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A B S T R A C T

The increasing interest in sustainable waste management has spurred the development of innovative technolo
gies for resource recovery. In this context, organic waste fermentation generates effluents rich in ammonium and 
volatile fatty acids (VFAs), both of which represent valuable precursors for the fertilizer and chemical industries. 
This study introduces and evaluates an innovative membrane-based methodology enabling the simultaneous 
recovery of ammonia (NH3) and VFAs from synthetic and real dark fermentation broths. The experimental setup 
employed a gas–liquid membrane contactor consisting of a 44 cm2 hydrophobic polytetrafluoroethylene (PTFE) 
membrane (0.22 μm pore size) housed in a flat-plate module. The effects of different extraction solutions (HCl, 
H2SO4, NaOH, and ionic liquids), their concentrations, and the flow rates of both the fermentation effluent (500 
mL min− 1) and the extracting solution (250 mL min− 1) were systematically investigated, along with the influence 
of the broth pH (7.0 and 5.5). Among the tested conditions, 2 M NaOH was identified as the most effective 
extraction medium, achieving simultaneous recoveries of 24.5 % for NH3, 50 % for propionic, butyric, and 
valeric acids, and 42 % for acetic acid after 168 h of operation in an acidogenic broth at pH 5.5. Furthermore, 
higher solvent concentrations and increased recirculation velocities were positively correlated with improved 
NH3 and VFA recovery, regardless of the solvent type. Overall, the results highlight the potential of the proposed 
membrane contactor-based approach as a promising and scalable technology for integrated resource recovery 
from fermentation effluents.

1. Introduction

Municipal solid waste is expected to generate 2.2 billion tons of 
waste globally by 2025 and its management cost 375.5 billion USD [1]. 
The organic fraction of municipal solid waste (OFMSW) can be treated 
via anaerobic digestion (AD), composting, landfilling, and incineration. 
The AD of the OFMSW is a reliable and attractive platform to convert the 
complex organic matter into a clean and renewable source of energy [2]. 
The AD of food waste (FW) has attracted a great interest in recent years 
due to its high organic removal rates and positive net energy balance. 
However, the digestate generated still needs to be managed in order to 
meet the ecologically acceptable requirements for direct discharge into 
natural water bodies due to their high nitrogen and phosphorous con
centrations [3]. The effective treatment and management of both solid 

(DSF) and liquid (DLF) dark fermentation fractions require the adoption 
of sustainable technologies aimed at recovering valuable by-products 
such as energy, biofuels, biochar, and nutrients [4]. Both fractions 
must be treated before being reused in order to handle dark fermenta
tion effluents sustainably. The DSF can be used as a nutrient-rich 
amendment on land or transformed into energy and biochar through 
thermochemical processes such as gasification, hydrothermal carbon
ization, and pyrolysis. In order to concentrate nutrients and lessen the 
impact on the environment, the DLF can be primarily transformed into 
fertilizer following physico-chemical and biological treatments, such as 
membrane filtration, ammonia stripping and struvite precipitation 
[5–7]. In this context, dark fermentation (DF) stands out as the most 
promising biological method to produce renewable outputs from 
organic wastewaters and waste [8] such as biofuels [9] (i.e., 
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biohydrogen [10,11]), biogenic carbon dioxide [12], and high-value 
organic acids [13]. DF effluents typically contain high concentrations 
of short-chain carboxylates, with total organic acids in food-waste-based 
dark fermentation effluents commonly ranging from 13.3 ± 1.8 to 18.8 
± 3.4 g L− 1 (or 15.3 ± 2.4 to 21.5 ± 4.6 g CODeq L− 1), and acetate 
concentrations reaching up to 5.0 g L− 1 under optimal acidogenic con
ditions [14], and low concentrations ammonium (NH4), in the range of 
0.03–0. 3 g L− 1 in food waste dark fermentation effluents [15], both of 
which can be recovered and valorized.

Today, organic acids are key building blocks in the manufacture of 
foods, drinks, medicines, polymers, resins and chemicals [16]. Of them, 
volatile fatty acids (VFAs) are monofunctional, linear short-chain 
aliphatic compounds that can be used as precursors to produce bio
fuels, reduced chemicals (e.g., alcohols, ketones, aldehydes, and esters), 
and biopolymers [17]. On the other hand, free ammonia (NH3) induce 
toxic effects in humans and microorganisms at high concentrations in 
both aqueous and gas phase, whereas NH4 represents a valuable nutrient 
for biofertilizer production [18]. High NH3 concentrations may inhibit 
methanogens and fermentative bacteria, thus causing lower biogas 
production in AD and lower hydrogen and organic acids synthesis in DF 
[19]. Therefore, the simultaneous recovery of VFAs and NH3 from 
fermentation broths can help partially alleviating this inhibition [20].

