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Abstract- Background and objective: In-laboratory overnight polysomnography (PSG) 

is the gold standard method to diagnose the sleep apnoea-hypopnoea syndrome (SAHS). 

PSG is a complex, expensive, labour-intensive and time-consuming test. Consequently, 

simplified diagnostic methods are desirable. We propose the analysis of the airflow (AF) 

signal by means of recurrence plots (RP) features. The main goal of our study was to 

evaluate the utility of the information from RPs of the AF signals to detect paediatric 

SAHS at different levels of severity. In addition, we also evaluated the complementarity 

with the 3% oxygen desaturation index (ODI3). Methods: 946 AF and blood oxygen 

saturation (SpO2) recordings from children ages 0-13 years were used. The population 

under study was randomly split into training (60%) and test (40%) sets. RP was computed 

and 9 RP features were extracted from each AF recording. ODI3 was also calculated from 

each SpO2 recording. A feature selection stage was conducted in the training group by 

means of the fast correlation-based filter (FCBF) methodology to obtain a relevant and 

non-redundant optimum feature subset. A multi-layer perceptron neural network with 

Bayesian approach (BY-MLP), trained with these optimum features, was used to estimate 

the apnoea–hypopnoea index (AHI). Results: 8 of the RP features showed statistically 

significant differences (p-value <0.01) among the SAHS severity groups. FCBF selected 

the maximum length of the diagonal lines from RP, as well as the ODI3. Using these 

optimum features, the BY-MLP model achieved 83.2%, 78.5%, and 91.0% accuracy in 

the test group for the AHI thresholds 1, 5, and 10 events/h, respectively. Moreover, this 

model reached a negative likelihood ratio of 0.1 for 1 e/h and a positive likelihood ratio 

of 13.7 for 10 e/h. Conclusions: RP analysis enables extraction of useful SAHS-related 

information from overnight AF paediatric recordings. Moreover, it provides 

complementary information to the widely-used clinical variable ODI3. Thus, RP applied 
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to AF signals can be used along with ODI3 to help in paediatric SAHS diagnosis, 

particularly to either confirm the absence of SAHS or the presence of severe SAHS. 
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1. INTRODUCTION 

Childhood Sleep Apnoea-Hypopnoea Syndrome (SAHS) is a breathing disorder 

characterized by recurrent airflow cessation (apnoeas) and/or significant airflow-

reduction (hypopnoeas) episodes during sleep [1,2]. In spite of its high prevalence (1-4% 

of all children) [3], paediatric SAHS is an underdiagnosed disease whose adverse 

consequences include cognitive, behavioural, metabolic, and cardiovascular functions 

[3]. Early detection and treatment of the affected children is therefore of paramount 

importance. 

In-laboratory overnight polysomnography (PSG) is the gold standard for paediatric 

SAHS diagnosis [4]. Paediatric PSG is performed in a sleep laboratory, suitable for 

children, and consists in recording a wide range of biomedical signals. Qualified medical 

personnel identifies and quantifies the severity of SAHS by means of these recordings. 

However, PSG is a complex, labour-intensive, and expensive test [5]. It is also time-

consuming and both the facilities and the expertise needed to carry it out are not always 

available, which entails prolonged access delays [5]. Moreover, the multifarious sensors 

placed on child’s body make PSG a particularly ill-at-ease test for some, leading to 

undesirable percentages of failed testing opportunities [6]. 

In order to deal with the inherent limitations of PSG, alternative simplified methods 

have been explored. The analysis of a reduced signal set, such as electrocardiogram 

(ECG), photoplethysmography (PPG), blood oxygen saturation (SpO2), and airflow (AF), 

is a commonly used approach [7–14]. Several studies have analysed these signals through 

temporal and/or spectral analysis techniques, to assist in paediatric SAHS diagnosis [8–

14]. 

In this study, we propose and have analysed the AF signal to help in paediatric 

SAHS diagnosis. In addition, 3% oxygen desaturation index (ODI3), a conventional 
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oximetry index commonly used in the SAHS context [11,15,16], has been also obtained. 

Despite its widespread use, the extant literature indicates that ODI3, which is obtained 

from SpO2, underestimates both SAHS presence and severity [15,17]. Therefore, only 

using this index is insufficient to accurately simplify diagnosis. In this regard, the analysis 

of AF is a natural way of simplifying PSG, since the apnoeic events modify the amplitude 

of this signal [18]. Moreover, recent studies have already shown the usefulness of AF in 

diagnosing paediatric SAHS [13,14].  

Based on the aforementioned considerations, our proposal is based on the use of 

non-linear recurrence plots (RPs) analysis to obtain useful features from AF [19]. The 

respiratory system is dynamic, non-linear, and non-stationary, which may lead to the 

presence of recurrences within a given state space [20,21]. Recurrence is a property of 

dynamic systems which refers to a point or state that occurs repeatedly throughout a given 

time series [19,20]. Therefore, RP analysis allows visualization of the recurrences of the 

phase-space states of a signal [19]. The occurrence of apnoeic events produces changes 

in the dynamics of the system, altering the amount and distribution of the recurrences in 

the RP [20]. Hence, RP analysis can provide information about these changes, even 

though the signals are non-stationary [20]. However, we are unaware of any studies 

characterizing paediatric SAHS by means of RP obtained from PSG signals. The 

properties of RP may further help to characterize the presence and severity of paediatric 

SAHS in AF recordings while overcoming some limitations of traditional Fourier-based 

analyses. The previous success of RP in characterizing other biomedical signals also 

supports its application to AF in SAHS context. It has been successfully used to 

automatically identify epileptic EEG signals [22], to monitor anaesthesia by EEG 

recordings [23], as well as to improve the diagnostic ability of ECG to detect SAHS in 

adults [20,24].  
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Hence, we hypothesized that the analysis of the RP applied to AF signals may be 

useful to obtain paediatric SAHS-related information. Accordingly, our main objective is 

to evaluate the utility of this information to detect SAHS at different severity degrees. 

