
1

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERÍAS INDUSTRIALES

Grado en Ingeniería en Electrónica Industrial y Automática

Caracterización de la postura de

personas en entorno doméstico

mediante Visión Artificial.

Autor:

Martín García, Rubén

Tutores:

Gómez García-Bermejo, Jaime

Duque Domingo, Jaime

Ingeniería de Sistemas y Automática

Valladolid, Julio 2024

2

Agradecimientos.

Antes de comenzar con el desarrollo de este trabajo fin de carrera, quería

agradecer a todos aquellos que me han apoyado a seguir adelante y me han

motivado a conseguir mi objetivo. A mi familia que siempre ha confiado en mí y

me ha apoyado cuando era necesario. A los grandes profesores que me he

encontrado por este paso por la universidad que me han aportado grandes

conocimientos y ganas por seguir formándome y aprendiendo. Y cómo olvidarme

de mis amigos y compañeros de clase que me han ayudado cuando lo

necesitaba.

La universidad me ha aportado grandes cosas, como una buena formación y

unos buenos valores, una destacable rutina de trabajo, sin la cual hubiera sido

imposible conseguir esto y sobre todo ayudarme a encaminar mi vida tanto en el

ámbito profesional como en el personal.

3

Resumen.

El presente trabajo fin de grado se centra en la detección y clasificación de la

postura de personas en entornos domésticos mediante visión artificial, con

especial atención a la identificación de caídas. El sistema desarrollado está

orientado a personas que viven solas, permitiendo una posible integración en

soluciones de asistencia y monitorización remota.

Para ello, se ha desarrollo un programa en Python, empleado técnicas de visión

artificial para analizar imágenes en las que aparece una única persona. Se

utilizan modelos como MediaPipe y YOLO para la extracción de características

relevantes, lo que permite clasificar la postura en distintas categorías. Como

complemento, se ha explorado el uso de máquinas de soporte vectorial (SVM)

para mejorar la precisión de la clasificación.

Este proyecto sienta las bases para futuras aplicaciones en detección de caídas

y vigilancia domiciliaria, contribuyendo a la seguridad de personas mayores o en

situación de dependencia.

Palabras clave.

Visión artificial, clasificación de posturas, detección de caídas, aprendizaje

automático, MediaPipe, YOLO, SVM.

4

Abstract.

This final degree project focuses on the detection and classification of human

posture in domestic environments using computer vision, with special attention

to fall detection. The developed system is designed for people living alone,

allowing for potential integration into assistance and remote monitoring solutions.

For this purpose, a Python program has been developed, employing computer

vision techniques to analyze images containing a single person. Models such as

MediaPipe and YOLO are used for feature extraction, enabling posture

classification into different categories. Additionally, the use of support vector

machines (SVM) has been explored to improve classification accuracy.

This project lays the groundwork for future applications in fall detection and home

monitoring, contributing to the safety of elderly individuals or people in dependent

situations.

Key words.

Computer vision, posture classification, fall detection, machine learning,

MediaPipe, YOLO, SVM.

5

Índice.

1. Introducción y objetivos. ... 13

1.1. Motivación y justificación del proyecto. .. 13

1.1.1. Datos, cifras y magnitud del problema. 13

1.1.2. Robot Temi. ... 16

1.2. Objetivos. ... 17

1.3. Impacto en la mejora de la sociedad. ... 18

1.3.1. Salud y bienestar. ... 18

1.3.2. Industria, innovación e infraestructura. 18

1.3.3. Reducción de desigualdades. ... 19

1.3.4. Ciudades y comunidades sostenibles. .. 19

1.4. Estructura de la memoria. .. 20

2. Marco teórico. .. 22

2.1. Visión artificial. ... 22

2.1.1. Progresos de la visión artificial.. 22

2.2. Aprendizaje automático. ... 23

2.2.1. Métodos de machine learning. .. 23

2.2.2. Aprendizaje profundo. Deep learning. ... 24

2.2.3. Redes convolucionales (CNN). ... 25

2.3. Postura corporal. .. 26

2.3.1. Detección de la postura. ... 26

3. Panorama actual de la visión artificial en la caracterización de la

postura corporal. .. 28

3.1. Algoritmos y sistemas para la detección de la postura. 28

3.2. Dispositivos para la detección de la postura. 30

3.3. Trabajos relacionados. ... 32

3.3.1. Reconocimiento de posturas utilizando una cámara RGB-D. 32

3.3.2. Extracción de características corporales con MediaPipe y YOLOv5

para la evaluación del rango de movimiento. .. 35

6

4. Desarrollo de un sistema para la clasificación de pose. 38

4.1. Alternativas analizadas. ... 38

4.1.1. Definición de requisitos. .. 39

4.1.2. Exploración inicial de soluciones. ... 39

4.1.3. Selección final. .. 40

4.2. Herramientas utilizadas. ... 41

4.2.1. Entorno utilizado. .. 41

4.2.2. OpenCV. ... 42

4.2.3. MediaPipe y MediaPipe Pose. .. 43

4.2.4. YOLO y YOLOv3. ... 46

4.2.5. Máquina se vectores de soporte. SVM. 50

4.3. Clasificación de la pose. .. 52

4.3.1. Idea inicial. .. 52

4.3.2. Desarrollo del sistema. ... 54

4.3.2.1. Obtención de datos. ... 54

4.3.2.2. Uso de MediaPipe. .. 59

4.3.2.3. Uso de YOLO. ... 63

4.3.2.4. Almacenamiento de características en fichero de texto. 67

4.3.2.5. Análisis de datos. ... 70

4.3.2.6. Entrenamiento del SVM. .. 74

4.3.2.7. Selección de características relevantes. 78

4.3.3. Arquitectura general del sistema. .. 82

5. Resultados obtenidos. .. 87

5.1. Clasificación con MediaPipe y YOLO. .. 88

5.1.1. Resultados de la clasificación usando MediaPipe. 89

5.1.2. Resultados de la clasificación usando YOLO. 91

5.1.3. Comparativa de los métodos individuales. 93

5.1.4. Implementación de un sistema de decisión basado en las fortalezas

de cada método. ... 97

5.2. Clasificación del SVM. ... 98

5.2.1. Entrenamiento y uso del SVM con datos combinados de MediaPipe

y YOLO. 98

5.2.2. Clasificación en escenarios específicos. 100

5.2.2.1. SVM con datos únicamente de MediaPipe. 100

7

5.2.2.2. SVM con datos únicamente de YOLO. 101

5.3. Validación. .. 103

5.3.1. Evaluación del rendimiento del sistema en imágenes de prueba.

 103

5.3.2. Comparativa entre los métodos individuales y la combinación final.

 107

5.4. Resultados obtenidos en el conjunto de test. 109

5.5. Resultados en imágenes. .. 114

5.5.1. Detecciones clase “de pie”. .. 114

5.5.2. Detecciones clase “sentado”. ... 115

5.5.3. Detecciones clase “tumbado”... 116

5.5.4. Detecciones clase “caída”. ... 117

6. Conclusiones y líneas futuras. .. 118

6.1. Conclusiones. ... 118

6.2. Líneas futuras de trabajo y mejoras. ... 119

7. Bibliografía. ... 120

8. Anexos: .. 126

8.1. Anexo 1: Lista de programas desarrollados. 126

8.2. Anexo 2: Lista de librerías del entorno de Python. 127

8

Índice de Figuras.

Figura 1: Distribución de los tipos de accidentes domésticos y de ocio en

porcentaje. (Fuente: [1]) ... 14
Figura 2: Actividad física en el trabajo o actividad principal en población de 15 y

más años ocupada, estudiante o dedicada a labores del hogar, según sexo (%).

España 2017. (Fuente: [4]) ... 15
Figura 3: Sedentarismo en tiempo de ocio en población de 0 y más años según

sexo y grupo de edad (%). España 2017. (Fuente: [4]) 15
Figura 4: Robot Temi en el hogar. (Fuente: [5]) .. 16
Figura 5: Etapas de un sistema de visión. (Fuente: Elaboración propia) 22
Figura 6: Arquitectura de red neuronal típica. (Fuente: Elaboración propia) .. 24
Figura 7: Red con múltiples capas convolucionales. (Fuente: [9]) 25
Figura 8: Ejemplo de detección de pose con VA. (Fuente: [11]) 27
Figura 9: Ejemplo de estimación de pose utilizando OpenPose. (Fuente: [13])

 ... 29
Figura 10: Ejemplo de funcionamiento de AlphaPose. (Fuente: [15]) 30
Figura 11: Cámara Kinect en sus versiones 1 y 2. (Fuente: [16]) 31
Figura 12: Imagen de profundidad captada por Kinect. (Fuente: [17]) 32
Figura 13: Reconocimiento de la postura utilizando imágenes 2D y CNN. (Fuente

[18]) ... 33
Figura 14: Reconocimiento de la postura utilizando características 3D. (Fuente

[18]) ... 33
Figura 15: Funcionamiento principal del sistema (Fuente: [19]) 35
Figura 16: Evaluación de hombro congelado. (Fuente: [19]) 36
Figura 17: Representación de la metodología aplicada. (Fuente: Elaboración

propia). ... 38
Figura 18: Sistema de coordenadas y matriz de píxeles de OpenCV. (Fuente:

Elaboración propia) ... 43
Figura 19: Gráfico que muestra cómo funciona MediaPipe. (Fuente: Elaboración

propia) ... 44
Figura 20: 33 Puntos de referencia corporales detectados por MediaPipe Pose.

(Fuente: [23]) .. 44
Figura 21: : Puntos de referencia de la postura corporal en una imagen. (Fuente:

Elaboración propia) ... 45
Figura 22: Ejemplo de resultado de detección de YOLO. (Fuente: [25]) 47
Figura 23: Etapas sucesivas de la detección de YOLOv3. (Fuente: [26]) 48
Figura 24: Datos separables linealmente. SVM. (Fuente: Elaboración propia)

 ... 50
Figura 25: Clasificadores lineales. SVM. (Fuente: Elaboración propia) 51
Figura 26: Diagrama de flujo del programa "clasificador de imagenes en

carpetas.py". (Fuente: Elaboración propia) .. 55
Figura 27: Ejemplo de imágenes del dataset FPDs. (Fuente: [29]) 56
Figura 28: Ejemplo de imágenes del dataset IASLAB-RGBD. (Fuente: [30]) . 57
Figura 29: Ejemplo de imágenes del dataset Up-Fall Detection. (Fuente: [31])

 ... 58
Figura 30: Contenido del dataset Elderly Set. (Fuente: [32]) 58

9

Figura 31: Resultados primeras pruebas MediaPipe. (Fuente: Elaboración propia

) .. 60
Figura 32: Resultados primeras pruebas YOLO. (Fuente: Elaboración propia)

 ... 64
Figura 33: Resultado aplicar NMS a YOLO. (Fuente: Elaboración propia)..... 64
Figura 34: Distinción clase "tumbada" de clase "caída". (Fuente: Elaboración

propia) ... 66
Figura 35 Diagrama de flujo del programa "características YOLO a txt.py y

características MediaPipe a txt.py". (Fuente: Elaboración propia) 68
Figura 36: Fichero de texto con características extraídas de la detección de

MediaPipe y YOLO. (Fuente: Elaboración propia) ... 69
Figura 37: Gráfico de la media de la distancia hombro - rodilla en el eje y por

clases. (Fuente: Elaboración propia) .. 72
Figura 38: Gráfico de máximos y mínimos del alto menos ancho del bounding

box de la persona por clase. (Fuente: Elaboración propia) 73
Figura 39: Distribución de altura de la cabeza por clase extraída del SVM. (

Fuente: Elaboración propia) .. 77
Figura 40: Distribución característica tipo 1. (Fuente: Elaboración propia) 78
Figura 41: Distribución característica tipo 2. (Fuente: Elaboración propia) 79
Figura 42: Distribución característica tipo 3. (Fuente: Elaboración propia) 80
Figura 43: Diagrama de bloques del modelo desarrollado. (Fuente: Elaboración

propia) ... 82
Figura 44: Matriz de confusión normalizada. Método Mediapipe. (Fuente:

Elaboración propia) ... 90
Figura 45: Matriz de confusión normalizada. Método YOLO. (Fuente:

Elaboración propia) ... 92
Figura 46: Gráfico comparativo clasificación de métodos individuales. (Fuente:

Elaboración propia) ... 94
Figura 47: Gráfico comparativo de clasificación de pose caída de métodos

individuales. (Fuente: Elaboración propia) ... 95
Figura 48: Gráfico comparativo clasificación de pie de métodos individuales. (

Fuente: Elaboración propia) .. 95
Figura 49: Gráfico comparativo clasificación pose sentado de métodos

individuales. (Fuente: Elaboración propia) ... 96
Figura 50: Árbol de decisión para la clasificación final. (Fuente: Elaboración

propia) ... 97
Figura 51: Matriz de confusión normalizada rango [0-1]. SVM global. (Fuente:

Elaboración propia) ... 99
Figura 52: Matriz de confusión normalizada rango [0-1]. SVM MediaPipe. (

Fuente: Elaboración propia) .. 101
Figura 53: Matriz de confusión normalizada rango [0-1]. SVM YOLO. (Fuente:

Elaboración propia) ... 102
Figura 54: Matriz de confusión conjunto de prueba método manual. (Fuente:

Elaboración propia) ... 104
Figura 55: Gráfico resultados detección conjunto de prueba. (Fuente:

Elaboración propia) ... 104

10

Figura 56: Gráfico resultados clasificación conjunto prueba método manual. (

Fuente: Elaboración propia) .. 105
Figura 57: Matriz de confusión conjunto de prueba método SVM. (Fuente:

Elaboración propia) ... 106
Figura 58: Gráfico resultados clasificación conjunto prueba método SVM. (

Fuente: Elaboración propia) .. 107
Figura 59: Matriz de confusión de test método manual. (Fuente: Elaboración

propia) ... 109
Figura 60: Matriz de confusión de test método SVM. (Fuente: Elaboración propia

) ... 110
Figura 61: Gráfico resultados detección test. (Fuente: Elaboración propia) .. 111
Figura 62: Gráfico resultados clasificación test método manual. (Fuente:

Elaboración propia) .. 112
Figura 63: Gráfico resultados clasificación test método SVM. (Fuente:

Elaboración propia) .. 113
Figura 64: Ejemplo de resultados del modelo en imágenes. Clase “de pie”. (

Fuente: Elaboración propia) ... 114
Figura 65: Ejemplo de resultados del modelo en imágenes. Clase “sentado”. (

Fuente: Elaboración propia) ... 115
Figura 66: Ejemplo de resultados del modelo en imágenes. Clase “tumbado”. (

Fuente: Elaboración propia) ... 116
Figura 67: Ejemplo de resultados del modelo en imágenes. Clase “caída”. (

Fuente: Elaboración propia) ... 117

11

Índice de Tablas.

Tabla 1: Ventajas y desventajas de MediaPipe Pose. 46
Tabla 2: Ventajas y desventajas de YOLO. .. 49
Tabla 3: Ventajas y desventajas de SVM. .. 52
Tabla 4: Distancias calculadas entre puntos clave. .. 62
Tabla 5: Posiciones extraídas de puntos clave. .. 62
Tabla 6: Ángulos calculados de puntos clave. .. 63
Tabla 7: Relaciones calculadas de puntos clave. ... 63
Tabla 8: Características extraídas por YOLO. .. 67
Tabla 9: Representación de la tabla de características extraídas. 70
Tabla 10: Media de la distancia hombro - rodilla en el eje y por clases. 72
Tabla 11: Máximos y mínimos del alto menos ancho del bounding box de la

persona detectada por clase. ... 73
Tabla 12: Estructura básica de una matriz de confusión. 76
Tabla 13: Métricas de una característica tipo 1. ... 79
Tabla 14: Métricas de una característica tipo 2. ... 80
Tabla 15: Métricas de una característica tipo 3. ... 81
Tabla 16: Características y umbrales seleccionados. 81
Tabla 17: Distribución del conjunto de prueba. Dataset FPDs. 87
Tabla 18: Resultados detección MediaPipe. ... 90
Tabla 19: Matriz de confusión de clasificación de MediaPipe. 90
Tabla 20: Resultados detección YOLO. .. 93
Tabla 21: Matriz de confusión de clasificación de YOLO. 93
Tabla 22: Comparativa resultados clasificación de métodos individuales. 93
Tabla 23: Comparativa en la clasificación de pose caída de métodos individuales.

 ... 94
Tabla 24: Comparativa clasificación de pie de métodos individuales. 95
Tabla 25: Comparativa clasificación pose sentado de métodos individuales. .. 96
Tabla 26: Reporte de clasificación SVM global. .. 99
Tabla 27: Reporte de clasificación SVM MediaPipe. 101
Tabla 28: Reporte de clasificación SVM YOLO. ... 102
Tabla 29: Conjunto de prueba. ... 103
Tabla 30: Resultados detección conjunto de prueba. 104
Tabla 31: Resultados clasificación conjunto de prueba método manual. 105
Tabla 32: Resultados clasificación conjunto de prueba método SVM. 106
Tabla 33: Comparativa resultados detección. Métodos individuales VS Modelo

final. .. 107
Tabla 34: Resultados generales de cada método. Conjunto de prueba. 108
Tabla 35: Conjunto de test. ... 109
Tabla 36: Resultados detección test. ... 110
Tabla 37: Resultados clasificación test método manual. 111
Tabla 38: Resultados clasificación test método SVM. 112
Tabla 39: Resultados generales de la clasificación. Conjunto de test. 113

12

13

1. Introducción y objetivos.

1.1. Motivación y justificación del proyecto.

En el grado en Ingeniería Electrónica Industrial y Automática se abarcan

numerosas áreas de estudio, de las cuales el presente proyecto se enmarca en

el ámbito de la visión artificial (VA).

El presente trabajo aborda el desarrollo de un sistema que, mediante técnicas

de VA, sea capaz de identificar la postura o posición de personas en entornos

domésticos. Más concretamente, este proyecto surge de la propuesta del grupo

de investigación dentro del departamento de Ingeniería de Sistemas y

Automática, el cual, está trabajando en la atención a personas mayores en el

hogar. Para ello disponen de un robot móvil capaz de navegar por las distintas

estancias de la casa, tomar imágenes e incluso realizar una primera detección

de personas. El propósito final sería poder caracterizar la posición e identificar

posibles caídas dentro del hogar.

A continuación, se exponen algunos datos y cifras que subrayan la importancia

de abordar este tema.

1.1.1. Datos, cifras y magnitud del problema.

Uno de los propósitos de este proyecto es tener la capacidad de identificar

caídas, las cuales, según el Instituto Nacional de Seguridad y Salud en el Trabajo

(INSS) [1], son el tipo de accidente más común en el hogar y representan casi la

mitad de los accidentes domésticos y de ocio. En la figura 1 quedan

representados estos datos, donde se pueden observar en el eje de ordenadas

los tipos de accidentes y en el eje de abscisas el porcentaje en el que se dan.

14

Figura 1: Distribución de los tipos de accidentes domésticos y de ocio en porcentaje. (Fuente: [1])

Según la Organización Mundial de la Salud [2]:

• Cada año se producen 37,3 millones de caídas cuya gravedad requiere

atención médica. Un estudio publicado en la revista "Journal of Trauma

and Acute Care Surgery" encontró que las personas que fueron atendidas

dentro de la primera hora después de una caída tenían un 30% menos de

probabilidades de morir que las que no lo fueron.

• Las caídas son la segunda causa mundial de muerte por traumatismos

involuntarios. Se calcula que anualmente fallecen en todo el mundo unas

684 000 personas debido a caídas y que más de un 80% de estos

accidentes se registran en países de ingresos medianos y bajos.

Otro gran problema de la sociedad actual es el tiempo que se pasa sentados en

casa. Según la Pontificia Universidad Católica de Chile [3], estudios

internacionales recientes demuestran que los adultos pueden estar sentados

entre 7 y 12 horas al día. Este nivel de sedentarismo está relacionado con el

trabajo remoto, el ocio digital y la disminución de actividades físicas diarias, como

desplazarse a la oficina o realizar tareas domésticas manuales.

Todo esto tiene impactos negativos en la salud, destacando la vulnerabilidad de

las personas mayores a sufrir mayor riesgo de enfermedades cardiovasculares,

diabetes, pérdida de masa muscular y problemas de salud mental, como

ansiedad o depresión.

Para mitigar estos riesgos, se recomienda interrumpir periodos prolongados de

estar sentado con pausas activas, como caminar cinco minutos cada hora, usar

escritorios ajustables, o realizar ejercicios ligeros en casa.

15

Tal como se muestra en la figura 2, los hombres pasan la mayor parte del tiempo

de su actividad personal sentados, siendo incluso superior el porcentaje al

tiempo que pasan de pie. Las mujeres pasan de pie casi la mitad de su jornada,

sin embargo, el tiempo que pasan sentadas también es considerablemente

elevado, quedando muy cercano al tiempo de pie.

Figura 2: Actividad física en el trabajo o actividad principal en población de 15 y más años ocupada,
estudiante o dedicada a labores del hogar, según sexo (%). España 2017. (Fuente: [4])

Sin considerar la población entre 0-4 años, el sedentarismo aumenta con la edad

hasta edades medias de la vida, es algo menor en décadas siguientes y remonta

nuevamente con la edad. En edades avanzadas a partir de los 74, ambos sexos

sufren un fuerte incremento, más acentuado en mujeres. (Figura 3).

Figura 3: Sedentarismo en tiempo de ocio en población de 0 y más años según sexo y grupo de edad (%).
España 2017. (Fuente: [4])

16

1.1.2. Robot Temi.

Las imágenes desde las que se analizará y clasificará la posición serán tomadas

desde un robot asistente de IA personal 100% autónomo. El nombre del modelo

es “Temi” y está diseñado para la asistencia e interacción con los humanos.

El robot consta de una pantalla multitáctil capacitiva para una interfaz intuitiva, la

cual, se puede inclinar con un rango de movimiento – 15°~+55°. En la parte

superior de esta pantalla se encuentra la cámara RGB desde la que está

pensado tomar las fotos [5].

El sistema diseñado no solo será válido para el robot sino para cualquier otro tipo

de cámara, teniendo en cuenta problemas como que la persona pueda quedar

muy pequeña en la imagen.

La figura 4 muestra una escena del robot Temi en el hogar, donde se puede ver

también su estructura.

Figura 4: Robot Temi en el hogar. (Fuente: [5])

Temi cuenta con varias funciones más como control remoto, seguimiento,

navegación por el hogar y servicios web.

17

1.2. Objetivos.

El objetivo general del presente trabajo consiste en desarrollar un sistema de

visión que, a partir de la imagen de una persona, permita caracterizar su postura

corporal. El sistema desarrollado deberá ser capaz, a grandes rasgos, de

clasificar en una imagen la pose de una persona (“de pie”, “sentado”, “tumbado”

o “caída”) y así poder “monitorizar” cómo se encuentra la persona, detectar estas

posibles caídas y poder llegar a controlar la inactividad prolongada.

Se analizarán imágenes que contengan únicamente a una persona, alineándose

así con el objetivo principal de diseñar una solución optimizada para aquellos

usuarios que viven solos, adecuando el sistema para este escenario particular.

Esto permitirá un análisis más preciso y adaptado a las necesidades de este

grupo específico.

Se pasará por varias etapas:

• Detección de personas: se hará uso de diferentes técnicas de VA como

redes neuronales convolucionales o modelos preentrenados para

garantizar una alta precisión y eficiencia.

• Detección puntos clave: utilizando las técnicas anteriores y habiendo

filtrado la detección de personas, se pasará a detectar diferentes puntos

clave del cuerpo o extraer características que ayuden a poder clasificar la

pose presente en la imagen.

• Selección de características relevantes: se seleccionarán y filtrarán que

características son más relevantes para utilizar en la clasificación, como

ángulos de articulaciones, relaciones alto-ancho del cuerpo, etc. Se

analizarán mediante algún método cuáles son las más significativas y

distintivas de cada postura y así mejorar la robustez del sistema.

• Métodos de clasificación: por último, se diseñará e implementará un

modelo de clasificación mediante uno o varios métodos que, a partir de

las características extraídas de la imagen, permitan determinar de manera

eficiente la postura (“de pie”, “sentado”, “tumbado”, “caído”, “sin

persona”…). Se explotarán enfoques como métodos de clasificación

manual a partir de la selección de características relevantes y máquinas

de soporte vectorial (SVM).

