

Post-print version of: Fuentes-Pérez, J.F., Quaresma, A.L., Pinheiro, A.N., Sanz-Ronda, F.J., 2022. OpenFOAM vs FLOW-3D: A comparative study of vertical slot fishway modelling. *Ecol. Eng.* 174.

Permalink: <http://dx.doi.org/10.1016/j.ecoleng.2021.106446>

Journal: Ecological Engineering

Volume/Issue/Pages: Volume 174, January 2022, Article 106446

DOI: <https://doi.org/10.1016/j.ecoleng.2021.106446>

Citation: Fuentes-Pérez, J.F., Quaresma, A.L., Pinheiro, A.N., Sanz-Ronda, F.J. (2022). OpenFOAM vs FLOW-3D: A comparative study of vertical slot fishway modelling. *Ecol. Eng.*, 174, 106446.

Notice: This is the author's version of a work that was accepted for publication in Ecological Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Ecol. Eng.*, 174, (2022).

License: © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
<http://creativecommons.org/licenses/by-nc-nd/4.0/>

OpenFOAM vs FLOW-3D: a Comparative Study of Vertical Slot Fishway Modelling

Juan Francisco Fuentes-Pérez^{1,2}, , Ana L. Quaresma³, Antonio Pinheiro³, Francisco Javier Sanz-Ronda¹

¹Department of Hydraulics and Hydrology, University of Valladolid (UVa). Avenida de Madrid 44, Campus La Yutera, 34004, Palencia, Spain.

²Centro Tecnológico Agrario y Agroalimentario ITAGRA.CT. Avenida de Madrid 44, Campus La Yutera, 34004, Palencia, Spain.

³CERIS – Civil Engineering for Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.

✉ Corresponding author: jfuentes@iaf.uva.es; jfuentes@itagra.com

Abstract

12 The objective of this study is to make a comparison between two 3D CFD platforms:
13 OpenFOAM (free and open-source CFD software) and FLOW-3D (closed source commercial
14 CFD software), focusing on vertical slot fishways, one of the most widespread solutions to
15 facilitate the fish migration through transversal obstacles in rivers. Considering previous
16 comparative studies, our initial hypothesis is that both OpenFOAMs' multiphase solver and
17 FLOW-3D provide good comparable results. In this study, in contrast to previous comparative
18 studies, turbulence was addressed using LES approach and the volume of fluid method was
19 used to model the multiphase interface (air-water). Mesh independency was assessed
20 through LES IQ index and the numerical models' accuracies were evaluated comparing
21 representative hydraulic variables (velocity, its components, and turbulence kinetic energy)
22 with ADV experimental data and discussing results in previous studies. Both platform codes
23 reproduced the scenario under study, concurred with experimental data and offered a
24 superior performance on flow structure velocity simulation than turbulent kinetic energy.
25 Results validate the use of the free and open platform OpenFOAM as a viable alternative to
26 commercial ones in the domain of fishway design and assessment. While OpenFOAM provides
27 a reliable free alternative, FLOW-3D has a faster setup and makes the simulating experience
28 apt for beginners.

29 **Keywords:** OpenFOAM, FLOW-3D, 3D hydrodynamic modelling, Fishways, LES

30 **1. Introduction**

31 The use of computational fluid dynamics (CFD) has become an essential tool for engineers and
32 researchers working in the area of freshwater ecosystems (Bates et al., 2005) for a great
33 variety of purposes, among others, to assess any intervention on them (e.g. Gisen et al., 2017;
34 Machado Xavier et al., 2018), for risk assessment (e.g. Bohorquez and García-García, 2016;
35 Zeng et al., 2020) or to study complex ecological interactions and physical processes (e.g. Gao
36 et al., 2016; Juras et al., 2018).

37 When facing a CFD problem, one of the most important decisions for engineers and
38 researchers is which software to use. On the one hand, it is possible to use commercial CFD
39 software, black boxes that provide a user-friendly working environment, tested accuracy, and
40 meshing and post-processing toolkits (such as FLOW-3D or ANSYS Fluent). On the other hand,
41 there are free and open alternatives (such as OpenFOAM (Greenshields, 2015)), which are
42 usually more complex to use due to the freedom that is given to the user and the need for
43 third party codes or software for meshing, visualization, and post-processing.

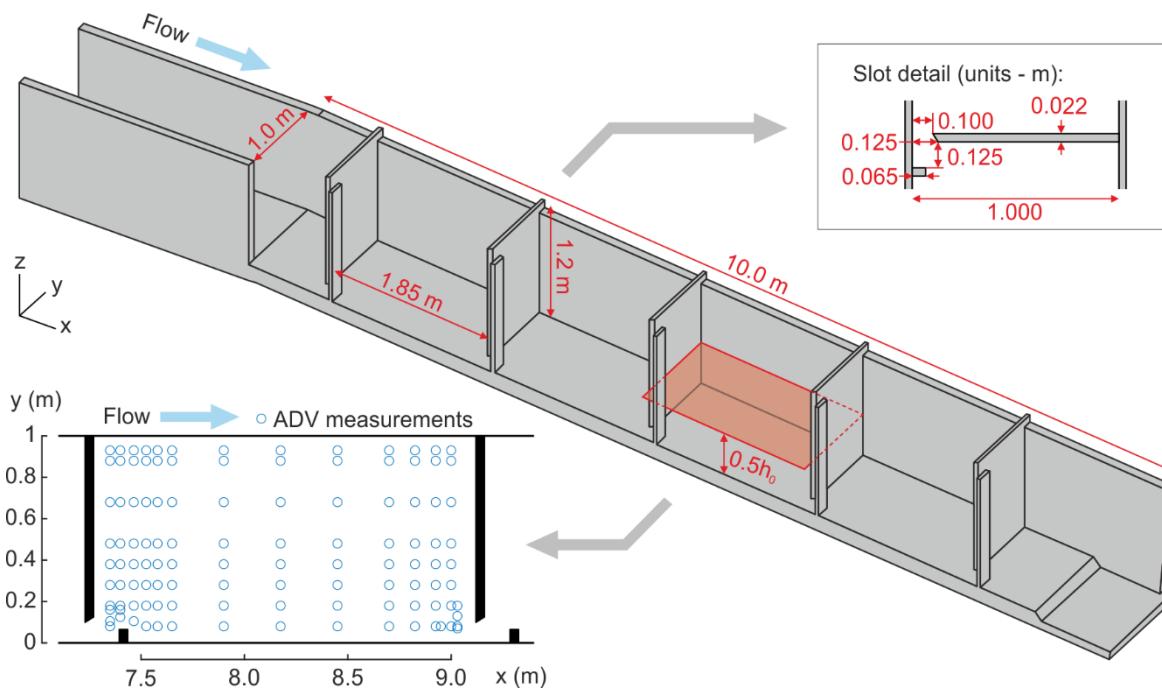
44 This study aims to compare two three-dimensional (3D) CFD software: OpenFOAM vs FLOW-
45 3D, focusing on vertical slot fishways (VSF). VSF are one of the most widespread mitigation
46 measures to facilitate the passage of fish from one side to the other in transversal obstacles
47 to the river (Fuentes-Pérez et al., 2017; Quaresma et al., 2018; Rajaratnam et al., 1986).
48 Fishways, and in particular VSF, are a perfect test case to perform this comparison, due to: 1)
49 the numerous hydraulic and biological research studies conducted on them (Puertas et al.,
50 2004; Quaresma et al., 2018; Romão et al., 2017; among others), which makes possible the
51 comparison of the results with external sources, and 2) their complex hydraulic performance,
52 which allows exploring a non-uniform flow pattern in the pools.

