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Abstract

We study the time-consistent investment and contribution policies in a defined benefit
stochastic pension fund where the manager discounts the instantaneous utility over a finite
planning horizon and the final function at constant but different instantaneous rates of time
preference. This difference, which can be motivated for some uncertainties affecting payoffs
at the end of the planning horizon, will induce a variable bias between the relative valuation
of the final function and the previous payoffs, and will lead the manager to show time-
inconsistent preferences. Both the benefits and the contribution rate are proportional to the
total wage of the workers that we suppose is stochastic. The aim is to maximize a CRRA
utility function of the net benefit relative to salary in a bounded horizon and to maximize a
CRRA final utility of the fund level relative to the salary. The problem is solved by means

of dynamic programming techniques and main results are illustrated numerically.

Keywords: pension funding; defined benefit; heterogeneous discount; time-consistent portfo-
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1 Introduction

In this paper, we consider a defined benefit (DB) pension plan with stochastic salary, correlated
with the financial market and proportional to the benefit. The objective of the manager is
to maximize a utility function of the net benefit relative to the salary along a finite planning

horizon, discounted at a constant rate of time preference, and also to maximize a utility of the
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fund relative to the salary at the end of the planning horizon, but discounted at a different
constant rate. In this setting, known as heterogeneous discounting, the difference in the rates
of time preference can be motivated, for instance, because of some uncertainties affecting the
payoff or utility at the end of the planning horizon (or, equivalently, from that moment on for
an infinite time horizon) but not to the previous ones. This difference in the discount rates
generates a changing relative valuation, increasing or decreasing, depending on the discount
rates applied of the final utility with respect to instantaneous utility along the planning horizon.
For instance, in the former case, when the time horizon faced by the decision maker is long
enough, not too much attention is paid to the consequences of her or his current actions on the
final fund wealth, but an increasing concern arises as she approaches the end of it, affecting non
only quantitatively optimal decisions in absence of this temporal bias.

Since the work of Haberman and Sung (1994), and later of Cairns (2000), the study of
optimal policies in pension plan models from the perspective of dynamic programming has
become increasingly important. In these papers, two different types of pension plans have been
considered, defined benefit and defined contribution (DC) pension plans. In a DB pension plan,
the benefit, which is generally based on the salary of the employee, is fixed in advance and the
manager of the plan seeks to ensure that benefit by the end of the plan by using two instruments:
the contributions and the investment of the fund assets in the financial market. Because of this,
a DB plan is more attractive for the employees, since the risk is entirely assumed by the manager.
However, a DC pension plan is funded primarily by the employee, with the employer matching
contributions to a certain amount. Here, the employee must adapt her contributions to the
dynamics of the fund in order to obtain an adequate wealth for retirement, thus assuming the
risk. In DC pension plans, the benefit depends entirely on the performance of the plan in the
financial market.

The study of DB pension plans is relevant since they continue to be important in the OCDE
countries. Their pension systems are of DB type, see Table 2 in Urbano et al. (2021). These
plans are advantageous for workers, because they do not take the risk, and therefore are an
incentive to take advantage of them. On the other hand, with respect to the size of the pension
plan, according to the Thinking Ahead Institute, in 2020, DB funds account for 63.4% of the
total assets under management of the world’s largest pension funds, as shown in Hodgson et al.
(2021).

Other previous works on pension funding, optimal portfolio and stochastic dynamic program-
ming are Battochio and Menoncin (2004), Battochio et al. (2007), Cairns et al. (2006), Chang
et al. (2003), Chen and Hao (2013), Chen and Delong (2015), Delong et al. (2008), Devolder
et al. (2003), Gao (2009), Gerrard et al. (2006), Josa-Fombellida and Rincén-Zapatero (2004,
2008a, 2008b, 2018, 2019) and Le Cortois and Menoncin (2015). Some of them have included



the salary as an exogenous element to the mathematical model. For instance, in Battochio and
Menoncin (2004), the authors consider a DC stochastic pension fund model in continuous time
where the manager maximizes the expected exponential utility of her terminal wealth in a com-
plete financial market with stochastic interest rate, and where contributions are proportional to
the labour income, which is given by a geometric Brownian motion (henceforth GBM) process.
Also, in Cairns et al. (2006), the authors study a DC pension plan model with a stochastic rate
of interest that incorporates the salary as a GBM and the aim of the manager is to maximize a
terminal expected isoelastic utility of the fund relative to salary.

With relation to the study of biases in the decision processes leading to decisions not to-
tally rational from an axiomatic point of view, behavioral finance studies have been receiving
increasing attention in the last years. While initially the focus of attention was put on indi-
vidual decision biases, there is an increasing evidence that more sophisticated or institutional
investors can also be affected by some of these biases. For instance, Ahmad et al. (2017), review
the theory and empirical evidence of institutional investor behavioral, and Weiss-Cohen et al.
(2019) and the report by Ayton et al. (2021) study behavioral biases in pension fund trustees’
decisions.

In the particular case of intertemporal decisions, recent years have witnessed an increasing
interest in the study of deviations from standard discounting, supported by empirical evidence
on intertemporal choice decisions (see, e.g., Frederick et al. (2002) for a survey). Within this
research line, we find generalizations of the Standard Discounted Utility Model introduced by
Paul Samuelson, both in discrete and continuous time, which aims to explain observed biases in
the decisions over time. A common feature of some of these extensions is that time preferences
become time-inconsistent, as they will depend on the instant of time the decision maker is, and
consequently standard optimization techniques fail to characterize time-consistent solutions.

At a theoretical level, even in the case that members of a decision group are assumed to be
individually fully rational, collective behavior can show some decision biases, for instance derived
from some heterogeneities in the individual preferences, or in the payoffs or utilities considered.
In the first case, it is well known that to aggregate temporal decisions for agents with different
rates of time preference lead to time-inconsistent joint temporal preferences (Jackson and Yariv
(2015)) in the form of non-constant discounting. In the second case, a similar situation arises,
now in the form of heterogeneous discounting introduced at Marin-Solano and Patxot (2012).
Here, one agent (or one group of symmetric agents, as it can be the board of trustees responsible
for the management of a pension plan) has to decide between goods or payments over which
the decision maker applies different rates of time preference. Time inconsistency arises because
of the difference in the discount rates applied to payoffs at different instants of time and not

because of aggregating different individual time preferences as in Jackson and Yariv (2015). This



second case is the one that we study and motivates this work.

