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Abstract- Background and objective: In-laboratory overnight polysomnography (PSG)
is the gold standard method to diagnose the sleep apnoea-hypopnoea syndrome (SAHS).
PSG is a complex, expensive, labour-intensive and time-consuming test. Consequently,
simplified diagnostic methods are desirable. We propose the analysis of the airflow (AF)
signal by means of recurrence plots (RP) features. The main goal of our study was to
evaluate the utility of the information from RPs of the AF signals to detect paediatric
SAHS at different levels of severity. In addition, we also evaluated the complementarity
with the 3% oxygen desaturation index (ODI;). Methods: 946 AF and blood oxygen
saturation (SpO») recordings from children ages 0-13 years were used. The population
under study was randomly split into training (60%) and test (40%) sets. RP was computed
and 9 RP features were extracted from each AF recording. ODI; was also calculated from
each SpO> recording. A feature selection stage was conducted in the training group by
means of the fast correlation-based filter (FCBF) methodology to obtain a relevant and
non-redundant optimum feature subset. A multi-layer perceptron neural network with
Bayesian approach (BY-MLP), trained with these optimum features, was used to estimate
the apnoea—hypopnoea index (AHI). Results: 8 of the RP features showed statistically
significant differences (p-value <0.01) among the SAHS severity groups. FCBF selected
the maximum length of the diagonal lines from RP, as well as the ODI;. Using these
optimum features, the BY-MLP model achieved 83.2%, 78.5%, and 91.0% accuracy in
the test group for the AHI thresholds 1, 5, and 10 events/h, respectively. Moreover, this
model reached a negative likelihood ratio of 0.1 for 1 e/h and a positive likelihood ratio
of 13.7 for 10 e/h. Conclusions: RP analysis enables extraction of useful SAHS-related
information from overnight AF paediatric recordings. Moreover, it provides

complementary information to the widely-used clinical variable OD/;. Thus, RP applied



to AF signals can be used along with ODI to help in paediatric SAHS diagnosis,

particularly to either confirm the absence of SAHS or the presence of severe SAHS.
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1. INTRODUCTION

Childhood Sleep Apnoea-Hypopnoea Syndrome (SAHS) is a breathing disorder
characterized by recurrent airflow cessation (apnoeas) and/or significant airflow-
reduction (hypopnoeas) episodes during sleep [1,2]. In spite of its high prevalence (1-4%
of all children) [3], paediatric SAHS is an underdiagnosed disease whose adverse
consequences include cognitive, behavioural, metabolic, and cardiovascular functions
[3]. Early detection and treatment of the affected children is therefore of paramount
importance.

In-laboratory overnight polysomnography (PSG) is the gold standard for paediatric
SAHS diagnosis [4]. Paediatric PSG is performed in a sleep laboratory, suitable for
children, and consists in recording a wide range of biomedical signals. Qualified medical
personnel identifies and quantifies the severity of SAHS by means of these recordings.
However, PSG is a complex, labour-intensive, and expensive test [5]. It is also time-
consuming and both the facilities and the expertise needed to carry it out are not always
available, which entails prolonged access delays [5]. Moreover, the multifarious sensors
placed on child’s body make PSG a particularly ill-at-ease test for some, leading to
undesirable percentages of failed testing opportunities [6].

In order to deal with the inherent limitations of PSG, alternative simplified methods
have been explored. The analysis of a reduced signal set, such as electrocardiogram
(ECQG), photoplethysmography (PPG), blood oxygen saturation (SpO>), and airflow (AF),
is a commonly used approach [7—14]. Several studies have analysed these signals through
temporal and/or spectral analysis techniques, to assist in paediatric SAHS diagnosis [8—
14].

In this study, we propose and have analysed the AF signal to help in paediatric

SAHS diagnosis. In addition, 3% oxygen desaturation index (ODI3), a conventional



oximetry index commonly used in the SAHS context [11,15,16], has been also obtained.
Despite its widespread use, the extant literature indicates that ODI3, which is obtained
from SpO, underestimates both SAHS presence and severity [15,17]. Therefore, only
using this index is insufficient to accurately simplify diagnosis. In this regard, the analysis
of AF is a natural way of simplifying PSG, since the apnoeic events modify the amplitude
of this signal [18]. Moreover, recent studies have already shown the usefulness of AF in
diagnosing paediatric SAHS [13,14].

Based on the aforementioned considerations, our proposal is based on the use of
non-linear recurrence plots (RPs) analysis to obtain useful features from AF [19]. The
respiratory system is dynamic, non-linear, and non-stationary, which may lead to the
presence of recurrences within a given state space [20,21]. Recurrence is a property of
dynamic systems which refers to a point or state that occurs repeatedly throughout a given
time series [19,20]. Therefore, RP analysis allows visualization of the recurrences of the
phase-space states of a signal [19]. The occurrence of apnoeic events produces changes
in the dynamics of the system, altering the amount and distribution of the recurrences in
the RP [20]. Hence, RP analysis can provide information about these changes, even
though the signals are non-stationary [20]. However, we are unaware of any studies
characterizing paediatric SAHS by means of RP obtained from PSG signals. The
properties of RP may further help to characterize the presence and severity of paediatric
SAHS in AF recordings while overcoming some limitations of traditional Fourier-based
analyses. The previous success of RP in characterizing other biomedical signals also
supports its application to AF in SAHS context. It has been successfully used to
automatically identify epileptic EEG signals [22], to monitor anaesthesia by EEG
recordings [23], as well as to improve the diagnostic ability of ECG to detect SAHS in

adults [20,24].



