se recuerda que los resultados 

en la parte de detección, al depender directamente de los métodos MediaPipe y 

YOLO, no arrojan ninguna diferencia con los obtenidos anteriormente. Los 

resultados de la parte de clasificación (tabla 32 y figura 58) se muestran a 

continuación: 

De pie

1 2 3 4

Sentado

1 2 3 4

Caída

1 2 3 4

Tumbado

1 2 3 4
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Figura 57: Matriz de confusión conjunto de prueba método SVM. ( Fuente: Elaboración propia ) 

 

• Clasificación.  

 De pie Sentado Caída Tumbado 

De pie 98,17% 1,83% 0,00% 0,00% 

Sentado 3,08% 95,38% 0,00% 1,54% 

Caída 0,00% 0,70% 97,18% 2,11% 

Tumbado 0,00% 11,11% 22,22% 66,67% 
 

Tabla 32: Resultados clasificación conjunto de prueba método SVM. 

 

  

De pie

1 2 3 4

Sentado

1 2 3 4
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Figura 58: Gráfico resultados clasificación conjunto de prueba método SVM. ( Fuente: Elaboración propia 
) 

 

Para poder analizar con rigor, los resultados obtenidos del modelo final y del 

SVM para el conjunto de prueba se comparan con los resultados obtenidos por 

los métodos individuales a continuación. 

 

 

5.3.2. Comparativa entre los métodos individuales y la 

combinación final. 

 

Como se ha citado anteriormente, se analizan los resultados obtenidos en el 

conjunto de prueba (tabla 33): 

 

• Detección. 

 MEDIAPIPE YOLO FINAL 

TP_d 72% 87% 92,78% 

FN_d 28% 13% 7,22% 

TN_d 100% 100% 100% 

FP_d 0% 0% 0% 

Tabla 33: Comparativa resultados detección. Métodos individuales VS Modelo final. 

 

Se aprecia así una notable mejora al unir ambos métodos según el árbol de 

decisión. Cuando el método que mejor resultado ha obtenido en la detección, es 

decir, YOLO, no detecta, se depende de la detección de landmarks de 

MediaPipe, cubriendo más casos y mejorando bastante la detección. Como se 

puede ver, supera de manera cómoda el 90% de los casos.  

Caída

1 2 3 4

Tumbado

1 2 3 4
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Se demuestra, así, la eficacia en este apartado de la unión de ambos métodos. 

 

• Clasificación. 

Para esta parte se había elegido como prioritario el método con mejores 

resultados individuales (tabla 34). 

Para la clasificación de la pose “caída” se prioriza la decisión de YOLO, pues, 

sus resultados, como se ha visto anteriormente, son mejores a los de MediaPipe 

(98.35% de acierto para YOLO y 92.86% de acierto para MediaPipe). Para la 

clasificación de las poses “de pie” y “sentado” se priorizaba la decisión de 

MediaPipe, pues, sus resultados han sido mejores en la fase de entrenamiento 

(98.92% de acierto para MediaPipe y 94.5% de acierto para YOLO en la pose 

“de pie”. 90.38% de acierto para MediaPipe y 67.69% de acierto para YOLO en 

la pose “sentado”). Por último, para la clasificación de la pose “tumbado” se 

depende completamente de YOLO, pues, es el método en el que se ha basado 

totalmente esta clasificación. 

 

 TP_c FP_c 

MEDIAPIPE 94,05% 5,95% 

YOLO 90,32% 9,68% 

FINAL 95,10% 4,90% 

SVM 89,35% 10,65% 

Tabla 34: Resultados generales de cada método. Conjunto de prueba. 

 

Los resultados obtenidos por los métodos individuales, eligiendo el que mejor 

resultado ha obtenido, son buenos, superando siempre el 90%, pero la unión de 

ambos métodos demuestra superioridad, aunque no de manera muy exagerada, 

pues los métodos individuales ya tenían una buena precisión. Se mejora así 

todavía más la clasificación y se hace más robusta. 