18

1.3. Impacto en la mejora de la sociedad.

Los objetivos que se pretenden cumplir en el presente trabajo tienen un impacto

significativo en la mejora de la sociedad y están alineados con varios valores de

acuerdo con los objetivos presentes en la Agenda 2030.

1.3.1. Salud y bienestar.

La salud y el bienestar son el objetivo con el que se contribuye de manera más

directa y sobre el cual se tiene un impacto más representativo.

Este trabajo busca garantizar una mejora en el bienestar para todas las

personas, más específicamente mediante la prevención y el monitoreo de

situaciones de riesgo. Estos dos aspectos son claves y particularmente sensibles

en personas de avanzada edad y que viven solas.

• Detección de caídas, las cuales en una persona mayor o con movilidad

reducida pueden tener consecuencias graves. El proyecto pretende

abordar directamente este aspecto con una detección temprana

ayudando a disminuir los riesgos del accidente incluso llegando a salvar

vidas.

• Por otro lado, está la monitorización. Como se ha dicho anteriormente, la

inactividad prolongada está asociada con problemas graves de salud.

Mediante poder identificar patrones sedentarios, se podrían emitir

recomendaciones para fomentar el movimiento, contribuyendo al

bienestar del usuario.

• Al detectar posibles accidentes, el sistema puede dar mayor seguridad y

tranquilidad tanto al usuario como a familiares. Este aspecto es

especialmente relevante en el caso de personas mayores.

1.3.2. Industria, innovación e infraestructura.

Otro objetivo con el que se relaciona estrechamente es con el de industria,

innovación e infraestructura, pues integra tecnologías avanzadas y fomenta la

innovación en el ámbito de la salud y el bienestar.

19

• Al emplear herramientas avanzadas de VA para la detección de personas

y extracción de características del cuerpo, el sistema que se desarrolla en

el presente trabajo aplica tecnologías de última generación a un contexto

directamente práctico. Esto refuerza y ayuda a demostrar cómo la

innovación tecnológica puede abordar problemas y desafíos reales,

impulsando a su vez la investigación y el desarrollo (I+D).

• El proyecto tiene el potencial de ser implementado mediante un coste

asumible. Se logra así fomentar una industria inclusiva, haciendo la

tecnología y la innovación más accesibles al público general.

• También se promueve la integración tecnológica en los hogares,

convirtiéndolos en espacios más seguros y adaptados a las necesidades,

dando un paso hacia la creación de infraestructuras domésticas

resilientes.

1.3.3. Reducción de desigualdades.

El trabajo contribuye a este objetivo desde varios puntos, eliminando barreras

sociales y no discriminando por género ni edad.

• El modelo creado podrá llegar a ser implementado sin un alto costo,

estando así disponible para personas con recursos limitados. Esto ayuda

a cerrar la brecha tecnológica entre quienes pueden permitirse sistemas

de seguridad avanzados y quienes no.

• El sistema asegura que cualquier persona, independientemente de su

edad o género, pueda beneficiarse de estas medidas preventivas que se

ofrecen.

1.3.4. Ciudades y comunidades sostenibles.

Por último, como se ha citado anteriormente, el proyecto ayuda a la creación de

hogares más seguros, inteligentes y adaptados a las necesidades, mejorando la

calidad de vida. Además, fomenta la autonomía de las personas, reduciendo la

necesidad de atención continua y favoreciendo el seguir formando parte activa

de la comunidad sin depender de otros.

20

1.4. Estructura de la memoria.

El presente trabajo se estructurará de aquí en adelante en diferentes partes, las

cuales cada una de ellas abordará los diferentes puntos de estudio y etapas del

proyecto.

• Capítulo 2: Bases teóricas para la caracterización postural.

En este capítulo se establecen los conceptos clave para comprender las

tecnologías del proyecto, comenzando con la VA y sus aplicaciones. Se

explorarán los métodos de aprendizaje automático y su evolución hacia el

aprendizaje profundo, con énfasis en las redes convolucionales (CNN).

Finalmente, se aborda el concepto de pose, la postura corporal y la detección de

esta, aspectos fundamentales para la clasificación en el proyecto.

• Capítulo 3: Panorama actual de la visión artificial en la

caracterización de la postura corporal.

Se analiza el panorama actual de la VA en la caracterización de la postura

corporal, los avances recientes, metodologías clave y cómo estas tecnologías

mejoran la precisión en la caracterización de posturas, además de discutir los

retos y oportunidades en el campo, y cómo el presente proyecto aborda estos

desafíos.

• Capítulo 4: Desarrollo de un sistema para la clasificación de pose.

El apartado de desarrollo de un sistema para clasificación de pose describe el

diseño e implementación del sistema, comenzando con la definición de requisitos

y la selección de la mejor estrategia. Se detallan las herramientas utilizadas,

como OpenCV, MediaPipe Pose, YOLO y SVM. Luego, se explica el proceso de

clasificación de la postura, que incluye la obtención de datos, el uso de

MediaPipe y YOLO, el almacenamiento y análisis de características, y el

entrenamiento del SVM, finalizando con la selección de características

relevantes para optimizar el modelo.

• Capítulo 5: Resultados obtenidos.

En este apartado se muestran a los resultados del sistema de clasificación de

postura desarrollado, evaluando el rendimiento de MediaPipe y YOLO de manera

independiente y comparando ambos métodos. Se explica la implementación de

un sistema de decisión que combina las fortalezas de cada método, y se analizan

los resultados del SVM utilizando datos combinados y separados por ambos

21

métodos. Además, se describe la integración mediante la fusión de resultados y

el uso del SVM para la clasificación final.

La validación del sistema incluye la evaluación en imágenes de prueba y la

comparación entre métodos individuales y la combinación final. Finalmente, se

presentan los resultados en el conjunto de test, destacando la efectividad y el

buen funcionamiento del sistema.

• Capítulo 6: Conclusiones y líneas futuras.

El apartado de conclusiones y líneas futuras resume los hallazgos clave del

proyecto y las conclusiones obtenidas. También plantea posibles líneas de

trabajo y mejoras futuras, indicando áreas de expansión y optimización del

sistema, así como nuevas investigaciones o aplicaciones derivadas de los

avances alcanzados.

• Capítulo 7: Bibliografía.

La Bibliografía recoge todas las fuentes consultadas y citadas en el trabajo,

incluyendo artículos, libros, páginas webs y otros recursos que respaldan la

investigación, garantizando la transparencia y validez del contenido.

• Capítulo 8: Anexos.

El apartado de Anexos proporciona información adicional que respalda el

desarrollo del proyecto, incluyendo un resumen de los códigos desarrollados y la

lista de librerías utilizadas.

22

2. Marco teórico.

2.1. Visión artificial.

La Visión Artificial en sus distintas variantes (visión por computador, visión

máquina, procesamiento de imágenes y VA propiamente dicha) es una disciplina

en auge por sus innumerables aplicaciones en robótica, automatización,

inspección, control de calidad, seguridad, aplicaciones espaciales, medicina,

entretenimiento, etc. [6]. Persigue extraer información del mundo físico a partir

de imágenes, utilizando un sistema de computación. Desde un punto de vista

más ingenieril, un sistema de visión es un sistema autónomo que realiza algunas

de las tareas del sistema visual humano. Las operaciones que desarrollan los

sistemas de visión pueden ir desde la simple detección de objetos sencillos hasta

la interpretación tridimensional de escenas complejas.

El siguiente esquema, (figura 5), muestra cuáles son las etapas comunes que

sigue un sistema de visión.

Figura 5: Etapas de un sistema de visión. (Fuente: Elaboración propia)

2.1.1. Progresos de la visión artificial.

En la actualidad, la VA está presente en nuestras vidas en la mayoría de los

ámbitos, desde la seguridad, la medicina, la inspección o la navegación

automática.

Dentro de la VA, uno de los avances más significativos es la incorporación del

aprendizaje profundo. Este enfoque permite a las máquinas u ordenadores

aprender de grandes conjuntos de datos y mejorar su capacidad para reconocer

patrones y objetos en imágenes. En lugar de decirle al ordenador exactamente

qué hacer, esta técnica le permite aprender y mejorar por sí mismo a medida que

procesa más información. Esto ha revolucionado aplicaciones como la detección

23

de objetos, la clasificación de imágenes y la identificación de rostros, mejorando

significativamente su precisión.

2.2. Aprendizaje automático.

El machine learning (aprendizaje automático) es una rama de la inteligencia

artificial que se centra en la creación de sistemas capaces de aprender

automáticamente a partir de datos, sin necesidad de ser programados

explícitamente. Este aprendizaje se basa en algoritmos que identifican patrones

en los datos y los utilizan para realizar predicciones o tomar decisiones.

El aprendizaje automático clásico, o "no profundo", depende más de la

intervención humana para aprender. Los expertos humanos determinan el

conjunto de características para comprender las diferencias entre las entradas

de datos, lo que suele requerir datos más estructurados para aprender.

2.2.1. Métodos de machine learning.

Los modelos de machine learning se dividen en tres categorías principales. [7]

• Machine learning supervisado: El aprendizaje supervisado se define

por su uso de conjuntos de datos etiquetados para entrenar algoritmos

que clasifiquen datos o predigan resultados con precisión. A medida que

se introducen datos de entrada en el modelo, este ajusta sus

ponderaciones hasta que se han ajustado adecuadamente. Algunos

métodos utilizados en el aprendizaje supervisado son las redes

neuronales, el clasificador bayesiano ingenuo, la regresión lineal y

logística, el bosque aleatorio y la máquina de vectores de soporte.

• Machine learning no supervisado: El aprendizaje no supervisado, utiliza

algoritmos de machine learning para analizar y agrupar conjuntos de

datos no etiquetados. Estos algoritmos descubren patrones ocultos o

agrupaciones de datos sin necesidad de intervención humana. La

capacidad de este método para descubrir similitudes y diferencias en la

información lo hace ideal para el análisis exploratorio de datos, las

estrategias de venta cruzada, la segmentación de clientes y el

reconocimiento de imágenes y patrones. El análisis de componentes

principales (PCA) y la descomposición en valores singulares (DVE) son

dos métodos habituales para ello. Otros algoritmos utilizados en el

https://www.ibm.com/es-es/topics/supervised-learning
https://www.ibm.com/es-es/topics/unsupervised-learning

24

aprendizaje no supervisado son las redes neuronales, el k-means y los

métodos de agrupación probabilística.

• Aprendizaje semisupervisado: El aprendizaje semisupervisado ofrece

un término medio entre el aprendizaje supervisado y el no supervisado.

Durante el entrenamiento, utiliza un conjunto de datos etiquetados más

pequeño para guiar la clasificación y la extracción de características a

partir de un conjunto de datos más grande sin etiquetar. El aprendizaje

semisupervisado puede resolver el problema de no disponer de

suficientes datos etiquetados para un algoritmo de aprendizaje

supervisado. El self-training y el co-training son métodos de aprendizaje

semisupervisado.

2.2.2. Aprendizaje profundo. Deep learning.

El deep learning es un subconjunto del machine learning que utiliza redes

neuronales multicapa, llamadas redes neuronales profundas, para simular el

complejo poder de toma de decisiones del cerebro humano. Algunas formas de

deep learning impulsan la mayoría de las aplicaciones de inteligencia artificial

(IA) en nuestra vida actual.

La principal diferencia entre el deep learning y el machine learning es la

estructura de la arquitectura de red neuronal subyacente. Los

modelos tradicionales de machine learning “no profundos” utilizan redes

neuronales simples con una o dos capas computacionales. Los modelos de deep

learning utilizan tres o más capas, pero normalmente cientos o miles de capas,

para entrenar a los modelos. [8]. La arquitectura que siguen estas redes

neuronales se muestra en el siguiente gráfico (figura 6).

Figura 6: Arquitectura de red neuronal típica. (Fuente: Elaboración propia)

https://www.ibm.com/es-es/topics/machine-learning
https://www.ibm.com/es-es/topics/neural-networks
https://www.ibm.com/es-es/topics/neural-networks
https://www.ibm.com/es-es/topics/artificial-intelligence
https://www.ibm.com/es-es/topics/artificial-intelligence
https://www.ibm.com/blog/machine-learning-types/

25

2.2.3. Redes convolucionales (CNN).

Una red neuronal convolucional (CNN) es un tipo de red neuronal diseñada

específicamente para procesar datos con estructura espacial, como imágenes.

Las CNN son uno de los pilares del deep learning en aplicaciones de VA debido

a su capacidad para identificar patrones espaciales como bordes, texturas, y

objetos en imágenes, y se construyen a partir de una combinación de capas

especializadas que procesan las imágenes de forma jerárquica. [9].

• Capa convolucional: Es la base de las CNN. Esta capa aplica filtros

(kernel) a la imagen de entrada para extraer características locales, como

bordes o texturas. Cada filtro es una matriz pequeña que se desliza por la

imagen (operación de convolución), generando un mapa de

características.

• Capa de activación: Se aplican después de la convolución para introducir

no linealidad al modelo.

• Capa de pooling: Reduce las dimensiones de los mapas de

características, conservando la información más relevante. Esto

disminuye el número de parámetros y evita el sobre ajuste.

• Capa de normalización: Ayuda a mejorar la velocidad de convergencia

durante el entrenamiento y a evitar problemas como el sobreajuste.

Mantiene las activaciones dentro de un rango controlado, mejorando la

estabilidad del entrenamiento.

• Capas completamente conectadas: Estas capas están al final de la red

y conectan todas las neuronas. Su función es combinar las características

aprendidas para realizar la clasificación o regresión.

• Capa de salida: Genera las predicciones finales, por ejemplo, la

probabilidad de que una imagen pertenezca a una clase específica (como

"de pie", "sentado", ”tumbado” o "caído").

Estas capas se estructuran típicamente como se muestra en la figura 7.

Figura 7: Red con múltiples capas convolucionales. (Fuente: [9])

26

2.3. Postura corporal.

Concretamente, en este trabajo se hará uso de la VA para detectar y clasificar la

postura corporal de una persona.

La postura corporal es el resultado de la posición de todas las articulaciones del

cuerpo y cómo estas consiguen situar las extremidades con respecto al tronco

en un determinado momento, lo que hace entender cómo se encuentra situada

la persona en el espacio que lo rodea [10].

La identificación de la pose humana es una habilidad natural que se desarrolla

desde temprana edad. El cerebro humano está capacitado para reconocer y

entender las posturas corporales de las personas que nos rodean y ser capaz de

identificar si se encuentran “de pie”, “sentado”, “tumbado” o “caída” en una

mínima fracción de segundo. Es una combinación de observación visual,

experiencia previa, contexto y comprensión de la expresión corporal y gestual.

El problema surge cuando se quiere que esto no lo haga una persona sino un

ordenador mediante técnicas de VA. Es aquí donde hay que trasladarse al origen

y a las técnicas básicas que se utilizan para determinar cómo se encuentra una

persona situada en el espacio.

Algunas de las técnicas básicas que utilizan las personas son:

• Observación visual: Nuestros ojos observan la posición de las diferentes

partes del cuerpo de una persona.

• Patrones de movimiento: Podemos identificar la pose de alguien

observando cómo se mueve y posiciona sus partes del cuerpo.

• Contexto y experiencia previa: Nuestra experiencia y conocimiento del

mundo ayudan a comprender la pose de una persona en un contexto

específico.

• Comparación con nuestro propio cuerpo: A menudo, nos relacionamos

con la pose de una persona comparándola con nuestra propia experiencia

corporal. Esto ayuda a comprender mejor la posición y el movimiento de

los demás.

2.3.1. Detección de la postura.

La detección de la postura humana es una tarea bastante relevante en el campo

de la visión por computador, que consiste en identificar la postura de una figura

humana a partir de una imagen. Dicha pose se define a partir de una serie de

27

puntos clave, que habitualmente serán articulaciones, de forma que el objetivo

será encontrar la posición (x, y) de cada uno de esos puntos.

Es un campo emergente en la visión por ordenador en el que se utilizan

algoritmos de aprendizaje automático para detectar y rastrear la orientación y

disposición de diferentes partes del cuerpo en una imagen. La clasificación de

postura puede ser utilizada para una variedad de aplicaciones, desde el análisis

de movimiento en deportes y rehabilitación física hasta la interacción hombre-

máquina y la realidad aumentada.

Una de las aplicaciones más importantes y prometedoras y en la que se centra

en parte este trabajo, es la detección de caídas. Las caídas son un problema

grave, especialmente para las personas mayores. La detección temprana y

precisa de las caídas puede permitir una respuesta rápida y disminuir las

consecuencias del accidente. La VA, combinada con la clasificación de postura,

puede desempeñar un papel crucial para resolver este problema.

El uso de la clasificación de postura para la detección de caídas tiene varias

ventajas:

• Es poco intrusivo, ya que no requiere que las personas lleven dispositivos

de seguimiento.

• Puede proporcionar una detección de caídas más precisa al analizar la

postura del cuerpo y los movimientos en detalle.

• También puede ayudar a entender el contexto de la caída, lo que puede

ser útil para la prevención de caídas en el futuro.

Figura 8: Ejemplo de detección de pose con VA. (Fuente: [11])

La imagen anterior (figura 8) muestra un ejemplo de cómo se visualiza la

detección de la pose y los puntos clave del cuerpo mediante VA.

28

3. Panorama actual de la visión artificial en la

caracterización de la postura corporal.

El análisis corporal de personas mediante VA ha sido un área de creciente interés

en los últimos años con aplicaciones en muchos campos, por ello, en este

apartado se analizarán los enfoques más relevantes de la literatura sobre áreas

de estudio similares a las de este proyecto, abarcando desde la extracción de

características hasta la clasificación de posturas.

En la actualidad existen numerosas técnicas que permiten reconocer la postura

y han surgido muchos proyectos y aplicaciones que utilizan estas herramientas

para poder realizar detecciones precisas sobre imágenes en diversas

situaciones. La caracterización de la postura se utiliza en ámbitos, desde

animación cinematográfica o videojuegos hasta aplicaciones en medicina.

Existen varios factores que complican la correcta caracterización de la postura,

como la visibilidad, la iluminación, la obstaculización, la variedad de tamaños del

cuerpo o la mala calidad de imagen. Por ello, se han desarrollado técnicas tanto

a nivel de software, con algoritmos de aprendizaje profundo, como a nivel de

hardware, a través de cámaras y sensores.

3.1. Algoritmos y sistemas para la detección de la

postura.

• MediaPipe Pose.

En este proyecto se utilizará MediaPipe Pose como modelo para la estimación

de la postura humana.

Actualmente, existen otros algoritmos y modelos de detección de posturas como

OpenPose o AlphaPose, pero se decide utilizar MediaPipe Pose por su eficiencia

y bajos recursos computacionales comparado con otros modelos que, aunque

más precisos, requieren más potencia, lo que puede ser un desafío en la

detección de caídas la cual, exige procesamiento rápido. Aparte, se cuenta con

experiencia previa trabajando con esta herramienta, lo que facilita su uso a lo

largo del proyecto.

Esta herramienta forma parte del entorno de trabajo de MediaPipe. Se

profundizará más en detalle en el apartado correspondiente 4.4.3.

29

• OpenPose.

Es un sistema de estimación de postura desarrollado por investigadores de la

Universidad Carnegie Mellon (CMU) que puede detectar y rastrear el cuerpo

humano en tiempo real y determinar con precisión su postura en un espacio 3D.

Es conocido por ser el primer sistema de estimación de postura de varias

personas en tiempo real que detecta con precisión los puntos clave del cuerpo

humano, las manos, el rostro y los pies en imágenes individuales. [12].

La figura 9 muestra un ejemplo de estimación de la pose en 3D utilizando

OpenPose y una cámara estéreo ZED que permite capturar imágenes en 3D y

estimar la profundidad en tiempo real, siendo ideal para aplicaciones de visión

artificial, robótica y realidad aumentada.

Figura 9: Ejemplo de estimación de pose utilizando OpenPose. (Fuente: [13])

OpenPose utiliza una red neuronal convolucional (CNN) para analizar imágenes

y extraer "mapas de características", que destacan aspectos como bordes y

texturas. A continuación, procesa estos mapas mediante una CNN especializada

en varias etapas para generar dos resultados clave: mapas de confianza de las

partes (que indican la probabilidad de la ubicación de las partes del cuerpo) y

campos de afinidad de las partes (que muestran la orientación y las conexiones

entre las partes del cuerpo). Finalmente, un algoritmo toma la opción óptima más

inmediata en cada paso con la esperanza de encontrar un óptimo global para la

estimación de la pose.

• AlphaPose.

AlphaPose es una avanzada herramienta para la estimación de posturas

humanas creada por la Academia China de Ciencias. Emplea un algoritmo de

aprendizaje profundo para procesar imágenes o videos y determinar la postura

30

de una o más personas en tiempo real. Esta herramienta está optimizada para

operar en diferentes condiciones, incluyendo escenarios con poca iluminación o

posturas parcialmente ocultas. [14].

Emplea una red neuronal convolucional (CNN) para calcular la postura de las

personas en imágenes o videos. Procesa cada fotograma de la imagen o video,

identificando partes del cuerpo humano como la cabeza, torso y extremidades.

Luego, determina la posición y orientación de cada parte, generando una

estimación global de la postura del cuerpo.

Figura 10: Ejemplo de funcionamiento de AlphaPose. (Fuente: [15])

La figura 10 representa el funcionamiento de AlphaPose. Utilizando un enfoque

ascendente, primero detecta las partes individuales del cuerpo antes de estimar

la pose general, lo que le permite trabajar con múltiples personas en una misma

imagen o video. Además, adopta una técnica basada en mapas de calor,

evaluando la probabilidad de que cada píxel corresponda a una parte específica

del cuerpo.

3.2. Dispositivos para la detección de la postura.

En el ámbito de la detección de la postura humana, no solo el software juega un

papel fundamental, sino que también existen diversas tecnologías de hardware

que permiten realizar esta tarea de manera eficiente. Un ejemplo destacado de

ello es el sensor Kinect, [16].

Desarrollado por Microsoft, ha sido utilizado no solo en videojuegos, sino también

en aplicaciones de visión por computadora y análisis de movimiento. Este

dispositivo integra cámaras, sensores de profundidad y micrófonos para ofrecer

una captura detallada del cuerpo humano, permitiendo el seguimiento de la

31

postura y los movimientos en tiempo real. A través de su capacidad para

reconocer gestos, detectar la posición de las articulaciones y proporcionar datos

tridimensionales, Kinect se convierte en una herramienta esencial para estudios

de biomecánica, rehabilitación, robótica y sistemas de interacción sin contacto,

demostrando que el hardware y el software deben complementarse para lograr

una detección precisa y funcional de la postura humana.

Figura 11: Cámara Kinect en sus versiones 1 y 2. (Fuente: [16])

La figura 11 muestra cómo es la cámara en su versión 1 y 2.

Kinect es capaz de capturar una cantidad increíble de datos. Siempre fijando su

objetivo en las cosas que se mueven en su entorno. Gracias al procesamiento

de estos datos a través de un algoritmo de inteligencia artificial y a métodos de

aprendizaje de máquinas, Kinect puede llegar a mapear los datos visuales que

obtiene a través de sus sensores. El objetivo es ser capaz de detectar a los seres

humanos y entender en qué posición se encuentra cada persona detectada.

La cámara consta de varias partes:

• Cámara de vídeo de color RGB: Funciona a modo de webcam, capturando

las imágenes en vídeo. El sensor Kinect utiliza esta información para

obtener detalles sobre objetos y personas en la habitación.

• Emisor IR: El emisor de infrarrojos es capaz de proyectar una luz infrarroja

en una habitación. Según la luz infrarroja incide sobre una superficie, el

patrón se distorsiona. Esta distorsión es leída gracias a su otro

componente, una cámara de profundidad.

• Cámara de profundidad: Analiza los patrones infrarrojos emitidos por el

emisor y es capaz de construir un mapa 3D de la habitación y de todos

los objetos y personas que se encuentran dentro de ella (figura 12).

• Conjunto de micrófonos: El sensor Kinect tiene incorporado cuatro

micrófonos de precisión capaces de determinar de dónde vienen los

sonidos y las voces. También es capaz de filtrar el ruido de fondo.

• Motor de inclinación: Este motor tiene la capacidad de ajustar sobre la

base, el sensor Kinect. Es capaz de detectar el tamaño de la persona que

está delante, para ajustarse arriba y abajo según convenga.