Hence, we hypothesized that the analysis of the RP applied to AF signals may be
useful to obtain paediatric SAHS-related information. Accordingly, our main objective is
to evaluate the utility of this information to detect SAHS at different severity degrees.

Furthermore, its complementarity with ODI; is also addressed in our study.

2. SUBJECTS AND SIGNALS UNDER STUDY

In this study, AF and SpO: signals were recorded from 946 children referred to the
Paediatric Sleep Unit at the Comer Children’s Hospital of the University of Chicago, due
to clinical SAHS suspicion. The Ethics Committee of the Hospital approved the study
protocol. An informed consent was obtained from the legal caretakers of all children.

The subjects were diagnosed by specialised physicians according to the rules of the
American Academy of Sleep Medicine (AASM) [18]. The apnoea-hypopnoea index
(AHI), computed as the number of apnoea and hypopnoea events per hour (e/h) of sleep,
was used to establish SAHS and its severity [18,25]. Common AHI thresholds of 1, 5,
and 10 e/h were used to classify paediatric subjects into four SAHS-severity degrees
[10,14,26-29]: no-SAHS (AHI < 1 e/h), mild (1 e/h < AHI <5 e/h), moderate (5 e/h <
AHI < 10 e/h), and severe SAHS (AHI > 10 e/h). Hence, our database was divided
according to these thresholds.

The subjects were randomly split into a training set (60%) and a test set (40%).
Table 1 shows the clinical and demographic data of the population under study. No
statistically significant differences (p-value >0.01) were found in age, gender, body mass
index (BMI), and AHI between the training and test sets, after applying the Chi-square

and the Mann-Whitney tests.



Table 1. Demographic and clinical data from the paediatric subjects under study. Data
are presented as median [interquartile range] or n (%); BMI: body mass index; AHI:

apnoea—hypopnoea index.

All Training group Test group p-value
Subjects (n) 946 570 376
Age (years) 6 [6] 6 [5] 6 [6] 0.9063
Males (n) 584 (61.73%) 339 (59.47%) 245 (65.16%) 0.0875
BMI (kg/m?) 17.92 [6.17] 17.72 [6.74] 18.07 [6.01] 0.9610
AHI (e/h) 3.82[7.80] 4.17 [8.34] 3.33[6.44] 0.0340
AHI >1 (e/h) 783 (82.77%) 479 (84.04%) 304 (80.85%) 0.2185
AHI > 5 (e/h) 397 (41.97%) 256 (44.91%) 141 (37.5%) 0.0263
AHI > 10 (e/h) 225 (23.78%) 145 (25.44%) 80 (21.28%) 0.1601

PSG was conducted using a digital polysomnography system (Polysmith, Nihon
Kohden America Inc., Irvine, CA, USA). Single-channel AF and SpO; signals were
acquired during the PSG. Recordings lasting less than 3 hours were discarded [11]. The
AF recordings, obtained with a thermistor, were sampled at 100 Hz [18]. These were
normalised according to Varady et al. [30], to minimize possible differences in AF caused
by age. AF artefacts were removed by comparing statistical measures of 30-second
epochs [31]. The SpO, recordings, sampled at 25 Hz, were used to obtain ODI;. Their
artefacts were removed by discarding SpO; values <50% and changes with a slope
>4%/second [16]. Figure 1(a) shows an example of the AF signal and figure 1(b) shows
the corresponding SpO- signal. We can see 7 apnoea events (absence of AF, i.e., near
cero amplitude) in 0.4, 0.9, 1.7, 2.6, 4.9, 5.4, and 6.3 minutes, and the corresponding

desaturations.
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Figure 1. Normal breathing pattern followed by apnoeic events in (a) airflow signal (AF)

and (b) corresponding blood oxygen saturation signal (SpO>).

3. METHODS

ODI; was obtained from SpO; recordings according to Taha et al. [32]. Therefore,
oxygen desaturation events were scored as a decrease >3% of SpO> at a rate of 0.1-
4%/second, during 10-60 seconds. The number of desaturation events was divided by the
number of recording hours to obtain ODI;.

Afterwards, a four-stage study was carried out: (i) computation of RP from AF, (ii)
RP feature extraction, (iii) feature selection through the fast correlation-based filter
(FCBF) method, and (iv) AHI estimation using a multi-layer perceptron neural network
with Bayesian training approach (BY-MLP). Figure 2 shows the block diagram of the

method proposed in our study.
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Figure 2. Block diagram of the proposed method. AHI: apnoea-hypopnoea index.
3.1. Recurrence plot computation

In the present context, recurrences are points or states that occur repeatedly. RPs
are analytical tools for visualizing such recurrences and discovering hidden periodicities
of dynamic systems, i.e., systems that evolve over time, like a physiological time series
[19]. Since a dynamic system is defined by vectors representing trajectories in the m-
dimensional phase-space, a RP is the graphic representation of the binary and symmetric
recurrence matrix R;;, whose values are 1 if two trajectories are roughly equal (there is a
recurrence) and 0 otherwise [19,20].

