
Heart rate variability spectrum characteristics in children with sleep
apnea

Cite this article as: Adrián Martín-Montero, Gonzalo C. Gutiérrez-Tobal, Leila Kheirandish-Gozal,
Jorge Jiménez-García, Daniel Álvarez, Félix del Campo, David Gozal and Roberto Hornero, Heart rate
variability spectrum characteristics in children with sleep apnea, Pediatric Research
doi:10.1038/s41390-020-01138-2

This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that has been
accepted for publication but has not been copyedited or corrected. The official version of record that is
published in the journal is kept up to date and so may therefore differ from this version.

Terms of use and reuse: academic research for non-commercial purposes, see here for full terms.
https://www.nature.com/authors/policies/license.html#AAMtermsV1

©    2020 Macmillan Publishers Limited, part of Springer Nature.

https://doi.org/10.1038/s41390-020-01138-2
https://www.nature.com/authors/policies/license.html#AAMtermsV1


1 

 

Heart rate variability spectrum characteristics in 

children with sleep apnea 

Adrián Martín-Montero
a,

*, Gonzalo C. Gutiérrez-Tobal
a,b

, Leila Kheirandish-

Gozal
c
, Jorge Jiménez-García

a
, Daniel Álvarez

a,b,d
, Félix del Campo

a,b,d
, David 

Gozal
c
, and Roberto Hornero

a,b
 

a
 Biomedical Engineering Group, University of Valladolid, Valladolid, Spain. 

b
 CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, 

Biomateriales y Nanomedicina, Valladolid, Spain. 

c
 Department of Child Health and The Child Health Research Institute, The University 

of Missouri School of Medicine, Columbia, Missouri. 

d
 Sleep-Ventilation Unit, Pneumology Department, Río Hortega University Hospital, 

Valladolid, Spain. 

 

Author Contributions 

Adrián Martín-Montero analyzed and interpreted data, drafted the manuscript and 

approved the final version. 

Gonzalo C. Gutiérrez Tobal designed the study, analyzed and interpreted data, revised 

the manuscript and approved the final version. 

Leila Keirandish-Gozal acquired data, recruited and diagnosed patients, revised the 

manuscript and approved the final version. 

Jorge Jiménez-García analyzed and interpreted data, revised the manuscript and 

approved the final version. 

©    2020 Macmillan Publishers Limited, part of Springer Nature.



2 

 

Daniel Álvarez interpreted data, revised the manuscript and approved the final version. 

Félix del Campo obtained funding, revised the manuscript and approved the final 

version. 

David Gozal designed the study, acquired data, recruited and diagnosed patients, 

revised the manuscript and approved the final version. 

Roberto Hornero designed the study, obtained funding, revised the manuscript and 

approved the final version. 

 

* Corresponding author: Adrián Martín-Montero 

Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad 

de Valladolid, Campus Miguel Delibes, Paseo Belén 15, 47011 – Valladolid, Spain. 

Tel. +34 983 423000 ext. 4713 

E-mail address: adrian.martin@gib.tel.uva.es  

URL: www.gib.tel.uva.es 

 

Patient’s consent statement: The informed consent to be considered in the research 

was obtained in all participants and the study protocol was approved by the Ethics 

Committee of the Comer Children’s Hospital of the University of Chicago (reference 

numbers #11-0268-AM017, # 09-115-B-AM031, and # IRB14-1241). 

 

Statement of financial support: This work was supported by 'Ministerio de Ciencia, 

Innovación y Universidades' and ‘European Regional Development Fund (FEDER)’ 

under projects DPI2017-84280-R and RTC-2017-6516-1, by ‘European Commission’ 

©    2020 Macmillan Publishers Limited, part of Springer Nature.

http://www.gib.tel.uva.es/


3 

 

and ‘FEDER’ under projects 'Análisis y correlación entre el genoma completo y la 

actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer' and 

'Análisis y correlación entre la epigenética y la actividad cerebral para evaluar el riesgo 

de migraña crónica y episódica en mujeres' (‘Cooperation Programme Interreg V-A 

Spain-Portugal POCTEP 2014–2020’), and by ‘CIBER en Bioingeniería, Biomateriales 

y Nanomedicina (CIBER-BBN)’ through ‘Instituto de Salud Carlos III’ co-funded with 

FEDER funds. A. Martín-Montero was in receipt of a “Ayudas para contratos 

predoctorales para la Formación de Doctores” grant from the Ministerio de Ciencia, 

Innovación y Universidades (PRE2018-085219). J. Jiménez-García was in receipt of a 

‘Ayudas para la contratación de personal técnico de apoyo a la investigación’ grant 

from the ’Junta de Castilla y León’ funded by the European Social Fund and Youth 

Employment Initiative. L. Kheirandish-Gozal and D. Gozal were supported by National 

Institutes of Health (NIH) grant HL130984. 

 

Disclosure statement: There are no disclosures that could inappropriately influence 

this research work. 

Category of study: Clinical Research Article. 

Impact: 

 New specific heart rate variability (HRV) spectral bands are identified and 

characterized as potential biomarkers in pediatric sleep apnea. 

 

 Spectral band BW1 (0.001 – 0.005 Hz) is related to macro sleep disruptions. 

 

 Spectral band BW2 (0.028 – 0.074 Hz) is related to the duration of apneic events. 

 

 An adaptive spectral band within the respiratory range, termed ABW3, is related to 

oxygen desaturations. 