32

Figura 12: Imagen de profundidad captada por Kinect. (Fuente: [17])

Microsoft liberó el código de Kinect para facilitar su uso en aplicaciones más allá

de los videojuegos, lo que permitió a los desarrolladores crear aplicaciones que

aprovecharan las capacidades de Kinect, como el reconocimiento de gestos y la

captura de movimiento en una variedad de aplicaciones, incluyendo aquellas

para ordenadores, robótica, medicina, investigación y más.

3.3. Trabajos relacionados.

En este apartado, se analizarán dos trabajos que están estrechamente

relacionados con el enfoque de este proyecto y que exploran aspectos similares

en la detección y análisis de la postura humana. A través de la revisión de estos

estudios, se podrá observar cómo se abordan desafíos similares a los del

presente proyecto y se analizará la relevancia que poseen en él.

3.3.1. Reconocimiento de posturas utilizando una

cámara RGB-D.

El trabajo de Elforaici et al. (2018), [18], se centra en la clasificación de posturas

humanas utilizando cámaras RGB-D, una tecnología que combina imágenes en

color (RGB) y en profundidad (D) para capturar una representación 3D de la

escena. El estudio propone un enfoque innovador que integra modelado corporal

3D y aprendizaje profundo para mejorar la precisión en la clasificación de

posturas, incluso en escenarios complejos.

33

Los siguientes esquemas (figura 13 y figura 14), muestran los pasos seguidos

para reconocer la postura a partir de imágenes a color y de profundidad

respectivamente.

Figura 13: Reconocimiento de la postura utilizando imágenes 2D y CNN. (Fuente [18])

Figura 14: Reconocimiento de la postura utilizando características 3D. (Fuente [18])

Metodología del estudio:

El sistema combina técnicas avanzadas para lograr una clasificación precisa y

robusta de posturas en 3D:

• Cámaras RGB-D: Estas cámaras capturan tanto la información visual

como la profundidad de la escena, lo que permite una mejor comprensión

del contexto espacial y el análisis de las posturas humanas desde

diferentes ángulos.

• Redes Neuronales Convolucionales (CNN): Las CNN se utilizan para

extraer características visuales relevantes de las imágenes RGB.

34

• Máquinas de Soporte Vectorial (SVM): Se emplean para clasificar las

posturas extraídas por las redes neuronales, utilizando las características

visuales y espaciales obtenidas a partir de las imágenes RGB-D.

Resultados y aplicaciones:

• Alta precisión en la clasificación de posturas, alcanzando niveles de

exactitud superiores al 90 % en algunos casos.

• Robustez frente a variabilidad, demostrando ser resistente a diferentes

condiciones de luz y a cambios en la postura o escala de la persona.

• Aplicaciones potenciales en áreas como la rehabilitación médica, la

monitorización de pacientes, y sistemas de interacción hombre-

computadora, donde la clasificación de posturas es crucial para la

comprensión de las intenciones y el estado físico del usuario.

Relevancia para este trabajo:

Este estudio es particularmente relevante para este trabajo. Se enfoca en la

clasificación de posturas humanas y utiliza tecnologías similares a las que se

emplean en este proyecto, como las redes neuronales y la captura de

características visuales de las personas.

La idea de combinar información de cámaras RGB-D con modelos de

aprendizaje profundo puede ser un punto de partida valioso para mejorar la

precisión de la detección de posturas y caídas, especialmente al tratar de

reconocer y clasificar posturas en un entorno doméstico con diversas

condiciones de iluminación y disposición del espacio.

Puntos de mejora y limitaciones:

• El trabajo de Elforaici et al., se enfoca en un entorno controlado utilizando

cámaras RGB-D, lo que garantiza condiciones de iluminación y espacios

homogéneos. El presente proyecto está orientado a entornos domésticos

con condiciones de iluminación y fondos variables y complejos y debe

adaptarse de manera más autónoma a estas situaciones.

• El estudio aquí presente no cubre la detección de caídas, sino que se

centra únicamente en la clasificación de posturas más estáticas.

• Otra limitación es el uso de redes neuronales convoluciones entrenadas

para este propósito, lo que lo hace demasiado complejo para los requisitos

que se buscan en este proyecto de simplicidad y robustez.

35

3.3.2. Extracción de características corporales con

MediaPipe y YOLOv5 para la evaluación del rango de

movimiento.

Uno de los estudios más relevantes en la extracción de características corporales

utilizando visión artificial es el trabajo de Zhu et al. (2024), [19], que presenta un

sistema basado en la combinación de MediaPipe y YOLOv5 para evaluar el

rango de movimiento en pacientes con afecciones musculo-esqueléticas, como

problemas en la columna vertebral o el síndrome de hombro congelado.

Metodología del estudio:

El sistema propuesto combina dos enfoques principales para mejorar la precisión

en la detección y análisis del movimiento corporal (figura 15):

• MediaPipe: Se utiliza para la estimación de poses, extrayendo los puntos

clave del cuerpo humano (landmarks) y permitiendo la medición de

distancias, ángulos articulares y posiciones relativas de las extremidades.

• YOLOv5: Actúa como un sistema de detección de objetos, asegurando la

correcta identificación de la persona en la escena y ayudando a reducir el

ruido en la segmentación del cuerpo.

• CBAM (Módulo de Atención de Bloque Convolucional): Se incorpora en

YOLOv5 para mejorar la extracción de información relevante y reducir la

interferencia de elementos de fondo, optimizando la detección de las

articulaciones y la precisión del análisis biomecánico.

Figura 15: Funcionamiento principal del sistema (Fuente: [19])

https://www.nature.com/articles/s41598-024-66221-8

36

Resultados y aplicaciones:

El sistema desarrollado permite realizar una evaluación precisa del rango de

movimiento de los pacientes en un entorno clínico sin necesidad de equipos

especializados como sensores inerciales o cámaras infrarrojas. Gracias a la

combinación de MediaPipe y YOLOv5, se consigue:

• Una extracción robusta de ángulos de articulaciones y distancias entre

puntos clave.

• Un modelo capaz de generalizar bien a distintas condiciones de

iluminación y variabilidad en las posturas.

• Un método menos invasivo y más accesible que los sistemas tradicionales

de análisis del movimiento.

Figura 16: Evaluación de hombro congelado. (Fuente: [19])

La figura 16 muestra: (a) Imágenes de resultado del hombro congelado

generadas al combinar YOLOv5 y MediaPipe; (b) Estructura esquelética humana

generada a partir de la información de puntos clave extraída por MediaPipe; (c)

Cálculo de los ángulos del rango de movimiento del hombro congelado

proyectando los ángulos en planos anatómicos definidos.

37

Relevancia para este trabajo:

Este estudio es particularmente relevante para el desarrollo de sistemas de

caracterización de posturas humanas mediante VA, ya que demuestra la

viabilidad de combinar MediaPipe y YOLO para extraer características del cuerpo

con alta precisión. En el contexto de este trabajo, donde se busca detectar

posturas y caídas en entornos domésticos, una metodología similar podría

aplicarse para mejorar la detección de posiciones.

Puntos de mejora y limitaciones:

• Mientras que este estudio se centra en evaluar el riesgo de movimientos

en pacientes, no cubre las necesidades de con el análisis de esos valores,

clasificar las posturas y detectar caídas.

• El estudio se centra en un contexto médico y clínico, pero no está pensado

para entornos domésticos con el propósito de asistir a personas que viven

solas. Esto implica desafíos adicionales, como condiciones de iluminación

variadas, fondos más complejos y la necesidad de un sistema que

funcione de manera autónoma sin supervisión médica.

38

4. Desarrollo de un sistema para la

clasificación de pose.

4.1. Alternativas analizadas.

En este apartado se exponen las alternativas evaluadas y las distintas etapas

por las que se ha pasado durante el desarrollo del proyecto para alcanzar los

objetivos planteados, así como los criterios de selección que llevaron a la

configuración final del sistema.

Para el desarrollo se ha seguido una metodología de tipo incremental (figura 17),

se ha partido de unas características básicas y según avanzaba el proyecto y se

iban obteniendo distintos resultados satisfactorios, se realizaban cada vez

versiones un poco más complejas y sofisticadas del código hasta conseguir los

requisitos que se exigen. Esto es típico en el desarrollo de un programa, sobre

todo aplicado a la VA, pues, se van probando soluciones nuevas y obteniendo

distintos resultados que te hacen pensar a su vez en nuevas soluciones para los

problemas que van surgiendo o para mejorar la calidad de los resultados

obtenidos.

requisitos

soluciones

pruebasresultados

mejoras

Figura 17: Representación de la metodología aplicada. (Fuente: Elaboración propia).

39

4.1.1. Definición de requisitos.

El objetivo inicial consiste en clasificar la postura de una persona en cuatro

categorías principales: “de pie”, “sentado”, “tumbado” y “caída”. Se buscaba un

enfoque simple y eficaz, que además pudiera implementarse en entornos

domésticos con recursos computacionales limitados.

Las situaciones elegidas para ser analizadas serán aquellas en las que en la

imagen se encuentre una sola persona y principalmente en entornos domésticos.

Esto surge por acercarse durante el desarrollo y las pruebas del programa a las

situaciones reales en las que será implementado y conseguir con ello un mejor

ajuste.

El requisito principal y obligatorio es obtener como respuesta del sistema la

postura detectada de la persona con una buena robustez y fiabilidad.

4.1.2. Exploración inicial de soluciones.

Este tipo de proyectos se puede implementar para trabajar con imágenes

aisladas o con una secuencia definida de imágenes, lo que más comúnmente se

conoce como video. El análisis de video permitiría monitorizar el movimiento

continuo de una persona y detectar cambios bruscos de postura, sin embargo,

este enfoque se aleja del objetivo inicial del proyecto y requiere un mayor

consumo de recursos computacionales, lo que dificultaría su implementación.

Dado que el sistema puede operar eficazmente con imágenes estáticas, se opta

por esta alternativa para simplificar su ejecución, optimizar el uso de recursos y

ajustarse mejor a las condiciones iniciales de las que parte el proyecto.

También es necesario elegir qué clases posturales hay que detectar. Requisito

indispensable del proyecto es detectar y clasificar la pose de una persona en

cuatro clases diferentes, “de pie”, “sentado”, “tumbado” y “caído”, por lo que

diferenciar firmemente las poses principales del proyecto es necesario para

cumplir con el propósito.

Por último, definir qué métodos y herramientas se han analizado para conseguir

cumplir los requisitos que se han definido.

40

• MediaPipe: Usar MediaPipe Pose para obtener datos clave del esqueleto

humano y clasificar posturas basándose en estas coordenadas. Ofrece

una estructura bien definida de puntos clave y es relativamente fácil de

integrar. Se comenzará a trabajar con esta herramienta como una

alternativa prometedora.

• YOLO: Emplear YOLO para detectar y clasificar posturas mediante un

modelo de detección de objetos. Alta fiabilidad en detección de personas

y adaptable para diferenciar entre posiciones generales. También se

integrará al flujo de trabajo para evaluar su rendimiento frente y conjunto

a MediaPipe.

• Red neuronal: Entrenar una red neuronal capaz de clasificar posturas

basándose en imágenes etiquetadas. Este enfoque otorgaría resultados

mejores que otros métodos, pero implica una alta complejidad, requiere

un gran volumen de datos etiquetados y un entrenamiento

computacionalmente costoso. Se descarta debido a la complejidad

innecesaria en comparación con el objetivo del proyecto.

• SVM: Entrenar un clasificador SVM utilizando las características extraídas

por MediaPipe y YOLO. Más sencillo y rápido de entrenar en comparación

con redes neuronales. Ofrece resultados suficientemente precisos para el

propósito del proyecto. Implementar este método logra un balance óptimo

entre simplicidad y eficacia para un método de clasificación autónomo.

Estos métodos y herramientas se explicarán y estudiarán más a fondo en los

apartados siguientes del proyecto.

4.1.3. Selección final.

Tras analizar los métodos y sus combinaciones, se seleccionó el siguiente

enfoque:

▪ Uso conjunto de MediaPipe Pose y YOLO para obtener características

robustas y fiables en diversos escenarios.

▪ Clasificación mediante un SVM, aprovechando su simplicidad y

capacidad de generalización.

▪ Exclusión de métodos no relevantes (video, red neuronal) para

optimizar recursos y alinearse con los objetivos del proyecto.

Esta solución cumple con los requisitos de simplicidad, eficacia y bajo consumo

de recursos. Además, se ajusta al contexto específico de analizar imágenes de

41

personas en entornos domésticos, garantizando un rendimiento adecuado en

situaciones reales.

4.2. Herramientas utilizadas.

A continuación, se profundizará más sobre las herramientas y el entorno utilizado

para la realización del proyecto.

4.2.1. Entorno utilizado.

Para facilitar la gestión de librerías y la aplicación de Python, el primer paso es

realizar la instalación de Anaconda. Anaconda es una distribución de

software libre y de código abierto de los lenguajes Python y R, utilizada

en ciencia de datos y aprendizaje automático. Está orientado a simplificar el

despliegue y administración de los paquetes de software. [20].

En Anaconda se deben instalar todas las librerías necesarias para que el servicio

de Python y el programa realizado funcionen correctamente. Estas librerías se

pueden comprimir en un archivo de instalación para introducirlas

automáticamente, o, por el contrario, realizar la instalación de forma manual una

a una. Las diferentes versiones de los paquetes se administran mediante

el sistema de gestión de paquetes conda, el cual lo hace bastante sencillo de

instalar, ejecutar y actualizar el software. La lista completa de todas las librerías

con su correspondiente versión se podrá encontrar en los anexos.

Una vez instalado Anaconda, debemos instalar una versión de Python.

Python es un lenguaje de programación de alto nivel, interpretado, y de propósito

general. Entre otras características, Python es conocido por ser fácil de aprender

y usar debido a su sintaxis sencilla y legible. Puede utilizarse en diversas áreas

de desarrollo y posee una gran comunidad muy activa y una vasta cantidad de

bibliotecas. En este caso se ha trabajado en la versión Python 3.9.19.

En Anaconda, para ejecutar Python se hará uso del entorno de desarrollo

integrado Spyder, en su versión 5.5.1.

https://es.wikipedia.org/wiki/Distribuci%C3%B3n_de_software
https://es.wikipedia.org/wiki/Distribuci%C3%B3n_de_software
https://es.wikipedia.org/wiki/Software_libre_y_de_c%C3%B3digo_abierto
https://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n
https://es.wikipedia.org/wiki/Python
https://es.wikipedia.org/wiki/R_(lenguaje_de_programaci%C3%B3n)
https://es.wikipedia.org/wiki/Ciencia_de_datos
https://es.wikipedia.org/wiki/Aprendizaje_autom%C3%A1tico
https://es.wikipedia.org/wiki/Paquete_de_software
https://es.wikipedia.org/wiki/Sistema_de_gesti%C3%B3n_de_paquetes
https://es.wikipedia.org/wiki/Conda_(gestor_de_paquetes)

42

4.2.2. OpenCV.

OpenCV es una biblioteca de visión por computadora de código abierto que

permite trabajar con imágenes y videos de una manera muy versátil y eficiente.

Es una herramienta ampliamente utilizada tanto en proyectos académicos como

en aplicaciones comerciales, ya que ofrece funcionalidades para procesar

imágenes, detectar objetos, analizar movimientos, reconocer rostros, entre

muchas otras cosas.

Una de las principales ventajas de OpenCV es su capacidad para procesar datos

en tiempo real, algo esencial en aplicaciones donde la velocidad es clave, como

la detección de personas. Además, es compatible con varios lenguajes de

programación como Python, C++ y Java, lo que facilita su integración en distintos

proyectos. [21].

En este trabajo se utiliza OpenCV para tareas como el preprocesamiento de

imágenes y la visualización de resultados (dibujar cajas delimitadoras o

esqueleto sobre las personas detectadas). También actúa como un puente para

combinar otras herramientas, como MediaPipe y YOLO, permitiendo trabajar de

manera conjunta y eficiente en la caracterización de las posturas de las

personas.

Un aspecto por destacar es cómo trabaja OpenCV con las imágenes, pues será

útil entenderlo para el futuro tratamiento de las características extraídas.

Interpreta cada imagen como una matriz de píxeles. En esta matriz, cada

elemento representa un píxel, y su valor puede variar dependiendo del formato

de la imagen. Por ejemplo, en imágenes a color cada píxel tiene tres valores (R,

G, B), que corresponden a las intensidades de los canales rojo, verde y azul. La

intensidad de cada canal se define en un rango [0-255], donde el 0 representa la

mínima intensidad y el 255 representa la intensidad máxima para ese canal. Así,

un píxel con los siguientes valores en cuanto a color (255,0,0) será plenamente

rojo.

Usa un sistema de coordenadas cartesianas adaptado a las imágenes cuyo

origen (0,0) se fija en la esquina superior izquierda de la imagen, en

consecuencia, el eje X crece hacia la derecha, representando las columnas de

la matriz y el eje Y crece hacia abajo, representando las filas de la matriz.

La siguiente ilustración (figura 18) representa el sistema de coordenadas que

sigue OpenCV y el valor de color de 3 píxeles presentes en la imagen.

43

Figura 18: Sistema de coordenadas y matriz de píxeles de OpenCV. (Fuente: Elaboración propia)

4.2.3. MediaPipe y MediaPipe Pose.

MediaPipe es un conjunto de herramientas de código abierto diseñado para

facilitar el desarrollo de soluciones de VA en tiempo real. Ofrece una colección

de soluciones listas para usar en tareas como el reconocimiento facial, el

seguimiento de gestos, la detección de objetos y el seguimiento del cuerpo

humano. [22].

Gracias a su funcionalidad modular y a su compatibilidad con diversas

plataformas, MediaPipe permite a los desarrolladores crear aplicaciones

avanzadas con gran flexibilidad y eficacia. Lo que hace que MediaPipe sea

especialmente importante (y útil) es su capacidad para simplificar el proceso de

desarrollo de la VA, ofreciendo servicios optimizados para analizar flujos y

mejorar la calidad de las soluciones. Al ofrecer soluciones preconfiguradas y

optimizadas, se reduce el tiempo y el esfuerzo necesarios para integrar

complejas funciones de procesamiento visual en las aplicaciones. Además, su

arquitectura modular permite una personalización sencilla y una integración

perfecta con otras tecnologías, lo que proporciona una potente plataforma para

innovaciones en campos tan diversos como la realidad aumentada, las

aplicaciones sanitarias y mucho más.

En la figura 19 se muestra un esquema de cómo funciona MediaPipe y las etapas

por las que pasa el procesamiento de la imagen, donde se transforma la imagen

original para ajustarla al modelo, luego se convierte en un tensor (estructura

numérica multidimensional) para su procesamiento, a continuación, el modelo

realiza el análisis sobre el tensor, generando una salida que se traduce en

landmarks (puntos clave) que se combinan con la imagen original para generar

la imagen procesada.

44

Figura 19: Gráfico que muestra cómo funciona MediaPipe. (Fuente: Elaboración propia)

En este caso se ha hecho uso de MediaPipe Pose. Este es un modelo de visión

por computadora específico de MediaPipe diseñado para detectar la pose

corporal de una persona en imágenes o videos en tiempo real. El modelo está

entrenado para identificar puntos clave del cuerpo (figura 20), proporcionando

una representación precisa de la posición y la orientación de una persona. Este

modelo es muy útil para aplicaciones como el análisis de la postura, la detección

de actividades deportivas, el seguimiento de movimientos y más.

Figura 20: 33 Puntos de referencia corporales detectados por MediaPipe Pose. (Fuente: [23])

MediaPipe Pose recibe una imagen o video en tiempo real y se realiza una serie

de transformaciones en la imagen como redimensión y normalización de colores

para que sea adecuada para el proceso de detección y reducir así el tiempo de

45

procesamiento. Se identifica la región de interés (ROI) que contiene a la persona

para limitar el espacio de búsqueda, permitiendo enfocarse en el cuerpo humano

y no en toda la imagen. Se utiliza una red neuronal especializada para realizar la

detección de los 33 puntos clave del cuerpo humano. A estos puntos clave

detectados se les denomina “landmarks” y son las coordenadas que representan

las ubicaciones específicas del cuerpo humano.

Tras la detección de los puntos clave, se realiza un proceso de inferencia para

determinar con precisión las posiciones de los puntos, lo que permite que el

modelo prediga la posición de las articulaciones y extremidades de una persona

en relación con el cuerpo entero, incluso si la persona está parcialmente oculta

o en una posición difícil de ver.

Por último, se realiza un posprocesamiento para evitar fluctuaciones o ruido en

los resultados utilizando filtros de suavizado que mejoran la estabilidad de los

landmarks y se dibujan los puntos clave extraídos sobre la imagen original,

mostrando visualmente la posición de las articulaciones y las partes del cuerpo.

Con estos resultados obtenidos se puede hacer uso de las coordenadas de cada

landmark para utilizarlo en diferentes aplicaciones como el análisis de postura.

En la figura 21 se muestran los puntos clave dibujados en una imagen ejemplo.

Figura 21: Puntos de referencia de la postura corporal en una imagen. (Fuente: Elaboración propia)

46

MediaPipe es extremadamente eficiente incluso en dispositivos con recursos

limitados gracias a su diseño optimizado. Tiene herramientas y bibliotecas que

facilitan la integración en proyectos de VA y es compatible con plataformas como

Python. Está entrenando con grandes conjuntos de datos de imágenes de

personas, lo que permite obtener resultados precisos sin necesidad de entrenar

un modelo desde cero.

La tabla 1 recoge algunas de las ventajas y desventajas de trabajar con

MediaPipe Pose:

VENTAJAS DESVENTAJAS

Utiliza modelos avanzados de
aprendizaje profundo que proporcionan
estimaciones precisas de las poses
humanas, incluso en escenarios
desafiantes como posiciones ociosas o
dinámicas.

Está diseñado para analizar una sola
persona por imagen o cuadro, lo que lo
hace inadecuado para escenarios con
múltiples sujetos.

MediaPipe Pose está optimizado para
funcionar en tiempo real, incluso en
dispositivos con recursos limitados como
smartphones.

Su precisión puede disminuir en
entornos con poca luz o iluminación
desigual.

Funciona en diferentes plataformas,
incluyendo Android, iOS, Python y
JavaScript, lo que facilita la
implementación en diversas
aplicaciones.

Requiere imágenes o videos de alta
resolución para un rendimiento óptimo,
lo que puede no ser práctico en
dispositivos de baja gama.

Ofrece un modelo listo para usar,
reduciendo el esfuerzo de
entrenamiento y etiquetado de datos.

Puede fallar al estimar poses cuando
partes del cuerpo están ocluidas (por
ejemplo, cuando los brazos cruzan el
torso).

Incluye una API bien documentada y
fácil de implementar, lo que permite a
los desarrolladores integrar pose
estimation rápidamente en proyectos.

Está entrenado principalmente en datos
que reflejan poses humanas generales;
puede no ser preciso en poses muy
inusuales o extremas.

Tabla 1: Ventajas y desventajas de MediaPipe Pose.

4.2.4. YOLO y YOLOv3.

Los sistemas de clasificación de objetos, utilizados por los programas

de inteligencia artificial, tienen como objetivo percibir objetos específicos de una

clase como sujetos de interés. Estos sistemas clasifican los objetos de las

https://viso.ai/deep-learning/artificial-intelligence-types/

47

imágenes en grupos que colocan juntos a los objetos con características

similares y dejan de lado a los demás, a menos que estén programados para

hacer lo contrario. Los grupos resultantes ayudan a identificar y categorizar los

objetos en función de sus características, lo que contribuye a una comprensión

más matizada de la clase prevista a la que pertenece cada objeto.

El algoritmo You Only Look Once (YOLO), es un sistema de código abierto

para detección de objetos en tiempo real, el cual hace uso de una única red

neuronal convolucional para detectar objetos en imágenes [24]. Para su

funcionamiento, la red neuronal divide la imagen en regiones, prediciendo

cuadros de identificación y probabilidades por cada región. Las cajas, son

ponderadas a partir de las probabilidades predichas. Estas cajas también

denominadas “bounding boxes”, encierran al objeto detectado y se definen

mediante cuatro parámetros principales, coordenada x del centro de la caja,

coordenada y del centro de la caja, ancho de la caja y alto de la caja (figura 22).

