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Abstract

Games with endogenous separation are repeated games where players have the
option to leave their current partnership and keep on playing in a newly-formed
partnership. Arguably, most repeated interactions in real life fall into this category.
We present a general framework to analyze equilibria in games with endogenous
separation, extending concepts from evolutionary game theory, and with a focus on
neutrally stable strategies, i.e., stable strategies that are resistant to direct invasion
by any alternative strategy. We introduce path-protecting strategies, which play a
similar role to trigger strategies in standard (fixed-partnership) repeated games, and
we provide a constructive proof of their existence. We also present a Folk Theorem
for path-protecting strategies in these games. JEL classification numbers: C72, C73.

Keywords: Endogenous separation; conventions; neutral stability; path-protecting strat-
egy; voluntarily repeated games

1 Introduction

Games with endogenous separation (Rob and Yang, 2010) are repeated games where
players have the option to leave their current partnership and keep on playing in a
newly-formed partnership with other players (Mailath and Samuelson, 2006, p. 152).
In these games, partnerships may be broken for reasons that do not depend on the
players’ choices (exogenous separation), but also because players may decide to break
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their partnership (endogenous separation).1 The main feature of these games is that the
strategies of a player’s opponents are not fixed throughout time, because the opponents
can change, with different strategy profiles presenting different expected durations.

As an example, consider a population of players who are randomly matched in pairs
(partnerships) to play a Prisoner’s Dilemma (the stage game) in discrete time. After
each stage game, play may continue with the same partner with some probability, so that
a partnership may last indefinitely, but may also be exogenously broken. In addition,
any player who is unhappy with their partner’s behavior can unilaterally break the
partnership after each stage game, in which case both partners become single. Single
players are then randomly matched again in a pool of singles, and continue playing in
new partnerships. Choices at each stage (cooperate, defect, or leave) can be conditioned
on the (potentially infinite) history of play within a partnership, so the set of possible
strategies in the repeated game is infinite. Single players are anonymous: their past
histories of play are lost (Schuessler, 1989; Ghosh and Ray, 1996).

At the level of bilateral interactions, games with endogenous separation can be in-
terpreted as stochastic games (Solan and Vieille, 2015) where the state variable is given
by the history of play within the current partnership, and transitions are driven both
by players’ actions (endogenous separation) and by exogenous breakup risk. The dif-
ficulty addressed in this paper does not lie in the within-partnership dynamics –which
are Markovian– but in the aggregation of these interactions through a population-wide
rematching process, which induces nonlinear payoff functions at the population level.
The value of the option to leave in games with endogenous separation does not depend
on the opponent’s strategy, but on the distribution of strategies in the pool of singles.

Arguably, in most social and biological interactions in real life, individuals have the
option to leave and change partners; however, the option to leave has not received much
attention in the theory of repeated games. In the special case of the repeated Prisoner’s
Dilemma, it has been shown that the option to leave introduces fundamental changes in
the strategies that can be sustained in equilibrium: while in the standard setting there are
strategies, such as Grim trigger, which can sustain a fully cooperative equilibrium, in the
repeated Prisoner’s Dilemma with the option to leave –or voluntarily repeated prisoner’s
Dilemma (VRPD)– no strategy can sustain full cooperation (Mailath and Samuelson,
2006). The reason is that any population playing a nice strategy (Axelrod, 1984),
which begins a new partnership cooperating, can be easily invaded by a defect-and-leave
strategy, which begins defecting and then breaks the partnership, repeatedly meeting
and exploiting new nice partners. Most of the literature on the option to leave has
focused on variations of the VRPD2, either considering the whole infinite set of potential
strategies of the repeated game (Carmichael and MacLeod, 1997; Fujiwara-Greve and
Okuno-Fujiwara, 2009) or focusing on some restricted subset of strategies (Vanberg and
Congleton, 1992; Schuessler, 1989; Hayashi and Yamagishi, 1998; Izquierdo et al., 2010,

1In most models with endogenous separation, one single player’s decision to leave is sufficient to break
the partnership, but other alternatives have also been considered (see e.g. Kurokawa (2022) or Křivan
and Cressman (2020)).

2Two exceptions are Vesely and Yang (2010) and Izquierdo et al. (2021). See also Newton (2018) for
a short summary of previous studies in the context of assortativity (Nax and Rigos, 2016).
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2014; Zheng et al., 2017; Li and Lessard, 2021), sometimes in combination with a spatial
setting (Aktipis, 2004; Premo and Brown, 2019). Even though full cooperation in the
VRPD cannot be sustained in equilibrium, several studies indicate that the option to
leave can increase average cooperation levels, both experimentally (Barclay and Raihani,
2016; Rand et al., 2011) and by simulation (Graser et al., 2025), and some authors have
studied additional factors that may stabilize full cooperation, such as separation costs
(Enquist and Leimar, 1993; Gutiérrez-Mielgo et al., 2025). A series of papers identify and
discuss a special family of strategies that can constitute partially-cooperative equilibria
in the VRPD: the family of k-period trust-building strategies (Datta, 1996; Ghosh and
Ray, 1996; Carmichael and MacLeod, 1997; Kranton, 1996; Fujiwara-Greve and Okuno-
Fujiwara, 2009). When a k-period trust-building strategy plays against itself, there is
mutual defection (DD) for k periods and mutual cooperation (CC) from then on. If
the partner of a trust-building strategy deviates from that pattern, the trust-building
strategy breaks the partnership.

Here we present a general framework for the analysis of stable equilibria in sym-
metric two-player games with endogenous separation, with no restrictions on the set of
strategies. To this end, we extend concepts from evolutionary game theory to games
with endogenous separation. Our study contributes to explore the versatility of these
tools, as well as their explanatory potential and their importance in the larger field of
game theory.

Two useful concepts of stability in game theory are neutral stability and evolution-
ary stability. In standard two-player population games (with a finite strategy set and
linear payoff functions), neutral stability implies Lyapunov stability under the replicator
dynamics, and evolutionary stability ensures asymptotic stability (Taylor and Jonker,
1978; Thomas, 1985; Bomze and Weibull, 1995).

It is well known (Boyd and Lorberbaum, 1987) that in fixed-partnership infinitely
repeated games there are no evolutionarily stable pure strategies (or mixed strategies
with finite support). The same arguments can be used to show that there are no evolu-
tionarily stable strategies in games with endogenous separation: given any equilibrium
with finite support, there are other strategies that, when interacting with the equilibrium
strategies, behave equivalently. Therefore, we focus on neutral stability.

Interestingly, extending the definition of neutral stability and the replicator dynamics
to games with endogenous separation is not at all straightforward. Previous definitions of
neutral stability for games with endogenous separation (Carmichael and MacLeod, 1997;
Fujiwara-Greve and Okuno-Fujiwara, 2009; Izquierdo et al., 2021) can be considered
unsatisfactory for different reasons (as discussed in section 3.4 and in appendix B).
For instance, the definition by Fujiwara-Greve and Okuno-Fujiwara (2009) does not
guarantee dynamic stability under the replicator dynamics.

The first challenge for games with endogenous separation consists in finding an ap-
propriate characterization for the payoff functions x 7→ Fi(x) which, based on the payoffs
of the stage game and on the expected duration of each different partnership, provides
the expected per-period payoff obtained by (a player using) strategy i of the repeated
game when playing in a population whose strategy distribution is x (where x indicates
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which strategies are being used in the population and in which proportions). Note that
single players are re-matched within a pool of singles, whose distribution of strategies,
in general, is different from the distribution of strategies x in the whole population.
This creates several difficulties when trying to calculate the payoff functions x 7→ Fi(x).
Alternatively, instead of using as a primitive the distribution of strategies in the popula-
tion, some papers (most notably Fujiwara-Greve and Okuno-Fujiwara (2009)) are based
on the distribution of strategies in the pool of singles, which leads to more manageable
formulas, but this approach creates limitations when trying to extend evolutionary dy-
namics and stability concepts. Here we derive a relation between the distribution of
strategies in the pool of singles and in the whole population that allows us to obtain a
series of properties of the payoff functions (section 2.3) on which we base our results.
Among these properties, Lipschitz continuity of the payoff functions allows us to extend
the replicator dynamics (Taylor and Jonker, 1978) to games with endogenous separation.

The second difficulty stems from the fact that there are different definitions of neu-
tral stability (Bomze and Weibull, 1995), which are equivalent if payoff functions are
linear –as usually assumed for two-player games– but which are not equivalent when
payoff functions are not linear –as it is the case in games with endogenous separation.
With non-linear payoff functions, some definitions of neutral stability do not ensure
Lyapunov stability in the replicator dynamics (Bomze and Weibull, 1995). Originally
(Maynard Smith, 1982), a neutrally stable strategy was defined as a strategy q which (i)
is a best response to itself, and (ii) if p is a (pure or mixed) alternative best response
to q, then q against p obtains at least as much (expected payoff) as p against itself. In
this paper we propose a definition of neutral stability for games with endogenous separa-
tion that is a direct adaptation for population games of the original concept, and which
implies Lyapunov stability under the (extended) replicator dynamics. Neutrally stable
strategies thus defined can be seen as potential social conventions (Hawkins et al., 2019)
or social customs (Carmichael and MacLeod, 1997) in settings with the option to leave,
i.e., behavioral regularities that serve as stable –but to some degree arbitrary– solutions
to repeated coordination problems in a society.

After extending the concept of neutral stability to games with endogenous separation,
we study necessary and sufficient conditions for strategies to be neutrally stable. It turns
out that, in most games, a necessary condition for a strategy to be neutrally stable is
that it never breaks up with itself (i.e., with a partner using the same strategy). We
also identify a sufficient condition for neutral stability: path-protection. A path-protecting
strategy never leaves a partner who mimics its behavior and, if adopted by all the players
in a population, it guarantees that any player who deviates from the equilibrium path
obtains a strictly lower payoff than the population’s average.

Our main results are:

• A derivation of properties of payoff functions x 7→ Fi(x) for games with endogenous
separation. For more than three strategies these payoff functions do not admit a
closed-form algebraic expression, but we can still derive several properties, includ-
ing Lipschitz continuity.
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• An extension of the concept of neutral stability to games with endogenous sepa-
ration, and an extension of evolutionary replicator dynamics to these games. Our
definition of neutral stability implies Lyapunov stability in the extended replicator
dynamics.

• A definition and characterization of path-protecting strategies. These strategies
guarantee that deviations from the equilibrium path are harmful. We prove that
path-protecting strategies are neutrally stable and provide a constructive proof of
existence. They constitute natural candidates to be adopted as stable equilibrium
behavior (a social convention) in a population.

• A Folk Theorem for path-protecting strategies in repeated games with endogenous
separation. This result establishes that, for large enough values of the (exogenous)
continuation probability, any payoff between the pure minmax payoff and the max-
imum symmetric payoff of the stage game can be approximated arbitrarily closely
as the equilibrium payoff of some path-protecting (neutrally stable) strategy.

Path-protecting strategies, which generalize the idea behind trust-building strategies,
present some similarities and some differences with the classical trigger strategies which,
in standard repeated games, prevent deviations from an equilibrium path by playing a
minmax action after a deviation. In standard repeated games, trigger strategies protect
a path by the threat of punishment, but such potential punishment does not materialize
on the equilibrium path. In contrast, in games with endogenous separation, a player
who deviates from the equilibrium path can avoid subsequent punishment from their
current partners by breaking up the partnership. Therefore, any equilibrium path in a
population sustaining repeated play of some non-Nash action profile of the stage game
(such as mutual cooperation in the VRPD) needs to ensure that players who start new
partnerships bear some initial cost, to prevent reap-and-leave behavior (section 3.2). In
our setting, this cost can only take place through a painful deviation-deterring phase
at the beginning of every new partnership. Furthermore, since there is no information
flow between partnerships, every player must go through this initial deviation-deterring
phase, so this unpleasant experience necessarily becomes part of the equilibrium path.

The rest of the paper is structured as follows. In section 2 we define games with en-
dogenous separation derived from normal-form stage games, and we present their main
elements: strategies, population states, pool states and payoff functions. In section 3
we provide definitions for Nash, evolutionarily stable and neutrally stable states in this
framework. We discuss Nash states and the non-existence of evolutionarily stable strate-
gies; we then focus on neutral stability. Having defined the payoff function for strategies
and for distributions of strategies, it becomes natural to adapt a standard definition of
neutral stability (Banerjee and Weibull, 2000) to repeated games with endogenous sep-
aration. We then show that neutral stability thus defined implies Lyapunov stability in
the extended replicator dynamics for games with endogenous separation. Section 4 intro-
duces path-protecting strategies, and shows how these strategies can be created, giving
rise –for sufficiently high exogenous continuation probabilities– to monomorphic neu-
trally stable states. Here we also provide a Folk Theorem for path-protecting strategies
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in games with endogenous separation. Section 5 discusses subgame perfect strategies in
games with endogenous separation, and shows that path-protecting strategies that leave
after every history not occurring on the equilibrium path (deviation-leaving strategies)
are subgame perfect. Section 6 presents the conditions that a deviation-leaving strat-
egy needs to satisfy to be Nash (and subgame perfect) or path-protecting. Finally, in
section 7 we present some conclusions.