In the continuous time case and non-constant discounting, Karp (2007) characterized time-
consistent solutions in a deterministic setting, while Ekeland and Pirvu (2008) and Marin-Solano
and Navas (2010) faced the stochastic case. By applying time-consistent strategies, we will
guarantee that the decision maker will have no incentives to deviate from them at any point
over the time horizon. Non-constant discounting captures the effect of a higher impatience for
short-term decisions compared with similar long-term choices, presenting a constant bias to the
short run. Josa-Fombellida and Navas (2020) considered the non-constant discount in a DB
pension fund model where the aim of the manager is the minimization of the contribution and
solvency risks in a infinite horizon.

As mentioned before, Marin-Solano and Patxot (2012) introduced and studied the hetero-
geneous discounting in a deterministic setting. Here, instantaneous payoffs or utilities and the
final function are discounted at different rates of time preference (the discount factor being a
standard exponential). Consider, for instance, a pension fund manager placed at time 0, indi-
vidual or collective, who faces an infinite time horizon. Payoffs between 0 and a given finite time
T are discounted at a rate of p;, while payoffs from 7" on are discounted at a different rate ps.
This can be motivated for instance because the existence some uncertainty affecting this second
stream (e.g., a change in regulation, a transition to a DC plan, etc.), and this uncertainty is
internalized by the fund manager at 0 as an increase of the initial discount rate, representing
a higher impatience with respect to these payoffs. In our case, we will represent this second
stream in the form of a final function but the reasoning applies similarly. This heterogeneity in
the discount rates induces a bias by which, as the decision maker moves along the time horizon,
the initial gap between the valuation of the instantaneous payoffs along [0, T") and the final func-
tion decreases, and consequently the relative valuation of this final function increases as long as
p2 > p1. When p; > ps the effect is the opposite. For instance, this setting has been applied to
the study of an individual consumption-investment problem in de-Paz et al. (2013), and later
extended with a life insurance in de-Paz et al. (2014), where the effect of the increasing concern
for the final function captured the agent’s increasing concern for wealth as she approached her
retirement date or for the bequest left to her descendants when approaching the end of life.
Finally, a different setting with time-inconsistent preferences has been analyzed in Zou et al.
(2014), where the authors study a finite horizon consumption-portfolio model with stochastic
hyperbolic discounting.

In this paper, we consider an heterogeneous discounting model where the manager can invest
the fund in a portfolio with several risky assets and one riskless asset, as in Merton (1971).
The pension model is based in Josa-Fombellida and Rincén-Zapatero (2008a), where a DB

stochastic pension plan with stochastic salaries for several groups of workers is considered.



Later, Chen and Hao (2013), also based on this first paper, under homogeneous discounting,
study a DB stochastic pension plan with stochastic salary for only one group of workers, but
with regime economic switching modeled by a Markov chain process. Note that other papers,
such as Josa-Fombellida, Lopez-Casado and Rincén-Zapatero (2018) and Josa-Fombellida and
Rincén-Zapatero (2019), also analyze pension plan models where utility functions of the fund
or of the benefit are maximized, which is very interesting for the workers in both cases.

The main novelty of our model with respect to previous literature on pension plans is the
generalization of the temporal preferences of the decision maker, now in the form of hetero-
geneous discounting. To our knowledge, in the literature of pension funding, heterogeneous
discounting has not appeared yet. As mentioned above, this introduces a bias in the temporal
decisions that leads to time inconsistent temporal preferences. In this case, the characterization
of time-consistent solutions requires to solve a modified HJB equation that, in general, increases
the difficulty of the resolution compared with the standard discounting case. With regard to
other models with time-inconsistent temporal preferences, as for instance de-Paz et al (2013),
while we share the basic structure of the Merton model, we introduce an additional state vari-
able, the salary. This allows us to adapt the model to the study of a DB pension plan where
the fund manager has as objective to maximize a utility of the liquid benefit relative to salary
over a planning horizon together with the relative value of the fund at the end.

As a result of the research, we obtain that the time-consistent net benefit and investment
strategies are proportional to the fund wealth and depend on the heterogeneous form of the
preferences, instantaneous and final. Moreover, under an exponential specification of the salary
process, the investment strategy does not depend on the rates of time preference while the fund
is an extended GBM where the drift coefficient depends on time and on the time preference
rates. An increasing concern when the end of the planning horizon approaches is reflected in a
higher contribution intensity, since this is the only way the fund manager can increase the value
of terminal fund wealth. However, this remaining time it is not enough to compensate the initial
lower contributions and consequently, the terminal fund decreases.

The paper is organized as follows. In Section 2, we define the elements of the pension scheme,
describe the financial market where the fund operates and establish the management problem of
the pension plan. The problem is formulated as a stochastic control problem with heterogeneous
discounting, where the fund is invested in a portfolio with several risky assets and one riskless
asset, and the exogenous salary is stochastic. The objective is to maximize, on a finite horizon,
a utility function of the net benefit and maximize a final utility of the fund assets. In Section
3, the time-consistent strategies are obtained, from the corresponding dynamic programming
equations to the heterogeneous discounting setting. We study some properties of the time-

consistent contributions and investments. Section 4 analyzes the problem for an exponential



specification of the salary process. Section 5 includes a numerical illustration of the dynamics of
the time-consistent strategies and the fund evolution of the pension plan, as well as a sensibility
analysis with respect to the discount rate applied to the terminal utility, the risk aversion and

two economic regimes of the financial market. Finally, Section 6 establishes some conclusions.

2 The pension model

We consider a defined benefit pension plan of aggregated type with continuous entrance and
retirement of members in such a way that the pension population remains stable at every time.
Active participants coexist with retired participants at every time. It is supposed that every
participant enters the plan at the same age [ and retires at age I/, that is, she remains I’ — [
years. Since this takes place along time, we need to consider both the time elapsed since the
plan started and the age of the participants. The benefits promised to the workers at the
age of retirement are established in advance by the manager and are directly related with the
salary. At each instant of time ¢, the benefits of the departing members, with age I’, and the
contributions of the members, with age between [ and I, are accumulated, because the plan is
aggregated. The pension fund has a finite planning horizon 7T'. This final time can be thought
of as the time at which some additional, and known in advance, uncertainty will affect the plan
as for instance the transition to a new plan. This fact is interiorized by the fund manager by
discounting the utility from the fund wealth at T at higher rate of time preference than the
applied to instantaneous utilities obtained along the time horizon. Workers not retired at this
final date receive compensation from the surplus obtained in the process of management of the
fund assets.

