

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingeniería de Tecnologías Industriales

Desarrollo de una librería para compartir

variables entre procesadores ESP32

Autor:

Martínez Ortega, Javier Antonio

 Tutor:

De Pablo Gómez, Santiago

Tecnología Electrónica

Valladolid, Julio, 2025.

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

3

Resumen

Este Trabajo de Fin de Grado tiene como objetivo crear una librería en C++

desarrollada en el entorno de programación Arduino IDE que permita la

intercomunicación entre microprocesadores mediante el protocolo ESP-NOW.

La librería facilitará el envío, lectura y escritura de variables compartidas

mediante la simulación de una memoria común (memoria compartida) entre

dispositivos.

Dado que la implementación de la tecnología ESP-NOW puede resultar

compleja, esta librería simplifica el proceso, ofreciendo una interfaz accesible

para gestionar la intercomunicación entre nodos de forma eficiente sin

necesidad de estructura Wi-Fi adicional. Además, se consigue facilitar el

proceso de creación de herramientas software reduciendo los conocimientos

técnicos necesarios para ello.

Palabras Clave

ESP32, ESP-NOW, Memoria Compartida, Computación Distribuida, IoT

Abstract

This Final Degree Project aims to create a C++ library developed in Arduino IDE

programing environment, design to enable intercommunication between

microprocessors through the ESP-NOW protocol. This library will make sending,

reading and writing of shared variables simple by simulating a common memory

(shared memory) between devices.

Since the implementation of ESP-NOW technology could be complex, this library

summarizes the process, offering an accessible interface for efficiently

managing intercommunication between nodes without needing an extra WiFi

infrastructure. Furthermore, this facilitates the development of software tools,

reducing technical knowledge required to do so.

Keywords

ESP32, ESP-NOW, Shared Memory, Distributed Computing, IoT

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

5

Índice

Contenido
Introducción y objetivo .. 7

Justificación ... 9

Relevancia.. 9

Fundamentación Teórica ... 9

Antecedentes.. 11

Vinculación con competencias del Título ... 14

Diseño ... 14

Especificaciones ... 14

Código: Archivo MemoriaCompartida.h .. 15

Código: Archivo MemoriaCompartida.cpp .. 17

Funciones Blocking: ... 17

1. MemoriaCompartida::esDirecciónMac() 17

2. MemoriaCompartida::ConvertirMacStringABytes() 18

3. MemoriaCompartida::Registrar() .. 19

4. MemoriaCompartida::NormalizarMac() 23

5. MemoriaCompartida::Dispositivos() .. 24

6. MemoriaCompartida::Borrar() .. 24

7. MemoriaCompartida::CrearBloqueMemoria()............................... 29

8. MemoriaCompartida::VincularVector() ... 31

9. MemoriaCompartida::CrearVectorValoresResponsabilizados() 34

10. MemoriaCompartida::MostrarMemoria() 37

11. MemoriaCompartida::InfoMostrarMemoria(); 39

12. MemoriaCompartida::EscribirMemoria() 39

13. MemoriaCompartida::EnviarValorDeMemoria() 43

14. MemoriaCompartida::EditarValorDeMemoria() 46

15. MemoriaCompartida::Alias() ... 48

16. MemoriaCompartida::esAlias() .. 52

17. MemoriaCompartida::ConvertirAliasAMacString() 52

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

6

18. MemoriaCompartida::init() .. 53

Funciones Non-Blocking ... 54

1. MemoriaCompartida::enEnvioDeDatos() 54

2. MemoriaCompartida::enRecepcionDeDatos() 54

Variables Globales ... 74

Contexto .. 76

Alcance .. 76

Oportunidades ... 77

Limitaciones .. 77

Conclusiones e Implicaciones .. 79

Bibliografía ... 81

Apéndice .. 83

Anexo A: MemoriaCompartida.h ... 91

Anexo B: MemoriaCompartida.cpp .. 93

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

7

Introducción y objetivo

En el ámbito del internet de las cosas (IoT), la comunicación eficiente entre

dispositivos representa un pilar fundamental para el desarrollo de soluciones

autónomas. Los microcontroladores ESP32 permiten implementar redes de

comunicación inalámbricas, versátiles y de bajo coste entre dispositivos gracias

a su conectividad Wi-Fi y Bluetooth integradas.

ESP-NOW es una tecnología de comunicación inalámbrica desarrollada por

Espressif Systems que ofrece una alternativa eficiente a las redes Wi-Fi

tradicionales ya que permite la comunicación directa de dispositivos sin

necesidad de una infraestructura de red centralizada. Sin embargo, poder

dominar esta tecnología para el manejo de información a través de redes Wi-Fi

sigue siendo un problema para muchos desarrolladores.

En este proyecto se propone el diseño y desarrollo de una librería software para

que, a nivel de programación, el intercambio de información entre dispositivos

sea más simple y práctico, permitiendo que la creación de redes sea más

eficiente y sencilla.

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

9

Justificación

Relevancia

En la actualidad, el crecimiento exponencial de dispositivos conectados ha

generado una necesidad creciente de desarrollar soluciones IoT eficientes y de

bajo coste donde, además, las soluciones simples y flexibles cada vez ganan

mayor protagonismo. Con tecnologías como ESP-NOW se consigue una

comunicación directa entre dispositivos en entornos donde no es viable

establecer infraestructuras centralizadas de red como las tradicionales,

además, se elimina la necesidad de requerir puntos de acceso Wi-Fi o

servidores intermedios para ello.

A pesar de las claras ventajas de la tecnología ESP-NOW, esta ofrece también

ciertos desafíos técnicos que dificultan su implementación en aplicaciones

complejas. Por ello, la creación de una librería que facilite la compartición de

datos en memoria entre dispositivos ESP32 utilizando ESP-NOW supone una

mejora práctica y necesaria para ecosistemas de desarrollo con

microcontroladores. Esta herramienta permitiría:

1. Reducir la complejidad a la hora de crear soluciones software.

2. Mejorar la eficiencia a la hora de transmitir datos entre

dispositivos.

3. Permitir el desarrollo de soluciones autónomas en entornos sin

conectividad.

En definitiva, este proyecto proporciona una solución que facilita el diseño de

redes colaborativas en el entorno IoT para los desarrolladores con distintos

niveles de experiencia técnica.

Fundamentación Teórica

La computación distribuida trata de ejecutar tareas coordinadas empleando

múltiples dispositivos con el objetivo de resolver un problema. Para ello, uno

de los modelos de comunicación más empleado es el de la memoria

compartida donde diferentes nodos tienen la capacidad de acceder a la

memoria de los demás compartiendo datos con el resto de nodos dentro de la

misma red.

Esta compartición se hace de forma inalámbrica, por ello, para la aplicación

creada se usarán placas ESP32 de KeyStudio KS5016. Se trata de unas placas

integradas con un módulo ESP32-WROOM-32: con conectividad Wi-Fi y

bluetooth. Son compatibles con el entorno de Arduino IDE, y con las

especificaciones técnicas siguientes:

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

10

• Voltaje: 3,3V-5V

• Intensidad máxima de salida: 1,2A

• Potencia máxima de salida: 10W

• Temperatura de trabajo: -10ºC-50ºC

• Dimensiones: 69*54*15,5mm

• Peso: 25,5g

Además, integra gran cantidad de puertos de entrada y salida para poder

conectar multitud de dispositivos.

Partes:

1. Módulo ESP32-WROOM-32: Se trata de un microprocesador de alto

rendimiento y bajo consumo desarrollado por Espressif Systems.

Permite conectividad Wi-Fi IEEE 802.11 b/g/n (2.4 GHz) para

comunicaciones de medio alcance y capacidad de conectividad a

una red LAN y bluetooth v4.2 BR/EDR y BLE. Contiene una memoria

SRAM de 520KB para instrucciones y datos.

2. Conector USB: para la alimentación y carga de programas.

3. Botón reset: para resetear el microprocesador.

4. Entradas y salidas

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

11

La aplicación se ha desarrollado en el entorno de programación de Arduino:

“Arduino IDE” debido a su simplicidad y gran ecosistema. “Arduino IDE” se trata

de un entorno de programación de código abierto, centrado en desarrollo de

código para microcontroladores. Permite facilitar el desarrollo de software

debido a su accesibilidad e interfaz intuitiva, consiguiendo disminuir la

necesidad de conocimientos técnicos para crear herramientas software. Este

entorno permite programación en lenguaje C y C++, contiene un compilador

integrado, capacidad para trabajar con gran variedad de placas y bibliotecas,

ya sean desarrolladas por Arduino o por la comunidad global de desarrolladores

con la que el entorno de programación cuenta. Además, no requiere de

hardware de altas prestaciones para funcionar y la carga de programas se hace

realmente sencilla debido a la capacidad del IDE de detección de puertos,

compilación y carga de firmware.

Debido a la accesibilidad, sencillez y capacidad de programación en diferentes

tipos de placas, además de la gran cantidad de librerías de las que dispone, se

ha elegido “Arduino IDE” como entorno de programación para el desarrollo de

esta aplicación.

Antecedentes

La compartición de datos entre dispositivos ha sido y continúa siendo un pilar

fundamental en el desarrollo de proyectos de computación distribuida. Entre

las distintas tecnologías desarrolladas para ello, la memoria compartida ha

demostrado ser una de las soluciones más útiles y eficientes, especialmente

en sistemas donde se requiere un intercambio de información rápido y directo.

Este intercambio de información requiere de un protocolo determinado que

pueda soportar la intercomunicación entre dispositivos. Entre los protocolos

más empleados usados por empresas importantes se encuentran:

- WiFi tradicional: Requiere infraestructura de red, presenta alto consumo

energético, alcance medio y latencias relativamente altas.

Ejm.: MindSphere de Siemens. Es un sistema operativo capaz de

conectar dispositivos, obtener datos y utilizarlos para su análisis.

- LoRa: Proporciona bajo consumo y alto alcance, pero requiere

infraestructura externa (Gateway) además de presentar mayor

complejidad.

Ejm.: Territorio Rural Inteligente (TRI): proyecto de la junta de Castilla y

León en coordinación con SATEC para la monitorización de parámetros

de servicios públicos en municipios pequeños a lo largo de la

comunidad. En este proyecto, debido a las grandes distancias que se

han de recorrer se emplea tecnología LoRa para el envío de parámetros.

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

12

- Bluetooth (BLE): Ofrece bajo consumo energético, pero tiene un alcance

corto y posibilidad de conexión con un número limitado de dispositivos.

Ejm.: Pulseras de actividad. Utilizan Bluetooth para el envío de

parámetros biométricos al móvil.

- MQTT: Requiere de un broker, e infraestructura externa, lo que le añade

complejidad.

Ejem.: Matternet, empresa dedicada a la intercomunicación entre

drones.

- ZigBee: Protocolo de bajo consumo y alcance medio, pero con alto grado

de complejidad.

Ejm.: Bombillas inteligentes como Philips Hue. Utilizan tecnología ZigBee

para la comunicación en malla entre las bombillas y entre las bombillas

y el dispositivo móvil.

- ESP-NOW: No es un protocolo empleado generalmente por las

empresas, sin embargo, presenta características interesantes que

deben tenerse en cuenta: Bajo consumo, alcance medio, ausencia de

necesidad de infraestructura de red.

Se priorizarán protocolos que no requieran de infraestructura externa, y que

ofrezcan un alcance medio-alto. Los protocolos que cumplen estas condiciones

son ESP-NOW y ZigBee, ambos cumplen características similares. Por ello la

elección del protocolo dependerá principalmente de las características y

accesibilidad de las placas que implementen estos protocolos. A continuación,

se comparan los dispositivos más representativos que emplean ESP-NOW y

ZigBee:

- ESP-32 (Espressif): Soporta protocolos ESP-NOW, Bluetooth y WiFi.

Presenta mayor consumo energético que los dispositivos EF32 y

CC2530. Los entornos de programación compatibles incluyen Arduino,

ESP-IDF y MicroPython, ofreciendo gran flexibilidad y facilidad de

desarrollo.

- EF32 (Silicon Labs): Compatible con ZigBee y BLE, tiene menor consumo

energético que el ESP32 pero mayor que el CC2530. Su entorno de

programación es Simplicity Studio, específico para esta plataforma.

- CC2530 (Texas Instruments): Emplea exclusivamente ZigBee y presenta

menor consumo energético que ESP32 y EF32. Se programa mediante

Code Composer studio.

A pesar de requerir mayor consumo energético, los dispositivos ESP32

destacan por su versatilidad en protocolos de comunicación ya que, además

de poder emplear el protocolo ESP-NOW, pueden utilizar Bluetooth y WiFi, cosa

que el EF32, está limitado a ZigBee y BLE, mientras que el CC2530 solo soporta

ZigBee.

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

13

El ecosistema de desarrollo para los dispositivos ESP32 también es más amplio

y accesible, facilitando la programación y acelerando el proceso de desarrollo,

a diferencia de los dispositivos EF32 y CC2530, que requieren de plataformas

más específicas, necesitando conocimientos y herramientas particulares.

Por estas razones, se elige ESP32 como dispositivo donde desarrollar la librería

y por lo tanto, se empleará ESP-NOW como protocolo de comunicación.

Cabe destacar que, a pesar de sus ventajas, ESP-NOW presenta una alta

complejidad en su implementación, dificultando su adopción por

desarrolladores como solución en proyectos de programación. Por ello, surge

la necesidad de crear una librería que facilite la creación de una memoria

compartida para la compartición de datos en memoria entre dispositivos

ESP32.

Tradicionalmente, el concepto de memoria compartida implica una región

común de memoria física accesible desde múltiples nodos. Sin embargo,

cuando se trabaja con dispositivos físicamente separados, como son los ESP-

32, la memoria compartida debe ser simulada a través de comunicación

inalámbrica entre los nodos.

Actualmente, existen múltiples soluciones que permiten este intercambio de

información, cada uno con sus ventajas e inconvenientes. Se conocen

numerosos proyectos famosos de empresas conocidas que usan diferentes

protocolos de comunicación para el desarrollo de productos:

- Google Docs: Permite crear, editar y borrar documentos

simultáneamente entre diferentes usuarios desde la nube. Se trata de

una memoria compartida simulada, ya que Google mantiene una

memoria compartida sincronizada de cada documento.

- Dropbox: Permite sincronizar archivos entre diferentes dispositivos

guardándolos en la nube. Funciona como una memoria compartida

asíncrona.

- Apache Ignite: Plataforma de computación distribuida que permite

compartir memoria física entre diferentes nodos. Se trata de una

memoria compartida real.

A pesar de estas soluciones, la mayoría de las herramientas existentes están

diseñadas para entornos con infraestructura de red como ordenadores y

servidores. En el ámbito de los microcontroladores y en arquitecturas de bajo

consumo como los ESP32, no se disponen de librerías estandarizadas, de fácil

implementación que permitan la compartición directa de variables entre nodos

sin requerir de infraestructura externa.

En este contexto, la comunidad de desarrolladores ha creado diferentes

proyectos que permiten la intercomunicación y sincronización de datos entre

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

14

microcontroladores empleando protocolos como MQTT o LoRa. Sin embargo,

no es común encontrar soluciones genéricas y reutilizables en forma de

librerías que permitan simular una memoria compartida empleando ESP-NOW.

Por ello, aparece una oportunidad para el desarrollo de herramientas que

faciliten la programación distribuida entre nodos ESP-32, reduciendo la

complejidad de su manejo y permitiendo aprovechar las ventajas del protocolo

ESP-NOW.

Vinculación con competencias del Título

Este proyecto se enmarca en el ámbito de la informática industrial, la

programación de sistemas embebidos, la electrónica industrial, y las

tecnologías de la comunicación.

Diseño

La librería pretende que los dispositivos puedan actuar como emisores y

receptores de datos a la vez para conseguir una comunicación entre

dispositivos fluida. Por ello, todos los dispositivos son capaces de leer y escribir

datos en la memoria compartida, crear nuevas memorias compartidas

definiéndolas a través de un nombre y un tamaño, además de ser capaces de

registrar y borrar dispositivos de su lista de “peer”.

Especificaciones

1. La librería debe permitir el registro de dispositivos para asegurar la

intercomunicación entre ambos. Esto se conseguirá mediante las

direcciones MAC de los dispositivos ESP-32.

2. La librería debe permitir borrar el registro de un dispositivo empleando

nuevamente la dirección MAC.

3. La librería debe permitir informar al usuario de los dispositivos que

están registrados.

4. La librería debe permitir crear segmentos de memoria (Bloques de

memoria) con un nombre y tamaño concretos.

5. La librería debe permitir vincular los bloques de memoria creados con

los creados en otros dispositivos si coinciden en nombre y tamaño.