In this context, membrane-based recovery [21], liquid-liquid 
extraction [22], adsorption [23] and electrodialysis [24] have been 
proposed to recover VFAs from fermentation broths. Similarly, multiple 
NH3 removal and recovery methods have been investigated [19], 
including physical processes (e.g., stripping, adsorption, ion exchange, 
etc.), chemical processes (e.g., chemical precipitation, oxidation, and 
electro-kinetic processes), and other microbial processes (e.g., 
nitrification-denitrification, anammox) [25,26]. In particular, tech
niques such as ion exchange, membrane separation, adsorption, and 
ammonia stripping, have been proposed for the recovery of NH3 from 
digestates [27]. Membrane-based processes implemented in membrane 
contactors (MC) are emerging as the most promising technique for a 
simultaneous VFAs and NH3 recovery [28,29]. The membrane contactor 
(MC) technology has attracted increasing attention for resource recov
ery applications due to its low energy requirements and high recovery 
efficiency [30]. Initially investigated for the removal of carbon dioxide 
(CO2) from gaseous streams [30], its applicability has since expanded to 
include the separation of other compounds such as sulfur dioxide (SO2) 
[31], alcohols [32], ammonia [33], and VFA [33]. Thus, NH3 is typically 
extracted across membranes by diffusion of un-ionized NH3 driven by a 
pH gradient, where NH3 volatilizes on the high-pH side and is trapped as 
NH4

+ in an acidic receiving phase. VFAs are extracted when the neutral 
(protonated) form of the acid diffuses through the membrane under a pH 
gradient, after which it dissociates in a higher-pH receiving phase, 
preventing back-diffusion and enabling separation [27,34]. In partic
ular, the recovery of ammonia and VFAs via MC relies on the estab
lishment of a pH gradient between the feed and permeate phases [35]. 
This gradient facilitates the volatilization of the compounds in their 
gaseous form from the feed solution, followed by their absorption into 
the permeate phase where they are converted back into their dissolved 
ionic form [36]. In MC, chemical solutions based on acids have been 
traditionally used as liquid extractants [37]. However, particular 
attention should be paid to other types of liquids that can be used as 
extractors, such as basic solutions or ionic liquids (ILs). ILs are consid
ered “green solvents” that exist at temperatures below 100 ◦C as liquids 
and exhibit a very low vapor pressure [38]. ILs represent a promising 
alternative for the replacement of conventional solvents in separation 
techniques due to their stability, nonvolatility, and changeable misci
bility and polarity, which can enhance both safety and environmental 
friendliness. In ILs, the structures of cations and anions determine 
whether anions are hydrophilic or hydrophobic [39]. Specific hydro
philic ILs can be selected as extractants because their water-miscibility 
makes them suitable for the aqueous permeate phase in the MC. 
Imidazolium-based ILs show strong affinity for short-chain carboxylates 

through hydrogen bonding, improving VFA recovery. Testing structur
ally related ILs also enables a systematic assessment of how small 
changes in the alkyl substituent influence extraction performance [40]. 
ILs have been proposed as a promising platform for the extraction of 
carboxylic acids, but, to the best of the authors' knowledge, never tested 
for NH3 recovery [41]. In the context of alkaline extracting solutions, 
Rivera et al. observed that, despite the strong buffering capacity of the 
anaerobic system, which stabilizes the broth pH, a basic pH in the 
effluent remains advantageous, as it shifts the NH4

+/NH3 equilibrium 
toward free NH3, thereby increasing the driving force for its transport 
and recovery across the membrane [42,43].

This study introduces and systematically evaluates an innovative 
membrane contactor methodology for integrated resource recovery, 
pioneering the simultaneous extraction of NH3 and VFAs using a wide 
array of unconventional media, including basic solutions NaOH and 
Ionic Liquids (ILs). The comprehensive investigation identifies 2 M 
NaOH as a superior, non-acidic extraction solvent for this dual recovery, 
highlighting the first reported application of ILs for NH3 recovery within 
an MC system. Particularly, this study assesses the influence of i) the pH 
of the fermentation broth, ii) the type and concentration of the extrac
tion solution (NaOH, H2SO4, HCl, and ILs), and iii) the recirculation flow 
rates in the MC on the recovery efficiency of both NH3 and VFAs. The 
selection of the pH range (pH 5.5–7.0) was chosen to reflect the typical 
pH values of dark fermentation effluents. Similarly, the concentrations 
of the acidic and basic extraction solutions (0.5 M to 2 M) were sys
tematically varied to ensure excess proton or hydroxide availability to 
maximize the chemical driving force for NH3 and VFA capture, while IL 
concentrations were constrained by viscosity and cost for initial com
parison. The diverse portfolio of extractive liquids (H2SO4, NaOH, and 
Ionic Liquids) was intentionally used to rigorously compare the perfor
mance of conventional H+-based capture against novel OH− and phys
iochemical IL-based capture mechanisms for integrated recovery. 
Finally, the flow rates (250 mL min− 1 and 500 mL min− 1) were opti
mized to evaluate the crucial impact of recirculation velocity on mini
mizing mass transfer resistance in the boundary layer of the membrane, 
and enhancing overall contactor efficiency.