Dealing with discrete measurements, the first step towards obtaining an RP is to

reconstruct the phase-space using the well-known Taken’s time-delay method [19,20,33]:

X, =[u@),u(i+71),...u(i+(m-1)-7)], (1)
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where u(7) is the value of the time series at time 7, m is the embedding dimension, and 7
is the time delay. The embedded dimension () and the time delay () are parameters to
be optimized in each context. The time delay has to be adjusted to not set up auto-
correlated state vectors [20,24], with the auto-mutual information (AMI) function being
commonly used for this purpose [19,20,34]. The embedding dimension must also be
carefully selected, since an undue increase of m removes the isolated recurrences from
the RP and increases the occurrence of spurious diagonal structures [19]. In this regard,
the false nearest neighbour’s (FNN) method has been successfully used to optimize m
[19,34,35].

Once the phase-space has been reconstructed, the distance matrix, D, is calculated

by the commonly used Euclidean distance norm [19,20]:

D, = Hx,. R

) (2)
where i, j=1, ..., L-(m-1)-7r and L is the time series length.

Afterwards, R;; is calculated through the Heaviside function, being R; =1 (i.e. there

is a recurrence) if the distance is less than a certain threshold, ¢, and R; ;=0 otherwise [19]:

1:D,, <¢
R, = ’ : &)
’ 0:D,;, >¢

A proper selection of ¢ is essential too. If ¢ is too small, no recurrences will be
shown in the RP and no information could be derived about the dynamic of the system
[19]. By contrast, if ¢ is too large, almost all the points will be considered recurrences,
leading to the appearance of many artefacts [19]. The fixed distance method, which fixes
the threshold according to the standard deviation (o) of each time series, has been widely
used to select € [20,34].

Finally, the RP is obtained by plotting the recurrence matrix.
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3.2. Feature extraction: Recurrence plot analysis

A RP always has a main diagonal, i.e., line of identity (LOI), with respect to which
the RP is symmetric. As shown in Figure 3, isolated recurrences, vertical (i.e. laminar
segments), and diagonal (i.e. deterministic segments) structures can be found in a typical
RP. There are several features that quantify these RP structures, known as recurrence
quantification analysis (RQA) [19,20]:

e Features based on the recurrence density of the RP:
- Recurrence rate (REC): it quantifies the percentage of recurrences of RP,
including isolated recurrences and recurrences that form deterministic and laminar
segments (see Figure 3), providing information about the variability of time series

[19,36]. The more recurrences there are, the less variable the time series is [20]:

N
REC = % 2R 4)

=
where N is the number of rows in R;;.

e Features based on diagonal structures of the RP:

- Determinism (DET): DET is the proportion of recurrences forming diagonal lines,

1.e. forming deterministic segments (see Figure 3) [24,36]. This feature measures
the determinism (predictability) of time series [19,20]. Thereby, longer diagonal
lines and fewer isolated recurrences (high DET) imply more predictability of the
time series [19]:

N
D1 pd)
DET =5 (5)

Zl-p(l)

where /lnin is the minimum length to consider a diagonal line and p(/) is the

histogram of diagonal lines of length /. In our work, we define the value /i, as 2,
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which is the most commonly used [20,34].

Average diagonal line length (LEN): LEN provides information about the average
time that allows to predict the future trajectory of a dynamic system from the
knowledge of its initial state (i.e. prediction time of a time series) [19,20,22]:

D1 p(l)
LEN =" (6)

2. p(0)

1=l
This feature can be observed in Figure 3.
Maximum length of the diagonal lines (Lmax): it measures the exponential
divergence of the phase-space trajectory [19,20]. The faster the trajectory
segments diverges, the shorter the diagonal lines [19]:

Lmax =max(/,,i =1,...,N). (7)

This feature can be observed in Figure 3.
Shannon’s entropy of the length distribution of the diagonal lines (ENTR): ENTR
measures the complexity of the RP from its diagonal structures, i.e. regarding its
deterministic segments [21,22]. Lower ENTR values indicate that the RP is less

complex in respect of its diagonal lines [19].

ENTR == p(1)-log(p(1)). (8)

l:lmin
Trend (TREND): it is the distribution of recurrences with respect to the LOI
[19,36]. TREND reflects the non-stationarity of a signal [21,36]. Therefore,

recurrences homogenously distributed (|[TREND| close to zero) indicate a high

level of stationarity in the signal [21]:

13



i (i—(N/2))-(REC, —(REC,))
TREND = 2!