53 Our initial hypothesis is that OpenFOAM's multiphase solver (interFoam) is able to match
54 commercial codes for the CFD simulation in VSF. Previous studies comparing OpenFOAM and
55 FLOW-3D in water-air multiphase flows have reported good matching results between them,
56 all using Reynolds-Averaged Navier-Stokes (RANS) turbulence modelling methods (Bayon et
57 al., 2016; Duguay et al., 2017). However, despite the popularity of RANS methods (Barton et
58 al., 2009; Cea et al., 2007; Marriner et al., 2014; among others), they neglect the rapid
59 turbulent structures in the flow as well as small temporal scales (Fuentes-Pérez et al., 2018b).

60 Thus, in this comparative study, Large Eddy Simulation (LES) turbulence modelling techniques
61 are used. In contrast to RANS, LES includes large-scale turbulent velocity fluctuations and
62 provides time-resolved flow fields including turbulent structures. Thus, at a higher
63 computational cost (LES usually requires thinner meshes than RANS), LES methods have the
64 potential of providing the “missing piece” of information to understand the relation between
65 fish behaviour and hydraulic conditions within a fishway (Fuentes-Pérez et al., 2018b; Silva et
66 al., 2012).

67 To achieve our aim and test our hypothesis, a VSF (design #11 defined by Rajaratnam et al.,
68 1992) was modelled under uniform flow conditions (Duguay et al., 2017; Fuentes-Pérez et al.,
69 2018b), using the two listed CFD software: OpenFOAM and FLOW-3D. After a mesh
70 independency analysis using the LES Index of resolution Quality (IQ) (Celik et al., 2005), the
71 two models were evaluated comparing their output with acoustic Doppler velocimeter (ADV)
72 experimental data to obtain model performance. Results seem to validate the free and open
73 software OpenFOAM as a viable alternative to closed commercial alternatives in the domain
74 of fishway design and assessment. However, both alternatives have pros and cons that
75 potential users should address before selecting one or the other.

76 **2. Methodology**


77 **2.1. Fishway facility, hydraulic scenario, and measurements**

78 Lab experiments were conducted in an indoor 1:1 scale VSF at the Hydraulics and Environment
79 Department of the National Laboratory for Civil Engineering (LNEC), in Lisbon, Portugal. The
80 VSF is a glass-walled open channel 10.0 m long, 1.0 m wide, and 1.2 m high. The VSF type
81 corresponds to design #11 defined by Rajaratnam et al. (1992). It consists of six pools divided
82 by five cross-walls with a bottom slope (S) of 8.5%. The cross-walls are made of wood 0.022 m
83 thick (e) with 0.125 m wide slots (b) measured between baffles. The fish passage performance
84 of this design has been extensively investigated and validated in specialized references
85 (Fuentes-Pérez et al., 2018a; Romão et al., 2018, 2017; among others). The facility also
86 includes an upstream chamber (1.85 m long, 1.0 m wide, and 1.2 m high) and a downstream
87 tank (4 m long, 3 m wide, and 4 m high) (Figure 1). The discharge (Q) is controlled by a pump
88 frequency converter and measured by an electromagnetic flow meter. The water level in the

89 downstream tank is regulated by a gate, which allows the boundary conditions to be modified
90 to reach target scenarios.

91 A uniform scenario (that provides the same mean water depth in all pools and same water
92 drop (ΔH) in each cross-wall, $\Delta H = 0.16$ m) was selected to perform the test, with a discharge
93 of $0.081 \text{ m}^3/\text{s}$ and a mean water level (h_0) in the pools of 0.80 m.

94 The flow field of the VSF was measured using a Vectrino 3D ADV (Nortek AS) in the second
95 pool from the downstream end of the VSF. In total 112 points were measured. The ADV
96 sampling interval was 180 s at a rate of 25 Hz. This sampling time was chosen to ensure
97 convergence of time-averaged values of velocity (V) and turbulent kinetic energy (k) (Romão
98 et al., 2017). A parallel profile to the bottom ($0.5 \cdot h_0$) was selected to perform the
99 measurements and subsequent analyses (Figure 1).

100
101 *Figure 1. Schematic of the measured and simulated fishway, measurement grid for the ADV, and scenario and simulation*
102 *details.*

103 **2.2. CFD methods**

104 In this study, two 3D models are implemented, one using the open-source numerical code
105 OpenFOAM (Greenshields, 2015) (release 20.06, www.openfoam.com) and another using the
106 commercial software FLOW-3D (www.flow3d.com). The software selection was driven by the
107 experience of the research groups involved (UVa: OpenFOAM and CERIS: Flow-3D) and due to

108 the popularity of both software in the fishway modelling community (Duguay et al., 2017;
109 Fuentes-Pérez et al., 2018b; Quaresma et al., 2018).