The paper includes four appendices with proofs and additional results. Appendix A
considers polymorphic neutrally stable states (mixtures of strategies). Here we show a
strong limitation to the existence of polymorphic equilibria made up by different path-
protecting strategies, and we extend the concept of path-protecting strategy to path-
protecting state. Appendix B discusses some previous definitions of neutral stability
that have been proposed for games with endogenous separation, and their limitations.
Appendix C studies robustness against indirect invasions (van Veelen, 2012) in games
with endogenous separation. Finally, appendix D contains most of the proofs.

2 Repeated games with endogenous separation

In this section we present repeated games with endogenous separation derived from
normal-form stage games. We limit the presentation and the analysis to symmetric
two-player stage games. Extensions to asymmetric or multi-population games present
additional challenges and are left for future work.

We consider a unit-mass population of agents who are matched in couples or part-
nerships to play a symmetric two-player normal-form stage game. The stage game G =
{A,U} is defined by an action set A = {a1, ..., an}, and a payoff function U : A2 → R,
where U(ak, al) represents the payoff obtained by a player using action ak whose op-
ponent plays action al. Every stage game G has an associated repeated game with
endogenous separation GEnds, which is characterized in this section. Following Mailath
and Samuelson (2006), we refer to choices in the stage game G as actions, reserving
strategy for behavior in the repeated game GEnds.

2.1 Strategies

After playing a stage game G, partnerships may remain together and play the stage
game again. A partnership is broken if either one of the players, according to their
strategy, decides to break it (endogenous separation) or if some exogenous factor breaks
the partnership, which happens with probability (1 − δ) ∈ (0, 1) after every interac-
tion (exogenous separation). Thus, δ is the continuation probability of the partnership
assuming that both players decide to stay. At the beginning of every (discrete) time pe-
riod, all single players are randomly (re-)matched in partnerships, and then all players
play the stage game, i.e., every player plays the stage game at every period, either in
newly-formed partnerships or in older ones. We assume that there is no information flow
between partnerships (Ghosh and Ray, 1996), so there are no reputation effects: single
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players (those who make up new partnerships) are anonymous.3

Considering the sequence of action profiles taken in a partnership, let the stage-t
game, with t ∈ {1, 2, ...}, be the tth time that the stage game is played in that partner-
ship, assuming the partnership has not been broken before. A strategy i for a player
determines the choice that the player makes given any past history of play within a
partnership. If the strategies followed by the two players in a partnership are i and j,
the action profile played at stage t (assuming the partnership survives to play for the

tth time together), is a
[t]
ij ≡ (a

[t]
i , a

[t]
j ) ∈ A2, where a

[t]
i is the action played by the player

using strategy i (at stage t) and a
[t]
j is the action played by the player using strategy j.

A history of play of length t ≥ 1, a[1,t] = (a[1], ..., a[t]) ∈ (A2)t, is a sequence of
t action profiles.4 Let a[1,0] denote the empty history, or history of length 0. Let H
be the set of all possible histories of any length (including the empty history) and let
Ã ≡ A ∪ {break} be the set of choices, where break represents the decision to break the
current partnership. A strategy i for the repeated game is a mapping i : H → Ã, from
the set of possible histories to the set of choices, that prescribes one choice i(a[1,t]) ∈ Ã
for every possible history a[1,t], for every t ≥ 0. As players in a new partnership are
assumed to play the stage game at least once before deciding whether to break their
partnership, we require i(∅) ∈ A. Let Ω be the set of strategies.

Note that we assume 0 < δ < 1. The process for δ = 0, where every partnership is
exogenously broken after every stage game, would correspond to the standard framework
for evolutionary non-repeated population games.

2.2 States and payoffs

We consider populations where the number of different strategies being played at any
time is finite. Let xi be the fraction of the population using strategy i ∈ Ω. A (popula-
tion) state x is a strategy distribution over Ω with finite support S(x) ⊂ Ω, i.e., x is a
function from Ω to [0, 1] that:

i) assigns a positive value xi > 0 to each strategy i in a finite set S(x),

ii) assigns the value 0 to strategies that are not in S(x), and

iii) satisfies
∑

i∈S(x) xi = 1.

Let D be the set of distributions with finite support, and let ei represent the monomor-
phic state at which all players use strategy i (i.e., the distribution satisfying xi = 1 and
xj = 0 for every j ∈ Ω \ {i}).

Consider an index T for periods of play of the game in the population. At every
period, single players are matched and every player plays a stage game. In contrast,
index t refers to repetitions of the stage game within a partnership: at period T , after

3Fujiwara-Greve et al. (2012) consider a model where players may voluntarily provide information
across partnerships in the context of the Prisoner’s Dilemma.

4a[1,t] represents some sequence of t action profiles, while a
[1,t]
ij represents the first t action profiles

generated by strategy i when playing against strategy j, assuming they do not break up before stage t.
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matching and before playing the stage game, every partnership has its own value for t,
which, if the partnership has just been matched at that period, is set to 0 before playing
the stage game and becomes 1 after playing the stage game. For any pair of strategies
i and j, let their endogenous breakup period Tij ≥ 1 be the number of stages that an
i9j partnership is to play together if the partnership is not broken by exogenous factors
(i.e., the number of stage games they play together before one of them decides to break
up). If an i9j partnership never breaks up endogenously, let Tij = ∞.

To calculate the average (per player and per period) payoff Fi(x) obtained by a
player using strategy i when the population state is x, we consider a stationary strategy
distribution p in the pool of singles consistent with the population state x. If the strategy
distribution p in the pool of singles is stationary, then it should satisfy the following:

• Before matching, the mass of players in the pool of singles is a stationary value ϕ.
The mass of single i-players in the pool is ϕ pi.

• After matching, the mass of i-players just matched to j-players, i.e., the mass of
i-players in newly-formed (0-period-old) i9j partnerships, is ϕ pi pj .

• For 1 ≤ t ≤ Tij , the mass of i-players in (t− 1)-period-old i9j partnerships (after
matching and before playing), is ϕ pi pj δ

t−1. These are the i-players that were
matched in i9j partnerships (t− 1) periods ago and have survived exogenous (and
endogenous) separation to play their tth stage game in the current period T . The
total mass or fraction of i-players in the population is then

xi = ϕ
∑

j∈S(x)

pi pj

Tij∑
t=1

δt−1 = ϕ
∑

j∈S(x)

pi pj
1− δTij

1− δ

and considering that
∑

j∈S(x) xj = 1, we have

xi =
pi

∑
j∈S(x) pj(1− δTij )∑

k,j∈S(x) pk pj(1− δTkj )
. (1)

Technically, in eq. (1) we are assuming that the pool distribution has been sta-
tionary for at least as many periods as the longevity of the oldest partnership in
the population.

Equation (1) defines a function f : D → D such that x = f(p), which provides the
population state x corresponding to pool state p.

• Let a
[t]
ij = (a

[t]
i , a

[t]
j ) ∈ A2 be the action profile played at the tth stage of an i-j

partnership, with the first action in the profile corresponding to the player using
strategy i and the second action in the profile corresponding to the player using
strategy j. The total payoff obtained (at each and every period T ) by the mass of
i-players is
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ϕ
∑

j∈S(x)

pi pj

Tij∑
t=1

δt−1 U(a
[t]
ij ),

so, dividing by the mass of i-players, we have that the per-period per-player average
payoff to an i-player is

F̂i(p) ≡ (1− δ)

∑
j∈S(p) pj

∑Tij

t=1 δ
t−1 U(a

[t]
ij )∑

j∈S(p) pj (1− δTij )
, (2)

which is defined for every i ∈ Ω.

From (2) we have a formula for F̂i(p) that provides the payoff to strategy i corre-
sponding to pool state p, and from (1) we have a formula x = f(p), that provides the
population state x corresponding to pool state p. In order to use existing results and
concepts from the literature in population games, it would be convenient to have payoff
functions Fi that provide the payoff to strategy i corresponding to population state x,
i.e., Fi(x). Considering x = f(p) as defined in (1), our first proposition shows that there
is an inverse function f−1 such that p = f−1(x), so we can define payoff functions Fi

from population states as
Fi(x) = F̂i(f

−1(x)). (3)

Proposition 1 shows that f−1 is closely related to a symmetric matrix scaling prob-
lem (Idel, 2016; Brualdi, 1974). The symbol ◦ in proposition 1 denotes the Hadamard
(entrywise) product.

Proposition 1. Given a population state x ∈ D with support S, there exists a unique
pool state p ∈ ∆(S) such that equation (1) holds. Let B be the symmetric positive matrix
with entries (Bij)i,j∈S = (1− δTij ). Then

p =
p̃

∥p̃∥1
,

where the vector p̃ is the unique positive solution to the matrix scaling problem

p̃ ◦ (Bp̃) = x.

Proposition 2 shows that f−1 is Lipschitz. From this we can show that the payoff
functions are Lipschitz, which will allow us to define replicator dynamics for games with
endogenous separation.

Proposition 2. Given a finite set of strategies S, the function f : ∆(S) → ∆(S)
defined by equation (1), which relates the pool and population states with support in S
via x = f(p), is a bi-Lipschitz homeomorphism. For more than three strategies, the
inverse mapping f−1 does not admit a general algebraic expression.
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Finally, for a group of players with strategy distribution y ∈ D entering a population
with strategy distribution x, we define the average payoff of y against x, E(y,x), as:

E(y,x) ≡
∑

i∈S(y)

yiFi(x). (4)

We can interpret this payoff as the average payoff obtained by a very small mass of
players whose strategy distribution is y (sometimes called mutants or entrants) when
they play in a population of players whose strategy distribution is x.

Our results are based on a series of properties of the payoff functions Fi(x) that we
indicate in the following section.

2.3 Properties of the payoff functions

The payoff functions Fi : D → R, defined in (3) for every i ∈ Ω, satisfy the following
properties:

• At monomorphic population states (where x = ej = p) we have, from (2):

Fij ≡ Fi(ej) =
1− δ

1− δTij

Tij∑
t=1

δt−1 U(a
[t]
ij ). (5)

Note that the payoff Fij to an i-player in a population of j-players is a convex

combination of the stage payoffs U(a
[t]
ij ) for 1 ≤ t ≤ Tij .

• It follows from (2), (3) and (5) that, for p = f−1(x), we have

Fi(x) = F̂i(p) =
∑

j∈S(x)

pj (1− δTij )∑
k∈S(x) pk (1− δTik)

Fij , (6)

which shows that Fi(x) is a convex combination of the payoffs Fij for j ∈ S(x),
with (strictly) positive coefficients for the convex combination.

• Given any finite set of strategies S, the payoff functions are Lipschitz continuous
on x ∈ ∆(S). This follows from (2), (3) and proposition 2.

Let the path a
[1,Tij ]
ij = ((a

[1]
i , a

[1]
j ), (a

[2]
i , a

[2]
j ), ..., (a

[Tij ]
i , a

[Tij ]
j )) be the series of Tij action

profiles that strategy i generates when playing with strategy j until they decide to break

up. Let the repeated path h
[∞]
ij be the infinite series of action profiles that corresponds

to (or is generated by) one i-player in a population of j-players, with no exogenous
separation and with re-matching after each endogenous separation:

h
[∞]
ij ≡ (a

[1,Tij ]
ij , a

[1,Tij ]
ij , ...). (7)

For a sequence of T action profiles a[1,T ], where the tth action profile in the sequence
is a[t] ∈ A2, let the normalized discounted value V (a[1,T ]) be
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V (a[1,T ]) ≡ 1− δ

1− δT

T∑
t=1

δt−1U(a[t]).

From the previous definitions and the properties of geometric series, we have:

Fij = V
(
a
[1,Tij ]
ij

)
= V

(
h
[∞]
ij

)
= (1− δ)

∞∑
t=1

δt−1U(h
[t]
ij ), (8)

where h
[t]
ij is the tth action profile in h

[∞]
ij . Formula (8) shows that Fij coincides with

V (h
[∞]
ij ), which is the normalized discounted value of the infinite sequence of action

profiles in the repeated path h
[∞]
ij .

Note that in the framework we have presented for games with endogenous separa-
tion there is no discounting, and Fij is defined as a per-period per-player average payoff
(averaged over individuals whose prevalence in t-period-old partnerships is proportional
to δt). However, the definition of repeated path in (7) allows to establish an equivalence

between Fij and the normalized discounted value V (h
[∞]
ij ). It follows from this equiv-

alence that any two strategies j1 and j2 that generate the same repeated path against
i-players obtain the same payoff against i-players, even if they have different breakup
periods, i.e., even if they have different paths (as long as these paths, when repeated,
generate the same sequence), i.e.:

h
[∞]
j1i

= h
[∞]
j2i

=⇒ Fj1i = Fj2i. (9)

3 Equilibria in games with endogenous separation: Nash, evolutionarily
stable and neutrally stable states

In this section we adapt standard definitions of Nash state, evolutionarily stable state
and neutrally stable state to games with endogenous separation. For completeness, and
in order to introduce the notation, we begin with the definitions for the stage game G.