Furthermore, its complementarity with ODI3 is also addressed in our study. 

2. SUBJECTS AND SIGNALS UNDER STUDY 

In this study, AF and SpO2 signals were recorded from 946 children referred to the 

Paediatric Sleep Unit at the Comer Children’s Hospital of the University of Chicago, due 

to clinical SAHS suspicion. The Ethics Committee of the Hospital approved the study 

protocol. An informed consent was obtained from the legal caretakers of all children. 

The subjects were diagnosed by specialised physicians according to the rules of the 

American Academy of Sleep Medicine (AASM) [18]. The apnoea-hypopnoea index 

(AHI), computed as the number of apnoea and hypopnoea events per hour (e/h) of sleep, 

was used to establish SAHS and its severity [18,25]. Common AHI thresholds of 1, 5, 

and 10 e/h were used to classify paediatric subjects into four SAHS-severity degrees 

[10,14,26–29]: no-SAHS (AHI < 1 e/h), mild (1 e/h ≤ AHI < 5 e/h), moderate (5 e/h ≤ 

AHI < 10 e/h), and severe SAHS (AHI ≥ 10 e/h). Hence, our database was divided 

according to these thresholds. 

The subjects were randomly split into a training set (60%) and a test set (40%). 

Table 1 shows the clinical and demographic data of the population under study. No 

statistically significant differences (p-value >0.01) were found in age, gender, body mass 

index (BMI), and AHI between the training and test sets, after applying the Chi-square 

and the Mann-Whitney tests. 
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Table 1. Demographic and clinical data from the paediatric subjects under study. Data 

are presented as median [interquartile range] or n (%); BMI: body mass index; AHI: 

apnoea–hypopnoea index. 

 All Training group Test group p-value 

Subjects (n) 946 570 376 - 

Age (years) 6 [6] 6 [5] 6 [6] 0.9063 

Males (n) 584 (61.73%) 339 (59.47%) 245 (65.16%) 0.0875 

BMI (kg/m2) 17.92 [6.17] 17.72 [6.74] 18.07 [6.01] 0.9610 

AHI (e/h) 3.82 [7.80] 4.17 [8.34] 3.33 [6.44] 0.0340 

AHI ≥ 1 (e/h) 783 (82.77%) 479 (84.04%) 304 (80.85%) 0.2185 

AHI ≥ 5 (e/h) 397 (41.97%) 256 (44.91%) 141 (37.5%) 0.0263 

AHI ≥ 10 (e/h) 225 (23.78%) 145 (25.44%) 80 (21.28%) 0.1601 

 

PSG was conducted using a digital polysomnography system (Polysmith, Nihon 

Kohden America Inc., Irvine, CA, USA). Single-channel AF and SpO2 signals were 

acquired during the PSG. Recordings lasting less than 3 hours were discarded [11]. The 

AF recordings, obtained with a thermistor, were sampled at 100 Hz [18]. These were 

normalised according to Varady et al. [30], to minimize possible differences in AF caused 

by age. AF artefacts were removed by comparing statistical measures of 30-second 

epochs [31]. The SpO2 recordings, sampled at 25 Hz, were used to obtain ODI3. Their 

artefacts were removed by discarding SpO2 values <50% and changes with a slope 

≥4%/second [16]. Figure 1(a) shows an example of the AF signal and figure 1(b) shows 

the corresponding SpO2 signal. We can see 7 apnoea events (absence of AF, i.e., near 

cero amplitude) in 0.4, 0.9, 1.7, 2.6, 4.9, 5.4, and 6.3 minutes, and the corresponding 

desaturations. 
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Figure 1. Normal breathing pattern followed by apnoeic events in (a) airflow signal (AF) 

and (b) corresponding blood oxygen saturation signal (SpO2). 

3. METHODS 

ODI3 was obtained from SpO2 recordings according to Taha et al. [32]. Therefore, 

oxygen desaturation events were scored as a decrease ≥3% of SpO2 at a rate of 0.1-

4%/second, during 10-60 seconds. The number of desaturation events was divided by the 

number of recording hours to obtain ODI3. 

Afterwards, a four-stage study was carried out: (i) computation of RP from AF, (ii) 

RP feature extraction, (iii) feature selection through the fast correlation-based filter 

(FCBF) method, and (iv) AHI estimation using a multi-layer perceptron neural network 

with Bayesian training approach (BY-MLP). Figure 2 shows the block diagram of the 

method proposed in our study. 
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Figure 2. Block diagram of the proposed method. AHI: apnoea-hypopnoea index. 

3.1. Recurrence plot computation 

In the present context, recurrences are points or states that occur repeatedly. RPs 

are analytical tools for visualizing such recurrences and discovering hidden periodicities 

of dynamic systems, i.e., systems that evolve over time, like a physiological time series 

[19]. Since a dynamic system is defined by vectors representing trajectories in the m-

dimensional phase-space, a RP is the graphic representation of the binary and symmetric 

recurrence matrix Ri,j, whose values are 1 if two trajectories are roughly equal (there is a 

recurrence) and 0 otherwise [19,20]. 