 

 The individual and collective diagnostic ability of these novel spectral bands 

outperforms classic HRV bands. 
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ABSTRACT 

Background: Classic spectral analysis of heart rate variability (HRV) in pediatric sleep 

apnea-hypopnea syndrome (SAHS) traditionally evaluates the very low frequency 

(VLF: 0-0.04 Hz), low frequency (LF: 0.04-0.15 Hz), and high frequency (HF: 0.15-

0.40 Hz) bands. However, specific SAHS-related frequency bands have not been 

explored. 

Methods: 1,738 HRV overnight recordings from two pediatric databases (0-13 years) 

were evaluated. The first one (981 children) served as training set to define new HRV 

pediatric SAHS-related frequency bands. The associated relative power (RP) were 

computed in the test set, the Childhood Adenotonsillectomy Trial database (CHAT, 757 

children). Their relationships with polysomnographic variables and diagnostic ability 

were assessed. 

Results: Two new specific spectral bands of pediatric SAHS within 0-0.15 Hz were 

related to duration of apneic events, number of awakenings, and wakefulness after sleep 

onset (WASO), while an adaptive individual-specific new band from HF was related to 

oxyhemoglobin desaturations, arousals, and WASO. Furthermore, these new spectral 

bands showed improved diagnostic ability than classic HRV. 

Conclusions: Novel spectral bands provide improved characterization of pediatric 

SAHS. These findings may pioneer a better understanding of the effects of SAHS on 

cardiac function and potentially serve as detection biomarkers.  
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1. INTRODUCTION 

Pediatric sleep apnea-hypopnea syndrome (SAHS) is a respiratory disturbance 

defined by periods of total airflow interruption (apnea) and/or significant airflow 

decrease (hypopnea) (1,2). It is highly prevalent, with up to 5% of the general pediatric 

population being affected (2), and has been related to increased risk for several 

cardiovascular morbidities, such as left and right ventricular hypertrophy, increases in 

systemic and pulmonary vascular blood pressure, alterations in autonomic regulation, 

and cerebral blood flow and perfusion (2). 

Pediatric SAHS is traditionally diagnosed using overnight polysomnography 

(PSG) (3,4). To this effect, children will spend a night in a laboratory, while up to 32 

biomedical signals are registered, including the electrocardiogram (ECG) (4). These 

signals are then evaluated and scored by medical experts using well defined criteria, and 

several indices of respiratory disturbance are extracted, among which the apnea-

hypopnea index (AHI) is the most frequently used. AHI consists in the total of apneic 

and hypopneic events per hour of sleep (e/h)  and defines both SAHS presence and 

severity (4). Although the PSG is accepted as the reference diagnostic method for 

SAHS, it is time-consuming, expensive and potentially distressing for pediatric subjects 

(5,6). In the search for alternatives that can address these issues while also evaluating 

cardiovascular morbidity risks, various studies have focused on the analysis of an 

abbreviated set of the signals containing cardiac information to gain insights into the 

cardiac dynamics in children with SAHS (5,6). 

Heart Rate Variability (HRV), a signal derived from the ECG, is a measure of the 

fluctuation over time of the period between successive heartbeats (7). HRV assesses 

cardiac health, and provides a better understanding of autonomic nervous system (ANS)  

homeostasis, which regulates cardiac activity (7). The ANS controls the response of the 
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heart to respiratory events, with a recurrent pattern of progressive-bradycardia/abrupt-

tachycardia reflecting activation and deactivation of two of the ANS branches, namely 

the parasympathetic and the sympathetic nervous systems (PNS and SNS, respectively) 

(8,9). This periodic behavior has motivated previous spectral analyses of HRV, both in 

adults (10–13) and children (14–25). 

Past studies analyzed the classical HRV spectral bands: very low frequency 

(VLF), low frequency (LF), and high frequency (HF) bands, which have fixed 

boundaries (0-0.04 Hz, 0.04-0.15 Hz and 0.15-0.40 Hz, respectively) (26). Nevertheless, 

some recent work in adults indicates that SAHS modifies the HRV spectrum in a 

frequency range comprising portions of the VLF and LF bands (10), suggesting that 

specific SAHS-related frequency bands may also be present in children with SAHS. 

Furthermore, previous studies have reported that HF, which is known as a respiratory-

modulated band (7), is strongly influenced by age, regardless of health condition (27). 

Likewise, it has been shown that cardio-respiratory coordination increases during apneic 

events (28), which underlines the influence of the respiration on heart rate. Age-related 

alterations are reflected in the frequency at which respiratory peak within HF occurs 

(29–32), suggesting that a subject-adaptive analysis is more accurate for this frequency 

range. Notwithstanding, all previous HRV analyses in pediatric SAHS neglected to 

incorporate the changes in respiration related to age (33). 

Based on these considerations, we hypothesized that pediatric SAHS-specific 

frequency bands of interest are present and embedded in the ECG, and consequently, 

our main objective was to evaluate and characterize the HRV spectrum in a broad 

population of children with SAHS. To this effect, we delineated two specific objectives 

for this study: (i) identification of putative novel frequency bands, taking into account 

SAHS severity groups and subject-specific considerations, and (ii) comparison of their 
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diagnostic ability against the classic HRV spectral bands. 