El algoritmo aprende representaciones generalizables de los objetos,

permitiendo un bajo error de detección para entradas nuevas, diferentes al

conjunto de datos de entrenamiento.

Figura 22: Ejemplo de resultado de detección de YOLO. (Fuente: [25])

Como es habitual en los detectores de objetos, las características aprendidas

por las capas convolucionales se pasan a un clasificador que realiza la predicción

de detección. YOLO tiene la ventaja de ser mucho más rápida que otras redes y,

aun así, mantiene la precisión.

https://es.wikipedia.org/wiki/Detecci%C3%B3n_de_objetos
https://es.wikipedia.org/wiki/Red_neuronal_artificial

48

El modelo de detección de objetos puede observar la imagen completa en el

momento de la prueba. YOLO y otros algoritmos “puntúan” las regiones en

función de sus similitudes con clases predefinidas. Las regiones con

puntuaciones altas se consideran detecciones positivas de la clase con la que

se identifican más estrechamente. Este mecanismo de puntuación, que implica

propuestas regionales, permite la detección precisa y eficiente de objetos en

varias escenas.

Una de las versiones de YOLO y la utilizada en este trabajo es YOLOv3. Joseph

Redmon y Ali Farhadi crearon la primera versión de los algoritmos YOLO en

2016. Los dos lanzaron la versión 3 dos años después, en 2018. YOLOv3 es una

versión mejorada de YOLO y YOLOv2.

YOLOv3 es una versión plenamente probada por científicos y desarrolladores y

existen numerosos datasets o conjuntos de datos que han sido optimizados para

esta versión en concreto. Es una versión estable y madura que ha estado en

circulación durante un periodo más prolongado, sometiéndose a extensas

pruebas y validaciones en diversas aplicaciones.

Otro punto por destacar es que YOLOv3 es un modelo comparativamente ligero,

lo que lo convierte en una opción adecuada para la implementación en

dispositivos con recursos limitados, ya que otras versiones posteriores como

YOLOv11 requieren más recursos de almacenamiento y computación, aunque

sean más precisas.

La figura 23 muestra las etapas principales del algoritmo YOLOv3 aplicado a la

detección de un objeto, en este caso un coche.

Figura 23: Etapas sucesivas de la detección de YOLOv3. (Fuente: [26])

49

El algoritmo YOLOv3 primero separa una imagen en una cuadrícula. Cada celda

de la cuadrícula predice una cierta cantidad de cuadros delimitadores (a veces

denominados cuadros de anclaje) alrededor de los objetos que tienen una

puntuación alta en las clases predefinidas mencionadas anteriormente.

YOLOv3 es rápido y preciso en términos de precisión media promedio (mAP) y

valores de intersección sobre unión (IOU). Funciona significativamente más

rápido que otros métodos de detección con un rendimiento comparable.

Además, se puede equilibrar fácilmente la velocidad y la precisión simplemente

modificando el tamaño del modelo, sin necesidad de volver a entrenarlo, lo que

demuestra la versatilidad de la extracción de características dentro de la

arquitectura YOLOv3. [27].

Algunas ventajas y desventajas de utilizar YOLO para el presente trabajo se

resumen en la tabla 2:

VENTAJAS DESVENTAJAS

Alta velocidad de procesamiento debido
a su arquitectura basada en redes
neuronales convolucionales que
procesan toda la imagen en un solo
paso.

Tiene dificultades para detectar objetos
pequeños en imágenes grandes, ya que
estos pueden no ser suficientemente
representados en las cuadrículas de la
red.

Analiza toda la imagen, lo que ayuda a
minimizar errores relacionados con el
solapamiento de objetos o detecciones
duplicadas.

Aunque es rápido, puede sacrificar
precisión en comparación con modelos
más lentos.

Puede detectar múltiples objetos en una
imagen con alta precisión, haciéndolo útil
en aplicaciones como vigilancia,
conducción autónoma y robótica.

En imágenes con gran densidad de
objetos o ruido, YOLO puede generar
detecciones incorrectas.

Es más rápido y menos demandante en
recursos que otros métodos como R-
CNN o Fast R-CNN, especialmente en
versiones más recientes.

Su rendimiento depende mucho de la
calidad y cantidad de datos utilizados
para entrenarlo, y puede no generalizar
bien a dominios diferentes del conjunto
de datos original.

La comunidad ofrece soporte extenso,
bibliotecas preentrenadas y
documentación que facilita su
integración en proyectos.

YOLO divide la imagen en cuadrículas
para predecir objetos, lo que puede
dificultar la detección precisa de objetos
cuya posición o escala no se ajusta bien
a esta división. Esto puede causar
problemas en imágenes donde los
objetos están muy cercanos o se
solapan.

Tabla 2: Ventajas y desventajas de YOLO.

https://viso.ai/computer-vision/intersection-over-union-iou/
https://viso.ai/deep-learning/feature-extraction-in-python/

50

4.2.5. Máquina se vectores de soporte. SVM.

Durante el desarrollo del proyecto, surge la idea de no solo trabajar la

clasificación mediante técnicas de puro análisis de características de manera

“manual”, sino también, profundizar en alguna técnica de clasificación

automática que sea sencilla y fácil de implementar y que ayude a manejar la

caracterización desde otro punto de vista.

Se opta por una máquina de vectores de soporte (del inglés support-vector-

machine, SVM). El SVM es un potente algoritmo de aprendizaje

automático ampliamente utilizado tanto para la clasificación lineal como para la

no lineal, así como para tareas de regresión y detección de valores atípicos. Las

SVM son altamente adaptables, lo que las hace adecuadas para diversas

aplicaciones.

Las máquinas de vectores de soporte son particularmente eficaces porque se

centran en encontrar el hiperplano de separación máximo en un espacio N-

dimensional que pueda separar eficazmente los puntos de datos en diferentes

clases en el espacio de características destino, lo que las hace robustas tanto

para la clasificación binaria como para la multiclase.

El algoritmo garantiza que se maximice el margen entre los puntos más cercanos

de diferentes clases, conocidos como vectores de soporte.

La dimensión del hiperplano depende del número de características. Por

ejemplo, si hay dos características de entrada, el hiperplano es simplemente una

línea, y si hay tres características de entrada, el hiperplano se convierte en un

plano 2D. A medida que el número de características aumenta más allá de tres,

también aumenta la complejidad de visualización del hiperplano. [28].

Figura 24: Datos separables linealmente. SVM. (Fuente: Elaboración propia)

https://www.geeksforgeeks.org/separating-hyperplanes-in-svm/

51

Se consideran dos variables independientes, x1 y x2, y una variable dependiente

representada como un círculo azul o un círculo rojo (figura 24).

En este escenario, se intenta separar los círculos azules de los rojos, por lo tanto,

el problema es linealmente separable. El hiperplano será una línea porque

estamos trabajando con dos características (x1 y x2).

De la figura anterior se desprende claramente que existen múltiples líneas que

separan los puntos de datos o realizan una clasificación entre círculos rojos y

azules. Una opción razonable para el mejor hiperplano en un SVM es aquella

que maximiza el margen de separación entre las dos clases. El hiperplano de

margen máximo, también conocido como margen duro, se selecciona en función

de maximizar la distancia entre el hiperplano y el punto de datos más cercano en

cada lado.

Figura 25: Clasificadores lineales. SVM. (Fuente: Elaboración propia)

En la figura 25, se tienen 3 clasificadores: la línea verde, la línea azul y la línea

roja.

El clasificador verde es el peor, pues, teniendo un problema sencillo de separar

y una distribución sencilla, no consigue separar las variables. Por otro lado, los

clasificadores azul y rojo son perfectos, pero el rojo es mejor que el azul, puesto

que va a generalizar mejor. Esto se debe a que deja más espacio entre los

elementos de ambos grupos, dando más margen a nuevas instancias para

clasificarlas correctamente.

52

Algunas ventajas y desventajas del uso de SVM se resumen en la siguiente tabla

(tabla 3):

VENTAJAS DESVENTAJAS

Rendimiento de alta dimensión: SVM se

destaca en espacios de alta dimensión,

lo que lo hace adecuado para la

clasificación de imágenes y el análisis de

expresión genética.

Entrenamiento lento: SVM puede ser

lento para conjuntos de datos grandes,

lo que afecta el rendimiento de SVM

en tareas de minería de datos.

Capacidad no lineal: al utilizar funciones

de kernel, SVM maneja

exitosamente relaciones no lineales.

Dificultad de ajuste de parámetros:

seleccionar el kernel correcto y ajustar

cuidadosamente parámetros, lo que

impacta en los algoritmos SVM.

Resiliencia de valores atípicos: la

función de margen suave permite a SVM

ignorar los valores atípicos, lo que

mejora la solidez en la detección de

anomalías.

Sensibilidad al ruido: SVM tiene

dificultades con conjuntos de datos

ruidosos y clases superpuestas, lo que

limita la eficacia en escenarios del

mundo real.

Soporte binario y multiclase: SVM es

eficaz tanto para la clasificación

binaria como para la clasificación

multiclase, adecuado para aplicaciones

en clasificación de texto.

Interpretabilidad limitada: la complejidad
del hiperplano en dimensiones
superiores hace que SVM sea menos
interpretable que otros modelos.

Tabla 3: Ventajas y desventajas de SVM.

4.3. Clasificación de la pose.

4.3.1. Idea inicial.

1. Utilización de MediaPipe para la detección y caracterización de posiciones

corporales.

MediaPipe es una herramienta de visión artificial altamente eficiente para la

detección de puntos clave del cuerpo humano. Estos puntos clave, representan

ubicaciones específicas del cuerpo, como articulaciones o extremidades. En este

proyecto, se utilizará MediaPipe para identificar y rastrear estos landmarks

proporcionando información crítica sobre la postura de una persona.

53

Esta información se utilizará para calcular ángulos entre extremidades,

proporciones del cuerpo, y otras características relevantes que permitan

diferenciar posturas como estar “de pie”, “sentado”, “tumbado” o “caído”.

MediaPipe también permite evaluar la confianza de cada punto clave, lo que

facilita descartar datos poco fiables debido a oclusiones.

2. YOLO para la detección y caracterización de posiciones corporales.

YOLO sobresale por su velocidad y precisión. Este modelo se usará en el

proyecto para identificar a la persona y objetos presentes en la imagen. Con el

bounding box de YOLO también se podrán extraer ciertas características como

el alto, ancho o proporciones que ayudarán a proporcionar información sobre la

postura. Mediante esta herramienta se llevará a cabo la clasificación de la clase

tumbado. Para lograr esta distinción, se tomará en cuenta el contexto del

entorno, pues, YOLO puede detectar objetos como sofás o comas y basándose

en la presencia de estos objetos y la relación que tienen con la persona

detectada, se conseguirá una idea sobre si la persona está tumbada en un sofá

o caída en el suelo.

3. Combinación de YOLO y MediaPipe para mejorar la precisión

Aunque MediaPipe es extremadamente útil para extraer detalles del cuerpo,

tiene limitaciones en casos donde la visión de las extremidades está parcial o

totalmente obstruida. Por otro lado, YOLO es más robusto para detectar la

presencia de una persona en condiciones complejas, como baja iluminación o

posiciones no convencionales.

El sistema combinará ambas herramientas aprovechando sus fortalezas. En

situaciones donde MediaPipe no logre identificar todos los Landmarks (por

ejemplo, en una postura tumbada donde las piernas están parcialmente fuera del

marco), el modelo podrá apoyarse en la detección de YOLO para inferir la

postura de forma más confiable. En resumen, se utilizarán ambos métodos para

cada caso, contando con ambas detecciones y ambos resultados, tomando

decisiones basadas en reglas predefinidas para seleccionar el resultado más

confiable entre ambos métodos, pues hay situaciones en las que un método

presenta fortalezas frente a otro.

4. Uso de SVM entrenado con datos recopilados.

A mayores del método de clasificación mediante MediaPipe y YOLO, se utilizará

un modelo de clasificación basado en SVM, que se entrenará con las

características extraídas de MediaPipe y YOLO. Estas características incluirán

posición de puntos clave, distancias entre puntos, ángulos de articulaciones,

proporciones corporales, información sobre los bounding boxes... El modelo

54

SVM permitirá clasificar de forma automática las posturas en las categorías

principales.

5. Resultado final: clasificación manual y automática.

El sistema generará dos tipos de resultados para cada evaluación.

• Clasificación manual: Una combinación de reglas lógicas basadas en los

datos obtenidos de YOLO y MediaPipe. Por ejemplo, si MediaPipe

identifica una distribución específica de puntos clave, pero YOLO no

detecta a la persona dentro de una región de interés consistente, se

podría etiquetar como "caído".

• Clasificación automática: El resultado del modelo SVM entrenado, que

tomará como entrada los datos procesados para asignar una de las clases

predeterminadas.

Finalmente, se evaluará la precisión y eficiencia de ambos enfoques,

identificando fortalezas y áreas de mejora. El resultado será desarrollar un

sistema robusto que combine detección manual y automática para aplicaciones

en entornos domésticos, brindando apoyo a personas que viven solas.

4.3.2. Desarrollo del sistema.

En este apartado se profundizará en los pasos seguidos en el desarrollo del

proyecto, desde la fase inicial hasta la versión final. Este apartado es de gran

importancia, pues explica de manera detallada cómo se han tomado las

decisiones y cómo se ha llegado a las soluciones elegidas.

4.3.2.1. Obtención de datos.

Se empezará por encontrar y elegir uno o varios conjuntos de datos o “datasets”

de imágenes que ayuden a realizar el entreno, extraer distintas características

de muchas imágenes y realizar las pruebas de test una vez tengamos una

versión completa del código.

Los datasets contienen imágenes que no se ajustan a las especificaciones del

proyecto, como imágenes en las que aparecen varias personas, por ello, se

realiza un filtrado del conjunto entero de imágenes. Para conseguir este filtrado

55

de una manera rápida y eficiente, se ha elaborado un programa (“clasificador de

imágenes en carpetas.py”) en Python para clasificar las imágenes en las clases

predominantes. La estructura básica de este clasificador se podría resumir con

el siguiente diagrama de bloques (figura 26):

Figura 26: Diagrama de flujo del programa "clasificador de imágenes en carpetas.py". (Fuente:
Elaboración propia)

El programa de clasificación básicamente recorre las carpetas origen mostrando

al usuario las imágenes y moviéndolas a la subcarpeta correspondiente a las

clases predominantes a clasificar (“de pie”, “sentado”, “caída”, “tumbado”,

“vacío”) según la entrada del usuario por teclado (“1”, ”2”, ”3”, ”4”, ”5”)

correspondientemente.

Inicio

Definir rutas origen y
destino

Crear carpetas de
clasificación

Recorrer carpeta origen

Mostrar imagen

Solicitar clasificación

Mover imagen a carpeta
correspondiente

Repitir hasta procesar
todas las imágenes

Fin

56

A las clases básicas se añade también una correspondiente a imágenes vacías,

es decir, sin personas, para poder comprobar que el sistema no detecta personas

donde no las hay. Este programa ha sido muy útil permitiendo el

preprocesamiento de los datasets. Con las imágenes ya filtradas y clasificadas

se puede comenzar a trabajar con las detecciones de MediaPipe y YOLO.

Entrenamiento y validación:

El dataset utilizado para la fase de entrenamiento y validación es el siguiente:

• Fallen People Detection Capabilities Using Assistive Robot. S.

Maldonado-Bascón, C. Iglesias-Iglesias, P. Martín-Martín, S. Lafuente-

Arroyo. Electronics 2019.

Se opta por utilizar este dataset en particular debido a su adecuación para el

problema de clasificación de posturas, ya que ha sido desarrollado para tareas

de detección de caídas mediante un robot asistente [29] y proporciona datos

etiquetados de alta calidad que permiten entrenar y validar el modelo de manera

eficiente.

Figura 27: Ejemplo de imágenes del dataset FPDs. (Fuente: [29])

Está formado por 6982 imágenes, con un total de 5023 caídas y 2275 no caídas

correspondientes a personas en situaciones convencionales (de pie, sentadas,

tumbadas en el sofá o la cama, andando, etc.). Casi todas las imágenes han sido

captadas en entornos interiores con situaciones muy diferentes como variación

de poses y tamaños, oclusiones, cambios de iluminación, etc. En la imagen

superior (figura 27) se muestra un ejemplo de algunas imágenes que contiene

este dataset.

El dataset ha sido optimizado con pesos en YOLOv3. Esta es la razón por la que

se utiliza esa versión de YOLO en este proyecto, aparte de ofrecer robustez y

fiabilidad al ser una versión testada a fondo por una gran parte de la comunidad

y desarrolladores.

57

Test:

Para la fase de test del proyecto se utiliza un dataset completamente distinto al

utilizado en las pruebas y entrenamiento. Esto garantiza que el modelo creado

generaliza bien y no se cometen errores de sobreajuste o resultados falseados

por utilizar las mismas imágenes que en el entreno.

El dataset utilizado para el conjunto de test está formado por la unión de varios

debido a la escasa diversidad de datos de algunos de ellos, poder cubrir más

escenarios con condiciones o contextos diferentes y aumentar en algunos casos

la cantidad de ejemplos de algunas de las clases.

• IASLAB-RGBD (Antonello, M.; Carraro, M.; Pierobon, M.; Menegatti, E.

Fast and robust detection of fallen people from a mobile robot. 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS)).

Figura 28: Ejemplo de imágenes del dataset IASLAB-RGBD. (Fuente: [30])

Este dataset contiene 342 imágenes en las que están presentes las cuatro poses

predominantes del proyecto. Al igual que en el dataset de entrenamiento, se

seleccionan las imágenes según los requisitos del proyecto. En la imagen

superior (figura 28) se muestra un ejemplo de algunas imágenes que contiene

este dataset.

https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/ETKEt1J-g6lJjkqUOFV13C4BGE5SayAS-QAy9P7wGcel1g?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/ETKEt1J-g6lJjkqUOFV13C4BGE5SayAS-QAy9P7wGcel1g?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/ETKEt1J-g6lJjkqUOFV13C4BGE5SayAS-QAy9P7wGcel1g?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/ETKEt1J-g6lJjkqUOFV13C4BGE5SayAS-QAy9P7wGcel1g?&Download=1

58

• Up-Fall Detection (Kwolek, B.; Kepski, M. Human fall detection on

embedded platform using depth maps and wireless accelerometer.

Computer methods and programs in biomedicine 2014).

Figura 29: Ejemplo de imágenes del dataset Up-Fall Detection. (Fuente: [31])

En este dataset hay presentes 2097 imágenes correspondientes a secuencias

de movimientos de una persona, desde estar de pie, andar, caerse, sentarse…

Al estar formado por secuencias de movimientos, muchas de las imágenes son

demasiado similares, por lo que en el filtrado de este dataset se eliminan muchas

de ellas, pues, esto podría llegar a falsear en cierta manera los resultados

obtenidos. En la imagen superior (figura 29) se muestra un ejemplo de algunas

imágenes que contiene este dataset.

• Elderly Set. S. Maldonado-Bascón, C. Iglesias-Iglesias, P. Martín-Martín,

S. Lafuente-Arroyo. Electronics 2019.

Figura 30: Contenido del dataset Elderly Set. (Fuente: [32])

https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/EbpD59iTrctBuO3KhIHGnBsBtOmtSpGJgr93hRHYitj-4A?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/EbpD59iTrctBuO3KhIHGnBsBtOmtSpGJgr93hRHYitj-4A?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/EbpD59iTrctBuO3KhIHGnBsBtOmtSpGJgr93hRHYitj-4A?&Download=1

59

Por último, este dataset contiene 413 imágenes, exclusivamente con voluntarios

mayores de 65 años y en situaciones domésticas. Este conjunto se ajusta muy

bien a las necesidades que pretende cumplir este proyecto. En la imagen

superior (figura 30) se muestra un ejemplo de algunas imágenes que contiene

este dataset.

4.3.2.2. Uso de MediaPipe.

Para empezar a hacer uso de MediaPipe hay que instalarlo en el entorno de

trabajo en Anaconda. Esto se puede hacer de dos maneras, a través del sistema

de gestión de paquetes conda navegando por él, buscando e instalando

MediaPipe, o, a través del prompt de Anaconda.

En este caso se utiliza el segundo método, a través del prompt. También es una

tarea muy sencilla, pues solo hay que ejecutar los dos siguientes comandos.

Conda activate (“nombre del entorno creado”)

 Pip install MediaPipe

Con estos dos comandos ya tenemos en nuestro entorno el paquete de

MediaPipe, en este caso la versión 10.8.

MediaPipe es capaz de detectar hasta 33 puntos clave del cuerpo humano. Para

poder llevar a cabo estas detecciones en el código, primero hay que inicializar el

modelo, configurándolo para que esté listo para detectar las poses y dibujarlas.

También es importante convertir la imagen a RGB, pues, es el espacio de color

que utiliza MediaPipe. Esto es fácil de conseguir utilizando las funciones de

OpenCV.

Para detectar los puntos clave del cuerpo humano en la imagen, se hace uso de

la función “process” de MediaPipe. Esta función es la que consigue analizar la

imagen y devolver un objeto que contiene las coordenadas de los puntos clave

detectados.

Por último, siempre que se quieran visualizar los puntos clave y las conexiones

entre ellos, se hace uso de la función de dibujo que posee MediaPipe.

60

Estas funciones serán siempre necesarias para poder realizar las detecciones

de los puntos clave.

Tras realizar un pequeño script para familiarizarse con el entorno y resultados de

MediaPipe se muestran los primeros resultados obtenidos (figura 31).

Figura 31: Resultados primeras pruebas MediaPipe. (Fuente: Elaboración propia)

Analizando las primeras detecciones de MediaPipe se ve cómo detecta con

bastante precisión la posición de las articulaciones y puntos clave del cuerpo

humano como era previsto.

Este potencial de detección se explotará para poder caracterizar la pose de la

persona, pues se puede acceder a las coordenadas de cada landmark detectado,

por ejemplo:

coordenadas rodilla_izq= [0.45501429 0.74344283]

coordenadas cadera_izq= [0.52214921 0.74060017]

61

Las coordenadas de las articulaciones, como en este caso, se almacenan en un

array de NumPy para facilitar las operaciones y cálculos sobre estos puntos

posteriormente. Se intuye, por lo tanto, el potencial que ofrece MediaPipe

utilizando estos landmarks y sus coordenadas para poder hacer cálculos de

ángulos de articulaciones, distancias entre puntos, incluso, relaciones corporales

que serán indicativo de una pose u otra.

La extracción de características es un paso fundamental en el análisis de

posturas y movimientos humanos mediante VA. El cuerpo humano se modela

frecuentemente como un conjunto de puntos clave que representan

articulaciones principales, como los hombros, codos, muñecas, caderas, rodillas

y tobillos. En el contexto de este proyecto, se utilizan estos puntos clave para

caracterizar la postura.

Las siguientes son las articulaciones consideradas: hombros, muñecas, caderas,

rodillas y tobillos. Aparte se utilizan también puntos clave como la cabeza.

La selección de estos indicadores permite una representación eficiente del

cuerpo humano al minimizar redundancias y capturar información clave para el

análisis, ayudando a distinguir las posturas mediante ángulos de flexión, posición

respecto a otros indicadores, distancias entre ellos, etc.

A partir de las posiciones de los puntos clave, se han seleccionado varias

características relevantes:

1. Distancias entre articulaciones:

o Se calculan distancias entre pares de articulaciones clave, como

hombro-cadera, cadera-rodilla y cadera-tobillo.

o Estas distancias permiten evaluar la extensión de extremidades y

detectar posturas específicas.

2. Ángulos entre segmentos corporales:

o Se calculan ángulos utilizando las posiciones de tres articulaciones

consecutivas (por ejemplo, hombro-cadera-rodilla o cadera-rodilla-

tobillo).

o Los ángulos proporcionan información sobre la flexión y extensión

de las extremidades.

3. Relaciones espaciales:

o Posiciones relativas de los puntos clave.

o Relación entre partes del cuerpo como el torso y las piernas para

caracterizar mejor algunas de las posturas.

62

A continuación, se muestra un listado completo sobre las características

concretas extraídas de cada imagen (tablas 4, 5, 6 y 7).