En lo que respecta al algoritmo SVM, no mejora en exceso la clasificación 

realizada de forma “empírica” a través de los umbrales de decisión de las 

características extraídas por los métodos individuales. Por se ofrecen sus 

resultados como una respuesta más, pues, se considera un método 

complementario y prácticamente igual de fiable, y resulta interesante comparar 

la respuesta de un sistema creado “manualmente” a base del análisis riguroso 

de las características y un algoritmo de decisión autónoma como es el SVM.  
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La unión de ambos métodos, lo que consigue es aumentar el espectro en la 

detección y la clasificación, no descartando una imagen ni seleccionando una 

postura de primeras sin haber comprobado con el resultado obtenido por el otro 

método. 

 

 

5.4. Resultados obtenidos en el conjunto de test. 

 

Ver cómo generaliza el modelo desarrollado es esencial para sacar conclusiones 

firmes sobre su rendimiento, por ello, se prueba mediante imágenes de test, las 

cuales no han sido nunca utilizadas para el entrenamiento ni decisiones tomadas 

con el modelo realizado. El conjunto de imágenes de test es el siguiente y sigue 

una distribución parecida al conjunto de prueba (tabla 35). 

 

DE PIE SENTADO CAÍDA TUMBADO 

74 85 140 23 

NORMALES CAÍDA 

182 140 

Tabla 35: Conjunto de test. 

Las matrices de confusión obtenidas para el modelo final (figura 59) y el modelo 

del SVM (figura 60) son las siguientes: 

 

Figura 59: Matriz de confusión de test método manual. ( Fuente: Elaboración propia ) 
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Los resultados obtenidos para el modelo final con el conjunto de imágenes de 

test son muy similares a los obtenidos en las pruebas realizadas. Se puede decir 

que el modelo generaliza bastante bien. Salvo en las clases más conflictivas por 

la variabilidad en las posturas (pose “caída”) y la dificultad en los métodos de 

detección (pose “tumbado”) en los que los resultados disminuyen un poco su 

eficacia, en el resto de las poses se parecía una muy buena precisión. 

 

Figura 60: Matriz de confusión de test método SVM. ( Fuente: Elaboración propia ) 

 

Con el modelo automático del clasificador SVM pasa lo mismo. Se puede ver 

que los resultados obtenidos son buenos y similares a los obtenidos 

anteriormente. Como conclusión a este análisis preliminar, el SVM generaliza 

también con mucha precisión en la clasificación para estas imágenes de test. 

 

• Detección. 

En este caso (tabla 36) se aprecia que los resultados obtenidos para la detección 

de personas son muy buenos, superando con creces el 90% de acierto. 

 

TP_d 95,67% 

FN_d 4,33% 

TN_d 100,00% 

FP_d 0,00% 

Tabla 36: Resultados detección test. 
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Figura 61: Gráfico resultados detección test. ( Fuente: Elaboración propia ) 

 

 

• Clasificación. 

Para la parte de clasificación se analizarán los resultados obtenidos para el 

método de clasificación mediante el árbol de decisión y los umbrales calculados 

y el método automático de la clasificación del SVM. 

Empezando por el método “manual”, estos son los resultados que se obtienen 

(tabla 37): 

 

Manual De pie Sentado Caída Tumbado 

De pie 97,30% 2,70% 0,00% 0,00% 

Sentado 0,01% 99,90% 0,00% 0,00% 

Caída 0,00% 5.55% 91,27% 3,18% 

Tumbado 0,00% 0,00% 20,00% 80,00% 

Tabla 37: Resultados clasificación test método manual. 

 

La precisión en la clasificación es muy buena para casi todas las clases, 

superando el 90% incluso llegando prácticamente al 100% en la clase “sentado”. 

Para la clase “tumbado” el rendimiento cae hasta el 65%, confundiéndose en la 

mayoría de los casos con la clase “caída”, error previsible por el método de 

clasificación de la pose “tumbado”.  

Los errores que se cometen en la clasificación en ningún momento son graves, 

pues las clases confundidas son clases cercanas y semejantes a la pose a 

clasificar. 

 

Visualmente, se aprecian los resultados obtenidos en el siguiente gráfico (figura 

62): 

Persona

1 2

No persona

1 2
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Figura 62: Gráfico resultados clasificación test método manual. ( Fuente: Elaboración propia ) 

 

 

En lo que respecta a la clasificación SVM se obtienen los siguientes resultados 

(tabla 38): 

 

SVM De pie Sentado Caída Tumbado 

De pie 97,30% 2,70% 0,00% 0,00% 

Sentado 0,01% 99,9% 0,00% 0,00% 

Caída 0,00% 6,35% 90,48% 3,17% 

Tumbado 0,00% 13,04% 4,35% 82,61% 

Tabla 38: Resultados clasificación test método SVM. 