2. Material and methods

2.1. Synthetic and real fermentation broths

The synthetic fermentation broth mimicked the effluent from the DF 
of fruits and vegetables waste (FVW). The fermentation effluent 
composition was as follows: 6.45 g L− 1 acetic acid; 4.95 g L− 1 butyric 
acid; 10.86 g L− 1 lactic acid; 0.041 g L− 1 propionic acid; 5.0 g L− 1 valeric 
acid; and 1.09 g L− 1 formic acid [44]. All reagents used were of 
analytical reagent grade and were utilized as supplied by the manufac
turer, with no additional purification steps. NH4Cl was added at an 
initial concentration of 1 g L− 1. The real FVW was characterized by a 
total COD concentration of 111.5 ± 5.1 g O2 L− 1, of which 96.7 g L− 1 

corresponded to soluble COD, the total carbohydrates concentration was 
79 g L− 1 [45].

Real DF broths generated at the Institute of Sustainable Processes of 
the University of Valladolid from the DF of two different substrates, 
namely FW and powdered cheese whey (CW). The FW was based on a 
grinded mixture consisting of 78 % of potato flakes, 14 % of chicken 
breast, 4 % of white cabbage and 4 % of pork lard (on a dry weight 
basis), as a source of carbohydrates, proteins, and lipids, respectively 
[46]. The pH of the FW was 6.2 ± 0.05, while its total solids (TS) con
centration accounted for 223 g TS kg− 1. The FW digestate contained 
0.25 g L− 1 NH3 and the following VFA concentrations: 6.36 g L− 1 acetic, 
1.63 g L− 1 propionic, 1.83 g L− 1 butyric, and 0.00 g L− 1 valeric acids. 
CW DF broth was produced in the laboratory via DF of a synthetic CW 
effluent consisting of NH4Cl 2.4 g L− 1, K2HPO4 2.4 g L− 1, MgCl2‧6H2O 
2.525 g L− 1, KH2PO4 0.6 g L− 1, CaCl2‧2H2O 0.15 g L− 1, FeCl2 0.0357 g 
L− 1. All reagents used were of analytical reagent grade and were utilized 
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as supplied by the manufacturer, with no additional purification steps. 
CW powder at 41 g L− 1 was purchased from Prolactea S.A, while Cor
quimia Industrial, S.L. (Barcelona, Spain) provided the PCW. The 
product had a minimum lactose content of 75 % and a maximum ash 
content of 8 %, according the manufacturer's standards. Laboratory 
analysis revealed that the PCW was mostly composed of carbohydrates 
(76.5 %), followed by proteins (11.5 %) and lipids (0.95 %). The CW 
digestate showed 0.61 g L− 1 NH3 and 1.02 g L− 1 acetic, 1.01 g L− 1 

propionic, 1.65 g L− 1 butyric, and 0.12 g L− 1 valeric acids. The DF 
process was carried out at a hydraulic retention time (HRT) of 6 h and a 
pH of 6, utilizing a specialized hydrogen-producing mixed culture pre
viously enriched [47].

2.2. Experimental setup

Fig. 1 shows the experimental set-up, consisting of a 3.5 L glass 
reactor (CSTR, 3.3 L of working volume) continuously stirred (Agimatic- 
HS, Selecta®, Spain) at ≈ 200 rpm and located in a controlled temper
ature room at 37 ◦C. A pH control system (BSV EVo pH-P 1.5 L, Quim
pool, Spain) was connected to the reactor to maintain the pH of the DF 
broth. The fermentation broth was recirculated tangentially on the 
active layer of a hydrophobic polytetrafluoroethylene (PTFE) membrane 
(MF-Millipore™, Germany) via a peristaltic pump (Watson Marlow 520, 
Spirax-Sarco Engineering plc, United Kingdom) at setted flow rates. The 
PTFE membrane was characterized by a surface area of 0.0044 m2, pore 
size of 0.22 μm, nominal thickness of 175 μm, contact angle of 150 θ and 
a porosity of 70 %. The extractive liquid was tangentially recirculated on 
the opposite side of the membrane (support layer) through an identical 
peristaltic pump (Watson Marlow 520, Spirax-Sarco Engineering plc, 
United Kingdom). The extraction solution, contained in a 1 L glass 
bottle, was magnetically stirred (LBX S20, Labbox Labware, Spain).