3.1 Definitions for the stage game

Here we present the main definitions and concepts for a stage game G that will be useful
for the analysis of the repeated game with endogenous separation GEnds derived from
G.

The best-response payoff to action a is the best payoff that an action can obtain
when playing against a, defined by

UBR(a) ≡ max
al∈A

U(al, a).

The set of best-response actions to action a, BR(a), is the set of actions that obtain the
best-response payoff against a. If a ∈ BR(a), i.e., if action a is a best-response to itself,
we say that:
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• (a, a) is a (symmetric) Nash profile.

• a is a Nash action.

The pure minmax payoff of G, m, is the minimum of the best-response payoffs to
actions in A:

m ≡ min
a∈A

UBR(a).

Every best-response payoff to an action is greater than or equal to m, i.e., UBR(a) ≥
m ∀a ∈ A. A minmax action ã ∈ A is an action such that UBR(ã) = m. By choosing a
minmax action, a player can guarantee that her opponent’s payoff does not exceed m.

Let q ∈ ∆(A) ≡ {(qk)nk=1 ∈ Rn
+ :

∑n
k=1 qk = 1} be a distribution over actions or

mixture of actions. The payoff of action a against q is defined by the linear function
Ua(q) ≡

∑n
l=1 U(a, al)ql. With some abuse in notation, the payoff of mixture p ∈ ∆(A)

against q ∈ ∆(A) is defined by

U(p, q) ≡
n∑

k=1

pk Uak(q) =
∑
k,l

pk ql U(ak, al)

The best-response payoff against q is defined by

UBR(q) ≡ max
p∈∆(A)

U(p, q) = max
a∈A

Ua(q).

The set of best-response actions to q, BR(q), is the set of actions that obtain the best-
response payoff against q.

A (symmetric) Nash equilibrium of G is a distribution q ∈ ∆(A) such that

U(q, q) = UBR(q).

The (mixed) minmax payoff m of G is the minimum of the best-response payoffs to
mixtures in ∆(A):

m ≡ min
q∈∆(A)

max
a∈A

Ua(q).

Every best-response payoff (to some mixture) is greater than or equal tom: UBR(q) ≥ m,
i.e., independently of q, if a is a best response to q, then the payoff of a against q is at
least m. It follows from the definitions that m ≤ m.

A distribution over actions q ∈ ∆(A) is evolutionarily stable (Maynard Smith and
Price, 1973) if, for every other distribution p ∈ ∆(A):

U(q, q) ≥ U(p, q), i.e., q is Nash, and

U(p, q) = U(q, q) =⇒ U(q, p) > U(p, p).

An alternative definition of evolutionary stability only requires the condition U(q, p) >
U(p, p) to hold locally, i.e., in some punctured relative neighborhood of q. Evolutionary
stability implies asymptotic stability under the replicator dynamics (Sandholm, 2010).
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There are several definitions of neutral stability (Maynard Smith, 1982) that are
equivalent in this setting of linear payoff functions (Bomze and Weibull, 1995). Here we
adopt the following one: a distribution over actions q ∈ ∆(A) is neutrally stable if, for
every distribution p ∈ ∆(A):

U(q, q) ≥ U(p, q), i.e., q is Nash, and

U(p, q) = U(q, q) =⇒ U(q, p) ≥ U(p, p).

Neutral stability requires that q is Nash and that it is robust to the introduction of
(any combination of) alternative best responses to q, in the sense that q will not do
worse than the average (U(q, p) ≥ U(p, p)) when such alternative best responses are
introduced. With the previous definition, neutral stability implies Lyapunov stability
under the replicator dynamics (Thomas, 1985; Bomze and Weibull, 1995).

3.2 Nash states in the repeated game

A strategy j is a best response to state x if, when playing against x, no other strategy (or
distribution) can obtain a payoff greater than j’s payoff, i.e., if and only if Fj(x) ≥ Fk(x)
for every k ∈ Ω. Let BR(x) be the set of best-response strategies to x. A strategy
distribution y ∈ D is a best response to state x if and only if E(y,x) ≥ E(z,x) for every
z ∈ D. It follows from (4) that y is a best response to x if and only if every strategy in
its support S(y) is a best response to x.

Definition 1 (Nash equilibrium state). A state x ∈ D is Nash (short for Nash equilib-
rium state) if E(x,x) ≥ Fj(x) for every j ∈ Ω. Equivalently, a state x ∈ D is Nash if it
is a best response to itself.

If a monomorphic state ei is Nash, we say that strategy i is a Nash strategy. Con-
sequently, a strategy i is Nash if and only if Fii ≥ Fji for every j ∈ Ω.

Let us now consider some implications of being a Nash strategy. The action profiles
played at a monomorphic population ei are always symmetric5, i.e. in the set {(a, a)}a∈A.
Consequently, the payoff Fii in a monomorphic population (see equation (5)) is a convex
combination of the payoffs {U(a, a)}a∈A corresponding to the main diagonal of the payoff
matrix of the stage game G. This implies that the maximum symmetric stage-game
payoff M ≡ maxa∈A U(a, a) is an upper bound for Fii.

If i is a Nash strategy, it cannot be beaten by any other strategy in its corresponding
monomorphic population ei; in particular, strategy i cannot be beaten by what we call
reap-and-leave strategies. Reap-and-leave strategies are those which, in a partnership
with i, play exactly as i up to stage T ≤ Tii, at stage T adopt a best-response action
to the action chosen by i, and then break the partnership. We say that such strategies
reap-and-leave i at stage T .

The fact that being Nash implies robustness against reap-and-leave strategies allows
us to derive simple conditions that must be satisfied by Nash strategies and Nash states

5In the symmetric setting that we consider, it is assumed that there is no role asymmetry (like
row-player and column-player) on which players could condition their actions.
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in general. The next two propositions are based on robustness against strategies that
reap-and-leave i at the first stage of an i9j partnership, while the third proposition
considers robustness against a strategy that reaps-and-leaves i at stage Tii.

Lemma 3.1. The first action a∅ played by a Nash strategy in GEnds must satisfy

UBR(a∅) ≤ M,

where UBR(a∅) is the best-response stage payoff to action a∅ and M = maxa∈A U(a, a)
is the maximum symmetric stage-game payoff.

To illustrate some practical applications of each result, we will consider the Prisoner’s
Dilemma and the Hawk-Dove game (also known as Snowdrift), with actions C and D
(table 1). In the Prisoner’s Dilemma, C stands for cooperate and D for defect; in the
Hawk-Dove game, C corresponds to Dove andD to Hawk. In both cases, coordinating on
C is more efficient than on D (i.e., the maximum diagonal stage payoff is M = UCC >
UDD), and D is the minmax action. For the examples, we use the simpler notation
Uakal ≡ U(ak, al), and an action profile such as (D,D) is represented as DD.

In the Prisoner’s Dilemma (UCD < UDD < UCC < UDC), D is a dominant action
and DD is a Nash action profile. In the Hawk-Dove (UDD < UCD < UCC < UDC), the
best-response to each action is the other action (this is an anti-coordination game). We
will also consider the so-called 1-2-3 coordination game (table 1).

(C D

C 3 1
D 4 2

) (C D

C 3 2
D 4 1

) 
1 2 3

1 1 0 0
2 0 2 0
3 0 0 3


Table 1: Left: A Prisoner’s Dilemma game, with C for Cooperate and D for Defect. Middle: A

Hawk-Dove game, with C for Dove and D for Hawk. Right: the 1-2-3 coordination game.

Example 1. In the Prisoner’s Dilemma, the only action that satisfies the condition
in lemma 3.1 is action D. Consequently, every Nash strategy must begin a partnership
by playing action D: no Nash strategy can be “nice” (Axelrod, 1984). This rules out
strategies such as Tit for Tat.

Similarly, for the Hawk-Dove, lemma 3.1 implies that every Nash strategy must begin
a partnership by playing D (Hawk).

Lemma 3.2. The minmax payoff m of a stage game G is a lower bound for the payoff
at Nash states of GEnds:

x ∈ D is Nash =⇒ E(x,x) ≥ m.

The pure minmax payoff m of a stage game G is a lower bound for the payoff Fii at a
Nash strategy i of GEnds, and M ≡ maxa∈A U(a, a) is an upper bound:

i ∈ Ω is Nash =⇒ m ≤ Fii ≤ M.
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Example 2. With the payoffs shown on table 1, lemma 3.2 implies that the payoffs to
Nash strategies are: between 2 and 3 in the Prisoner’s Dilemma; also between 2 and 3
in the Hawk-Dove; and between 1 and 3 in 1-2-3 coordination.

Lemma 3.3. If i is a Nash strategy with finite Tii, then the action profile at the breakup
stage Tii of an i9i partnership is a Nash profile of the stage game G.

Example 3. In a Prisoner’s Dilemma with endogenous separation, the action profile at
the breakup stage of a Nash strategy with finite Tii has to be DD.

In a Hawk-Dove game, neither CC nor DD are Nash profiles, so in a Hawk-Dove
game with endogenous separation there is no Nash strategy i with finite Tii.

For the Prisoner’s Dilemma, Observation 1 below strengthens the previous result.

Observation 1. In the Prisoner’s Dilemma with endogenous separation, Nash strategies
with finite Tii never play C on the equilibrium path.

Observation 1 follows from considering that, in the Prisoner’s Dilemma with endoge-
nous separation, if a strategy i with finite Tii ever plays the action profile CC in an i9i
partnership, then there is a stage Tl in [1, Tii] at which CC is played for the last time,
and a strategy j that reaps-and-leaves i at stage Tl beats i (in the sense Fji > Fii), so i
cannot be Nash. Observation 1 can be extended to games G with only one symmetric
Nash action profile which is the least efficient of the symmetric action profiles.

Lemma 3.4. Let (aN , aN ) be a Nash profile of G.

• Every strategy i that always chooses action aN before breaking a partnership is a
Nash strategy of GEnds.

• Any mixture of strategies that satisfy the previous condition (for the same action
aN ) is a Nash state of GEnds.

Example 4. In a Prisoner’s Dilemma with endogenous separation, any strategy i that
for every history of length between 0 and Tii (for some Tii > 0) plays D, and breaks every
partnership that gets to stage Tii, is a Nash strategy (i.e., ei is a monomorphic Nash
state). Any mixture of such strategies is a Nash (polymorphic) state.

In a Hawk-Dove game, neither CC nor DD are Nash profiles, so we cannot use
lemma 3.4 to find Nash strategies for the game with endogenous separation.

After discussing Nash strategies, we next extend and analyze stability concepts from
evolutionary game theory: evolutionarily stable and neutrally stable strategies.

3.3 Evolutionarily stable strategies in the repeated game

Definition 2 (Evolutionarily stable strategy). A strategy i ∈ Ω is evolutionarily stable
(Maynard Smith and Price, 1973) if

Fii ≥ Fji for every j ∈ Ω, i.e., i is Nash, and

Fi(y) > E(y,y) for every y ∈ D \ {ei} such that E(y, ei) = Fii.
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Evolutionary stability for a Nash strategy i requires that there are no alternative best-
response strategies j with Fij = Fjj . The concept of path-equivalent strategy, defined
below, will be useful to show that, in games with endogenous separation, there are no
evolutionarily stable strategies. The argument extends easily to polymorphic states with
finite support (which, in the standard framework, are equivalent to mixed strategies),
and is basically the same argument used to show that there are no evolutionarily stable
strategies in standard repeated games (Selten and Hammerstein, 1984).

Definition 3 (Path-equivalent strategy). Strategy j is path-equivalent to strategy i if

a
[1,Tjj ]
jj = a

[1,Tii]
ii .

Considering that the action profiles in a
[1,Tii]
ii are symmetric, it follows that if j

is path-equivalent to i, then a
[1,Tii]
ii = a

[1,Tji]
ji = a

[1,Tij ]
ij = a

[1,Tjj ]
jj and, consequently,

Fii = Fji = Fij = Fjj . If i is Nash and j is path-equivalent to i, then j is an alternative
best-response to i (i.e., Fji = Fii) that satisfies Fij = Fjj . By modifying the choices made

by strategy i after histories a[1,t] that do not belong to the set of histories {a[1,t]ii }t∈[0,Tii]

generated by an i9i partnership, one can create (an infinite number of) strategies that
are path-equivalent to strategy i. This proves that no strategy is evolutionarily stable
in a game with endogenous separation, given that evolutionary stability does not admit
the existence of any (different) path-equivalent strategy.

For completeness, in appendix C we discuss another equilibrium concept stronger
than neutral stability: robustness against indirect invasions (van Veelen, 2012). We
show that in many games with endogenous separation, such as those whose stage game
is the Prisoner’s Dilemma or the Hawk-Dove game, no strategy can be robust against
indirect invasions.

3.4 Neutrally stable strategies in the repeated game

After showing that there are no evolutionarily stable strategies, in this section we define
neutral stability for games with endogenous separation.

There have been several attempts to define neutral stability in games with endoge-
nous separation, but all of them present undesirable features (see discussion in ap-
pendix B). For instance, the definition in Fujiwara-Greve and Okuno-Fujiwara (2009)
(Definition B.2 in appendix B) does not guarantee Lyapunov stability in the replicator
dynamics because it only requires robustness to monomorphic invasions, i.e., it does not
consider invasions by groups of players using a mix of different strategies. As an example
(see also Izquierdo et al. (2021)), consider the one-shot game with payoff matrix (10).