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

15

6. La librería debe permitir informar al usuario del contenido de cualquier

posición de memoria dentro de un bloque de memoria creado.

7. La librería debe permitir escribir en las direcciones de memoria dentro

de los bloques de memoria creados.

8. La librería debe permitir dar acceso a ciertas posiciones de memoria

dentro de un bloque de memoria creado y vinculado con otro dispositivo.

De forma que, para un bloque de memoria vinculado, cada dispositivo

solo podrá escribir en las posiciones de memoria a las que se tenga

acceso.

9. La librería debe permitir asociar las direcciones MAC del dispositivo local

y de los registrados a un nombre concreto definido por el usuario para

usarlo en aquellas funciones donde la dirección MAC sea necesaria con

el fin de simplificar el uso de estas funciones (Ejm: función Borrar).

Código: Archivo MemoriaCompartida.h

La definición de todas las funciones y variables globales se muestran en el

siguiente archivo: MemoriaCompartida.h:

#ifndef MEMORIACOMPARTIDA_H

#define MEMORIACOMPARTIDA_H

#include <esp_now.h>

#include <WiFi.h>

#include <vector>

#include <string>

#include <stdlib.h>

#include <stdint.h>

typedef struct MensajeEstructurado{

 char text[240];

} Mensaje_Estructurado;

class MemoriaCompartida{

public:

 MemoriaCompartida();

 void init();

 void Registrar(const String& mac);

 void Borrar(String& Mac);

 void Dispositivos();

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

16

 static void EscribirMemoria(String NombreBloque, int Indice,

String Valor);

 static void EditarValorDeMemoria(String MacReceptor, String

NombreBloque, int Indice, int Valor);

 static void enRecepcionDeDatos(const esp_now_recv_info* info,

const uint8_t* DatosRecibidos, int tamaño);

 static void enEnvioDeDatos (const uint8_t* MAC,

esp_now_send_status_t status);

 static bool ConvertirMacStringABytes(const String& macString,

uint8_t* macBytes);

 static String NormalizarMac(const String& Mac);

 static uint32_t MostrarMemoria(String NombreBloque, int Indice);

 static std::vector<uint32_t*> MemoriaDispositivos;

 void Alias ();

 static bool esAlias(String Alias);

 static String ConvertirAliasAMacString(String Alias);

 void AsignarVectorMemoriaCompartida(String Mac, String

NombreBloque);

 static void CrearBloqueMemoria(String NombreBloque, uint32_t

TamanoBloque);

 static void VincularVector();

 static void EnviarValorVinculado(String NombreBloque, int Indice,

String Valor);

 static uint32_t InfoMostrarMemoria(String NombreBloque, int

Indice);

 static void CrearVectorValoresResponsabilizados(String

NombreBloque, int IndiceMin, int IndiceMax);

private:

 static MensajeEstructurado MensajeEnviado;

 static MensajeEstructurado MensajeRecibido;

 static uint8_t peerMAC[6];

 static bool RespuestaRecibida;

 static bool EnvioCompletado;

 static std::vector<String> DispositivosConectados;

 static bool esDireccionMac(const String& mac);

 static std::vector<String> DispositivosAlias;

 static std::vector<String> Bloques;

 static std::vector<String> VectoresVinculados;

 static std::vector<String> ValoresResponsabilizados;

 static std::vector<String> ListaRespuestasPendientes;

 static std::vector<int> Respuestas;

 static bool SePuedeEscribir;

};

#endif

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

17

Código: Archivo MemoriaCompartida.cpp

El archivo .cpp contiene variables globales y funciones que siguen dos tipos de

tecnología distinta: funciones “blocking” y funciones “non-blocking”. Las

funciones “blocking” son aquellas que detienen la ejecución del programa

hasta que se completa la operación solicitada. Este tipo de funciones son más

simples de implementar, pero pueden ocasionar problemas de rendimiento ya

que el programa debe esperar a ejecutar por completo una tarea para

comenzar con la siguiente.

Por el contrario, las funciones “non-blocking” permiten ejecutar más de una

tarea a la vez al no detener la ejecución del programa, consiguiendo una

ejecución continua del mismo sin interrupciones.

Funciones Blocking:

Entre las funciones “blocking” creadas, se encuentran funciones de registro y
borrado de dispositivos, funciones de lectura y escritura de datos, funciones
de creación y vinculación de bloques de memoria y otras funciones de
carácter secundario.

1. MemoriaCompartida::esDirecciónMac()

1. bool MemoriaCompartida::esDireccionMac(const String& mac) {

2. if (mac.length() != 17) {

3. return false;

4. }

5. for (int i = 0; i < mac.length(); i++) {

6. if (i % 3 == 2) {

7. if (mac[i] != ':') {

8. return false;

9. }

10. } else if (!isxdigit(mac[i])) {

11. return false;

12. }

13. }

14. return true;

15. }

La función esDireccionMac permite validar si una cadena de texto (String mac)

tiene el formato adecuado para ser una dirección MAC y poder emplear esa

cadena de texto en otras funciones.

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

18

La función primeramente comprueba si la longitud de la cadena de texto

introducida es de 17 caracteres: 6 caracteres hexadecimales (12 caracteres

en total) y 5 dos puntos que sirven para separar los pares de caracteres. Si la

longitud no es de 17, la función devuelve “false”.

2. if (mac.length() != 17) {

3. return false;

4. }

A continuación, se recorre la cadena de texto usando un bucle “for”,

Por un lado, se comprueba que cada tercer carácter es un signo de puntuación

“:” a través de dos condiciones “if”. Si no se cumple, se devuelve un “false”.

Por otro lado, se comprueba que cada primer y segundo carácter es un

hexadecimal usando la función “isxdigit()”. Y si no lo es, se devuelve un “false”.

4. for (int i = 0; i < mac.length(); i++) {

5. if (i % 3 == 2) {

6. if (mac[i] != ':') {

7. return false;

8. }

9. } else if (!isxdigit(mac[i])) {

10. return false;

11. }

12. }

Por último, si ninguna de las condiciones anteriores devuelve un “false”, la

función devolverá un “true”: la cadena de texto tiene el formato de dirección

MAC correcto, y la variable se podrá usar en otras funciones de la librería.

14. return true;

Esta función es una implementación simple pero efectiva y fundamental a la

hora de validar las direcciones MAC, asegura una correcta identificación de los

dispositivos para la utilización en funciones y operaciones que requieran de

direcciones MAC.

2. MemoriaCompartida::ConvertirMacStringABytes()

bool MemoriaCompartida::ConvertirMacStringABytes(const String&

macString, uint8_t* macBytes) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

19

1. int elementos[6];

2. if (sscanf(macString.c_str(), "%x:%x:%x:%x:%x:%x",

&elementos[0], &elementos[1], &elementos[2], &elementos[3],

&elementos[4], &elementos[5]) == 6) {

3. for (int i = 0; i < 6; i++) {

4. macBytes[i] = (uint8_t)elementos[i];

5. }

6. return true;

7. }

8. return false;

9. }

La función ConvertirMacStringABytes permite convertir una cadena de texto

(String macString) en un vector de bytes (uint8_t macBytes) para su utilización

en comunicaciones entre dispositivos a través de protocolos de red.

Primero, se utiliza la función “sscanf()” para extraer los seis caracteres

hexadecimales contenidos en “macString” e introducirlos en el vector de

enteros “elementos” de tamaño seis previamente creado. Cada carácter

hexadecimal se introduce en cada posición del vector “elementos”. A través de

la condición “if”, si se devuelve un vector con seis elementos, se convertirá

cada elemento del vector en un “uint8_t” y se almacenará en el vector

“macBytes” a través de un “for” y se devuelve un “true”. Si la cadena no tiene

seis elementos se devuelve un “false”.

La función “ConvertirMacStringABytes” es simple y directa. Gracias a la función

“sscanf”, que permite simplificar el código mucho. Además, es imprescindible

en funciones donde se pretenda comunicar dispositivos entre sí.

3. MemoriaCompartida::Registrar()

1. void MemoriaCompartida::Registrar(const String& mac) {

2. if (esDireccionMac(mac)) {

3. if (!ConvertirMacStringABytes(mac, peerMAC)) {

4. Serial.println("Error al convertir la Mac.");

5. return;

6. }

7. uint8_t MacBytesLocal[6];

8. WiFi.macAddress(MacBytesLocal);

9. bool MismaMac = true;

10. for (int i = 0; i < 6; i++) {

11. if (peerMAC[i] != MacBytesLocal[i]) {

12. MismaMac = false;

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

20

13. break;

14. }

15. }

16. if (MismaMac) {

17. Serial.println("Error: La MAC introducida es la de este

dispositivo.");

18. return;

19. }

20. esp_now_peer_info_t InfoPeer = {};

21. memcpy(InfoPeer.peer_addr, peerMAC, 6);

22. InfoPeer.channel = 0;

23. InfoPeer.encrypt = false;

24. if (esp_now_is_peer_exist(peerMAC)) {

25. Serial.println("Error: Este dispositivo ya está

registrado.");

26. return;

27. } else {

28. esp_err_t Resultado = esp_now_add_peer(&InfoPeer);

29. if (Resultado != ESP_OK) {

30. Serial.println("Error al agregar peer temporalmente");

31. return;

32. }

33. }

34. strcpy(MensajeEnviado.text, "Prueba de conexión");

35. Serial.print("Iniciando conexión con: ");

36. Serial.println(mac);

37. esp_err_t ResultadoDeEnvio = esp_now_send(peerMAC,

(uint8_t*)&MensajeEnviado, sizeof(MensajeEnviado));

38. if (ResultadoDeEnvio == ESP_OK) {

39. Serial.println("Conectando...");

40. RespuestaRecibida = false;

41. unsigned long Contador = millis();

42. while (millis() - Contador < 20000) {

43. if (RespuestaRecibida == true) {

44. esp_now_add_peer(&InfoPeer);

45. break;

46. }

47. }

48. if (!RespuestaRecibida) {

49. Serial.println("No se pudo conectar. Eliminando

dispositivo.");

50. esp_now_del_peer(peerMAC);

51. }

52. } else {

53. Serial.print("Error al conectar. Código de error: ");

54. Serial.println(ResultadoDeEnvio);

55. esp_now_del_peer(peerMAC);

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

21

56. }

57. } else {

58. Serial.println("Dirección MAC no válida.");

59. }

60. }

La función “Registrar()” permite agregar dispositivos a la red utilizando el

protocolo ESP-NOW y asegura que el dispositivo con la dirección MAC que se

pretende registrar está en alcance suficiente para el intercambio de

información.

Esta función realizará diferentes procesos de verificación:

1. Se verifica que la cadena de texto (String mac) contiene una

dirección MAC válida empleando la función “esDirecciónMac()” a

través de una condición “if”.

2. Dentro de la condición anterior se verifica si se ha podido convertir

la cadena de texto (mac) a bytes guardados en la variable “peerMac”

a través de la función “ConvertirMacStringABytes()”.

2. if (esDireccionMac(mac)) {

3. if (!ConvertirMacStringABytes(mac, peerMAC)) {

4. Serial.println("Error al convertir la Mac.");

5. return;

6. }

3. Se realiza una tercera comprobación: Que la cadena de texto (mac)

no contenga la dirección MAC del propio dispositivo y se intente

registrar un dispositivo que es él mismo. Para ello se crea una

variable “uint8_t MacBytesLocal[6]” donde se guarda el contenido

de la dirección de memoria del propio dispositivo a través de la

función de ESP-NOW “WiFi.macAddress()”. Se declara una variable

booleana “MismaMac” y se inicializa en true. A través de un “for” se

comprueba que cada elemento de “peerMac” sea distinto a

“MacBytesLocal”. Si es así, la variable booleana se pone en “false”

y se sale del bucle. En una nueva condición se comprueba que si

“MismaMac” es “true” salte un error por pantalla.

7. uint8_t MacBytesLocal[6];

8. WiFi.macAddress(MacBytesLocal);

9. bool MismaMac = true;

10. for (int i = 0; i < 6; i++) {

11. if (peerMAC[i] != MacBytesLocal[i]) {

12. MismaMac = false;

13. break;

14. }

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

22

15. }

16. if (MismaMac) {

17. Serial.println("Error: La MAC introducida es la de

este dispositivo.");

18. return;

19. }

4. Se realiza una cuarta comprobación: La cadena de texto (mac) no

debe contener la dirección MAC de un dispositivo ya registrado.

Usando la librería ESP-NOW se prepara un objeto

“esp_now_peer_info_t” que guarda la información del dispositivo

que se quiere registrar en una variable “InfoPeer”. A través de una

condición “if” y la función “esp_now_is_peer_exist()” de ESP-NOW se

verifica si la MAC contenida en el vector “peerMAC” ya está

registrada en la red y si es así saca un mensaje de error por pantalla.

20. esp_now_peer_info_t InfoPeer = {};

21. memcpy(InfoPeer.peer_addr, peerMAC, 6);

22. InfoPeer.channel = 0;

23. InfoPeer.encrypt = false;

24. if (esp_now_is_peer_exist(peerMAC)) {

25. Serial.println("Error: Este dispositivo ya está

registrado.");

26. return;

27. }

5. Como última comprobación se verifica si el dispositivo se ha

agregado correctamente. Con el objeto “esp_err_t” de ESP-NOW que

contiene información sobre un posible error guardada en la variable

“Resultado”, si el “Resultado” no contiene “ESP_OK” significa que

no se ha podido agregar el dispositivo y salta un error.

27. else {

28. esp_err_t Resultado = esp_now_add_peer(&InfoPeer);

29. if (Resultado != ESP_OK) {

30. Serial.println("Error al agregar peer

temporalmente");

31. return;

32. }

33. }

Una vez hechas todas las comprobaciones, se atiende al proceso específico de

registro de un dispositivo. Primero se envía el mensaje “Prueba de conexión” al

dispositivo con dirección MAC almacenada en “peerMAC” utilizando

“esp_now_send()” de ESP-NOW.

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

23

34. strcpy(MensajeEnviado.text, "Prueba de conexión");

35. Serial.print("Iniciando conexión con: ");

36. Serial.println(mac);

37. esp_err_t ResultadoDeEnvio = esp_now_send(peerMAC,

(uint8_t*)&MensajeEnviado, sizeof(MensajeEnviado));

Una vez enviado el mensaje se esperará veinte segundos a recibir un mensaje

de vuelta para verificar si la conexión fue exitosa y el dispositivo está en

alcance. Si se recibe el mensaje dentro del tiempo establecido, el dispositivo

queda registrado y se mantiene en la red, pero si no se recibe mensaje, se

elimina el peer.

38. if (ResultadoDeEnvio == ESP_OK) {

39. Serial.println("Conectando...");

40. RespuestaRecibida = false;

41. unsigned long Contador = millis();

42. while (millis() - Contador < 20000) {

43. if (RespuestaRecibida == true) {

44. esp_now_add_peer(&InfoPeer);

45. break;

46. }

47. }

48. if (!RespuestaRecibida) {

49. Serial.println("No se pudo conectar. Eliminando

dispositivo.");

50. esp_now_del_peer(peerMAC);

51. }

52. }

Por último, se saca por pantalla un error si no se recibe respuesta y se elimina

el peer y si el contenido de la MAC (mac) introducido no es una dirección MAC

válida.

52. else {

53. Serial.print("Error al conectar. Código de error: ");

54. Serial.println(ResultadoDeEnvio);

55. delay(10);

56. esp_now_del_peer(peerMAC);

57. } else {

58. Serial.println("Dirección MAC no válida.");

59. }

60. }

4. MemoriaCompartida::NormalizarMac()

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

24

1. String MemoriaCompartida::NormalizarMac(const String& Mac) {

2. String MacNormalizada = Mac;

3. MacNormalizada.toUpperCase();

4. return MacNormalizada;

5. }

La función “NormalizarMac()” es una función muy sencilla que asegura que

todos los caracteres estén en mayúsculas. Es una función muy útil a la hora de

tener que comparar direcciones MAC a lo largo del código.

5. MemoriaCompartida::Dispositivos()

1. void MemoriaCompartida::Dispositivos() {

2. if (DispositivosConectados.empty()) {

3. Serial.println("No hay dispositivos conectados.");

4. Serial.println("Dispositivo local: ");

5. Serial.println(WiFi.macAddress());

6. delay(100);

7. } else {

8. Serial.println("Dispositivo local:");

9. Serial.println(WiFi.macAddress());

10. Serial.println("Dispositivos conectados: ");

11. for (size_t i = 0; i < DispositivosConectados.size(); ++i) {

12. Serial.println(NormalizarMac(DispositivosConectados[i]));

13. }

14. }

15. Serial.println();

16. }

La función “Dispositivos()” permite informar sobre la cantidad de dispositivos

registrados en una red.