 

En esta ocasión, con el conjunto de test, se ha comportado mejor este método, 

pues los resultados obtenidos con respecto al método “manual” así lo 

demuestran. En esta ocasión la pose más conflictiva “tumbado” se trabaja de 

manera más efectiva y el SVM es capaz de separar mejor esta clase del resto. 

De pie

1 2 3 4

Sentado

1 2 3 4

Caída

1 2 3 4

Tumbado

1 2 3 4
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Al igual que en el método anterior, los errores cometidos en la clasificación no 

son graves, pues cuando se producen son con clases cercanas y muchos casos 

muy similares en postura. 

Los resultados de manera gráfica se visualizan en el siguiente gráfico (figura 63): 

 

 

Figura 63: Gráfico resultados clasificación test método SVM. ( Fuente: Elaboración propia ) 

 

Como resumen final a estos resultados se muestra el acierto global que han 

tenido ambos métodos (tabla 39). Con esto queda demostrado el buen 

funcionamiento tanto del método manual, conseguido de manera “empírica” con 

el análisis riguroso de las características extraídas y con una buena selección de 

umbrales, como del método de clasificación automático del SVM, en el que se 

parecía la fortaleza de generalizar muy bien en imágenes completamente nuevas 

a partir de un entreno previo. 

 

 TP_c FP_c 

MANUAL 92,12% 7,86% 

SVM 92,57% 7,43% 

Tabla 39: Resultados generales de la clasificación. Conjunto de test. 

De pie

1 2 3 4

Sentado

1 2 3 4

Caída

1 2 3 4

Tumbado

1 2 3 4
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5.5. Resultados en imágenes. 

 

A continuación, se muestran algunos resultados en forma de imágenes de cómo 

detectan los modelos y su resultado para que se aprecie la variedad de imágenes 

con las que se ha trabajado en cuanto a poses, escenarios e iluminación. 

 

5.5.1. Detecciones clase “de pie”. 

 

 

 

Figura 64: Ejemplo de resultados del modelo en imágenes. Clase “de pie”. ( Fuente: Elaboración propia ) 
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5.5.2. Detecciones clase “sentado”. 

 

 

 

 

Figura 65: Ejemplo de resultados del modelo en imágenes. Clase “sentado”. ( Fuente: Elaboración propia 
) 
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5.5.3. Detecciones clase “tumbado”. 

 

 

Figura 66: Ejemplo de resultados del modelo en imágenes. Clase “tumbado”. ( Fuente: Elaboración propia 
) 

 

 

 

 



117 
 

5.5.4. Detecciones clase “caída”. 

 

 

Figura 67: Ejemplo de resultados del modelo en imágenes. Clase “caída”. ( Fuente: Elaboración propia ) 
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6. Conclusiones y líneas futuras. 
 

6.1. Conclusiones. 

 

El presente trabajo ha desarrollado un sistema basado en visión artificial para la 

caracterización de la posición de personas en entornos domésticos, con un 

enfoque especial en personas que viven solas. Se ha diseñado una solución 

mediante una combinación de MediaPipe y YOLO para la extracción de 

características y clasificación basada en el análisis de estas en 4 clases 

principales: “de pie”, “sentado”, “tumbado” y “caída”.  

La estructura básica del proyecto pasa por un análisis de la imagen mediante 

MediaPipe Pose y YOLO del que se extraen una serie de características 

relevantes y se seleccionan los umbrales mediante los que se realiza la 

clasificación final. También se ha experimentado en paralelo con un clasificador 

SVM al que se le pasan las características extraídas por MediaPipe y YOLO para 

una clasificación autónoma. 

En el proceso se ha pasado por una fase de estudio de efectividad de las dos 

herramientas que se utilizan (MediaPipe Pose y YOLO) para elegir en qué 

situaciones es más robusta una que otra y así conseguir un sistema de decisión 

basado en los puntos fuertes de cada uno. 