1 2 3

1 1 1 1

2 1 1 2

3 1 3 1

 (10)
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Figure 1: Phase portrait of the replicator dynamics in the game with payoff matrix (10). Rest points
are shown in red: there is an isolated rest point at (x1, x2, x3) = (0, 1/3, 2/3) and a connected
component of rest points along the edges where x2 = 0 or x3 = 0. Strategy 1 is neutrally stable

according to Fujiwara-Greve and Okuno-Fujiwara (2009)’s definition because there are no exit routes
along the edges from e1, but it is not neutrally stable according to the standard definition, and it is not
Lyapunov stable. The background is colored according to the speed of motion: from blue (slowest) to

brown (fastest). This figure has been generated with EvoDyn-3s (Izquierdo et al., 2018).

In this game, strategy 1 is neutrally stable according to Fujiwara-Greve and Okuno-
Fujiwara (2009) because a monomorphic population of 1-players is robust to invasions
by 2-players and also to invasions by 3-players (when considered separately). However,
state e1 is not Lyapunov stable under the replicator dynamics (see figure 1). Strategy 1
is not neutrally stable according to the definition presented in section 3.1. The reason
is that any mixture of 2-players and 3-players obtains a strictly greater payoff than
1-players at any interior state.

The definition we propose here is based on a standard definition of neutral stability
(Banerjee and Weibull, 2000), adapted to population games: a state is neutrally stable
if it is (i) a best response to itself, and also (ii) a weakly-better response to all its
best-response states (than such states are to themselves).

Definition 4 (Neutrally stable state). A state x ∈ D is neutrally stable if

E(x,x) ≥ E(y,x) for every y ∈ D, i.e., x is Nash, and

E(x,y) ≥ E(y,y) for every y ∈ D such that E(y,x) = E(x,x).

A strategy i is said to be neutrally stable if and only if its associated monomorphic state
ei is neutrally stable.

Neutral stability requires strategy i to satisfy Fi(y) ≥ E(y,y) whenever y is a
mixture of alternative best-response strategies to ei. This robustness to every possible
mixture of best response strategies is stronger than robustness against all best response

17



strategies considered individually, as defined by the following condition:

Fij ≥ Fjj for every j ∈ Ω that is a best-response to ei.

This latter condition is necessary but not sufficient for neutral stability. The reason is
that, if j1 and j2 are two best-response strategies to ei, and y is a mixture of j1 and
j2, then E(y,y) depends not only on the payoffs Fj1j1 and Fj2j2 of each best-response
strategy against itself, but also on the payoffs Fj1j2 and Fj2j1 for the crossed interactions.

Considering a finite set of strategies and the properties of the payoff functions (sec-
tion 2.3), we can define the replicator dynamics for games with endogenous separation
as a direct adaptation of the standard replicator dynamics (Taylor and Jonker, 1978).
Specifically, for a game with endogenous separation and a finite set of strategies S ⊂ Ω,

the replicator dynamics in ∆(S) = {(xi)i∈S ∈ R|S|
+ :

∑
i∈S xi = 1} is defined by the set

of differential equations
ẋi = xi[Fi(x)− E(x,x)] (11)

for i ∈ S. It is easy to check that (11) keeps the simplex ∆(S) and its faces forward-
invariant (because

∑
i∈S ẋi = 0 and xi = 0 =⇒ ẋi = 0). Existence and uniqueness of

the solution trajectories follows from the Lipschitz continuity of the payoff functions.
The replicator dynamics provides a good approximation to the (stochastic) dynamics

of many reasonable evolutionary processes in large populations.6 In our case, payoffs are
calculated under the assumption of a stationary pool of singles. This means that, after
any change in the composition of strategies in the population (caused, for instance, by
reproduction or imitation), the pool of singles is assumed to approach its new stationary
distribution (i.e., the payoffs are assumed to approach their new theoretical values)
before new changes in the composition of strategies in the population take place.

Our next proposition shows that the definition of neutral stability that we adopt for
games with endogenous separation (definition 4) guarantees Lyapunov stability in the
replicator dynamics (11), independently of which strategies are included in S.

Proposition 3. Let x ∈ D be neutrally stable and let S be any finite set of strategies
such that x ∈ ∆(S). Then x is a Lyapunov stable rest point of the replicator dynamics
(11) in ∆(S).

Proposition 3 shows that, if x is neutrally stable according to definition 4, then it
is a Lyapunov stable rest point in the replicator dynamics (11), considering any finite
set of strategies S that includes the support of x (incumbents), and any other set of
strategies (potential invaders), whatever those potential invaders may be. While the
replicator dynamics (11) considers a specific finite set of strategies, proposition 3 guar-
antees Lyapunov stability of x for any chosen finite set of strategies, with the only
obvious constraint that the strategies in (the support of) x must be in the chosen set.
This highlights the difference between approaches that consider the whole strategy space
Ω (as in this paper) vs. approaches that limit the strategy space to some subset Ω′ ⊂ Ω.

6See e.g. Weibull (1995, section 3.1.1), Sandholm (2010, examples 5.4.2-4), and Izquierdo et al. (2024,
chapter V-1).
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If the conditions for Nash, neutrally stable and evolutionarily stable strategy were to
be weakened by using Ω′ ⊂ Ω instead of Ω in their definitions, then many additional
strategies may satisfy the weaker conditions: trivially, every strategy is Nash, neutrally
and evolutionarily stable (in the restricted space) if the strategy space is restricted to
that strategy only. A condition of neutral stability restricted to Ω′ would guarantee
Lyapunov stability only for finite subsets of Ω′.

Next we study the existence of neutrally stable strategies. Lemma 3.5 below shows
a strong limitation for the stability of strategies with finite breakup period: if the sym-
metric action profile of G with maximum payoff M = maxa∈A U(a, a) is not7 Nash, then
no strategy i with finite breakup period Tii can be neutrally stable. Formally, let NG

M

be the (possibly empty) set of symmetric Nash profiles of stage game G that obtain the
maximum symmetric payoff M = maxa∈A U(a, a).

Lemma 3.5. If i is a neutrally stable strategy (of GEnds) with finite breakup period Tii,
the action profiles played in an i9i partnership are in NG

M .

As a consequence of lemma 3.5, for games with NG
M = ∅ (such as the Prisoner’s

Dilemma or the Hawk-Dove) no strategy i with finite breakup period can be neutrally
stable. This result shows that, for many games, no neutrally stable strategy can display
(endogenous) breakup on the equilibrium path.

After this first result in our search for stable strategies, we present path-protecting
and weakly path-protecting strategies, which imply neutral stability and whose existence,
for sufficiently large values of δ, is guaranteed for most games.

4 Path-protecting strategies

In this section we define path-protecting and weakly path-protecting strategies. Both
concepts imply neutral stability. We also discuss their existence.

Definition 5 (Path-protecting strategy). A strategy i ∈ Ω is path-protecting if:

a
[1,Tjj ]
jj ̸= a

[1,Tii]
ii =⇒ Fji < Fii.

In words, a strategy i is path-protecting if, when playing against i, only strategies

that are path-equivalent to i (those with a
[1,Tjj ]
jj = a

[1,Tii]
ii ) obtain the same payoff as i,

while every strategy j that is not path-equivalent to i obtains a strictly lower payoff.
Note that a necessary condition for a strategy i to be path-protecting is that Tii = ∞.

The reason is that, if Tii is finite, then any strategy j with Tjj > Tii whose path of play

up to stage Tii coincides with that of i (i.e., a
[1,Tii]
jj = a

[1,Tii]
ii ) satisfies Fji = Fii.

Considering that a
[1,Tjj ]
jj = a

[1,∞]
ii if and only if a

[1,Tij ]
ij = a

[1,∞]
ii , it is easy to see that

a strategy i is path-protecting if and only if Tii = ∞ and

a
[1,Tij ]
ji ̸= a

[1,∞]
ii =⇒ Fji < Fii.

7are not, if there are several.
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This alternative characterization shows that a path-protecting strategy i “protects” the
equilibrium path against strategies that, when playing with i, deviate at some point
from i’s choice, either by choosing a different action or by breaking the partnership.

We now define a concept weaker than path-protecting strategy, which will turn out
to be sufficient to guarantee neutral stability, namely weakly path-protecting strategy.

Before doing so, for convenience, let us recall that h
[∞]
ij ≡ (a

[1,Tij ]
ij )∞ is the infinite

sequence of action profiles generated by strategy i in a population of j-players with no

exogenous separation (7), and Fij coincides with V (h
[∞]
ij ), the normalized discounted

value of (the action profiles in) h
[∞]
ij .

Definition 6 (Weakly path-protecting strategy). A strategy i ∈ Ω with Tii = ∞ is
weakly path-protecting if:

h
[∞]
ji ̸= h

[∞]
ii =⇒ Fji < Fii.

In words, a strategy i is weakly path-protecting if

• it never breaks a partnership with a partner who takes the same actions as i does,
and

• if the repeated path h
[∞]
ji that strategy j generates with i-players is different from

the path a
[1,∞]
ii that i generates, then j obtains a strictly lower payoff (in a popu-

lation of i-players) than i.

Note that any strategy j that at some stage of an i9j partnership adopts a different

action from the action adopted by i generates a different repeated path h
[∞]
ji ̸= h

[∞]
ii .

Strategies j that, before breaking an i9j partnership at a finite stage Tij , do not adopt

different actions from i’s, may still generate the same repeated path h
[∞]
ji = h

[∞]
ii , but

only if h
[∞]
ii is an infinite repetition of the finite sequence of Tij (symmetric) action

profiles a
[1,Tij ]
ii = a

[1,Tij ]
ji .

For any strategy i with a path a
[1,∞]
ii that is not an infinite repetition (a[1,T ])∞ of

some finite sequence a[1,T ] of action profiles, being weakly path-protecting is equivalent

to being path-protecting. By contrast, strategies i with a path a
[1,∞]
ii that is an infinite

repetition of some finite sequence may be weakly path-protecting, but cannot be path-
protecting.

Considering equation (9), it follows from definition 6 that if strategy i is weakly
path-protecting, then:

• Strategy i is Nash, because strategies with the same repeated path h
[∞]
ji = h

[∞]
ii

obtain the same payoff Fji = Fii and strategies with different repeated path obtain
a lower payoff Fji < Fii, so Fji ≤ Fii for every j.

• Every best-response strategy j to ei must generate the same (symmetric) repeated

path h
[∞]
ji = h

[∞]
ii . This implies that, if j is a best-response to ei, then Fij = Fji =

Fii. It also implies that if y is a mixture of best-response strategies to ei, then
Fi(y) = Fii.
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Our next result states that (weakly) path-protecting strategies are neutrally stable.
Its proof shows that, if strategy i is weakly path-protecting, then any mixture y of
best-response strategies to ei must satisfy E(y,y) = Fi(y). The reason is that every

repeated path h
[∞]
j1j2

generated between any two best-response strategies (j1 and j2) to

ei must also be equal to h
[∞]
ii , so if y is a mixture of best-response strategies to ei, then

E(y,y) = Fii = Fi(y).

Proposition 4. (Weakly) path-protecting strategies are neutrally stable.

Weakly path-protecting strategies can be easily found if the stage game has some
strict Nash profile, as our next result shows.

Lemma 4.1. If (â, â) is a strict Nash profile of a stage game G, then any strategy of
GEnds that:

• chooses action â whenever it does not choose to break a partnership, and

• does not break a partnership while profile (â, â) is played

is weakly path-protecting (and, consequently, neutrally stable).

Example 5. In the Prisoner’s Dilemma, DD is a strict Nash profile. Consequently, any
strategy that never plays C and never breaks up after a history of mutual defections is
weakly path-protecting. For instance, the strategy “always play D and never leave”, that
maps every history to D, is weakly path-protecting and, consequently, neutrally stable.

Much more generally than the case in which G has some strict Nash profile, Propo-
sition 5 below shows that, for large enough δ, every stage game G with M > m admits
path-protecting strategies. Proposition 5 leads to a Folk Theorem for neutral stability
which basically says that, for large enough δ, any payoff between m and M can be
obtained, or approximated arbitrarily closely, as the equilibrium payoff of some path-
protecting strategy.

Before stating proposition 5, let us define the average stage-payoff for a finite sequence
of action profiles. Considering a sequence Φ = (Φ[t])Tt=1of T action profiles, where each
Φ[t] ∈ A2 is an action profile, let the average stage-payoff of sequence Φ be

ŪΦ ≡
∑T

t=1 U(Φ[t])

T
.

The average stage payoff is specially relevant for large δ and for paths that end up
repeating some sequence Φ of action profiles, because the normalized payoff of any
infinite path ([...],Φ,Φ,Φ, ...) which, after a finite number of periods, eventually repeats
the finite sequence of outcomes Φ forever, converges to the average stage-payoff ŪΦ as δ
goes to 1.