The principal elements intervening in the funding process and the essential hypotheses al-
lowing its temporary evolution to be determined are as follows. The value of fund assets at
time ¢ is denoted by F'(t). The benefit promised to the participants at time ¢ is B(t) and is
a percentage of the total salary of the workers at the moment ¢. C(t) is the contribution rate
made by the sponsor at time ¢ to the funding process. The total salary of the plan members at
time ¢ is denoted by s(t) and is a stochastic process correlated with the financial market. w(t)
is the percentage of salary contributed to plan at time ¢. To avoid confusion of w(t) with the
contribution rates, we will refer to C(¢) as simply contributions. The constant discount rate
associated to the instantaneous utility is p; and the constant discount rate associated to the
final utility is pa.

In order to ensure the standard of living of the participants, the manager of the pension

plan assumes that benefit and rate of contribution are related with salary. We suppose that the



benefit and the contribution are proportional to the total salary,

B(t) = ks(t), (1)
C(t) =u(t)s(t), (2)

where the constant k is positive and k > u(t) for every ¢ € [0,T].
The difference between benefit and contribution is the net benefit. From (1) and (2), it can

be obtained as
B(t) = C(t) = (k — u(t))s(t). (3)

Note that the explicit appearance of the salary constitutes a novelty compared with the
model in Josa-Fombellida and Rincén-Zapatero (2004), which studies a dynamic mathematical
model for a stochastic DB pension plan. While the relationship between the actuarial functions
is maintained, now a spread method of amortization is not longer used. See Remark 5.2 in
Josa-Fombellida and Rincén-Zapatero (2008a).

2.1 The financial market, the salary process and the fund wealth

In this section, we describe the financial market where the fund operates and the salary process.

The randomness involved in the financial market is given by the standard Brownian motion
)T, where " denotes transposition. We assume the total salary
)T

n-dimensional, z = (z1,..., 2,
is a stochastic process built from the d-dimensional Brownian motion w = (wy,...,wg)' and
influenced by the financial market. We consider the complete probability space (2, F,P), gen-
erated by z ad w, that is to say, F is the filtration containing the information available to the
sponsor plan, {Fi},c0 7, with 7y = o {(2(v), w(v)); 0 < v < t}.

The financial market consists of a portfolio with n risky assets {Pi}?zl, which are correlated

GBMs generated by 2, and a riskless asset P°, whose evolution, as proposed in Merton (1971),

is given by
dP°(t) = rP°(t)dt, with r >0, (4)
dPi(t) = Pi(t) (Mdt + Zaijdzj(t)), with gy >0, i=1,2,...n, (5)
j=1

where r > 0 is the risk-free rate of interest, j; the mean rate of return of the risky asset P?, and
o;; its volatility or uncertainty parameters. We assume that p; > r for all 4, so the manager
has incentives to invest with risk. The amount of fund invested at time ¢ in the risky asset P°
is denoted by \;(t), ¢ = 1,2,...,n. The remainder, F(t) — Y i | Ai(t), is invested in the bond.

Borrowing and shortselling is allowed. A negative value of A; means that the sponsor sells a



part of his risky asset S? short while, if S, A is larger than F', he or she then gets into debt
to purchase the stocks, borrowing at rate of interest r.
We suppose {A(t) : t > 0}, with A(t) = (M\1(t),\a(t),...,A\u(t))T, is a control process

adapted to the filtration {F;}+>0, Fi-measurable, markovian and stationary, satisfying

/ U AW TA(®)E < 0o, Poas. (6)
0

and the contribution relative to salary, u, is a non-negative measurable adapted process with

respect to {F;} satisfying

T
/ w(t)s(t)dt < o0, P-as. )
0
The salary process is given by the general stochastic differential equation (SDE)
n-—+d
ds(t) = ))dt + Zﬁg )dzi(t) + D B(s(t)dwjn(t), (8)
j=n+1

with initial conditions s(0) = sg > O7 and where 7(s) is the mean rate of growth of the salary
s, and f(s) its volatility. We assume s > 0 a.s. This is satisfied if the salary is a GBM as in
Section 4. Note that Brownian motion z also appears in expression (8) because the salary is
correlated with the financial market.

The manager uses the contribution to increase the fund wealth. The fund not devoted to the
net benefit is invested in the financial market. Therefore, the fund’s dynamic evolution under

the investment policy A is:

ZA dPZ < ZA )dpo Do) - By d, ()

with the initial condition F(0) = Fy > 0. By substituting (3), (4) and (5) in (9), we obtain:

dF(t) = <rF(t) ) N (=) + (ult) - >dt + ZZ)\ Joijdzi(t),  (10)

=1 j=1
that, with the initial condition and (8), determines the fund evolution. We assume the notation:
= (p1, 2, i), 1= (1,1,...,1)7, 0 = (0ij) and ¥ = oo . We suppose the existence of

1

¥ 71, that is, the existence of 0~!. The market price of risk is denoted by @ = o= (u —r1).

Finally, in matrix notation, the diffusion term of the salary process is S(s) = (8%(s)| 8% (s)),

with §%(s) = (Bj)j=1,..n and §*(s) = (8j)j=n+1....n+d TOW Vectors.
The fund and the salary processes, (10) and (8), in vectorial notation are

dF(t) = (rF() + AT(0)(1 = 11) + (u = k)s(t)) dt + AT (t)od=(2), (11)

ds(t) =n(s(t))dt + 5*(s(t))dz(t) + B (s(t))dw(t), (12)

with initial condition (Fp, sg).



2.2 The optimization problem

In the following we will consider the new control variable v(t) = (k — wu(t))s(t), which is the
liquid or net benefit for the participants at time ¢. The plan manager wishes to minimize the
contributions or equivalently the relative contribution payments u, in [0,T]. Following the idea
of Berkelaar and Kouwenberg (2003) for a retirement-saving model for a single individual, and
later Josa-Fombellida and Rincén-Zapatero (2008a) and Chen and Hao (2013) for a pension plan
manager, we suppose that higher contributions payments decrease the utility of the manager
and increase the marginal utility of reduction in payments. Thus, it is minimizing the possibility
that an increase in the contribution rates will probably lead to the plan manager to pay the
workers higher salaries in order to hire them originally or to keep them. On the other hand, the
pension plan is more attractive for the workers by the aim of minimize contributions.