2. METHODS 

2.1. Subjects and signals under study 

This work involved 1,738 pediatric subjects aged between 0-13 years. Two large 

cohorts were included: a database from the University of Chicago (UofC)  (34,35), 

which includes 981 children referred to the Pediatric Sleep Unit at Comer Children’s 

Hospital of the UofC (Chicago, IL, USA) suspected of suffering from SAHS; and a 

second cohort composed of 757 children from the dataset of the multicenter Childhood 

Adenotonsillectomy Trial (CHAT) database (36,37). UofC database was established as 

the training set, while the CHAT database served as the test set. 

The informed consent of all children caretakers from the UofC sample were 

obtained, and the Ethics Committee of the Comer Children’s Hospital of the University 

of Chicago approved the protocol (#11-0268-AM017, # 09-115-B-AM031, and # 

IRB14-1241). Diagnosis was reached using a digital polysomnography system 

(Polysmith, Nihon Kohden America INC., Irvine, CA, USA). ECG was recorded at 

sample frequencies of 200 or 500 Hz. 

For the CHAT sample, details corresponding to entire protocol are available in the 

supplementary material of (37). Specifically, a total of 779 nocturnal PSGs of children 

aged between 5-10 years were included. ECG signals were acquired at sampling 

frequencies of 50, 200, 250, 256 or 512 Hz. Finally, 757 subjects were used from this 

dataset since 22 were excluded after applying the signal pre-processing protocol 

explained below. 

All the subjects included in this study were diagnosed by pediatric sleep 

specialists from the different centers and their sleep studies were scored in accordance 

©    2020 Macmillan Publishers Limited, part of Springer Nature.
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with the American Academy of Sleep Medicine (AASM) rules (38). The AHI was 

extracted from the nocturnal PSGs and used to establish SAHS severity. Based on 

previous studies (35,39–42), three typical AHI thresholds were selected (1, 5 and 10 

e/h) for the division into four severity groups: the groups no-SAHS (AHI<1 e/h), mild 

SAHS (1≤ AHI<5 e/h), moderate SAHS (5≤AHI<10 e/h) and severe SAHS (AHI≥10 

e/h). Table 1 shows the clinical and demographic data of the population considered.  

The ECG signals from both databases were equally pre-processed. First, the 15 

initial and final minutes from every signal were removed to avoid early and late artifact 

periods. Then, all recordings lasting less than 3 hours were excluded. Afterwards, the 

HRV was extracted following an algorithm based on the Hilbert transform proposed by 

Benítez et al.  (43). The first stage of this algorithm consists in computing the first order 

derivative after baseline correction of the ECG (43). The Hilbert transform is 

subsequently computed for this derivative to locate regions of high probability of 

containing R peaks around true R peaks. Later, a search for actual R peaks positions is 

conducted by establishing a threshold derived from the root mean square of the Hilbert 

transform for each region (43). Once the R peaks are detected, the R-R intervals 

conforming HRV signals are easily calculated (7). Those beats that did not meet the 

following criteria were considered as physiologically impossible, and removed (11): (i) 

0.33 s < R-R interval < 1.5 s and (ii) difference to the previous R-R interval > 0.66 s. 

Finally, the HRV signals were resampled to a constant rate in order to obtain equally 

spaced time samples and allow their analysis in the frequency domain. This rate of 3.41 

Hz (10,11) was chosen to evaluate 5-min epochs as a trade-off between using a power 

of two window-length (2
10 

samples) with fast Fourier transform (FFT) and not adding 

unnecessary estimated data. 5-min epochs were chosen as it is the maximum length 

where stationarity can be assumed, in order to compute spectral analysis (11). 

©    2020 Macmillan Publishers Limited, part of Springer Nature.
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2.2. Determination of spectral bands of interest 

Welch’s periodogram was applied to estimate the power spectral density (PSD) of 

the HRV (44). A Hamming Window of 2
10

 (50% overlap) and a FFT of 2
11

 points were 

used. Then, a normalization was applied to PSDs (PSDn) by dividing the amplitude 

values at each frequency by the corresponding total spectral power. This normalization 

is intended to minimize the differences due to individual conditions other than SAHS 

(45). The bands of interest were defined based on the PSDns from the training group.  

Due to the considerations mentioned in the first section, we defined the spectral 

bands of interest by combining two different analyses depending on the frequency 

range: in 0-0.15 Hz, which should not be influenced by age, and in 0.15-0.4 Hz, where 

an adaptive analysis was adopted. 

The adaptive analysis in the HF range was based on previous studies of Milagro et 

al. (31,32). Similar to those studies, we chose a 0.15 Hz adaptive range centered in the 

individual respiratory peak frequency. However, rather than obtaining this central 

frequency from the impedance pneumography signal, we approximated the individual 

peak position as the frequency where the highest PSD value is found into the HF range. 

As it was previously reported, this approximation is an accurate estimation of the 

respiratory peak (30). Thereby, we obtained an adaptive bandwidth of 0.15 Hz for each 

subject, formed by 91 samples extracted from the PSD of HF. 

Once we defined the adaptive band for each individual, the selection of bands of 

interest in both the range 0-0.15 Hz and the adaptive range was based on statistical 

differences between PSDns from the training set severity groups. We computed the non-

parametric Mann-Whitney U test for each two severity groups comparing frequency by 

frequency (in the band of 0-0.15 Hz), or sample by sample (in the adaptive one), the 

amplitude values from the PSDns. Therefore, six statistical tests were computed. After 
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applying the Bonferroni correction, we selected p-value < 0.01 as the significance level 

and established as bands of interest those ranges where at least two of the tests yielded 

statistical differences. 