— , ©)
> (i~ (N/2))

where N is a number smaller than N to exclude the edges [19,36], REC; is the
number of recurrences in the diagonal lines with distance i to the LOIL, and <RE Cl.>

is the average of REC;. We define N as N-2, which is a commonly used value

[19,36]. This feature can be observed in Figure 3.

e Features based on vertical structures of RP:

Laminarity (LAM): LAM is the proportion of recurrences forming vertical lines,
1.e. forming laminar segments (see Figure 3) [22,24]. It represents the occurrence
of laminar states in the RP, measuring the probability that a state does not change
with time [19,34]. Higher LAM values indicate that states do not change or change
slowly, resulting in less complexity [20]:

N
D> vp(v)
LAM = Zm (10)

D vep()

v=1
where vpi, is the minimum length to consider a vertical line and p(v) is the
histogram of vertical lines of length v. We define the value vuin as 2, which is the
most commonly used value [19,20,34].
Average vertical line length (trapping time, 77): 7T estimates the average time
that a system remains in a particular state [19,22,24]. The lower its value, the more
complex the system is, as it stays briefly in a similar state [20]:

N
D> vep(v)
TT — V=Vmin

T (11)
> p(v)
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This feature can be observed in Figure 3.

- Maximum length of vertical lines (Vmax): it gives information about the duration
of the laminar states and the complexity of the signal [19,20]. The higher Vmax
values are, the less complexity in the time series [20]:

V' max = max(v,,i =1,...,N). (12)

This feature can be observed in Figure 3.
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Figure 3. Example of typical structures and features of a RP.
3.3. Feature selection: Fast correlation-based filter

FCBF has proven its utility in a wide range of biomedical-related variable selection
problems [37-39], including SAHS context [10,15,40]. Based on the symmetric
uncertainty (SU), FCBF sorts the features in descending order of relevance (descending
SU) and discards those of less relevance that are redundant [37]. Hence, an optimal subset
of relevant and non-redundant features is obtained in order to maximise the diagnostic
potential of the extracted information [37].

15



A bootstrapping methodology, with 1000 bootstrap replicates, was used during this
stage to compose a more generalizable optimum feature subset [41]. FCBF was applied
to each replicate and those features selected at least 50% of the times formed our optimum

feature subset [10,15].

3.4. Apnoea—hypopnoea index estimation: Multi-layer perceptron neural

network with Bayesian approach

MLP is an artificial neural network typically configured in 3 layers (input, hidden,
and output layer) [10,15,42]. Each layer is composed of mathematical units called
perceptrons, and each perceptron is connected to all perceptrons of the next layer [42].
There are as many inputs as variables in the feature space. The number of hidden layer
perceptrons (Np) is a hyper-parameter that must be optimized. In the present study, the
output layer has one single perceptron to provide the estimated AHI, since this is a
continuous variable. In order to optimize the weights and biases associated to the
connections of the MLP, a Bayesian approach has been used in this study due to its

previous success in the SAHS context [15,43].
3.5. Statistical Analysis

The RP features from AF did not pass the Lilliefors normality test. Therefore, the
non-parametric Mann-Whitney and Kruskal-Wallis tests were used to evaluate
statistically significant differences (p-value <0.01 after Bonferroni corrections for
multiple comparisons) between the SAHS severity groups. Boxplots were used to show
potential differences in RP features according to the degree of SAHS severity. Cohen’s
kappa (kappa) was used to measure the agreement between the actual diagnosis and the
one derived from BY-MLP [44]. Regarding diagnostic performance of the BY-MLP,

standard metrics were computed: sensitivity (Se: proportion of subjects with SAHS
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rightly classified), specificity (Sp: proportion of subjects without the disease rightly
classified), accuracy (Acc: proportion of overall subjects rightly classified), positive
(PPV: proportion of positive test result which are true positives) and negative (NPV:
proportion of negative test result which are true negatives) predictive values, positive
(LR+: proportion of subjects with SAHS rightly classified with respect to the proportion
of healthy subjects wrongly classified) and negative (LR-: proportion of subjects with
SAHS wrongly classified with respect to the healthy subjects rightly classified) likelihood
ratios [45,46]. Three optimum thresholds were used to evaluate the actual diagnostic
ability of ODI; for AHI cut-off points 1, 5, and 10 e/h in the test group. Each optimum
threshold was obtained as the closest point to [1,0] (100% Se and 100% Sp) of the

receiver-operating characteristic (ROC) curve from the training group [46].

4. RESULTS

4.1. Training group

AMI was used in the training group to optimize 7 in the phase-space reconstruction
of AF signals. The t was varied from 0.1 to 6 seconds. The optimum z value (first relative
minimum of AMI) was obtained for each subject of the training group. The median of
these values determined the optimum 7 for AF: =0.9 seconds. Regarding the optimum m
value, FNN was used to obtain the minimum dimension where the number of false nearest
neighbours is reduced to zero. The m was varied from 1 to 20 and FNN determined the
adequate dimensional space for AF: m=3. Additionally, the threshold ¢ was varied from
(102-6) to (25-1072-0) to optimise its value. The & was fixed to e=107- since RP features
obtained with this threshold had the highest average Spearman’s correlation coefficient

(RHO) with the AHI in the training group.
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4.1.1. Exploratory Analysis

Since apnoeic events last at least 2 respiratory cycles [18], the AF signal of each
subject was segmented into 30-second windows as a trade-off between ensuring that it is
broad enough to include apnoeic events and these are a significant proportion of the
information within each segment. RP of each subject was computed by averaging the
recurrence points of RPs obtained for each window [19]. Moreover, Figure 4 illustrates
the averaged RPs in each out of the four SAHS severity groups of the training group, with
tones closer to red highlighting the presence of more recurrences. According to this
figure, fading of recurrences towards the upper left and lower right corners is shown in
RPs as darker blue tone regions. A slower fading and a higher occurrence of diagonal and
vertical structures can be observed when AHI is higher. The combination of these
structures formed clusters of recurrences close to the LOI, whose thickness is greater as
SAHS severity increases.