Distancias y relaciones

Hombro - rodilla derecha en eje y

Hombro – rodilla izquierda en eje y

Hombro – rodilla derecha en eje x

Hombro - rodilla izquierda en eje x

Cadera – rodilla derecha en eje y

Cadera - rodilla izquierda en eje y

Cadera – rodilla derecha en eje x

Cadera - rodilla izquierda en eje x

Hombro – cadera derecha en eje y

Hombro - cadera izquierda en eje y

Hombro - cadera derecha en eje x

Hombro – cadera izquierda en eje x

Entre rodillas

Cabeza – rodilla

Rodilla – mano derecha en eje y

Rodilla – mano izquierda en eje y

Rodilla – mano derecha en eje x

Rodilla – mano izquierda en eje x

Cadera – tobillo derecha en eje y

Cadera – tobillo izquierda en eje y

Cadera – tobillo derecha en eje x

Cadera – tobillo izquierda en eje x

Altura cabeza

Altura cadera

Altura hombro

Tabla 4: Distancias calculadas entre puntos clave.

Coordenadas de puntos clave

Cadera derecha

Cadera izquierda

Rodilla derecha

Rodilla izquierda

Hombro derecho

Hombro izquierdo

Tobillo derecho

Tobillo izquierdo

Cabeza (nariz)

Cadera derecha

Cadera izquierda

Tabla 5: Posiciones extraídas de puntos clave.

63

Ángulos de articulaciones

Rodilla derecha

Rodilla izquierda

Cadera derecha

Cadera izquierda

Tabla 6: Ángulos calculados de puntos clave.

Relaciones

Torso – pierna derecha

Torso – pierna izquierda

Tabla 7: Relaciones calculadas de puntos clave.

MediaPipe será útil también para detectar la presencia o no de persona en la

imagen, pues si no hay detección de landmarks, la persona no estará presente

en la imagen o, si lo está, no es de una forma evidente.

4.3.2.3. Uso de YOLO.

Para hacer uso de YOLO y detectar personas u objetos en la imagen, se necesita

una serie de archivos.

Uno de estos archivos será el de los pesos (.weight), el cual contiene los

parámetros entrenados del modelo de YOLO. Otro es el archivo de configuración

(.cfg) que contiene la estructura del modelo, es decir, cómo se organiza la red

neuronal. Por último, un archivo que puede ser útil es el archivo de clases

(.names), el cual contiene los nombres de las clases que el modelo puede

detectar (persona, cama, perro, sofá, coche…)

En este proyecto, como se ha citado anteriormente, se hace uso de la versión 3

de YOLO por lo que se necesitarán los archivos de configuración y pesos propios

de esta versión.

64

Al igual que con MediaPipe se realiza un script para familiarizarse con las

funciones y resultados.

Figura 32: Resultados primeras pruebas YOLO. (Fuente: Elaboración propia)

Analizando los primeros resultados de las detecciones de YOLO (figura 32), se

ve que para algunas detecciones se generan múltiples bounding boxes para el

mismo sujeto. Este fenómeno es normal en modelos de detección de objetos y

se soluciona mediante una técnica llamada NMS, de las siglas en inglés “Non-

Maximum Suppression” (filtro de supresión de no máximos). Esta técnica analiza

cuando los bounding boxes se solapan y elimina aquellos con una confianza de

detección más baja hasta que solamente queda uno. Esto asegura que solo se

conserve la detección más confiable para cada detección.

Una vez aplicado este algoritmo, se consiguen los siguientes resultados (figura

33):

Figura 33: Resultado aplicar NMS a YOLO. (Fuente: Elaboración propia)

65

Los resultados de YOLO se muestran dibujando un bounding box alrededor de

la detección. De este tipo de detección se puede sacar potencial, pues en función

de las características del bounding box se puede hacer una distinción inicial entre

las poses principales.

El modelo genera una serie de bounding boxes, cada uno con las siguientes

características: Coordenadas (x, y) del vértice superior izquierdo del bounding

box. Ancho (w) y alto (h) del bounding box. Confianza asociada a la detección

(probabilidad de que el objeto sea una persona). Es importante filtrar las

detecciones con baja probabilidad, en este caso 50 %.

A partir de los valores proporcionados por YOLO, se calculan las características

necesarias para ayudar a clasificar las posturas:

1. Medidas del bounding box:

o Altura y anchura, representan la extensión del bounding box y dan

una idea de su tamaño.

2. Relaciones espaciales:

o La relación altura/anchura ayudará a distinguir entre distintas

posturas.

3. Áreas:

o Áreas tanto de ocupación como de intersección entre bounding box

ayudarán a diferenciar clases como “tumbado”.

Las características extraídas permiten analizar la forma y orientación de la

persona en la imagen:

De pie y sentado: En esta postura, la altura del bounding box será

significativamente mayor que su ancho, resultando evidente la distinción con el

resto de las poses. El refinamiento y la distinción entre estas dos posturas se

hará con el análisis de MediaPipe, pues, las características de YOLO no

definen con robustez ninguna de las dos.

Caído: En esta postura, la anchura será mayor a la altura, incluso en casos

complicados en los que la persona no esté orientada lateralmente a la cámara.

Por ello, es un método robusto para diferenciar estas poses del resto.

Tumbado: Se intentará distinguir y filtrar de las poses clasificadas como “caída”

aquellas en las que la persona esté “tumbada”. Para ello, mediante YOLO se

detectará la clase sofá y la clase cama. Mediante la detección del bounding box

de ambas clases y la posición del bounding box respecto al de la clase persona,

se podrá realizar una primera distinción en casos en los que la persona se

66

encuentre tumbada y no caída. Con estas características se podrá definir qué

personas se encuentran tumbadas cuando se detecte la clase sofá/cama en la

imagen. Aquellas personas que se encuentren predominantemente en la parte

inferior del sofá/cama se clasificarán como caídas, (correspondientes, p. ej. a

caídas justo a los pies del sofá/cama). También se rechazan detecciones de la

clase “tumbado” en aquellas ocasiones en las que la persona se encuentre

predominantemente fuera del área de detección del sofá/cama.

Un ejemplo gráfico de qué detecciones se clasificarán como “tumbado” y cuáles

no, sería el siguiente (figura 34):

Figura 34: Distinción clase "tumbada" de clase "caída". (Fuente: Elaboración propia)

• En azul: Clase sofá o cama.

• En verde: Clase persona “tumbada”.

• En rojo: Clase persona “caída”.

A continuación, se muestra un listado completo sobre las características

concretas extraídas de cada imagen (tabla 8).

67

Altura del bounding box de la clase persona

Anchura del bounding box de la clase persona

Altura del bounding box de la clase sofá/cama

Anchura del bounding box de la clase sofá/cama

Relación altura/anchura del bounding box de la persona

Área de la persona

Intersección persona con sofá/cama

Área de la mitad superior del sofá/cama

Área de la mitad inferior del sofá/cama

Intersección persona con mitad superior sofá/cama

Intersección persona con mitad inferior sofá/cama

Ocupación de la persona en el sofá/cama

Ocupación de la persona en la mitad superior sofá/cama

Ocupación de la persona en la mitad inferior sofá/cama

Tabla 8: Características extraídas por YOLO.

Usar estas características proporciona varias ventajas:

• Simples y robustas: El ancho y alto del bounding box son datos directos y

confiables proporcionados por YOLO. Son fáciles de calcular y tienen un

impacto directo en la clasificación de posturas.

• Interpretabilidad: La relación altura/anchura es intuitiva y permite tomar

decisiones lógicas para clasificar las posturas.

• Eficiencia computacional: Los cálculos son rápidos, lo que es ideal para

aplicaciones en tiempo real o con bajos recursos.

YOLO será útil también para detectar la presencia o no de persona en la

imagen, pues si no hay evidencias de bounding box de la clase persona, esta

no estará presente en la imagen o, si lo está, no es de una forma evidente.

4.3.2.4. Almacenamiento de características en fichero de texto.

El almacenamiento de las características extraídas es un paso importante para

garantizar que puedan ser utilizadas posteriormente en los procesos de

entrenamiento del modelo. Para este propósito, se desarrolla un programa en

Python que automatiza el proceso de extracción y registro de las características.

(“características YOLO a txt.py y características MediaPipe a txt.py”).

68

El siguiente diagrama muestra resumida la estructura básica del programa de

almacenamiento de características (figura 35):

Figura 35: Diagrama de flujo del programa "características YOLO a txt.py y características MediaPipe a
txt.py". (Fuente: Elaboración propia)

Se recorrerán las distintas carpetas seleccionadas, según se quiera analizar y

extraer características de las imágenes, en el caso “tumbado”, “caída”, “sentado”

o “de pie”.

• Para cada imagen, se aplica el algoritmo de MediaPipe o YOLO para

detectar las posiciones de los puntos clave y de los bounding boxes.

• Se realizan los cálculos necesarios.

• Se extraen las características relevantes (distancias, ángulos, relaciones

espaciales, alto, ancho, etc.).

• Los valores calculados se escriben en un fichero de texto.

• Cada línea del fichero corresponde a una imagen y cada columna a una

característica extraída.

Inicio

Cargar bibliotecas y
definir variables

Abrir archivo de salida y
escribir cabeceras

Inicializar Mediapipe o
YOLO

Recorrer carpeta orgien

Extraer caracterisiticas
de la imagen

Guardar
caracterisiticas en el txt

Repetir hasta procesar
todas las imagenes

Fin

69

Estos pasos se realizan para cada carpeta de imágenes, consiguiendo así tener

las características relevantes de cada imagen para las distintas poses. Será muy

útil para poder realizar una distinción robusta entre posturas, analizando los

resultados obtenidos.

El fichero txt obtenido (figura 36) para cada una de las carpetas y para cada uno

de los métodos, contiene el nombre de las características extraídas (ángulos,

distancias, relaciones…) y sus valores. Estos valores se recogen con todos los

decimales disponibles para asegurar que se capturan todos los detalles posibles

para el análisis y no se pierde información valiosa, especialmente cuando se

trata de diferencias sutiles entre posiciones o movimientos.

Figura 36: Fichero de texto con características extraídas de la detección de MediaPipe y YOLO. (Fuente:
Elaboración propia)

Estos ficheros de texto muestran los datos extraídos, pero para poder realizar un

buen análisis con los datos es necesario organizarlos en forma de tabla. En este

caso se ha utilizado Excel al ser una herramienta conocida y porque facilita la

visualización, análisis y manipulación de la información de manera clara y

ordenada. También es importante la compatibilidad que ofrece Excel con el

análisis estadístico, pues será determinante para el desarrollo de umbrales y

selección de características.

70

4.3.2.5. Análisis de datos.

Primero se introducen los datos en una tabla Excel desde los ficheros de texto

que contienen las características extraídas. Se organizan en filas para cada

imagen y en columnas para cada característica, añadiendo una columna más en

la que se etiquetarán los datos de la siguiente manera, según provengan de la

carpeta de pie (0), sentado (1), caída (2), desconocido (3) y tumbado (4).

Ordenar los datos en la tabla Excel es realmente útil, pues, se puede acceder al

dato o al conjunto de datos deseados de manera rápida y eficaz, incluso si es

necesario reemplazar algún conjunto de datos por alguna modificación en el

método de detección se puede hacer sin demasiado problema gracias a este

orden.

Una pequeña representación de cómo quedaría organizada la tabla Excel con

los datos de entrenamiento sería la siguiente (tabla 9):

Imágenes

Característica 1 … Característica N Etiqueta

Imagen_1_tumbado …(valores) … …(valores) 4

Imagen_n_tumbado …(valores) … …(valores) 4

Imagen_1_desconocido …(valores) … …(valores) 3

Imagen_n_desconocido …(valores) … …(valores) 3

Imagen_1_caída …(valores) … …(valores) 2

Imagen_n_caída …(valores) … …(valores) 2

Imagen_1_sentado …(valores) … …(valores) 1

Imagen_n_sentado …(valores) … …(valores) 1

Imagen_1_depie …(valores) … …(valores) 0

Imagen_n_depie …(valores) … …(valores) 0

Tabla 9: Representación de la tabla de características extraídas.

Con los datos ya organizados se realiza cálculos para obtener información

estadística que facilite la comprensión del comportamiento de las características

para cada clase. En este caso, se ha optado por extraer para cada conjunto de

imágenes separado por clases, calcular los siguientes valores:

71

• Promedio: pues, ayudará a identificar el comportamiento “típico” de la

característica para cada clase y reforzar la diferenciación entre estas.

• Valor máximo: identifica los casos extremos o límites superiores de cada

característica para cada clase.

• Valor mínimo: identifica los límites inferiores de cada característica para

cada clase.

• Desviación: da una idea sobre lo dispersos que son los datos en una

clase, identificando si son muy variados o no.

• Media + desviación: identifica el límite superior típico de los datos y

puede ayudar a establecer un umbral máximo de referencia para cada

característica.

• Media – desviación: identifica el límite inferior típico de los datos y puede

ayudar a establecer un umbral mínimo de referencia para cada

característica.

Con esta extracción de métricas para cada característica se puede llevar a cabo

una diferenciación entre clases.

Se comparan los promedios, máximos y mínimos para ver qué características

son significativamente diferentes entre clases y se usan los valores de media ±

desviación para identificar rangos típicos de cada clase y establecer unos

umbrales iniciales.

Si una clase tiene una desviación estándar alta, los datos son más variados, lo

que podría indicar que esa clase es más difícil de definir con ciertos umbrales.

Las clases con desviaciones estándar bajas son más consistentes, lo que puede

hacerlas más fáciles de identificar. Por otro lado, los valores que superan la

media + desviación o caen por debajo de la media - desviación pueden

considerarse fuera de rango, datos extraños u outliners por lo que es necesario

analizarlos para ver si tienen sentido, son casos extremos o son errores en las

detecciones.

Analizando estas métricas y fijándose bien en si una característica tiene un rango

de valores no superpuesto entre clases (por ejemplo, alturas máximas en "de

pie" son mayores que en "tumbado"), se puede usar esta métrica para diseñar

unas reglas de clasificación inicial. Esto junto a identificar los patrones en los

datos para cada clase incluso visualizando mediante gráficos para destacar las

características más representativas de cada clase, ayudará a conseguir una

clasificación inicial mediante ciertos umbrales obtenidos del análisis.

Un ejemplo de cómo se trabaja analizando las métricas obtenidas serían los

siguientes casos:

72

1. Media de la distancia desde el hombro a la rodilla detectada por

MediaPipe medida en el eje vertical para cada clase (tabla 10 y figura 37).

Clase Media distancia hombro – rodilla en y

Tumbado 0,03781

Caída 0,00652

Sentado 0,18219

De pie 0,34284

Tabla 10: Media de la distancia hombro - rodilla en el eje y por clases.

Figura 37: Gráfico de la media de la distancia hombro - rodilla en el eje y por clases. (Fuente: Elaboración
propia)

Analizando un poco esta métrica, se ve que valores altos por encima de 0,05 son

muy representativos de las clases “sentado” y “de pie”, y valores inferiores se

quedan más reservados para las poses tumbadas y caídas. Al igual, se aprecia

una diferencia entre las poses “sentado” y “de pie”, donde la media de la clase

“sentado” (0,18) es inferior a la de la clase “de pie” (0,34), aproximadamente la

mitad.

0,03781

0,00652

0,18219

0,34284

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

tumbado caido sentado de pie

Media distancia hombro - rodilla en el eje y

73

2. Valores máximos y mínimos de la resta del alto menos el ancho del

bounding box de la persona detectada por YOLO para cada clase (tabla

11 y figura 38).

Clase Máximo alto_bb - ancho_bb Mínimo alto_bb - ancho_bb

Tumbado 11 -296

Caída 141 -493

Sentado 227 19

De pie 334 40

Tabla 11: Máximos y mínimos del alto menos ancho del bounding box de la persona detectada por clase.

Figura 38: Gráfico de máximos y mínimos del alto menos ancho del bounding box de la persona por clase.
(Fuente: Elaboración propia)

En este caso se aprecia una notable diferencia entre las clases, pues son muy

representativos los valores negativos para las poses “tumbado” y “caída”,

dejando reservados casi exclusivamente los valores positivos para las clases

“sentado” y “de pie”.

Este paso se realiza para varias métricas de características de cada pose, pues,

resulta interesante conocer desde que valores pueden o no partir los umbrales

de distinción para la clasificación final.

11

141

227

334

-296

-493

19 40

-600

-500

-400

-300

-200

-100

0

100

200

300

400

tumbado caido sentado de pie

Máximos y mínimos de alto_bb - ancho_bb

maximo alto_bb - ancho_bb minimo alto_bb - ancho_bb

74

4.3.2.6. Entrenamiento del SVM.

Con las características extraídas de todas las imágenes de entrenamiento y

ordenadas en una tabla Excel se plantea la opción de entrar un algoritmo SVM

que sea capaz de buscar el hiperplano que separa los puntos de datos de las

diferentes clases de manera que el margen entre las clases sea el menor posible.

Esta clasificación mediante el SVM ayudará a elegir mejores umbrales de

decisión para la clasificación “manual” y será otro método de análisis que

devolverá un resultado a mayores. Así se podrá contar con dos resultados, el

derivado de la clasificación puramente empírica y el del método automático del

modelo entrenado.

Lo primero es organizar el archivo Excel de manera que pueda ser convertido en

un archivo CSV (command separated values) el cual pueda leer el SVM. El CSV

es un formato de archivos utilizado para almacenar datos en forma de texto

plano, donde cada valor está separado por una coma.

Cada fila dentro del archivo representa una entrada de datos nueva y cada

columna separada por comas u otros delimitadores como punto y coma,

representan una característica o un valor nuevo. Generalmente, la primera fila

contiene los nombres de las columnas (características) y la última de las

columnas contiene la etiqueta del tipo de dato, en este caso la etiqueta 4,3,2,1,0

correspondiente a las poses “tumbado”, “desconocido”, “caída”, “sentado” y “de

pie”, respectivamente.

Una vez se tiene el archivo ordenado de manera que cada columna sea una

característica, cada fila una nueva imagen y la última columna contenga la

etiqueta de la clase correspondiente, se puede pasar a entrenar el modelo SVM

con los datos extraídos por MediaPipe y YOLO.

Para entrenar y crear el SVM es necesario realizar un código (“SVM con

datos.py”) en el que se pueda pasar el archivo con los datos de entreno y

configurar la división entre conjuntos de entrenamiento y prueba.

Para cada SVM creado será necesario importar las librerías necesarias, leer el

archivo CSV y cargarlo en un “dataframe”. Este dataframe es una tabla de datos

bidimensional en la que cada fila representa, en este caso, una imagen y cada

columna representa una característica. Se realiza un preprocesamiento del

archivo de datos y se separan las características y etiquetas, pues el SVM

necesita diferenciar entre los datos de entrada y la respuesta esperada.

• X: Se obtienen todas las columnas del dataframe, excepto la última, que

se usan como características (entrada para el modelo).

75

• y: Se obtiene solo la última columna del dataframe, que se utiliza como

etiquetas (salida para el modelo).

• class_names: Se almacenan los nombres únicos de las clases de la última

columna para usarlos más adelante en la matriz de confusión.

Se dividen los datos en conjuntos de entrenamiento y prueba, pues el objetivo

es poder evaluar de manera objetiva el rendimiento del modelo para no entrenar

con todos los datos y luego evaluar con los mismos, pues se estaría cometiendo

un error de sobreajuste. Así, el conjunto de entrenamiento se utiliza para ajustar

los parámetros del modelo y el conjunto de prueba se utiliza para evaluar el

modelo una vez que ha sido entrenado. Con esta separación se puede medir la

capacidad del modelo para generalizar, pues un buen rendimiento del modelo

sobre el conjunto de prueba refleja que ha aprendido de manera efectiva las

relaciones subyacentes en los datos y posee una buena capacidad de

generalización.

La división de los datos se consigue de la siguiente forma:

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3,

random_state=42)

En este caso, el tamaño seleccionado para el conjunto de test es del 30% de los

datos totales. El uso del parámetro random_state nos ayuda a replicar siempre

el mismo ensayo controlando la aleatoriedad.

Se crea un SVM con un tipo de kernel en este caso “lineal”. El kernel, es la

función matemática que transforma los datos para que el SVM pueda clasificarlos

y el tipo “lineal” pues los datos son linealmente separables.

Una vez obtenido, el modelo se evalúa y se guarda, obteniendo las predicciones,

midiendo la precisión del modelo y mostrando un reporte detallado con las

siguientes métricas:

• Precisión: muestra qué porcentaje de las predicciones de una clase son

correctas.

• Recall: muestra qué porcentaje de los ejemplos reales de una clase son

correctamente clasificados.

• F1-score: muestra el promedio armónico de la precisión y el recall, es útil,

pues, los datos no están balanceados.

• Support: muestra el número de ejemplos reales de cada clase.

76

Como en el modelo final se pueden dar casos en los que MediaPipe detecte

landmarks y YOLO no encuentre la clase persona en la imagen o viceversa, se

entrenan tres SVM, cada uno con un conjunto de datos que contiene distintas

características:

• SVM global: contiene todas las características, las extraídas por

MediaPipe y por YOLO, utilizado para cuando en la imagen a analizar

ambos modelos sean capaces de detectar.

• SVM MediaPipe: contiene únicamente las características extraídas de los

landmarks de MediaPipe, pues será útil para el caso en el que en el

modelo final YOLO no sea capaz de detectar en la imagen la clase

persona y MediaPipe si sea capaz de detectar los puntos clave.

• SVM YOLO: caso contrario al anterior, contiene únicamente las

características extraídas del bounding box de YOLO para cuando este sea

capaz de detectar persona y MediaPipe no.

Con estos tres SVM se eliminan falsas predicciones en el caso de que alguno de

los métodos no aporte los datos correspondientes para la clasificación.

Para cada SVM se obtiene un gráfico denominado matriz de confusión. Es una

herramienta fundamental en el análisis de desempeño de los modelos de

clasificación, pues proporciona una visión detallada de las predicciones

realizadas por el modelo en comparación con las clases verdaderas o reales.

Esta matriz es particularmente útil cuando el modelo tiene múltiples clases como

este, ya que muestra no solo cuántas predicciones fueron correctas, sino

también en qué clases se cometieron errores.

La matriz de confusión es una tabla que compara las predicciones del modelo

contra las etiquetas reales (verdaderas) de los datos. En una matriz de confusión,

cada fila representa las etiquetas reales y cada columna representa las etiquetas

predichas por el modelo.

A continuación, en la tabla 12, se muestra un ejemplo de matriz de confusión

básica:

 Predicción positiva Predicción negativa

Real positiva TP FN

Real negativa FP TN

Tabla 12: Estructura básica de una matriz de confusión.

• (TP): Casos en los que el modelo predijo correctamente la clase positiva

(realmente positivo y predicho positivo).

77

• (TN): Casos en los que el modelo predijo correctamente la clase negativa

(realmente negativo y predicho negativo).

• (FP): Casos en los que el modelo predijo incorrectamente la clase positiva

(realmente negativo pero predicho positivo).

• (FN): Casos en los que el modelo predijo incorrectamente la clase

negativa (realmente positivo pero predicho negativo).

La matriz de confusión obtenida para cada SVM nos da una idea sobre lo bien

que generaliza y lo bien que realiza la clasificación autónoma.

Del entrenamiento y creación del SVM se ha diseñado un procedimiento que

facilita mucho elegir qué características son relevantes para la clasificación

“manual” y qué umbrales se deberían elegir para cada una de estas

características en función de la clase. Para ello, se han creado una serie de

gráficos que se obtienen graficando para cada característica (columna de X) un

histograma que muestra cómo se distribuyen los valores de esa característica

para cada clase (y). Esto, como se ha dicho anteriormente, ayuda a entender las

características de los datos y cómo se distribuyen entre las diferentes clases de

manera visual y clara.

La figura 39 muestra un ejemplo del histograma diseñado a partir de una

característica para todas las clases:

Figura 39: Distribución de altura de la cabeza por clase extraída del SVM. (Fuente: Elaboración propia)

El eje x muestra los valores que alcanza la variable y en el eje y la frecuencia

con la que se alcanza cada valor.

78

4.3.2.7. Selección de características relevantes.

Para la clasificación que se quiere realizar, es necesario filtrar qué características

de todas las disponibles por MediaPipe y YOLO son útiles y cuáles no.

Para ello se trabaja juntamente, por un lado, con las métricas extraídas de la

tabla Excel, las cuales son más útiles para fijar un valor más concreto de los

umbrales de clasificación y, por otro lado, con las gráficas extraídas del entreno

del SVM que resultan útiles para de manera visual y rápida decidir qué

características son relevantes para cada clase y como dependiendo de la clase

la característica toma unos valores u otros.