Dealing with discrete measurements, the first step towards obtaining an RP is to 

reconstruct the phase-space using the well-known Taken’s time-delay method [19,20,33]: 

)],)1((),...,(),([ ττ ⋅−++= miuiuiuxi
     (1) 
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where u(i) is the value of the time series at time i, m is the embedding dimension, and τ 

is the time delay. The embedded dimension (m) and the time delay (τ) are parameters to 

be optimized in each context. The time delay has to be adjusted to not set up auto-

correlated state vectors [20,24], with the auto-mutual information (AMI) function being 

commonly used for this purpose [19,20,34]. The embedding dimension must also be 

carefully selected, since an undue increase of m removes the isolated recurrences from 

the RP and increases the occurrence of spurious diagonal structures [19]. In this regard, 

the false nearest neighbour’s (FNN) method has been successfully used to optimize m 

[19,34,35]. 

Once the phase-space has been reconstructed, the distance matrix, Di,j, is calculated 

by the commonly used Euclidean distance norm [19,20]: 

,, jiji xxD 
−=       (2) 

where i, j=1, …, L-(m-1)·τ and L is the time series length. 

Afterwards, Ri,j is calculated through the Heaviside function, being Ri,j=1 (i.e. there 

is a recurrence) if the distance is less than a certain threshold, ε, and Ri,j=0 otherwise [19]: 
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A proper selection of ε is essential too. If ε is too small, no recurrences will be 

shown in the RP and no information could be derived about the dynamic of the system 

[19]. By contrast, if ε is too large, almost all the points will be considered recurrences, 

leading to the appearance of many artefacts [19]. The fixed distance method, which fixes 

the threshold according to the standard deviation (σ) of each time series, has been widely 

used to select ε [20,34]. 

Finally, the RP is obtained by plotting the recurrence matrix.  
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3.2. Feature extraction: Recurrence plot analysis 

A RP always has a main diagonal, i.e., line of identity (LOI), with respect to which 

the RP is symmetric. As shown in Figure 3, isolated recurrences, vertical (i.e. laminar 

segments), and diagonal (i.e. deterministic segments) structures can be found in a typical 

RP. There are several features that quantify these RP structures, known as recurrence 

quantification analysis (RQA) [19,20]: 

• Features based on the recurrence density of the RP: 

- Recurrence rate (REC): it quantifies the percentage of recurrences of RP, 

including isolated recurrences and recurrences that form deterministic and laminar 

segments (see Figure 3), providing information about the variability of time series 

[19,36]. The more recurrences there are, the less variable the time series is [20]: 

∑
=

=
N
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N
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1,
,2

1 ,     (4) 

where N is the number of rows in Ri,j. 

• Features based on diagonal structures of the RP: 

- Determinism (DET): DET is the proportion of recurrences forming diagonal lines, 

i.e. forming deterministic segments (see Figure 3) [24,36]. This feature measures 

the determinism (predictability) of time series [19,20]. Thereby, longer diagonal 

lines and fewer isolated recurrences (high DET) imply more predictability of the 

time series [19]: 
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where lmin is the minimum length to consider a diagonal line and p(l) is the 

histogram of diagonal lines of length l. In our work, we define the value lmin as 2, 
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which is the most commonly used [20,34]. 

- Average diagonal line length (LEN): LEN provides information about the average 

time that allows to predict the future trajectory of a dynamic system from the 

knowledge of its initial state (i.e. prediction time of a time series) [19,20,22]: 
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This feature can be observed in Figure 3. 

- Maximum length of the diagonal lines (Lmax): it measures the exponential 

divergence of the phase-space trajectory [19,20]. The faster the trajectory 

segments diverges, the shorter the diagonal lines [19]: 

),...,1,max(max NilL i == .     (7) 

This feature can be observed in Figure 3. 

- Shannon’s entropy of the length distribution of the diagonal lines (ENTR): ENTR 

measures the complexity of the RP from its diagonal structures, i.e. regarding its 

deterministic segments [21,22]. Lower ENTR values indicate that the RP is less 

complex in respect of its diagonal lines [19]. 

))(log()(
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=
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- Trend (TREND): it is the distribution of recurrences with respect to the LOI 

[19,36]. TREND reflects the non-stationarity of a signal [21,36]. Therefore, 

recurrences homogenously distributed (|TREND| close to zero) indicate a high 

level of stationarity in the signal [21]: 
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where N~  is a number smaller than N to exclude the edges [19,36], RECi is the 

number of recurrences in the diagonal lines with distance i to the LOI, and iREC  

is the average of RECi. We define N~ as N-2, which is a commonly used value 

[19,36]. This feature can be observed in Figure 3. 

• Features based on vertical structures of RP: 

- Laminarity (LAM): LAM is the proportion of recurrences forming vertical lines, 

i.e. forming laminar segments (see Figure 3) [22,24]. It represents the occurrence 

of laminar states in the RP, measuring the probability that a state does not change 

with time [19,34]. Higher LAM values indicate that states do not change or change 

slowly, resulting in less complexity [20]: 
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where vmin is the minimum length to consider a vertical line and p(v) is the 

histogram of vertical lines of length v. We define the value vmin as 2, which is the 

most commonly used value [19,20,34]. 

