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Impact:

e New specific heart rate variability (HRV) spectral bands are identified and
characterized as potential biomarkers in pediatric sleep apnea.

e Spectral band BW1 (0.001 — 0.005 Hz) is related to macro sleep disruptions.
e Spectral band BW2 (0.028 — 0.074 Hz) is related to the duration of apneic events.

e An adaptive spectral band within the respiratory range, termed ABWa3, is related to
oxygen desaturations.

e The individual and collective diagnostic ability of these novel spectral bands
outperforms classic HRV bands.
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ABSTRACT

Background: Classic spectral analysis of heart rate variability (HRV) in pediatric sleep
apnea-hypopnea syndrome (SAHS) traditionally evaluates the very low frequency
(VLF: 0-0.04 Hz), low frequency (LF: 0.04-0.15 Hz), and high frequency (HF: 0.15-
0.40 Hz) bands. However, specific SAHS-related frequency bands have not been

explored.

Methods: 1,738 HRV overnight recordings from two pediatric databases (0-13 years)
were evaluated. The first one (981 children) served as training set to define new HRV
pediatric SAHS-related frequency bands. The associated relative power (RP) were
computed in the test set, the Childhood Adenotonsillectomy Trial database (CHAT, 757
children). Their relationships with polysomnographic variables and diagnostic ability

were assessed.

Results: Two new specific spectral bands of pediatric SAHS within 0-0.15 Hz were
related to duration of apneic events, number of awakenings, and wakefulness after sleep
onset (WASO), while an adaptive individual-specific new band from HF was related to
oxyhemoglobin desaturations, arousals, and WASO. Furthermore, these new spectral

bands showed improved diagnostic ability than classic HRV.

Conclusions: Novel spectral bands provide improved characterization of pediatric
SAHS. These findings may pioneer a better understanding of the effects of SAHS on

cardiac function and potentially serve as detection biomarkers.
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1. INTRODUCTION

Pediatric sleep apnea-hypopnea syndrome (SAHS) is a respiratory disturbance
defined by periods of total airflow interruption (apnea) and/or significant airflow
decrease (hypopnea) (1,2). It is highly prevalent, with up to 5% of the general pediatric
population being affected (2), and has been related to increased risk for several
cardiovascular morbidities, such as left and right ventricular hypertrophy, increases in
systemic and pulmonary vascular blood pressure, alterations in autonomic regulation,
and cerebral blood flow and perfusion (2).

Pediatric SAHS is traditionally diagnosed using overnight polysomnography
(PSG) (3,4). To this effect, children will spend a night in a laboratory, while up to 32
biomedical signals are registered, including the electrocardiogram (ECG) (4). These
signals are then evaluated and scored by medical experts using well defined criteria, and
several indices of respiratory disturbance are extracted, among which the apnea-
hypopnea index (AHI) is the most frequently used. AHI consists in the total of apneic
and hypopneic events per hour of sleep (e/h) and defines both SAHS presence and
severity (4). Although the PSG is accepted as the reference diagnostic method for
SAHS, it is time-consuming, expensive and potentially distressing for pediatric subjects
(5,6). In the search for alternatives that can address these issues while also evaluating
cardiovascular morbidity risks, various studies have focused on the analysis of an
abbreviated set of the signals containing cardiac information to gain insights into the
cardiac dynamics in children with SAHS (5,6).

Heart Rate Variability (HRV), a signal derived from the ECG, is a measure of the
fluctuation over time of the period between successive heartbeats (7). HRV assesses
cardiac health, and provides a better understanding of autonomic nervous system (ANS)

homeostasis, which regulates cardiac activity (7). The ANS controls the response of the
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heart to respiratory events, with a recurrent pattern of progressive-bradycardia/abrupt-
tachycardia reflecting activation and deactivation of two of the ANS branches, namely
the parasympathetic and the sympathetic nervous systems (PNS and SNS, respectively)
(8,9). This periodic behavior has motivated previous spectral analyses of HRV, both in
adults (10-13) and children (14-25).

Past studies analyzed the classical HRV spectral bands: very low frequency
(VLF), low frequency (LF), and high frequency (HF) bands, which have fixed
boundaries (0-0.04 Hz, 0.04-0.15 Hz and 0.15-0.40 Hz, respectively) (26). Nevertheless,
some recent work in adults indicates that SAHS modifies the HRV spectrum in a
frequency range comprising portions of the VLF and LF bands (10), suggesting that
specific SAHS-related frequency bands may also be present in children with SAHS.
Furthermore, previous studies have reported that HF, which is known as a respiratory-
modulated band (7), is strongly influenced by age, regardless of health condition (27).
Likewise, it has been shown that cardio-respiratory coordination increases during apneic
events (28), which underlines the influence of the respiration on heart rate. Age-related
alterations are reflected in the frequency at which respiratory peak within HF occurs
(29-32), suggesting that a subject-adaptive analysis is more accurate for this frequency
range. Notwithstanding, all previous HRV analyses in pediatric SAHS neglected to
incorporate the changes in respiration related to age (33).