110 OpenFOAM is a C++ toolbox that uses a tensorial approach and Finite Volume Method (FVM)
111 for the resolution of continuum mechanics problems, including CFD (Weller et al., 1998). The
112 resolution of the transient flow of two fluids separated by a sharp interface can be achieved
113 with the prebuilt Eulerian solver interFoam (Ubbink, 1997), which is an implementation of the
114 classical Volume Of Fluid (VOF) method (Hirt and Nichols, 1981) and uses the PIMPLE
115 algorithm for the pressure-velocity coupling, which combines PISO (Pressure Implicit with
116 Splitting of Operator) and SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)
117 algorithms (Higuera et al., 2013). PIMPLE algorithm can be seen as a modification of SIMPLE
118 algorithm that runs every time step (SimScale, 2021). A complete summary of flow equations,
119 boundary conditions, and the simulation process applied to fishways can be found in Fuentes-
120 Pérez et al. (2018).

121 FLOW-3D software also makes use of FVM to solve the governing equations of fluid motion.
122 One of the major features of FLOW-3D is the Fractional Area/Volume Obstacle Representation
123 (FAVOR) method (Hirt and Sicilian, 1985). This method is used to represent obstacles through
124 fractional areas and volumes in a fixed orthogonal grid. Flow Science (2016) presents
125 additional details regarding the theoretical and numerical fundamentals of FLOW-3D, which
126 has been used in recent years in multiple fishway research studies (Duguay et al., 2017; Kim
127 et al., 2012; among others). A detailed summary of the CFD FLOW-3D model here presented
128 can be found in Quaresma et al. (2018).

129 To solve the turbulence in both implemented models, LES turbulence modelling techniques
130 have been used (Fuentes-Pérez et al., 2018b; Quaresma et al., 2018). So far, RANS turbulence
131 modelling techniques have been the most extended alternatives for the 3D modelling of
132 fishways (Barton et al., 2009; Bombač et al., 2014; Cea et al., 2007; Duguay et al., 2017; Khan,
133 2006; Marriner et al., 2016, 2014). However, in contrast to RANS, in LES the desired temporal
134 resolution can be reached, that is to say, temporal velocity fluctuations can be explicitly
135 resolved, which is crucial to understand and/or model time-dependent biological interactions
136 on them. In addition, both LES and RANS have been shown to provide acceptable results when
137 compared to laboratory average velocity measurements (Fuentes-Pérez et al., 2018b).

138 Additional information on discretization, boundary conditions, and initial conditions can be
139 found in Quaresma et al. (2018) and Fuentes-Pérez et al., 2018b.

140 **2.3. Mesh and time sensitivity analysis**

141 To achieve a time-independent solution, velocity, flow rate, and water levels within the
142 fishway were monitored during the simulation process, by plotting the difference between
143 consecutive time steps and ending the simulation when an asymptotic behaviour was reached
144 (100 time steps were used for the analysis). In all developed models, the same behaviour was
145 observed: the differences between the monitored variables in each time step were reduced
146 progressively until an oscillatory behaviour was reached.

147 To verify the numerical model quality and mesh resolution, the LES IQ proposed by Celik et al.
148 (2005) was used. According to Pope (2001), a good LES should have a LES IQ greater than 0.8,
149 which means that 80% of the k is resolved. Celik et al. (2005) consider that a LES IQ of 0.75 to
150 0.85 may already be considered adequate for most engineering applications that typically
151 occur at high Reynolds numbers. To perform this analysis and select an optimal resolution (*i.e.*
152 the coarsest mesh able to solve the k) different mesh resolutions were compared (0.04 m,
153 0.02 m, and 0.01 m), finally selecting those with a LES IQ greater than 0.8. For both models, a
154 0.02 m grid size mesh provided an adequate LES IQ (0.81 for FLOW-3D and 0.94 for
155 OpenFOAM).

156 However, it should be noted that this index is a verification index that only assesses mesh
157 resolution quality (Quaresma et al., 2018). To assess model accuracy, a comparison with
158 experimental data is still necessary.

159 Spatial discretization was achieved by dividing the study volume into orthogonal grids of target
160 resolution (cubes) and applying refinements in each of the cross-walls (Fuentes-Pérez et al.,
161 2018b; Quaresma et al., 2018).

162 **2.4. Data treatment and validation**

163 ADV data were post-processed for despiking and noise reduction (Quaresma et al., 2018,
164 2017). Spikes were removed using phase-space threshold despiking method (Goring and
165 Nikora, 2002) and replaced by linear interpolation. Doppler noise reduction was then applied
166 through the method of Hurther and Lemmin (2001).

167 Time-averaged velocity (V [m/s]) and turbulence kinetic energy per unit mass (k [$\text{m}^2\text{s}^{-2} = \text{J/kg}$])
 168 were used for data comparison as both variables have been pointed as fundamental in the
 169 analysis of fishway performance (Fuentes-Pérez et al., 2018a; Quaresma et al., 2018; Silva et
 170 al., 2011). Eq. 1 and Eq. 2 show the formulation adopted for the calculus of these variables.