A través de una condición “if” se comprueba si hay dispositivos conectados:

- Si no es así, muestra la dirección MAC del dispositivo local.

- Si sí es así, muestra tanto la dirección MAC del dispositivo local como las de

los dispositivos conectados.

6. MemoriaCompartida::Borrar()

1. void MemoriaCompartida::Borrar(String& Mac) {

2. bool Registrado = false;

3. if (!esDireccionMac(Mac)) {

4. if (!esAlias(Mac)){

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

25

5. Serial.println("Error: Formato de MAC inválido.");

6. return;

7. }

8. if(esAlias(Mac)){

9. ConvertirAliasAMacString(Mac);

10. String mac = ConvertirAliasAMacString(Mac);

11. Mac = mac;

12. }

13. }

14. if (NormalizarMac(Mac) == NormalizarMac(WiFi.macAddress())) {

15. Serial.println("Error: La MAC introducida es la de este

dispositivo.");

16. return;

17. }

18. if (!ConvertirMacStringABytes(Mac, peerMAC)) {

19. Serial.println("Error al convertir la MAC");

20. return;

21. }

22. for (auto it = DispositivosConectados.begin(); it !=

DispositivosConectados.end(); ++it) {

23. if (NormalizarMac(*it) == NormalizarMac(Mac)) {

24. char Texto[30];

25. sprintf(Texto, "Borrado %s", WiFi.macAddress().c_str());

26. strcpy(MensajeEnviado.text, Texto);

27. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

28. DispositivosConectados.erase(it);

29. esp_now_del_peer(peerMAC);

30. Serial.print("El dispositivo ");

31. Serial.print(Mac);

32. Serial.println(" ha sido elimindado.");

33. Registrado = true;

34. for (size_t i = 0; i < VectoresVinculados.size(); i++) {

35. if(NormalizarMac(VectoresVinculados[i]) ==

NormalizarMac(*it)) {

36. VectoresVinculados.erase(VectoresVinculados.begin() + (i

- 1));

37. VectoresVinculados.erase(VectoresVinculados.begin() + (i

- 1));

38. i -= 1;

39. }

40. }

41. break;

42. }

43. }

44. for (int i = 0; i < DispositivosAlias.size(); i += 2) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

26

45. if (NormalizarMac(DispositivosAlias[i]) ==

NormalizarMac(Mac)) {

46. DispositivosAlias.erase(DispositivosAlias.begin() + i);

47. DispositivosAlias.erase(DispositivosAlias.begin() + i);

48. Registrado = true;

49. break;

50. }

51. }

52. delay(100);

53. esp_now_del_peer(peerMAC);

54. Registrado = true;

55. if (!Registrado) {

56. Serial.println("Error: Dispositivo no registrado.");

57. }

58. }

La función “Borrar()” permite eliminar un dispositivo de la lista de “peers” de la

red, de la lista de dispositivos conectados y de la lista de vectores vinculados.

Busca una dirección MAC determinada y la elimina si se encuentra entre los

dispositivos conectados.

Primero se crea una variable booleana (Registrado) que servirá, al final del

código, para avisar al usuario si la cadena de texto “Mac” no contuviese una

dirección MAC registrada en el dispositivo.

2. bool Registrado = false;

Esta función realiza una serie de comprobaciones:

1. Se verifica que la cadena de texto (String Mac) contiene una dirección

MAC válida empleando la función “esDirecciónMac()” a través de una

condición “if”. Si no es una dirección MAC válida, se realiza otra

comprobación más: Se verifica si el contenido de la cadena de texto

“Mac” es un alias a través de la función “esAlias()”.

 + Si no es así, saca por pantalla un error.

 + Si sí es así se ejecuta la función “ConvertirAliasAMacString()”

para obtener la dirección MAC vinculada a ese alias.

3. if (!esDireccionMac(Mac)) {

4. if (!esAlias(Mac)){

5. Serial.println("Error: Formato de MAC inválido.");

6. return;

7. }

8. if(esAlias(Mac)){

9. ConvertirAliasAMacString(Mac);

10. String mac = ConvertirAliasAMacString(Mac);

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

27

11. Mac = mac;

12. }

13. }

2. Si el contenido de la cadena de texto “Mac” sí es una dirección Mac se

realiza la siguiente verificación: Con ayuda de la función

“NormalizarMac()” se comprueba si la cadena de texto contiene la

dirección del propio dispositivo, si es así, devuelve un mensaje de error.

14. if (NormalizarMac(Mac) == NormalizarMac(WiFi.macAddress()))

{

15. Serial.println("Error: La MAC introducida es la de este

dispositivo.");

16. return;

17. }

3. Si no es la MAC del propio dispositivo, realiza la siguiente comprobación:

Con “ConvertirMacStringABytes()” se verifica si se ha podido convertir la

cadena de texto (Mac) a bytes guardados en la variable “peerMac”.

18. if (!ConvertirMacStringABytes(Mac, peerMAC)) {

19. Serial.println("Error al convertir la MAC");

20. return;

21. }

Una vez completadas todas las comprobaciones para asegurar el correcto

funcionamiento del flujo se procede con la eliminación del dispositivo.

Mediante un “for” se recorren todos los dispositivos almacenados en la lista

“DispositivosConectados”, cuando un elemento del vector coincide con la

dirección MAC almacenada en la cadena de texto, se prepara el mensaje

“Borrado” y se envía al dispositivo con dicha MAC, se elimina el dispositivo del

vector de “DispositivosConectados()” y se imprime un mensaje informando al

usuario. Mediante otro “for” se recorre el vector “VectoresVinculados” y cuando

el contenido de ese vector sea igual a la dirección MAC que se quiere borrar, se

elimina tanto esa dirección MAC como el vector vinculado a esa MAC de vector

“VectoresVinculados”.

22. for (auto it = DispositivosConectados.begin(); it !=

DispositivosConectados.end(); ++it) {

23. if (NormalizarMac(*it) == NormalizarMac(Mac)) {

24. char Texto[30];

25. sprintf(Texto, "Borrado %s", WiFi.macAddress().c_str());

26. strcpy(MensajeEnviado.text, Texto);

27. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

28. DispositivosConectados.erase(it);

29. esp_now_del_peer(peerMAC);

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

28

30. Serial.print("El dispositivo ");

31. Serial.print(Mac);

32. Serial.println(" ha sido elimindado.");

33. Registrado = true;

34. for (size_t i = 0; i < VectoresVinculados.size(); i++) {

35. if(NormalizarMac(VectoresVinculados[i]) ==

NormalizarMac(*it)) {

36. VectoresVinculados.erase(VectoresVinculados.begin() + (i

- 1));

37. VectoresVinculados.erase(VectoresVinculados.begin() + (i

- 1));

38. i -= 1;

39. }

40. }

41. break;

42. }

43. }

Luego se recorre el vector “DispositivosAlias” para, una vez borrada la MAC del

peer y del listado “DispositivosConectados”, borrar del vector

“DispositivosAlias” tanto la dirección MAC con el alias asociado a esa MAC.

44. for (int i = 0; i < DispositivosAlias.size(); i += 2) {

45. if (NormalizarMac(DispositivosAlias[i]) ==

NormalizarMac(Mac)) {

46. DispositivosAlias.erase(DispositivosAlias.begin() + i);

47. DispositivosAlias.erase(DispositivosAlias.begin() + i);

48. Registrado = true;

49. break;

50. }

51. }

Por último, con un “delay” de 0,1 segundos, se ayuda al sistema a estabilizarse

y elimina la MAC introducida si no ha sido eliminada a través del flujo anterior,

es decir, si se hubiese introducido una dirección MAC de un dispositivo no

registrado. Además, si la variable booleana creada anteriormente devuelve un

“false” se saca por pantalla un mensaje de error.

46. delay(100);

47. esp_now_del_peer(peerMAC);

48. Registrado = true;

49. if (!Registrado) {

50. Serial.println("Error: Dispositivo no registrado.");

51. }

52. }

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

29

La función “Borrar” sirve para validar, buscar y eliminar cualquier referencia

(dirección MAC o/y Alias) de cualquier dispositivo que tenga el dispositivo que

lo ejecuta. Además, es capaz de detectar errores e informar de ellos al usuario.

7. MemoriaCompartida::CrearBloqueMemoria()

1. void MemoriaCompartida::CrearBloqueMemoria(String NombreBloque,

uint32_t TamanoBloque) {

2. if (NombreBloque.length() == 0) {

3. Serial.println("El nombre del bloque no puede estar vacío.");

4. return;

5. }

6. for (size_t i = 0; i < Bloques.size(); i += 2) {

7. if (Bloques[i] == NombreBloque) {

8. Serial.println("Error: El nombre del bloque ya existe.");

9. return;

10. }

11. }

12. if (TamanoBloque == 0){

13. Serial.println("Error: El tamaño deber ser un número y mayor

a 0");

14. return;

15. }

16. uint32_t EspacioGastado = 0;

17. for (size_t i = 0; i < Bloques.size(); i += 2){

18. EspacioGastado += (Bloques[i + 1].toInt()) * 4;

19. }

20. uint32_t MemoriaLibre = ESP.getFreeHeap();

21. MemoriaLibre -= EspacioGastado;

22. if (TamanoBloque * 4 > MemoriaLibre) {

23. Serial.print("Error: No hay suficiente memoria disponible

para este bloque. Espacio libre disponible: ");

24. Serial.println(MemoriaLibre/4);

25. return;

26. }

27. Bloques.push_back(NombreBloque);

28. Bloques.push_back(String(TamanoBloque));

29. Serial.print("Bloque de memoria '");

30. Serial.print(NombreBloque);

31. Serial.print("' creado con tamaño de ");

32. Serial.print(TamanoBloque);

33. Serial.println(" direcciones de memoria.");

34. uint32_t* DireccionMemoria = (uint32_t*)malloc(TamanoBloque *

sizeof(uint32_t));

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

30

35. if (DireccionMemoria != NULL) {

36. MemoriaDispositivos.push_back(DireccionMemoria);

37. for (size_t i = 0; i < TamanoBloque; i++) {

38. DireccionMemoria[i] = 0;

39. }

40. VincularVector();

41. } else {

42. Serial.println("Error al reservar memoria para el bloque.");

43. }

44. }

La función “CrearBloqueMemoria()” permite crear bloques de memoria con

nombre y tamaño variable para su posterior asignación a dispositivos

determinados.

Mediante una condición “if” se asegura de que el nombre introducido no esté

vacío:

2. if (NombreBloque.length() == 0) {

3. Serial.println("El nombre del bloque no puede estar vacío.");

4. return;

5. }

Luego se asegura de que el nombre introducido no esté repetido:

6. for (size_t i = 0; i < Bloques.size(); i += 2) {

7. if (Bloques[i] == NombreBloque) {

8. Serial.println("Error: El nombre del bloque ya existe.");

9. return;

10. }

11. }

Y también asegura que el tamaño introducido sea válido: un número mayor a

0.

12. if (TamanoBloque == 0){

13. Serial.println("Error: El tamaño deber ser un número y mayor

a 0");

14. return;

15. }

 A continuación, se calcula el espacio disponible para avisar al usuario de si hay

espacio suficiente para crear dicho bloque:

16. uint32_t EspacioGastado = 0;

17. for (size_t i = 0; i < Bloques.size(); i += 2){

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

31

18. EspacioGastado += (Bloques[i + 1].toInt()) * 4;

19. }

20. uint32_t MemoriaLibre = ESP.getFreeHeap();

21. MemoriaLibre -= EspacioGastado;

22. if (TamanoBloque * 4 > MemoriaLibre) {

23. Serial.print("Error: No hay suficiente memoria disponible

para este bloque. Espacio libre disponible: ");

24. Serial.println(MemoriaLibre/4);

25. return;

26. }

Una vez creado el bloque, se estructura el vector “Bloques” a pares, de forma

que la información de cada bloque se almacena cada dos elementos: en los

impares (primera posición, tercera…) se almacena el nombre del bloque. En las

posiciones pares (segunda, cuarta…) se almacena el tamaño del bloque, de

forma que el vector estará formado por lo nombres de los bloques creados

seguidos de su respectivo tamaño.

27. Bloques.push_back(NombreBloque);

28. Bloques.push_back(String(TamanoBloque));

29. Serial.print("Bloque de memoria '");

30. Serial.print(NombreBloque);

31. Serial.print("' creado con tamaño de ");

32. Serial.print(TamanoBloque);

33. Serial.println(" direcciones de memoria.");

Por último, con la función “malloc” se reserva ese espacio de memoria a ese

bloque concreto.

34. uint32_t* DireccionMemoria = (uint32_t*)malloc(TamanoBloque *

sizeof(uint32_t));

35. if (DireccionMemoria != NULL) {

36. MemoriaDispositivos.push_back(DireccionMemoria);

37. for (size_t i = 0; i < TamanoBloque; i++) {

38. DireccionMemoria[i] = 0;

39. }

40. VincularVector();

41. } else {

42. Serial.println("Error al reservar memoria para el

bloque.");

43. }

44. }

8. MemoriaCompartida::VincularVector()

1. void MemoriaCompartida::VincularVector() {

2. if (DispositivosConectados.size() == 0) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

32

3. Serial.println("No hay dispositivos conectados para

vincular.");

4. return;

5. }

6. if (Bloques.size() == 0) {

7. Serial.println("No hay bloques creados para vincular.");

8. return;

9. }

10. for (size_t i = 1; i < Bloques.size(); i += 2) {

11. std::vector<int> IndiceDispositivo;

12. for (size_t j = 0; j < VectoresVinculados.size(); j++) {

13. if (Bloques[i - 1] == VectoresVinculados[j]) {

14. IndiceDispositivo.push_back(j + 1);

15. }

16. }

17. for (size_t j = 0; j < DispositivosConectados.size(); j++) {

18. bool yaVinculado = false;

19. for (size_t k = 0; k < IndiceDispositivo.size(); k++) {

20. if (DispositivosConectados[j] ==

VectoresVinculados[IndiceDispositivo[k]]) {

21. yaVinculado = true;

22. Serial.print("El dispositivo ");

23. Serial.print(NormalizarMac(DispositivosConectados[j]));

24. Serial.print(" ya tiene vinculado el bloque ");

25. Serial.println(Bloques[i - 1]);

26. break;

27. }

28. }

29. if (!yaVinculado) {

30. char Texto[100];

31. sprintf(Texto, "Vincular %s %lu", Bloques[i - 1].c_str(),

Bloques[i].toInt());

32. strcpy(MensajeEnviado.text, Texto);

33. ConvertirMacStringABytes(DispositivosConectados[j],

peerMAC);

34. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

35. Serial.print("El vector: ");

36. Serial.print(Bloques[i - 1]);

37. Serial.print(" se está intentando vincular con ");

38. Serial.println(NormalizarMac(DispositivosConectados[j]));

39. }

40. }

41. IndiceDispositivo.clear();

42. }

43. }

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

33

La función VincularVector() permite sincronizar el contenido de un bloque de

memoria creado con otros dispositivos registrados siempre que estos tengan

un bloque creado con el mismo nombre y tamaño.

Primero se verifica que haya dispositivos registrados para poder vincular

vectores, en caso contrario informa al usuario:

2. if (DispositivosConectados.size() == 0) {

3. Serial.println("No hay dispositivos conectados para

vincular.");

4. return;

5. }

A continuación, se verifica que haya bloques creados para poder vincular con

otro dispositivo:

6. f (Bloques.size() == 0) {

7. Serial.println("No hay bloques creados para vincular.");

8. return;

9. }

Una vez hechas las verificaciones, se recorre el vector “Bloques” y

“VectoresVinculados” y se comprueba que el nombre del bloque sea del mismo

que el bloque vinculado. En ese caso se almacena el índice del vector

“VectoresVinculados” en el vector previamente creado “IndiceDispositivo” para

su utilización posteriormente.

10. for (size_t i = 1; i < Bloques.size(); i += 2) {

11. std::vector<int> IndiceDispositivo;

12. for (size_t j = 0; j < VectoresVinculados.size(); j++) {

13. if (Bloques[i - 1] == VectoresVinculados[j]) {

14. IndiceDispositivo.push_back(j + 1);

15. }

16. }

Ahora se recorre el vector “DispositivosConectados” y el vector

“IndiceDispositivo” y en caso de que un dispositivo registrado sea uno de los

almacenados en el vector “VectoresVinculados”, se tomará el bloque como ya

vinculado. En caso de que el bloque no haya sido vinculado con ningún

dispositivo, se prepara el mensaje para iniciar el flujo de vinculación y se

informa de ello al usuario.