Figures 1A and 2A show the averaged PSDns of the four SAHS groups into the 0-

0.15 Hz and the adaptive band, respectively. Some differences between groups can be 

appreciated, with shaded areas as the ranges where statistical differences were found. 

Figures 1B and 2B show the p-values reached. According to this methodology, the 

bands of interest selected in the range 0-0.15 Hz were BW1 [0.001 – 0.005] Hz and 

BW2 [0.028 – 0.074] Hz. Correspondingly, the adaptive bands selected in the adaptive 

range were ABW1 [samples 10-18], ABW2 [samples 24-26] and ABW3 [samples 34-

55].  

2.3. Feature extraction: relative power 

The sum of PSDn values into a given frequency range is known as relative power 

(RP). In HRV signals, spectral powers from VLF, LF, and HF bands have been 

commonly assessed (7,26). LF band has been related to both sympathetic and 

parasympathetic tone  (7). The HF band is strongly related to the respiratory rhythm, as 

well as with the parasympathetic tone (7,31,32). Physiological interpretation of VLF 

band is unclear, and it has been associated to sympathetic tone and thermoregulatory 

effects in long-term recordings (7,26). The LF/HF ratio is another common explored 

measure, and used as a reflection of the balance between sympathetic and 

parasympathetic tones (7,26). Because these parameters have been widely assessed in 

the pediatric SAHS context (14–25), we have chosen RP as the approach to characterize 

the activity in all the frequency bands considered in this study. Thus, we have computed 

RP of the 3 classical frequency bands (RPVLF, RPLF, RPHF), the 5 bands of interest 

(RPBW1, RPBW2, RPABW1, RPABW2, RPABW3) and the LF/HF ratio. 

©    2020 Macmillan Publishers Limited, part of Springer Nature.
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2.4. Assessment of the diagnostic ability of the HRV spectrum 

In order to compare the diagnostic ability of the new frequency bands of interest 

with the classical ones, we first evaluated the individual diagnostic performance of each 

parameter extracted from the HRV spectrum. This was achieved by using optimum cut-

off points from the receiver operating-characteristic (ROC) curve in the training set. 

Then, thresholds of 1, 5 and 10 e/h were selected, and binary classification was 

performed.  

The joint diagnostic performance of the parameters was evaluated by constructing 

two models. On the one hand, a model containing the RPs from the 5 bands of interest 

was considered. On the other hand, a model with the 3 classic RPs and the LF/HF ratio 

was assessed. Then, two classifiers based on linear discriminant analysis (LDA) were 

trained in each binary classification for the three severity thresholds used in this study, 

and the diagnostic performance in the test set was obtained. The LDA classifier was 

selected due to its simplicity and its proved utility in the SAHS context (46,47). LDA is 

a supervised learning algorithm which separates the input features space into decision 

regions, defining linear decision boundaries (47). A discriminant score yj (x) is 

computed for each class in accordance with (46):  

  ( )    
      

 

 
  
          (  )        (1) 

where   is the covariance matrix and j is the mean vector for class Cj and P(Cj) its 

corresponding prior probability, i.e., the proportion of input feature vectors (xi) 

belonging to class Cj. After computing each discriminant score, the class with the higher 

yj is assigned to the input vector. 

2.5. Statistical analysis 

Features considered in this study did not fit either normality or homoscedasticity 
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tests. For this reason, the non-parametric Kruskall-Wallis test was applied to assess 

statistically significant differences (p-value < 0.01 after Bonferroni correction) between 

RPs from SAHS severity groups in both datasets. The joint and individual diagnostic 

performances were evaluated in terms of sensitivity (Se, proportion of subjects with 

SAHS correctly diagnosed), specificity (Sp, proportion of subjects without SAHS 

correctly diagnosed) and accuracy (Acc, proportion of subjects correctly diagnosed). 

We also evaluated the area under ROC curve (AUC). All these diagnostic evaluations 

were obtained in the test set. 

Furthermore, we conducted a correlation analysis to investigate possible 

relationships between RPs and several polysomnographic indices related to SAHS, 

sleep quality and structure. Indices related to SAHS were total AHI, obstructive AHI 

(OAHI), obstructive apnea index (OAI), and oxygen desaturation index (ODI). On the 

other hand, indices related to sleep quality and structure were the wake after sleep onset 

(WASO),  the number of awakenings during total sleep time (#Awakenings), percentage 

of total sleep time spent in N1(%N1), N2 (%N2), N3 (%N3), and REM (%REM) stages, 

and total arousal index (TAI, arousals per hour of sleep). Spearman’s partial correlation 

coefficient (S) was applied to control for the influence of age in the relationships 

between RPs and these polysomnographic indices. In order to validate the usefulness of 

our new bands established on the training set, correlations were evaluated in the test set. 
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13 

 

3. RESULTS 

3.1. Relative powers 

Table 2 shows the RPs extracted in each frequency band for each severity group 

(median [interquartile range]), together with the p-values obtained using the Kruskall-

Wallis test in both the training and the test set. RPBW2, RPLF and LF/HF showed clear 

increases at higher SAHS severities, with RPBW2 and RPLF showing p-values < 10
-4 

after 

Bonferroni correction (denoted as p-value << 0.01) in both sets. RPBW1 showed a 

decrease with SAHS in the two sets, as did RPABW2, RPABW3 and RPHF, but only in the 

training set for these three measures. VLF was the only band that did not show 

statistically significant differences in any of the two sets evaluated. 