Figure 5 shows the boxplots of the scaled RP features of the four SAHS severity
groups in the training set. An increasing LAM, LEN, Lmax, ENTR, REC, TT, and Vmax
tendency and a decreasing TREND tendency can be observed as AHI is higher. All RP
features but DET showed significant differences (p-value <0.01) among the SAHS
severity groups. The same features presented significant differences (p-value <0.01)
between the severe SAHS group and the remaining ones. Additionally, LAM and Lmax
showed significant differences between the no-SAHS and moderate SAHS groups, and

between mild and moderate SAHS groups, respectively.
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Figure 4. Averaged RP of the four SAHS severity groups in the training set: (a) no-
SAHS, (b) mild, (c) moderate, and (d) severe SAHS. The trajectories of the m-
dimensional phase-space are vectors that define the dynamic behaviour of AF. Having
optimized the parameters dimension m = 3 and delay t = 0.9 seconds, and being 100 Hz

the sampling frequency and 30-seconds the window size, the equation 1 allow to define

the phase-space trajectories of airflow recordings as X, =[u(l),u(91),u(181)] to

e = [1(2820),1(2910),1(3000)].
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Figure 5. Boxplots of the scaled RP features extracted from AF signals from the training
set: determinism (DET), Shannon’s entropy of the length distribution of the diagonal lines
(ENTR), laminarity (LAM), mean length of the diagonal lines (LEN), maximum length of
the diagonal lines (Lmax), recurrence rate (REC), trend (TREND), mean length of the

vertical lines (77), and maximum length of the vertical lines (Vmax).

4.1.2. Optimum feature subset

Nine RP features from AF were obtained in the extraction stage. These features
formed the FCBF algorithm input, which only selected Lmax more than 50% of the times
(923 times). When ODI; was incorporated to the selection process, the FCBF chose Lmax

(778 times) and ODI3 (1000 times), highlighting its complementarity.
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4.1.3. Multi-layer perceptron neural network with Bayesian approach:

model optimisation and training

Two BY-MLP models were designed and trained using the corresponding selected
features (BY-MLPAF: Lmax; BY-MLPAFOPB: Lmax and ODI;). The Ny of these BY-MLP
were varied from 1 to 30 to optimise its value. For each Ny, kappa was obtained through
a leave-one-out cross-validation procedure in the training group and averaged for 10 runs
to minimise the random initialization effect of the BY-MLP. The optimum Ny was 17 for
BY-MLPAF and 16 for BY-MLPAFOPB | since they reached the highest kappa. The
optimum Ny and feature subset were used to obtain the final models of BY-MLPAF and

BY-MLPAF-9P5 ysing the whole training group.
4.2. Test group

Table 2 shows the diagnostic performance of BY-MLPAT and BY-MLPAFOP5
models and single ODI3, evaluated in the test group (AHI thresholds 1, 5, and 10 e/h). As
expected, ODI; obtained lower Se in 1 and 5 e/h, underestimating the SAHS presence and
agreeing with the literature [15,17]. The BY-MLPAF achieved moderate diagnostic
performance, outperforming single ODI; in several metrics. The combination of both
approaches (BY-MLPAMOPB) outperformed BY-MLPAT and single ODI; in most of the
performance metrics for the three common AHI thresholds, highlighting higher
accuracies in 1 e/h and 10 e/h thresholds, as well as a LR- value of 0.1 for 1 e/h and a

LR+ value of 13.7 for 10 e/h.
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Table 2. Diagnostic performance of BY-MLPAT and BY-MLPA"-9P5 models, and ODI;

in the test group for AHI thresholds 1, 5, and 10 e/h.

AHI threshold = 1 e/h

Se (%) Sp(%) PPV (%) NPV (%) LR+ LR- Acc (%)
BY-MLPAF 99,3 4,2 81,4 60,0 1,0 0,2 81,1
BY-MLPAF-0DB 97,7 22,2 84,1 69,6 1,3 0,1 83,2
ODI; 59,9 86,1 94,8 33,7 43 0,5 64,9
AHI threshold = 5 e/h
Se (%) Sp(%) PPV (%) NPV (%) LR+ LR- Acc (%)
BY-MLPAF 80,9 48,9 48,7 81,0 1,6 0,4 60,9
BY-MLPAF-0D13 78,7 78,3 68,5 86,0 3,6 0,2 78,5
ODI; 69,5 89,4 79,7 83,0 6,5 0,3 81,9
AHI threshold = 10 e/h
Se (%) Sp(%) PPV (%) NPV (%) LR+ LR- Acc (%)
BY-MLPAF 63,8 85,1 53,7 89,7 43 0,4 80,6
BY-MLPAF-0DB 78,8 94,3 78,8 94,3 13,7 0,2 91,0
ODI; 81,3 88,5 65,7 94,6 7,1 0,2 87,0

5. DISCUSSION

In this study, we characterised overnight AF signals using

common features

extracted from RP analysis. We also assessed the utility of these features to detect

paediatric SAHS and its severity, as well as its complementarity with ODI;.