17. for (size_t j = 0; j < DispositivosConectados.size(); j++) {

18. bool yaVinculado = false;

19. for (size_t k = 0; k < IndiceDispositivo.size(); k++) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

34

20. if (DispositivosConectados[j] ==

VectoresVinculados[IndiceDispositivo[k]]) {

21. yaVinculado = true;

22. Serial.print("El dispositivo ");

23. Serial.print(NormalizarMac(DispositivosConectados[j]));

24. Serial.print(" ya tiene vinculado el bloque ");

25. Serial.println(Bloques[i - 1]);

26. break;

27. }

28. }

29. if (!yaVinculado) {

30. char Texto[100];

31. sprintf(Texto, "Vincular %s %lu", Bloques[i - 1].c_str(),

Bloques[i].toInt());

32. strcpy(MensajeEnviado.text, Texto);

33. ConvertirMacStringABytes(DispositivosConectados[j],

peerMAC);

34. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

35. Serial.print("El vector: ");

36. Serial.print(Bloques[i - 1]);

37. Serial.print(" se está intentando vincular con ");

38. Serial.println(NormalizarMac(DispositivosConectados[j]));

39. }

40. }

Una vez completado el mensaje de envío, se limpia el vector “IndiceDispositivo”

mediante la función “clear()”, para su reutilización.

41. IndiceDispositivo.clear();

42. }

43. }

9. MemoriaCompartida::CrearVectorValoresResponsabilizados()

1. void

MemoriaCompartida::CrearVectorValoresResponsabilizados(String

NombreBloque, int IndiceMin, int IndiceMax) {

2. bool BloqueEncontrado = false;

3. bool BloqueVinculado = false;

4. uint32_t TamanoBloque;

5. for (size_t i = 0; i < Bloques.size(); i += 2) {

6. if (NombreBloque == Bloques [i]) {

7. BloqueEncontrado = true;

8. TamanoBloque = Bloques[i+1].toInt();

9. break;

10. }

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

35

11. }

12. if (!BloqueEncontrado) {

13. Serial.print("Error: El vector ");

14. Serial.print(NombreBloque);

15. Serial.println(" no está creado en este dispositivo");

16. return;

17. } else {

18. for (size_t i = 0; i < VectoresVinculados.size(); i++) {

19. if (NombreBloque == VectoresVinculados[i]) {

20. BloqueVinculado = true;

21. break;

22. }

23. }

24. if (!BloqueVinculado) {

25. Serial.println("Error: Primero hay que vincular el

vector.");

26. return;

27. }

28. }

29. if (IndiceMin > IndiceMax || IndiceMax > TamanoBloque) {

30. Serial.println("Error: Indices mal definidos.");

31. return;

32. }

33. for (size_t i = 0; i < VectoresVinculados.size(); i++) {

34. if (NombreBloque == VectoresVinculados[i]) {

35.

ListaRespuestasPendientes.push_back(VectoresVinculados[i+1]);

36. ListaRespuestasPendientes.push_back("0");

37. char Texto[100];

38. sprintf(Texto, "Responsable %s %d %d",

NombreBloque.c_str(), IndiceMin, IndiceMax);

39. strcpy(MensajeEnviado.text, Texto);

40. ConvertirMacStringABytes(VectoresVinculados[i+1], peerMAC);

41. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

42. }

43. }

44. }

La función CrearVectorValoresResponsabilizados() permite enviar el mensaje

“Responsable” para su procesamiento en otra función.

 Primero se obtiene el tamaño del bloque recorriendo el vector “Bloques()” y

guardando el tamaño en una variable. Con el mismo flujo se obtiene si el bloque

ha sido encontrado en el vector “Bloques()” o no.

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

36

2. bool BloqueEncontrado = false;

3. bool BloqueVinculado = false;

4. uint32_t TamanoBloque;

5. for (size_t i = 0; i < Bloques.size(); i += 2) {

6. if (NombreBloque == Bloques [i]) {

7. BloqueEncontrado = true;

8. TamanoBloque = Bloques[i+1].toInt();

9. break;

10. }

11. }

Si el bloque no se encuentra, se imprime un mensaje de error.

12. if (!BloqueEncontrado) {

13. Serial.print("Error: El vector ");

14. Serial.print(NombreBloque);

15. Serial.println(" no está creado en este dispositivo");

16. return;

17. }

Si el bloque se encuentra, se averigua mediante un “for” si ese bloque está

vinculado. Si no lo está se imprime un mensaje de error.

17. else {

18. for (size_t i = 0; i < VectoresVinculados.size(); i++) {

19. if (NombreBloque == VectoresVinculados[i]) {

20. BloqueVinculado = true;

21. break;

22. }

23. }

24. if (!BloqueVinculado) {

25. Serial.println("Error: Primero hay que vincular el

vector.");

26. return;

27. }

28. }

Si el índice menor es mayor que el índice mayor o viceversa, se imprime otro

mensaje de error.

29. if (IndiceMin > IndiceMax || IndiceMax > TamanoBloque) {

30. Serial.println("Error: Indices mal definidos.");

31. return;

32. }

Una vez hechas las comprobaciones, se recorre el vector

“VectoresVinculados()” y cuando ese vector contenga el nombre del bloque, se

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

37

enviará el mensaje “Responsable” a la dirección MAC con ese nombre

vinculado. El vector “VectoresVinculados” está estructurado a pares, siendo el

primer elemento el bloque vinculado, y el segundo elemento la dirección MAC

con la que ese bloque está vinculado. Además, se crean los vectores

“ListaRespuestasPendientes()” que será de utilidad en la función que procese

este mensaje: el “Callback” “EnRecepciónDeDatos()”.

33. for (size_t i = 0; i < VectoresVinculados.size(); i++) {

34. if (NombreBloque == VectoresVinculados[i]) {

35.

ListaRespuestasPendientes.push_back(VectoresVinculados[i+1]);

36. ListaRespuestasPendientes.push_back("0");

37. char Texto[100];

38. sprintf(Texto, "Responsable %s %d %d",

NombreBloque.c_str(), IndiceMin, IndiceMax);

39. strcpy(MensajeEnviado.text, Texto);

40. ConvertirMacStringABytes(VectoresVinculados[i+1], peerMAC);

41. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

42. }

43. }

44. }

10. MemoriaCompartida::MostrarMemoria()

1. uint32_t MemoriaCompartida::MostrarMemoria(String NombreBloque,

int Indice) {

2. size_t index = -1;

3. for (size_t i = 0; i < Bloques.size(); i += 2) {

4. if (Bloques[i] == NombreBloque) {

5. index = i/2;

6. }

7. }

8. if (index == -1) {

9. return -1;

10. }

11. uint32_t* DireccionMemoria = MemoriaDispositivos[index];

12. if (DireccionMemoria != nullptr) {

13. for (size_t i = 0; i < Bloques.size(); ++i) {

14. if (Bloques[i] == NombreBloque) {

15. uint32_t TamanoBloque = Bloques [i + 1].toInt();

16. if (Indice >= 0 && Indice < TamanoBloque) {

17. return DireccionMemoria[Indice];

18. } else {

19. return -1;

20. }

21. }

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

38

22. }

23. }

24. }

La función “MostrarMemoria()” permite mostrar el valor almacenado dentro de

una posición específica de un bloque de memoria.

Primero se recorre el vector Bloques de dos en dos y se comprueba si el

contenido de ese vector es el nombre del bloque almacenado en la variable

“NombreBloque”. Si el contenido del vector es el nombre del bloque

especificado, la variable “index” valdrá la posición en la que el vector contiene

el nombre del bloque, dividido entre dos, esto es debido a que el “for” recorre

el vector de dos en dos. En caso contrario la variable “index” devolverá un -1.

2. size_t index = -1;

3. for (size_t i = 0; i < Bloques.size(); i += 2) {

4. if (Bloques[i] == NombreBloque) {

5. index = i/2;

6. }

7. }

8. if (index == -1) {

9. return -1;

10. }

A continuación, se obtiene un puntero a la memoria del bloque usando el

índice. Se recorre el vector Bloques y se comprueba si el vector contiene el

nombre del bloque concreto para obtener el tamaño del bloque y poder

comprobar si el índice introducido es mayor o no al tamaño del bloque definido

en la función CrearBloqueMemoria().

11. uint32_t* DireccionMemoria = MemoriaDispositivos[index];

12. if (DireccionMemoria != nullptr) {

13. for (size_t i = 0; i < Bloques.size(); ++i) {

14. if (Bloques[i] == NombreBloque) {

15. uint32_t TamanoBloque = Bloques [i + 1].toInt();

16. if (Indice >= 0 && Indice < TamanoBloque) {

17. return DireccionMemoria[Indice];

18. } else {

19. return -1;

20. }

21. }

22. }

23. }

24. }

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

39

11. MemoriaCompartida::InfoMostrarMemoria();

1. uint32_t MemoriaCompartida::InfoMostrarMemoria(String

NombreBloque, int Indice) {

2. size_t index = -1;

3. for (size_t i = 0; i < Bloques.size(); i += 2) {

4. if (Bloques[i] == NombreBloque) {

5. index = i/2;

6. }

7. }

8. if (index == -1) {

9. Serial.println ("Error: El bloque de memoria no existe");

10. return -1;

11. }

12. uint32_t* DireccionMemoria = MemoriaDispositivos[index];

13. if (DireccionMemoria != nullptr) {

14. for (size_t i = 0; i < Bloques.size(); ++i) {

15. if (Bloques[i] == NombreBloque) {

16. uint32_t TamanoBloque = Bloques [i + 1].toInt();

17. if (Indice >= 0 && Indice < TamanoBloque) {

18. Serial.print("Valor del bloque de memoria ");

19. Serial.print(NombreBloque);

20. Serial.print(" en la dirección de memoria reservada ");

21. Serial.print(Indice);

22. Serial.print(": ");

23. Serial.println(DireccionMemoria[Indice]);

24. return DireccionMemoria[Indice];

25. } else {

26. Serial.println("Error: Índice fuera de rango.");

27. return -1;

28. }

29. }

30. }

31. }

32. }

La función “InfoMostrarMemoria()” es similar a la función “MostrarMemoria”,

la única diferencia es que esta permite informar al usuario del valor obtenido,

o de si existe algún error, mientras que la otra no lo hace.

“MostrarMemoria()”se usa para realizar comparaciones internas para el

correcto del funcionamiento del sistema y si sacase mensajes cada vez que se

usa, saturaría el monitor serial de mensajes.

12. MemoriaCompartida::EscribirMemoria()

1. void MemoriaCompartida::EscribirMemoria(String Mac, int Indice,

String Valor) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

40

2. if (!esDireccionMac(Mac)) {

3. if (!esAlias(Mac)){

4. Serial.println("Error: Formato de MAC de bloque de memoria

reservado inválido.");

5. return;

6. }

7. if(esAlias(Mac)){

8. ConvertirAliasAMacString(Mac);

9. String mac = ConvertirAliasAMacString(Mac);

10. Mac = mac;

11. }

12. }

13. std::vector<String> Dispositivos = DispositivosConectados;

14. Dispositivos.push_back(WiFi.macAddress());

15. Mac.toUpperCase();

16. size_t index = -1;

17. for (size_t i = 0; i < Dispositivos.size(); ++i) {

18. String MacLocal = Dispositivos[i];

19. MacLocal.toUpperCase();

20. if (MacLocal == Mac) {

21. index = i;

22. break;

23. }

24. }

25. if (index == -1) {

26. Serial.println("No se ha asignado memoria para este

dispositivo.");

27. return;

28. }

29. if (index < MemoriaDispositivos.size()) {

30. uint32_t* DireccionMemoria = MemoriaDispositivos[index];

31. uint32_t ValorBytes = Valor.toInt();

32. if (ValorBytes == 0 && Valor != "0") {

33. Serial.println("Valor no válido. Asegúrate de que el valor

sea un número.");

34. return;

35. }

36. uint32_t TamanoMaximo = (CalcularMemoria() + 59) /

Dispositivos.size();

37. if (Indice < 0 || Indice >= TamanoMaximo) {

38. Serial.println("Índice fuera de rango.");

39. return;

40. }

41. DireccionMemoria[Indice] = ValorBytes;

42. Serial.print("Escrito el valor ");

43. Serial.print(ValorBytes);

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

41

44. Serial.print(" en la dirección de memoria ");

45. Serial.print(Indice);

46. Serial.print(" del bloque de memoria reservado a la dirección

MAC ");

47. Serial.println(Mac);

48. }

49. }

La función “EscribirMemoria()” permite escribir un valor determinado dentro de

una posición específica de un bloque de memoria asignado a un dispositivo.

Primero se verifica que la cadena de texto (String Mac) contiene una dirección

MAC válida empleando la función “esDirecciónMac()” a través de una condición

“if”. Si no es una dirección MAC válida, se realiza otra comprobación: Se verifica

si el contenido de la cadena de texto “Mac” es un alias a través de la función

“esAlias()”.

 + Si no es así, saca por pantalla un error.

+ Si sí es así se ejecuta la función “ConvertirAliasAMacString()” para

obtener la dirección MAC vinculada a ese alias.

2. if (!esDireccionMac(Mac)) {

3. if (!esAlias(Mac)){

4. Serial.println("Error: Formato de MAC de bloque de memoria

reservado inválido.");

5. return;

6. }

7. if(esAlias(Mac)){

8. ConvertirAliasAMacString(Mac);

9. String mac = ConvertirAliasAMacString(Mac);

10. Mac = mac;

11. }

12. }

A continuación, se crea el vector “Dispositivos”, donde se almacena la dirección

MAC de los dispositivos conectados y del dispositivo local. Además, se crea la

variable “index”, que sirve para avisar al usuario cuando la cadena de texto

introducida (Mac) no es la dirección MAC de ningún dispositivo registrado. Se

recorren todos los dispositivos almacenados en el vector “Dispositivos”,

cuando la dirección MAC de uno de estos dispositivos registrados coincide con

la dirección MAC de la variable “Mac”, la variable índice pasa de valer “-1” a

valer la posición del vector “Dispositivos” donde está almacenada la MAC. Si la

dirección MAC de “Mac” no se encuentra en el vector “Dispositivos” se informa

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

42

al usuario del error, pues se está intentando acceder al bloque de memoria

asignado a un dispositivo que no tiene ningún bloque de memoria asignado.

13. std::vector<String> Dispositivos = DispositivosConectados;

14. Dispositivos.push_back(WiFi.macAddress());

15. Mac.toUpperCase();

16. size_t index = -1;

17. for (size_t i = 0; i < Dispositivos.size(); ++i) {

18. String MacLocal = Dispositivos[i];

19. MacLocal.toUpperCase();

20. if (MacLocal == Mac) {

21. index = i;

22. break;

23. }

24. }

25. if (index == -1) {

26. Serial.println("No se ha asignado memoria para este

dispositivo.");

27. return;

28. }

A través de la condición “if” se asegura de que el dispositivo al cual se intenta

escribir en memoria tenga un bloque de memoria reservado. Si es así, el

puntero “DireccionMemoria” apunta al bloque de memoria reservado a ese

dispositivo. Además, se almacena el valor a escribir en la dirección de memoria

(String Valor) a entero y se saca por pantalla un error si este no es un valor

numérico.

29. if (index < MemoriaDispositivos.size()) {

30. uint32_t* DireccionMemoria = MemoriaDispositivos[index];

31. uint32_t ValorBytes = Valor.toInt();

32. if (ValorBytes == 0 && Valor != "0") {

33. Serial.println("Valor no válido. Asegúrate de que el valor

sea un número.");

34. return;

35. }

Por último, se comprueba que no se está intentando escribir fuera de los límites

del bloque reservado, si es así, se avisa al usuario, y si el índice es correcto y

no se pretende escribir fuera de los límites, se actualiza el valor almacenado

en la posición definida por la variable “Indice” con el valor “ValorBytes”.