3.2. Correlation analysis in the test set 

Correlation results are shown in Table 3. Spearman’s partial correlation 

coefficient (S) is represented for each RP and variable, along with the corresponding p-

value. No statistically significant correlations in RPABW1 and RPABW2 were obtained 

with any of the polysomnographic indices considered. Despite the generally low |S| 

values reached, some statistically significant correlations emerged in the other bands. 

RPBW1 showed positive S with macro sleep disruptions related variables (#Awakenings 

and WASO), while RPVLF showed association with #Awakenings in a lower degree than 

RPBW1. RPBW2 reached the highest absolute correlations with all the SAHS related 

indices, as well as with TAI. RPABW3 was the only adaptive band that reached 

statistically significant correlations, showing negative S with ODI, WASO and TAI. 

Similar to RPABW3, RPHF presented significant negative correlations with ODI and 

WASO, but showed lower values of |S|. Indices related with sleep stages did not show 

any statistically significant correlations with the RPs evaluated. 

©    2020 Macmillan Publishers Limited, part of Springer Nature.
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3.3. Diagnostic ability assessments 

Table 4 shows the results achieved by each individual RP as well as the two LDA 

models. The individual results showed that the highest AUC was always obtained with 

RPBW2 in the three SAHS severity thresholds considered, together with the highest 

accuracies and specificities in 5 e/h and 10 e/h sub-groups. The only classic band which 

improved any result of the bands of interest was RPVLF (sensitivity in 1 e/h). It is 

noteworthy that the diagnostic performance obtained in HF was always outperformed 

by at least one of the three adaptive bands of interest, except for specificity in the lowest 

threshold. 

Finally, when LDA models were examined, the highest diagnostic performance 

was generally obtained with the models formed by RPs in our five bands of interest. 

Only specificity in 1 e/h threshold was higher with classic bands model, but 

sensitivity/specificity pair was strongly unbalanced. 
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4. DISCUSSION 

In this study, new HRV spectral bands of interest were identified and evaluated to 

gain insight into cardiovascular dynamics in the presence of pediatric SAHS. These 

bands were significantly correlated with respiratory events, as well as with micro and 

macro sleep disruptions. Our newly identified bands also showed a higher diagnostic 

yield than the widely analyzed classical spectral bands, suggesting that new spectral 

bands are more specific when HRV is analyzed in the pediatric SAHS context. 

4.1. Physiological interpretation and usefulness of the new spectral bands of 

interest 

BW1 (0.001 – 0.005 Hz) is a narrower band within VLF (26). The physiological 

meaning of VLF band is under discussion (11), and previous studies analyzing this band 

did not find differences across pediatric SAHS severity groups (22,23). In this study, 

RPVLF was the only parameter that did not show significant differences in any of the 

both sets evaluated. However, RPBW1 differed between groups in both the training and 

the test set, as well as showed statistically significant S with the number of awakenings 

and WASO in the test set. These findings suggest that, contrary to the whole VLF band, 

both the occurrence of the awakenings and the time spend awake is embedded in BW1. 

As one of the SAHS consequences is sleep fragmentation, this observation may drive 

the improvement in the individual diagnostic ability of RPBW1 compared to RPVLF in 

terms of AUC. 

BW2 (0.028 – 0.074 Hz) showed the strongest correlations with all SAHS 

respiratory indices (AHI, OAHI, OAI, and ODI) and TAI, the latter being composed of 

many respiratory-related arousals induced by the disease (48). Furthermore, BW2 

reached the highest individual diagnostic performance, clearly improving the accuracy 

and AUC of the remaining new and classic bands in the 5 e/h and 10 e/h thresholds. 
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BW2 range (0.028 – 0.074 Hz) comprises part of VLF and LF, which agrees with 

previous results reported for adults (10). Moreover, when analyzing overnight airflow in 

adults, prior studies found a similar band of interest (≈ 0.025 – 0.050 Hz) (49,50). These 

similarities in cardiac and breathing signals may be explained by the increment in the 

cardio-respiratory coordination found when SAHS is present (28). Similarly, the slight 

differences in the bandwidth may be explained by lower duration of cardiac events 

versus respiratory events, as well as by the different annotation rules for apneic events 

in children and adults (38). Such rules will score a pediatric apneic event lasting at least 

2 respiratory cycles, usually corresponding to 6 seconds. Thus, the BW2 frequency 

range, which reflects periodicities between 13 and 35 seconds, is also consistent with 

these annotations, while suggesting a duration for cardiac-related events. According to 

the above-mentioned considerations, there are robust indications that the typical SAHS-

related bradycardia/tachycardia patterns are reflected in BW2, underlining the potential 

usefulness of this HRV band in the pediatric SAHS context. 

As reflected in Figure 2, the main differences between SAHS severity groups in 

the adaptive respiratory band coincide with ABW3 (samples 34-55), with averaged PSD 

values decreasing as SAHS worsens, and RPABW3 showing statistically significant 

differences in the training set. Moreover, ABW3 also showed statistically significant 

negative correlations with ODI, WASO, and TAI, which were higher than the 

corresponding for RPHF. Thus, the higher the power in ABW3, the lower values will be 

found for oxyhemoglobin desaturations, awake time, and arousals. This finding may be 

indicative that normal sleep respiration activity decreases as awakening or micro 

awakening periods arise, which are often driven by inadequate gas exchange and, 

eventually, blood oxygen deficits (1,38). This would explain the increased AUC showed 

by ABW3 in the three AHI thresholds compared to HF, and further support the adaptive 
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analysis rather than the fixed HF band. 