Based on these considerations, we hypothesized that pediatric SAHS-specific
frequency bands of interest are present and embedded in the ECG, and consequently,
our main objective was to evaluate and characterize the HRV spectrum in a broad
population of children with SAHS. To this effect, we delineated two specific objectives
for this study: (i) identification of putative novel frequency bands, taking into account

SAHS severity groups and subject-specific considerations, and (ii) comparison of their
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diagnostic ability against the classic HRV spectral bands.

2. METHODS

2.1. Subjects and signals under study

This work involved 1,738 pediatric subjects aged between 0-13 years. Two large
cohorts were included: a database from the University of Chicago (UofC) (34,35),
which includes 981 children referred to the Pediatric Sleep Unit at Comer Children’s
Hospital of the UofC (Chicago, IL, USA) suspected of suffering from SAHS; and a
second cohort composed of 757 children from the dataset of the multicenter Childhood
Adenotonsillectomy Trial (CHAT) database (36,37). UofC database was established as
the training set, while the CHAT database served as the test set.

The informed consent of all children caretakers from the UofC sample were
obtained, and the Ethics Committee of the Comer Children’s Hospital of the University
of Chicago approved the protocol (#11-0268-AMO017, # 09-115-B-AMO031, and #
IRB14-1241). Diagnosis was reached using a digital polysomnography system
(Polysmith, Nihon Kohden America INC., Irvine, CA, USA). ECG was recorded at
sample frequencies of 200 or 500 Hz.

For the CHAT sample, details corresponding to entire protocol are available in the
supplementary material of (37). Specifically, a total of 779 nocturnal PSGs of children
aged between 5-10 years were included. ECG signals were acquired at sampling
frequencies of 50, 200, 250, 256 or 512 Hz. Finally, 757 subjects were used from this
dataset since 22 were excluded after applying the signal pre-processing protocol
explained below.

All the subjects included in this study were diagnosed by pediatric sleep

specialists from the different centers and their sleep studies were scored in accordance
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with the American Academy of Sleep Medicine (AASM) rules (38). The AHI was
extracted from the nocturnal PSGs and used to establish SAHS severity. Based on
previous studies (35,39-42), three typical AHI thresholds were selected (1, 5 and 10
e/h) for the division into four severity groups: the groups no-SAHS (AHI<1 e/h), mild
SAHS (1< AHI<5 e/h), moderate SAHS (5<AHI<I10 e/h) and severe SAHS (AHI>10
e/h). Table 1 shows the clinical and demographic data of the population considered.

The ECG signals from both databases were equally pre-processed. First, the 15
initial and final minutes from every signal were removed to avoid early and late artifact
periods. Then, all recordings lasting less than 3 hours were excluded. Afterwards, the
HRV was extracted following an algorithm based on the Hilbert transform proposed by
Benitez et al. (43). The first stage of this algorithm consists in computing the first order
derivative after baseline correction of the ECG (43). The Hilbert transform is
subsequently computed for this derivative to locate regions of high probability of
containing R peaks around true R peaks. Later, a search for actual R peaks positions is
conducted by establishing a threshold derived from the root mean square of the Hilbert
transform for each region (43). Once the R peaks are detected, the R-R intervals
conforming HRV signals are easily calculated (7). Those beats that did not meet the
following criteria were considered as physiologically impossible, and removed (11): (i)
0.33 s < R-Rinterval < 1.5 s and (ii) difference to the previous R-R interval > 0.66 s.
Finally, the HRV signals were resampled to a constant rate in order to obtain equally
spaced time samples and allow their analysis in the frequency domain. This rate of 3.41
Hz (10,11) was chosen to evaluate 5-min epochs as a trade-off between using a power
of two window-length (2'° samples) with fast Fourier transform (FFT) and not adding
unnecessary estimated data. 5-min epochs were chosen as it is the maximum length

where stationarity can be assumed, in order to compute spectral analysis (11).
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2.2. Determination of spectral bands of interest

Welch’s periodogram was applied to estimate the power spectral density (PSD) of
the HRV (44). A Hamming Window of 2*° (50% overlap) and a FFT of 2** points were
used. Then, a normalization was applied to PSDs (PSDn) by dividing the amplitude
values at each frequency by the corresponding total spectral power. This normalization
is intended to minimize the differences due to individual conditions other than SAHS
(45). The bands of interest were defined based on the PSDns from the training group.