2.3. Operational conditions

The influence of operational variables such as the pH and flow rate of 
DF broth, the type of extractant solution, and its flow rate on the 
extraction efficiency of NH3 and of acetic acid, propionic acid, butyric 
acid, and valeric acid was investigated with synthetic and real fermen
tation broths (Table 1). In test 1, 1 M NaOH was utilized for pH regu
lation in the fermentation broth (set point: pH 7), while 1 M H2SO4 
served as the extraction solution, with a flow rate of 250 mL min− 1. In 

tests 2 and 3, 1 M HCl was used to maintain the fermentation broth at 
pH 7.0 and 5.5, respectively, with 1 M NaOH as the extraction solution 
at a flow rate of 250 mL min− 1. Studies on NH3 recovery using gas- 
permeable membranes indicate that maintaining a pH of 9.0 is the 
most effective strategy, balancing high NH3 transfer efficiency with 
minimal chemical consumption. Research on NH3 stripping from 
digestates also supports this, showing that higher pH and temperature 
improve removal efficiency, with up to 87 % achieved at 40 ◦C and pH 
9.0 [48]. However, in this study, a lower pH of 5.5 was chosen to ensure 
compatibility with the biotic conditions of DF, the process used for 

Fig. 1. Experimental set-up for VFA and NH3 extraction.

Table 1 
Operational conditions tested during the optimization of VFAs and NH3 
extraction.

Test 
n◦

pH 
control

pH 
broth

Fermentation 
broth

Flowrate*
(mL 
min− 1)

Extractive liquid 
(g L− 1)

1 1 M 
NaOH

7.0 Synthetic 250 H2SO4 [98]

2 1 M 
HCl

7.0 Synthetic 250 NaOH [40]

3 1 M 
HCl

5.5 Synthetic 250 NaOH [40]

4 1 M 
HCl

5.5 Synthetic 500 NaOH [40]

5 2 M 
HCl

5.5 Synthetic 500 NaOH [80]

6 1 M 
NaOH

5.5 Synthetic 500 1-ethyl-3- 
methylimidazolium, 
chloride [10]

7 1 M 
NaOH

5.5 Synthetic 500 1-ethyl-3- 
methylimidazolium, 
chloride [20]

8 1 M 
NaOH

5.5 Synthetic 500 1-allyl-3- 
methylimidazolium, 
chloride [10]

9 1 M 
NaOH

5.5 Synthetic 500 1-allyl-3- 
methylimidazolium, 
chloride [20]

10 2 M 
HCl

5.5 Real from FW 500 NaOH [80]

11 2 M 
HCl

5.5 Real from CW 500 NaOH [80]

* Flow refers to the flow rate of fermentation broth and extraction solution on 
both sides of the membrane.
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hydrogen production. This acidic environment was necessary to support 
bacterial activity, maintaining optimal conditions for microbial meta
bolism while still enabling efficient NH3 and VFA recovery.

Test 4 replicated the conditions of test 3 but was conducted with an 
increased recirculation flow rate of 500 mL min− 1 on both sides of the 
membrane. Test 5 was performed at pH 5.5, regulated with 2 M HCl, 
using 2 M NaOH as the extractant solution, and maintaining a recircu
lation flow rate of 500 mL min− 1. Tests 6 to 9 were also conducted at pH 
5.5, employing the ionic liquids 1-ethyl-3-methylimidazolium chloride 
(EMIMCl) (purity >98 %, CAS n.65039–10-3, IoLiTec-Ionic Liquids 
Technologies GmbH, Germany), and 1-allyl-3-methylimidazolium 
chloride (AMIMCl) (purity >95 %, CAS n.143314–17-4, IoLiTec-Ionic 
Liquids Technologies GmbH, Germany) as extractant solutions. 
EMIMCl and AMIMCl were tested at concentrations of 10 g L− 1 (tests 6 
and 8, respectively) and 20 g L− 1 (tests 7 and 9, respectively). In all these 
tests, 1 M NaOH was used for pH regulation, and a recirculation flow 
rate of 500 mL min− 1 was maintained. Tests 10 and 11 investigated 
extraction performance using real fermentation broths derived from FW 
and powdered CW, respectively, at pH 5.5, regulated with 2 M HCl. In 
both cases, 2 M NaOH served as the extractant solution, with a recir
culation flow rate of 500 mL min− 1. All experiments were conducted in 
duplicate under controlled conditions at 37 ◦C for seven days. The 
reproducibility of the measurements was assessed by comparing the two 
duplicate results for each condition, calculating the difference between 
them relative to their average value, and expressing it as a percentage. 
The resulting reproducibility error was below 5 % for both NH3 and VFA 
recoveries, confirming the reliability of the experimental data.

Samples (2 mL) of fermentation broth were periodically collected 
from the reactor to monitor VFA and total ammoniacal nitrogen (TAN) 
concentrations. For fermentation broths derived from FW and CW, 
samples were centrifuged at 10,000 rpm for 10 min using a Spectrafuge 
24D Microcentrifuge (LABNET, NJ, 08837 USA). The supernatants were 
then filtered through 0.22 μm membranes, acidified with 20 μL of 
concentrated H2SO4 per mL of sample, and stored at − 20 ◦C until TAN 
analysis. For VFA gas chromatographic analysis, 1 mL of freshly filtered 
fermentation broth was diluted 1:10 with Milli-Q water and acidified 
with 20 μL of concentrated H2SO4 per mL of sample prior to injection.