36. uint32_t TamanoMaximo = (CalcularMemoria() + 59) /

Dispositivos.size();

37. if (Indice < 0 || Indice >= TamanoMaximo) {

38. Serial.println("Índice fuera de rango.");

39. return;

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

43

40. }

41. DireccionMemoria[Indice] = ValorBytes;

42. Serial.print("Escrito el valor ");

43. Serial.print(ValorBytes);

44. Serial.print(" en la dirección de memoria ");

45. Serial.print(Indice);

46. Serial.print(" del bloque de memoria reservado a la dirección

MAC ");

47. Serial.println(Mac);

48. }

49. }

13. MemoriaCompartida::EnviarValorDeMemoria()

1. void MemoriaCompartida::EnviarValorVinculado(String NombreBloque,

int Indice, String Valor){

2. uint32_t ValorBytes = Valor.toInt();

3. bool BloqueVinculado = false;

4. bool BloqueResponsabilizado = false;

5. for (size_t i = 0; i < VectoresVinculados.size(); i++) {

6. if(NombreBloque == VectoresVinculados[i]) {

7. BloqueVinculado = true;

8. }

9. }

10. if(BloqueVinculado) {

11. if(ValoresResponsabilizados.size() == 0) {

12. Serial.println("Error: Antes debes responsabilizarte de

unos índices.");

13. } else{

14. for(size_t i = 0; i < ValoresResponsabilizados.size(); i++)

{

15. if (NombreBloque == ValoresResponsabilizados[i]) {

16. BloqueResponsabilizado = true;

17. if (Indice < ValoresResponsabilizados[i+1].toInt() ||

Indice > ValoresResponsabilizados[i+2].toInt()) {

18. Serial.print("Error: Para el bloque ");

19. Serial.print(NombreBloque);

20. Serial.print(" solo puedes escribir entre ");

21. Serial.print(ValoresResponsabilizados[i+1]);

22. Serial.print(" y ");

23. Serial.println(ValoresResponsabilizados[i+2]);

24. } else {

25. EscribirMemoria(NombreBloque, Indice, Valor);

26. if (VectoresVinculados.size() > 0) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

44

27. for (size_t i = 0; i < VectoresVinculados.size();

i++) {

28. if (NombreBloque == VectoresVinculados[i]) {

29. EditarValorDeMemoria(VectoresVinculados[i+1],

NombreBloque, Indice, ValorBytes);

30. delayMicroseconds(200);

31. }

32. }

33. }

34. }

35. }

36. }

37. }

38. } else {

39. EscribirMemoria(NombreBloque, Indice, Valor);

40. }

41. }

La función “EnviarValorVinculado()” permite escribir en un bloque de memoria

e índice definido un valor determinado. Además, envía un mensaje a todos los

dispositivos que tengan vinculados ese mismo bloque para gestionar el

mensaje y poder escribir en el bloque de memoria de los otros dispositivos.

Primero se crean todas las variables necesarias para la correcta utilización de

la función. Se recorre el vector “VectoresVinculados” y si el bloque en el que se

desea escribir pertenece al vector: el bloque estará vinculado a otros

dispositivos. realizan las comprobaciones necesarias para un correcto

funcionamiento de la función:

2. uint32_t ValorBytes = Valor.toInt();

3. bool BloqueVinculado = false;

4. bool BloqueResponsabilizado = false;

5. for (size_t i = 0; i < VectoresVinculados.size(); i++) {

6. if(NombreBloque == VectoresVinculados[i]) {

7. BloqueVinculado = true;

8. }

9. }

Si el bloque está vinculado, solo se podrá escribir en él si tiene unos índices

responsabilizados, esto es, un dispositivo con un vector vinculado con otro

dispositivo solo podrá escribir valores en los índices que tenga permiso. Este

permiso viene definido por el vector “ValoresResponsabilizados()”. En los

índices que no sea así, solo se podrá mostrar el valor del índice. Si se intenta

escribir en unos índices a los que el dispositivo no tiene permiso para ello, se

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

45

mostrará un mensaje de error. Si se intenta escribir en unos índices con

permiso, se escribirá dicho dato y se llamará a la función

“EditarValorDeMemoria” encargada de preparar el mensaje para que el resto

de dispositivos también lo hagan.

10. if(BloqueVinculado) {

11. if(ValoresResponsabilizados.size() == 0) {

12. Serial.println("Error: Antes debes responsabilizarte de

unos índices.");

13. } else {

14. for(size_t i = 0; i < ValoresResponsabilizados.size(); i++)

{

15. if (NombreBloque == ValoresResponsabilizados[i]) {

16. BloqueResponsabilizado = true;

17. if (Indice < ValoresResponsabilizados[i+1].toInt() ||

Indice > ValoresResponsabilizados[i+2].toInt()) {

18. Serial.print("Error: Para el bloque ");

19. Serial.print(NombreBloque);

20. Serial.print(" solo puedes escribir entre ");

21. Serial.print(ValoresResponsabilizados[i+1]);

22. Serial.print(" y ");

23. Serial.println(ValoresResponsabilizados[i+2]);

24. } else {

25. EscribirMemoria(NombreBloque, Indice, Valor);

26. if (VectoresVinculados.size() > 0) {

27. for (size_t i = 0; i < VectoresVinculados.size();

i++) {

28. if (NombreBloque == VectoresVinculados[i]) {

29. EditarValorDeMemoria(VectoresVinculados[i+1],

NombreBloque, Indice, ValorBytes);

30. delayMicroseconds(200);

31. }

32. }

33. }

34. }

35. }

36. }

37. }

38. }

Si el bloque no está vinculado, simplemente se escribirá en dicho bloque de

forma local.

38. else {

39. EscribirMemoria(NombreBloque, Indice, Valor);

40. }

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

46

41. }

14. MemoriaCompartida::EditarValorDeMemoria()

1. void MemoriaCompartida::EditarValorDeMemoria(String MacReceptor,

String NombreBloque, int Indice, int Valor) {

2. if (!esDireccionMac(MacReceptor)) {

3. if (!esAlias(MacReceptor)){

4. Serial.println("Error: Formato de MAC inválido.");

5. return;

6. }

7. if(esAlias(MacReceptor)){

8. ConvertirAliasAMacString(MacReceptor);

9. String mac = ConvertirAliasAMacString(MacReceptor);

10. MacReceptor = mac;

11. }

12. }

13. if (NormalizarMac(MacReceptor) ==

NormalizarMac(WiFi.macAddress())) {

14. Serial.println("Error: La MAC introducida es la de este

dispositivo.");

15. return;

16. }

17. if (!ConvertirMacStringABytes(MacReceptor, peerMAC)) {

18. Serial.println("Error al convertir la MAC");

19. return;

20. }

21. char Texto[100];

22. sprintf(Texto, "Editar %s %d %d", NombreBloque.c_str(), Indice,

Valor);

23. strcpy(MensajeEnviado.text, Texto);

24. ConvertirMacStringABytes(MacReceptor, peerMAC);

25. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

26. }

La función “EditarValorDeMemoria()” permite enviar un mensaje para que los

dispositivos que lo reciban lo procesen y escriban de forma local en el bloque

de memoria reservado por “NombreBloque” en el índice definido por “Indice”

un valor definido por “Valor”.

Primero se realizan las comprobaciones necesarias para un correcto

funcionamiento de la función:

4. Se verifica que la cadena de texto (String MacReceptor) contiene una

dirección MAC válida empleando la función “esDirecciónMac()” a través

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

47

de una condición “if”. Si no es una dirección MAC válida, se realiza otra

comprobación: Se verifica si el contenido de la cadena de texto

“MacReceptorInterna” es un alias a través de la función “esAlias()”.

 + Si no es así, saca por pantalla un error.

 + Si sí es así se ejecuta la función “ConvertirAliasAMacString()”

para obtener la dirección MAC vinculada a ese alias.

2. if (!esDireccionMac(MacReceptorInterna)) {

3. if (!esAlias(MacReceptorInterna)){

4. Serial.println("Error: Formato de MAC de bloque de

memoria reservado inválido.");

5. return;

6. }

7. if(esAlias(MacReceptorInterna)){

8. ConvertirAliasAMacString(MacReceptorInterna);

9. String Mac =

ConvertirAliasAMacString(MacReceptorInterna);

10. MacReceptorInterna = Mac;

11. }

12. }

5. Si el contenido de la cadena de texto “MacReceptor” sí es una dirección

Mac se realiza la siguiente verificación: Con ayuda de la función

“NormalizarMac()” se comprueba si la cadena de texto contiene la

dirección del propio dispositivo, si es así, devuelve un mensaje de error.

13. if (NormalizarMac(MacReceptor) ==

NormalizarMac(WiFi.macAddress())) {

14. Serial.println("Error: La mac introducida es la del

propio dispositivo.");

15. return;

16. }

6. Si no es la MAC del propio dispositivo, realiza la siguiente comprobación:

Con “ConvertirMacStringABytes()” se verifica si se ha podido convertir la

cadena de texto (Mac) a bytes guardados en la variable “peerMac”:

17. if (!ConvertirMacStringABytes(MacReceptor, peerMAC)) {

18. Serial.println("Error al convertir la dirección MAC.");

19. return;

20. }

Una vez hechas las comprobaciones se prepara el mensaje “Editar” seguido de

la dirección MAC del bloque de memoria donde se contiene la dirección de

memoria a editar definida por “Indice” y el valor a editar: “Valor”.

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

48

21. char Texto[100];

22. sprintf(Texto, "Editar %s %d %d", NombreBloque.c_str(),

Indice, Valor);

23. strcpy(MensajeEnviado.text, Texto);

24. ConvertirMacStringABytes(MacReceptor, peerMAC);

25. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

26. }

15. MemoriaCompartida::Alias()

1. void MemoriaCompartida::Alias() {

2. Serial.print("Introduce alias para ");

3. Serial.print(WiFi.macAddress());

4. Serial.print(" (dispositivo local): ");

5. while (Serial.available() == 0) {}

6. String AliasLocalIntroducido = Serial.readStringUntil('\n');

7. AliasLocalIntroducido.trim();

8. Serial.println(AliasLocalIntroducido);

9. if (AliasLocalIntroducido.length() > 0) {

10. bool esAliasLocalConMacVinculada = false;

11. for (int i = 0; i < DispositivosAlias.size(); i++) {

12. if (DispositivosAlias[i] == WiFi.macAddress()) {

13. DispositivosAlias[i + 1] = AliasLocalIntroducido;

14. esAliasLocalConMacVinculada = true;

15. break;

16. }

17. }

18. if (!esAliasLocalConMacVinculada) {

19. DispositivosAlias.push_back(WiFi.macAddress());

20. DispositivosAlias.push_back(AliasLocalIntroducido);

21. }

22. }

23. for (int i = 0; i < DispositivosConectados.size(); i++) {

24. Serial.print("Introduce alias para ");

25. Serial.print(NormalizarMac(DispositivosConectados[i]));

26. Serial.print(": ");

27. while (Serial.available() == 0) {}

28. String AliasConectadoIntroducido =

Serial.readStringUntil('\n');

29. AliasConectadoIntroducido.trim();

30. Serial.println(AliasConectadoIntroducido);

31.

32. if (AliasConectadoIntroducido.length() > 0) {

33. bool esAliasConectadoRepetido = false;

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

49

34. for (int j = 0; j < DispositivosAlias.size(); j++) {

35. if (DispositivosAlias[j + 1] ==

AliasConectadoIntroducido) {

36. esAliasConectadoRepetido = true;

37. break;

38. }

39. }

40. if (esAliasConectadoRepetido) {

41. Serial.println("Error: El alias ya está en uso.

Introduzca otro alias.");

42. i--;

43. continue;

44. }

45. bool esAliasConectadoConMacVinculada = false;

46. for (int j = 0; j < DispositivosAlias.size(); j++) {

47. if (DispositivosAlias[j] == DispositivosConectados[i]) {

48. DispositivosAlias[j + 1] = AliasConectadoIntroducido;

49. esAliasConectadoConMacVinculada = true;

50. break;

51. }

52. }

53. if (!esAliasConectadoConMacVinculada) {

54. DispositivosAlias.push_back(DispositivosConectados[i]);

55. DispositivosAlias.push_back(AliasConectadoIntroducido);

56. }

57. }

58. }

59. Serial.println("Alias asignado a los dispositivos:");

60. for (int i = 0; i < DispositivosAlias.size(); i++) {

61. Serial.println(NormalizarMac(DispositivosAlias[i]));

62. }

63. }

La función “Alias()” permite asignar y vincular un alias al dispositivo local y a

cada dispositivo registrado facilitando la identificación de cada dispositivo

mediante el uso de nombres legibles. El flujo se divide en dos partes similares:

por un lado, la asignación de un alias al dispositivo local y por otro, la asignación

de un alias a cada dispositivo conectado.

Primero se pide al usuario introducir el alias para el dispositivo local:

2. Serial.print("Introduce alias para ");

3. Serial.print(WiFi.macAddress());

4. Serial.print(" (dispositivo local): ");

5. while (Serial.available() == 0) {}

6. String AliasLocalIntroducido = Serial.readStringUntil('\n');

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

50

7. AliasLocalIntroducido.trim();

8. Serial.println(AliasLocalIntroducido);

Y se comprueba si el alias introducido es válido, si es así se entra en el “for”

para recorrer el vector “DispositivosAlias”, si el vector no contiene la dirección

MAC del dispositivo local, se la añade al igual que el alias introducido

anteriormente. En caso de que el vector sí contenga la dirección MAC del

dispositivo (esto ocurre cuando se esté haciendo una actualización del alias,

de forma que la dirección MAC del dispositivo local ya ha sido añadido en el

vector mediante el flujo definido anteriormente), actualiza el alias vinculado al

dispositivo local. Este siempre se encuentra en la posición siguiente a la de la

dirección MAC del dispositivo local:

9. if (AliasLocalIntroducido.length() > 0) {

10. bool esAliasLocalConMacVinculada = false;

11. for (int i = 0; i < DispositivosAlias.size(); i++) {

12. if (DispositivosAlias[i] == WiFi.macAddress()) {

13. DispositivosAlias[i + 1] = AliasLocalIntroducido;

14. esAliasLocalConMacVinculada = true;

15. break;

16. }

17. }

18. if (!esAliasLocalConMacVinculada) {

19. DispositivosAlias.push_back(WiFi.macAddress());

20. DispositivosAlias.push_back(AliasLocalIntroducido);

21. }

22. }

Una vez definido el flujo para la asignación del alias del dispositivo local, se

define el flujo para la asignación de los dispositivos conectados. Se recorre el

vector “DispositivosConectados”, y para cada posición (que contiene una

dirección MAC) se pide al usuario introducir un alias:

23. for (int i = 0; i < DispositivosConectados.size(); i++) {

24. Serial.print("Introduce alias para ");

25. Serial.print(NormalizarMac(DispositivosConectados[i]));

26. Serial.print(": ");

27. while (Serial.available() == 0) {}

28. String AliasConectadoIntroducido =

Serial.readStringUntil('\n');

29. AliasConectadoIntroducido.trim();

30. Serial.println(AliasConectadoIntroducido);

31.

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

51

Y se comprueba que es un alias válido, si es así, se recorre el vector

“DispositivosAlias”, si el vector contiene el mismo alias que se intenta vincular

a un dispositivo (se está intentado vincular un mismo alias a dos direcciones

MAC distintas), salta un error avisando al usuario y se pide que vuelva a

introducir un alias, reduciendo el contador del “for” en uno:

32. if (AliasConectadoIntroducido.length() > 0) {

33. bool esAliasConectadoRepetido = false;

34. for (int j = 0; j < DispositivosAlias.size(); j++) {

35. if (DispositivosAlias[j + 1] ==

AliasConectadoIntroducido) {

36. esAliasConectadoRepetido = true;

37. break;

38. }

39. }

40. if (esAliasConectadoRepetido) {

41. Serial.println("Error: El alias ya está en uso.

Introduzca otro alias.");

42. i--;

43. continue;

44. }

A continuación, se recorre el vector “DispositivosAlias” nuevamente. Si el vector

contiene la dirección MAC del dispositivo al que se intenta vincular un alias (se

está intentado cambiar el alias) se actualiza dicho alias, y si el vector no

contiene la dirección MAC del dispositivo al que se intenta vincular un alias, se

añade tanto la dirección MAC como el alias al vector.

45. bool esAliasConectadoConMacVinculada = false;

46. for (int j = 0; j < DispositivosAlias.size(); j++) {

47. if (DispositivosAlias[j] == DispositivosConectados[i]) {

48. DispositivosAlias[j + 1] = AliasConectadoIntroducido;

49. esAliasConectadoConMacVinculada = true;

50. break;

51. }

52. }

53. if (!esAliasConectadoConMacVinculada) {

54. DispositivosAlias.push_back(DispositivosConectados[i]);

55. DispositivosAlias.push_back(AliasConectadoIntroducido);

56. }

57. }

58. }

Por último se saca por pantalla los alias introducidos a cada dispositivo:

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

52

59. Serial.println("Alias asignado a los dispositivos:");

60. for (int i = 0; i < DispositivosAlias.size(); i++) {

61. Serial.println(NormalizarMac(DispositivosAlias[i]));

62. }

63. }

16. MemoriaCompartida::esAlias()

1. bool MemoriaCompartida::esAlias(String Alias) {

2. for (int i = 1; i < DispositivosAlias.size(); i += 2) {

3. if (DispositivosAlias[i] == Alias) {

4. return true;

5. }

6. }

7. return false;

8. }

La función “esAlias()” permite comprobar si el contenido de una cadena de

texto es un alias guardado en el vector “DispositivosAlias”.