- Average vertical line length (trapping time, TT): TT estimates the average time 

that a system remains in a particular state [19,22,24]. The lower its value, the more 

complex the system is, as it stays briefly in a similar state [20]: 
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This feature can be observed in Figure 3. 

- Maximum length of vertical lines (Vmax): it gives information about the duration 

of the laminar states and the complexity of the signal [19,20]. The higher Vmax 

values are, the less complexity in the time series [20]: 

),...,1,max(max NivV i == .                          (12) 

This feature can be observed in Figure 3. 

 

 

Figure 3. Example of typical structures and features of a RP. 

3.3. Feature selection: Fast correlation-based filter 

FCBF has proven its utility in a wide range of biomedical-related variable selection 

problems [37–39], including SAHS context [10,15,40]. Based on the symmetric 

uncertainty (SU), FCBF sorts the features in descending order of relevance (descending 

SU) and discards those of less relevance that are redundant [37]. Hence, an optimal subset 

of relevant and non-redundant features is obtained in order to maximise the diagnostic 

potential of the extracted information [37]. 
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A bootstrapping methodology, with 1000 bootstrap replicates, was used during this 

stage to compose a more generalizable optimum feature subset [41]. FCBF was applied 

to each replicate and those features selected at least 50% of the times formed our optimum 

feature subset [10,15]. 

3.4. Apnoea–hypopnoea index estimation: Multi-layer perceptron neural 

network with Bayesian approach 

MLP is an artificial neural network typically configured in 3 layers (input, hidden, 

and output layer) [10,15,42].  Each layer is composed of mathematical units called 

perceptrons, and each perceptron is connected to all perceptrons of the next layer [42]. 

There are as many inputs as variables in the feature space. The number of hidden layer 

perceptrons (NH) is a hyper-parameter that must be optimized. In the present study, the 

output layer has one single perceptron to provide the estimated AHI, since this is a 

continuous variable. In order to optimize the weights and biases associated to the 

connections of the MLP, a Bayesian approach has been used in this study due to its 

previous success in the SAHS context [15,43]. 

3.5. Statistical Analysis 

The RP features from AF did not pass the Lilliefors normality test. Therefore, the 

non-parametric Mann-Whitney and Kruskal-Wallis tests were used to evaluate 

statistically significant differences (p-value <0.01 after Bonferroni corrections for 

multiple comparisons) between the SAHS severity groups. Boxplots were used to show 

potential differences in RP features according to the degree of SAHS severity. Cohen’s 

kappa (kappa) was used to measure the agreement between the actual diagnosis and the 

one derived from BY-MLP [44]. Regarding diagnostic performance of the BY-MLP, 

standard metrics were computed: sensitivity (Se: proportion of subjects with SAHS 
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rightly classified), specificity (Sp: proportion of subjects without the disease rightly 

classified), accuracy (Acc: proportion of overall subjects rightly classified), positive 

(PPV: proportion of positive test result which are true positives) and negative (NPV: 

proportion of negative test result which are true negatives) predictive values, positive 

(LR+: proportion of subjects with SAHS rightly classified with respect to the proportion 

of healthy subjects wrongly classified) and negative (LR-: proportion of subjects with 

SAHS wrongly classified with respect to the healthy subjects rightly classified) likelihood 

ratios [45,46]. Three optimum thresholds were used to evaluate the actual diagnostic 

ability of ODI3 for AHI cut-off points 1, 5, and 10 e/h in the test group. Each optimum 

threshold was obtained as the closest point to [1,0] (100% Se and 100% Sp) of the 

receiver-operating characteristic (ROC) curve from the training group [46]. 

4. RESULTS 

4.1. Training group 

AMI was used in the training group to optimize τ in the phase-space reconstruction 

of AF signals. The τ was varied from 0.1 to 6 seconds. The optimum τ value (first relative 

minimum of AMI) was obtained for each subject of the training group. The median of 

these values determined the optimum τ for AF: τ=0.9 seconds. Regarding the optimum m 

value, FNN was used to obtain the minimum dimension where the number of false nearest 

neighbours is reduced to zero. The m was varied from 1 to 20 and FNN determined the 

adequate dimensional space for AF: m=3. Additionally, the threshold ε was varied from 

(10-2·σ) to (25·10-2·σ) to optimise its value. The ε was fixed to ε=10-2·σ since RP features 

obtained with this threshold had the highest average Spearman’s correlation coefficient 

(RHO) with the AHI in the training group. 
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4.1.1. Exploratory Analysis 

Since apnoeic events last at least 2 respiratory cycles [18],  the AF signal of each 

subject was segmented into 30-second windows as a trade-off between ensuring that it is 

broad enough to include apnoeic events and these are a significant proportion of the 

information within each segment. RP of each subject was computed by averaging the 

recurrence points of RPs obtained for each window [19]. Moreover, Figure 4 illustrates 

the averaged RPs in each out of the four SAHS severity groups of the training group, with 

tones closer to red highlighting the presence of more recurrences. According to this 

figure, fading of recurrences towards the upper left and lower right corners is shown in 

RPs as darker blue tone regions. A slower fading and a higher occurrence of diagonal and 

vertical structures can be observed when AHI is higher. The combination of these 

structures formed clusters of recurrences close to the LOI, whose thickness is greater as 

SAHS severity increases. 