Proposition 5. Let Φ be a finite sequence of symmetric action profiles with average
stage payoff ŪΦ strictly greater than the pure minmax payoff. For large enough δ < 1,
there are path-protecting strategies whose equilibrium path, after a finite transient phase,
is an infinite repetition of the sequence Φ, and whose equilibrium payoff converges to ŪΦ

as δ → 1.
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Considering that ŪΦ can approximate any real payoff between m and M as much as
desired, Proposition 5 has as a corollary the following Folk Theorem for path-protecting
(neutrally stable) strategies.

Corollary 5.1. (Folk Theorem). In a game with endogenous separation, for large
enough values of the continuation probability δ, any payoff between the pure minmax
payoff m and the maximum symmetric payoff M of the stage game can be obtained,
or approximated as much as desired, as the equilibrium payoff of some path-protecting
strategy.

Note that the largest possible payoff in equilibrium in a VRPD corresponds to
the one-period trust-building strategy, with path DD(CC)∞ and payoff FMax = (1 −
δ)UDD + δ UCC . We have FMax < UCC and FMax → UCC as δ → 1. Consequently, and
in contrast to the standard setting, the set of feasible equilibrium payoffs is not compact,
and it is not possible to find a threshold value of δ above which all payoffs in the set can
be obtained in equilibrium.

The proof of proposition 5 is detailed in appendix D, but here we provide a sketch.
The proof is constructive and considers a strategy i such that:

• It never breaks a partnership with a partner who takes the same actions as i does
(i.e., Tii = ∞).

• As soon as strategy j in an i9j partnership deviates from i’s own action, strategy i
breaks the partnership. Because of this condition, we know that an i9j partnership
will not survive if j chooses a different action from the action chosen by i. Naturally,
it will not survive either if j chooses to break the partnership. The only way in
which an i9j partnership can survive indefinitely is if j chooses the same initial

action as i does and, for every history a
[1,t]
ii corresponding to an i9i partnership, j

chooses the same action as i does.

• The path a
[1,∞]
ii is made up by three phases, each one associated to one finite

sequence of symmetric action profiles (Φm,Φf and Φp), with

a
[1,∞]
ii = (Φm,Φf , (Φp)

∞),

where Φm is a repetition of a minmax action profile, Φf is arbitrary (but finite),
Φp (which corresponds to the infinitely repeated pattern Φ in proposition 5) has
an average stage payoff greater than the pure minmax payoff m of the stage game,
and (Φp)

∞ represents an infinite sequence of action profiles made up by repeating
the sequence Φp infinitely.

• The first phase in a
[1,∞]
ii is a Tm-period-long phase, Tm ≥ 1, during which a minmax

action profile (ã, ã) is played, producing the sequence

Φm = a
[1,Tm]
ii = ((ã, ã), (ã, ã), ..., (ã, ã)).
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During this minmax or deviation-deterring phase, the stage payoff is U(ã, ã) ≤ m
and any strategy j that deviates in choice during this phase obtains a payoff
Fji ≤ m.

• The second phase in the path a
[1,∞]
ii is an arbitrary finite sequence of Tf ≥ 0

(symmetric) action profiles. This phase shows that path-protecting strategies can
present a large variety of different paths.

• The last phase, or pattern-playing phase, in a
[1,∞]
ii is an infinite repetition of a

finite sequence (pattern) Φp of Tp ≥ 1 symmetric action profiles with average stage
payoff ŪΦp > m.

The proof of proposition 5 combines three intermediate results to create path-protecting
strategies. These strategies are initially built to be weakly path-protecting, and then
fine-tuned so the path when they play against themselves is not an infinite repetition of
any finite sequence of action profiles, so they are also path-protecting.

• The first result (lemma D.1) shows that, in order to prove that the implication

h
[∞]
ji ̸= h

[∞]
ii =⇒ Fji < Fii holds for every strategy j, it is enough to prove that it

holds for strategies j whose repeated path h
[∞]
ji differs or deviates from h

[∞]
ii before

repetition of the pattern Φp begins, i.e., between periods t = 1 and t = Tm+Tf+Tp:
if every deviation before and up to period t = Tm +Tf +Tp is harmful, then every
deviation (no matter when) is harmful.

• The second result states that, for any given Φf and Φp (with ŪΦp > m ), the
deviation-deterring phase can be chosen to be long enough to guarantee that de-

viations in h
[∞]
ji from h

[∞]
ii at or before t = Tm + Tf + Tp lead to payoffs Fji close

to or below m.

• The third result states that, for sufficiently large δ, the payoff Fii is close to ŪΦp >
m.

Combining the three results shows that, given Φf and Φp, there is a length of the

deviation-deterring phase Tm such that, for large enough δ, h
[∞]
ji ̸= h

[∞]
ii implies Fji < Fii,

so strategy i is weakly path protecting. Finally, by choosing Φp so that path h
[∞]
ii is not

an infinite repetition of a pattern, we make sure that strategy i is also path-protecting.
Note in the proof of proposition 5 that the freedom in the second phase Φf and the

relative freedom in the last phase Φp allow us to identify a very broad family of path-
protecting strategies and outcome paths that can be sustained in stable equilibrium.
For the VRPD, this family is much broader than the family of k-period trust-building
strategies, which correspond to the special case Φm = (DD)k, Φf = ∅ and Φp = CC.
Our next example discusses these strategies for the VRPD (and for the Hawk-Dove), and
shows how to find values of δ that guarantee neutral stability, using the intermediate
results we have just presented.
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Example 6. In a Prisoner’s Dilemma or in a Hawk-dove game, the minmax profile is
DD, so, when looking for path-protecting strategies as in the proof of proposition 5:

• The deviation-deterring or minmax phase Φm is a Tm-long series of DD action
profiles: Φm = (DD)Tm.

• For the pattern-playing phase, the infinitely repeated finite pattern Φp can be any
finite sequence of DD and CC action profiles with at least one CC in the sequence,
which guarantees an average stage payoff ŪΦp > m = UDD.

For instance, choosing Tm = 3, Φf = (CC,DD) and Φp = CC, we obtain a strat-
egy i with path h∞ii = ((DD)3 |CC,DD | (CC)∞). For the stage payoffs shown on
table 1 for the Prisoner’s Dilemma, the sequence of payoffs corresponding to h∞ii is
(2, 2, 2, 3, 2, (3)∞), where ()∞ represents an infinite repetition of the payoffs in brackets,
so

Fii = (1− δ)(2 + 2δ + 2δ2 + 3δ3 + 2δ4 + 3
δ5

1− δ
) > 2.

The pattern Φp = CC begins to be repeated after period 6. Strategies j with Tji ≤ 3 obtain
a payoff Fji of at most the minmax payoff 2 < Fii. For Tji = 4 the payoff Fji is bounded
by that of the series (2, 2, 2, 4)∞, and for 5 ≤ Tji ≤ 6 the payoff is bounded by that of
the series (2, 2, 2, 3, 2, 4)∞. For δ > 0.71, Fii is greater than the payoffs corresponding
to both series, so i is path-protecting.

5 Subgame perfect equilibrium

While it is not evident how to define continuation payoffs in games with endogenous
separation using the stationarity assumption, we can extend formula (8) and define the
continuation payoff to strategy j in a population of i players after a non-empty history
a[1,t] as the normalized discounted sum of the future series of outcomes with no exogenous
separation:

Fji|a[1,t] = (1− δ)

T
ji|a[1,t]∑
τ=1

δτ−1U(a
[τ ]

ji|a[1,t]) + δ
T
ji|a[1,t]Fji (12)

where:

• Tji|a[1,t] ≥ 0 is the number of stages that strategy i and j would play together after

history a[1,t] before choosing to break up their partnership. If Tji|a[1,t] = 0 then the
summation term in (12) is 0 and Fji|a[1,t] = Fji.

• For Tji|a[1,t] ≥ 1 and 1 ≤ τ ≤ Tji|a[1,t] , a
[τ ]

ji|a[1,t] is the stage game outcome that j

and i generate the τ th time they play together if they were to start playing with
the non-empty history a[1,t].
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Definition 7. A strategy i is subgame perfect (equivalently, ei is a subgame perfect
equilibrium) if

Fji|a[1,t] ≤ Fii|a[1,t]

for every strategy j ∈ Ω and every history a[1,t] ∈ H.

Let us say that a strategy i is deviation-leaving if i breaks a partnership only after

every history that deviates from the histories a
[1,t]
ii that i generates against itself, i.e., i

is deviation-leaving if

a[1,t] ̸= a
[1,t]
ii ⇐⇒ i(a[1,t]) = break

Deviation-leaving strategies are uniquely determined by their path a
[1,∞]
ii . For histo-

ries a[1,t] that differ from a
[1,t]
ii deviation-leaving strategies break the partnership, so for

such histories Fji|a[1,t] = Fji. Profitable deviations after histories that occur on the path

a
[1,t]
ii are linked to the existence of profitable deviations after the empty history. This

leads to our next proposition.

Proposition 6. If a deviation-leaving strategy is Nash then it is subgame perfect.

Corollary 6.1. Deviation-leaving path-protecting strategies are neutrally stable and sub-
game perfect.

Note that proposition 5 can also be stated for deviation-leaving path-protecting
strategies (the proof is the same), and, consequently, our Folk Theorem (corollary 5.1)
guarantees neutrally stable subgame perfect equilibria supported by deviation-leaving
path-protecting strategies.

6 Deviation-leaving strategies

In section 4 we showed that, for large enough δ, there are symmetric paths of the form
(Φm, [], (Φp)

∞), (which start by playing a minmax action profile for some periods and
end up repeating some pattern Φp) which can be sustained by path-protecting strategies.
Here we consider any infinite symmetric path a[1,∞] and analyze the conditions that its
associated deviation-leaving strategy i needs to satisfy in order to be path-protecting
(guaranteeing sub-game perfection and neutral stability).

To check whether a deviation-leaving strategy i is Nash it is enough to consider one-
shot deviations j (strategies that map all but one histories to the same choice mapped by

i) that make a different choice (than i) only after history a
[1,T ]
ii , with one T ∈ {0, 1, 2, ...}

for each strategy. As such an i-j partnership does not last beyond stage T + 1, the
subsequent behavior of j is actually irrelevant. If none of those one-shot deviations after
histories that arise along the equilibrium path is profitable, the deviation-leaving strategy
i is Nash (and subgame perfect). If all such deviations are harming, then i is path-
protecting. If the path of the deviation-leaving strategy i ends up repeating some pattern,
it is enough to check deviations up to (including) the first time the pattern is played
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(lemma D.1). In contrast, note that in standard repeated games this situation (non-
existence of profitable one-shot deviations after histories that arise along the equilibrium
path) does not imply Nash equilibrium (Mailath and Samuelson, 2006, p. 27), because
in that framework behavior after a deviation is relevant.

In this section we assume that i is deviation-leaving. For t = 0, 1, 2, ... it is useful to
define

Vt(a
[1,∞]) = (1− δ)

∞∑
k=1

δk−1U(a[t+k])

So V0(a
[1,∞]
ii ) = Fii and Vt(a

[1,∞]
ii ) = F

ii|a[1,t]ii

, the continuation payoff after history a
[1,t]
ii .

Besides, Vt(a
[1,∞]
ii ) = (1− δ)U(a

[t+1]
ii ) + δVt+1(a

[1,∞]
ii ).

It is easy to check that the condition “Fji ≤ Fii for (all) the strategies with Tij = t”
(for any chosen t ∈ {1, 2, ...}) is equivalent to

(1− δ)UBR(a
[t]
i ) + δFii ≤ Vt−1(a

[1,∞]
ii ) (13)

which corresponds to the condition that playing a best response to a
[t]
i and leaving

(or being left) is not better than keeping playing as i does. The condition can also be
stated as

(1− δ)
(
UBR(a

[t]
i )− U(a

[t]
ii )

)
≤ δ

(
Vt(a

[1,∞]
ii )− Fii

)
which relates the advantage of playing a best-response action at stage t (instead of the
prescribed action) with the advantage of complying and staying on the path instead

of starting a new partnership. This last expression also shows that Vt(a
[1,∞]
ii ) ≥ Fii

for t = 1, 2, ... is a necessary condition for a strategy with Tii = ∞ to be Nash, as
otherwise leaving after playing at some stage would be better than staying on the path.
To summarize this section, conditions (13) (for t = 1, 2, ...) are sufficient and necessary

for the deviation-leaving strategy i with path a
[1,∞]
ii to be Nash, and to be subgame

perfect. With strict inequality, these conditions are sufficient and necessary for i to be
path-protecting (so they are sufficient for neutral stability).

7 Conclusions

In the standard approach to repeated games, partners are tied to each other and do not
have a say on whether they wish to stay together or whether they prefer to leave their
current partner and meet a new one. For many real-life situations, the field of games
with endogenous separation constitutes a natural and more realistic alternative.