Se recorre dicho vector estructurado de la siguiente forma:

1. En primera posición: la dirección MAC local.

2. En segunda posición: el alias vinculado a la dirección MAC local (si lo

hay).

3. En tercera posición: la dirección MAC de un dispositivo conectado.

4. En cuarta posición: el alias vinculado a la dirección MAC del dispositivo

anterior (si lo hay)

5. La estructura continúa si hubiese más dispositivos conectados.

Si el contenido de la cadena de texto (String Alias) contiene un alias

perteneciente al vector “DispositivosAlias” se devuelve un “true”. En caso

contrario se devuelve un “false”.

17. MemoriaCompartida::ConvertirAliasAMacString()

1. String MemoriaCompartida::ConvertirAliasAMacString(String Alias)

{

2. for (int i = 1; i < DispositivosAlias.size(); i += 2) {

3. if (DispositivosAlias[i] == Alias) {

4. return DispositivosAlias[i - 1];

5. }

6. }

7. return "";

8. }

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

53

La función “ConvertirAliasAMacString” sirve para obtener la dirección MAC

vinculada a un alias a partir del contenido de una cadena de texto. Como la

estructura del vector “DispositivosAlias” es fija y definida, se puede obtener la

MAC vinculada a un alias a partir del propio alias: Se recorre el vector

“DispositivosAlias” mediante un “for”, si el contenido de la cadena de texto

(String Alias) contiene un alias perteneciente al vector “DispositivosAlias”, se

devuelve el contenido del vector en la posición anterior a dicho alias.

18. MemoriaCompartida::init()
1. void MemoriaCompartida::init() {

2. WiFi.mode(WIFI_STA);

3. delay(2000);

4. Serial.print("MAC del dispositivo: ");

5. Serial.println(WiFi.macAddress());

6. if (esp_now_init() != ESP_OK) {

7. Serial.println("Error al inicializar ESP-NOW.

Reiniciando...");

8. ESP.restart();

9. }

10. Serial.println("ESP-NOW iniciado correctamente.");

11. esp_now_register_recv_cb(enRecepcionDeDatos);

12. esp_now_register_send_cb(enEnvioDeDatos);

13. delay(2000);

14. Serial.println("ESP-32 listo.");

15. }

La función “init()” se encarga de inicializar el dispositivo, y configurar la

funcionalidad de ESP_NOW.

Mediante la función “WiFi.mode(WIFI_STA)” se configura el dispositivo en modo

estación. A continuación, se añade un “delay” de 2 segundos para asegurarse

de la correcta configuración en modo estación. Se informa al usuario de cuál

es la MAC del dispositivo local, se le avisa si inicializa correctamente o si ocurre

algún error al inicializar y se reinicia en ese caso. Se utilizan las funciones de

ESP-NOW “esp_now_register_recv_cb” y “esp_now_register_send_cb” para

registrar los “callbacks” de las funciones “enRecepcionDeDatos” y

“enEnvioDeDatos” respectivamente. Se ejecuta un “delay” de 2 segundos

nuevamente para asegurar la correcta configuración del dispositivo y se saca

por pantalla un mensaje avisando al usuario de que el dispositivo está listo.

Esta función será necesaria siempre que se pretenda crear una herramienta

empleando esta librería. Por ejemplo, en el archivo main:

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

54

#include <MemoriaCompartida.h>

#include "esp_system.h"

MemoriaCompartida MemCom;

void setup() {

 Serial.begin(115200);

 delay(2000);

 MemCom.init();

}

Si no se incluye esta función, el resto de funciones pueden no funcionar

correctamente.

Funciones Non-Blocking

Las funciones “non-blocking” creadas son las de manejo y procesamiento de

mensajes mediante un flujo definido. En esta librería hay creadas dos funciones

que siguen esta tecnología, estas funciones son ambas “Callback” de envío y

de recepción de datos. Los “Callback” o funciones de retrollamada son

funciones que se pasan como argumento a otras funciones con el objetivo de

que esta se ejecute en algún momento.

Los dos “Callback” definidos en esta librería son:

1. MemoriaCompartida::enEnvioDeDatos()

1. void MemoriaCompartida::enEnvioDeDatos(const uint8_t* MAC,

esp_now_send_status_t status) {

2. if (status == ESP_NOW_SEND_SUCCESS) {

3.

4. } else {

5. Serial.println("Error al enviar el mensaje");

6. }

7. EnvioCompletado = true;

8. }

La función “enEnvioDeDatos()” permite conocer cuál es el estatus de un

mensaje enviado a través de ESP-NOW. Esta función se ejecuta de forma

automática cada vez que se envía un mensaje. A través de una condición “if”

se informa de si ha habido un error en el envío de datos.

2. MemoriaCompartida::enRecepcionDeDatos()

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

55

1. void MemoriaCompartida::enRecepcionDeDatos(const

esp_now_recv_info* info, const uint8_t* DatosRecibidos, int

tamaño) {

2. memcpy(&MensajeRecibido, DatosRecibidos,

sizeof(MensajeRecibido));

3. if (strcmp(MensajeRecibido.text, "Prueba de conexión") == 0) {

4. String MacString = "";

5. for (int i = 0; i < 6; i++) {

6. MacString += String(info->src_addr[i], HEX);

7. if (i < 5) {

8. MacString += ":";

9. }

10. }

11. if (find(DispositivosConectados.begin(),

DispositivosConectados.end(), MacString) ==

DispositivosConectados.end()) {

12. DispositivosConectados.push_back(MacString);

13. }

14. if (!esp_now_is_peer_exist(info->src_addr)) {

15. esp_now_peer_info_t InfoPeer = {};

16. memcpy(InfoPeer.peer_addr, info->src_addr, 6);

17. InfoPeer.channel = 0;

18. InfoPeer.encrypt = false;

19. if (esp_now_add_peer(&InfoPeer) != ESP_OK) {

20. Serial.println("Error al agregar el peer

temporalmente.");

21. return;

22. }

23. }

24. strcpy(MensajeEnviado.text, "Recibido");

25. esp_err_t ResultadoDeEnvio = esp_now_send(info->src_addr,

(uint8_t*)&MensajeEnviado, sizeof(MensajeEnviado));

26. Serial.print(MacString);

27. Serial.println(" está intentando conectarse.");

28. if (ResultadoDeEnvio == ESP_OK) {

29. Serial.println("Iniciando conexión...");

30. } else {

31. Serial.print("Error al iniciar conexión. Código de error:

");

32. Serial.println(ResultadoDeEnvio);

33. }

34. } else if (strcmp(MensajeRecibido.text, "Recibido") == 0) {

35. RespuestaRecibida = true;

36. String MacString = "";

37. for (int i = 0; i < 6; i++) {

38. MacString += String(info->src_addr[i], HEX);

39. if (i < 5) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

56

40. MacString += ":";

41. }

42. }

43. if (find(DispositivosConectados.begin(),

DispositivosConectados.end(), MacString) ==

DispositivosConectados.end()) {

44. DispositivosConectados.push_back(MacString);

45. }

46. } else if (strncmp(MensajeRecibido.text, "Borrado", 7) == 0) {

47. String mensajeRecibido = MensajeRecibido.text;

48. int espacioPos = mensajeRecibido.indexOf(' ');

49. if (espacioPos != -1) {

50. String MacString = mensajeRecibido.substring(espacioPos +

1);

51. Serial.print("El dispositivo ");

52. Serial.print(MacString);

53. Serial.println(" ha solicitado borrar su registro.");

54. if (DispositivosConectados.empty()) {

55. Serial.println("No hay dispositivos para borrar.");

56. } else {

57. for (auto it = DispositivosConectados.begin(); it !=

DispositivosConectados.end(); ++it) {

58. if (NormalizarMac(*it) == NormalizarMac(MacString)) {

59. ConvertirMacStringABytes(MacString, peerMAC);

60. DispositivosConectados.erase(it);

61. esp_now_del_peer(peerMAC);

62. Serial.print("El dispositivo ");

63. Serial.print(MacString);

64. Serial.println(" ha sido eliminado con éxito.");

65. for (size_t i = 0; i < VectoresVinculados.size();

i++) {

66. if(NormalizarMac(VectoresVinculados[i]) ==

NormalizarMac(*it)) {

67. VectoresVinculados.erase(VectoresVinculados.begin

() + (i - 1));

68. VectoresVinculados.erase(VectoresVinculados.begin

() + (i - 1));

69. i -= 1;

70. }

71. }

72. break;

73. }

74. }

75. }

76. }

77. } else if (strncmp(MensajeRecibido.text, "Editar", 6) == 0) {

78. Serial.println("Mensaje recibido");

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

57

79. Serial.println(MensajeRecibido.text);

80.

81. String Mensaje = String(MensajeRecibido.text);

82.

83. int PrimerEspacio = Mensaje.indexOf(' ');

84. int SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio + 1);

85. int TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio + 1);

86.

87. String NombreBloque = Mensaje.substring(PrimerEspacio + 1,

SegundoEspacio);

88. String IndiceStr = Mensaje.substring(SegundoEspacio + 1,

TercerEspacio);

89. String ValorStr = Mensaje.substring(TercerEspacio + 1);

90.

91. int IndiceBytes = IndiceStr.toInt();

92.

93. String MacStr = "";

94. for (int i = 0; i < 6; i++) {

95. MacStr += String(info->src_addr[i], HEX);

96. if (i < 5) MacStr += ":";

97. }

98. for (size_t i = 0; i < Bloques.size(); ++i) {

99. for (size_t j = 0; j < VectoresVinculados.size(); ++j) {

100. if (Bloques [i] == VectoresVinculados [j] &&

Bloques[i] == NombreBloque) {

101. uint32_t TamanoBloque = Bloques [i + 1].toInt();

102. if (IndiceBytes >= 0 && IndiceBytes < TamanoBloque)

{

103. } else {

104. Serial.println("Enviando error a emisor...");

105. uint8_t MacBytes[6];

106. ConvertirMacStringABytes(MacStr, MacBytes);

107. strcpy(MensajeEnviado.text, "Error 3: Índice fuera de

rango");

108. esp_err_t Result = esp_now_send(info->src_addr,

(uint8_t*)&MensajeEnviado, sizeof(MensajeEnviado));

109. return;

110. }

111. }

112. }

113. }

114. EscribirMemoria(NombreBloque, IndiceBytes, ValorStr);

115. delayMicroseconds(200);

116. } else if (strncmp(MensajeRecibido.text, "Error 3", 7) == 0)

{

117. Serial.print("Mensaje recibido: ");

118. Serial.println(MensajeRecibido.text);

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

58

119. } else if (strncmp(MensajeRecibido.text, "Vincular", 8) ==

0){

120. String Mensaje = String(MensajeRecibido.text);

121. int PrimerEspacio = Mensaje.indexOf(' ');

122. int SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio +

1);

123. String NombreBloque = Mensaje.substring(PrimerEspacio + 1,

SegundoEspacio);

124. String TamanoBloque = Mensaje.substring(SegundoEspacio +

1);

125. int TamanoBloqueBytes = TamanoBloque.toInt();

126. for (size_t i = 0; i < Bloques.size(); i++){

127. if(Bloques[i] == NombreBloque){

128. if (Bloques[i+1] == TamanoBloque){

129. String MacStr = "";

130. for (int i = 0; i < 6; i++) {

131. MacStr += String(info->src_addr[i], HEX);

132. if (i < 5) MacStr += ":";

133. }

134. ConvertirMacStringABytes(MacStr,peerMAC);

135. NormalizarMac(MacStr);

136. VectoresVinculados.push_back(NombreBloque);

137. VectoresVinculados.push_back(MacStr);

138.

139. char Texto[50];

140. sprintf(Texto, "Vinculando %s ",

NombreBloque.c_str());

141. strcpy(MensajeEnviado.text, Texto);

142. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

143. Serial.print("El vector: ");

144. Serial.print(NombreBloque);

145. Serial.print(" se está intentando vincular con ");

146. Serial.println(NormalizarMac(MacStr));

147. Serial.println("Vinculando...");

148. for (int i = 0; i < TamanoBloqueBytes; i++) {

149. if(MostrarMemoria(NombreBloque, i) != 0) {

150. EditarValorDeMemoria(MacStr, NombreBloque, i,

MostrarMemoria(NombreBloque, i));

151. delayMicroseconds(1000);

152. }

153. }

154. Serial.println("Vinculación completada");

155. sprintf(Texto, "Vinculado %s", NombreBloque.c_str());

156. strcpy(MensajeEnviado.text, Texto);

157. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

59

158. }

159. }

160. }

161. } else if (strncmp(MensajeRecibido.text, "Vinculando", 10) ==

0) {

162. String Mensaje = String(MensajeRecibido.text);

163. Serial.println(Mensaje);

164. int PrimerEspacio = Mensaje.indexOf(' ');

165. String NombreBloque = Mensaje.substring(PrimerEspacio + 1);

166. String MacStr = "";

167. for (int i = 0; i < 6; i++) {

168. MacStr += String(info->src_addr[i], HEX);

169. if (i < 5) MacStr += ":";

170. }

171. Serial.print("El dispositivo ");

172. Serial.print(NormalizarMac(MacStr));

173. Serial.print(" está intentando vincular el bloque ");

174. Serial.println(NombreBloque);

175. Serial.println("Vinculando...");

176. } else if (strncmp(MensajeRecibido.text, "Vinculado", 9) ==

0) {

177. Serial.println("Vinculación completada.");

178. String Mensaje = String(MensajeRecibido.text);

179. int PrimerEspacio = Mensaje.indexOf(' ');

180. String NombreBloque = Mensaje.substring(PrimerEspacio + 1);

181. String MacStr = "";

182. for (int i = 0; i < 6; i++) {

183. MacStr += String(info->src_addr[i], HEX);

184. if (i < 5) MacStr += ":";

185. }

186. VectoresVinculados.push_back(NombreBloque);

187. VectoresVinculados.push_back(MacStr);

188. } else if (strncmp(MensajeRecibido.text, "Responsable", 11)

== 0) {

189. String Mensaje = String(MensajeRecibido.text);

190. int PrimerEspacio = Mensaje.indexOf(' ');

191. int SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio +

1);

192. int TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio +

1);

193.

194. String NombreBloque = Mensaje.substring(PrimerEspacio + 1,

SegundoEspacio);

195. String StrIndiceMin = Mensaje.substring(SegundoEspacio + 1,

TercerEspacio);

196. String StrIndiceMax = Mensaje.substring(TercerEspacio + 1);

197. uint32_t IndiceMin = StrIndiceMin.toInt();

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

60

198. uint32_t IndiceMax = StrIndiceMax.toInt();

199.