ABW1 and ABW2 achieved similar diagnostic performance to HF, except in the 

higher severity threshold, where the diagnostic ability was markedly lower. Moreover, 

these two bands of interest did not show any significant correlation with the PSG 

indices. To investigate whether they are really useful, a final analysis was conducted. 

The diagnostic ability of the LDA models formed by RPs of the bands of interest with 

and without considering ABW1 and ABW2 is showed in Table 5. It can be appreciated 

that there was a slight decrease in AUC for 1 e/h and 5 e/h thresholds when both bands 

were included, with similar accuracies, suggesting that these bands show no evidence of 

diagnostic utility. It also implies that only a frequency range of ≈ 0.04 Hz around the 

adaptive respiratory peak, which corresponds to the width of ABW3, would be enough 

to analyze HF in SAHS cases. 

4.2. Comparison with previous work 

To the best of our knowledge, this is the first work searching for specific HRV 

spectral bands of interest in the pediatric SAHS context. Previous studies in the 

frequency domain only analyzed the HRV classic frequency bands (14–25). 

The common finding among previous studies pointed to increased LF activity 

(14,21) and LF/HF ratio (14,17,20), as well as decreased HF power (16,17,19) as SAHS 

worsens. Adenotonsillectomy, the common treatment for SAHS in children, reversed 

these trends (18). This agrees with the results shown in Table 2. It seems that 

intermittent hypoxia and episodic arousals, which are present in children with SAHS 

and accompanied by increases in sympathetic outflow (reflected in the increased RPLF) 

underlie the autonomic changes that persist even beyond sleep period. The effect of 

SAHS in the ANS was analyzed in previous studies (51,52). Somers et al. showed that, 

in young healthy adults, intermittent hypoxia during sleep derived in heightened 
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sympathetic activation, even when the stimulus was removed. In the same way, subtle 

changes in autonomic reactivity are detectable during arousals in healthy children as 

well as in children with SAHS during wakefulness (53,54). All these evidences along 

with the results shown in Table 2 supports previous findings that pediatric SAHS leads 

to enhanced sympathetic activity, as well as decreased parasympathetic activation, 

resulting in impaired cardiac autonomic modulation. The absence of differences in 

RPVLF is also in accordance with previous studies analyzing this band (22,23). 

On the other hand, previous studies originating from a single research group (23–

25) conducted an automated classification of pediatric subjects into SAHS or control 

groups. These studies involving only 21 children, derived HRV parameters from 

declines in amplitude fluctuations of the photoplethysmography oximetry signal. 

Accuracies in the range 73.3-80.0%, together with sensitivities between 62.5-87.5% and 

specificities between 71.4-85.7% were reported. Despite the similar results achieved in 

the present study, the different criteria used to assess SAHS presence and severity 

makes further comparisons difficult. Similarly, only a previous study conducted 

automated classification while exclusively evaluating HRV signal in pediatric SAHS 

context (15). However, unlike us, this study focused on classification of each apneic 

event rather than each subject, such that their findings and current results cannot be 

compared. Thus, this is the first study conducting automated classification of pediatric 

subjects into severity SAHS groups employing HRV signals exclusively.  

4.3. Limitations and outlook 

Despite the potential utility of our findings, we need to mention some of the 

limitations of this study. First, our LDA model performance is not yet sufficient for 

widespread diagnostic use, being outperformed by the results derived from the study of 

other polysomnographic signals such as blood oxygen saturation or airflow, which have 
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a direct acquisition (34,41). However, we need to remark that the aim of this study was 

not at optimizing classification performance, but rather aimed to characterize new 

SAHS-specific spectral bands and compare their diagnostic ability against the classic 

HRV bands. Thus, this is a first step that justifies future explorations of more complex 

predictive models with the aim to further improve the diagnostic usefulness and 

characterization of these novel bands. Finally, despite the robust associations found for 

BW1, BW2, and ABW3 relative to standard PSG indices, both ABW1 and ABW2 need 

further investigation to clarify their significance in pediatric SAHS. 

4.4. Conclusions 

This is the first study whereby specific HRV spectral bands of interest in pediatric 

SAHS have been identified and characterized. We have defined three new spectral 

bands that show significant associations with SAHS disease severity: BW1 (0.001 – 

0.005 Hz), related to macro sleep disruptions; BW2 (0.028-0.074 Hz), related to the 

duration of apneic events, and ABW3, an adaptive band within the respiratory range, 

related to oxyhemoglobin desaturations and sleep disruption. Higher individual and 

collective diagnostic ability were achieved by the RPs of the new bands compared with 

the classical RPs for SAHS severity thresholds of 1, 5 and 10 e/h. An LDA model that 

incorporated five RPs from the new spectral bands achieved the highest diagnostic 

performance (82.8% Acc, 0.796 AUC for 10 e/h threshold). Hence, our results suggest 

that the new HRV bands provide more specific information on pediatric SAHS, and that 

such novel information could be used to develop advanced automated SAHS detection 

methodologies.  Thus, future studies incorporating these novel spectral bands should be 

pursued to further establish their clinical significance and clinical applications.  
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FIGURE LEGENDS 

Figure 1. (A) Averaged PSDns in the 0-0.15 Hz band in the training set for the four 

severity groups. (B) p-value for each frequency in each comparison between SAHS 

severity groups after Bonferroni correction in the training group for the range 0-0.15 

Hz. Grey shaded areas represent those ranges where statistical differences were found. 