171

$$\bar{V} = \frac{\sum_{j=1}^n \sqrt{u_j^2 + v_j^2 + w_j^2}}{n} \quad (1)$$

172

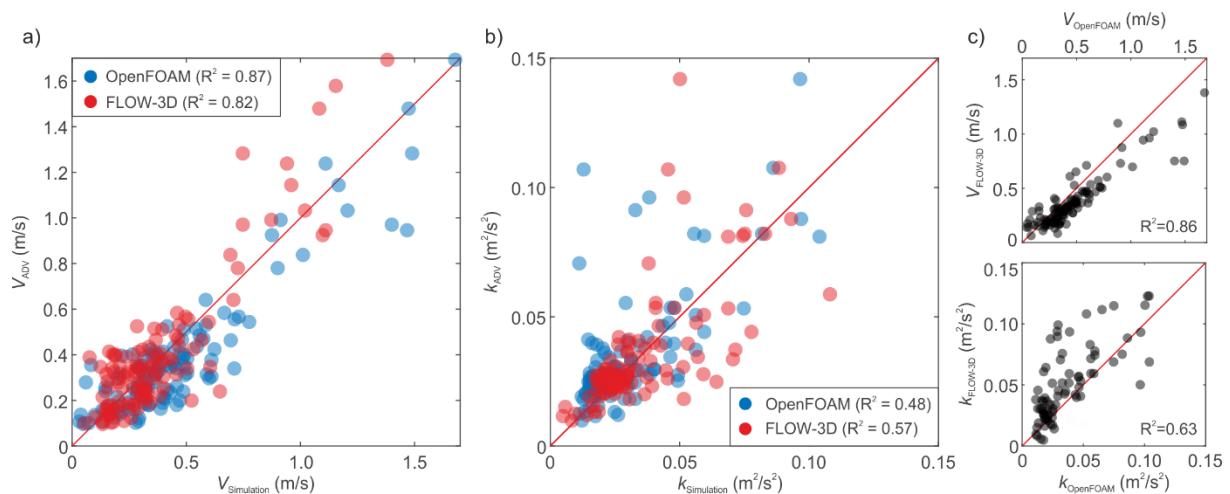
$$k = \frac{1}{2} \left(\bar{u'^2} + \bar{v'^2} + \bar{w'^2} \right) = \frac{1}{2} \left(\frac{1}{n} \sum_{j=1}^n (u_j - \bar{u})^2 + \frac{1}{n} \sum_{j=1}^n (v_j - \bar{v})^2 + \frac{1}{n} \sum_{j=1}^n (w_j - \bar{w})^2 \right) \quad (1)$$

173 where, u_j , v_j and w_j are the velocity components in a cell or a measured point during the time
 174 step j in m/s, n is the total number of time steps, and in Eq. 2 $\bar{u'^2}$, $\bar{v'^2}$ and $\bar{w'^2}$ are the variances
 175 of velocity components fluctuations and \bar{u} , \bar{v} and \bar{w} are the mean value of velocity
 176 components.

177 CFD data from FLOW-3D was visualised and exported into comparable text format with FLOW-
 178 3D user interface, while CFD data from OpenFOAM was visualised and exported to comparable
 179 text format with Paraview software (version 5.8.0). Final analysis, visualization and
 180 comparisons were performed in Matlab R2019a.

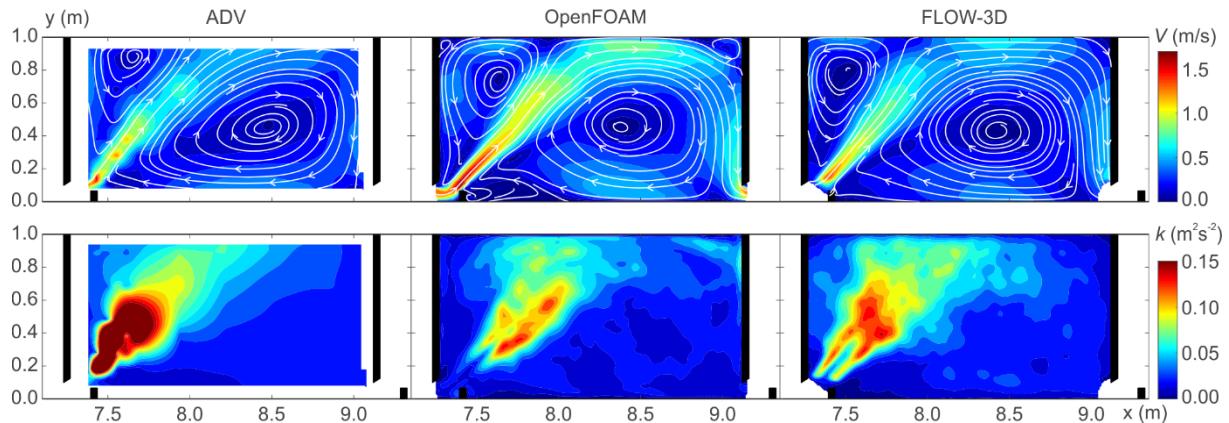
181 The comparative study of the models and the experimental data was carried out by plotting
 182 model results against experimental data and calculating the distance of the scattered points
 183 to a 1:1 line, using squared Pearson correlation (coefficient of determination, R^2) as an index.
 184 Likewise, contour analysis was performed to investigate differences between profiles. The
 185 triangulated natural neighbour interpolation method was used to plot the contours. To
 186 compare the performance between models, mean absolute errors (MAE) were computed for
 187 each data-point measured with the ADV with regards to 3D models; MAE distribution
 188 differences between models and ADV were tested using Mann-Whitney u -test for two
 189 samples. In addition, to detect differences between models MAE and squared Pearson
 190 correlations (MAE_{Models} and R²_{Models}) were also computed between models.

191 **3. Results**


192 Regarding discharge ($Q_{openFOAM} = 0.081 \text{ m}^3/\text{s}$; $Q_{FLOW3D} = 0.080 \text{ m}^3/\text{s}$) and mean water depth (h_0 ,
 193 $openFOAM = 0.80 \text{ m}$; $h_0, FLOW-3D = 0.81 \text{ m}$), both models showed the capacity of achieving the target

194 scenario with marginal differences. Table 1 shows the final computation details for both
 195 simulations. The main difference are software related, FLOW-3D only considers active cells for
 196 simulation (cells that contain water) which reduces the number of needed computations for
 197 its time step. Likewise, OpenFOAM allows to establish a dynamic time discretization in a single
 198 simulation, that is to say to use thicker time step until certain degree of equilibrium has been
 199 reached and after select a thinner one to report final results, reducing the final computational
 200 time.

201 *Table 1. Computation details for both simulations.*


Software	Final cells	Processor	Time
OpenFOAM	1786930	i7-4710 MQ CPU @ 2.50 GHz x 8 cores	7 h per 10 seconds of simulation time
FLOW-3D	1333545	i7-3770 CPU @ 3.40 GHz x 8 cores	15 h per 10 seconds simulation time

202
 203 Figure 2a illustrates the modelled mean velocities against ADV measurements in each of the
 204 measuring locations (Figure 1). For both models, the agreement with measurements was high,
 205 R^2 of 0.87 and 0.82 for OpenFOAM and FLOW-3D respectively. Regarding k (Figure 2b), the
 206 modelled-measured distribution had lower accuracy, R^2 of 0.48 and 0.57 for OpenFOAM and
 207 FLOW-3D respectively. For both variables (V and k), the agreement was higher between
 208 modelled results (Figure 2c).