200. String MacStr = "";

201. for (int i = 0; i < 6; i++) {

202. MacStr += String(info->src_addr[i], HEX);

203. if (i < 5) MacStr += ":";

204. }

205. ConvertirMacStringABytes(MacStr,peerMAC);

206. for (size_t i = 0; i < ValoresResponsabilizados.size();

i++) {

207. if (NombreBloque == ValoresResponsabilizados[i]) {

208. if ((IndiceMin >=

ValoresResponsabilizados[i+1].toInt() && IndiceMin <=

ValoresResponsabilizados[i+2].toInt()) || (IndiceMax >=

ValoresResponsabilizados[i+1].toInt() && IndiceMax <=

ValoresResponsabilizados[i+2].toInt()) || (IndiceMin <=

ValoresResponsabilizados[i+1].toInt() && IndiceMax >=

ValoresResponsabilizados[i+2].toInt())) {

209. char Texto[100];

210. sprintf(Texto, "ResponsError %s %d %d",

NombreBloque.c_str(), ValoresResponsabilizados[i+1].toInt(),

ValoresResponsabilizados[i+2].toInt());

211. strcpy(MensajeEnviado.text, Texto);

212. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

213. } else {

214. char Texto[100];

215. sprintf(Texto, "ResponsExito %s %d %d",

NombreBloque.c_str(), IndiceMin, IndiceMax);

216. strcpy(MensajeEnviado.text, Texto);

217. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

218. }

219. }

220. }

221. if (ValoresResponsabilizados.size() == 0) {

222. char Texto[100];

223. sprintf(Texto, "ResponsExito %s %d %d",

NombreBloque.c_str(), IndiceMin, IndiceMax);

224. strcpy(MensajeEnviado.text, Texto);

225. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

226. }

227. } else if ((strncmp(MensajeRecibido.text, "ResponsError",

12) == 0) || ((strncmp(MensajeRecibido.text, "ResponsExito", 12)

== 0))) {

228. String Mensaje = String(MensajeRecibido.text);

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

61

229. int PrimerEspacio = Mensaje.indexOf(' ');

230. int SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio +

1);

231. int TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio +

1);

232. String NombreBloque = Mensaje.substring(PrimerEspacio + 1,

SegundoEspacio);

233. String StrIndiceMin = Mensaje.substring(SegundoEspacio +

1, TercerEspacio);

234. String StrIndiceMax = Mensaje.substring(TercerEspacio +

1);

235. uint32_t IndiceMin = StrIndiceMin.toInt();

236. uint32_t IndiceMax = StrIndiceMax.toInt();

237. if (strncmp(MensajeRecibido.text, "ResponsError", 12) ==

0) {

238. Respuestas.push_back(0); // 0 = Error

239. }

240. if (strncmp(MensajeRecibido.text, "ResponsExito", 12) ==

0) {

241. Respuestas.push_back(1); // 1 = Exito

242. }

243. String MacStr = "";

244. for (int i = 0; i < 6; i++) {

245. MacStr += String(info->src_addr[i], HEX);

246. if (i < 5) MacStr += ":";

247. }

248. ConvertirMacStringABytes(MacStr,peerMAC);

249. for (size_t i = 0; i < ListaRespuestasPendientes.size();

i++) {

250. if (ListaRespuestasPendientes[i] == MacStr) {

251. ListaRespuestasPendientes[i+1] = "1";

252. break;

253. }

254. }

255. bool TodosRespondieron = true;

256. for (size_t i = 1; i < ListaRespuestasPendientes.size(); i

+= 2) {

257. if (ListaRespuestasPendientes[i] != "1") {

258. TodosRespondieron = false;

259. break;

260. }

261. }

262. bool ExisteError = false;

263. if (TodosRespondieron) {

264. for (size_t i = 0; i < Respuestas.size(); i++) {

265. if (Respuestas[i] == 0) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

62

266. ExisteError = true;

267. break;

268. }

269. }

270. if (ExisteError) {

271. Serial.print("Error: Para el bloque ");

272. Serial.print(NombreBloque);

273. Serial.print(" no puedes responsabilizarte de unos

índices entre ");

274. Serial.print(IndiceMin);

275. Serial.print(" y ");

276. Serial.println(IndiceMax);

277. } else {

278. Serial.print("Para el bloque ");

279. Serial.print(NombreBloque);

280. Serial.print(" este dispositivo solo podrá escribir

entre las posiciones ");

281. Serial.print(IndiceMin);

282. Serial.print(" y ");

283. Serial.println(IndiceMax);

284. ValoresResponsabilizados.push_back(NombreBloque);

285. ValoresResponsabilizados.push_back(StrIndiceMin);

286. ValoresResponsabilizados.push_back(StrIndiceMax);

287. }

288. Respuestas.clear();

289. ListaRespuestasPendientes.clear();

290. }

291. }

292. }

La función “enRecepcionDeDatos()” es el “Cerebro” de la librería, se encarga

de gestionar los datos recibidos a través de la comunicación ESP-NOW. Esta

función se activa de forma automática siempre que el dispositivo reciba datos

a través de ESP-NOW, interpreta y toma decisiones en función del contenido

del mensaje recibido. Todas las funciones de envío de mensajes definidas

anteriormente estarían incompletas sin la utilización de esta función.

Primero se guarda el mensaje recibido en la variable “MensajeRecibido”.

2. memcpy(&MensajeRecibido, DatosRecibidos,

sizeof(MensajeRecibido));

A continuación, se procesará el mensaje de maneras diferentes dependiendo

del contenido del mismo:

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

63

• Procesamiento de mensaje enviado por la función “Registrar()”:

- Si se recibe el mensaje “Prueba de conexión”, se guarda la dirección

MAC que envió dicho mensaje en la variable “MacString” a través de

“info->src_addr”, se agrega al vector “DispositivosConectados” si no

está registrado ya y se agrega como peer si no lo está ya usando la

función “esp_now_add_peer()”. Una vez hecho esto, se envía el mensaje

“Recibido” de vuelta al dispositivo que envió “Prueba de conexión”.

3. if (strcmp(MensajeRecibido.text, "Prueba de conexión") ==

0) {

4. String MacString = "";

5. for (int i = 0; i < 6; i++) {

6. MacString += String(info->src_addr[i], HEX);

7. if (i < 5) {

8. MacString += ":";

9. }

10. }

11. if (find(DispositivosConectados.begin(),

DispositivosConectados.end(), MacString) ==

DispositivosConectados.end()) {

12. DispositivosConectados.push_back(MacString);

13. }

14. if (!esp_now_is_peer_exist(info->src_addr)) {

15. esp_now_peer_info_t InfoPeer = {};

16. memcpy(InfoPeer.peer_addr, info->src_addr, 6);

17. InfoPeer.channel = 0;

18. InfoPeer.encrypt = false;

19. if (esp_now_add_peer(&InfoPeer) != ESP_OK) {

20. Serial.println("Error al agregar el peer

temporalmente.");

21. return;

22. }

23. }

24. strcpy(MensajeEnviado.text, "Recibido");

25. esp_err_t ResultadoDeEnvio = esp_now_send(info-

>src_addr, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

26. Serial.print(MacString);

27. Serial.println(" está intentando conectarse.");

28. if (ResultadoDeEnvio == ESP_OK) {

29. Serial.println("Iniciando conexión...");

30. } else {

31. Serial.print("Error al iniciar conexión. Código de

error: ");

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

64

32. Serial.println(ResultadoDeEnvio);

33. }

34. }

- Si el mensaje recibido es “Recibido”, se almacena la dirección MAC del

dispositivo que envía dicho mensaje. Esta parte del código sirve como

comprobación de dos dispositivos están en alcance.

34. else if (strcmp(MensajeRecibido.text, "Recibido") == 0) {

35. RespuestaRecibida = true;

36. String MacString = "";

37. for (int i = 0; i < 6; i++) {

38. MacString += String(info->src_addr[i], HEX);

39. if (i < 5) {

40. MacString += ":";

41. }

42. }

43. if (find(DispositivosConectados.begin(),

DispositivosConectados.end(), MacString) ==

DispositivosConectados.end()) {

44. DispositivosConectados.push_back(MacString);

45. }

46. }

*El dispositivo A envía “Prueba de conexión” si el dispositivo B recibe “Prueba

de conexión” guarda la MAC de A y envía “Recibido”. Si el dispositivo A recibe

“Recibido” guarda la MAC de B.

• Procesamiento del mensaje enviado por la función “Borrar()”

- Si los 7 primeros caracteres del mensaje recibido son “Borrado”, se

almacena el mensaje recibido en la variable “mensajeRecibido” para

poder tratarla y obtener la dirección MAC de quien envió el mensaje. Se

imprime un mensaje para dar a conocer al usuario del dispositivo que

se ha recibido una solicitud de borrado, se revisa si hay algún dispositivo

conectado y se imprime un mensaje si no es así. A continuación,

mediante un “for”, se recorre todos los dispositivos registrados y se

compara mediante un “if” cada dirección almacenada con la del

mensaje recibido. Si ambas direcciones son iguales se elimina el

dispositivo de la lista de dispositivos conectados y se elimina de la red

mediante la función de ESP-NOW “esp_now_del_peer”. Por último, se

imprime un mensaje por pantalla informando al usuario sobre la

eliminación del dispositivo y se elimina del vector

“VectoresVinculados()” el dispositivo borrado junto al bloque vinculado.

46. else if (strncmp(MensajeRecibido.text, "Borrado", 7) == 0)

{

47. String mensajeRecibido = MensajeRecibido.text;

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

65

48. int espacioPos = mensajeRecibido.indexOf(' ');

49. if (espacioPos != -1) {

50. String MacString =

mensajeRecibido.substring(espacioPos + 1);

51. Serial.print("El dispositivo ");

52. Serial.print(MacString);

53. Serial.println(" ha solicitado borrar su registro.");

54. if (DispositivosConectados.empty()) {

55. Serial.println("No hay dispositivos para borrar.");

56. } else {

57. for (auto it = DispositivosConectados.begin(); it

!= DispositivosConectados.end(); ++it) {

58. if (NormalizarMac(*it) == NormalizarMac(MacString))

{

59. ConvertirMacStringABytes(MacString, peerMAC);

60. DispositivosConectados.erase(it);

61. esp_now_del_peer(peerMAC);

62. Serial.print("El dispositivo ");

63. Serial.print(MacString);

64. Serial.println(" ha sido eliminado con éxito.");

65. for (size_t i = 0; i < VectoresVinculados.size();

i++) {

66. if(NormalizarMac(VectoresVinculados[i]) ==

NormalizarMac(*it)) {

67. VectoresVinculados.erase(VectoresVinculados.b

egin() + (i - 1));

68. VectoresVinculados.erase(VectoresVinculados.b

egin() + (i - 1));

69. i -= 1;

70. }

71. }

72. break;

73. }

74. }

75. }

76. }

77. }

• Procesamiento del mensaje enviado por la función

“EditarValorDeMemoria()”

- Si los 6 primeros caracteres del mensaje recibido son “Editar”, se

procede con la siguiente parte del código. Primero se imprime un

mensaje informando al usuario del mensaje recibido y se almacena el

mensaje en la variable “Mensaje” para poder manipularla. Se buscan

las posiciones de los espacios para poder extraer las diferentes

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

66

variables: El nombre del bloque de memorias reservado

(NombreBloque), el índice donde se almacenará el dato a editar

(IndiceStr) y el valor del dato (ValorStr). Además, se convierte el índice

en un entero y se obtiene la MAC del dispositivo emisor (MacStr) a través

de “info->src_addr”. Mediante dos “for” se recorren los vectores

“Bloques()” y “DispositivosAsignados()” y con una condición “if” se

comprueba cuándo el elemento de los mismos son iguales y son iguales

al contenido de “NombreBloque”, ya que, para este caso concreto, el

tamaño del bloque se encontrará en la posición siguiente del vector

“Bloques()”. Mediante una condición “if” se comprueba si el índice

introducido es válido: que sea mayor que 0 y menor que el tamaño del

bloque y se prepara un mensaje de error si no es así. Y se llama a la

función de “EscribirMemoria” para escribir el valor en el índice del

bloque de memoria concretos.

77. else if (strncmp(MensajeRecibido.text, "Editar", 6) == 0)

{

78. Serial.println("Mensaje recibido");

79. Serial.println(MensajeRecibido.text);

80.

81. String Mensaje = String(MensajeRecibido.text);

82.

83. int PrimerEspacio = Mensaje.indexOf(' ');

84. int SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio

+ 1);

85. int TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio

+ 1);

86.

87. String NombreBloque = Mensaje.substring(PrimerEspacio +

1, SegundoEspacio);

88. String IndiceStr = Mensaje.substring(SegundoEspacio +

1, TercerEspacio);

89. String ValorStr = Mensaje.substring(TercerEspacio + 1);

90.

91. int IndiceBytes = IndiceStr.toInt();

92.

93. String MacStr = "";

94. for (int i = 0; i < 6; i++) {

95. MacStr += String(info->src_addr[i], HEX);

96. if (i < 5) MacStr += ":";

97. }

98. for (size_t i = 0; i < Bloques.size(); ++i) {

99. for (size_t j = 0; j < VectoresVinculados.size();

++j) {

100. if (Bloques [i] == VectoresVinculados [j] &&

Bloques[i] == NombreBloque) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

67

101. uint32_t TamanoBloque = Bloques [i +

1].toInt();

102. if (IndiceBytes >= 0 && IndiceBytes <

TamanoBloque) {

103. } else {

104. Serial.println("Enviando error a emisor...");

105. uint8_t MacBytes[6];

106. ConvertirMacStringABytes(MacStr, MacBytes);

107. strcpy(MensajeEnviado.text, "Error 3: Índice

fuera de rango");

108. esp_err_t Result = esp_now_send(info->src_addr,

(uint8_t*)&MensajeEnviado, sizeof(MensajeEnviado));

109. return;

110. }

111. }

112. }

113. }

114. EscribirMemoria(NombreBloque, IndiceBytes, ValorStr);
115. delayMicroseconds(200);

- Si los siete primeros caracteres del mensaje recibido son “Error 3”,

correspondiente al intento de modificar una dirección de memoria a la

que un bloque no tiene acceso (el índice es mayor al tamaño del bloque),

se imprime dicho mensaje de error.

116. else if (strncmp(MensajeRecibido.text, "Error 3", 7) ==

0) {

117. Serial.print("Mensaje recibido: ");

118. Serial.println(MensajeRecibido.text);

119. }

• Procesamiento del mensaje enviado por la función “VincularVector()”

- Si los ocho primeros caracteres del mensaje recibido son “Vincular”, se

sacan los parámetros recibidos del mensaje: el nombre del bloque y el

tamaño del bloque. Se almacena en “VectoresVinculados()” el nombre

del bloque y la dirección MAC del dispositivo del que se recibe el

mensaje y se preparan dos mensajes de aviso a modo de respuesta:

+ Primero se prepara el mensaje “Vinculando”.

+ A continuación se ejecuta la función de “EditarValorDeMemoria ()” y

se ejecuta el flujo para escribir en memorias de otros dispositivos solo

en los valores ya sobrescritos para que el contenido del bloque de

memoria de todos los dispositivos sea el mismo.

+Por último se prepara el mensaje “Vinculado”.

119. else if (strncmp(MensajeRecibido.text, "Vincular", 8) ==

0){

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

68

120. String Mensaje = String(MensajeRecibido.text);

121. int PrimerEspacio = Mensaje.indexOf(' ');

122. int SegundoEspacio = Mensaje.indexOf(' ',

PrimerEspacio + 1);

123. String NombreBloque = Mensaje.substring(PrimerEspacio

+ 1, SegundoEspacio);

124. String TamanoBloque =

Mensaje.substring(SegundoEspacio + 1);

125. int TamanoBloqueBytes = TamanoBloque.toInt();

126. for (size_t i = 0; i < Bloques.size(); i++){

127. if(Bloques[i] == NombreBloque){

128. if (Bloques[i+1] == TamanoBloque){

129. String MacStr = "";

130. for (int i = 0; i < 6; i++) {

131. MacStr += String(info->src_addr[i], HEX);

132. if (i < 5) MacStr += ":";

133. }

134. ConvertirMacStringABytes(MacStr,peerMAC);

135. NormalizarMac(MacStr);

136. VectoresVinculados.push_back(NombreBloque);

137. VectoresVinculados.push_back(MacStr);

138.

139. char Texto[50];

140. sprintf(Texto, "Vinculando %s ",

NombreBloque.c_str());

141. strcpy(MensajeEnviado.text, Texto);

142. esp_now_send(peerMAC,

(uint8_t*)&MensajeEnviado, sizeof(MensajeEnviado));

143. Serial.print("El vector: ");

144. Serial.print(NombreBloque);

145. Serial.print(" se está intentando vincular con

");

146. Serial.println(NormalizarMac(MacStr));

147. Serial.println("Vinculando...");

148. for (int i = 0; i < TamanoBloqueBytes; i++) {

149. if(MostrarMemoria(NombreBloque, i) != 0) {

150. EditarValorDeMemoria(MacStr, NombreBloque,

i, MostrarMemoria(NombreBloque, i));

151. delayMicroseconds(1000);

152. }

153. }

154. Serial.println("Vinculación completada");

155. sprintf(Texto, "Vinculado %s",

NombreBloque.c_str());

156. strcpy(MensajeEnviado.text, Texto);

157. esp_now_send(peerMAC,

(uint8_t*)&MensajeEnviado, sizeof(MensajeEnviado));

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

69

158. }

159. }

160. }

161. }

- Si los diez primeros caracteres del mensaje recibido son “Vinculando”,

se obtienen los parámetros del mensaje recibido y se imprime un

mensaje de aviso, dando a conocer al usuario el comienzo del proceso

de vinculación.