Figure 2. (A) Averaged PSDns in the adaptive band in the training set for the four 

severity groups. (B) p-value for each frequency in each comparison between SAHS 

severity groups after Bonferroni correction in the training set for the adaptive band 

selected. Grey shaded areas represent those ranges where statistical differences were 

found. 
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Table 1. Clinical and demographic data from children included in the study.  

 All Training group (UofC) Test group (CHAT) 

Subjects (n) 1738 981 757 

Age (years) 6.4 [3.3] 6.0 [6.0] 7.0 [2.4] 

Males (n) 962 (55.35%) 602 (61.37%) 360 (47.95%) 

BMI (kg/m
2
) 17.63 [5.37] 18.02 [5.86] 17.28 [4.64] 

AHI (e/h) 2.23 [5.27] 3.8 [7.76] 1.46 [2.07] 

AHI ≥ 1 (e/h) 1309 (75.31%) 808 (82.36%) 501 (66.18%) 

AHI ≥ 5 (e/h) 519 (29.86%) 407 (41.49%) 112 (14.80%) 

AHI ≥ 10 (e/h) 298 (17.15%) 229 (23.34%) 69 (9.11%) 

Data are showed as median [interquartile range] or n (percentage). 

UofC: University of Chicago, CHAT: Childhood Adenotonsillectomy Trial; BMI: Body Mass Index; 

AHI: apnea–hypopnea index, BMI: body mass index. 
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Table 2. Relative power values (median [interquartile range]) in the training and the test 

sets for the four severity groups. 

TRAINING SET 

Feature no-SAHS Mild SAHS Moderate SAHS Severe SAHS p-value 

RPVLF 0.370 [0.174] 0.359 [0.163] 0.381 [0.179] 0.371 [0.164] 0.675 

RPLF 0.225 [0.060] 0.224 [0.075] 0.235 [0.081] 0.244 [0.090] <<0.01 

RPHF 0.317 [0.179] 0.340 [0.195] 0.300 [0.218] 0.275 [0.213] <0.01 

LF/HF 0.706 [0.510] 0.697 [0.594] 0.814 [0.791] 0.892 [0.985] <<0.01 

RPBW1 0.083 [0.055] 0.082 [0.050] 0.083 [0.047] 0.071 [0.049] <0.01 

RPBW2 0.169 [0.054] 0.175 [0.068] 0.185 [0.086] 0.213 [0.107] <<0.01 

RPABW1 0.017 [0.010] 0.016 [0.009] 0.015 [0.007] 0.017 [0.010] <0.01 

RPABW2 0.008 [0.005] 0.007 [0.005] 0.006 [0.004] 0.005 [0.005] <0.01 

RPABW3 0.119 [0.110] 0.121 [0.121] 0.110 [0.115] 0.087 [0.098] <<0.01 

TEST SET 

Feature no-SAHS Mild SAHS Moderate SAHS Severe SAHS p-value 

RPVLF 0.337 [0.140] 0.332 [0.155] 0.282 [0.149] 0.342 [0.186] 0.200 

RPLF 0.218 [0.060] 0.227 [0.063] 0.222 [0.090] 0.259 [0.110] <<0.01 

RPHF 0.368 [0.167] 0.363 [0.184] 0.388 [0.198] 0.307 [0.217] 0.015 

LF/HF 0.610 [0.407] 0.649 [0.462] 0.597 [0.539] 0.818 [0.886] <0.01 

RPBW1 0.081 [0.044] 0.078 [0.039] 0.063 [0.045] 0.061 [0.043] <0.01 

RPBW2 0.148 [0.055] 0.161 [0.062] 0.165 [0.078] 0.209 [0.113] <<0.01 

RPABW1 0.018 [0.009] 0.018 [0.009] 0.018 [0.007] 0.018 [0.010] 0.880 

RPABW2 0.008 [0.005] 0.008 [0.004] 0.009 [0.005] 0.007 [0.006] 0.421 

RPABW3 0.132 [0.108] 0.123 [0.107] 0.134 [0.143] 0.103 [0.093] 0.004* 

RP: Relative power; SAHS: Sleep apnea-hypopnea syndrome; VLF: Very low frequency; LF: Low 

frequency; HF: High Frequency. 

p-values < 10-4 after Bonferroni correction are represented as << 0.01 

* Non-significant after Bonferroni correction. 
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Table 3. Results of the partial correlation assessments between relative powers and the 

polysomnographic indices in the test set. 