Hay tres tipos predominantes de distribuciones en las características

representadas en los gráficos:

1. En las que se diferencian claramente dos o más clases directamente.

2. En las que una de las clases se diferencia del resto, pero no de manera

directa o clara.

3. En las que no se diferencia de manera representativa la característica

para ninguna de las clases.

A continuación, se detalla con unos ejemplos la metodología seguida para todas

las características, seleccionando aquellas que resultan interesantes y

descartando aquellas que no lo son.

• Tipo 1: Diferencia evidente y clara entre dos o más clases.

Figura 40: Distribución característica tipo 1. (Fuente: Elaboración propia)

79

En el gráfico de esta característica (figura 40) se aprecia de manera clara una

diferencia evidente entre las clases 0, 1 y 2, las tres poses principales y

necesarias a la hora de clasificar, pues es visible que prácticamente donde

acaban los valores de una de ellas empieza otra.

Analizando más en profundidad los valores de las métricas (tabla 13) para elegir

de manera correcta los umbrales que se seleccionarán en la clasificación final,

se aprecia que las diferencias evidentes entre estas quedan reflejadas en el

gráfico, separando con cierta precisión las tres clases.

 DE PIE SENTADO CAÍDA

Media 0,35 0,57 2,8

Máximo 0,66 0,95 5,54

Mínimo 0,18 0,32 0,36

Desviación 0,07 0,14 1,09

Tabla 13: Métricas de una característica tipo 1.

Se tomarán así pues, valores, por ejemplo superiores a 1 para clasificar la pose

caída, valores inferiores a 0,5 para clasificar la pose “de pie”, y valores

intermedios para clasificar la pose “sentado”.

• Tipo 2: Diferencia no evidente de alguna de las clases.

Figura 41: Distribución característica tipo 2. (Fuente: Elaboración propia)

En esta ocasión, en el histograma (figura 41), se aprecia que esta característica

toma valores muy variados en todas las clases, pero se ve claramente que la

clase 0 (de pie) no toma valores inferiores a 140º-145º en ninguno de los casos

80

(frecuencia de casos en el eje y), agrupándose los casos más comunes incluso

alrededor de valores todavía más altos cercanos a la extensión completa (180º).

Esta característica, por lo tanto, se elegiría como representativa de la clase 0

para valores superiores a 140-145.

Para afinar más el valor que posteriormente se utilizará como umbral, hay que

fijarse en las métricas extraídas para esta característica (tabla 14), por ejemplo,

en los valores mínimos y máximos, en la media y en la dispersión para la clase

0 (de pie) pues es de la que hemos determinado que es representativa.

DE PIE

Valor máximo 179,97

Valor mínimo 147,86

Media 172,52

Desviación 7,45

Tabla 14: Métricas de una característica tipo 2.

Estas métricas muestran con más precisión que se estaba en lo cierto al

determinar un valor de umbral cercano a 140º-145º y que la dispersión de esta

característica tiene un valor muy pequeño, por lo que no se va a salir

“normalmente” de estos valores típicos.

• Tipo 3: No hay suficiente evidencia representativa en ninguna de las

clases.

Figura 42: Distribución característica tipo 3. (Fuente: Elaboración propia)

81

Por último, analizando el gráfico (figura 42), se ve claramente que esta

característica no es representativa de ninguna clase, los valores están muy

superpuestos y alcanzando valores muy similares para todas ellas.

Este sería un ejemplo de descarte de característica, pues, no es útil para la

clasificación final. Aun descartándola de primera vista, se analizan las métricas

extraídas para esta característica (tabla 15).

 Media Máximo Mínimo Desviación

DE PIE 0,021 0,124 0,107 0,036

SENTADO 0,051 0,169 -0,028 0,039

CAÍDA 0,003 0,110 -0,181 0,053

Tabla 15: Métricas de una característica tipo 3.

Se aprecia claramente ya con el análisis final de las métricas que esta

característica no es suficientemente representativa de ninguna de las clases,

pues ninguna de ellas destaca lo suficiente por encima de las demás, como ya

se veía en el gráfico.

Esta metodología se sigue para todas las características extraídas,

seleccionando aquellas interesantes y representativas y analizando las métricas

para fijar unos valores de umbral. La unión de todas las características

seleccionadas (tabla 16) de la manera correcta fijará las sentencias de decisión

y clasificación de poses en el código final.

Ángulo rodillas x>140: de pie

Ángulo caderas x>140: de pie

Distancia vertical hombro-rodillas x<0,1: caída, x<0: caída

Distancia horizontal hombro-rodillas x<0,1: de pie, x>0,1: caída

Distancia vertical hombro-caderas x<0,1: caída

Distancia horizontal hombro-caderas x>0,05: caída

Distancia vertical cabeza-rodilla x<0,14

Relación torso-pierna 1<x<2: de pie

Distancia vertical cadera-tobillos x<0: caída

Altura de la cabeza x>0,6: caída

Diferencia alto-ancho del bounding box x<15: caída

Relación ancho/alto del bounding box x<0,5: de pie

Ocupación persona x>0,5

Ocupación mitad superior del sofá/cama x>(ocupación persona/2): tumbado

Tabla 16: Características y umbrales seleccionados.

82

4.3.3. Arquitectura general del sistema.

Así pues, la estructura final del programa desarrollado se muestra a continuación

con el diagrama de bloques de la figura 43:

Figura 43: Diagrama de bloques del modelo desarrollado. (Fuente: Elaboración propia)

El código se ha dividido en diferentes partes que se explicarán a continuación

con algo más de detalle.

83

Bloque 1:

• Se importan las librerías necesarias para la correcta ejecución del código.

• Se crea la función principal a la que se le pasa como argumento la imagen

a analizar. Esta imagen se lee desde la ubicación del archivo donde se

encuentra y se verifica si existe.

• También se cargan los tres modelos de SVM preentrenados.

Bloque 2:

• Se convierte la imagen a RGB, formato necesario para trabajar con ella

en MediaPipe.

• Se inicializa MediaPipe Pose y la detección de landmarks.

• Si la detección es válida y se encuentran landmarks con la suficiente

confianza:

o Se extraen las coordenadas de todos los puntos clave que se

consideran necesarios.

o Se realizan los cálculos como ángulos de articulaciones, relaciones

geométricas y distancias entre diferentes puntos del cuerpo.

o Se pasan las características extraídas al SVM global y al SVM de

MediaPipe.

o Se realiza la predicción del SVM de MediaPipe.

o Se clasifica la postura y se asigna una etiqueta (“de pie”, “sentado”

o “caída”) según las reglas y umbrales de decisión propuestos. Esta

clasificación se guarda en la variable “resultado MediaPipe”.

• Si no se detectan landmarks se retorna “desconocido”.

Bloque 3:

• Se inicializa el modelo de YOLO para detectar objetos en la imagen.

• Si se ha detectado la clase persona en la imagen con la suficiente

confianza:

o Se extraen los bounding boxes y se calculan las características

asociadas a ellos como la altura o la relación alto/ancho…

o Se analiza la posibilidad de clasificar la pose como “tumbado”

mediante la intersección y ocupación con la clase sofá/cama.

o Se pasan las características extraídas al SVM global y al SVM de

YOLO.

o Se realiza la predicción del SVM de YOLO.

o Se clasifica la postura y se le asigna una etiqueta (“de pie”,

“sentado”, “tumbado” o “caída”) según las reglas y umbrales

propuestos. Esta clasificación se guarda en la variable “resultado

YOLO”.

• Si no se detecta la clase persona con la suficiente confianza, se retorna

“desconocido”.

84

1

2

Bloque 4:

• Según los resultados obtenidos y siguiendo el sistema de decisión

diseñado (figura 42) se obtiene un resultado final para la clasificación de

la postura presente en la imagen. Este resultado solo podrá ser uno de

entre las 5 clases (“de pie”, “sentado”, “tumbado”, “caída” o

“desconocido”).

Bloque 5:

• Se muestran los siguientes resultados:

o El del método empírico resultante del sistema de decisión entre la

clasificación realizada en el método basado en las características

extraídas de los landmarks de MediaPipe y el método basado en

las características extraídas de los bounding boxes de YOLO.

o La predicción del SVM, mostrando si se ha realizado por el SVM

global (ambos métodos han detectado o no persona en la imagen),

o por el SVM de MediaPipe (YOLO no detecta persona), o por el

SVM de YOLO (MediaPipe no detecta persona).

o También se muestran las imágenes con los landmarks y bounding

boxes dibujados.

La arquitectura general del sistema desarrollado se resume en el siguiente

pseudocódigo:

1: Inicio del programa

2: Librerías necesarias: OpenCV, NumPy, MediaPipe, Sys, Joblib

3: Función analizar pose(imagen):
4: Cargar imagen

5: Cargar modelos SVM y escaladores para:

6: - Modelo general

7: - Modelo MediaPipe
8: - Modelo YOLO

9: Función método MediaPipe(imagen):

10: Inicializar MediaPipe Pose
11: Detectar poses

12: Si se detectan landmarks:
13: Verificar visibilidad

14: Función calculo ángulos (a, b, c):

15: Calcular ángulo entre tres puntos

16: Obtener coordenadas de:

85

3

17: - Caderas, rodillas, tobillos

18: - Hombros, cabeza, muñecas

19: Calcular características:

20: - Ángulos de rodilla y cadera

21: - Distancias relativas entre puntos clave
22: - Relaciones de torso y piernas

23: Normalizar características con el escalador

24: Predecir postura con el SVM MediaPipe

25: Clasificar postura según umbrales de:

26: - Ángulos de cadera y rodilla

27: - Proporciones del torso y piernas

28: - Altura de la cabeza respecto a las rodillas

29: Dibujar landmarks sobre la imagen

30: Retornar:

31: - Clasificación MediaPipe

32: - Imagen con landmarks

33: - Características extraídas

34: - Predicción SVM MediaPipe

35: Si no se detectan landmarks:

36: Retornar: "desconocido" con valores por defecto

37: Función método yolo(imagen):

38: Cargar modelo YOLO

39: Obtener etiquetas de clases

40: Procesar imagen para detectar objetos

41: Inicializar listas necesarias

42: Recorrer detecciones:

43: - Si detección es persona, almacenar sus coordenadas
44: - Si detección es sofá/cama, almacenar sus coordenadas

45: Supresión de no máximos (NMS)

46: Si se detecta una persona:

47: Calcular características:

48: - Altura menos ancho de la caja (umbral)

49: - Relación ancho/altura (ratio)
50: - Posición relativa respecto a muebles detectados

51: Si hay un sofá/cama detectado:

52: Calcular intersección con la persona

53: Determinar si la persona está tumbada

54: Normalizar características con el escalador

55: Predecir postura con el SVM YOLO

2

86

3

4

5

56: Clasificar postura en:

57: - "Tumbado" si la ocupación del sofá/cama es alta

58: - "Caída" si el umbral es bajo
59: - "Sentado" si la relación ancho/altura es alta

60: Dibujar boundingboxes sobre la imagen

61: Retornar:

62: - Clasificación YOLO

63: - Imagen con detecciones
64: - Características extraídas

65: - Predicción SVM YOLO

66: Sistema de decisión:

67: 1. Si ambos métodos clasifican igual → Resultado final

68: 2. Si hay conflicto → Priorizar el resultado del método más
 fiable

69: Resultados finales:

70: - Mostrar imagen con detecciones

71: - Imprimir resultados finales de la clasificación:

72: - SVM que ha clasificado la imagen y su predicción

73: - Resultado de la clasificación final y
 porcentaje de fiabilidad

74: Fin del programa

87

5. Resultados obtenidos.

Como se ha citado con anterioridad, el modelo contará de 2 métodos de

clasificación diferentes:

1. Un método utilizando MediaPipe Pose y YOLO y las características

calculadas a través de los landmarks o puntos clave extraídos del cuerpo

de la persona detectada y de las características extraídas de los bounding

boxes detectados.

2. Otro método de clasificación automática realizado por el SVM entrenado

con todas las características extraídas por MediaPipe y YOLO. Esta

clasificación, como ya se ha comentado, contará de 3 SVM, uno

entrenado con todas las características extraídas por MediaPipe y YOLO,

otro entrenado solo con las características extraídas por MediaPipe y un

último entrenado solo con las características extraídas por YOLO. Esto se

hace para poder evitar falsos resultados cuando uno de los métodos no

sea capaz de detectar persona en el caso en el que sí la haya.

Cada método se ha trabajado por separado hasta conseguir una clasificación

robusta para cada uno de ellos y poder implementarlos juntos en el modelo final.

Para todas las pruebas se ha trabajado siempre con el mismo conjunto de

imágenes. Este conjunto de prueba se ha construido a partir de las imágenes

seleccionadas del dataset FPDs y consta de las siguientes imágenes:

DE PIE (0) SENTADO (1) CAÍDA (2) DESCONOCIDO (3) TUMBADO (4)

109 65 164 63 22

Normales (0,1,4) No normales (2)

196 164

Tabla 17: Distribución del conjunto de prueba. Dataset FPDs.

No es un conjunto balanceado debido a la selección realizada en el dataset y a

la prioridad de la clase crítica, en este caso la clase “caída”. Se aprecia un mejor

balanceo en la unión de las clases “de pie”, “sentado” y “tumbado”, (“normales”)

y la clase crítica “caída”, (“no normal”). Las posturas más comunes en el día a

día se identifican como posturas “normales” pues no suponen situaciones de

riesgo y la clase “caída” se identifica como “no normal”, pues corresponde a una

clase anómala que no tiene que darse.

88

Luego se añade una cantidad de imágenes en las que no hay personas

presentes para ver la eficacia del sistema con respecto a falsos positivos en la

detección.

Para el análisis de los resultados se va a seguir una metodología parecida a la

que se utiliza en el artículo del cual se ha extraído el dataset FPDs.

o Hay persona

▪ Se detecta persona (TP_d)

• Se clasifica bien (TP_c)

• Se clasifica mal (FP_c)

▪ No se detecta persona (FN_d)

o No hay persona

▪ No se detecta persona (TN_d)

▪ Se detecta persona (FP_d)

• TP_d: verdadero positivo en la fase de detección de persona.

• FN_d: falso negativo en la fase de detección de persona.

• TN_d: verdadero negativo en la fase de detección de persona.

• FP_d: falso positivo en la fase de detección de persona.

• TP_c: verdadero positivo en la fase de clasificación de pose.

• FP_c: falso positivo en la clase de clasificación de pose.

Es interesante separar el análisis de los resultados en la parte de detección y la

parte de clasificación, pues que el sistema detecte o no la presencia de persona

en la imagen no depende directamente del trabajo realizado en este proyecto si

no depende del funcionamiento de los métodos MediaPipe y YOLO

preentrenados, en cambio, el acierto o fallo en la clasificación de la pose sí que

depende plenamente del funcionamiento del sistema desarrollado en este

trabajo.

5.1. Clasificación con MediaPipe y YOLO.

Se trabaja primero con los métodos de clasificación por separado. Cada método

se evaluará con el conjunto de pruebas seleccionado, obteniendo unos

resultados que serán analizados y comparados para elegir el mejor sistema de

decisión para la clasificación final y unión de ambos métodos.

89

5.1.1. Resultados de la clasificación usando

MediaPipe.

El conjunto de prueba se evalúa con la clasificación realiza en MediaPipe, acorde

a las características y umbrales seleccionados para este método de la siguiente

manera:

1: if 140<(angle_knee) and 140<(angle_hip) and
1<(rel_torso_pierna)<2 and 0.1>(hombro_rodilla_x):

2: mensaje="de pie"

3: elif 0.1>(hombro_rodilla_y) and (hombro_rodilla_x)>0.1 and
(hombro_cadera_y)<0.1 and (hombro_cadera_x)>0.05 and
cabeza_rodilla_y<0.14 and altura_cabeza>0.6 :

4: mensaje="caida"

5: else:

6: if (hombro_cadera)<0.1:

7: mensaje="caida"

8: else:

9: if(hombro_rodilla_y<0) or (cadera_tobillo_y<0):

10: mensaje="caida"

11: else:

12: mensaje="sentado"

Se hace un primer filtrado para saber si la pose cumple con los umbrales

seleccionados para la clase “de pie” y “caída”, las más genéricas y fáciles de

distinguir. Por último, si no se cumple ninguno de estos requisitos anteriores, se

clasifica la pose como “sentado”.

Tras pasar por esta clasificación todas las imágenes del conjunto de prueba y

organizarlos en una tabla Excel, se obtienen los siguientes resultados para la

clasificación con MediaPipe (figura 44).

90

Estos resultados, como se ha citado anteriormente en la metodología a seguir,

se separan entre la parte de detección (tabla 18) del modelo y la parte de

clasificación (tabla 19), los cuales desglosados se muestran a continuación:

• Detección:

Detección de MediaPipe

TP_d 72%

FN_d 28%

TN_d 100%

FP_d 0%

Tabla 18: Resultados detección MediaPipe.

• Clasificación:

MEDIAPIPE De pie Sentado Caída

De pie 98,92% 0,00% 1,08%

Sentado 5,77% 90,38% 3,85%

Caída 0,00% 7,14% 92,86%

Tabla 19: Matriz de confusión de clasificación de MediaPipe.

Figura 44: Matriz de confusión normalizada. Método Mediapipe. (Fuente: Elaboración propia)

91

El análisis en profundidad de los resultados obtenidos se muestra en el apartado

comparativo entre los resultados de ambos métodos (MediaPipe y YOLO).

En esta prueba no se ha evaluado el subconjunto correspondiente a la clase

“tumbado” pues esta clasificación se realizará únicamente a través de los

métodos que ofrece YOLO.

5.1.2. Resultados de la clasificación usando YOLO.

El conjunto de prueba se evalúa con la clasificación realizada en MediaPipe,

acorde a las características y umbrales seleccionados para este método de la

siguiente manera:

1: if sofa_cama:

2: area_persona = alto_bb*ancho_bb

3: interseccion = calcular_interseccion([x, y, ancho_bb,
 alto_bb], [x2, y2, ancho_bb2, alto_bb2])

4: y_mitad_sofa = int(y2 + alto_bb2 / 2)

5: mitad_superior_sofa = [x2, y2, ancho_bb2,
 y_mitad_sofa - y2]

6: mitad_inferior_sofa = [x2, y_mitad_sofa, x2+ ancho_bb2,
 y2 + alto_bb2]

7: interseccion50s = calcular_interseccion([x, y, ancho_bb,
alto_bb], mitad_superior_sofa)

8: interseccion50i = calcular_interseccion([x, y, ancho_bb,
alto_bb], mitad_inferior_sofa)

9: ocupacion_persona = interseccion/area_persona

10: ocupacion50s=interseccion50s/area_persona

11: ocupacion50i=interseccion50i/area_persona

12: if ocupacion_persona > 0.5:

13: if ocupacion50s > (ocupacion_persona/2):

14: tumbado =True

15: else:

16: tumbado=False

92

17: if umbral < 15:

18: if tumbado:

19: mensaje ="tumbado"

20: else:

21: mensaje="caida"

22: else:

23: if ratio > 0.5:

24: mensaje="sentado"

25: else:

26: mensaje="de pie"

En esta ocasión se empieza por determinar si existe la clase “sofá” o “cama” en

la imagen y a continuación se calculan los parámetros necesarios para

posteriormente realizar la clasificación en base a la posibilidad de la existencia

de la clase “tumbado”. Si esta es posible que exista, las poses que se detectarían

como “caída” se clasificarán como “tumbado”, de lo contrario se distingue

únicamente “caída”, “de pie” y “sentado”.

Tras pasar por esta clasificación todas las imágenes del conjunto de prueba y

organizarlos en una tabla Excel, se obtienen los siguientes resultados (figura 45)

para la clasificación con YOLO.

Figura 45: Matriz de confusión normalizada. Método YOLO. (Fuente: Elaboración propia)

93

Al igual que para MediaPipe, se separan estos resultados entre detección (tabla

20) y clasificación (tabla 21).

• Detección:

Detección de YOLO

TP_d 87%

FN_d 13%

TN_d 100%

FP_d 0%

Tabla 20: Resultados detección YOLO.

• Clasificación:

YOLO De pie Sentado Caída Tumbado

De pie 94,50% 5,50% 0,00% 0,00%

Sentado 32,31% 67,69% 0,00% 0,00%

Caída 0,00% 0,83% 99.17% 0,00%

Tumbado 0,00% 0,00% 0,00% 99,9%

Tabla 21: Matriz de confusión de clasificación de YOLO.

5.1.3. Comparativa de los métodos individuales.

En este apartado se compararán los resultados obtenidos para sendos métodos

(MediaPipe y YOLO), pues es esencial para conseguir una clasificación robusta

y lo más eficaz posible.

• Comparativa en la detección.

 MEDIAPIPE YOLO

TP_d 72% 87%

FN_d 28% 13%

TN_d 100% 100%

FP_d 0% 0%

Tabla 22: Comparativa resultados clasificación de métodos individuales.

94

Comparando los resultados obtenidos en ambos métodos (tabla 22), se observa

que YOLO es mucho más eficaz a la hora de realizar la detección de persona

cuando sí que la hay, lo que se ha clasificado como TP_d, más concretamente,

una mejora del 15% respecto a la detección de MediaPipe. Con respecto a los

falsos positivos en la detección cuando no hay persona, ambos métodos se

comportan siempre de manera muy robusta, obteniendo un 100% de acierto.

Para visualizar mejor la diferencia en la detección, cuando sí que hay persona

entre los dos métodos, se puede observar el gráfico inferior (figura 46):

Figura 46: Gráfico comparativo clasificación de métodos individuales. (Fuente: Elaboración propia)

Tras observar los resultados en la detección, se elige como prioritaria la

detección mediante YOLO.

• Comparativa caída.

Se pasará a realizar una comparativa en la parte de clasificación para ambos

métodos, separándolos por poses. Se empieza por la clase crítica, la pose

“caída” (tabla 23).

 De pie Sentado Caída Tumbado

MediaPipe 0,00% 7,14% 92,86% --

YOLO 0,00% 0,83% 99.17% 0,00%

Tabla 23: Comparativa en la clasificación de pose caída de métodos individuales.

Ambos métodos muestran un acierto superior al del 90%, lo que es muy positivo.

Aun así, se aprecia cómo YOLO se acerca mucho más al 100% de eficacia. Por

lo tanto, se priorizará la clasificación de esta pose mediante este método. Para

visualizar mejor la diferencia entre ambos métodos, se observa el gráfico inferior

(figura 47).

MediaPipe

1 2

YOLO

1 2

95

Figura 47: Gráfico comparativo de clasificación de pose caída de métodos individuales. (Fuente:
Elaboración propia)

• Comparativa resto poses.

Se pasa a comparar los resultados obtenidos para las poses que se podrían

clasificar como normales.

 De pie Sentado Caída Tumbado

MediaPipe 98,92% 0,00% 1,08% --

YOLO 94,50% 5,50% 0,00% 0,00%

Tabla 24: Comparativa clasificación de pie de métodos individuales.

Comenzando por la pose “de pie” (tabla 24), en la que ambos métodos obtienen

un acierto superior al 90%, se puede considerar que la clasificación es correcta.

Se aprecia una pequeña diferencia a favor del método MediaPipe, obteniendo

un 4,42% más de acierto y acercándose a ese 100% de efectividad. Aunque

ambos métodos demuestran ser robustos, se prioriza la clasificación de

MediaPipe para esta pose. La diferencia se puede apreciar en el gráfico inferior

(figura 48).

Figura 48: Gráfico comparativo clasificación de pie de métodos individuales. (Fuente: Elaboración propia)

MediaPipe

1 2 3

YOLO

1 2 3 4

MediaPipe

1 2 3 4

YOLO

1 2 3 4

96

Por último, se analiza la clasificación en la pose “sentado” para ambos métodos

(tabla 25):

 De pie Sentado Caída Tumbado

MediaPipe 5,77% 90,38% 3,85% 5,77%

YOLO 32,31% 67,69% 0,00% 0,00%

Tabla 25: Comparativa clasificación pose sentado de métodos individuales.