Figure 5 shows the boxplots of the scaled RP features of the four SAHS severity 

groups in the training set. An increasing LAM, LEN, Lmax, ENTR, REC, TT, and Vmax 

tendency and a decreasing TREND tendency can be observed as AHI is higher. All RP 

features but DET showed significant differences (p-value <0.01) among the SAHS 

severity groups. The same features presented significant differences (p-value <0.01) 

between the severe SAHS group and the remaining ones. Additionally, LAM and Lmax 

showed significant differences between the no-SAHS and moderate SAHS groups, and 

between mild and moderate SAHS groups, respectively. 
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Figure 4. Averaged RP of the four SAHS severity groups in the training set: (a) no-

SAHS, (b) mild, (c) moderate, and (d) severe SAHS. The trajectories of the m-

dimensional phase-space are vectors that define the dynamic behaviour of AF. Having 

optimized the parameters dimension m = 3 and delay τ = 0.9 seconds, and being 100 Hz 

the sampling frequency and 30-seconds the window size, the equation 1 allow to define 

the phase-space trajectories of airflow recordings as )]181(),91(),1([1 uuux =
  to 

)]3000(),2910(),2820([2820 uuux =
 . 
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Figure 5. Boxplots of the scaled RP features extracted from AF signals from the training 

set: determinism (DET), Shannon’s entropy of the length distribution of the diagonal lines 

(ENTR), laminarity (LAM), mean length of the diagonal lines (LEN), maximum length of 

the diagonal lines (Lmax), recurrence rate (REC), trend (TREND), mean length of the 

vertical lines (TT), and maximum length of the vertical lines (Vmax). 

4.1.2. Optimum feature subset 

Nine RP features from AF were obtained in the extraction stage. These features 

formed the FCBF algorithm input, which only selected Lmax more than 50% of the times 

(923 times). When ODI3 was incorporated to the selection process, the FCBF chose Lmax 

(778 times) and ODI3 (1000 times), highlighting its complementarity. 
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4.1.3. Multi-layer perceptron neural network with Bayesian approach:   

model optimisation and training 

Two BY-MLP models were designed and trained using the corresponding selected 

features (BY-MLPAF: Lmax; BY-MLPAF,ODI3: Lmax and ODI3). The NH of these BY-MLP 

were varied from 1 to 30 to optimise its value. For each NH, kappa was obtained through 

a leave-one-out cross-validation procedure in the training group and averaged for 10 runs 

to minimise the random initialization effect of the BY-MLP. The optimum NH was 17 for 

BY-MLPAF and 16 for BY-MLPAF,ODI3, since they reached the highest kappa. The 

optimum NH and feature subset were used to obtain the final models of BY-MLPAF and 

BY-MLPAF,ODI3 using the whole training group. 

4.2. Test group 

Table 2 shows the diagnostic performance of BY-MLPAF and BY-MLPAF,ODI3 

models and single ODI3, evaluated in the test group (AHI thresholds 1, 5, and 10 e/h). As 

expected, ODI3 obtained lower Se in 1 and 5 e/h, underestimating the SAHS presence and 

agreeing with the literature [15,17]. The BY-MLPAF achieved moderate diagnostic 

performance, outperforming single ODI3 in several metrics. The combination of both 

approaches (BY-MLPAF,ODI3) outperformed BY-MLPAF and single ODI3 in most of the 

performance metrics for the three common AHI thresholds, highlighting higher 

accuracies in 1 e/h and 10 e/h thresholds, as well as a LR- value of 0.1 for 1 e/h and a 

LR+ value of 13.7 for 10 e/h. 
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Table 2. Diagnostic performance of BY-MLPAF and BY-MLPAF,ODI3 models, and ODI3 

in the test group for AHI thresholds 1, 5, and 10 e/h. 

AHI threshold =  1 e/h 

 Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%) 

BY-MLPAF 99,3 4,2 81,4 60,0 1,0 0,2 81,1 
BY-MLPAF,ODI3 97,7 22,2 84,1 69,6 1,3 0,1 83,2 
ODI3 59,9 86,1 94,8 33,7 4,3 0,5 64,9 

AHI threshold =  5 e/h 

 Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%) 

BY-MLPAF 80,9 48,9 48,7 81,0 1,6 0,4 60,9 
BY-MLPAF,ODI3 78,7 78,3 68,5 86,0 3,6 0,2 78,5 
ODI3 69,5 89,4 79,7 83,0 6,5 0,3 81,9 

AHI threshold =  10 e/h 

 Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%) 

BY-MLPAF 63,8 85,1 53,7 89,7 4,3 0,4 80,6 
BY-MLPAF,ODI3 78,8 94,3 78,8 94,3 13,7 0,2 91,0 
ODI3 81,3 88,5 65,7 94,6 7,1 0,2 87,0 

 

5. DISCUSSION 

In this study, we characterised overnight AF signals using common features 

extracted from RP analysis. We also assessed the utility of these features to detect 

paediatric SAHS and its severity, as well as its complementarity with ODI3. 

5.1. Airflow characterization in the paediatric sleep apnoea-hypopnoea 

syndrome context 

The averaged RPs from the four SAHS severity groups showed a fade of 

recurrences, which is typical of non-stationary signals that vary slowly over time [19]. 

This fact revealed the non-stationarity of overnight AF regardless of the presence and 

severity of SAHS, reinforcing the need for a non-linear analytical tool to evaluate the 

signal. Moreover, the predictability of AF, measured by DET, presented neither visual 

nor statistical differences among the four severity groups. This suggests that the apnoeic 

AF signal is fundamentally predictable regardless the severity group it belongs to. Hence, 
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RPs would generally define nocturnal AF in children as non-stationary but predictable to 

some extent. 