209
 210 *Figure 2. Scatter plot of ADV measurements against model results. a) V scatterplot. b) k scatterplot. c) CFD model comparison.*
 211 Figure 3 illustrates the spatial pattern of the flow and hydrodynamic variable distribution of
 212 the V and k measured with ADV and modelled with OpenFOAM and FLOW-3D. All showed
 213 similar flow patterns, with two main recirculation areas separated by a jet. The spatial

214 distribution of variables was similar for all of them, while the magnitudes differed in
 215 accordance with Figure 2.

216
 217 *Figure 3. Contour plot of V and k for ADV measurements and the two CFD models under study.*

218 Table 2 shows the squared Pearson correlation coefficients (R^2) and mean absolute errors
 219 (MAE) for considered variables, between models and ADV measurements (R^2_{ADV} and MAE_{ADV})
 220 and between models ($\text{MAE}_{\text{Models}}$). Mann-Whitney u -test shows that there is not enough
 221 evidence to reject the null hypothesis, i.e. there are non-significant differences in MAE_{ADV} for
 222 all variables (p -values > 0.05).

223 *Table 2. Experimental scenario against modelled scenarios, R^2 , MAE and Mann-Whitney u -test results.*

Variable	Model	R^2_{ADV}	MAE_{ADV}	p -value	R^2_{Models}	$\text{MAE}_{\text{Models}}$
V (m/s)	OpenFOAM	0.87	0.12	0.218	0.86	0.13
	FLOW-3D	0.82	0.11			
k (m ² /s ²)	OpenFOAM	0.48	0.03	0.196	0.63	0.01
	FLOW-3D	0.57	0.03			
u (m/s)	OpenFOAM	0.87	0.12	0.307	0.94	0.10
	FLOW-3D	0.85	0.10			
v (m/s)	OpenFOAM	0.89	0.10	0.758	0.87	0.11
	FLOW-3D	0.78	0.12			
w (m/s)	OpenFOAM	0.32	0.05	0.232	0.36	0.05
	FLOW-3D	0.65	0.04			

224

225 4. Discussion

226 The major drivers when choosing CFD software are cost and usage. In this sense, it is possible
 227 to find:

228 1) Licensed or paid alternatives, such as FLOW-3D, optimised to solve free-surface
 229 flow problems, with customer support and an intuitive Graphical User Interface

230 (GUI) that includes meshing, setup, simulation monitoring, visualization, and post-
231 processing in a single software.

232 2) Free alternatives (no license cost), such as OpenFOAM, a C++ toolbox, without a
233 GUI but with coded tools for meshing, setup, parallel running, monitoring, post-
234 processing, and visualization although no customer support (but big community
235 support and on-line resources).

236 For a new user, it will take minutes to set up a simulation with FLOW-3D but days or months
237 (depending on the initial knowledge of coding and CFD) in OpenFOAM. However, OpenFOAM
238 will provide the user freedom for experimenting with and dive through the code and problem
239 formulation.

240 Both software alternatives have been used in the study of fishway hydraulics. FLOW-3D (e.g.
241 Duguay et al., 2017; Kim et al., 2012; Quaresma et al., 2018) together with ANSYS FLUENT (e.g.
242 Andersson et al., 2012; Marriner et al., 2016) have been the most common commercial
243 alternatives for 3D modelling while the usage of OpenFOAM has been still marginal (Duguay
244 et al., 2017; Fuentes-Pérez et al., 2018b), although it is the most common open alternative.

245 In published comparisons, both codes have demonstrated adequate performance under RANS
246 turbulence modelling techniques (Bayon et al., 2016; Duguay et al., 2017). According to
247 Fuentes-Pérez et al. (2018b) RANS turbulence modelling techniques provide similar results to
248 LES technics when comparing averaged values of hydrodynamics variables at a lower
249 computational cost. However, LES is superior when fish are involved in the analysis, as LES has
250 a higher potential for correctly displaying instantaneous changes in turbulence, necessary to
251 reach a better understanding between fish behaviour and hydraulic conditions inside a
252 fishway. Considering the results of this study, we confirm similar performances for OpenFOAM
253 and FLOW-3D using LES turbulence modelling techniques in VSF.

254 In both models, the estimation of V is more accurate than the estimation of k (Figure 2) when
255 comparing to ADV data. This is in accordance with other performed studies, where models
256 usually under predict TKE values (Duguay et al., 2017; Fuentes-Pérez et al., 2018b). The
257 observed R^2 for V data validates both simulations. Despite OpenFOAM model predicts overall
258 higher velocities in the jet region when comparing to ADV measurements, the observed
259 pattern seems more accurate than the one predicted by FLOW-3D. In contrast, FLOW-3D

260 models' predicted magnitudes are smaller than OpenFOAMs' ones and nearer to ADV
261 measurements. This small difference can be related to the lower discharge and higher pool
262 depth provided by FLOW-3D model when comparing with OpenFOAM model, with the latter
263 closer to the target scenario conditions. The velocity vector components analysis for both
264 models reveals that u (x direction) and v (y direction) are more correlated with ADV
265 measurements than w component (z direction). This can be related to the lower magnitude of
266 w in vertical slot fishways, where even some references have suggested the possibility of using
267 2D modelling techniques for their modelling (Cea et al., 2007). However, under natural
268 scenarios (variable boundary conditions) or when trying to relate to fish preference patterns,
269 it seems essential to consider their full 3D performance (Fuentes-Pérez et al., 2019b, 2018b).

270 Regarding model result comparison (OpenFOAM vs FLOW-3D) it can be seen that, although
271 they are highly correlated between them (in some cases showing even higher correlation than
272 with ADV (k or u)), as expected (due to their different internal coding) the magnitude of error
273 (MAE_{Models}) is similar to those observed when comparing ADV data with the models.