2.4. Analytical methods

TAN was measured by using the Nessler analytical method in a 
SPECTROstar Nano absorbance 220–1000 nm spectrophotometer (BMG 
Labtech, Germany) at 425 nm. Acetic, propionic, butyric, and valeric 
acids were measured using a Gas Chromatograph (Agilent Technologies, 
Santa Clara, USA) coupled with a Flame Ionization Detector (GC-FID) 
equipped with a capillary column Heliflex AT-1000 (30 m × 0.53 mm ×
1.0 μm film thickness; Alltech associates, Inc., IL, USA). The oven of the 
GC was maintained at 100 ◦C for 1 min and then increased at a rate of 
15 ◦C per minute up to 230 ◦C. This temperature was maintained for 0.4 
min. Injector and detector temperatures were 150 and 250 ◦C, respec
tively. Helium was used as the carrier gas at a flow rate of 3 mL min− 1.

2.5. Calculations

The overall mass transfer of VFAs through the membrane was 
calculated according to Eq. 1 [49]: 

ln

(
[VFA]R,0
[VFA]R,t

)

=
KA
VR

t (1) 

where [VFA] stands for the concentration of the VFAs (mg L− 1) in the 
reactor (R), at time 0 and time t, respectively, A is the membrane surface 
area (m2), VR is the volume of the reactor (m3), K is the experimental 
mass transfer coefficient [m h− 1].

K was calculated by algebraically rearranging Eq. 1 into the inverse 
form presented in Eq. 2

K =
VR

A t
ln

(
[VFA]R,0
[VFA]R,t

)

(2) 

The recovery efficiency (RE) of both VFAs and NH3 was calculated 
according to Eq. 3: 

RE =
Mass accumulated in extractive liquid

Initial mass in fermentation broth
×100 

RE =
Cextractive,t × Vextractive

Cbroth,t × Vbroth,0
×100 (3) 

where: Cextractive,t is the concentration in the extractive liquid of VFAs or 
NH3 (g L− 1); Cbroth,t is the initial concentration in the fermentation broth 
(g L− 1), Vextractive is the total volume of the liquid in the permeate circuit, 
Vbroth,0 is the initial total volume of the fermentation broth.

The concentrations C0 and Ct were normalized to the initial con
centration C0, thus allowing the recovery efficiency to be expressed as a 
percentage of the initial amount.

3. Results and discussion

3.1. Influence of the liquid extractor on NH3 and VFAs removal

In the MC-based NH3 and VFA recovery process, the fermentation 
broth containing VFAs and NH3 was recirculated on the active side of a 
hydrophobic PTFE membrane, while an extractive liquid with the same 
recirculation rate was circulated on the support side. In test 1, NH3 
removal remained almost constant over time, reaching a total removal 
rate of 25.9 % from the fermentation broth by day 7. The peak removal 
rate of 27.9 % occurred on day 4 (Fig. 2a). Regarding VFA removal, the 
results were not significant. The alkaline pH (7.0) of the broth inhibited 
the recovery of VFAs to their protonated forms, leading to an increase in 
VFA concentration. By the end of the 7-day experiment, the concen
trations of acetic, propionic, butyric, and valeric acid increased by 26 %, 
19.4 %, 11.1 %, and 0.97 %, respectively, compared to their initial 
values (Fig. 2b).

3.2. Influence of the pH of the fermentation broth on NH3 and VFAs 
extraction

Test series 2 and 3 were conducted to assess the effect of the pH of the 
acidogenic broth using 1 M NaOH as extractive solution under recircu
lation rates of 250 mL min− 1 in the membrane module. The synthetic 
VFA broth at pH 7.0 experienced an increase in NH3 concentration by a 
factor of 1.8 times, while at pH 5.5, the NH3 recovery recorded 
accounted for 6.8 % after 7 days of extraction (Fig. 3). The increase in 
NH3 concentration in the enclosed stirred tank under a recirculating 
NH3-free NaOH solution suggests the gradual appearance of interfering 
compounds in the Nessler analytical methodology as a result of Cl- 
diffusion or side reactions. In this context, Xu et al. (2021) investigated a 
two-stage direct contact membrane distillation system to aid NH3 re
covery from a simulated anaerobic digestate. The greatest NH3 recovery 
occurred under a pH of 12 in the anaerobic digestate, which supported 
an NH3-RE of 84,2 ± 1,9 %. Other necessary conditions were a tem
perature of 60 ◦C and 0.6 M H2SO4 permeate extraction liquid [50].