5.1. Airflow characterization

syndrome context

in the paediatric sleep apnoea-hypopnoea

The averaged RPs from the four SAHS severity groups showed a fade of

recurrences, which is typical of non-stationary signals that vary slowly over time [19].

This fact revealed the non-stationarity of overnight AF regardless of the presence and

severity of SAHS, reinforcing the need for a non-linear analytical tool to evaluate the

signal. Moreover, the predictability of AF, measured by DET, presented neither visual

nor statistical differences among the four severity groups. This suggests that the apnoeic

AF signal is fundamentally predictable regardless the severity group it belongs to. Hence,
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RPs would generally define nocturnal AF in children as non-stationary but predictable to
some extent.

An increase in the density of recurrences in RPs (higher REC) was appreciated as
SAHS severity increased, suggesting that apnoeic episodes decrease variability in the AF
signal due to its amplitude being reduced to almost zero when these events occur. This
results agree with those obtained in a previous work where we analysed the variability of
the AF by means of the central tendency measure [14]. In addition, AF showed an
increasing trend in the average prediction time (LEN) as AHI increases. This indicates
that apnoeic events increase the time during which future phase-space trajectories of AF
can be predicted from its initial state. Moreover, higher ENTR was appreciated as SAHS
severity increased, revealing that the apnoeas and hypopnoeas incorporate a wider
distribution of diagonal line lengths across the RP. Hence, apnoeic events could cause AF
trajectory segments to behave similarly at different times, regardless of their duration.
Regarding the degree of non-stationarity, higher absolute values of TREND were
appreciated when the SAHS severity increased, highlighting that apnoeic events lead to
less stationarity in the nocturnal airflow profile. Moreover, AF showed lower complexity
(higher values of 77T and Vmax) as AHI increased. This indicates that the occurrence of
apnoeas and hypopnoeas could modify the AF dynamics by making it remain longer in a
similar state. In this regard, several studies of SAHS in adults have analysed the
complexity of AF by means of the Lempel-Ziv complexity [47,48]. However, they did
not find potential differences between the SAHS severity groups. It suggests that these
RP features could be more effective for this purpose. Despite the trends showed by REC,
LEN, ENTR, TREND, TT, and Vmax, only the severe SAHS group presented significant
differences (p-value <0.01) with the remaining groups. Therefore, these features may be

depicting changes caused by SAHS, but only in certain circumstances such as those
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produced in the most severely-affected children.

AF manifested a higher occurrence of laminar states (higher LAM) with higher AHI
values, which agrees with the information provided by the averaged RPs. This fact
suggests that the AF signal does not change state, or changes it very slowly, in the
presence of apnoeas and hypopnoeas. This was supported by the significant differences
found in LAM between the no-SAHS and moderate SAHS groups, and between the severe
SAHS group and the remaining groups. Additionally, a decrease in exponential
divergence (higher Lmax) of the AF phase-space was appreciated as SAHS worsened,
indicating that apnoeic episodes could cause the trajectory segments of AF to separate
more slowly. This was also observed in the averaged RPs, where the diagonal line clusters
were thicker as SAHS severity increased. Moreover, only Lmax revealed significant
differences between the mild and moderate SAHS group, and between the severe SAHS
group and the remaining ones. Therefore, both laminar states (LAM) and the exponential
divergence (Lmax) could be common signs of SAHS in AF and, consequently, be more
useful for diagnosis purposes.

According to the aforementioned considerations, the AF characterization indicates
that RPs can offer information related to SAHS, as well as the intrinsic nature of overnight

AF in children.

5.2. Complementarity with the 3% oxygen desaturation index

In accordance with the relevance shown in the previous AF characterization, Lmax
was automatically selected by FCBF to be included in the optimum SAHS-related feature
subset. However, no other RP feature was selected, showing the redundancy of the
remaining extracted features. In addition, ODI; was also selected by FCBF, which
highlights the complementarity of the RP-derived Lmax with this widely-used clinical
parameter.
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5.3. Diagnostic usefulness and comparison with other studies

BY-MLPAFOPB model achieved high diagnostic capability (83.24%, 78.46%, and
90.96% Acc for 1, 5, and 10 e/h, respectively), outperforming BY-MLPAF and single
ODI; in most statistical metrics. BY-MLPAFOPB obtained higher Se than single ODIs in
1 and 5 e/h, as well as a similar one in 10 e/h, suggesting that SAHS underestimation
from ODI; can be minimised using the information extracted from RP of AF. In addition,
BY-MLPAFOPB reached a LR- of 0.1 for 1 e/h and a LR+ of 13.7 for 10 e/h. This fact is
of the utmost importance since LR+ above 10 and LR- below 0.1 are considered to
provide strong evidence to establish the presence or absence of a disease, respectively
[49]. Accordingly, our proposed approach would be especially useful to confirm the
absence of paediatric SAHS, as well as the presence of severe SAHS. Most severely-
affected children have a high risk of suffering adverse health consequences and
comorbidities [3,27]. Moreover, they can present residual SAHS, as well as persistent
risk factors after surgical treatment [29]. Hence, early detection and treatment is required
in these cases since a diagnostic delay can lead to serious and potentially irreversible
sequelae [29]. In addition, the automatic detection of no-SAHS and severe SAHS cases
would reduce the waiting times and the workload of qualified medical personnel, thus
being able to focus on the less obvious cases.