We suppose that higher contributions payments decrease the utility of the manager and
increase the marginal utility of reduction in payments. Hence the running utility function,
U(v/s), is increasing and concave with respect to the liquid benefit relative to salary, v/s = k—u,
thus a higher relative contribution implies lower utility. Additionally, the sponsor’s goal is to
maximize the same increasing and concave utility function, U, of the final level at fund assets
relative to the salary s, U(F/s). The CRRA (constant relative risk averse) utility functions,
namely the logarithmic and power functions and the exponential CARA (constant absolute risk
averse) utility function are suitable for the porpuses of the manager and allow explicit solutions.
Power and logarithmic utility functions make that B — C' = (k — u)s > 0 therefore the risk is
transferred to the evolution of the fund. Thus, the model is established for not shifting the risk
to the employees but the fund evolution could be with moderate or bearish growth, depending
on the financial market, and as a consequence the manager may have an unsatisfactory low level
of the fund on the end date of the plan.

Given initial values of time, #g, fund assets, Fp, and salary, sg, we denote by Ay g, s, the
class of admissible controls, that is to say, the set of measurable processes (u, A) satisfying (6)
and (7), and where F' and s satisfy (11) and (12), respectively. The objective functional to be

maximized over the class of admissible controls, Ay, r, s, iS given by

J((to, Fo, 50); (v, A)) = By 1y 50 {/: emlt-to)y (;’8) dt + e=P2(T=0) oy (fgj) } . (13)

where Ey .5, denotes conditional expectation with respect to the initial conditions (to, Fo, o),
and a > 0 is a weighting factor indicating the importance of maximizing the final utility. The
imposed admissibility conditions, (6) and (7), guarantee that the system of SDEs defining the
fund, (11) and (12), has a unique solution for each initial value of the fund and of the salary.

By the so-called heterogeneous discounting, in expression (13), the manager discounts dif-



ferently the instantaneous utility over the planning horizon and the final utility captured by the
final function. Under the assumption that pa > pi, two effects arise from this setting. The first
is that now the manager’s time preferences become time-inconsistent, in the sense that they
will be different at different instants of time along the planning horizon [ty, T]. Because of this,
standard dynamic optimization techniques fail to characterize time-consistent solutions and it
is necessary to adapt the usual dynamic programming equation in the search of time-consistent
solutions (see, e.g., Marin-Solano and Patxot (2012) for the deterministic problem, or de-Paz et
al. (2013) for the stochastic case). In this context, with the term “time-consistent” we refer to
the usual meaning in the sense that, for a given planning horizon [tg, T], if at any time ¢’ > t,
t' € (t,T], the decision maker decides to reoptimize and solves the truncated problem from #'
until the end of the planning horizon T, taking as initial conditions for the state variables their
values at ¢’ resulting from strategies applied over [t, '], the new solution will coincide with the
one initially computed at time t for [¢,T]. Because of this, the decision maker will have no
incentives to deviate from the original strategies. In fact, what we are obtaining is the Markov
Perfect equilibrium (MPE) between the current manager, the manager with time preferences
at moment ¢ or t-agent, and her future selves, the t'-agents, with ¢’ € (¢,T] for any t € [tg, T]
(see, e.g., Karp (2007)), who decide optimally for an infinitesimal amount of time. In this sense,
when alluding to the obtained controls, from a formal point of view they should just be named
time-consistent strategies, as there is not a unique decision maker for whom the solution is op-
timal but an infinite number of them, one for any instant of time, i.e., we characterize the MPE
for the constrained (sequential game) problem between the t-agent and her future selves.

The other effect, which is specific to the heterogeneous discounting model and a consequence
of the assumption that pa > p;, is that the relative valuation of the final function increases as
we approach the end of the planning horizon. This can be easily seen by rewriting the final

function at (13) as

e T e=(2=p)(T-07 (F(T) /s(T))

for t € [to,T]. Note that now, the problem can be interpreted as a problem with standard
discounting (at rate p1), but with a modified final function equal to e~ (P2=P)T=O(F(T) /s(T)).
It is clear that, abstracting from the standard discount at rate pi, an -agent will give a higher
valuation to an additional utility unit than the one given by a t-agent, as long as t’ > t. Moreover,
this valuation is increasing the closer to T the t'-agent is (note that under the assumption of
p2 < p1 the effect would be the contrary).

The dynamic programming approach is used to solve the problem. The value function is
defined as

~

V(t,F,s) = (v,AI)neil)i N {J((t, F,s); (v,A))| st. (11),(12)}.

10



The connection between value functions and time-consistent feedback strategies in stochastic
control theory with heterogeneous discount is accomplished by a modified Hamilton-Jacobi-
Bellman (HJB) equation; see Corollary 1 in de-Paz et al. (2013) and Proposition 1 in de-Paz et
al. (2014). The value function V satisfies the modified HJB equation

—pV+K+V, +IE,%&X{U (g) + (rF+AT(u—r1) — U)VF +nVs

1 1
+5AT2AVFF +ATo(8) Vs + 5 tr{ﬁﬁTVss}} =0, (14)

where K(t, F, s) solves the auxiliary PDE

~

v ~ PR
—m K + Ki+(p2 — p1)U (8> + (’I“F + AT(u —rl) — U)KF +nKs
1ot~ ~ 1
+ 5ATEAKFF +AT0(8) Kp, + 5 tr{88" Ky} =0, (15)

where U, A are the arguments maximizing in (14). The final conditions are V (T, F, s) = aU(F/s)
and K(T,F,s) =0, for all F,s.

Remark 2.1 The model considers that the benefits and the contributions are indexed by the
salary process. Thus we assume the modeling approach in Josa-Fombellida and Rincon-Zapatero
(2008a), but only considering one group of workers, in order to facilitate the development.
An alternative model could be considered, as further research, without taking into account the
salary, but considering a specification for the benefit as a geometric Brownian motion, as in Josa-
Fombellida and Rincon-Zapatero (2004). Then other actuarial elements, such as the actuarial
liability AL, could be included in the model. The heterogeneous discount would appear in the

objective functional as follows

I (tos Fo AL 0, A)) = iy i { [ L0 U (B(t) - O(0) di + e T aU ()}

to
3 The time-consistent strategies

In this section, we analyze how the manager may select the time-consistent relative contribution
rate and the investment strategies of the fund put into the risky assets, as well as some properties
of these policies.

Though explicit solutions could be obtained with several utility functions such as the ex-
ponential CARA utility function, we consider a power CRRA utility function as in Josa-
Fombellida and Rincén-Zapatero (2008a) and in Josa-Fombellida, Léopez-Casado and Rincén-
Zapatero (2018).