Se ha realizado un análisis detallado de las características extraídas de las 

detecciones por ambas herramientas para poder elegir cuáles de ellas eran más 

relevantes y distintivas de cada clase. Junto con la creación del SVM, a partir de 

la recolección de estas características se ha podido mejorar su elección y la 

creación de umbrales de clasificación más precisos. 

La caracterización presentó ciertos desafíos a la hora de no inducir 

solapamientos con las demás clases con la selección de características y los 

umbrales adecuados. Estas dificultades fueron superadas con dedicación y un 

esfuerzo constante gracias a un exhaustivo trabajo de análisis y optimización. 

Los resultados obtenidos en este proyecto han sido altamente satisfactorios, no 

solo en las pruebas de entrenamiento, sino también en los test realizados, donde 

el modelo ha demostrado una precisión destacable en la clasificación de las 

posturas. Estos avances no solo contribuyen al campo de la visión artificial, sino 

que tienen un impacto directo en la sociedad, especialmente en la detección 

temprana de caídas.  

Desde una perspectiva práctica, este sistema y su capacidad de detección en 

entornos domésticos representan un paso importante hacia una mayor seguridad 

y bienestar para personas, especialmente aquellas de avanzada edad que viven 

solas o tienen problemas de movilidad. 
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6.2. Líneas futuras de trabajo y mejoras. 

 

Aunque los resultados obtenidos son satisfactorios, existen varias áreas que 

pueden ser optimizadas y que podrían abrir nuevas posibilidades de aplicación, 

pues este trabajo no ha sido desarrollado con la idea de cerrar la línea de trabajo 

al terminarlo. 

Una mejora clave sería explorar arquitecturas más complejas y avanzadas, como 

redes neuronales entrenadas específicamente para esta labor y conseguir un 

dataset mucho más amplio utilizado para entrenar el modelo, ya que podrían 

proporcionar una mayor precisión y robustez en la clasificación de posturas 

complicadas, especialmente en condiciones difíciles o entornos variados, 

incorporando una mayor diversidad de escenarios y condiciones, ayudando a 

mejorar la generalización del modelo y permitiendo su implementación en una 

mayor variedad de situaciones reales. Incluso se podrían considerar enfoques 

que incluyan técnicas de aprendizaje automático, permitiendo que el modelo se 

adapte y aprenda de nuevos datos en tiempo real, mejorando su rendimiento a 

medida que se recopilan más muestras. 

Una de las limitaciones encontradas en este proyecto ha sido la posibilidad de 

trabajar con imágenes en tiempo real, lo que permitiría la monitorización continua 

del movimiento. Esto va de la mano con explorar arquitecturas más complejas y 

tener un equipo de trabajo potente para poder procesar toda esta información. 

Además, se podría explorar la integración de otros sensores o modalidades de 

datos, como sensores de movimiento o cámaras adicionales, para obtener una 

visión más completa y precisa del entorno y las personas, aumentando la 

fiabilidad del sistema. 

Una línea futura de trabajo clara sería trabajar en la conectividad con los 

servicios médicos y familiares para poder mandar mensajes de alerta al detectar 

caídas. También profundizar en la posibilidad de emitir recomendaciones 

cuando, por ejemplo, el sistema detecte la postura “sentado” varias veces 

seguidas, evitando situaciones de sedentarismo.  

Estas mejoras y líneas de investigación abren nuevas oportunidades para 

desarrollar sistemas de visión artificial aún más eficientes y adaptables, con un 

impacto directo en la mejora de la seguridad y calidad de vida de las personas, 

especialmente aquellas en situaciones vulnerables. 
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8. Anexos: 
 

8.1. Anexo 1: Lista de programas desarrollados. 

 

“FUNCIÓN principal TFG Rubén.py”: Función principal del proyecto. 

Desarrollada para conseguir una clasificación de la postura de la persona 

presente en una imagen entre 5 clases predominantes, “de pie”, “sentado”, 

“tumbado”, “caída” y “desconocido”. 

 

“clasificador imágenes en carpetas.py”: Función desarrollada para 

conseguir clasificar y filtrar las imágenes de los datasets utilizados a lo largo 

del proyecto. 