274 When it comes to the observed flow patterns (Figure 3) both models are in agreement with
275 the ADV measurements, as well as, specialized references (Rajaratnam et al., 1986; Wu et al.,
276 1999). In addition, an interesting finding, which needs to be further investigated, are the
277 secondary small recirculation areas predicted by OpenFOAM model in the corners of the
278 pools. These areas showed a high probability of fish presence in previous spatial preference
279 analysis of Iberian barbel (Fuentes-Pérez et al., 2018a), but they have not been previously
280 measured or predicted. Under non-uniform scenarios, which correspond to those field
281 scenarios that trigger different water depths and water drops between fishway pools (due to
282 a modification of design boundary conditions (Fuentes-Pérez et al., 2019a)), these small areas
283 may evolve and became essential to explain the spatial selection of fish inside the fishway
284 pools (Fuentes-Pérez et al., 2018a). Non-uniform scenarios are the most frequent scenarios
285 on fishways under field conditions due to the natural river hydrological variability and they
286 have the potential of increasing (non-uniform drawdown profiles – M2) or decreasing (non-
287 uniform backwater profiles – M1) the magnitude of the variables inside the fishway (Fuentes-
288 Pérez et al., 2016, 2019a) and therefore, to modify the fish passage rate or time of the fishway.

289 Turbulence has a direct influence on fish behaviour and consequently in the usage of fishways.
290 It influences swimming behaviour (Lacey et al., 2012), stability (Silva et al., 2012), or path and

291 spatial selection (Fuentes-Pérez et al., 2018a; Goettel et al., 2015). Thus, its consideration is
292 important for fishway assessments. In this comparative study, k has been chosen for
293 assessment. According to the results, the spatial distribution of measured k correlates well
294 and similarly with the simulations in OpenFOAM and FLOW-3D, a high k region in the jet region
295 that is attenuated fast when it approaches the sidewall (Figure 3). However, magnitudes
296 measured with ADV were much higher. Despite similar observations have been reported in
297 studies such as Duguay et al. (2017) in pool-weir type fishways, studies such as Fuentes-Pérez
298 et al. (2018b) reported a good agreement between ADV measurements and RANS and LES
299 turbulence modelling techniques using OpenFOAM in VSF (design #3, Rajaratnam et al.
300 (1986)). k is a sensitive parameter for measuring in the field, which may be influenced by
301 vibrations produced in the ADV by the water flow (ADV-flow interaction) or water recirculation
302 pump, as well as the resolution of the measuring grid.

303 In general, the results provided by both modelling techniques are in agreement, which seems
304 to validate both software, OpenFOAM and FLOW-3D. However, both show deviations when
305 comparing to ADV data, which must be further investigated. For now, it seems necessary to
306 encompass CFD with real measurements to validate its results.

307 **5. Summary and Conclusions**

308 This study aims to compare simulations of VSF using LES turbulence modelling techniques by
309 means of OpenFOAM and FLOW-3D software platforms. The results confirm our initial
310 hypothesis “OpenFOAMs’ multiphase solver (interFoam) is able to match commercial codes”.
311 Considering the couple of comparative studies already published using RANS techniques and
312 the present study, it is possible to conclude that both, OpenFOAM and FLOW-3D are viable
313 alternatives for 3D modelling of fishways.

314 While the user-friendly GUI of FLOW-3D makes the simulating experience easier and apt to
315 beginners in the field of CFD, OpenFOAM offers the possibility of simulating with already
316 existing coded solvers (such as interFoam) and turbulence modelling techniques (e.g. LES:
317 Smagorinsky, or RANS: k - ε , among many others), but also to program new solver and
318 turbulence modelling techniques.

319 The computational time between both software differs, however it is directly related to the
320 strategies used to reach the equilibrium. On the one hand, in both software, the user can pre-

321 define as the initial condition results from a thicker mesh which would directly influence the
322 timing for reaching the equilibrium. On the other hand, time discretization can be dynamic,
323 using thick time steps at the beginning and using thin time steps to reach final results.
324 Therefore, reported results should be considered indicative as different strategies could
325 provide different computing times for each software without influencing the final results,
326 moreover considering the improvements of CPUs in recent years.

327 One of the main drawbacks of OpenFOAM when comparing with commercial alternatives is
328 the meshing utilities. Meshing is one of the most important steps when modelling, while in
329 FLOW-3D it is a semi-automatic process (the user just needs to have the 3D model of the
330 structure (*stl* file) and select the grid size of the model), OpenFOAM requires the use of third
331 party software or pre-existing tools (*e.g. blockMesh* and *snappyHexMesh*) which require a
332 steep-learning process. Fortunately, today there are innumerable online resources
333 (OpenFOAM, 2020), published examples (Bayon et al., 2016; Duguay et al., 2017; Fuentes-
334 Pérez et al., 2018b), and a big user community that will initiate and guide gradually beginners
335 through this process.

336 This preliminary study has raised three main future research paths: 1) the comparison of
337 different LES turbulence modelling techniques including the analysis of the temporal domain
338 of the simulated flow structure (to find the best modelling technique for fishway simulation)
339 2) the comparison of modelling results increasing the ADV mesh resolution or by means of
340 alternative measuring techniques such as Particle Image Velocimetry (to reduce possible
341 interactions of the measuring instrument with the flow) and 3) the re-analysis of fish spatial
342 preferences in fishways under non-uniform conditions (Fuentes-Pérez et al., 2018a)
343 considering the advantages of the spatial resolution offered by 3D simulations in comparison
344 with ADV measurements. Additionally, it would be of interest to increase this software
345 comparison including other software alternatives, such as ANSYS-Fluent, which is also a
346 common alternative in the fishway 3D modelling community, as well as, to test studied
347 software in more challenging or complex scenarios such as natural-like or Denil fishways.

348 **6. Acknowledgments**

349 This project has received funding from the European Union's H2020 research and innovation
350 program under grant agreement No. 727830, FIThydro. Juan Francisco Fuentes-Pérez's
351 contribution was partly financed by a Torres Quevedo grant PTQ2018-010162.

352 **7. References**

353 Andersson, A.G., Lindberg, D.-E., Lindmark, E.M., Leonardsson, K., Andreasson, P., Lundqvist,
354 H., Lundström, T.S., 2012. A Study of the Location of the Entrance of a Fishway in a
355 Regulated River with CFD and ADCP. *Model. Simul. Eng.* 2012.