An increase in the density of recurrences in RPs (higher REC) was appreciated as 

SAHS severity increased, suggesting that apnoeic episodes decrease variability in the AF 

signal due to its amplitude being reduced to almost zero when these events occur. This 

results agree with those obtained in a previous work where we analysed the variability of 

the AF by means of the central tendency measure [14]. In addition, AF showed an 

increasing trend in the average prediction time (LEN) as AHI increases. This indicates 

that apnoeic events increase the time during which future phase-space trajectories of AF 

can be predicted from its initial state. Moreover, higher ENTR was appreciated as SAHS 

severity increased, revealing that the apnoeas and hypopnoeas incorporate a wider 

distribution of diagonal line lengths across the RP. Hence, apnoeic events could cause AF 

trajectory segments to behave similarly at different times, regardless of their duration. 

Regarding the degree of non-stationarity, higher absolute values of TREND were 

appreciated when the SAHS severity increased, highlighting that apnoeic events lead to 

less stationarity in the nocturnal airflow profile. Moreover, AF showed lower complexity 

(higher values of TT and Vmax) as AHI increased. This indicates that the occurrence of 

apnoeas and hypopnoeas could modify the AF dynamics by making it remain longer in a 

similar state. In this regard, several studies of SAHS in adults have analysed the 

complexity of AF by means of the Lempel-Ziv complexity [47,48]. However, they did 

not find potential differences between the SAHS severity groups. It suggests that these 

RP features could be more effective for this purpose. Despite the trends showed by REC, 

LEN, ENTR, TREND, TT, and Vmax, only the severe SAHS group presented significant 

differences (p-value <0.01) with the remaining groups. Therefore, these features may be 

depicting changes caused by SAHS, but only in certain circumstances such as those 
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produced in the most severely-affected children. 

AF manifested a higher occurrence of laminar states (higher LAM) with higher AHI 

values, which agrees with the information provided by the averaged RPs. This fact 

suggests that the AF signal does not change state, or changes it very slowly, in the 

presence of apnoeas and hypopnoeas. This was supported by the significant differences 

found in LAM between the no-SAHS and moderate SAHS groups, and between the severe 

SAHS group and the remaining groups. Additionally, a decrease in exponential 

divergence (higher Lmax) of the AF phase-space was appreciated as SAHS worsened, 

indicating that apnoeic episodes could cause the trajectory segments of AF to separate 

more slowly. This was also observed in the averaged RPs, where the diagonal line clusters 

were thicker as SAHS severity increased. Moreover, only Lmax revealed significant 

differences between the mild and moderate SAHS group, and between the severe SAHS 

group and the remaining ones. Therefore, both laminar states (LAM) and the exponential 

divergence (Lmax) could be common signs of SAHS in AF and, consequently, be more 

useful for diagnosis purposes. 

According to the aforementioned considerations, the AF characterization indicates 

that RPs can offer information related to SAHS, as well as the intrinsic nature of overnight 

AF in children. 

5.2. Complementarity with the 3% oxygen desaturation index  

In accordance with the relevance shown in the previous AF characterization, Lmax 

was automatically selected by FCBF to be included in the optimum SAHS-related feature 

subset. However, no other RP feature was selected, showing the redundancy of the 

remaining extracted features. In addition, ODI3 was also selected by FCBF, which 

highlights the complementarity of the RP-derived Lmax with this widely-used clinical 

parameter. 
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5.3. Diagnostic usefulness and comparison with other studies 

BY-MLPAF,ODI3 model achieved high diagnostic capability (83.24%, 78.46%, and 

90.96% Acc for 1, 5, and 10 e/h, respectively), outperforming BY-MLPAF and single 

ODI3 in most statistical metrics. BY-MLPAF,ODI3 obtained higher Se than single ODI3 in 

1 and 5 e/h, as well as a similar one in 10 e/h, suggesting that SAHS underestimation 

from ODI3 can be minimised using the information extracted from RP of AF. In addition, 

BY-MLPAF,ODI3 reached a LR- of 0.1 for 1 e/h and a LR+ of 13.7 for 10 e/h. This fact is 

of the utmost importance since LR+ above 10 and LR- below 0.1 are considered to 

provide strong evidence to establish the presence or absence of a disease, respectively 

[49]. Accordingly, our proposed approach would be especially useful to confirm the 

absence of paediatric SAHS, as well as the presence of severe SAHS. Most severely-

affected children have a high risk of suffering adverse health consequences and 

comorbidities [3,27]. Moreover, they can present residual SAHS, as well as persistent 

risk factors after surgical treatment [29]. Hence, early detection and  treatment is required 

in these cases since a diagnostic delay can lead to serious and potentially irreversible 

sequelae [29]. In addition, the automatic detection of no-SAHS and severe SAHS cases 

would reduce the waiting times and the workload of qualified medical personnel, thus 

being able to focus on the less obvious cases. 

Table 3 summarizes previous studies aimed at automatically diagnosing paediatric 

SAHS by using a reduced set of biomedical signals. The diagnostic ability achieved in 

these studies is dependent on whether the AHI cut-off point is used to rule out or detect 

the paediatric SAHS (i.e., it is dependent on the AHI cut-off point selected in each study). 