Due to the considerations mentioned in the first section, we defined the spectral
bands of interest by combining two different analyses depending on- the frequency
range: in 0-0.15 Hz, which should not be influenced by age, and in 0.15-0.4 Hz, where
an adaptive analysis was adopted.

The adaptive analysis in the HF range was based on previous studies of Milagro et
al. (31,32). Similar to those studies, we chose a 0.15 Hz adaptive range centered in the
individual respiratory peak frequency. However, rather than obtaining this central
frequency from the impedance pneumography signal, we approximated the individual
peak position as the frequency where the highest PSD value is found into the HF range.
As it was previously reported, this approximation is an accurate estimation of the
respiratory peak (30). Thereby, we obtained an adaptive bandwidth of 0.15 Hz for each
subject, formed by 91 samples extracted from the PSD of HF.

Once we defined the adaptive band for each individual, the selection of bands of
interest in both the range 0-0.15 Hz and the adaptive range was based on statistical
differences between PSDns from the training set severity groups. We computed the non-
parametric Mann-Whitney U test for each two severity groups comparing frequency by
frequency (in the band of 0-0.15 Hz), or sample by sample (in the adaptive one), the

amplitude values from the PSDns. Therefore, six statistical tests were computed. After
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applying the Bonferroni correction, we selected p-value < 0.01 as the significance level
and established as bands of interest those ranges where at least two of the tests yielded
statistical differences.

Figures 1A and 2A show the averaged PSDns of the four SAHS groups into the 0-
0.15 Hz and the adaptive band, respectively. Some differences between groups can be
appreciated, with shaded areas as the ranges where statistical differences were found.
Figures 1B and 2B show the p-values reached. According to this methodology, the
bands of interest selected in the range 0-0.15 Hz were BW1 [0.001 — 0.005] Hz and
BW2 [0.028 — 0.074] Hz. Correspondingly, the adaptive bands selected in the adaptive
range were ABW1 [samples 10-18], ABW?2 [samples 24-26] and ABW3 [samples 34-

55].
2.3. Feature extraction: relative power

The sum of PSDn values into a given frequency range is known as relative power
(RP). In HRV signals, spectral powers from VLF, LF, and HF bands have been
commonly assessed (7,26). LF band has been related to both sympathetic and
parasympathetic tone (7). The HF band is strongly related to the respiratory rhythm, as
well as with the parasympathetic tone (7,31,32). Physiological interpretation of VLF
band is unclear, and it has been associated to sympathetic tone and thermoregulatory
effects in long-term recordings (7,26). The LF/HF ratio is another common explored
measure, and used as a reflection of the balance between sympathetic and
parasympathetic tones (7,26). Because these parameters have been widely assessed in
the pediatric SAHS context (14-25), we have chosen RP as the approach to characterize
the activity in all the frequency bands considered in this study. Thus, we have computed
RP of the 3 classical frequency bands (RPvir, RPLr, RPHE), the 5 bands of interest
(RPsw1, RPsw2, RPagwi, RPasw2, RPagws) and the LF/HF ratio.

10
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2.4. Assessment of the diagnostic ability of the HRV spectrum

In order to compare the diagnostic ability of the new frequency bands of interest
with the classical ones, we first evaluated the individual diagnostic performance of each
parameter extracted from the HRV spectrum. This was achieved by using optimum cut-
off points from the receiver operating-characteristic (ROC) curve in the training set.
Then, thresholds of 1, 5 and 10 e/h were selected, and binary classification was
performed.

The joint diagnostic performance of the parameters was evaluated by constructing
two models. On the one hand, a model containing the RPs from the 5 bands of interest
was considered. On the other hand, a model with the 3 classic RPs and the LF/HF ratio
was assessed. Then, two classifiers based on linear discriminant analysis (LDA) were
trained in each binary classification for the three severity thresholds used in this study,
and the diagnostic performance in the test set was obtained. The LDA classifier was
selected due to its simplicity and its proved utility in the SAHS context (46,47). LDA is
a supervised learning algorithm which separates the input features space into decision
regions, defining linear decision boundaries (47). A discriminant score y; (X) is

computed for each class in‘accordance with (46):

Y () = W3 — w7y + In P(G) (1)
where Y is the covariance matrix and g is the mean vector for class Cj and P(C)) its
corresponding prior probability, i.e., the proportion of input feature vectors (X;)

belonging to class C;. After computing each discriminant score, the class with the higher

y; is assigned to the input vector.
2.5. Statistical analysis

Features considered in this study did not fit either normality or homoscedasticity

11
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tests. For this reason, the non-parametric Kruskall-Wallis test was applied to assess
statistically significant differences (p-value < 0.01 after Bonferroni correction) between
RPs from SAHS severity groups in both datasets. The joint and individual diagnostic
performances were evaluated in terms of sensitivity (Se, proportion of subjects with
SAHS correctly diagnosed), specificity (Sp, proportion of subjects without SAHS
correctly diagnosed) and accuracy (Acc, proportion of subjects correctly diagnosed).
We also evaluated the area under ROC curve (AUC). All these diagnostic evaluations
were obtained in the test set.