356 Barton, A.F., Keller, R.J., Katopodis, C., 2009. Verification of a numerical model for the
357 prediction of low slope vertical slot fishway hydraulics. *Aust. J. Water Resour.* 13, 53–
358 60. doi:10.1080/13241583.2009.11465360

359 Bates, P.D., Lane, S.N., Ferguson, R.I., 2005. Computational fluid dynamics: applications in
360 environmental hydraulics. John Wiley & Sons.

361 Bayon, A., Valero, D., García-Bartual, R., López-Jiménez, P.A., 2016. Performance assessment
362 of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number
363 hydraulic jump. *Environ. Model. Softw.* 80, 322–335. doi:10.1016/j.envsoft.2016.02.018

364 Bohorquez, P., García-García, F., 2016. Understanding the long-term increase of flood risk in
365 regulated rivers through combined use of CFD, paleo-hydrology and hydrological data.

366 Bombač, M., Novak, G., Rodič, P., Četina, M., 2014. Numerical and physical model study of a
367 vertical slot fishway. *J. Hydrol. Hydromechanics* 62, 150–159. doi:10.2478/johh-2014-
368 0013

369 Cea, L., Pena, L., Puertas, J., Vázquez-Cendón, M.E., Peña, E., 2007. Application of several
370 depth-averaged turbulence models to simulate flow in vertical slot fishways. *J. Hydraul.*
371 *Eng.* 133, 160–172. doi:10.1061/(ASCE)0733-9429(2007)133:2(160)

372 Celik, I.B., Cehreli, Z.N., Yavuz, I., 2005. Index of resolution quality for large eddy simulations.

373 Duguay, J.M., Lacey, R.W.J., Gaucher, J., 2017. A case study of a pool and weir fishway
374 modeled with OpenFOAM and FLOW-3D. *Ecol. Eng.* 103, 31–42.

375 Flow Science, 2016. FLOW-3D Version 11.2 User Manual.

376 Fuentes-Pérez, J.F., Eckert, M., Tuhtan, J.A., Ferreira, M.T., Kruusmaa, M., Branco, P., 2018a.
377 Spatial preferences of Iberian barbel in a vertical slot fishway under variable
378 hydrodynamic scenarios. *Ecol. Eng.* 125, 131–142. doi:10.1016/j.ecoleng.2018.10.014

379 Fuentes-Pérez, J.F., García-Vega, A., Sanz-Ronda, F.J., Martínez de Azagra-Paredes, A., 2017.
380 Villemonte's approach: validation of a general method for modeling uniform and non-
381 uniform performance in stepped fishways. *Knowl. Manag. Aquat. Ecosyst.* 418, 23.
382 doi:10.1051/kmae/2017013

383 Fuentes-Pérez, J.F., Sanz-Ronda, F.J., Martínez de Azagra-Paredes, A., García-Vega, A., 2016.
384 Non-uniform hydraulic behavior of pool-weir fishways: A tool to optimize its design and

385 performance. *Ecol. Eng.* 86, 5–12. doi:10.1016/j.ecoleng.2015.10.021

386 Fuentes-Pérez, J.F., Silva, A.T., Tuhtan, J.A., García-Vega, A., Carbonell-Baeza, R., Musall, M.,
387 Kruusmaa, M., 2018b. 3D modelling of non-uniform and turbulent flow in vertical slot
388 fishways. *Environ. Model. Softw.* 99, 156–169. doi:10.1016/j.envsoft.2017.09.011

389 Fuentes-Pérez, J.F., Tuhtan, J.A., Branco, P., Eckert, M., Romão, F., Kruusmaa, M., Ferreira,
390 M.T., 2019a. Hydraulics of vertical slot fishways: Non-uniform profiles. *J. Hydraul. Eng.*
391 145, 06018020. doi:10.1061/(ASCE)HY.1943-7900.0001565

392 Fuentes-Pérez, J.F., Tuhtan, J.A., Eckert, M., Romão, F., Ferreira, M.T., Kruusmaa, M., Branco,
393 P., 2019b. Hydraulics of vertical-slot fishways: Nonuniform profiles. *J. Hydraul. Eng.* 145,
394 doi:10.1061/(ASCE)HY.1943-7900.0001565

395 Gao, Z., Andersson, H.I., Dai, H., Jiang, F., Zhao, L., 2016. A new Eulerian–Lagrangian agent
396 method to model fish paths in a vertical slot fishway. *Ecol. Eng.* 88, 217–225.

397 Gisen, D.C., Weichert, R.B., Nestler, J.M., 2017. Optimizing attraction flow for upstream fish
398 passage at a hydropower dam employing 3D Detached-Eddy Simulation. *Ecol. Eng.* 100,
399 344–353.

400 Goettel, M.T., Atkinson, J.F., Bennett, S.J., 2015. Behavior of western blacknose dace in a
401 turbulence modified flow field. *Ecol. Eng.* 74, 230–240.
402 doi:10.1016/j.ecoleng.2014.10.012

403 Goring, D.G., Nikora, V.I., 2002. Despiking acoustic Doppler velocimeter data. *J. Hydraul. Eng.*
404 128, 117–126.

405 Greenshields, C.J., 2015. OpenFOAM: The open source CFD Toolbox. OpenFOAM Foundation
406 Ltd.

407 Higuera, P., Lara, J.L., Losada, I.J., 2013. Realistic wave generation and active wave
408 absorption for Navier–Stokes models: Application to OpenFOAM®. *Coast. Eng.* 71, 102–
409 118. doi:10.1016/j.coastaleng.2012.07.002

410 Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free
411 boundaries. *J. Comput. Phys.* 39, 201–225. doi:10.1016/0021-9991(81)90145-5

412 Hirt, C.W., Sicilian, J.M., 1985. A porosity technique for the definition of obstacles in
413 rectangular cell meshes, in: International Conference on Numerical Ship
414 Hydrodynamics, 4th.

415 Hurther, D., Lemmin, U., 2001. A correction method for turbulence measurements with a 3D
416 acoustic Doppler velocity profiler. *J. Atmos. Ocean. Technol.* 18, 446–458.