The AHI cut-off point = 1 e/h is used to discard the presence of paediatric SAHS [7,26-

29]. Therefore, diagnostic metrics like Acc and LR- are important for this purpose since 

they are related to the classification of healthy subjects. In this regard, only the studies 
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carried out by Shouldice et al. and Tan et al. [7,26] obtained higher Acc in this AHI 

threshold than the one obtained in our work. Moreover, it is of the utmost importance to 

assess the achieved LR- value, since a LR- below 0.1 is considered to provide strong 

evidence to establish the absence of a disease [49]. In this sense, our proposal obtained a 

LR- = 0.1 for 1 event/h, being this value lower than all those obtained in the state-of-the-

art studies found in the context of paediatric SAHS. 

In order to detect the presence of moderate SAHS, 5 e/h is used as threshold [8-

12,14,26-29,40,50]. Therefore, Se, Acc, and LR+ are important diagnostic metrics for 

this purpose since they are related to the classification of SAHS subjects. In a previous 

study, Barroso-García et al. [14], reported 65.0% Se and 76.0% Acc for this AHI 

thresholds. However, our new proposed methodology obtained a higher Se and Acc 

(78.7% Se and 78.5% Acc), providing a better diagnostic capacity to detect moderate 

SAHS. On the other hand, the work carried out by Gil et al., Hornero et al., Álvarez et 

al., Vaquerizo-Villar et al., and Xu et al. [8,10,11,14,26,40,50], obtained a lower Se for 

this AHI threshold than the one in our work. Thus, the proportion of paediatric subjects 

correctly classified with AHI ≥ 5 e/h is considerably higher in our study, providing a 

higher diagnostic capacity to detect paediatric subjects with moderate SAHS, which is 

consistent with the purpose of using this AHI threshold. In addition, despite of the high 

Se and Acc values obtained by Lázaro et al. [9], the proportion of subjects with AHI < 5 

e/h wrongly classified (LR+) is lower than in our study (3.5 versus 3.6), providing less 

evidence to establish moderate SAHS than our study. 

Regarding the AHI cut-off point 10 e/h, this threshold is used to detect the presence 

of severe SAHS in children [10,14,26-29,50]. Thus, the most important diagnostic 

metrics for this purpose are again Se, Acc, and LR+. The Acc and LR+ obtained for this 

AHI cut-off point in our study are very high (91.0% Acc and 13.7 LR+) with respect to 
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other studies [10,14,28,40,50]. This fact is very important since, according to Deesks et 

al. [49], a LR+ above 10 is considered to provide strong evidence to establish the presence 

of a disease, (i.e., severe SAHS). These results far outperform those achieved in others 

state-of-the-art studies in the context of detection of severe paediatric SAHS, excluding 

the study carried out by Tan et al. [26]. However, Tan et al. [26] obtained a lower Se for 

the AHI threshold = 10 e/h. Thus, the proportion of subjects correctly classified with 

severe SAHS is considerably higher in our study, which is consistent with the purpose of 

using this AHI threshold. 

Hence, our methodology obtained a high diagnostic Acc for 1 and 10 e/h, and 

provided stronger evidence to discard the SAHS presence (lower LR-) and to establish 

severe SAHS (higher LR+) than others state-of-the-art studies. Moreover, we have 

evaluated our hypothesis according to the AHI thresholds commonly used to determine 

the SAHS severity degrees (1, 5, and 10 e/h), and validated our methodology using a large 

cohort (946 subjects). This fact is also important to highlight, since this allowed us to 

achieve more generalizable results than others aforementioned studies [7-

9,11,12,14,26,28,40,50] and, thus, reflect the actual underlying behaviour of the 

paediatric population. 
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Table 3. Summary of the state-of-the-art in the context of detection of paediatric SAHS.  

Studies 
Subjects 

(n) 
Signal 

AHI 
(e/h) 

Methods 
(Analysis/Selection/Classifier) 

Se 
(%) 

Sp 
(%) 

Acc 
(%) 

PPV 
(%) 

NPV 
(%) 

LR+ LR- 

Shouldice et 
al. (2004) [7]  

50 ECG 1 
Temporal and spectral analysis  
/ – / QDA 

85.7 81.8 84.0 85.7 81.8 4.7 0.2 

Gil et al. 
(2010) [8] 

21 PPG 5 
Analysis of PTTV / Wrapper 
methodology / LDA 

75.0 85.7 80.0 - - 5.2* 0.3* 

Tsai et al. 
(2013) [28] 

148 SpO2 
1 
5 
10 

Oxygen desaturation index of 4% 
(ODI4) / – / – / 

77.7 
83.8 
89.1 

88.9 
86.5 
86.0 

79.0* 
85.1* 
87.1* 

- 
- 
- 

- 
- 
- 

7.0* 
6.2* 
6.4* 

0.3* 
0.2* 
0.1* 

Tan et al. 
(2014)  [26] 

100 

ECG 
AF 

SpO2 
RIP 

1 
5 
10 

Comparison of the AHI obtained 
from PSG with the AHI directly 
estimated of respiratory 
polygraphic (RP) / – / – / 

82.5 
62.5 

65.0* 

90.0 
100 
100* 

86.0* 
85.0* 
93.0* 

97.1 
100 
100* 

56.3 
80 

92.0* 

8.3* 
Inf* 
Inf* 

0.2* 
0.4* 
0.4* 

Lázaro et al. 
(2014) [9] 