CLASSIC BANDS 

PSG index 
RPVLF RPLF RPHF LF/HF 

S p-value S p-value S p-value S p-value 

AHI -0.031 0.391 0.150 <0.01 -0.075 0.040 0.118 0.001* 

OAHI -0.073 0.043 0.088 0.015 -0.012 0.737 0.046 0.207 

OAI -0.035 0.333 0.067 0.066 -0.031 0.392 0.052 0.154 

ODI 0.039 0.289 0.194 <<0.01 -0.161 <<0.01 0.195 <<0.01 

#Awakenings 0.133 <0.01 0.036 0.324 -0.115 0.014 0.086 0.018 

WASO 0.071 0.049 0.112 0.002* -0.146 <0.01 0.145 <0.01 

%N1 0.003 0.930 0.063 0.084 -0.040 0.266 0.058 0.111 

%N2 -0.085 0.019 -0.076 0.038 0.098 0.007* -0.112 0.002* 

%N3 0.068 0.060 0.074 0.043 -0.089 0.014 0.101 0.005* 

%REM 0.041 0.262 -0.083 0.022 0.030 0.404 -0.047 0.197 

TAI 0.031 0.389 0.128 <0.01 -0.098 0.007* 0.126 <0.01 
 

BANDS OF INTEREST 

PSG index 
RPBW1 RPBW2 RPABW1 RPABW2 RPABW3 

S p-value S p-value S p-value S p-value S p-value 

AHI -0.132 <0.01 0.233 <<0.01 -0.010 0.786 -0.049 0.179 -0.101 0.005* 

OAHI -0.157 <0.01 0.164 <<0.01 -0.002 0.962 -0.021 0.555 -0.033 0.368 

OAI -0.096 0.008* 0.149 <0.01 -0.010 0.774 -0.031 0.395 -0.049 0.180 

ODI -0.033 0.358 0.220 <<0.01 -0.009 0.809 -0.100 0.006* -0.192 <<0.01 

#Awakenings 0.174 <<0.01 0.069 0.059 -0.036 0.329 -0.055 0.134 -0.096 0.008* 

WASO 0.186 <<0.01 0.054 0.141 0.024 0.514 -0.046 0.210 -0.195 <<0.01 

%N1 0.001 0.969 0.087 0.017 0.020 0.584 -0.005 0.887 -0.063 0.083 

%N2 -0.073 0.045 -0.092 0.011 0.009 0.798 0.071 0.050 0.083 0.023 

%N3 0.058 0.111 0.052 0.155 -0.028 0.443 -0.092 0.011 -0.066 0.069 

%REM 0.048 0.187 -0.049 0.175 -0.004 0.913 0.019 0.594 0.041 0.262 

TAI -0.059 0.105 0.220 <<0.01 -0.025 0.492 -0.043 0.237 -0.123 <0.01 

PSG: Polysomnographic; RP: Relative Power; VLF: Very low frequency; LF: Low frequency; HF: High 

Frequency; AHI: Apnea-Hypopnea Index; OAHI: Obstructive AHI; OAI: Obstructive Apnea Index; ODI: 

Oxygen desaturation index; WASO: Wake after sleep onset; %N1: Time spent in N1 stage; %N2: Time 

spent in N2 stage; %N3: Time spent in N3 stage; %REM: Time spent in REM stage; TAI: Total arousals 

index. 

* Non-significant after Bonferroni correction. 
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Table 4. Diagnostic performance in the test set for each relative power in each 

frequency band, as well as for both linear discriminant analysis models in terms of 

Sensitivity (Se %), Specificity (Sp %), Accuracy (Acc %) and AUC. 

Feature/Model 
AHI Threshold = 1 e/h AHI Threshold = 5 e/h AHI Threshold = 10 e/h 

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC 

RPVLF 68.9 31.6 56.3 0.518 33.0 65.0 60.2 0.456 40.6 64.2 62.1 0.495 

RPLF 43.5 62.9 50.1 0.557 52.7 58.4 57.6 0.590 59.4 58.4 58.5 0.666 

RPHF 35.5 71.9 47.8 0.523 39.3 68.1 63.8 0.540 43.5 76.7 73.7 0.605 

LF/HF 37.7 70.3 48.7 0.540 45.5 66.8 63.7 0.567 49.3 70.8 68.8 0.643 

RPBW1 66.3 45.3 59.2 0.559 65.2 54.0 55.6 0.621 69.6 52.3 53.9 0.624 

RPBW2 32.7 78.1 48.1 0.591 45.5 82.0 76.6 0.670 58.0 78.2 76.4 0.751 

RPABW1 52.7 49.2 51.5 0.516 41.1 59.4 56.7 0.504 55.1 39.0 40.4 0.489 

RPABW2 49.1 55.1 51.1 0.526 36.6 69.8 64.9 0.524 44.9 47.8 47.6 0.451 

RPABW3 45.5 56.6 49.3 0.532 44.6 64.0 61.2 0.571 49.3 64.0 62.6 0.628 

LDA Classic Bands 25.7 81.3 44.5 0.559 46.4 72.2 68.4 0.633 50.7 75.3 73.1 0.685 

LDA Bands of Interest 42.5 72.3 52.6 0.592 50.0 80.9 76.4 0.688 63.8 84.7 82.8 0.796 

RP: Relative Power; VLF: Very low frequency; LF: Low frequency; HF: High Frequency; LDA: Linear 

discriminant analysis; AHI: Apnea-hypopnea index. 

  

©    2020 Macmillan Publishers Limited, part of Springer Nature.



31 

 

Table 5. Diagnostic performance in the test set for both linear discriminant analysis 

models formed by bands of interest with and without RPABW1 and RPABW2 in terms of 

Sensitivity (Se %), Specificity (Sp %), Accuracy (Acc %) and AUC. 

LDA Model 
AHI Threshold = 1 e/h AHI Threshold = 5 e/h AHI Threshold = 10 e/h 

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC 

With both 

bands 
42.5 72.3 52.6 0.592 50.0 80.9 76.4 0.688 63.8 84.7 82.8 0.796 

Without 

both bands 
37.7 80.1 52.0 0.597 48.2 80.8 76.0 0.696 62.8 84.3 82.3 0.774 

RP: Relative Power; AHI: Apnea-hypopnea index. 
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