11



Assumption A. The utility function is given by U(x) = zll:,:, where v > 0 and v # 1.

When v = 1 we consider the logarithmic utility, U(z) = Inz. The parameter 7 is the risk
aversion. The manager has high risk aversion for v > 1, moderate for v = 1 and low for v < 1.

We have the following result:

Theorem 3.1 Suppose that Assumption A holds. Then the time-consistent relative contribution

rate and the investments in the risky assets are given by

u(t,F,s) =k —s 7g 7 (t,s)F, (16)

A Fs) = i (2—1(,,, )+ g;((z’;))a_—r(ﬂz(s))—r> F (17)

respectively, where g : [0,T] x R™ — R is a positive solution of the non-linear system of PDEs

(partial differential equations)

ont,9) + 0t,5) + (=pa (1 =) = 51 = 19070 gtt.5) + (~1 = )80 + () .9
1 1 204 ¢
93 ) - 50 - DB )5 T+ g {8050 s =0 (9

g(T,s) = as™ (=),

2 Y g2(t, s)

2(t, s 11
he(t,s) + (—pl +r(l—x)— %(1 — i)gﬂt) + 1(1 - l)ﬁz(s)ﬂz(s)ws (t,s) (- 7)31 g v(t,s)) h(t,s)

- p)s g R (s (n<s> (- )FEEe - - i)ﬁz(s)ﬁz(s)ﬂs@’ S)) halt, )

+ %tr [B(18() } hualt.5) = 0. (19)

hT,s) =0, V(ts).

Proof. For the problem of Section 2.2, the modified HJB equation is given by the system (14),
(15), but with U given by the Assumption A.
If there is a smooth solution V' of the equation (14), strictly concave, then the maximizers

values of the liquid benefit and the investment rates are given by
1-1 -3
(V) ="V, (20)
~ _ Vi T/ oz Vrs
AV, Vi, Vis) = =27 (p = 1) — o7 T (57(9)) T 7 (21)
Vir Vir
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respectively. The system (14), (15), obtained once we have substituted these values for v and A

is

11—t 1 V2
STV T 4 rFVp — 0701

—pV+K+V,+
- Vrr

VF Vs

()BT g, — 7 (5)5(5) T Vs Lisemvny — o, (22)
Ver Vrr 2

1 _1o1-1 V Vi
K+ Ki+——(pa—p1)s 7Vy " +rFKp —0'0——Kp — 3°(s)0—>Kp
11—~ Vir Vrr

V2
— sV, ”KF+77K+ aTe 1
VFF

L Kpr+ BZ( )B(s) =5+

B O K — 5%(5)0 5 K, — 5 (9)5°(5) 1 E K 5 (36T Kok =0, (23)

PP Vi Vrr

with the final conditions V(T F,s) = I%W(F/s)lf'y and K (T, F,s) = 0. The structure of these
equations suggests the solutions V (¢, F,s) = ﬁg(t, s)F1=7 and K(t,F,s) = Lh(t s)F1=7.
Imposing these solutions in (22), (23) we obtain the PDEs (18), (19) for the functions g and h.
Substituting in (21) we obtain (17), and in (20) we obtain v = = '3 g WF which in terms of
u=k—v/sis (16). Finally, applying a verification theorem in de-Paz, Marin-Solano and Navas
(2013), Corollary 1, we deduce that V is the value function and u and A are the time-consistent
strategies. ]

The time-consistent relative contribution, u, given by (16), is the difference between the
associated relative benefit, k, and a percentage of the fund, F, that also depends on the salary
and the other parameters of the model, such as the risk aversion and the heterogeneous rates of
discount, although through the time and salary depending function g. The contribution is the
difference between the benefit and a variable percentage of the fund depending on the salary
and discounts

C=B- 31_%9_%(16,3)17.

Thus the net benefit B — C' is proportional to the fund level and has the same monotony as the
time function F. In terms of expected values, as the benefit is increasing, if the expected fund
EF decreases, then the expected contribution EC increases. The proportionality factor depends
on the salary of the workers and, through the function g and h, on several parameters considered
as the difference between the rates of discount, ps — p1. Another interesting observation is that,
at terminal time 7', when o = 1 the net benefit coincides with the terminal fund, (B — C)(T) =
s'"va g (T, s)F(T) = F(T).

The vector of investments in the risky assets, (17), is the sum of two terms, both homogeneous

linear functions of the fund F. The first is the constant of proportionality, ¥~ (u — 71), called

13



the optimal growth portfolio strategy (see Merton (1971)), but modified by the constant factor
1/7. The second depends on the correlation parameters between risky assets and the salary
and also on time, and implicitly depends on other parameters such as the discount rates, risk
aversions, market price of risk and the riskless rate of interest. Notice that it does not depend on
the relative benefits, and that when 3%(s) = 0, i.e., the growth rate of the salary is not correlated
with the returns on financial assets, this second term does not appear. In an extreme case, if
the wage income is deterministic, 5(s) = 0, the randomness source only comes from the assets
prices and the evolution of the salaries given by (12) is now an ordinary differential equation.
Moreover, in this case (18), (19) is a system of PDEs of first order.
Substituting u, A, from (16), (17) into (11), the fund evolution is given by the SDE

dF () = (7“ — s () g (¢ s(0)) + 7aT@ + i”c;s(( ’ss((tt)))) 5 (s (t))e) F(t)dt

L/r alts(t) ]
1 (074 2050 5 (0)) P00,

where s satisfies (12). Thus the SDE (24), satisfied by the fund, is coupled with the SDE of the

salary (12), so it is very difficult to obtain analytical solutions. In the next section we consider

(24)

a specification of the salary process, supposing that it is a geometric Brownian motion.

Remark 3.1 (Homogeneous discounting) When p1 = po, the rate of discount is homo-
geneous and the model is analyzed in Josa-Fombellida and Rincén-Zapatero (2008a) but with
several groups of workers. In this case h =0, by (19). If, moreover, n =0 and 3 = 0, then we

obtain the Merton model.

Remark 3.2 (Logarithmic utility) The case where U(z) = Inz can be analyzed with the
same methodology. We obtain the same results as with the isoelastic utility when v goes to 1.

The contribution and investments are given by

u(t, F,s) =k — “(t,s)F,

A(t,F,s) = <E‘1(u —rl) + gs(t, S)U—T(ﬁz(s))T> F,
and the fund evolution by the SDE
ar () = (r - g s(0) + 070 + 2 5 s(0)e ) Pt

AR0)
*(” a(t, 5(0))

with F(0) = Fy and where g satisfies (18), (19), but with v = 1.