On the other hand, the recovery efficiencies of acetic, propionic, 
butyric and valeric acids in the assays carried out at pH 7 accounted for 
1 %, 4 %, 13 % and 16 %, respectively, after 7 days of operation 
(Fig. 4a). Similarly, recoveries of 23 %, 26 % and 34 % (Fig. 4b) were 
recorded for propionic, butyric and valeric acids, respectively, while 
acetic acid concentration remained constant in the synthetic fermenta
tion broth at pH 5.5 under NaOH extraction. Jankowska and coworkers 
(2015) assessed that at low pH (4–5.5), butyrate and acetate are the 
dominant products, while at high pH (7.5–8), acetate and ethanol pre
vail due to the presence of Klebsiella, which lacks butyrate-related 
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enzymes [51]; in their study they observed a clear shift from butyrate to 
acetate/ethanol at alkaline pH, though the exact transition depends on 
the specific mixed culture used [52]. Therefore, acidic fermentation 
effluents can experience a more effective recovery of NH3 and VFAs 
using 1 M NaOH as extractive solution. In this context, Yesil et al. 
(2021), observed that a temperature of 38 ◦C and a 1 M NaOH solution 
were the optimal parameters for VFAs recovery in a vapor permeation 
membrane contactor system [28], although in this study, the highest 
removal rate (17.9 %) was achieved for valeric acid at pH 7.0 under the 
same solution concentration and temperature conditions, the other VFAs 
showed lower removal rates, not exceeding 16 %.

3.3. Influence of the liquid recirculation rates on NH3 and VFAs recovery

The increase in the recirculation flow rate from 250 mL min− 1 to 500 
mL min− 1 in a fermentation broth at pH 5.5 supported a similar NH3 
recovery (6.2 % compared to the 6.8 %) within 7 days (Fig. 4c). In this 
context, Rivera and co-workers (2022a) demonstrated that higher 
recirculation flow rates on the membrane feed side resulted in a faster 
NH3 recovery, which followed first order kinetics [53]. On the other 
hand, increasing the recirculation rate of the VFA broth and NaOH to 

500 mL min− 1 led to a reduction in propionic and valeric acid concen
trations by 52.4 % and 58.9 %, respectively (Fig. 4d). These values 
compare favourably with the lower recovery rates of 31.1 % and 30.2 % 
observed at 250 mL min− 1 after 7 days. The recovery of acetic and 
butyric acid at 500 mL min− 1 accounted for 16.8 % and 38.7 % after 7 
days of experiment, respectively. Rivera et al. (2022a) evaluated that 
NH₃ fluxes decreased at higher flow rates due to shear-induced fouling. 
Mass transfer was primarily restricted on the digestate side, while NH₃ 
transfer through membrane pores remained efficient. The overall mass 
transfer coefficient increased with recirculation flow rate, and results 
were consistent with literature findings for similar pH conditions [53].

3.4. Influence of the concentration of the NaOH extraction solution on 
NH3 and VFAs removal

A further tests (test 5) was conducted by increasing the concentration 
of the NaOH extraction solution from 1 to 2 M, and the HCl solution used 
to maintain the pH from 1 to 2 M. NH3 recovery at 2 M NaOH concen
tration accounted for 24.5 % in 7 days (Fig. 5a), which represented a 
significant enhancement compared to process operation at 1 M NaOH 
(increase 8.7 % of NH3). Similarly, VFA recoveries were higher with a 2 
M NaOH solution, which supported extraction efficiencies of 42.3 %, 
49.7 %, 47.5 %, and 53.2 % for acetic, propionic, butyric, and valeric 
acids, respectively, within 7 days of membrane operation (Fig. 5b). It 
was assessed that a more concentrated HCl solution increases the 
chemical gradient between the feed and extraction sides, promoting 
greater diffusion of VFAs through the membrane. VFAs are weak acids 
that exist in equilibrium between their dissociated (R-COO− ) and pro
tonated (R-COOH) forms. A higher concentrated environment shifts the 
equilibrium toward the protonated form, which is more lipophilic and 
crosses the membrane more easily. Additionally, higher acidity on the 
receiving side reduces the likelihood of VFA back-diffusion, enhancing 
their retention during the extraction step [54].

In this context, Aydin et al. (2018), investigated the recovery VFAs 
from a synthetic mixture at pH < 4 using NaOH at 0.5 M as extractive 
liquid and different several membrane materials. The overall mass 
transfer coefficient through a PTFE membrane similar to the membranes 
herein used was 8.4 × 10− 3 m h− 1 for acetic acid, while for propionic, 
butyric and valeric acid it accounted for 1.2, 1.4, 1.6 × 10− 3 m h− 1 [55]. 
These values were slightly lower than those estimated in the present 
work (Table 2) at a NaOH concentration of 2 M for propionic, butyric 
and valeric acids.

Fig. 2. Time course of: (a) normalized ammonia (NH3) concentration and (b) volatile fatty acids (VFAs) concentration (acetic , propionic , butyric , valeric ) in a 
synthetic dark fermentation broth. The extraction process was carried out using 1 M H₂SO₄ as the extractant solution at pH 7, with 1 M NaOH as the extraction 
solution, under a recirculating rate of 250 mL min¡1.