Games with endogenous separation present significant challenges. Even computing
expected payoffs for strategies –given the population composition and the stage-game
payoffs– requires several intermediate steps (proposition 1), and, for more than three
strategies, the payoff functions do not admit general closed-form algebraic expressions
(proposition 2). Nevertheless, it is possible to derive a number of relevant properties of
these payoff functions (section 2.3).
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We apply concepts from evolutionary game theory to study games with endogenous
separation and to explore the existence of strategies that may constitute stable socially
extended behavior (social conventions). Our study highlights the versatility of these tools
and hence contributes to clarifying their explanatory potential and broader relevance
within game theory. Carrying out this analysis requires extending existing results on
neutral stability and its relation to Lyapunov stability in the replicator dynamics to the
specific modeling framework needed to study repeated games with endogenous separation
(proposition 3). It also requires the development and exploration of novel concepts
(path-protecting strategy) which provide a link between the theory of repeated games
and evolutionary games with endogenous separation.

Path-protecting strategies ensure that deviations from the equilibrium path are
harmful, and lead to neutrally stable states (proposition 4). They generalize the con-
cept of trust-building strategies introduced in earlier work on the Prisoner’s Dilemma
(Carmichael and MacLeod, 1997; Fujiwara-Greve and Okuno-Fujiwara, 2009). Path-
protecting strategies share both similarities and differences with the classical trigger
strategies which, in standard repeated games, deter deviations from an equilibrium path
by imposing a minmax punishment phase after a deviation. In games with endogenous
separation, however, any punishment phase must be played at the beginning of a new
partnership (to prevent reap-and-leave invasions), and all players –not only deviators–
must go through it. Our results show that a large variety of equilibrium paths can be
sustained by a path-protecting strategy (proposition 5). When applied to the Prisoner’s
Dilemma, this result identifies a much broader family of stable strategies than the family
of trust-building strategies. We also show that deviation-leaving path-protecting strate-
gies (which leave after every history that does not occur on the equilibrium path) are
both subgame perfect and neutrally stable (proposition 6), and we analyze the condi-
tions that any infinite symmetric path needs to satisfy for its associated deviation-leaving
strategy to be Nash, or to be path-protecting.

Additionally, we provide a Folk Theorem for path-protecting strategies in games with
endogenous separation (corollary 5.1).

In an appendix, we extend the concept of path-protecting strategy from strategies
(monomorphic states) to mixtures of strategies in a population (polymorphic states).
Extensions of the framework of games with endogenous separation to multiplayer asym-
metric games or multi-population games present additional challenges and remain an
open field of research.
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A Polymorphic neutrally stable states

Let us now consider polymorphic neutrally stable states, in which players in a popu-
lation use different strategies (beyond those states already considered in lemma 3.4).
In the standard setting of population games, polymorphic states can alternatively be
interpreted as mixed strategies. In games with endogenous separation, the average pay-
off to a group of players with strategy distribution y in a population x, equation (4),
does not need to coincide with the payoff to an individual using mixed strategy y in a
population x (because each of the pure strategies in the support of y may have different
breakup periods with the strategies used in x). In this setting, interpreting a strategy
distribution as an individual’s mixed strategy is not equivalent.

Looking for stable polymorphic states, the first candidate wold seem to be a mixture
of path-protecting strategies. However, our next result shows that, if two path-protecting

strategies i and j have different paths a
[1,∞]
ii ̸= a

[1,∞]
jj , then they cannot both be in

the support of a neutrally stable state. The result holds for weakly path-protecting
strategies with different repeated path. Consequently, there are no neutrally stable states
with more than one (weakly) path-protecting strategy, unless the different strategies are
actually generating the same repeated path.

Proposition A.1. If a neutrally stable state x has some (weakly) path-protecting strategy

i in its support then all the repeated paths in x are equal to h
[∞]
ii .

Proposition A.1 shows that mixtures of path-protecting strategies with different
paths do not satisfy definition 4 of neutral stability.

Next we present a series of definitions and a proposition that allow us to extend
some of the results for monomorphic states to polymorphic states, and we conclude this
section with an example of a polymorphic neutrally stable state.

Definition A.1 (Path-equivalent strategy in a set). Let S be a finite set of strategies
satisfying Tij = ∞ for every i, j ∈ S. We say that strategy k is path-equivalent in S to
strategy i ∈ S if, for every j ∈ S,

Tkj = ∞ and a
[1,∞]
kj = a

[1,∞]
ij .
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The idea here is that, with each of the strategies in S, strategy k behaves exactly as

strategy i does, and there is no difference also between a
[1,∞]
ii and a

[1,∞]
kk .

Definition A.2 (Path-protecting state). A population state x with finite support S(x)
is path-protecting if:

• Tij = ∞ for every i, j ∈ S(x), and

• If strategy j is not path-equivalent in S(x) to some strategy i ∈ S(x), then Fj(x) <
E(x,x).

It follows from the definition that path-protecting states are Nash.

Definition A.3 (Internally neutrally stable state). A state x is internally neutrally
stable if Fi(x) = E(x,x) for every i ∈ S(x) and E(x,y) ≥ E(y,y) for every y with
support contained in S(x).

This condition only considers strategies in the support of state x, and it is clearly a
necessary condition for neutral stability, which considers the whole strategy space.

Proposition A.2. If a state is path-protecting and internally neutrally stable, then it is
neutrally stable.

A.1 Example of a bimorphic neutrally stable path-protecting equilibrium

Consider a Prisoner’s Dilemma game with the payoffs shown in table 2. For the game
with endogenous separation, let strategy 1 and strategy 2 be two strategies that generate

the paths a
[1,∞]
ij shown in table 2, with the corresponding payoffs Fij shown in table 3.

Strategy 1 is such that, if an opposing strategy j generates in a j91 partnership a history

that is not coherent with either a
[1,∞]
11 or a

[1,∞]
21 , strategy 1 breaks up the partnership.

In the same way, strategy 2 breaks any j92 partnership as soon as the history deviates

from both a
[1,∞]
12 and a

[1,∞]
22 .

C D

C 3 −1

D 5 0

1 2

1 (DD)T1 (CC)∞ (DD)T2 DC (CC)∞

2 (DD)T2 CD (CC)∞ (DD)T2(CC)∞

Table 2: Left: Stage game payoffs for a Prisoner’s Dilemma, with C for Cooperate and D for Defect.
Right: Paths a

[1,∞]
ij that strategy 1 and strategy 2 generate together, with i for the row strategy and j

for the column. It is assumed that T1 > T2

1 2

1 δT1 3 δT2 [5 (1− δ) + 3 δ]

2 δT2 [(−1)(1− δ) + 3 δ] δT2 3

Table 3: Payoffs Fij corresponding to the paths shown in table 2.
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Let us take T1 = 6, T2 = 4 and δ = 0.9, leading to the Fij payoffs shown in table 4.

1 2

1 1.59 2.10

2 1.71 1.97

Table 4: Payoffs Fij corresponding to the paths shown in table 2, for T1 = 6, T2 = 4 and δ = 0.9.

At a population state made up by strategies 1 and 2 in proportions x1 and x2,
considering that all paths have the same length, we have F1(x) = x1F11 + x2F12 and
F2(x) = x1F21 + x2F22. These formulas together with the payoffs in Table 4 show
that the internal or restricted game for strategies 1 and 2 has the structure of an anti-
coordination game (such as a Hawk-Dove game), which presents an internally neutrally
stable (in fact, internally evolutionarily stable) equilibrium x̂ where F1(x̂) = F2(x̂), at
x̂1 =

20
37 ≈ 0.54 and x̂2 =

17
37 ≈ 0.46, with E(x̂, x̂) ≈ 1.83.

Let us check that x̂ is path-protecting.

• Strategies that do not get past history (DD)4 when playing with strategies 1 or
2 (they break up or deviate in action before stage 5) obtain at most the minmax
payoff UDD = 0 < E(x̂, x̂).

• Strategies j that after history (DD)4 play D (as strategy 1 does and strategy 2

does not) may go on generating with 1 and 2 the same paths a
[1,∞]
11 and a

[1,∞]
12

as strategy 1 does, may break up at stage 5 (after playing), or may deviate from

a
[1,∞]
11 at stage Tj1 > 5 and from a

[1,∞]
12 at stage Tj2 > 5, obtaining a payoff (see

(6), considering that the pool and population strategy distributions at x̂ are the
same):

Fj(x̂) =
x̂1(1− δTj1)

x̂1(1− δTj1) + x̂2(1− δTj2)
Fj1 +

x̂2(1− δTj2)

x̂1(1− δTj1) + x̂2(1− δTj2)
Fj2.

Let us focus first on Fj2 for deviations from a
[1,∞]
12 after stage 5. Applying lemma D.1,

we have that if Fj2 < F12 for every possible deviation at Tj2 = 6 (first play of the

repeated pattern CC in h
[∞]
12 ), then Fj2 < F12 for every finite Tj2 > 6. Fj2

for a strategy j that breaks up at Tj2 = 5 or deviates at Tj2 = 6 is bounded
by the payoff corresponding to the series of stage payoffs (0, 0, 0, 0, 5, 5), which is
1−δ
1−δ6

δ4 (5 + 5 δ) = 1.33 < F12, so Fj2 < F12 for Tj2 ≥ 5.

Let us focus now on Fj1 for breakup at stage 5 or deviations from a
[1,∞]
11 after

stage 5. The payoff to these strategies is bounded by 0 for 5 ≤ Tj1 ≤ 6 and by the
payoff corresponding to the series of stage payoffs (0, 0, 0, 0, 0, 0, 3, ..., 3, 5), which is
1−δ

1−δTj1

[
δ6 3(1−δTj1−7)

1−δ + δTj1−1 5
]
for Tj1 > 6. Applying lemma D.1 for deviations at
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Tj1 = 7 (first play of the repeated pattern (CC) in h
[∞]
11 ) shows Fj1 < F1(e1) < F12.

We can now state the following bound:

Fj(x̂) ≤
x̂1(1− δTj1)

x̂1(1− δTj1) + x̂2(1− δTj2)
Fj1 +

x̂2(1− δTj2)

x̂1(1− δTj1) + x̂2(1− δTj2)
F12.

Considering that Fj1 < F1(e1) < F12, and that the weight multiplying F12 on the
previous convex combination of F12 and Fj1 increases with Tj2, we find that, for
every Tj1, the maximum value of the bound corresponds to Tj2 = ∞ (being smaller
for finite Tj2). Thus, bearing in mind that Fj1 ≤ 0 for 5 ≤ Tj1 ≤ 6, we have:

Fj(x̂) ≤
x̂2

x̂1(1− δ5) + x̂2
F12 ≈ 1.42 < E(x̂, x̂), for 5 ≤ Tj1 ≤ 6.

And, for Tj1 > 6,

Fj(x̂) ≤
x̂1(1− δ)

x̂1(1− δTj1) + x̂2

[
δ6 3(1− δTj1−7)

1− δ
+ δTj1−1 5

]
+

x̂2 F12

x̂1(1− δTj1) + x̂2
.

Note that the only variable in the previous bound is Tj1, with all the other terms
being known numbers. By taking the derivative of this bound with respect to Tj1

it can be checked that it is monotonic increasing with Tj1 (for Tj1 > 6), and its
limit is E(x̂, x̂). Consequently, any strategy j that, when playing with strategies
1 and 2, gets to stage 5 and plays D there (as strategy 1 and its path-equivalent-
in-{1, 2} strategies do) obtains a payoff Fj(x̂) < E(x̂, x̂) if j is not path-equivalent
to strategy 1 in the set of strategies {1, 2}.

• We now consider strategies j that after history (DD)4 play C (as strategy 2 does
and strategy 1 does not). Applying the same procedure that we followed before,
it can be shown that any such strategy j that, when playing with strategies 1
and 2, gets to stage 5 and plays C there (as strategy 2 and its path-equivalent-in-
{1, 2} strategies do), obtains a payoff Fj(x̂) < E(x̂, x̂) if j is not path-equivalent
to strategy 2 in the set of strategies {1, 2}.

B Other approaches to neutral stability in games with endogenous sep-
aration

Here we summarize previous definitions of neutral stability for games with endogenous
separation.

Definition B.1. Carmichael and MacLeod (1997). A Nash equilibrium population state
x is a neutrally stable state NSSCM if for every y ∈ D there exists an ϵy ∈ (0, 1) such
that for every ϵ ∈ (0, ϵy),

Fi( (1− ϵ)x+ ϵy) ≥ Fj( (1− ϵ)x+ ϵy)

for all i ∈ supp(x) and j ∈ supp(y).
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Definition B.2. Fujiwara-Greve and Okuno-Fujiwara (2009). A distribution in the
matching pool p is a neutrally stable pool distribution NSSFO if for every j ∈ Ω there
exists an ϵj ∈ (0, 1) such that for every ϵ ∈ (0, ϵj) and every i ∈ supp(p),

F̂i( (1− ϵ)p+ ϵ ej) ≥ F̂j( (1− ϵ) p+ ϵ ej)

These definitions are related to a standard condition for (neutral) stability from
Taylor and Jonker (1978), which can be adapted as follows (Bomze and Weibull, 1995):

Definition B.3. Considering a finite set of strategies S, a state x ∈ ∆(S) is neutrally
stable NSSTJ in ∆(S) if for every y ∈ ∆(S) there is some ϵ̄y ∈ (0, 1) such that

F (x, ϵy + (1− ϵ)x) ≥ F (y, ϵy + (1− ϵ)x)

for all ϵ ∈ (0, ϵ̄y).