 

“características MEDIAPIPE a txt.py”: Función desarrollada para pasar 

todas las características extraídas por MediaPipe a un txt. Se ha utilizado 

para ordenar estas características por clases y poder trabajar con ellas para 

la clasificación final. 

 

“características YOLO a txt.py”: Función desarrollada para pasar todas las 

características extraídas por YOLO a un txt. Se ha utilizado para ordenar 

estas características por clases y poder trabajar con ellas para la clasificación 

final. 

 

“SVM con datos.py”: Función desarrollada para crear y entrenar los 

algoritmos SVM utilizados en el proyecto con los datos extraídos a través de 

MediaPipe y YOLO. De este programa surgen los archivos con los SVM 

entrenados y sus escaladores para normalizar las características. 

o “SVM_MY.pkl” y “scaler_MY.pkl” 

o “SVM_YOLO.pkl” y “scaler_YOLO.pkl” 

o “SVM_MEDIAPIPE.pkl” y “scaler_MEDIAPIPE.pkl” 
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8.2. Anexo 2: Lista de librerías del entorno de 

Python. 

 

Nombre Versión 

absl-py 2.1.0 

alabaster 0.7.12 

arrow 1.2.3 

astroid 2.14.2 

asttokens 2.0.5 

atomicwrites 1.4.0 

attrs 23.2.0 

autopep8 2.0.4 

babel 2.11.0 

backcall 0.2.0 

bcrypt 3.2.0 

beautifulsoup4 4.12.2 

binaryornot 0.4.4 

black 23.11.0 

blas 1.0 

bleach 4.1.0 

bottleneck 1.3.7 

brotli-python 1.0.9 

ca-certificates 2024.9.24 

certifi 2024.8.30 

cffi 1.16.0 

chardet 4.0.0 

charset-normalizer 2.0.4 

click 8.1.7 

cloudpickle 2.2.1 

colorama 0.4.6 

comm 0.2.1 

contourpy 1.2.0 

cookiecutter 2.6.0 

cryptography 42.0.5 

cycler 0.12.1 

debugpy 1.6.7 

decorator 5.1.1 

defusedxml 0.7.1 

diff-match-patch 20200713 

dill 0.3.7 

docstring-to-markdown 0.11 

docutils 0.18.1 

exceptiongroup 1.2.0 

executing 0.8.3 

filelock 3.16.1 
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flake8 7.0.0 

flatbuffers 24.3.25 

fonttools 4.50.0 

fsspec 2024.10.0 

icc_rt 2022.1.0 

icu 73.1 

idna 3.4 

imagesize 1.4.1 

importlib-metadata 7.1.0 

importlib-resources 6.4.0 

importlib_metadata 7.0.1 

inflection 0.5.1 

intel-openmp 2021.4.0 

intervaltree 3.1.0 

ipykernel 6.28.0 

ipython 8.15.0 

isort 5.9.3 

jaraco.classes 3.2.1 

jax 0.4.25 

jedi 0.18.1 

jellyfish 1.0.1 

jinja2 3.1.3 

joblib 1.4.2 

jpeg 9e 

jsonschema 4.19.2 

jsonschema-specifications 2023.7.1 

jupyter_client 8.6.0 

jupyter_core 5.5.0 

jupyterlab_pygments 0.2.2 

keyring 24.3.1 

kiwisolver 1.4.5 

krb5 1.20.1 

lazy-object-proxy 1.6.0 

libclang 14.0.6 

libclang13 14.0.6 

libpng 1.6.39 

libpq 12.17 

libsodium 1.0.18 

libspatialindex 1.9.3 

lz4-c 1.9.4 

markdown-it-py 2.2.0 

markupsafe 2.1.3 

matplotlib 3.8.3 

matplotlib-inline 0.1.6 

mccabe 0.7.0 

mdurl 0.1.0 
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MediaPipe 0.10.11 