Furthermore, we conducted a correlation analysis to investigate possible
relationships between RPs and several polysomnographic indices related to SAHS,
sleep quality and structure. Indices related to SAHS were total AHI, obstructive AHI
(OAHI), obstructive apnea index (OAl), and oxygen desaturation index (ODI). On the
other hand, indices related to sleep quality and structure were the wake after sleep onset
(WASOQO), the number of awakenings during total sleep time (#Awakenings), percentage
of total sleep time spent in N1(%N1), N2 (%N2), N3 (%N3), and REM (%REM) stages,
and total arousal index (TAI, arousals per hour of sleep). Spearman’s partial correlation
coefficient (ps) was applied to control for the influence of age in the relationships
between RPs and these polysomnographic indices. In order to validate the usefulness of

our new bands established on the training set, correlations were evaluated in the test set.

12
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3. RESULTS

3.1. Relative powers

Table 2 shows the RPs extracted in each frequency band for each severity group
(median [interquartile range]), together with the p-values obtained using the Kruskall-
Wallis test in both the training and the test set. RPgw2, RP.r and LF/HF showed clear
increases at higher SAHS severities, with RPgw, and RP_r showing p-values < 10 after
Bonferroni correction (denoted as p-value << 0.01) in both sets. RPgw1 showed a
decrease with SAHS in the two sets, as did RPagw2, RPagws and RPyg, but only in the
training set for these three measures. VLF was the only band that did not show

statistically significant differences in any of the two sets evaluated.
3.2. Correlation analysis in the test set

Correlation results are shown in Table 3. Spearman’s partial correlation
coefficient (ps) is represented for each RP and variable, along with the corresponding p-
value. No statistically significant correlations in RPagw: and RPagw, were obtained
with any of the polysomnographic indices considered. Despite the generally low |ps
values reached, some statistically significant correlations emerged in the other bands.
RPgw1 showed positive ps with macro sleep disruptions related variables (#Awakenings
and WASO), while RPy_r showed association with #Awakenings in a lower degree than
RPsw1. RPgw2 reached the highest absolute correlations with all the SAHS related
indices, as well as with TAI. RPagws was the only adaptive band that reached
statistically significant correlations, showing negative ps with ODI, WASO and TAl.
Similar to RPagws, RPur presented significant negative correlations with ODI and
WASO, but showed lower values of |ps|. Indices related with sleep stages did not show

any statistically significant correlations with the RPs evaluated.
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3.3. Diagnostic ability assessments

Table 4 shows the results achieved by each individual RP as well as the two LDA
models. The individual results showed that the highest AUC was always obtained with
RPgw: in the three SAHS severity thresholds considered, together with the highest
accuracies and specificities in 5 e/h and 10 e/h sub-groups. The only classic band which
improved any result of the bands of interest was RPy ¢ (sensitivity in 1 e/h). It is
noteworthy that the diagnostic performance obtained in HF was always outperformed
by at least one of the three adaptive bands of interest, except for specificity in the lowest
threshold.

Finally, when LDA models were examined, the highest diagnostic performance
was generally obtained with the models formed by RPs in our five bands of interest.
Only specificity in 1 e/h threshold was higher with classic bands model, but

sensitivity/specificity pair was strongly unbalanced.
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4. DISCUSSION

In this study, new HRV spectral bands of interest were identified and evaluated to
gain insight into cardiovascular dynamics in the presence of pediatric SAHS. These
bands were significantly correlated with respiratory events, as well as with micro and
macro sleep disruptions. Our newly identified bands also showed a higher diagnostic
yield than the widely analyzed classical spectral bands, suggesting that new spectral

bands are more specific when HRV is analyzed in the pediatric SAHS context.