21 PPG 5 
Spectral analysis of PRV and DAP 
events detection / Wrapper 
methodology / LDA 

100 71.4 86.7 - - 3.5* 0* 

Garde et al. 
(2014) [12] 

146 
SpO2 
PRV 

5 
Temporal and spectral analysis / 
Selection algorithm optimizing  
the AROC / LDA 

88.4 83.6 84.9 76.9 92.6 5.4* 0.1* 

Gutiérrez-
Tobal et al.  
(2015) [13] 

50 
AF 

SpO2 
3 

Spectral features and oxygen 
desaturation index of 3% (ODI3)  
/ FSLR / LR 

85.9 87.4 86.3 88.4 85.8 6.8* 0.2* 

Barroso-
García et al.  
(2017) [14] 

501 AF 
1 
5 
10 

Spectral entropy and Central 
tendency measure / FSLR / LR 

60.5 
65.0 
83.3 

58.6 
80.6 
79.0 

60.0 
76.0 
80.0 

81.2 
70.7 
52.8 

25.0 
78.2 
93.5 

1.1 
3.6 
4.0 

0.9 
0.4 
0.2 

Hornero et 
al.  (2017) 
[10] 

4191 SpO2 
1 
5 
10 

Statistical, spectral, non-linear 
features, and ODI3 / FCBF / MLP 

84.0 
68.2 
68.7 

53.2 
87.2 
94.1 

75.2 
81.7 
90.2 

81.6 
68.6 
67.7 

53.7 
87.0 
94.3 

1.8 
5.3 
11.6 

0.3 
0.4 
0.3 

Álvarez et 
al.  (2018) 
[11] 

142 SpO2 5 
Anthropometric, statistical 
moments, desaturation indices, 
symbolic dynamics / FSLR / LR 

73.5 89.5 83.3 82.0 84.3 10.4 0.3 

Vaquerizo-
Villar et al. 
(2018) [40] 

298 SpO2 
5 
10 

Anthropometric variables, ODI3, 
spectral features from power 
spectral density and bispectrum / 
FCBF / MLP 

61.8 
60.0 

97.6 
94.5 

81.3 
85.3 

95.5 
80.0 

75.5 
86.7 

25.3 
11.0 

0.4 
0.4 

Xu et al. 
(2018) [50] 

432 SpO2 
1 
5 
10 

ODI3 and third statistical moment 
of the spectral band of interest/ 
FCBF / MLP 

95.3 
77.8 
73.5 

19.1 
80.5 
92.7 

79.6 
79.4 
88.2 

82.0* 
72.3* 
75.8* 

51.5* 
84.7* 
91.9* 

1.2 
4.0 
10.1 

0.2 
0.3 
0.3 

Our 
proposal 

946 
AF 

SpO2 

1 
5 
10 

Features of Recurrence Plots and 
ODI3 / FCBF / BY-MLP 

97.7 
78.7 
78.8 

22.2 
78.3 
94.3 

83.2 
78.5 
91.0 

84.1 
68.5 
78.8 

69.6 
86.0 
94.3 

1.3 
3.6 
13.7 

0.1 
0.3 
0.2 

QDA: Quadratic discriminant analysis; PTTV: Pulse transit time variability; LDA: Linear discriminant analysis; RIP: Chest 
and abdominal movement by respiratory inductance plethysmography; PRV: Pulse rate variability; DAP: Decreases in 
amplitude fluctuations of the PPG signal; AROC: Area under the receiver operating characteristics curves; FSLR: Forward 
stepwise logistic regression; LR: Logistic regression model; FCBF: Fast correlation-based filter; MLP: Multi-Layer 
Perceptron neural network; BY-MLP: MLP with Bayesian approach. 

* Computed from reported data. 
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5.4. Limitations 

In spite of the usefulness illustrated by our proposed approach, this study has some 

limitations. Although our database is large, more subjects originating from other sleep 

laboratories would make our results more generalizable. Furthermore, this would be also 

convenient for the sake of the proportion of the subjects belonging to each of the SAHS 

severity groups. In addition, the selection of RP embedding parameters (m, τ, and ε) is a 

widely discussed topic for which there is no consensus as of yet [20]. The sensitivity of 

the RP analysis to these parameters, along with the lack of consensus on the method that 

should be used to optimise them, is another limitation. Consequently, although our study 

supports the use of AMI, FNN and the fixed distance method, the use, combination, and 

comparison of other methodologies could be the subject of future research. Moreover, it 

would also be interesting to evaluate other machine-learning algorithms with the ability 

to estimate AHI. In addition, conducting studies with AF signals recorded at home is 

another future goal. Finally, analysing the effects of our proposed method using other 

signals like ECG or PPG could be an interesting future research. 

6. CONCLUSIONS 

In summary, this is the first study in which RP features from AF have been used to 

help in the diagnosis of paediatric SAHS. We have shown that RP can offer useful 

information related to both paediatric SAHS and the intrinsic characteristics of overnight 

AF in children. Our results also revealed that the exponential divergence of the phase-

space trajectories of AF provides complementary information to the oxygen desaturations 

events. Combining both approaches, a BY-MLP neural network reached a high diagnostic 

performance for 1, 5, and 10 e/h. Moreover, this model achieved strong evidence to rule 

out SAHS, as well as to predict severe cases. Hence, these findings suggest that the 
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analysis of RP applied to AF signal provides useful information that could be used along 

with ODI3 to help in paediatric SAHS diagnosis. 
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