mistune 2.0.4 

mkl 2021.4.0 

mkl-service 2.4.0 

mkl_fft 1.3.1 

mkl_random 1.2.2 

ml-dtypes 0.3.2 

more-itertools 10.1.0 

mpmath 1.3.0 

mypy_extensions 1.0.0 

nbclient 0.8.0 

nbconvert 7.10.0 

nbformat 5.9.2 

nest-asyncio 1.6.0 

networkx 3.2.1 

numexpr 2.8.4 

numpy 1.26.4 

numpy-base 1.24.3 

numpydoc 1.5.0 

opencv-contrib-python 4.9.0.80 

opencv-python 4.10.0.84 

openssl 3.0.13 

opt-einsum 3.3.0 

packaging 24.0 

pandas 2.0.3 

pandocfilters 1.5.0 

paramiko 2.8.1 

parso 0.8.3 

pathspec 0.10.3 

pexpect 4.8.0 

pickleshare 0.7.5 

pillow 10.2.0 

pip 23.3.1 

platformdirs 3.10.0 

pluggy 1.0.0 

ply 3.11 

pooch 1.8.2 

prompt-toolkit 3.0.43 

protobuf 3.20.3 

psutil 5.9.0 

ptyprocess 0.7.0 

pure_eval 0.2.2 

py-cpuinfo 9.0.0 

pycodestyle 2.11.1 

pycparser 2.21 

pydocstyle 6.3.0 
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pyflakes 3.2.0 

pygments 2.15.1 

pylint 2.16.2 

pylint-venv 3.0.3 

pyls-spyder 0.4.0 

pynacl 1.5.0 

pyparsing 3.1.2 

pyqt 5.15.10 

pyqt5-sip 12.13.0 

pyqtwebengine 5.15.10 

pysocks 1.7.1 

python 3.9.19 

python-dateutil 2.9.0.post0 

python-fastjsonschema 2.16.2 

python-lsp-black 2.0.0 

python-lsp-jsonrpc 1.1.2 

python-lsp-server 1.10.0 

python-slugify 5.0.2 

python-tzdata 2023.3 

pytoolconfig 1.2.6 

pytz 2023.3.post1 

pywin32 305 

pywin32-ctypes 0.2.2 

pyyaml 6.0.1 

pyzmq 25.1.2 

qdarkstyle 3.2.3 

qstylizer 0.2.2 

qt-main 5.15.2 

qt-webengine 5.15.9 

qtawesome 1.2.2 

qtconsole 5.5.1 

qtpy 2.4.1 

referencing 0.30.2 

requests 2.31.0 

rich 13.3.5 

rope 1.12.0 

rpds-py 0.10.6 

rtree 1.0.1 

scikit-learn 1.3.0 

scipy 1.12.0 

seaborn 0.13.2 

setuptools 68.2.2 

sip 6.7.12 

six 1.16.0 

snowballstemmer 2.2.0 

sortedcontainers 2.4.0 
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sounddevice 0.4.6 

soupsieve 2.5 

sphinx 5.0.2 

sphinxcontrib-applehelp 1.0.2 

sphinxcontrib-devhelp 1.0.2 

sphinxcontrib-htmlhelp 2.0.0 

sphinxcontrib-jsmath 1.0.1 

sphinxcontrib-qthelp 1.0.3 

sphinxcontrib-serializinghtml 1.1.5 

spyder 5.5.1 

spyder-kernels 2.5.0 

sqlite 3.41.2 

stack_data 0.2.0 

sympy 1.13.1 

text-unidecode 1.3 

textdistance 4.2.1 

threadpoolctl 3.5.0 

three-merge 0.1.1 

tinycss2 1.2.1 

tomli 2.0.1 

tomlkit 0.11.1 

torch 2.5.1 

torchvision 0.20.1 

tornado 6.3.3 

tqdm 4.67.0 

traitlets 5.7.1 

typing-extensions 4.9.0 

typing_extensions 4.9.0 

tzdata 2024a 

ujson 5.4.0 

ultralytics 8.3.36 

ultralytics-thop 2.0.12 

unidecode 1.2.0 

urllib3 2.1.0 

vc 14.2 

vs2015_runtime 14.27.29016 

watchdog 2.1.6 

wcwidth 0.2.5 

webencodings 0.5.1 

whatthepatch 1.0.2 

wheel 0.41.2 

win_inet_pton 1.1.0 

wrapt 1.14.1 

xz 5.4.6 

yaml 0.2.5 

yapf 0.40.2 
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zeromq 4.3.5 

zipp 3.18.1 

zlib 1.2.13 

zstd 1.5.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 