Table 3 summarizes previous studies aimed at automatically diagnosing paediatric
SAHS by using a reduced set of biomedical signals. The diagnostic ability achieved in
these studies is dependent on whether the AHI cut-off point is used to rule out or detect
the paediatric SAHS (i.e., it is dependent on the AHI cut-off point selected in each study).
The AHI cut-off point = 1 e/h is used to discard the presence of paediatric SAHS [7,26-
29]. Therefore, diagnostic metrics like Acc and LR- are important for this purpose since

they are related to the classification of healthy subjects. In this regard, only the studies
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carried out by Shouldice et al. and Tan et al. [7,26] obtained higher Acc in this AHI
threshold than the one obtained in our work. Moreover, it is of the utmost importance to
assess the achieved LR- value, since a LR- below 0.1 is considered to provide strong
evidence to establish the absence of a disease [49]. In this sense, our proposal obtained a
LR-=0.1 for 1 event/h, being this value lower than all those obtained in the state-of-the-
art studies found in the context of paediatric SAHS.

In order to detect the presence of moderate SAHS, 5 e/h is used as threshold [8-
12,14,26-29,40,50]. Therefore, Se, Acc, and LR+ are important diagnostic metrics for
this purpose since they are related to the classification of SAHS subjects. In a previous
study, Barroso-Garcia et al. [14], reported 65.0% Se and 76.0% Acc for this AHI
thresholds. However, our new proposed methodology obtained a higher Se and Acc
(78.7% Se and 78.5% Acc), providing a better diagnostic capacity to detect moderate
SAHS. On the other hand, the work carried out by Gil et al., Hornero et al., Alvarez et
al., Vaquerizo-Villar et al., and Xu et al. [8,10,11,14,26,40,50], obtained a lower Se for
this AHI threshold than the one in our work. Thus, the proportion of paediatric subjects
correctly classified with AHI > 5 e/h is considerably higher in our study, providing a
higher diagnostic capacity to detect paediatric subjects with moderate SAHS, which is
consistent with the purpose of using this AHI threshold. In addition, despite of the high
Se and Acc values obtained by Lazaro et al. [9], the proportion of subjects with AHI <5
e/h wrongly classified (LR+) is lower than in our study (3.5 versus 3.6), providing less
evidence to establish moderate SAHS than our study.

Regarding the AHI cut-off point 10 e/h, this threshold is used to detect the presence
of severe SAHS in children [10,14,26-29,50]. Thus, the most important diagnostic
metrics for this purpose are again Se, Acc, and LR+. The Acc and LR+ obtained for this

AHI cut-off point in our study are very high (91.0% Acc and 13.7 LR+) with respect to
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other studies [10,14,28,40,50]. This fact is very important since, according to Deesks et
al. [49], a LR+ above 10 is considered to provide strong evidence to establish the presence
of a disease, (i.e., severe SAHS). These results far outperform those achieved in others
state-of-the-art studies in the context of detection of severe paediatric SAHS, excluding
the study carried out by Tan et al. [26]. However, Tan et al. [26] obtained a lower Se for
the AHI threshold = 10 e/h. Thus, the proportion of subjects correctly classified with
severe SAHS is considerably higher in our study, which is consistent with the purpose of
using this AHI threshold.

Hence, our methodology obtained a high diagnostic Acc for 1 and 10 e/h, and
provided stronger evidence to discard the SAHS presence (lower LR-) and to establish
severe SAHS (higher LR+) than others state-of-the-art studies. Moreover, we have
evaluated our hypothesis according to the AHI thresholds commonly used to determine
the SAHS severity degrees (1, 5, and 10 e/h), and validated our methodology using a large
cohort (946 subjects). This fact is also important to highlight, since this allowed us to
achieve more generalizable results than others aforementioned studies [7-
9,11,12,14,26,28,40,50] and, thus, reflect the actual underlying behaviour of the

paediatric population.
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Table 3. Summary of the state-of-the-art in the context of detection of paediatric SAHS.