4.1. Physiological interpretation and usefulness of the new spectral bands of

interest

BW1 (0.001 — 0.005 Hz) is a narrower band within VLF (26). The physiological
meaning of VLF band is under discussion (11), and previous studies analyzing this band
did not find differences across pediatric SAHS severity groups (22,23). In this study,
RPyv.r was the only parameter that did not show significant differences in any of the
both sets evaluated. However, RPgw; differed between groups in both the training and
the test set, as well as showed statistically significant ps with the number of awakenings
and WASO in the test set. These findings suggest that, contrary to the whole VLF band,
both the occurrence of the awakenings and the time spend awake is embedded in BW1.
As one of the SAHS consequences is sleep fragmentation, this observation may drive
the improvement in the individual diagnostic ability of RPgw; compared to RPyf in
terms of AUC.

BW2 (0.028 — 0.074 Hz) showed the strongest correlations with all SAHS
respiratory indices (AHI, OAHI, OAI, and ODI) and TAlI, the latter being composed of
many respiratory-related arousals induced by the disease (48). Furthermore, BW2
reached the highest individual diagnostic performance, clearly improving the accuracy

and AUC of the remaining new and classic bands in the 5 e/h and 10 e/h thresholds.
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BW2 range (0.028 — 0.074 Hz) comprises part of VLF and LF, which agrees with
previous results reported for adults (10). Moreover, when analyzing overnight airflow in
adults, prior studies found a similar band of interest (= 0.025 — 0.050 Hz) (49,50). These
similarities in cardiac and breathing signals may be explained by the increment in the
cardio-respiratory coordination found when SAHS is present (28). Similarly, the slight
differences in the bandwidth may be explained by lower duration of cardiac events
versus respiratory events, as well as by the different annotation rules for apneic events
in children and adults (38). Such rules will score a pediatric apneic event lasting at least
2 respiratory cycles, usually corresponding to 6 seconds. Thus, the BW2 frequency
range, which reflects periodicities between 13 and 35 seconds, is also consistent with
these annotations, while suggesting a duration for cardiac-related events. According to
the above-mentioned considerations, there are robust indications that the typical SAHS-
related bradycardia/tachycardia patterns are reflected in BW2, underlining the potential
usefulness of this HRV band in the pediatric SAHS context.

As reflected in Figure 2, the main differences between SAHS severity groups in
the adaptive respiratory band coincide with ABW3 (samples 34-55), with averaged PSD
values decreasing as SAHS worsens, and RPagws showing statistically significant
differences in the training set. Moreover, ABW3 also showed statistically significant
negative correlations with ODI, WASO, and TAI, which were higher than the
corresponding for RPye. Thus, the higher the power in ABW3, the lower values will be
found for oxyhemoglobin desaturations, awake time, and arousals. This finding may be
indicative that normal sleep respiration activity decreases as awakening or micro
awakening periods arise, which are often driven by inadequate gas exchange and,
eventually, blood oxygen deficits (1,38). This would explain the increased AUC showed

by ABWa3 in the three AHI thresholds compared to HF, and further support the adaptive
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analysis rather than the fixed HF band.

ABW!1 and ABW?2 achieved similar diagnostic performance to HF, except in the
higher severity threshold, where the diagnostic ability was markedly lower. Moreover,
these two bands of interest did not show any significant correlation with the PSG
indices. To investigate whether they are really useful, a final analysis was conducted.
The diagnostic ability of the LDA models formed by RPs of the bands of interest with
and without considering ABW1 and ABW?2 is showed in Table 5. It can be appreciated
that there was a slight decrease in AUC for 1 e/h and 5 e/h thresholds when both bands
were included, with similar accuracies, suggesting that these bands show no evidence of
diagnostic utility. It also implies that only a frequency range of ~ 0.04 Hz around the
adaptive respiratory peak, which corresponds to the width of ABW3, would be enough

to analyze HF in SAHS cases.
4.2. Comparison with previous work

To the best of our knowledge, this is the first work searching for specific HRV
spectral bands of interest in the pediatric SAHS context. Previous studies in the
frequency domain only analyzed the HRV classic frequency bands (14-25).

The common finding among previous studies pointed to increased LF activity
(14,21) and LF/HF ratio (14,17,20), as well as decreased HF power (16,17,19) as SAHS
worsens. Adenotonsillectomy, the common treatment for SAHS in children, reversed
these trends (18). This agrees with the results shown in Table 2. It seems that
intermittent hypoxia and episodic arousals, which are present in children with SAHS
and accompanied by increases in sympathetic outflow (reflected in the increased RP )
underlie the autonomic changes that persist even beyond sleep period. The effect of
SAHS in the ANS was analyzed in previous studies (51,52). Somers et al. showed that,
in young healthy adults, intermittent hypoxia during sleep derived in heightened

17
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sympathetic activation, even when the stimulus was removed. In the same way, subtle
changes in autonomic reactivity are detectable during arousals in healthy children as
well as in children with SAHS during wakefulness (53,54). All these evidences along
with the results shown in Table 2 supports previous findings that pediatric SAHS leads
to enhanced sympathetic activity, as well as decreased parasympathetic activation,
resulting in impaired cardiac autonomic modulation. The absence of differences in
RPyr is also in accordance with previous studies analyzing this band (22,23).