En esta ocasión sí que se aprecia una notable diferencia en los resultados

obtenidos por ambos métodos. MediaPipe ofrece una eficacia del 90%, mientras

que YOLO cae hasta el 67%. Esto es debido a la hora de cómo ambos métodos

clasifican las poses. MediaPipe es capaz de extraer información de

articulaciones, relaciones corporales y demás pudiendo ser mucho más preciso

a la hora de diferenciar poses, mientras que YOLO solo es capaz de extraer

información de las medidas del boundingbox, por lo que es muy fácil que se

confunda con la pose “de pie” como es evidente en los resultados obtenidos.

Por estas razones se priorizará la respuesta de MediaPipe para esta pose. La

diferencia entre los resultados de ambos métodos se muestra en el gráfico

inferior (figura 49).

Figura 49: Gráfico comparativo clasificación pose sentado de métodos individuales. (Fuente: Elaboración
propia)

Basándose en los resultados obtenidos en la detección y clasificación individual

de ambos métodos en las pruebas, se crea un sistema de decisión para el

modelo.

MediaPipe

1 2 3

YOLO

1 2 3 4

97

5.1.4. Implementación de un sistema de decisión

basado en las fortalezas de cada método.

Se desarrolla un sistema de decisión basándose en las fortalezas y resultados

de cada método. El siguiente esquema (figura 50) lo muestra con claridad:

Figura 50: Árbol de decisión para la clasificación final. (Fuente: Elaboración propia)

98

5.2. Clasificación del SVM.

Para el método de clasificación automático se entrena un algoritmo SVM que,

acorde a las características extraídas de cada imagen, clasificará la pose

presente.

El primer paso es entrenarla y obtener unas medidas de los resultados que

ayudarán a saber cómo generaliza el algoritmo entrenado y si ha separado bien

las clases.

5.2.1. Entrenamiento y uso del SVM con datos

combinados de MediaPipe y YOLO.

Se empieza por el algoritmo SVM entrenado con las características extraídas

tanto de MediaPipe como de YOLO, se denominará SVM_Global, pues se

ejecutará cuando ambos métodos sean capaces de extraer información de la

imagen.

1: nombres_caracteristicas = [“angle_knee_r”, “angle_knee_l”,

“angle_hip_r”, “angle_hip_l”, “hombro_rodilla_r_y”,

“hombro_rodilla_l_y”, “hombro_rodilla_r_x”,

“hombro_rodilla_l_x”, “cadera_rodilla_r_x”,

“cadera_rodilla_l_x”, “cadera_rodilla_r_y”,

“cadera_rodilla_l_y”, “hombro_cadera_r_y”, “hombro_cadera_l_y”,

“hombro_cadera_r_x”, “hombro_cadera_l_x”, “rel_torso_pierna_r”,

“rel_torso_pierna_l”, “distancia_rodillas”, “cabeza_rodilla_y”,

“rodilla_mano_l_y”, “rodilla_mano_r_y”, “rodilla_mano_l_x”,

“rodilla_mano_r_x”, “cadera_tobillo_l_y”, “cadera_tobillo_r_y”,

“cadera_tobillo_l_x”, “cadera_tobillo_r_x”, “altura_cabeza”,

“altura_cadera_l”, “altura_cadera_r”, “hombro_cadera”, “umbral”,

“ratio”, “x_sofa”, “x”, “y_sofa”, “y”, “ancho_sofa”, “ancho_bb”,

“alto_sofa”, “alto_bb”]

Entrenando y probando el SVM con el conjunto de imágenes de prueba, se

obtienen siguientes resultados (tabla 26):

Precisión del modelo: 0,9820

99

Reporte de clasificación:

 precision recall f1-score support

0 0,97 1,00 0,98 32

1 1,00 0,95 0,97 19

2 0,98 1,00 0,99 48

3 1,00 1,00 1,00 4

4 1,00 0,88 0,93 8

Macro avg 0,99 0,96 0,98 111

Weighted avg 0,98 0,98 0,98 111

Tabla 26: Reporte de clasificación SVM global.

La precisión es la exactitud general del modelo, es una métrica global del

modelo, no específica de cada clase y muestra que clasifica correctamente el

98.20% de las muestras totales.

Basándose en el análisis de las métricas, se puede deducir que las clases 2 y 3

son perfectamente clasificadas (recall y f1-score de 1,00). La clase 4 tiene el

peor desempeño, con un recall de 0,88 (fallando en reconocer un 12% de las

muestras).

También se genera la matriz de confusión, que muestra cómo se distribuyen las

predicciones para cada clase de manera gráfica (figura 51):

Figura 51: Matriz de confusión normalizada rango [0-1]. SVM global. (Fuente: Elaboración propia)

100

Como conclusión, el modelo entrenado tiene un desempeño excelente con una

accuracy general del 98,2%. La clase 4 (con menos soporte) es la más

problemática, con un recall más bajo y errores pequeños. Se da como bueno el

entreno de este SVM y se usará para la clasificación definitiva.

5.2.2. Clasificación en escenarios específicos.

También se entrena un algoritmo SVM únicamente con características de cada

uno de los métodos para cuando uno de ellos no sea capaz de extraer

información de la imagen. Esto ayudará a evitar errores en la clasificación por

parte del SVM global al faltarle características.

5.2.2.1. SVM con datos únicamente de MediaPipe.

En este primer caso, se entrena un SVM con las características extraídas a

través de MediaPipe para cuando YOLO no sea capaz de detectar la clase

persona.

1: nombres_caracteristicas = [“angle_knee_r”, “angle_knee_l”,

“angle_hip_r”, “angle_hip_l”, “hombro_rodilla_r_y”,

“hombro_rodilla_l_y”, “hombro_rodilla_r_x”,

“hombro_rodilla_l_x”, “cadera_rodilla_r_x”,

“cadera_rodilla_l_x”, “cadera_rodilla_r_y”,

“cadera_rodilla_l_y”, “hombro_cadera_r_y”, “hombro_cadera_l_y”,

“hombro_cadera_r_x”, “hombro_cadera_l_x”, “rel_torso_pierna_r”,

“rel_torso_pierna_l”, “distancia_rodillas”, “cabeza_rodilla_y”,

“rodilla_mano_l_y”, “rodilla_mano_r_y”, “rodilla_mano_l_x”,

“rodilla_mano_r_x”, “cadera_tobillo_l_y”, “cadera_tobillo_r_y”,

“cadera_tobillo_l_x”, “cadera_tobillo_r_x”, “altura_cabeza”,

“altura_cadera_l”, “altura_cadera_r”, “hombro_cadera”]

Entrenando y probando el SVM con el conjunto de imágenes de prueba, se

obtienen siguientes resultados (tabla 27 y figura 52):

Precisión del modelo: 0,9725

101

Reporte de clasificación:

 precision recall f1-score support

0 1,00 0,94 0,97 35

1 0,88 0,94 0,91 16

2 0,98 1,00 0,99 58

Macro avg 0,96 0,96 0,96 109

Weighted avg 0,97 0,97 0,97 109

Tabla 27: Reporte de clasificación SVM MediaPipe.

Figura 52: Matriz de confusión normalizada rango [0-1]. SVM MediaPipe. (Fuente: Elaboración propia)

Analizando las métricas, se puede decir que el modelo tiene un desempeño

general muy bueno, pues clasifica correctamente el 97,25% de las muestras y

posee un balance fuerte entre precisión y recall. La clase 0 posee una excelente

precisión, aunque pierde algunos casos reales (recall 94%), la clase 2 se clasifica

casi a la perfección, probablemente por su mayor soporte. La clase 1 es la más

problemática con la precisión más baja del 88%, esto puede deberse a que tiene

el menor soporte.

5.2.2.2. SVM con datos únicamente de YOLO.

Por último, se entrena un SVM solamente con las características extraídas por

YOLO para cuando MediaPipe no detecte landmarks en la imagen.

102

1: nombres_caracteristicas = ['umbral','ratio', 'x_sofa', 'x',

'y_sofa', 'y', 'ancho_sofa', 'ancho_bb', 'alto_sofa', 'alto_bb']

Entrenando y probando el SVM con el conjunto de imágenes de prueba, se

obtienen siguientes resultados (tabla 28 y figura 53):

Precisión del modelo: 0,9355

Reporte de clasificación:

 precision recall f1-score support

0 0,97 0,91 0,94 35

1 0,84 0,95 0,89 22

2 1,00 0,97 0,98 32

4 0,75 0,75 0,75 4

Macro avg 0,89 0,90 0,89 93

Weighted avg 0,94 0,94 0,94 93

Tabla 28: Reporte de clasificación SVM YOLO.

Figura 53: Matriz de confusión normalizada rango [0-1]. SVM YOLO. (Fuente: Elaboración propia)

Aunque el desempeño general del modelo es bueno (93% de precisión), hay un

desbalance en el rendimiento entre algunas clases. Las clases 0, 1 y 2 tienen

buenos desempeños, pero la clase 4 tiene problemas debido posiblemente al

bajo número de muestras.

103

5.3. Validación.

En este apartado se validarán los resultados del modelo final implementado en

su conjunto a través del conjunto de imágenes de prueba para ver su rendimiento

en general y si fuera necesario realizar algún cambio. Se lleva a cabo la

validación con el conjunto de prueba, pues será indispensable comparar los

resultados obtenidos del modelo completo con los obtenidos por los métodos

individuales, para verificar que las decisiones tomadas en la lógica del código

han sido correctas.

5.3.1. Evaluación del rendimiento del sistema en

imágenes de prueba.

Como se ha dicho anteriormente, se extraen los resultados obtenidos por el

modelo final sobre el conjunto de prueba.

Se recuerda la estructura de dicho conjunto (tabla 29):

DE PIE SENTADO CAÍDA DESCONOCIDO TUMBADO

109 65 164 63 22

Tabla 29: Conjunto de prueba.

La matriz de confusión ofrece los resultados globales obtenidos por el modelo

(figura 54). Como en ocasiones anteriores, se separarán los resultados de la

parte de detección (tabla 30 y figura 55) y de la parte de clasificación (tabla 31 y

figura 56).

104

Figura 54: Matriz de confusión conjunto de prueba método manual. (Fuente: Elaboración propia)

• Detección.

TP_d 92,78%

FN_d 7,22%

TN_d 100,00%

FP_d 0,00%

Tabla 30: Resultados detección conjunto de prueba.

Figura 55: Gráfico resultados detección conjunto de prueba. (Fuente: Elaboración propia)

Persona

1 2

No persona

1 2

105

• Clasificación.

 De pie Sentado Caída Tumbado

De pie 99,08% 0,92% 0,00% 0,00%

Sentado 6,15% 93,85% 0,00% 0,00%

Caída 0,00% 0,61% 99,39% 0,00%

Tumbado 0,00% 0.00% 11,11% 88,89%

Tabla 31: Resultados clasificación conjunto de prueba método manual.

Figura 56: Gráfico resultados clasificación conjunto de prueba método manual. (Fuente: Elaboración
propia)

También se muestran los resultados finales de la clasificación automática

mediante el algoritmo SVM entrenado (figura 57). Se recuerda que los resultados

en la parte de detección, al depender directamente de los métodos MediaPipe y

YOLO, no arrojan ninguna diferencia con los obtenidos anteriormente. Los

resultados de la parte de clasificación (tabla 32 y figura 58) se muestran a

continuación:

De pie

1 2 3 4

Sentado

1 2 3 4

Caída

1 2 3 4

Tumbado

1 2 3 4

106

Figura 57: Matriz de confusión conjunto de prueba método SVM. (Fuente: Elaboración propia)

• Clasificación.

 De pie Sentado Caída Tumbado

De pie 98,17% 1,83% 0,00% 0,00%

Sentado 3,08% 95,38% 0,00% 1,54%

Caída 0,00% 0,70% 97,18% 2,11%

Tumbado 0,00% 11,11% 22,22% 66,67%

Tabla 32: Resultados clasificación conjunto de prueba método SVM.

De pie

1 2 3 4

Sentado

1 2 3 4

107

Figura 58: Gráfico resultados clasificación conjunto de prueba método SVM. (Fuente: Elaboración propia
)

Para poder analizar con rigor, los resultados obtenidos del modelo final y del

SVM para el conjunto de prueba se comparan con los resultados obtenidos por

los métodos individuales a continuación.

5.3.2. Comparativa entre los métodos individuales y la

combinación final.

Como se ha citado anteriormente, se analizan los resultados obtenidos en el

conjunto de prueba (tabla 33):

• Detección.

 MEDIAPIPE YOLO FINAL

TP_d 72% 87% 92,78%

FN_d 28% 13% 7,22%

TN_d 100% 100% 100%

FP_d 0% 0% 0%

Tabla 33: Comparativa resultados detección. Métodos individuales VS Modelo final.

Se aprecia así una notable mejora al unir ambos métodos según el árbol de

decisión. Cuando el método que mejor resultado ha obtenido en la detección, es

decir, YOLO, no detecta, se depende de la detección de landmarks de

MediaPipe, cubriendo más casos y mejorando bastante la detección. Como se

puede ver, supera de manera cómoda el 90% de los casos.

Caída

1 2 3 4

Tumbado

1 2 3 4

108

Se demuestra, así, la eficacia en este apartado de la unión de ambos métodos.

• Clasificación.

Para esta parte se había elegido como prioritario el método con mejores

resultados individuales (tabla 34).

Para la clasificación de la pose “caída” se prioriza la decisión de YOLO, pues,

sus resultados, como se ha visto anteriormente, son mejores a los de MediaPipe

(98.35% de acierto para YOLO y 92.86% de acierto para MediaPipe). Para la

clasificación de las poses “de pie” y “sentado” se priorizaba la decisión de

MediaPipe, pues, sus resultados han sido mejores en la fase de entrenamiento

(98.92% de acierto para MediaPipe y 94.5% de acierto para YOLO en la pose

“de pie”. 90.38% de acierto para MediaPipe y 67.69% de acierto para YOLO en

la pose “sentado”). Por último, para la clasificación de la pose “tumbado” se

depende completamente de YOLO, pues, es el método en el que se ha basado

totalmente esta clasificación.

 TP_c FP_c

MEDIAPIPE 94,05% 5,95%

YOLO 90,32% 9,68%

FINAL 95,10% 4,90%

SVM 89,35% 10,65%

Tabla 34: Resultados generales de cada método. Conjunto de prueba.

Los resultados obtenidos por los métodos individuales, eligiendo el que mejor

resultado ha obtenido, son buenos, superando siempre el 90%, pero la unión de

ambos métodos demuestra superioridad, aunque no de manera muy exagerada,

pues los métodos individuales ya tenían una buena precisión. Se mejora así

todavía más la clasificación y se hace más robusta.

En lo que respecta al algoritmo SVM, no mejora en exceso la clasificación

realizada de forma “empírica” a través de los umbrales de decisión de las

características extraídas por los métodos individuales. Por se ofrecen sus

resultados como una respuesta más, pues, se considera un método

complementario y prácticamente igual de fiable, y resulta interesante comparar

la respuesta de un sistema creado “manualmente” a base del análisis riguroso

de las características y un algoritmo de decisión autónoma como es el SVM.

109

La unión de ambos métodos, lo que consigue es aumentar el espectro en la

detección y la clasificación, no descartando una imagen ni seleccionando una

postura de primeras sin haber comprobado con el resultado obtenido por el otro

método.

5.4. Resultados obtenidos en el conjunto de test.

Ver cómo generaliza el modelo desarrollado es esencial para sacar conclusiones

firmes sobre su rendimiento, por ello, se prueba mediante imágenes de test, las

cuales no han sido nunca utilizadas para el entrenamiento ni decisiones tomadas

con el modelo realizado. El conjunto de imágenes de test es el siguiente y sigue

una distribución parecida al conjunto de prueba (tabla 35).

DE PIE SENTADO CAÍDA TUMBADO

74 85 140 23

NORMALES CAÍDA

182 140

Tabla 35: Conjunto de test.

Las matrices de confusión obtenidas para el modelo final (figura 59) y el modelo

del SVM (figura 60) son las siguientes:

Figura 59: Matriz de confusión de test método manual. (Fuente: Elaboración propia)

110

Los resultados obtenidos para el modelo final con el conjunto de imágenes de

test son muy similares a los obtenidos en las pruebas realizadas. Se puede decir

que el modelo generaliza bastante bien. Salvo en las clases más conflictivas por

la variabilidad en las posturas (pose “caída”) y la dificultad en los métodos de

detección (pose “tumbado”) en los que los resultados disminuyen un poco su

eficacia, en el resto de las poses se parecía una muy buena precisión.

Figura 60: Matriz de confusión de test método SVM. (Fuente: Elaboración propia)

Con el modelo automático del clasificador SVM pasa lo mismo. Se puede ver

que los resultados obtenidos son buenos y similares a los obtenidos

anteriormente. Como conclusión a este análisis preliminar, el SVM generaliza

también con mucha precisión en la clasificación para estas imágenes de test.

• Detección.

En este caso (tabla 36) se aprecia que los resultados obtenidos para la detección

de personas son muy buenos, superando con creces el 90% de acierto.

TP_d 95,67%

FN_d 4,33%

TN_d 100,00%

FP_d 0,00%

Tabla 36: Resultados detección test.

111

Figura 61: Gráfico resultados detección test. (Fuente: Elaboración propia)

• Clasificación.

Para la parte de clasificación se analizarán los resultados obtenidos para el

método de clasificación mediante el árbol de decisión y los umbrales calculados

y el método automático de la clasificación del SVM.

Empezando por el método “manual”, estos son los resultados que se obtienen

(tabla 37):

Manual De pie Sentado Caída Tumbado

De pie 97,30% 2,70% 0,00% 0,00%

Sentado 0,01% 99,90% 0,00% 0,00%

Caída 0,00% 5.55% 91,27% 3,18%

Tumbado 0,00% 0,00% 20,00% 80,00%

Tabla 37: Resultados clasificación test método manual.

La precisión en la clasificación es muy buena para casi todas las clases,

superando el 90% incluso llegando prácticamente al 100% en la clase “sentado”.

Para la clase “tumbado” el rendimiento cae hasta el 65%, confundiéndose en la

mayoría de los casos con la clase “caída”, error previsible por el método de

clasificación de la pose “tumbado”.

Los errores que se cometen en la clasificación en ningún momento son graves,

pues las clases confundidas son clases cercanas y semejantes a la pose a

clasificar.

Visualmente, se aprecian los resultados obtenidos en el siguiente gráfico (figura

62):

Persona

1 2

No persona

1 2

112

Figura 62: Gráfico resultados clasificación test método manual. (Fuente: Elaboración propia)

En lo que respecta a la clasificación SVM se obtienen los siguientes resultados

(tabla 38):

SVM De pie Sentado Caída Tumbado

De pie 97,30% 2,70% 0,00% 0,00%

Sentado 0,01% 99,9% 0,00% 0,00%

Caída 0,00% 6,35% 90,48% 3,17%

Tumbado 0,00% 13,04% 4,35% 82,61%

Tabla 38: Resultados clasificación test método SVM.

En esta ocasión, con el conjunto de test, se ha comportado mejor este método,

pues los resultados obtenidos con respecto al método “manual” así lo

demuestran. En esta ocasión la pose más conflictiva “tumbado” se trabaja de

manera más efectiva y el SVM es capaz de separar mejor esta clase del resto.

De pie

1 2 3 4

Sentado

1 2 3 4

Caída

1 2 3 4

Tumbado

1 2 3 4

113

Al igual que en el método anterior, los errores cometidos en la clasificación no

son graves, pues cuando se producen son con clases cercanas y muchos casos

muy similares en postura.

Los resultados de manera gráfica se visualizan en el siguiente gráfico (figura 63):

Figura 63: Gráfico resultados clasificación test método SVM. (Fuente: Elaboración propia)

Como resumen final a estos resultados se muestra el acierto global que han

tenido ambos métodos (tabla 39). Con esto queda demostrado el buen

funcionamiento tanto del método manual, conseguido de manera “empírica” con

el análisis riguroso de las características extraídas y con una buena selección de

umbrales, como del método de clasificación automático del SVM, en el que se

parecía la fortaleza de generalizar muy bien en imágenes completamente nuevas

a partir de un entreno previo.

 TP_c FP_c

MANUAL 92,12% 7,86%

SVM 92,57% 7,43%

Tabla 39: Resultados generales de la clasificación. Conjunto de test.

De pie

1 2 3 4

Sentado

1 2 3 4

Caída

1 2 3 4

Tumbado

1 2 3 4

114

5.5. Resultados en imágenes.

A continuación, se muestran algunos resultados en forma de imágenes de cómo

detectan los modelos y su resultado para que se aprecie la variedad de imágenes

con las que se ha trabajado en cuanto a poses, escenarios e iluminación.

5.5.1. Detecciones clase “de pie”.

Figura 64: Ejemplo de resultados del modelo en imágenes. Clase “de pie”. (Fuente: Elaboración propia)

115

5.5.2. Detecciones clase “sentado”.

Figura 65: Ejemplo de resultados del modelo en imágenes. Clase “sentado”. (Fuente: Elaboración propia
)

116

5.5.3. Detecciones clase “tumbado”.

Figura 66: Ejemplo de resultados del modelo en imágenes. Clase “tumbado”. (Fuente: Elaboración propia
)

117

5.5.4. Detecciones clase “caída”.

Figura 67: Ejemplo de resultados del modelo en imágenes. Clase “caída”. (Fuente: Elaboración propia)

118

6. Conclusiones y líneas futuras.

6.1. Conclusiones.

El presente trabajo ha desarrollado un sistema basado en visión artificial para la

caracterización de la posición de personas en entornos domésticos, con un

enfoque especial en personas que viven solas. Se ha diseñado una solución

mediante una combinación de MediaPipe y YOLO para la extracción de

características y clasificación basada en el análisis de estas en 4 clases

principales: “de pie”, “sentado”, “tumbado” y “caída”.

La estructura básica del proyecto pasa por un análisis de la imagen mediante

MediaPipe Pose y YOLO del que se extraen una serie de características

relevantes y se seleccionan los umbrales mediante los que se realiza la

clasificación final. También se ha experimentado en paralelo con un clasificador

SVM al que se le pasan las características extraídas por MediaPipe y YOLO para

una clasificación autónoma.

En el proceso se ha pasado por una fase de estudio de efectividad de las dos

herramientas que se utilizan (MediaPipe Pose y YOLO) para elegir en qué

situaciones es más robusta una que otra y así conseguir un sistema de decisión

basado en los puntos fuertes de cada uno.

Se ha realizado un análisis detallado de las características extraídas de las

detecciones por ambas herramientas para poder elegir cuáles de ellas eran más

relevantes y distintivas de cada clase. Junto con la creación del SVM, a partir de

la recolección de estas características se ha podido mejorar su elección y la

creación de umbrales de clasificación más precisos.

La caracterización presentó ciertos desafíos a la hora de no inducir

solapamientos con las demás clases con la selección de características y los

umbrales adecuados. Estas dificultades fueron superadas con dedicación y un

esfuerzo constante gracias a un exhaustivo trabajo de análisis y optimización.

Los resultados obtenidos en este proyecto han sido altamente satisfactorios, no

solo en las pruebas de entrenamiento, sino también en los test realizados, donde

el modelo ha demostrado una precisión destacable en la clasificación de las

posturas. Estos avances no solo contribuyen al campo de la visión artificial, sino

que tienen un impacto directo en la sociedad, especialmente en la detección

temprana de caídas.

Desde una perspectiva práctica, este sistema y su capacidad de detección en

entornos domésticos representan un paso importante hacia una mayor seguridad

y bienestar para personas, especialmente aquellas de avanzada edad que viven

solas o tienen problemas de movilidad.

119

6.2. Líneas futuras de trabajo y mejoras.

Aunque los resultados obtenidos son satisfactorios, existen varias áreas que

pueden ser optimizadas y que podrían abrir nuevas posibilidades de aplicación,

pues este trabajo no ha sido desarrollado con la idea de cerrar la línea de trabajo

al terminarlo.

Una mejora clave sería explorar arquitecturas más complejas y avanzadas, como

redes neuronales entrenadas específicamente para esta labor y conseguir un

dataset mucho más amplio utilizado para entrenar el modelo, ya que podrían

proporcionar una mayor precisión y robustez en la clasificación de posturas

complicadas, especialmente en condiciones difíciles o entornos variados,

incorporando una mayor diversidad de escenarios y condiciones, ayudando a

mejorar la generalización del modelo y permitiendo su implementación en una

mayor variedad de situaciones reales. Incluso se podrían considerar enfoques

que incluyan técnicas de aprendizaje automático, permitiendo que el modelo se

adapte y aprenda de nuevos datos en tiempo real, mejorando su rendimiento a

medida que se recopilan más muestras.