. Subjects | AHI Methods Se Sp Acc PPV NPV
Studies Signa . . . LR+ LR-
(n) (e/h) (Analysis/Selection/Classifier) (%) (%) (%) (%) (%)
Shouldice et Temporal and spectral analysis
50 ECG 1 857 81.8 84.0 857 81.8 47 02
al. 2004) [7] /—/QDA
Gil et al. Analysis of PTTV / Wrapper
21 PPG 5 75.0 857 80.0 - - 52*% 0.3*
(2010) [8] methodology / LDA
) 1 . 777 88.9 79.0% - - 7.0 0.3*
Tsai et al. Oxygen desaturation index of 4%
148 SpO2 5 83.8 86.5 85.1* - - 6.2% 0.2%
(2013) [28] (ODLy) [ —1—1
10 89.1 86.0 87.1*% - - 64*% 0.1%
ECG Comparison of the AHI obtained
1 . i 82.5 90.0 86.0* 97.1 56.3 8.3* 0.2*
Tan et al. AF from PSG with the AHI directly
2014) [26] 100 SpO 5 timated of rat 62.5 100 85.0%* 100 80 Inf* 0.4*
estimated of respirato
P22 10 0" Tespiriory 65.0% 100* 93.0% 100* 92.0% Inf* 0.4*
RIP polygraphic (RP)/—/—/
B Spectral analysis of PRV and DAP
Lazaro et al. .
2014) 9] 21 PPG 5 events detection / Wrapper 100 714 86.7 - - 3.5% 0%
methodology / LDA
Temporal and spectral analysis /
Garde et al. SpO:2 . . .
146 5 Selection algorithm optimizing 88.4 83.6 849 769 92.6 54* 0.1*
(2014) [12] PRV
the AROC / LDA
Gutiérrez- AF Spectral features and oxygen
Tobal et al. 50 SpO 3 desaturation index of 3% (ODI;) 859 87.4 863 884 858 6.8* 0.2*%
(2015) [13] P2 /FSLR /LR
Barroso- 1 60.5 58.6 60.0 812 250 1.1 09
, Spectral entropy and Central
Garciaetal. 501 AF 5 65.0 80.6 76.0 70.7 782 3.6 04
tendency measure / FSLR / LR
(2017) [14] 10 833 79.0 80.0 528 935 4.0 02
Hornero et 1 L . 84.0 532 752 8l.6 537 1.8 03
Statistical, spectral, non-linear
al. (2017) 4191  SpO2. 5 682 872 81.7 68.6 87.0 53 04
features, and ODI3/ FCBF / MLP
[10] 10 68.7 94.1 902 67.7 943 116 03
Alvarez et Anthropometric, statistical
al. (2018) 142 SpO2 5 moments, desaturation indices, 73.5 89.5 833 82.0 843 104 03
[11] symbolic dynamics / FSLR / LR
. Anthropometric variables, ODIs,
Vaquerizo-
. 5 spectral features from power 61.8 97.6 813 955 755 253 04
Villar et al. 298 SpO:2 . .
10 spectral density and bispectrum/  60.0 94.5 85.3 80.0 86.7 11.0 0.4
(2018) [40]
FCBF / MLP
Xu et al 1 ODI; and third statistical moment 953 19.1 79.6 82.0* 51.5* 1.2 0.2
(2‘(')1"8)”['50] 432 SpO» 5 ofthe spectral band of interest/  77.8 80.5 79.4 72.3* 84.7% 4.0 0.3
10 FCBF/MLP 73.5 927 882 75.8%*91.9* 10.1 0.3
97.7 222 832 841 696 13 0.1
Our AF Features of Recurrence Plots and
946 5 78.7 783 78.5 685 86.0 3.6 0.3
proposal SpO2 ODI; / FCBF / BY-MLP
10 78.8 943 91.0 788 943 13.7 0.2

QDA: Quadratic discriminant analysis; PTTV: Pulse transit time variability; LDA: Linear discriminant analysis; RIP: Chest

and abdominal movement by respiratory inductance plethysmography; PRV: Pulse rate variability; DAP: Decreases in

amplitude fluctuations of the PPG signal; AROC: Area under the receiver operating characteristics curves; FSLR: Forward

stepwise logistic regression; LR: Logistic regression model; FCBF: Fast correlation-based filter; MLP: Multi-Layer

Perceptron neural network; BY-MLP: MLP with Bayesian approach.

* Computed from reported data.
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5.4. Limitations

In spite of the usefulness illustrated by our proposed approach, this study has some
limitations. Although our database is large, more subjects originating from other sleep
laboratories would make our results more generalizable. Furthermore, this would be also
convenient for the sake of the proportion of the subjects belonging to each of the SAHS
severity groups. In addition, the selection of RP embedding parameters (m, 7, and ¢) is a
widely discussed topic for which there is no consensus as of yet [20]. The sensitivity of
the RP analysis to these parameters, along with the lack of consensus on the method that
should be used to optimise them, is another limitation. Consequently, although our study
supports the use of AMI, FNN and the fixed distance method, the use, combination, and
comparison of other methodologies could be the subject of future research. Moreover, it
would also be interesting to evaluate other machine-learning algorithms with the ability
to estimate AHI. In addition, conducting studies with AF signals recorded at home is
another future goal. Finally, analysing the effects of our proposed method using other

signals like ECG or PPG could be an interesting future research.

6. CONCLUSIONS

In summary, this is the first study in which RP features from AF have been used to
help in the diagnosis of paediatric SAHS. We have shown that RP can offer useful
information related to both paediatric SAHS and the intrinsic characteristics of overnight
AF in children. Our results also revealed that the exponential divergence of the phase-
space trajectories of AF provides complementary information to the oxygen desaturations
events. Combining both approaches, a BY-MLP neural network reached a high diagnostic
performance for 1, 5, and 10 e/h. Moreover, this model achieved strong evidence to rule

out SAHS, as well as to predict severe cases. Hence, these findings suggest that the
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analysis of RP applied to AF signal provides useful information that could be used along

with ODZ to help in paediatric SAHS diagnosis.
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