95(t,50) o >>) F(t)dz(t),
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4 Time-consistent strategies when the salary is a geometric Brow-

nian motion

In this section, we obtain and analyze the manager strategies for a specification of the salary

process. It will allow equation (18) to be solved analytically, and then the system (12), (24).
Assumption B. The salary process satisfies
n(s) =ns,  Bils) = Bs,

with n, B; € RT for all j =1,....,n+d. We suppose n > r, that is to say, the salary growth is

at least the market risk free rate of interest.

The previous assumption, together with (8), means that the salary s is a GBM with SDE

n n+d
ds(t) = s(t) | ndt+ Y Bidzi(t) + > Bidwj_n(t) |,
j=1 j=n+1

with s(0) = so > 0. In the following, we will employ the same notation 7, 3, eliminating the
dependence with respect to s. By (1), the benefit B satisfies the same SDE as the salary process,
but with initial condition B(0) = kso.

The assumption of exponential salary allows us to solve analytically the nonlinear system

(18), (19). The following result shows some conclusions about manager policies.

Proposition 4.1 Suppose that Assumptions A and B hold. Then the time-consistent relative

contribution rates and the investment in the risky assets are given by

w(t, F.s) = k — a—%(t)g, (25)
A Fs) = = (37 (= r1) = (1= ) (89)T) P (26)

respectively, where a is a positive solution of the system of differential equations
at) +b(t) + (e — pa)a(t) +va' "7 (1) =0,  a(T) = a, (27)
b() + (= p)b() + (p2 = pr)a’ (1) = (L=7)a T (OB =0, bT) =0,  (28)
with € the constant

e=(1=) (r+ 52670+ (1= 1)F0 + (1P I + 2 el ).
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Proof. Under Assumption B, it is not difficult to check that functions g and h of Theorem 3.1

are given by

g(t,s) =a(t)s~ =), (29)
h(t,s) =b(t)s~ =), (30)

where a, b satisfy (27) and (28), respectively. Substituting (29) in (16) and (30) in (17), we get
the time-consistent strategies given by (25) and (26). O

Concerning the functions a and b, solutions of the system (27)-(28), global existence and
uniqueness is proved in Appendix A.

From (25), the net benefit relative to salary k& — u(t, F,s) is a percentage of the ratio
fund/salary, a=*/7. The proportionality function on time, a~'/7(t), depends on the rates of
discount and the other parameters of the model. For a high risk aversion (v goes to infinite)
the percentage goes to 1; for low risk aversion (v goes to 0) the percentage goes to 0; and for a
moderate risk aversion (v = 1) as shown in Remark 4.2.

Again, from (25), the contribution is now given by
C=B—a " (t)F, (31)
hence the difference between benefits and contributions, B — C, does not depend directly on
salary, that is, at every instant of time ¢, is given by the aforementioned percentage of the fund’s
level that depends on the discounts and other parameters, a_%(t)F(t).

The vector of investments depend only linearly on the fund, but not on time or salary. Now
the investments do not depend on the discount rates. The vector of investments is composed
by two terms. The first is the optimal growth portfolio strategy and the second only depends
on the correlation between salary and the financial market, the risk aversion parameter and
the diffusion terms of the risky assets. Depending on some parameter values of the model, the
investment policy can require shortselling of the risky assets or borrowing to invest with risk.
With high risk aversion, more risk must be assumed if the correlations between the financial
market and the salary, 8%, are high. With low risk aversion, the opposite with respect to the
coefficient 5% holds.

Assumption B leads to the SDE for the fund

dF(t) = <7~ + }yeTo - i)ﬁze - afi(t)) F(t)dt + }Y (67— (1—78*) Fd=(t).  (32)
with F(0) = Fy. The fund evolution does not depend on the fixed percentage of salary devoted

to the benefit, k. It does, however, depend on the salary growth rate n and the randomness
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parameters of the salary 8% and 5%. The SDE of the fund process is uncoupled with the SDE
of the salary process, and is in fact also a GBM. Thus, it is possible to explicitly obtain the
expected value of the fund at every final instant ¢ € [0,7]. By Arnold (1974), p. 140, the

expected terminal fund is

Ep F(T) = Fyexp { <r + i (oTo —(1- 7)5@)) T /OT ai(t)dt} .

From (31), as in the previous section, it coincides with the expected value of the difference

between the terminal benefit and the terminal contribution:
1
Er{B(T)-C(T)}=a +(T)ERF(T) = Eg, F(T).

Remark 4.1 (Deterministic salary) When the salary s is deterministic, the vector of in-
vestments in the risky assets is proportional to ¥~'(u — r1)F, as when s is stochastic, but

uncorrelated with the assets. The structure of the contributions is the same, but now
11
=(1- ~—0'0—1n).
e=(1-7) (r t35 77)

A sensibility analysis regarding the dynamics of the stock market reveals an impact over the
manager’s contribution and investment strategies. A higher variability in the market implies a
decrease of the expected fund values. So the agent should be aware about the risk in the markets

since the wealth at the end of the plan could be affected by this risk.

Remark 4.2 (Logarithmic utility) When U(z) = Inx, the contribution and investments are

given by
u(t,F,s) =k —s ta (t)F,
A(t,F,s) =X (up—r1)F,
where a satisfies the linear system of differential equations
a(t) +b(t) — pea(t) +1 =0, a(T) = a,

b(t) — pib(t) + p2—p1 =0,  b(T)=0.

bt) = (Zj - 1> (1 - e_pl(T—t))

1 —e (T

Thus

and then

a(t) = ae 2Tt 4
P1
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The fund evolution is given by the SDE
dF(t) = (r+070 —a”'(t)) F(t)dt + 0T F(t)d=(t),  F(0) = Fy,
and then

Ep, (B — C)(T) = Eg F(T) = Fyexp { (r + OTG) T— /OT a—l(t)dt} .

5 A numerical illustration

In this section, we realize a numerical application to illustrate the dynamic behavior of the fund,
the time-consistent contribution rate and the portfolio strategies, for several values of the rate
of discount of the bequest function ps and the parameter v of the utility function.