Fig. 3. Time course of the normalized ammonia (NH3) concentration in the 
synthetic dark fermentation broth at pH 7 ( ) and pH 5.5 ( ) using 1 M NaOH as 
extractant solution.
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3.5. Influence of ionic liquids on NH3 and VFAs recovery

The selection of the concentrations of EMIMCl and AMIMCl (10 and 
20 g L− 1) was based on preventing plasticizing effects of the ionic liquids 
in the PTFE material after a 24-h membrane submergence. Unexpect
edly, while the use of EMIMCl at 10 g L− 1 entailed an increase NH3 
concentration by a factor of 3 (likely due to interference effects of the 
compound in the Nestler method or to the release of NH3 from chemical 
reactions of the EMIMCl diffusing through the membrane), the recir
culation of AMIMCl at 10 g L− 1 induced a recovery of 19 % of the initial 
ammoniacal nitrogen (Fig. 6 a,b). The test 6, conducted with EMIMCl at 
10 g L− 1, experienced a sudden rupture of the membrane, which led to 
an interruption of the experiment at day six.

The recirculation of EMIMCl and AMIMCl at 20 g L− 1 (tests 7 and 9) 
also resulted in an increase in NH3 concentration by a factor of 1.6 and 
1.7, respectively, likely mediated by interferences in Nessler method
ology or by the diffusion and NH3 generating chemical reactions of the 
ILs (Fig. 6a,b). NH3 recovery is mostly dependent on NH3 solubility 
selectivity, which is dependent on the interactions between the ILs and 
NH3 gas molecules. Indeed, Jiang et al., engineered Pebax blended 
membranes with aprotic IL [EtOHmim][NTf2] and protic IL [EtOHim] 

[NTf2] tailored with hydroxyl groups to improve NH3 separation per
formance and achieve a high NH3 selectiviy, which suggested that the 
use of ILs can enhance the performance of membranes during NH3 
separation [56]. Hypothetically, the higher viscosity of the ionic liquid 
AMIMCl gives it lower NH3 recovery power [57,58]. At this point, it is 
important to stress that both NH3 and VFA must be extracted from the 
ionic liquids in order to allow extractants recycling, with the subsequent 
increase in process economics and environmental sustainability.

Fig. 6 (c,d,e,f) reports the fatty acid profile of the tests 6–9. The 
recirculation of an aqueous solution of EMINC1 at 10 g L− 1 resulted in a 
recovery of 18 %, 29 %, 31 % and 33 % of the acetic propionic, butyric, 
and valeric acids, respectively. Interestingly, the increase in concen
tration of EMIMCl at 20 g L− 1 mediated REs of 7.4 %, 15.9 %, 15.7 %, 
and 18.0 % for acetic, propionic, butyric, and valeric acids, respectively. 
In addition, AMIMCl at 10 g L− 1 supported negligible recoveries of acetic 
acid and limited recoveries for propionic, butyric and acetic acids, which 
accounted for 11.1 %, 13.5 %, and 14.6 % respectively. AMIMCl at 
concentrations of 20 g L− 1 mediated recoveries of 6.5 %, 12.1 %, 1.2 %, 
and 1.7 % for acetic, propionic, butyric and valeric acids respectively.

Xing et al. (2023) conducted tests on the extraction of acetic acid and 
butyric acid using membrane processes and ionic liquids as extractants. 

Fig. 4. Time course of volatile fatty acids (VFAs) acetic ( ), propionic ( ), butyric ( ) valeric ( ) acids concentration in a synthetic dark fermentation broth at (a) pH 7 
and (b) pH 5.5 with 1 M NaOH as extraction solution under recirculating rates of 250 mL min¡1. Time course of: (c) ammonia (NH3) concentration and volatile fatty 
acids (VFAs) (d) acetic ( ), propionic ( ), butyric ( ) valeric ( ) acids in the 5.5 pH synthetic dark fermentation broth at recirculation rates of 500 mL min¡1.
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They used IL-101+ as the ionic liquid. IL-101 combined with dodecane 
proved highly effective at pH 6.0, particularly for butyric acid, achieving 
over 90 % extraction efficiency. The IL-101 ratio in dodecane and the 
solvent-to-feed (S/F) ratio significantly influenced extraction perfor
mance. This solvent also performed well in mixed VFA systems, 
including real broths from kitchen waste fermentation, showing strong 
selectivity for butyric acid. Maximum extraction/selectivity rates 
reached 60.2 %/70.5 % in butyric acid broth and 74.6 %/62.7 % in 
mixed acid broth [59].

3.6. VFA and NH3 extraction from real DF broth under optimized 
operational conditions

The extraction of NH3 and VFAs concentrations from real FW and CW 
DF broths was tested in the same experimental setup using NaOH at 2 M 
as membrane extractive liquid at a recirculation flow of 500 mL min− 1. 
A recovery of 22,7 % of the initial NH3 was recorded in the FW 
fermentation broth after 7 days of extraction, while an increase in NH3 
concentration was recorded in the particular case of the CW fermenta
tion broth (Fig. 7 a,b). This increase, which was not previously observed 
in the assays conducted with synthetic fermentate, might be explained 
by the hydrolysis and ammonification of the organic nitrogen remaining 
in the cultivation broth. The test fermentation broth from CW was 
stopped on the fourth day due to a sudden membrane failure. As re
ported by Rivera and co-workers during a comparative study assessing 
NH3 extraction in real digestate and synthetic digestate, the greater 
membrane fouling in the tests with real digestate only reduced NH3 
extraction by 1.8 % [53].