On the other hand, previous studies originating from a single research group (23—
25) conducted an automated classification of pediatric subjects into SAHS or control
groups. These studies involving only 21 children, derived HRV parameters from
declines in amplitude fluctuations of the photoplethysmography oximetry signal.
Accuracies in the range 73.3-80.0%, together with sensitivities between 62.5-87.5% and
specificities between 71.4-85.7% were reported. Despite the similar results achieved in
the present study, the different criteria used to assess SAHS presence and severity
makes further comparisons difficult. Similarly, only a previous study conducted
automated classification while exclusively evaluating HRV signal in pediatric SAHS
context (15). However, unlike us, this study focused on classification of each apneic
event rather than each subject, such that their findings and current results cannot be
compared. Thus, this is the first study conducting automated classification of pediatric

subjects into severity SAHS groups employing HRV signals exclusively.
4.3. Limitations and outlook

Despite the potential utility of our findings, we need to mention some of the
limitations of this study. First, our LDA model performance is not yet sufficient for
widespread diagnostic use, being outperformed by the results derived from the study of
other polysomnographic signals such as blood oxygen saturation or airflow, which have
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a direct acquisition (34,41). However, we need to remark that the aim of this study was
not at optimizing classification performance, but rather aimed to characterize new
SAHS-specific spectral bands and compare their diagnostic ability against the classic
HRV bands. Thus, this is a first step that justifies future explorations of more complex
predictive models with the aim to further improve the diagnostic usefulness and
characterization of these novel bands. Finally, despite the robust associations found for
BW1, BW2, and ABW3 relative to standard PSG indices, both ABW1 and ABW?2 need

further investigation to clarify their significance in pediatric SAHS.
4.4. Conclusions

This is the first study whereby specific HRV spectral bands of interest in pediatric
SAHS have been identified and characterized. We have defined three new spectral
bands that show significant associations with SAHS disease severity: BW1 (0.001 —
0.005 Hz), related to macro sleep disruptions; BW2 (0.028-0.074 Hz), related to the
duration of apneic events, and ABW3, an adaptive band within the respiratory range,
related to oxyhemoglobin desaturations and sleep disruption. Higher individual and
collective diagnostic ability were achieved by the RPs of the new bands compared with
the classical RPs for SAHS severity thresholds of 1, 5 and 10 e/h. An LDA model that
incorporated five RPs from the new spectral bands achieved the highest diagnostic
performance (82.8% Acc, 0.796 AUC for 10 e/h threshold). Hence, our results suggest
that the new HRV bands provide more specific information on pediatric SAHS, and that
such novel information could be used to develop advanced automated SAHS detection
methodologies. Thus, future studies incorporating these novel spectral bands should be

pursued to further establish their clinical significance and clinical applications.
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FIGURE LEGENDS

Figure 1. (A) Averaged PSDns in the 0-0.15 Hz band in the training set for the four
severity groups. (B) p-value for each frequency in each comparison between SAHS
severity groups after Bonferroni correction in the training group for the range 0-0.15

Hz. Grey shaded areas represent those ranges where statistical differences were found.

Figure 2. (A) Averaged PSDns in the adaptive band in the training set for the four
severity groups. (B) p-value for each frequency in each comparison between SAHS
severity groups after Bonferroni correction in the training set for the adaptive band
selected. Grey shaded areas represent those ranges where statistical differences were

found.
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Table 1. Clinical and demographic data from children included in the study.

All Training group (UofC) Test group (CHAT)
Subijects (n) 1738 981 757
Age (years) 6.4 [3.3] 6.0 [6.0] 7.0[2.4]
Males (n) 962 (55.35%) 602 (61.37%) 360 (47.95%)
BMI (kg/m?) 17.63 [5.37] 18.02 [5.86] 17.28 [4.64]
AHI (e/h) 2.23[5.27] 3.8[7.76] 1.46 [2.07]
AHI >1 (e/h) 1309 (75.31%) 808 (82.36%) 501 (66.18%)
AHI > 5 (e/h) 519 (29.86%) 407 (41.49%) 112 (14.80%)
AHI > 10 (e/h) 298 (17.15%) 229 (23.34%) 69 (9.11%)

Data are showed as median [interquartile range] or n (percentage).