417 Juras, M., Albertson, L.K., Cahoon, J., Johnson, E., 2018. Incorporating macroinvertebrate
418 biological structures into gravel-bedded stream fluid dynamics using 3D CFD modelling.
419 *Ecol. Eng.* 119, 19–28.

420 Khan, L.A., 2006. A three-dimensional computational fluid dynamics (CFD) model analysis of
421 free surface hydrodynamics and fish passage energetics in a vertical-slot fishway. *North*
422 *Am. J. Fish. Manag.* 26, 255–267. doi:10.1577/M05-014.1

423 Kim, S., Yu, K., Yoon, B., Lim, Y., 2012. A numerical study on hydraulic characteristics in the

424 ice Harbor-type fishway. *KSCE J. Civ. Eng.* 16, 265–272.

425 Lacey, R.W.J., Neary, V.S., Liao, J.C., Enders, E.C., Tritico, H.M., 2012. The IPOS framework:
426 linking fish swimming performance in altered flows from laboratory experiments to
427 rivers. *River Res. Appl.* 28, 429–443.

428 Machado Xavier, M.L., Janzen, J.G., Nepf, H., 2018. Numerical modeling study to compare
429 the nutrient removal potential of different floating treatment island configurations in a
430 stormwater pond. *Ecol. Eng.* 111, 78–84.

431 Marriner, B.A., Baki, A.B.M., Zhu, D.Z., Cooke, S.J., Katopodis, C., 2016. The hydraulics of a
432 vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in
433 Quebec, Canada. *Ecol. Eng.* 90, 190–202. doi:10.1016/j.ecoleng.2016.01.032

434 Marriner, B.A., Baki, A.B.M., Zhu, D.Z., Thiem, J.D., Cooke, S.J., Katopodis, C., 2014. Field and
435 numerical assessment of turning pool hydraulics in a vertical slot fishway. *Ecol. Eng.* 63,
436 88–101. doi:10.1016/j.ecoleng.2013.12.010

437 OpenFOAM, 2020. OpenFOAM User Guide [WWW Document]. URL
438 <https://www.openfoam.com/documentation/guides/latest/doc/index.html>

439 Pope, S.B., 2001. Turbulent flows. *Meas. Sci. Technol.* 12, 2020. doi:10.1088/0957-
440 0233/12/11/705

441 Puertas, J., Pena, L., Teijeiro, T., 2004. Experimental approach to the hydraulics of vertical
442 slot fishways. *J. Hydraul. Eng.* 130, 10–23. doi:10.1061/(ASCE)0733-
443 9429(2004)130:1(10)

444 Quaresma, A.L., Ferreira, R.M.L., Pinheiro, A.N., 2017. Comparative analysis of particle image
445 velocimetry and acoustic Doppler velocimetry in relation to a pool-type fishway flow. *J.*
446 *Hydraul. Res.* 1–10.

447 Quaresma, A.L., Romão, F., Branco, P., Ferreira, M.T., Pinheiro, A.N., 2018. Multi slot versus
448 single slot pool-type fishways: A modelling approach to compare hydrodynamics. *Ecol.*
449 *Eng.* 122, 197–206. doi:10.1016/j.ecoleng.2018.08.006

450 Rajaratnam, N., Katopodis, C., Solanki, S., 1992. New designs for vertical slot fishways. *Can. J.*
451 *Civ. Eng.* 19, 402–414. doi:10.1139/l92-049

452 Rajaratnam, N., Van der Vinne, G., Katopodis, C., 1986. Hydraulics of vertical slot fishways. *J.*
453 *Hydraul. Eng.* 112, 909–927. doi:10.1061/(ASCE)0733-9429(1986)112:10(909)

454 Romão, F., Quaresma, A.L., Branco, P., Santos, J.M., Amaral, S.D., Ferreira, M.T., Katopodis,
455 C., Pinheiro, A.N., 2017. Passage performance of two cyprinids with different ecological
456 traits in a fishway with distinct vertical slot configurations. *Ecol. Eng.* 105, 180–188.
457 doi:10.1016/j.ecoleng.2017.04.031

458 Romão, F., Santos, J.M., Katopodis, C., Pinheiro, A.N., Branco, P., 2018. How Does Season
459 Affect Passage Performance and Fatigue of Potamodromous Cyprinids? An
460 Experimental Approach in a Vertical Slot Fishway. *Water* 10, 395.
461 doi:10.3390/w10040395

462 Silva, A.T., Katopodis, C., Santos, J.M., Ferreira, M.T., Pinheiro, A.N., 2012. Cyprinid
463 swimming behaviour in response to turbulent flow. *Ecol. Eng.* 44, 314–328.

464 doi:10.1016/j.ecoleng.2012.04.015

465 Silva, A.T., Santos, J.M., Ferreira, M.T., Pinheiro, A.N., Katopodis, C., 2011. Effects of water
466 velocity and turbulence on the behaviour of Iberian barbel (*Luciobarbus bocagei*,
467 Steindachner 1864) in an experimental pool-type fishway. River Res. Appl. 27, 360–373.
468 doi:10.1002/rra.1363

469 SimScale, 2021. Pimple algorithm [WWW Document]. URL
470 https://www.simscale.com/forum/t/cfd-pimple-algorithm/81418 (accessed 8.24.21).

471 Ubbink, O., 1997. Numerical prediction of two fluid systems with sharp interfaces. University
472 of London, London, UK.

473 Weller, H.G., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational
474 continuum mechanics using object-oriented techniques. *Comput. Phys.* 12, 620–631.
475 doi:10.1063/1.168744

476 Wu, S., Rajaratnam, N., Katopodis, C., 1999. Structure of flow in vertical slot fishway. J.
477 Hydraul. Eng. 125, 351–360. doi:10.1061/(ASCE)0733-9429(1999)125:4(351)

478 Zeng, J., Rakib, Z., Ansar, M., Hajimirzaie, S., 2020. Optimization and Risk Assessment in
479 Design and Operation of Hydraulic Structures Using Three-Dimensional CFD Modeling,
480 in: World Environmental and Water Resources Congress 2020: Hydraulics, Waterways,
481 and Water Distribution Systems Analysis. American Society of Civil Engineers Reston,
482 VA, pp. 170–182.

483