Evaluating the VFAs profile shows that in the case of FW, (Fig. 7c), 
the reduction trends are consistent, with a particular removal effect 
recorded for valeric acid which reached an RE of 67.9 %, compared to 
acetic, propionic and butyric recorded at 25.7, 31.0, 33.5 % 

respectively. Aydin et al. (2018) reported VFAs recovery from synthetic 
solutions and fermented organic wastes using air-filled and amine 
extractant-filled PTFE membranes in vapor pressure membrane con
tactors. The found that acetic acid recovery exceeded 45 % across all 
fermented wastes, while the use of trioctylamine-filled membranes 
enabled the efficient extraction of propionic, butyric, valeric, and cap
roic acids, achieving over 86 % recovery from landfill leachate and 95 % 
from anaerobically digested organic waste [55]. (Fig. 7d) shows that 
propionic and butyric acids decreased, 32.2 and 24.9 % respectively, 
while acetic acid concentration increased about 75.3 %. Valeric acid 
concentrations in this fermentate were very low (data not shown). 
Molinuevo-Salces et al. (2024) reported the use of a gas-based mem
brane system to recover VFAs from CW fermentation broth. The findings 
showed that pH control significantly impacts bioconversion efficiency, 
with sequential control under acidic conditions increasing conversion to 
54 %, while alkaline conditions resulted in a lower efficiency of 45 %. 
Acidic conditions led to a diverse VFA profile, whereas alkaline condi
tions predominantly produced acetic acid. The novel gas-permeable 
membrane system enabled VFA recovery, achieving 15 % when multi
ple VFAs were present and 100 % when acetic acid was the main 
component [35]. In this study, acetic acid showed an increasing trend 
despite the acidic pH (5.5), with a total increase of 75.2 % by the end of 
the experiment. The highest recorded peak reached 97.9 % after 56 h 
from the start of the experiment.

4. Conclusions

Gas-liquid membrane contactor for the simultaneous recovery of 
NH3 and VFAs from synthetic and real DF broths was investigated. 
Various experimental conditions were tested, adjusting key operational 
parameters such as fermentate pH, recirculation flow rate, and the type 
and concentration of extractive solution. Using a synthetic fermentation 
broth, optimal conditions were achieved at pH 5.5, with a recirculation 
flow of 500 mL min− 1, employing 2 M HCl and 2 M NaOH as pH regu
lator and extractive liquid, respectively. Under the specified experi
mental conditions, NH3 recovery was 24.5 % with significant VFA 
recovery rates of 42.3 % for acetic acid, 49.9 % for propionic acid, 47.5 
% for butyric acid, and 53.2 % for valeric acid. Using a real dark- 
fermentation broth from FW, the process achieved a maximum recov
ery of 22.7 % of the initial NH3 with VFAs recoveries of 67.9 % 
(valerate), 25.7 % (acetate), 31.0 % (propionate), and 33.5 % (butyrate). 
This study demonstrates that DF broths can be effectively valorized 

Fig. 5. Time course of (a) ammonia (NH3) concentration and volatile fatty acids (VFAs) (b) acetic ( ), propionic ( ), butyric ( ) valeric ( ) acid concentration by 
using 2 M NaOH as the extractant solution.

Table 2 
Mass transfer coefficient [m h− 1] using a PTFE membrane.

VFAs Mass transfer coefficient (m h− 1)

Test 5 [55]

Acetic 3.84 × 10− 2 8.4 × 10− 2

Propionic 3.12 × 10− 2 1.2 × 10− 2

Butyric 3.32 × 10− 2 1.4 × 10− 2

Valeric 2.82 × 10− 2 1.6 × 10− 2
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Fig. 6. Time course concentration of ammonia (NH3) concentration using (a) EMIMCl at 10 ( ) and 20 g L¡1 ( ), and (b) AMIMCl at 10 g L¡1 ( ) and 20 g L¡1 ( ). 
Time course of volatile fatty acids (VFAs) acetic ( ), propionic ( ), butyric ( ) valeric ( ) acid) concentration in synthetic dark fermentation broth during extraction; 
(c) using EMIMcl [10 g L− 1] as liquid extractant; (d) AMIMCl [10 g L− 1]; (e) EMIMCl [20 g L− 1]; (f) AMIMCl [20 g L− 1].
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through the simultaneous recovery of NH3 and VFAs. Beyond confirming 
technical feasibility, these results highlight the potential of membrane 
contactors as an integrated upgrading step to enhance the circularity 
and economic value of dark-fermentation processes.
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