UofC: University of Chicago, CHAT: Childhood Adenotonsillectomy Trial; BMI: Body Mass Index;
AHI: apnea—hypopnea index, BMI: body mass index.
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Table 2. Relative power values (median [interquartile range]) in the training and the test

sets for the four severity groups.

TRAINING SET
Feature no-SAHS Mild SAHS Moderate SAHS Severe SAHS p-value
RPvLF 0.370[0.174]  0.359 [0.163] 0.381[0.179] 0.371[0.164] 0.675
RP.F 0.225[0.060]  0.224 [0.075] 0.235[0.081] 0.244 [0.090] <<0.01
RPur 0.317[0.179]  0.340[0.195] 0.300 [0.218] 0.275[0.213] <0.01
LF/HF 0.706 [0.510]  0.697 [0.594] 0.814 [0.791] 0.892 [0.985] <<0.01
RPpw1 0.083 [0.055] 0.082 [0.050] 0.083 [0.047] 0.071 [0.049] <0.01
RPew2 0.169 [0.054] 0.175 [0.068] 0.185 [0.086] 0.213 [0.107] <<0.01
RPagw1 0.017 [0.010] 0.016 [0.009] 0.015 [0.007] 0.017 [0.010] <0.01
RPagw2 0.008 [0.005]  0.007 [0.005] 0.006 [0.004] 0.005 [0.005] <0.01
RPaBws3 0.119[0.110] 0.121]0.121] 0.110]0.115] 0.087 [0.098] <<0.01
TEST SET

Feature no-SAHS Mild SAHS Moderate SAHS Severe SAHS p-value
RPvLE 0.337[0.140]  0.332[0.155] 0.282 [0.149] 0.342 [0.186] 0.200
RP.r 0.218[0.060]  0.227 [0.063] 0.222 [0.090] 0.259 [0.110] <<0.01
RPHE 0.368 [0.167]  0.363 [0.184] 0.388 [0.198] 0.307 [0.217] 0.015
LF/HF 0.610 [0.407]  0.649 [0.462] 0.597 [0.539] 0.818 [0.886] <0.01
RPgw1 0.081[0.044]  0.078 [0.039] 0.063 [0.045] 0.061 [0.043] <0.01
RPw2 0.148 [0.055]  0.161 [0.062] 0.165 [0.078] 0.209 [0.113] <<0.01
RPaw1 0.018 [0.009]  0.018[0.009] 0.018 [0.007] 0.018 [0.010] 0.880
RPagw2 0.008 [0.005]  0.008[0.004] 0.009 [0.005] 0.007 [0.006] 0.421
RPagws  0.132[0.108]  0.123[0.107] 0.134 [0.143] 0.103 [0.093] 0.004*

RP: Relative power; SAHS: Sleep apnea-hypopnea syndrome; VLF: Very low frequency; LF: Low

frequency; HF: High Frequency.

p-values < 10-4 after Bonferroni correction are represented as << 0.01

* Non-significant after Bonferroni correction.
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Table 3. Results of the partial correlation assessments between relative powers and the

polysomnographic indices in the test set.

CLASSIC BANDS

PSG index Ps RI:)VL['):-vaIue Ps RPIJ;)-value Ps RPHFp-value Ps I_F/H|CIJ:-vaIue
AHI -0.031 0.391 0.150 <0.01 -0.075 0.040 0.118 0.001*
OAHI -0.073 0.043 0.088 0.015 -0.012 0.737 0.046 0.207
OAl -0.035 0.333 0.067 0.066 -0.031 0.392 0.052 0.154
ODI 0.039 0.289 0.194 <<0.01 -0.161 <<0.01 0.195 <<0.01
#Awakenings 0.133 <0.01 0.036 0.324 -0.115 0.014 0.086 0.018
WASO 0.071 0.049 0.112 0.002*  -0.146 <0.01 0.145 <0.01
%N1 0.003 0.930 0.063 0.084 -0.040 0.266 0.058 0.111
%N2 -0.085 0.019 -0.076 0.038 0.098 0.007*  -0.112 ~ 0.002*
%N3 0.068 0.060 0.074 0.043 -0.089 0.014 0.101 0.005*
%REM 0.041 0.262 -0.083 0.022 0.030 0.404 -0.047 0.197
TAI 0.031 0.389 0.128 <0.01 -0.098  0.007* 0.126 <0.01
BANDS OF INTEREST