On the one hand, when considering a finite set of strategies, it is easy to see that
the conditions for NSSCM and NSSFO are not equivalent to the standard condition
NSSTJ . Izquierdo et al. (2021, Appendix C) present simple examples of states that are
neutrally stable (NSSTJ) but are not NSSCM or NSSFO. They also show examples
of states that are NSSFO but are not neutrally stable NSSTJ and are instable in the
replicator dynamics (such as the example we presented in section 3.4). In short:

• Definitions NSSCM and NSSFO are not consistent with the standard definition
NSSTJ of neutral stability.

• NSSFO does not guarantee Lyapunov stability under the replicator dynamics.

Considering behavioral strategies, Vesely and Yang (2010) provide a definition of
neutral stability for games with endogenous separation that is close to NSSTJ . How-
ever, if the payoff functions Fi(x) are not linear (and this is generically the case in
games with endogenous separation), then the different ”standard” definitions of neutral
stability, which are equivalent in the linear setting, are not equivalent any more (Bomze
and Weibull (1995)), and being NSSTJ does not guarantee Lyapunov stability in the
replicator dynamics in ∆(S). In contrast, the condition that we use to define neutral
stability does guarantee Lyapunov stability in the replicator dynamics in ∆(S).

Izquierdo et al. (2021) provide a definition of neutral stability that looks rather
involved because it uses the population and pool distributions, related by the function
f as defined by (1), as well as a function Ê(z,p) that provides the payoff to a group of
players with strategy distribution z entering a population with pool distribution p.

Definition B.4. A population-pool state {x,p} with x = f(p) is neutrally stable NNSIIV

if x is a Nash equilibrium and for any finite set of strategies S ⊂ Ω such that S(p) ⊆ S
there is a neighborhood OS of p in ∆(S) such that Ê(x,y) ≥ Ê(f(y),y) for every y ∈ OS

satisfying Ê(f(y),p) = Ê(x,p).
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It can be shown that our condition for neutral stability (definition 4), which is a
global condition, involves satisfaction of the condition NNSIIV (which is actually a set
of local conditions).

When comparing our results with those in Carmichael and MacLeod (1997), Fujiwara-
Greve and Okuno-Fujiwara (2009) or Izquierdo et al. (2021), the reader should keep
in mind the different definitions of neutral stability used in each of those papers. In
particular, many of the polymorphic equilibria discussed by Fujiwara-Greve and Okuno-
Fujiwara (2009) do not satisfy definition 4 of neutral stability, and can be destabilized
by other strategies in the replicator dynamics (see also Vesely and Yang (2012)).

C Strategies robust against indirect invasions

Here we consider the equilibrium condition of robustness against indirect invasions or
RAII (van Veelen, 2012) for a strategy in games with endogenous separation. It can
be argued that any reasonable extension of this concept to games with endogenous
separation would require at least neutral stability and that every weakly path-equivalent
strategy is also neutrally stable, where j is said to be weakly path-equivalent to i if

h
[∞]
jj = h

[∞]
ii = h

[∞]
ij (the second equality is implied by the first), which implies that any

mixture y of strategies i and j satisfy E(y, ei) = Fii = Fi(y) = E(y,y). With these
minimum requirements, our results below show that, in many cases of interest, there are
no RAII strategies in games with endogenous separation. We first show that being RAII
requires playing Nash action profiles of the stage game and, in most cases of interest,
it requires Tii = ∞ and a sufficiently low value of δ. For (sufficiently) large values of
δ, and unless the maximum payoff of the stage game is attained at a symmetric Nash
action profile, no strategy is robust against indirect invasions. The reason is that every
strategy i has a path-equivalent strategy j1 that would let a potential invader j2 who
deviates in action (from i or j1) at the first stage of an j29j1 partnership obtain the

maximum stage game payoff afterwards, in an infinite path a
[1,∞]
j2j1

. The payoff Fj2j1 to
such a strategy j2 converges to the maximum stage game payoff as δ → 1.

Proposition C.1. A strategy i ∈ Ω can be robust against indirect invasions only if the
action profiles played in the i9i equilibrium path are Nash profiles of the stage game.

It follows from lemma 3.5 that, unless the maximum symmetric payoff of the stage
game corresponds to a Nash profile, Tii = ∞ is also a necessary condition for a strategy
to be RAII, as it is a necessary condition for neutral stability.

Proof of proposition C.1. Suppose that the action profile (a
[t]
i , a

[t]
i ) = (a, a) is not Nash.

Consider two strategies j and k such that:

• Strategy j is path-equivalent to i, so Fjj = Fii.

• Strategy k behaves with j (or with i) like j up to stage t (i.e., a
[1,t−1]
kj = a

[1,t−1]
jj =

a
[1,t−1]
ii if t > 1) and deviates at t by playing a best response action to action a,

obtaining at that stage a greater payoff than what j obtains in a j9j partnership.
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• From stage t, strategies j and k do not break up and play the action profile that
provides k the maximum possible payoff of the stage game.

Then Fkj > Fjj , so strategy j is not Nash.

Proposition C.2. For stage games with a single Nash action profile which does not
obtain the maximum symmetric payoff, such as the Prisoner’s Dilemma, no strategy in
the game with endogenous separation is RAII.

Proof of proposition C.2. The only possible candidates to be RAII are strategies with
Tii = ∞ that always play the Nash action profile at the equilibrium. But any such
strategy i has a weakly path-equivalent strategy j with finite Tjj that always plays the

Nash action profile in a
[1,Tjj ]
jj , and which, by lemma 3.5, is not neutrally stable.

Example C.1. For the Prisoner’s Dilemma, the only Nash action profile is DD and it
does not obtain the maximum symmetric payoff UCC , so there are no RAII strategies in
the game with endogenous separation. For the Hawk-Dove game, no symmetric action
profile is Nash, so there are no RAII strategies in the game with endogenous separation.

D Proofs

Proof of proposition 1. Equation (1) can be stated as

x =
p ◦ (Bp)

||p ◦ (Bp)||1
with p ∈ ∆(S), (14)

where ◦ represents the Hadamard product. We first show that the vectors p ∈ ∆(S)
satisfying (14) are the same vectors satisfying

p ◦ (Bp) = λx for some λ > 0, with p ∈ ∆(S). (15)

It is immediate that (14) =⇒ (15), with λ = ||p ◦ (Bp)||1. To show that (15) =⇒
(14), from the equality in (15) we obtain ||p ◦ (Bp)||1 = λ||x||1 = λ.

Now, let p̃ be a positive vector such that p̃◦(Bp̃) = x. By an extension of Sinkhorn’s
theorem known as the DAD theorem (Idel, 2016; Brualdi, 1974), this vector exists and
it is unique. It is clear that the vector p̃

||p̃||1 satisfies (15), with λ = 1
||p̃||21

. It is also the

only vector in ∆(S) that satisfies (15), because if q ∈ ∆(S) satisfies q ◦ (Bq) = λqx,
then, by uniqueness of the solution of the matrix scaling problem p̃ ◦ (Bp̃) = x, we have
q =

√
λqp̃ which, together with ||q||1 = 1, implies q = p̃

||p̃||1 .

Proof of proposition 2. Note that xi = 0 ⇐⇒ pi = 0 so, without loss of generality, we

can assume that S is the support of x and both x and p are (positive) vectors in R|S|
>0.

Proposition 1 proved the existence of the inverse function f−1.
Given the symmetric positive matrix B with elements Bij = 1 − δTij , the function

x 7→ p̃ implicitly defined by p̃ ◦ (Bp̃)− x = 0 is Lipschitz for x ∈ ∆(S) because:
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• The Jacobian of p̃ ◦ (Bp̃) has terms Jij(p̃) = p̃iBij + δij
∑

k Bikp̃k, where δij is the

Kronecker delta. It is column strictly diagonally dominant in R|S|
>0 and non-singular

in R|S|
≥0 \ {0}.

• ||p̃||1 ≥ 1 for x ∈ ∆(S), which follows from ||p̃||21 ≥
||p̃◦(Bp̃)||1
Max(Bij)

= 1

Max(1−δTij )
≥ 1.

Combining both results we have that the Jacobian determinant is bounded away from
0 for (values of p̃ such that) x ∈ ∆(S). The function x 7→ p = p̃

||p̃||1 is also Lipschitz

because ||p̃||1 ≥ 1.
Let us last show that f−1 does not admit a general algebraic expression. For a given

population state x with support S and a given value for δ, the system of equations (14)
is a polynomial system in the components of p. The solution of this system can be found
using Gröbner basis (Cox et al., 2015). For four strategies in S, it is easy to find examples
of (14) with rational coefficients (rational xi and δ) which do not admit a solution in
radicals, proving that, for more than three strategies, there is no general solution in
radicals to (14), i.e., there is no general formula that allows to calculate p from x, δ
and (Tij) using addition, subtraction, multiplication, division, and root extraction. For
instance, for four strategies (numbered from 1 to 4), x = [14 ,

1
4 ,

1
4 ,

1
4 ], Tij = min(i, j)

and δ = 1
2 , the solution to (14) using Gröbner basis leads as an intermediate step to a

univariate polynomial in p4 (of degree 8) that is not solvable in radicals. This can be
checked using a Computational Algebra System such as Magma (Bosma et al., 1997),
by calculating the Galois group of the polynomial with rational coefficients and checking
that the Galois group is not solvable.

Proof of lemma 3.1. Let i be a Nash strategy and let a∅ = i(∅) be the first action
played by i. Let j be a strategy that plays a best-response action to a∅ when starting
a new partnership, i.e., j(∅) ∈ BR(a∅), and then breaks the partnership. We have
Fji = maxl U(al, a

∅). Considering that M is an upper bound for Fii, the Nash condition
Fii ≥ Fji requires M ≥ maxl U(al, a

∅) or, equivalently, UBR(a∅) ≤ M .

Proof of lemma 3.2. State x has an associated pool state p = f−1(x). Any strategy
arriving at the pool of singles p to be matched faces a distribution of initial actions
q ∈ ∆(A) (given by qk =

∑
i∈S(x):i(∅)=ak

pi). Given a state x and its associated q,
consider a strategy j that at the beginning of a partnership plays a best response action
to the distribution of actions q and then breaks the partnership. The payoff Fj(x) to
such a strategy is at least m. Consequently, if x is Nash, then E(x,x) has to be greater
than or equal to m. For monomorphic states, we have that Fji is at least m, while M is
an upper bound for Fii.

Proof of lemma 3.3. Suppose that i is a strategy with finite self-breakup period Tii and

the last action profile (a
[Tii]
i , a

[Tii]
i ) in an i9i partnership is not a Nash profile of the stage

game G. Consider a strategy j that when playing against i:

• behaves against i as i itself up to stage Tii − 1, i.e., j(a
[1,t]
ii ) = i(a

[1,t]
ii ) for 0 ≤ t <

Tii − 1,
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• at stage Tii of an i9j partnership plays a best-response action against the action

a
[Tii]
i played by i at that stage, and

• leaves i (i.e., breaks the partnership with i) after stage Tij = Tii.

Strategy j obtains the same stage payoff against i as i itself for the first Tii − 1 stages
of a partnership and a higher payoff at the last stage Tii. Consequently, considering (8),
Fji > Fii, so i cannot be a Nash strategy.

Proof of observation 1. Suppose that i is a Nash strategy with finite self-breakup period
Tii that plays the action profile CC at some stage (between stages t = 1 and t = Tii) of
an i9i partnership. Then we have Fii > UDD. Let tl be the last stage at which CC is
played. Consider a strategy j that when playing against i:

• behaves against i as i itself up to stage tl−1, i.e., j(a
[1,t]
ii ) = i(a

[1,t]
ii ) for 0 ≤ t < tl−1,

• at stage tl of an i9j partnership plays action D, obtaining a stage payoff UDC >
UCC , and

• breaks the partnership with i after stage tl.

Using formula (8), it can be seen that Fji > Fii, so i is not a Nash strategy
(contradiction). The reason, comparing the sequence of payoffs to i in the infinite

series h
[∞]
ii and to j in the infinite series h

[∞]
ji is that j obtains a higher payoff at

stage tl and (if tl < Tii) shortens the sequence of lowest payoffs UDD until the next
high payoffs UCC or UDC .

Proof of lemma 3.4. With the conditions on i, the infinite series of actions that a j-player
faces in a population of i-players (see 7) is (aN , aN , ...). The best stage-payoff against

aN is obtained by aN , and, considering that Fji = V (h∞ji ) = (1 − δ)
∑∞

t=1 δ
t−1U(h

[t]
ji ),

the best payoff against any strategy i satisfying the condition is obtained by strategies

j that generate the path h
[∞]
ji = ((aN , aN ), (aN , aN ), ...), which obtain the payoff Fji =

U(aN , aN ). If i1 and i2 satisfy the conditions for i, we have Fi1(ei1) = Fi1(ei2) =
Fi2(ei1) = Fi2(ei2) = U(aN , aN ). As Fi(x) is a strictly convex combination of the payoffs
Fij for j ∈ S(x), we have proved the result: if x is a mixture of strategies satisfying the
condition for i, we have F (x,x) = U(aN , aN ) ≥ Fj(x) for every j ∈ Ω.