We consider two economic regimes, bear and bull. In the bull regime, the economy is
booming, and in the bear regime, it is in recession. We select the data characterizing both
regimes, following the recommendations in Zou and Cadenillas (2017). The risk premium is
greater in booming periods than in recession periods, p; — r1 > s — 72, the stock volatility is
greater when the economy is in recession, o2 > o1, and we assume that the risk premium by

unit of volatility is higher in the booming periods than under recession, 5= > £222. We have

o1 2
denoted bull regime with subscript 1 and bear regime with 2. A bear market is considering in

the baseline model, in order to study the less favorable situation for the fund. Later, we analyse
some parameter variations, including the bull market and a comparison of the time-consistent
solutions under the both regimes.

We have used the following packages of the R environment: “yuima” to compute the sim-
ulations from the SDEs, “deSolve” for the numerical resolution of the ODEs and “ggplot2” to
build the figures.

We consider a portfolio with one riskless asset and one risky asset, n = 1. The values of the

parameters we consider are the following;:
e the planning horizon is T' = 10 years;
e the weight of the final utility in the objective function is o = 5;
e the risk free rate of interest is r = 0.01;

e the risky asset is a GBM with parameters y = 0.02 and ¢ = 0.1; this implies a Sharpe
ratio § = 0.1;

e the drift parameter of the salary process is 7 = 0.03, and the diffusion terms are 5% = 0.02
and g% = 0.01;
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Figure 1: Evolution of salary and benefit over time.

e the initial fund is Fy = 220 and the initial salary is sy = 1000;

e the benefit is proportional to the salary. The percentage of salary devoted to benefit is
40%, k = 0.4. A path of the salary process and another of the benefit process along the
planning horizon [0, 10] is plotted in Figure 1;

e in order to study the sensitivity with respect to the relative risk aversion parameter, we
consider values v = 0.5,0.75, 1, 2, indicating low, moderate or high risk aversion for the

manager; for the standard case we fix v = 1;

e the instantaneous rate of time preference is p; = 0.05; in order to study the sensitivity
with respect to the discount factor associated to the terminal utility function, we consider
values po = 0.05,0.15,0.25, that include the homogeneous case and two heterogeneous

cases. p2 = 0.05 will be the standard case.

The manager’s aim is to maximize an isoelastic utility function of the net benefit along the
time horizon [0, 7], discounted at a rate of time preference p; and an isoelastic utility function
of the terminal fund surplus relative to salary, discounted at rate p2, ps > p1.

Figure 2 shows a realization of the fund F™* and the expected fund EF™* = Eg, ,, F™* for several
values of the risk aversion and the rate of discount of the bequest function. As the drift of the
SDE (32) satisfied by the fund F* is negative, the graphs show a decreasing trend. A higher
risk aversion implies a higher fund. A sensitivity analysis of the fund according to the rate of
discount shows that the fund decreases more slowly with a smaller rate of discount. With high
risk aversion the dependence of the fund with respect to the rate of discount is smaller.

The contributions are increasing throughout almost all the planning interval. At the first
instants of time, more risk aversion implies more contribution and a higher terminal rate of
preference implies a lower contribution. At the last instants of time the trend is the opposite,

that is to say, a more terminal rate of preference or less risk aversion increase the contributions.
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Figure 2: Evolution of the fund and expected fund over time for different values of v and ps.
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Figure 3 shows a realization of the contribution C* and the expected relative contribution EC*
for several values of the risk aversion and the rate of discount of the bequest function.

An interesting question is to analyze the accumulated expected time-consistent contribution
made to the funding process by the participants through the manager, fOT EC*(t)dt. Figure 4
shows the total expected contribution as a function of ps for several values of the risk aversion.
More risk aversion implies more total contribution. We observe an almost constant trend. Note
that for low or moderate risk aversion, it is an decreasing function, but the gap between the
lowest value of po, 0.05, and the highest value, 0.15, is smaller than 0.05. As a conclusion, the
rate of discount does not influence the total quantity contributed to the pension plan.

The proportion of the fund invested in the risky asset does not depend on the rate of discount
and is constant along time. More risk aversion diminishes the investment. A value of v below
0.99 makes it necessary to borrow to reach the time-consistent policies. However, shortselling
is not necessary. Figure 5 shows a realization of the time-consistent investment relative to the
fund, \*/F, for several values of the risk aversion.

A sensitivity analysis of the expected terminal fund value, EF*(T), with respect to the
risk aversion and the terminal rate of time preference, can be obtained from Table 1. The
terminal fund diminishes if the heterogeneity degree increases, in particular, it is higher with
homogeneous discounting than with heterogenous discounting. To understand this negative
effect on the terminal fund wealth, note that, from the bias generated by the heterogeneous
discounting (for pa > p1), the decision maker initially overweights instantaneous payoffs with
respect to the payoff at the end of the planning horizon, but as she moves along time this
overweight decreases as the relative valuation of the final function increases. Because of this, in
the case of the largest bias (p2 = 0.25), at the beginning of the planning horizon contributions
are the lowest of the considered cases, but after some point, once the final function proportionally
becomes more important, they beat contributions for the cases with a lower ps, as it can be
observed at Figure 3. However, despite this increasing concern reflected in a higher contribution
intensity, since this is the only way that the fund manager has to increase EF*(T'), there is
not enough remaining time to 7" to compensate the initially lower contributions. Consequently,
EF*(T) decreases when py increases. A direct policy implication is that any measure oriented
to reduce this bias will affect positively the value of the terminal fund. This decrease is less
pronounced with high risk aversion than with moderate or low risk aversion. In particular, the
expected terminal fund diminishes 63.5% in the heterogeneous case, ps = 0.25, respect to the
homogeneous case py = 0.05 when the risk aversion is v = 0.5; however, the decrease is just
15.2% with moderate risk aversion. The terminal fund is lower when the risk aversion increases.

Previous analysis has been realized under a bear economic regime. An interesting question

is to compare the fund evolution and the time-consistent strategies with a bull financial market.
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Figure 3: Evolution of the contribution and the expected contribution over time for different

values of v and ps.
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Table 1: Expected terminal fund for different values of v and ps.

P2

gl

0.5 0.75 1 2

0.05
0.15
0.25

167.712  102.020 74.788 44.062
101.242  73.673 59.715 40.228
61.217  55.696 49.586 37.372
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Figure 6: Evolution of the fund and the expected fund over time for two financial markets.

Specifically, we also now consider p = 0.05, » = 0.03 and o = 0.05 (§ = 0.4), for the bull
regime. We keep the baseline data for the bear regime. Figure 6 shows a realization of the
fund F* and the expected fund EF™* for the two economic regimes with moderate risk aversion
(v =1). The graphs indicate a more decreasing trend with bear market than with bull market.
In fact the fund is increasing in this concrete bull market. The fund diminishes from Fjy = 220 to
EF(T) = 74.788 (66%) in the bear case, and increases from Fy = 220 to EF(T) = 409.385 (86%)
in the bull case. We observe similar results with other values of the risk aversion parameter -
and the market price of risk 6.