PSG index RF)BW1 RF)BWZ Rl:)ABWI RF>ABW2 RF>ABW3

Ps p-value  pg p-value  ps p-value  ps p-value  ps p-value
AHI -0.132 <0.01 0.233 <<0.01 -0.010 0.786 -0.049 0.179 -0.101 0.005*
OAHI -0.157 <0.01 0.164 <<0.01 -0.002 0.962 -0.021 0.555 -0.033 0.368
OAl -0.096 0.008* 0.149 <0.01 -0.010 0.774 -0.031 0.395 -0.049 0.180
oDl -0.033 0.358 0.220 <<0.01 -0.009 0.809 -0.100 0.006* -0.192 <<0.01
#Awakenings 0.174 <<0.01 0.069 0.059 -0.036 0.329 -0.055 0.134 -0.096 0.008*
WASO 0.186 <<0.01 0.054 0.141 0.024 0.514 -0.046 0.210 -0.195 <<0.01
%N1 0.001 0.969 0.087 0.017 0.020 0.584 -0.005 0.887 -0.063 0.083
%N2 -0.073  0.045 -0.092 0.011 0.009 0.798 0.071 0.050 0.083 0.023
%N3 0.058 0.111 0.052 0.155 -0.028 0.443 -0.092 0.011 -0.066 0.069
%REM 0.048 0.187 -0.049 0.175 -0.004 0913 0.019 0.594 0.041 0.262
TAI -0.059 0.105 0.220 <<0.01 -0.025 0.492 -0.043 0.237 -0.123 <0.01

PSG: Polysomnographic; RP: Relative Power; VLF: Very low frequency; LF: Low frequency; HF: High
Frequency; AHI: Apnea-Hypopnea Index; OAHI: Obstructive AHI; OAI: Obstructive Apnea Index; ODI:
Oxygen desaturation index; WASO: Wake after sleep onset; %N1: Time spent in N1 stage; %N2: Time
spent in N2 stage; %N3: Time spent in N3 stage; %REM: Time spent in REM stage; TAI: Total arousals

index.

* Non-significant after Bonferroni correction.
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Table 4. Diagnostic performance in the test set for each relative power in each
frequency band, as well as for both linear discriminant analysis models in terms of

Sensitivity (Se %), Specificity (Sp %), Accuracy (Acc %) and AUC.

Feature/Model AHI Threshold =1 e/h : AHI Threshold =5 e/h | AHI Threshold = 10 e/h

Se Sp Acc AUC | Se Sp Acc AUC | Se Sp Acc AUC
RPyLr 68.9 31.6 56.3 0.518 33.0 65.0 60.2 0.456 40.6 64.2 62.1 0.495
RP_ ¢ 43.5 62.9 50.1 0.557 52.7 58.4 57.6 0.590 59.4 58.4 58.5 0.666
RPye 35.5 71.9 47.8 0.523 39.3 68.1 63.8 0.540 43.5 76.7 73.7 0.605
LF/HF 37.7 70.3 48.7 0.540 455 66.8 63.7 0.567 49.3 70.8 68.8 0.643
RPgw1 66.3 45.3 59.2 0.559 65.2 54.0 55.6 0.621 69.6 52.3 539 0.624
RPgsw2 32.7 78.1 48.1 0.591 455 82.0 76.6 0.670 58.0 78.2 76.4 0.751
RP agw1 52.7 49.2 515 0.516 41.1 59.4 56.7 0.504 55.1 39.0 40.4 0.489
RPagw:2 49.1 55.1 51.1 0.526 36.6 69.8 64.9 0.524 44.9 478 47.6 0.451
RPagw3 455 56.6 49.3 0.532 44.6 64.0 61.2 0571 49.3 64.0 62.6 0.628
LDA Classic Bands 25.7 81.3 445 0.559 46.4 72.2 68.4 0.633 50.7 75.3 73.1 0.685
LDA Bands of Interest 42,5 72.3 52.6 0.592 :50.0 80.9 76.4 0.688 63.8 84.7 82.8 0.796

RP: Relative Power; VLF: Very low frequency; LF: Low frequency; HF: High Frequency; LDA: Linear
discriminant analysis; AHI: Apnea-hypopnea index.
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Table 5. Diagnostic performance in the test set for both linear discriminant analysis

models formed by bands of interest with and without RPagw: and RPagw2 in terms of

Sensitivity (Se %), Specificity (Sp %), Accuracy (Acc %) and AUC.

L DA Model AHI Threshold =1 e/h AHI Threshold =5 e/h AHI Threshold = 10 e/h
ode

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC
\é\;ﬁzsbom 425 723 526 0592 500 809 764 0688 :63.8 847 828 0.796
Without
both bands 37.7 80.1 52.0 0.597 482 80.8 760 0.696 @ 62.8 843 823 0.774

RP: Relative Power; AHI: Apnea-hypopnea index.
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