Proof of proposition 3. Given any finite set of strategies S, we can number the strate-

gies and identify distributions x ∈ ∆(S) with real vectors x̂ ∈ ∆|S|−1 ≡ {x̂ ∈ R|S|
+ :∑|S|

k=1 x̂k = 1}. The restriction of Fi to distributions with support in S can then be iden-
tified with a function Fi|S : ∆|S|−1 → R. By proposition 2, Fi|S is Lipschitz continuous

in ∆|S|−1.8

8A function f : ∆|S|−1 → R is Lipschitz continuous in ∆|S|−1 if there exists a positive real constant
K such that, for all x and y in ∆|S|−1, ||f(x)− f(y)|| ≤ K||x− y||.
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Given any finite set of strategies S ⊂ Ω and a neutrally stable state x ∈ ∆(S), it
follows from definition 4 and from the Lipschitz property of the payoff functions Fi|S
in ∆|S|−1 that the point x̂ ∈ ∆|S|−1 associated to state x satisfies the conditions in
Thomas (1985) [Theorem 1] to be a weakly evolutionarily stable state in ∆|S|−1 and,
consequently, x is Lyapunov stable in the replicator dynamics (11) in ∆(S).

Proof of lemma 3.5. Let (aM , aM ) ∈ NG
M be one of the symmetric action profiles (there

may be more than one) that attain the maximum symmetric payoffM = maxa∈A U(a, a).

Suppose that Tii is finite and Fii < M . This implies that h
[∞]
ii is a repetition of a

pattern of length Tii, and, for any fixed t0, there is always t > t0 with U(h
[t]
ii ) < M .

Consider a strategy j that when playing with i behaves like i up to period Tii, but
at that period does not break the partnership and turns to playing action aM forever,
without breaking the partnership. That would make play between strategy i and strategy
j unfold in the same way as it does between two players that play strategy i, with

h
[∞]
ji = h

[∞]
ii = h

[∞]
ij , and hence Fji = Fii = Fij . For t ≤ Tii, two players that play strategy

j obtain a payoff U(h
[t]
jj) = U(h

[t]
ii ) = U(h

[t]
ij ) . For t > Tii, we have U(h

[t]
jj) = M , while

U(h
[t]
ij ) = U(h

[t]
ii ) ≤ M and, for some t > Tii, U(h

[t]
ij ) < M . Consequently, considering

(8), Fjj > Fij , so i is not neutrally stable. Up to now we have proved that if i is neutrally

stable with finite Tii then Fii = M , which implies U(h
[t]
ii ) = M for every t. Suppose

that payoff M is obtained at time t1 by some action profile ht1ii which is not a Nash
equilibrium of the stage game. Then a strategy j that when playing with i chooses the
same action as i up to period t1 (obtaining M at every period up to t1 if t1 ≥ 1), but
at period t1 plays a best response the action taken in ht1ii and breaks the partnership,
obtains a payoff Fji > M = Fii, which cannot happen if i is neutrally stable.

Proof of proposition 4. Let strategy i be weakly path-protecting and let j1 and j2 be
two alternative best responses to ei, i.e., {j1, j2} ∈ BR(ei). Considering that the action

profiles in h
[∞]
ii are symmetric, we have h

[∞]
j1i

= h
[∞]
j2i

= h
[∞]
ii = h

[∞]
ij1

= h
[∞]
ij2

. In a j19j2
partnership, no strategy can take an action different from the one they take when playing
with i until the split-up period Tj1j2 = min(Tij1 , Tij2), because the generated histories up
to that point are the same as in an i9i partnership and, until they break the partnership,

both j1 and j2 take the same action as i does given the history. Consequently, h
[∞]
j1j2

coincides either with h
[∞]
j1i

= h
[∞]
ii or with h

[∞]
j2i

= h
[∞]
ii . Then we have h

[∞]
j1j2

= h
[∞]
ii =

h
[∞]
ij1

= h
[∞]
ij2

, which implies that, for {j1, j2} ∈ BR(ei), Fj1j2 = Fj1j1 = Fii = Fij1 = Fij2 .
Now, if y is a mixture of best responses to ei and j is a best response to ei, we have
Fj(y) = Fii = Fi(y) and, consequently, E(y,y) = Fi(y), proving that i is neutrally
stable.

Proof of lemma 4.1. Let i be a strategy satisfying the conditions of the proposition. It

is clear that Tii = ∞, h
[∞]
ii = ((â, â), (â, â), ...) and Fii = U(â, â). Any strategy j playing

with i-players generates a repeated path h
[∞]
ji in which the action taken by i is always

41



â, so, given that (â, â) is a (strict) Nash profile and that any deviation from the profile
(â, â) is caused by strategy j (i always plays â, so the second action in the profile is

always â), we have U(h
[t]
ji ) ≤ U(â, â) for every t. In fact, since (â, â) is strict Nash, we

have h
[t]
ji ̸= (â, â) =⇒ U(h

[t]
ji ) < U(â, â), and, considering that Fji is a strictly convex

combination of the payoffs U(h
[t]
ji ), it follows that h

[∞]
ji ̸= h

[∞]
ii =⇒ Fji < U(â, â) = Fii,

proving that i is weakly path-protecting.

Proof of proposition 5. Consider a strategy i such that Tii = ∞ and

h
[∞]
ii = (Φm,Φf , (Φp)

∞),

where:

• Φm is a Tm-long repetition of a minmax action profile (ã, ã).

• Φf is a Tf -long sequence of symmetric action profiles.

• Φp is a Tp-long sequence of symmetric action profiles with average stage payoff
ŪΦp > m.

As soon as another strategy j in an i9j partnership deviates from i’s own action, strategy
i breaks the partnership.

Take Φf and Φp as fixed, and the length Tm of Φm as a parameter. We will show
that, for large enough Tm and, then, for large enough δ,

h
[∞]
ji ̸= h

[∞]
ii =⇒ Fji < Fii,

i.e., strategy i is weakly path-protecting. By choosing Φp in a way such that path h
[∞]
ii

is not an infinite repetition of a pattern, strategy i is also path-protecting.
We will need some intermediate results. First, lemma D.1 implies that, in order

to prove the implication h
[∞]
ji ̸= h

[∞]
ii =⇒ Fji < Fii, it is enough to prove that this

statement holds for strategies j whose repeated path h
[∞]
ji differs or deviates from h

[∞]
ii

before repetition of the pattern Φp begins, i.e., between periods t = 1 and t = Tm+Tf +
Tp: if every deviation up to period t = Tm + Tf + Tp is harmful, then every deviation
(no matter when) is harmful. Consequently, it is enough to consider a finite number of
possible deviating paths: those that deviate at some t not greater than Tm + Tf + Tp.

Second, the payoff to a strategy that deviates at t ≤ Tm is bounded above by the
minmax payoff m (because i plays a minmax action up to stage Tm, so the stage payoff
for a strategy j at every stage up to and including the deviating stage t ≤ Tm is bounded
above by m). Let L be the maximum payoff in the stage game. Considering a repeated
sequence (m, ...,m, L, ..., L) of Tm payoffs m and Tf + Tp payoffs L, we have that the
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payoff to a strategy that deviates not later than Tm + Tf + Tp is bounded above9 by

VL ≡ m(1− δTm) + δTm(1− δTf+Tp)L

1− δTm+Tf+Tp
,

and VL is non-decreasing with δ (increasing if L > m).
Third, if an infinite sequence of action profiles Φ ends up repeating some finite pattern

Φ1, i.e., if Φ = (Φ0, (Φ1)
∞) for some finite sequences Φ0 and Φ1, then

10

lim
δ→1

V (Φ) = ŪΦ1 .

This implies

VL ≤ lim
δ→1

VL = α ≡
mTm + L (Tf + Tp)

Tm + Tf + Tp
, (16)

with limTm→∞ α = m, and

lim
δ→1

Fii = ŪΦp > m. (17)

Choose some positive ϵ <
ŪΦp−m

2 . From (16), and considering that α approaches m
as Tm grows, we can find a value for Tm such that α < m+ ϵ, and then, fixing such Tm,
we have VL < m+ ϵ.

From (17), there is some δ1 < 1 such that, for δ > δ1, Fii > ŪΦp − ϵ > m + ϵ.
Consequently, for δ > δ1,

VL < Fii,

proving that strategy i is path-protecting.

For any finite series of action profiles Φ, let (Φ)k represent the sequence made up by
repeating k times the action profiles in Φ. Remember that (Φ)∞ represents the infinite
repetition.

Lemma D.1. Consider two (not necessarily different) strategies j and i with h∞ji =
(Φ0, (Φp)

∞), where Φ0 and Φp are finite sequences of action profiles (and where Φ0 may
be empty). Let Φ1 be another finite sequence of action profiles. If j1 and j2 are strategies
such that

h∞j1i = (Φ0,Φ1)
∞ and

h∞j2i = (Φ0, (Φp)
k,Φ1)

∞ for some k ∈ N

then
sgn(Fj1i − Fji) = sgn(Fj2i − Fji).

9It is easy to check that, for a fixed number of m payoffs Tm, VL is non-decreasing with the number
of L payoffs (VL is a weighted average of m and L ≥ m, with the weight of m decreasing if the number
of L payoffs increases), so, by taking a number of L values equal to Tf + Tp, we can be sure that VL is
an upper bound for the payoff to any strategy that deviates up to t = Tm + Tf + Tp.

10This can be shown using L’Hopital rule.
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Proof of lemma D.1. For any sequence Φ of length T ≥ 1, let

V (Φ) =
1− δ

1− δT

T∑
t=1

δt−1 U(Φ[t]).

Let the respective lengths of Φ0,Φp and Φ1 be T0 ≥ 0, Tp ≥ 1 and T1 ≥ 1. If T0 = 0 let
V (Φ0) = 0. Then

Fji = (1− δT0)V (Φ0) + δT0V (Φp),

Fj1i =
(1− δT0)V (Φ0) + δT0(1− δT1)V (Φ1)

1− δT0+T1
, and

Fj2i =
(1− δT0)V (Φ0) + δT0(1− δk Tp)V (Φp) + δT0+k Tp(1− δT1)V (Φ1)

1− δT0+k Tp+T1
.

Any of the two conditions Fj1i < Fji or Fj2i < Fji can then be seen to be equivalent
(rearranging and simplifying terms) to the condition

δT1(1− δT0)V (Φ0) + (1− δT1)V (Φ1) < (1− δT0+T1)V (Φp).

And this result holds if the inequalities are reversed.

Proof of proposition 6. For histories that do not occur along the equilibrium path it is
immediate that if i is Nash then Fji|a[1,t] ≤ Fii|a[1,t] because for such histories Fji|a[1,t] =
Fji and Fii|a[1,t] = Fii. For histories that occur along the equilibrium path, if there is
some stage T at which some strategy j satisfies F

ji|a[1,T ]
ii

> F
ii|a[1,T ]

ii

then the strategy j′

defined by j′(a[1,t]) = i(a[1,t]) for t ≤ T and j′(a[1,t]) = j(a[T+1,t]) for t > T satisfies

Fj′i = (1− δ)
T∑
t=1

δt−1U(a
[t]
ii ) + δTF

ji|a[1,T ]
ii

> (1− δ)
T∑
t=1

δt−1U(a
[t]
ii ) + δTF

ii|a[1,T ]
ii

= Fii,

which is not possible given that i is Nash.

Proof of proposition A.1. Suppose that a Nash equilibrium state x includes a weakly

path protecting strategy i and some strategy j with h
[∞]
ji ̸= h

[∞]
ii , then:

• Fi(x) = E(x,x), because x is Nash and i is in its support, so i ∈ BR(x), and

• E(x, ei) < Fii, because i is weakly path-protecting (so it is Nash) and x includes a

strategy j that deviates from h
[∞]
ii when playing with i, obtaining a payoff Fji < Fii.

Consequently, x is not neutrally stable.
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Proof of proposition A.2. Let Eq(x) be the set of strategies that are path-equivalent in
S(x) to some strategy in S(x), and let Ēq(x) be the complement of this set. As x is
Nash and path-protecting, we have Fi(x) = E(x,x) for i ∈ Eq(x) and Fi(x) < E(x,x)
for i ∈ Ēq(x). Consequently, any state y that includes strategies both in Eq(x) (for
which Fi(x) = E(x,x)) and in Ēq(x) satisfies E(y,x) < E(x,x), and only mixtures of
strategies in Eq(x) can be (are) alternative best responses to x. Because any strategy
that is path-equivalent in S(x) to strategy i ∈ S(x) behaves like i does with strategies in
Eq(x), for any mixture y of strategies in Eq(x) there is an “internal” state ŷ satisfying
S(ŷ) = S(x) such that E(ŷ,x) = E(x,x), E(x,y) = E(x, ŷ) and E(y,y) = E(ŷ, ŷ).
Consequently, internal neutral stability (which guarantees E(x, ŷ) ≥ E(ŷ, ŷ)) guarantees
neutral stability (E(x,y) ≥ E(y,y)).
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