We also find a higher risky investments and contribution with the bull regime. We have also
considered cases with po < p1. In particular, for an example of this scenario p; = 0.1, po = 0.05,
the final fund value increases 22.2%. In absolute terms, 161.604 in the new scenario, versus
132.204 in the old scenario.

6 Conclusions

In this paper, we have considered the management of a defined benefit pension plan with different
constant rates of time preference associated to the instantaneous utility, as a function of the net
benefit relative to salary, and to the final utility, as a function of the fund relative to salary. In
this way, we have considered an increasing concern of the manager for the final function as she
approaches the end of the planning horizon in a way that cannot be captured with a standard or
homogeneous discounting. Moreover, the stochastic benefit has been assumed proportional to
the total salary of the participants of the plan. The main novelty with respect to the specialized
literature is the introduction of heterogeneous discounting in the analysis of a dynamic pension
plan. The problem has been analytically solved using the dynamic programming approach.
In this setting, we have managed to make the time-consistent net benefit and the investments

proportional to the fund assets, and that they depend on the rates of time preference and the
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risk aversion parameters.

When the salary is a GBM, the proportionality factors do not depend on the salary and
the investment strategies do not depend on the rate of discounting, and they coincide with
those of the homogeneous discount case. The time-consistent contribution strategy and the
corresponding fund dynamics depend on the rate of time preference associated with the final
utility. A numerical illustration shows that a lower risk aversion implies a higher expected value
of the fund, and a lower variation range of the expected contribution, and a smaller dependence
of the rate of time preference on the final utility. However, the dependence of the total expected
contribution with respect to the rate of time preference of the final utility and the risk aversion
parameter is very small.

Further research can be addressed to analyze the effect of heterogeneous discounting on the
time-consistent policies in other models of pension plans and in asset liability management mod-
els. For instance, it could be of interest to compare the time-consistent solutions obtained here
with other solution concepts that, being time-inconsistent, could nevertheless represent a differ-
ent behavior of the decision maker. This is the case for the so-called naive and precommitment
solutions. Other interesting extension to explore for the future is to consider several groups of

workers represented by different salaries.

Acknowledgements

The authors are grateful to the guest editor and two anonymous referees for their comments
and suggestions. The authors gratefully acknowledge financial support from Spanish Minis-
terio de Ciencia e Innovaciéon under projects PID2020-117354GB-100, PID2020-112509GB-100,
ECO02017-86261-P and ECO2017-82227-P (AEI/FEDER, UE), and Consejeria de Educacién de
la Junta de Castilla y Leén (Spain) under project VA148G18.

A Appendix

Proof of existence and uniqueness of solutions of the system (27)-(28).

First, under the assumption of positivity of a, the expressions defining a'(¢) and ¥'(t) are
continuously differentiable in their arguments, which is a sufficient condition for local Lipschitz
continuity. Now, we can use the Picard-Lindelof theorem to guarantee local existence and
uniqueness. See, for instance, Walter (1998) or Teschl (2012).

Next, we need to ensure that a and b also exist (globally) over [tg,T], i.e., that the local
solution can be extended along the whole planning horizon, for which it is required that it

remains bounded in [tg, T']. For this, we follow the arguments in Ekeland and Pirvu (2008). The
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key point is to realize that a is also solution of the integral equation obtained by evaluating the

objective functional (expression (13)) along our time consistent solutions:

1 . ~alt) <Z((f))>(u) =B ps: { /t Lty (ZE:; > dr + e=2T=0U (f ((11:))> }
T

r 1 1 F(r)\'" 1 F(T)\'™"
— —p1(T=1) I-IE —p2(T—1) E
X e F{(()) e T e B (s<T>> |

where
F(T) 1_7 B F(t) 1_'7 Q(T—t)_f;—(l_ )a(m)fl/"fdm
EFie {<s<7>> } B <s<t> ) ‘ ' ’
with
62 1 1
Q=(1- +—+{(1==)BO—n——(0—(1—7)8)?
- {r+Za (1-2)so-n- 50— a-s)

F

50D+ ) - =T - 1) |

For simplicity, we have calculated €2 in the scalar case. The vector extension is straightforward.

Next, by comparing terms in (F(t)/s(t))'~ we have

T
a(t) :/ e—m(T—t)a(T)l—%eQ(T—t)—ff(l—v)a(m)’mdde
t (33)
+eP2 (T—1) o UT=1)— [} (1=7)a(m) =/ Vdm_

Expression (33) defines the integral equation also satisfied by a but now without the inter-
action of b, so it will allow us to characterize the growth of a in an easier way than from the

system (27)-(28). For this, we differentiate this expression with respect to ¢ to obtain
@'(t) = = ya(t)' "7 = (1= 7)Qa(t)
T
+ o / =P T g (7)1 5 == [T (= )a(m)H dm g (34)
t
i pze—pg(T—t)aeQ(T—t)—ftT(1—7)a(m)—1/’vdm'

Note that, under the assumption that ps > p1, we have that

T
pla(t) < P1 / e_pl(T_t)a(T)l_%GQ(T_t)_ftT(1—“{)a(m)_1/7dmd7
t

(35)
+ p2e—P2(T—t)aeQ(T—t)—ftT(l—V)a(m)_l/wdm < pza(t).
From (34) and (35) we obtain
1
d(t) > (o — (1 =) a(t) —va(t) "7, (36)
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_1
d/(t) < (p2 = (1= 7)) a(t) = ya(t) . (37)
Finally, from (36) and (37) we have expressions for upper (w,(t)) and lower (w;(t)) solutions of

a(t), which can be obtained by solving the following differential equations

wi(t) = Crwy(t) = ywi()' 7, i =l (38)
where C,, and Cj are two arbitrary constants satisfying C, < p1—(1—~v)Q and C; > pa—(1—7)S2.
By solving (38) we obtain

1or—
o 2CHT—t)

X
PR
wi(t) = (owl/e FCiT Dy )  i=u,l,

which are continuous functions over [0,7], guaranteeing the existence of a along the whole
planning horizon. Finally, note that b(¢) in equation (28), after substitution of a(t), follows a

linear differential equation whose solution also exists on the considered interval. ]
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