Una de las limitaciones encontradas en este proyecto ha sido la posibilidad de

trabajar con imágenes en tiempo real, lo que permitiría la monitorización continua

del movimiento. Esto va de la mano con explorar arquitecturas más complejas y

tener un equipo de trabajo potente para poder procesar toda esta información.

Además, se podría explorar la integración de otros sensores o modalidades de

datos, como sensores de movimiento o cámaras adicionales, para obtener una

visión más completa y precisa del entorno y las personas, aumentando la

fiabilidad del sistema.

Una línea futura de trabajo clara sería trabajar en la conectividad con los

servicios médicos y familiares para poder mandar mensajes de alerta al detectar

caídas. También profundizar en la posibilidad de emitir recomendaciones

cuando, por ejemplo, el sistema detecte la postura “sentado” varias veces

seguidas, evitando situaciones de sedentarismo.

Estas mejoras y líneas de investigación abren nuevas oportunidades para

desarrollar sistemas de visión artificial aún más eficientes y adaptables, con un

impacto directo en la mejora de la seguridad y calidad de vida de las personas,

especialmente aquellas en situaciones vulnerables.

120

7. Bibliografía.

[1] Instituto Nacional de Seguridad y Salud en el Trabajo. (2012). Accidente

en casa también ocurren.

https://www.insst.es/documents/94886/375493/Tr%C3%ADptico.+Accidente.+e

n+casa+tambi%C3%A9n+ocurren+-

+A%C3%B1o+2012+%28en+cat%C3%A1logo%29.pdf/8c955888-f343-4442-

ba00-f13147d3927b?t=1685613056653

Consultado por última vez el 12 de noviembre de 2024

[2] Organización Mundial de la Salud. (2021). Caídas.

https://www.who.int/es/news-room/fact-sheets/detail/falls

Consultado por última vez el 12 de noviembre de 2024

[3] Pontificia Universidad Católica de Chile. (2021, 6 de septiembre). Entre 7

y 11,5 horas es el tiempo que pasamos sentados durante el día en promedio.

https://www.uc.cl/noticias/entre-7-y-11-5-horas-es-el-tiempo-que-pasamos-

sentados-durante-el-dia-en-promedio/

Consultado por última vez el 12 de noviembre de 2024

[4] Sanidad, Ministerio de. (2017). Encuesta Nacional de Salud 2017:

Actividad física.

https://www.sanidad.gob.es/estadEstudios/estadisticas/encuestaNacional/encu

estaNac2017/ACTIVIDAD_FISICA.pdf

Consultado por última vez el 12 de noviembre de 2024

[5] INTEC ROBOTS S.L. (s.f.). TEMI - Robot asistente personal -

Telepresencia.

https://intecrobots.com/temi-robot-asistente-personal-telepresencia-intec-

robots/

Consultado por última vez el 3 de marzo de 2025

https://www.insst.es/documents/94886/375493/Tr%C3%ADptico.+Accidente.+en+casa+tambi%C3%A9n+ocurren+-+A%C3%B1o+2012+%28en+cat%C3%A1logo%29.pdf/8c955888-f343-4442-ba00-f13147d3927b?t=1685613056653
https://www.insst.es/documents/94886/375493/Tr%C3%ADptico.+Accidente.+en+casa+tambi%C3%A9n+ocurren+-+A%C3%B1o+2012+%28en+cat%C3%A1logo%29.pdf/8c955888-f343-4442-ba00-f13147d3927b?t=1685613056653
https://www.insst.es/documents/94886/375493/Tr%C3%ADptico.+Accidente.+en+casa+tambi%C3%A9n+ocurren+-+A%C3%B1o+2012+%28en+cat%C3%A1logo%29.pdf/8c955888-f343-4442-ba00-f13147d3927b?t=1685613056653
https://www.insst.es/documents/94886/375493/Tr%C3%ADptico.+Accidente.+en+casa+tambi%C3%A9n+ocurren+-+A%C3%B1o+2012+%28en+cat%C3%A1logo%29.pdf/8c955888-f343-4442-ba00-f13147d3927b?t=1685613056653
https://www.who.int/es/news-room/fact-sheets/detail/falls
https://www.uc.cl/noticias/entre-7-y-11-5-horas-es-el-tiempo-que-pasamos-sentados-durante-el-dia-en-promedio/
https://www.uc.cl/noticias/entre-7-y-11-5-horas-es-el-tiempo-que-pasamos-sentados-durante-el-dia-en-promedio/
https://www.sanidad.gob.es/estadEstudios/estadisticas/encuestaNacional/encuestaNac2017/ACTIVIDAD_FISICA.pdf
https://www.sanidad.gob.es/estadEstudios/estadisticas/encuestaNacional/encuestaNac2017/ACTIVIDAD_FISICA.pdf
https://intecrobots.com/temi-robot-asistente-personal-telepresencia-intec-robots/
https://intecrobots.com/temi-robot-asistente-personal-telepresencia-intec-robots/

121

[6] Wikipedia. (2023). Visión artificial.

https://es.wikipedia.org/wiki/Visi%C3%B3n_artificial

Consultado por última vez el 22 de noviembre de 2024

[7] IBM. (n.d.). Machine learning.

https://www.ibm.com/es-es/topics/machine-learning

Consultado por última vez el 22 de noviembre de 2024

[8] IBM. (n.d.). Deep learning.

https://www.ibm.com/es-es/topics/deep-learning

Consultado por última vez el 27 de noviembre de 2025

[9] MathWorks. (n.d.). Convolutional neural network.

https://es.mathworks.com/discovery/convolutional-neural-network.html

Consultado por última vez el 14 de febrero de 2025

[10] Wikipedia. (s.f.). Postura.

https://es.wikipedia.org/wiki/Postura

Consultado por última vez el 19 de diciembre de 2024

[11] López, J. (2021, 22 de noviembre). Estimación de la pose con deep

learning. Campus Big Data

 https://www.campusbigdata.com/blog/estimacion-de-la-pose-con-deep-

learning/

Consultado por última vez el 14 de febrero de 2025

[12] Roboflow. (2021, diciembre 21). What is OpenPose?

https://blog.roboflow.com/what-is-openpose/

Consultado por última vez el 3 de marzo de 2025

https://es.wikipedia.org/wiki/Visi%C3%B3n_artificial
https://www.ibm.com/es-es/topics/machine-learning
https://www.ibm.com/es-es/topics/deep-learning
https://es.mathworks.com/discovery/convolutional-neural-network.html
https://es.wikipedia.org/wiki/Postura
https://www.campusbigdata.com/blog/estimacion-de-la-pose-con-deep-learning/
https://www.campusbigdata.com/blog/estimacion-de-la-pose-con-deep-learning/
https://blog.roboflow.com/what-is-openpose/

122

[13] Jardin, A. (n.d.). ZED-OpenPose. GitHub.

https://github.com/adujardin/zed-openpose?ref=blog.roboflow.com

Consultado por última vez el 3 de marzo de 2025

[14] Encord. (n.d.). AlphaPose definition.

https://encord.com/glossary/alphapose-definition/

Consultado por última vez el 3 de marzo de 2025

[15] Viso.ai. (n.d.). AlphaPose: Real-time multi-person pose estimation.

https://viso.ai/deep-learning/alphapose/

Consultado por última vez el 3 de marzo de 2025

[16] Del Valle Hernández, L. (2020, octubre 13). Sensor Kinect e inteligencia

artificial [Audio podcast]. Programar Fácil.

https://programarfacil.com/podcast/86-sensor-kinect-inteligencia-artificial/

Consultado por última vez el 3 de marzo de 2025

[17] Hacedores. (n.d.). Introducción a Kinect.

https://hacedores.com/introduccion-a-kinect/

Consultado por última vez el 3 de marzo de 2025

[18] Elforaici, I., El Abed, A., & Kharroubi, S. (2018). Reconocimiento de

posturas utilizando una cámara RGB-D: explorando modelado corporal 3D y

enfoques de aprendizaje profundo. arXiv.

 https://arxiv.org/abs/1810.00308

Consultado por última vez el 13 de Enero de 2025

[19] Zhu, X., Zhang, Y., Wang, L., & Li, J. (2024). Combined MediaPipe and

YOLOv5 range of motion assessment system for spinal diseases and frozen

shoulder. Scientific Reports, 14(1), 12345.

https://doi.org/10.1038/s41598-024-66221-8

Consultado por última vez el 13 de Enero de 2025

https://github.com/adujardin/zed-openpose?ref=blog.roboflow.com
https://encord.com/glossary/alphapose-definition/
https://viso.ai/deep-learning/alphapose/
https://programarfacil.com/podcast/86-sensor-kinect-inteligencia-artificial/
https://hacedores.com/introduccion-a-kinect/
https://arxiv.org/abs/1810.00308
https://doi.org/10.1038/s41598-024-66221-8

123

[20] Wikipedia. (n.d.). Anaconda (distribución de Python).

https://es.wikipedia.org/wiki/Anaconda_(distribuci%C3%B3n_de_Python)

Consultado por última vez el 19 de diciembre de 2024

[21] Crehana. (2020, 22 de septiembre). ¿Qué es OpenCV?

https://www.crehana.com/blog/transformacion-digital/que-es-opencv/

Consultado por última vez el 20 de diciembre de 2024

[22] Innovatiana. (n.d.). MediaPipe.

https://es.innovatiana.com/post/MediaPipe-101

Consultado por última vez el 20 de diciembre de 2024

[23] Google AI. (n.d.). Pose Landmarker. Google AI.

https://ai.google.dev/edge/MediaPipe/solutions/vision/pose_landmarker?hl=es-

419

Consultado por última vez el 21 de Diciembre de 2024

[24] Wikipedia. (s.f.). Algoritmo You Only Look Once (YOLO). Wikipedia.

https://es.wikipedia.org/wiki/Algoritmo_You_Only_Look_Once_(YOLO)

Consultado por última vez el 21 de diciembre de 2024

[25] Viso AI. (n.d.). YOLOv3 overview: The basics of YOLO and how it works.

https://viso.ai/deep-learning/yolov3-overview/

Consultado por última vez el 21 de diciembre de 2024

[26] Elakkiya, R., Kumar, P. M., Krishnan, M., & Balamurugan, B. (2021).

Vehicle detection from aerial images using deep learning: A comparative study.

ResearchGate.

https://www.researchgate.net/publication/350502286

Consultado por última vez el 5 de marzo de 2025

https://es.wikipedia.org/wiki/Anaconda_(distribuci%C3%B3n_de_Python)
https://www.crehana.com/blog/transformacion-digital/que-es-opencv/
https://es.innovatiana.com/post/mediapipe-101
https://ai.google.dev/edge/mediapipe/solutions/vision/pose_landmarker?hl=es-419
https://ai.google.dev/edge/mediapipe/solutions/vision/pose_landmarker?hl=es-419
https://es.wikipedia.org/wiki/Algoritmo_You_Only_Look_Once_(YOLO)
https://viso.ai/deep-learning/yolov3-overview/
https://www.researchgate.net/publication/350502286

124

[27] Reddie, P. J. (s.f.). YOLO: Real-Time Object Detection. Pjreddie.com.

https://pjreddie.com/darknet/yolo/

Consultado por última vez el 21 de diciembre de 2024

[28] GeeksforGeeks. (n.d.). Support Vector Machine algorithm.

https://www.geeksforgeeks.org/support-vector-machine-algorithm/

Consultado por última vez el 10 de enero de 2025

[29] Fallen People Detection Capabilities Using Assistive Robot. S.

Maldonado-Bascón, C. Iglesias-Iglesias, P. Martín-Martín, S. Lafuente-Arroyo.

Electronics 2019.

https://gram.web.uah.es/data/datasets/fpds/index.html

Consultado por última vez el 11 de enero de 2025

[30] IASLAB-RGBD (Antonello, M.; Carraro, M.; Pierobon, M.; Menegatti, E.

Fast and robust detection of fallen people from a mobile robot. 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS)).

https://gram.web.uah.es/data/datasets/fpds/index.html

Consultado por última vez el 11 de enero de 2025

[31] Up-Fall Detection (Kwolek, B.; Kepski, M. Human fall detection on

embedded platform using depth maps and wireless accelerometer. Computer

methods and programs in biomedicine 2014).

https://gram.web.uah.es/data/datasets/fpds/index.html

Consultado por última vez el 11 de enero de 2025

[32] Elderly Set. S. Maldonado-Bascón, C. Iglesias-Iglesias, P. Martín-Martín,

S. Lafuente-Arroyo. Electronics 2019.

https://gram.web.uah.es/data/datasets/fpds/index.html

Consultado por última vez el 11 de enero de 2025

https://pjreddie.com/darknet/yolo/
https://www.geeksforgeeks.org/support-vector-machine-algorithm/
https://gram.web.uah.es/data/datasets/fpds/index.html
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/ETKEt1J-g6lJjkqUOFV13C4BGE5SayAS-QAy9P7wGcel1g?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/ETKEt1J-g6lJjkqUOFV13C4BGE5SayAS-QAy9P7wGcel1g?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/ETKEt1J-g6lJjkqUOFV13C4BGE5SayAS-QAy9P7wGcel1g?&Download=1
https://gram.web.uah.es/data/datasets/fpds/index.html
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/EbpD59iTrctBuO3KhIHGnBsBtOmtSpGJgr93hRHYitj-4A?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/EbpD59iTrctBuO3KhIHGnBsBtOmtSpGJgr93hRHYitj-4A?&Download=1
https://universidaddealcala-my.sharepoint.com/:u:/g/personal/gram_uah_es/EbpD59iTrctBuO3KhIHGnBsBtOmtSpGJgr93hRHYitj-4A?&Download=1
https://gram.web.uah.es/data/datasets/fpds/index.html
https://gram.web.uah.es/data/datasets/fpds/index.html

125

[33] Gaby Sol. (2020). OmesTutorials2020. GitHub.

https://github.com/GabySol/OmesTutorials2020

Consultado por última vez el 23 de enero de 2025

[34] GitHub. (2020). MediaPipe Pose Classification.

https://github.com/google/MediaPipe/blob/master/docs/solutions/pose_classifica

tion.md

Consultado por última vez el 23 de enero de 2025

[35] Scikit-learn. (n.d.). Confusion matrix.

https://scikit-

learn.org/1.5/auto_examples/model_selection/plot_confusion_matrix.html

Consultado por última vez el 24 de enero de 2025

[36] TensorFlow Blog. (2021). High fidelity pose tracking with MediaPipe,

BlazePose, and TFJS.

https://blog.tensorflow.org/2021/05/high-fidelity-pose-tracking-with-MediaPipe-

blazepose-and-tfjs.html

Consultado por última vez el 24 de enero de 2025

[37] UVA. (2023). Documento.

https://apps.stic.uva.es/guias_docentes/uploads/2023/452/42388/1/Documento.

pdf

Consultado por última vez el 22 de noviembre de 2024

[38] Yolo11 Fall Detection. (n.d.). YOLO v3 Object Detection Track. GitHub.

https://github.com/freedomwebtech/yolo11fall/blob/main/yolo11objectdetection-

track.py

Consultado por última vez el 26 de enero de 2025

https://github.com/GabySol/OmesTutorials2020
https://github.com/google/mediapipe/blob/master/docs/solutions/pose_classification.md
https://github.com/google/mediapipe/blob/master/docs/solutions/pose_classification.md
https://scikit-learn.org/1.5/auto_examples/model_selection/plot_confusion_matrix.html
https://scikit-learn.org/1.5/auto_examples/model_selection/plot_confusion_matrix.html
https://blog.tensorflow.org/2021/05/high-fidelity-pose-tracking-with-mediapipe-blazepose-and-tfjs.html
https://blog.tensorflow.org/2021/05/high-fidelity-pose-tracking-with-mediapipe-blazepose-and-tfjs.html
https://apps.stic.uva.es/guias_docentes/uploads/2023/452/42388/1/Documento.pdf
https://apps.stic.uva.es/guias_docentes/uploads/2023/452/42388/1/Documento.pdf
https://github.com/freedomwebtech/yolo11fall/blob/main/yolo11objectdetection-track.py
https://github.com/freedomwebtech/yolo11fall/blob/main/yolo11objectdetection-track.py

126

8. Anexos:

8.1. Anexo 1: Lista de programas desarrollados.

“FUNCIÓN principal TFG Rubén.py”: Función principal del proyecto.

Desarrollada para conseguir una clasificación de la postura de la persona

presente en una imagen entre 5 clases predominantes, “de pie”, “sentado”,

“tumbado”, “caída” y “desconocido”.

“clasificador imágenes en carpetas.py”: Función desarrollada para

conseguir clasificar y filtrar las imágenes de los datasets utilizados a lo largo

del proyecto.

“características MEDIAPIPE a txt.py”: Función desarrollada para pasar

todas las características extraídas por MediaPipe a un txt. Se ha utilizado

para ordenar estas características por clases y poder trabajar con ellas para

la clasificación final.

“características YOLO a txt.py”: Función desarrollada para pasar todas las

características extraídas por YOLO a un txt. Se ha utilizado para ordenar

estas características por clases y poder trabajar con ellas para la clasificación

final.

“SVM con datos.py”: Función desarrollada para crear y entrenar los

algoritmos SVM utilizados en el proyecto con los datos extraídos a través de

MediaPipe y YOLO. De este programa surgen los archivos con los SVM

entrenados y sus escaladores para normalizar las características.

o “SVM_MY.pkl” y “scaler_MY.pkl”

o “SVM_YOLO.pkl” y “scaler_YOLO.pkl”

o “SVM_MEDIAPIPE.pkl” y “scaler_MEDIAPIPE.pkl”

127

8.2. Anexo 2: Lista de librerías del entorno de

Python.

Nombre Versión

absl-py 2.1.0

alabaster 0.7.12

arrow 1.2.3

astroid 2.14.2

asttokens 2.0.5

atomicwrites 1.4.0

attrs 23.2.0

autopep8 2.0.4

babel 2.11.0

backcall 0.2.0

bcrypt 3.2.0

beautifulsoup4 4.12.2

binaryornot 0.4.4

black 23.11.0

blas 1.0

bleach 4.1.0

bottleneck 1.3.7

brotli-python 1.0.9

ca-certificates 2024.9.24

certifi 2024.8.30

cffi 1.16.0

chardet 4.0.0

charset-normalizer 2.0.4

click 8.1.7

cloudpickle 2.2.1

colorama 0.4.6

comm 0.2.1

contourpy 1.2.0

cookiecutter 2.6.0

cryptography 42.0.5

cycler 0.12.1

debugpy 1.6.7

decorator 5.1.1

defusedxml 0.7.1

diff-match-patch 20200713

dill 0.3.7

docstring-to-markdown 0.11

docutils 0.18.1

exceptiongroup 1.2.0

executing 0.8.3

filelock 3.16.1

128

flake8 7.0.0

flatbuffers 24.3.25

fonttools 4.50.0

fsspec 2024.10.0

icc_rt 2022.1.0

icu 73.1

idna 3.4

imagesize 1.4.1

importlib-metadata 7.1.0

importlib-resources 6.4.0

importlib_metadata 7.0.1

inflection 0.5.1

intel-openmp 2021.4.0

intervaltree 3.1.0

ipykernel 6.28.0

ipython 8.15.0

isort 5.9.3

jaraco.classes 3.2.1

jax 0.4.25

jedi 0.18.1

jellyfish 1.0.1

jinja2 3.1.3

joblib 1.4.2

jpeg 9e

jsonschema 4.19.2

jsonschema-specifications 2023.7.1

jupyter_client 8.6.0

jupyter_core 5.5.0

jupyterlab_pygments 0.2.2

keyring 24.3.1

kiwisolver 1.4.5

krb5 1.20.1

lazy-object-proxy 1.6.0

libclang 14.0.6

libclang13 14.0.6

libpng 1.6.39

libpq 12.17

libsodium 1.0.18

libspatialindex 1.9.3

lz4-c 1.9.4

markdown-it-py 2.2.0

markupsafe 2.1.3

matplotlib 3.8.3

matplotlib-inline 0.1.6

mccabe 0.7.0

mdurl 0.1.0

129

MediaPipe 0.10.11

mistune 2.0.4

mkl 2021.4.0

mkl-service 2.4.0

mkl_fft 1.3.1

mkl_random 1.2.2

ml-dtypes 0.3.2

more-itertools 10.1.0

mpmath 1.3.0

mypy_extensions 1.0.0

nbclient 0.8.0

nbconvert 7.10.0

nbformat 5.9.2

nest-asyncio 1.6.0

networkx 3.2.1

numexpr 2.8.4

numpy 1.26.4

numpy-base 1.24.3

numpydoc 1.5.0

opencv-contrib-python 4.9.0.80

opencv-python 4.10.0.84

openssl 3.0.13

opt-einsum 3.3.0

packaging 24.0

pandas 2.0.3

pandocfilters 1.5.0

paramiko 2.8.1

parso 0.8.3

pathspec 0.10.3

pexpect 4.8.0

pickleshare 0.7.5

pillow 10.2.0

pip 23.3.1

platformdirs 3.10.0

pluggy 1.0.0

ply 3.11

pooch 1.8.2

prompt-toolkit 3.0.43

protobuf 3.20.3

psutil 5.9.0

ptyprocess 0.7.0

pure_eval 0.2.2

py-cpuinfo 9.0.0

pycodestyle 2.11.1

pycparser 2.21

pydocstyle 6.3.0

130

pyflakes 3.2.0

pygments 2.15.1

pylint 2.16.2

pylint-venv 3.0.3

pyls-spyder 0.4.0

pynacl 1.5.0

pyparsing 3.1.2

pyqt 5.15.10

pyqt5-sip 12.13.0

pyqtwebengine 5.15.10

pysocks 1.7.1

python 3.9.19

python-dateutil 2.9.0.post0

python-fastjsonschema 2.16.2

python-lsp-black 2.0.0

python-lsp-jsonrpc 1.1.2

python-lsp-server 1.10.0

python-slugify 5.0.2

python-tzdata 2023.3

pytoolconfig 1.2.6

pytz 2023.3.post1

pywin32 305

pywin32-ctypes 0.2.2

pyyaml 6.0.1

pyzmq 25.1.2

qdarkstyle 3.2.3

qstylizer 0.2.2

qt-main 5.15.2

qt-webengine 5.15.9

qtawesome 1.2.2

qtconsole 5.5.1

qtpy 2.4.1

referencing 0.30.2

requests 2.31.0

rich 13.3.5

rope 1.12.0

rpds-py 0.10.6

rtree 1.0.1

scikit-learn 1.3.0

scipy 1.12.0

seaborn 0.13.2

setuptools 68.2.2

sip 6.7.12

six 1.16.0

snowballstemmer 2.2.0

sortedcontainers 2.4.0

131

sounddevice 0.4.6

soupsieve 2.5

sphinx 5.0.2

sphinxcontrib-applehelp 1.0.2

sphinxcontrib-devhelp 1.0.2

sphinxcontrib-htmlhelp 2.0.0

sphinxcontrib-jsmath 1.0.1

sphinxcontrib-qthelp 1.0.3

sphinxcontrib-serializinghtml 1.1.5

spyder 5.5.1

spyder-kernels 2.5.0

sqlite 3.41.2

stack_data 0.2.0

sympy 1.13.1

text-unidecode 1.3

textdistance 4.2.1

threadpoolctl 3.5.0

three-merge 0.1.1

tinycss2 1.2.1

tomli 2.0.1

tomlkit 0.11.1

torch 2.5.1

torchvision 0.20.1

tornado 6.3.3

tqdm 4.67.0

traitlets 5.7.1

typing-extensions 4.9.0

typing_extensions 4.9.0

tzdata 2024a

ujson 5.4.0

ultralytics 8.3.36

ultralytics-thop 2.0.12

unidecode 1.2.0

urllib3 2.1.0

vc 14.2

vs2015_runtime 14.27.29016

watchdog 2.1.6

wcwidth 0.2.5

webencodings 0.5.1

whatthepatch 1.0.2

wheel 0.41.2

win_inet_pton 1.1.0

wrapt 1.14.1

xz 5.4.6

yaml 0.2.5

yapf 0.40.2

132

zeromq 4.3.5

zipp 3.18.1

zlib 1.2.13

zstd 1.5.5