161. else if (strncmp(MensajeRecibido.text, "Vinculando", 10)

== 0) {

162. String Mensaje = String(MensajeRecibido.text);

163. Serial.println(Mensaje);

164. int PrimerEspacio = Mensaje.indexOf(' ');

165. String NombreBloque = Mensaje.substring(PrimerEspacio

+ 1);

166. String MacStr = "";

167. for (int i = 0; i < 6; i++) {

168. MacStr += String(info->src_addr[i], HEX);

169. if (i < 5) MacStr += ":";

170. }

171. Serial.print("El dispositivo ");

172. Serial.print(NormalizarMac(MacStr));

173. Serial.print(" está intentando vincular el bloque ");

174. Serial.println(NombreBloque);

175. Serial.println("Vinculando...");

176. }

- Si los siete primeros caracteres del mensaje recibido son “Vinculado”,

se saca el parámetro requerido del mensaje recibido, se avisa al

usuario de la finalización del proceso de vinculación y se construye el

vector “VectoresVinculados”, almacenando el nombre del bloque

seguido de la dirección MAC a la que está vinculada.

176. else if (strncmp(MensajeRecibido.text, "Vinculado", 9)

== 0) {

177. Serial.println("Vinculación completada.");

178. String Mensaje = String(MensajeRecibido.text);

179. int PrimerEspacio = Mensaje.indexOf(' ');

180. String NombreBloque = Mensaje.substring(PrimerEspacio

+ 1);

181. String MacStr = "";

182. for (int i = 0; i < 6; i++) {

183. MacStr += String(info->src_addr[i], HEX);

184. if (i < 5) MacStr += ":";

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

70

185. }

186. VectoresVinculados.push_back(NombreBloque);

187. VectoresVinculados.push_back(MacStr);

188. }

• Procesamiento del mensaje enviado por la función

“CrearVectorValoresResponsabilizados”

- Si los 11 primeros caracteres del mensaje recibido son “Responsable”,

se obtienen los parámetros del mensaje recibido, se recorre el vector

“ValoresResponsabilizados”. Empezando por el final, si el dispositivo no

tiene ningún valor responsabilizado, se envía de vuelta un mensaje de

“ResponsExito”, indicándole al dispositivo que tiene permiso de

responsabilizarse de esos índices (este tendrá que esperar a que todos

los dispositivos le digan lo mismo para poder responsabilizarse de unos

ínidces). Si el dispositivo sí tiene valores responsabilizados,

comprobará que los índices a los que el otro dispositivo quiere tener

acceso son válidos, esto es, que ningún índice de un bloque pueda ser

accedido por más de un dispositivo. Si son válidos, se enviará el

mensaje “ResponsExito” y en caso contrario “ResponsError”.

188. else if (strncmp(MensajeRecibido.text, "Responsable",

11) == 0) {

189. String Mensaje = String(MensajeRecibido.text);

190. int PrimerEspacio = Mensaje.indexOf(' ');

191. int SegundoEspacio = Mensaje.indexOf(' ',

PrimerEspacio + 1);

192. int TercerEspacio = Mensaje.indexOf(' ',

SegundoEspacio + 1);

193.

194. String NombreBloque = Mensaje.substring(PrimerEspacio

+ 1, SegundoEspacio);

195. String StrIndiceMin =

Mensaje.substring(SegundoEspacio + 1, TercerEspacio);

196. String StrIndiceMax = Mensaje.substring(TercerEspacio

+ 1);

197. uint32_t IndiceMin = StrIndiceMin.toInt();

198. uint32_t IndiceMax = StrIndiceMax.toInt();

199.

200. String MacStr = "";

201. for (int i = 0; i < 6; i++) {

202. MacStr += String(info->src_addr[i], HEX);

203. if (i < 5) MacStr += ":";

204. }

205. ConvertirMacStringABytes(MacStr,peerMAC);

206. for (size_t i = 0; i <

ValoresResponsabilizados.size(); i++) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

71

207. if (NombreBloque == ValoresResponsabilizados[i])

{

208. if ((IndiceMin >=

ValoresResponsabilizados[i+1].toInt() && IndiceMin <=

ValoresResponsabilizados[i+2].toInt()) || (IndiceMax >=

ValoresResponsabilizados[i+1].toInt() && IndiceMax <=

ValoresResponsabilizados[i+2].toInt()) || (IndiceMin <=

ValoresResponsabilizados[i+1].toInt() && IndiceMax >=

ValoresResponsabilizados[i+2].toInt())) {

209. char Texto[100];

210. sprintf(Texto, "ResponsError %s %d %d",

NombreBloque.c_str(),

ValoresResponsabilizados[i+1].toInt(),

ValoresResponsabilizados[i+2].toInt());

211. strcpy(MensajeEnviado.text, Texto);

212. esp_now_send(peerMAC,

(uint8_t*)&MensajeEnviado, sizeof(MensajeEnviado));

213. } else {

214. char Texto[100];

215. sprintf(Texto, "ResponsExito %s %d %d",

NombreBloque.c_str(), IndiceMin, IndiceMax);

216. strcpy(MensajeEnviado.text, Texto);

217. esp_now_send(peerMAC,

(uint8_t*)&MensajeEnviado, sizeof(MensajeEnviado));

218. }

219. }

220. }

221. if (ValoresResponsabilizados.size() == 0) {

222. char Texto[100];

223. sprintf(Texto, "ResponsExito %s %d %d",

NombreBloque.c_str(), IndiceMin, IndiceMax);

224. strcpy(MensajeEnviado.text, Texto);

225. esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

226. }

227. }

- Si el mensaje recibido es “ResponsError” o “ResponsExito” se obtiene

los parámetros necesarios del mensaje recibido. Por cada

“ResponsError” que se recibe se añade un valor 0 al vector

“Respuestas”, y por cada “ResponsExito” recibido se le añade un 1. Se

recorre el vector “ListaDeRespuestasPendientes” compuesto de las

direcciones MAC de los dispositivos que faltan por responder

“ResponsExito” o “ResponsError” y se añade tantos unos como

dispositivos haya sin responder. Esto sirve, para posteriormente, volver

a recorrer el vector. Si dicho vector contiene algún uno no se procederá

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

72

con la siguiente parte del flujo. Cuando el vector solo contenga ceros,

se recorre el vector “Respuestas”, si este vector contiene algún 0 es

porque algún dispositivo ha enviado “ResponsError”: el dispositivo está

intentando tener acceso a unos índices de un bloque que ya son

accedidos por otro dispositivo, y se avisa de ello. En caso contrario, se

avisa al usuario del éxito en la responsabilización y se estructura el

vector “”ValoresResponsabilizados” en tríos de datos: primero el

nombre del bloque, luego el índice mínimo al que se tiene acceso y

luego el máximo.

227. else if ((strncmp(MensajeRecibido.text, "ResponsError",

12) == 0) || ((strncmp(MensajeRecibido.text,

"ResponsExito", 12) == 0))) {

228. String Mensaje = String(MensajeRecibido.text);

229. int PrimerEspacio = Mensaje.indexOf(' ');

230. int SegundoEspacio = Mensaje.indexOf(' ',

PrimerEspacio + 1);

231. int TercerEspacio = Mensaje.indexOf(' ',

SegundoEspacio + 1);

232.

233. String NombreBloque =

Mensaje.substring(PrimerEspacio + 1, SegundoEspacio);

234. String StrIndiceMin =

Mensaje.substring(SegundoEspacio + 1, TercerEspacio);

235. String StrIndiceMax =

Mensaje.substring(TercerEspacio + 1);

236. uint32_t IndiceMin = StrIndiceMin.toInt();

237. uint32_t IndiceMax = StrIndiceMax.toInt();

238. if (strncmp(MensajeRecibido.text, "ResponsError",

12) == 0) {

239. Respuestas.push_back(0); // 0 = Error

240. }

241. if (strncmp(MensajeRecibido.text, "ResponsExito",

12) == 0) {

242. Respuestas.push_back(1); // 1 = Exito

243. }

244. String MacStr = "";

245. for (int i = 0; i < 6; i++) {

246. MacStr += String(info->src_addr[i], HEX);

247. if (i < 5) MacStr += ":";

248. }

249. ConvertirMacStringABytes(MacStr,peerMAC);

250. for (size_t i = 0; i <

ListaRespuestasPendientes.size(); i++) {

251. if (ListaRespuestasPendientes[i] == MacStr) {

252. ListaRespuestasPendientes[i+1] = "1";

253. break;

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

73

254. }

255. }

256. bool TodosRespondieron = true;

257. for (size_t i = 1; i <

ListaRespuestasPendientes.size(); i += 2) {

258. if (ListaRespuestasPendientes[i] != "1") {

259. TodosRespondieron = false;

260. break;

261. }

262. }

263. bool ExisteError = false;

264. if (TodosRespondieron) {

265. for (size_t i = 0; i < Respuestas.size(); i++) {

266. if (Respuestas[i] == 0) {

267. ExisteError = true;

268. break;

269. }

270. }

271. if (ExisteError) {

272. Serial.print("Error: Para el bloque ");

273. Serial.print(NombreBloque);

274. Serial.print(" no puedes responsabilizarte de

unos índices entre ");

275. Serial.print(IndiceMin);

276. Serial.print(" y ");

277. Serial.println(IndiceMax);

278. } else {

279. Serial.print("Para el bloque ");

280. Serial.print(NombreBloque);

281. Serial.print(" este dispositivo solo podrá

escribir entre las posiciones ");

282. Serial.print(IndiceMin);

283. Serial.print(" y ");

284. Serial.println(IndiceMax);

285.

ValoresResponsabilizados.push_back(NombreBloque);

286.

ValoresResponsabilizados.push_back(StrIndiceMin);

287.

ValoresResponsabilizados.push_back(StrIndiceMax);

288. }

289. Respuestas.clear();

290. ListaRespuestasPendientes.clear();

291. }

292. }

293. }

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

74

La función “enRecepciónDeDatos()” es una función compleja que permite

manejar los mensajes recibidos a través de ESP-NOW y toma decisiones

dependiendo del contenido del mensaje:

- Confirma la conexión entre dispositivos y los registra.

- Elimina dispositivos.

- Vincula bloques de memoria.

- Da permisos de edición a determinados índices en cada bloque.

- Modifica valores de memoria.

- Informa sobre errores.

Variables Globales

Las variables globales son aquellas que se definen fuera de cualquier función

y por ello, pueden ser accedidas desde cualquier parte del código. Estas

variables se utilizan para almacenar datos fuera de la definición de las propias

funciones. Las variables globales creadas son las siguientes:

1. MensajeEstructurado MemoriaCompartida::MensajeEnviado;

La variable de tipo “MensajeEstructurado” denominada “MensajeEnviado”,

permite almacenar el contenido de un mensaje enviado a un dispositivo.

El tipo de variable “MensajeEstructurado” viene definido en el archivo

“MemoriaCompartida.h” se trata de una variable de tipo “struct” que

contiene un único campo: una cadena de caracteres de hasta 240

posiciones.

2. MensajeEstructurado MemoriaCompartida::MensajeRecibido;

La variable de tipo “MensajeEstructurado” denominada

“MensajeRecibido”, permite almacenar el contenido de un mensaje

recibido por un dispositivo.

El tipo de variable “MensajeEstructurado” viene definido en el archivo

“MemoriaCompartida.h” se trata de una variable de tipo “struct” que

contiene un único campo: una cadena de caracteres de hasta 240

posiciones.

3. uint8_t MemoriaCompartida::peerMAC[6];

La variable “peerMAC” sirve para obtener el resultado al aplicar la función

“ConvertirMacStringABytes()” a lo largo de todo el código.

4. bool MemoriaCompartida::RespuestaRecibida = false;

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

75

La variable “Respuestarecibida” sirve para, en el flujo del registro de

dispositivos, saber si el dispositivo que se pretende registrar está en

alcance o no.

5. std::vector<String> MemoriaCompartida::DispositivosConectados;

El vector “DispositivosConectados” sirve para almacenar las direcciones

MAC del resto de dispositivos registrados por un dispositivo.

Ejem.: Para un dispositivo A registrado a B y C, el vector

“DispositivosConectados” en el dispositivo A será:

DispositivosConectados: MAC B, MAC C

6. std::vector<uint32_t*> MemoriaCompartida::MemoriaDispositivos;

El vector “MemoriaDispositivos” almacena los punteros que apuntan a

direcciones específicas dentro de bloques de memoria creados.

7. std::vector<String> MemoriaCompartida::DispositivosAlias;

El vector “DispositivosAlias” almacena a pares la dirección MAC de un

dispositivo junto al alias introducido por el usuario si lo hay.

8. std::vector<String> MemoriaCompartida::Bloques;

El vector “Bloques” almacena a pares el nombre de un bloque de memoria

reservado acompañado de su tamaño.

Ejem.: Para un bloque de memoria llamado Ana de tamaño 50 direcciones

de memoria y un bloque de memoria llamado Bea de 100 direcciones de

memoria, el vector “Bloques” en el dispositivo donde se han creado será:

Bloques: Ana, 50, Bea, 100

9. std::vector<String> MemoriaCompartida::VectoresVinculados;

El vector “VectoresVinculados” almacena a pares el nombre de un bloque

de memoria reservado junto a la dirección MAC del dispositivo que tenga

ese mismo bloque de memoria vinculado.

Ejm.: Para un bloque de memoria llamado “Ana” vinculado con el dispositivo

B y C, un bloque de memoria llamado “Bea” vinculado con el dispositivo C y

un bloque de memoria llamado Carla, no vinculado con ningún dispositivo,

el contenido de “VectoresVinculados” en el dispositivo A es:

VectoresVinculados: Ana, MAC B, Ana, MAC C, Bea, MAC C

10. std::vector<String> MemoriaCompartida::ValoresResponsabilizados;

El vector “ValoresResponsabilizados” almacena en tríos de datos el nombre

de un bloque vinculado con otro dispositivo, el índice menor (de ese bloque)

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

76

al cual el dispositivo tiene acceso, y el índice mayor (de ese bloque) al cual

el dispositivo tiene acceso.

Ejm.: Para un bloque de memoria vinculado entre dos dispositivos: A y B

llamado Ana de tamaño 50, donde A se responsabiliza de las posiciones 1

a la 15, el vector “VectoresVinculados” en A es:

VectoresVinculados: Ana, 1, 15

11. std::vector<String> MemoriaCompartida::ListaRespuestasPendientes;

El vector “ListaRespuestasPendientes” almacena 0’s ó 1’s en función de si

el dispositivo ha recibido una respuesta o no en el flujo de

responsabilización de índices de un bloque. Si el vector solo contiene 0’s

no respondió nadie, si solo contiene 1’s respondieron todos.

12. std::vector<int> MemoriaCompartida::Respuestas;

El vector “Respuestas” almacena 0’s ó 1’s en función de si el dispositivo ha

recibido una respuesta del tipo “ResponsError” o “ResponsExito” en el flujo

de responsabilización de índices de un bloque, almacenando un 0 en caso

de error y un 1 en caso de éxito.

13. bool MemoriaCompartida::SePuedeEscribir;

La variable booleana “SePuedeEscribir” permite al sistema conocer, dado

el flujo, si es posible escribir en un bloque de memoria creado en un

dispositivo o no.

Contexto

Alcance
Esta librería permite la intercomunicación entre nodos para la simulación de
una memoria compartida entre dispositivos ESP32 usando ESP-NOW. La
librería proporciona mecanismos para el envío y recepción de estructuras de
datos permitiendo sincronizar la información entre los diferentes nodos de
forma eficiente y sin necesidad de una infraestructura de red.

Por ello, el alcance de este proyecto se limita a:

1. Uso exclusivo del protocolo ESP-NOW para la comunicación
inalámbrica entre nodos. Este proyecto no incluye la integración con
otros protocolos que no sean ESP-NOW como puede ser MQTT o LoRa
o WiFi tradicional.

2. La implementación y validación de la librería únicamente sobre
dispositivos ESP32. No se asegura que todas las funcionalidades

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

77

diseñadas en la librería deban funcionar con otro tipo de
microprocesador.

Oportunidades
La librería puede usarse en cualquier entorno, ya sea profesional o de ocio, y

con cualquier nivel de conocimiento técnico para el desarrollo de herramientas

software donde la intercomunicación entre dispositivos en entornos sin

infraestructura WI-Fi sea necesaria.

La librería es especialmente útil en: entornos IoT y de domótica donde la alta

velocidad de transferencia de datos sea necesaria, y en proyectos de

sensorización en zonas remotas.

Limitaciones
En cuanto a las limitaciones técnicas de la librería, cabe destacar:

1. Tamaño de los mensajes: el tamaño de los mensajes enviados entre

dispositivos no deberá ser mayor a 250 bytes.

2. Cantidad de dispositivos conectados: la cantidad de dispositivos a

registrar no deberá ser mayor a 20.

3. Memoria pequeña: los dispositivos esp32 suelen tener una memoria

pequeña que puede no ser suficiente para el tipo de proyecto que se

esté realizando. Aunque como solución sencilla podría usarse una

memoria externa.

4. Distancia entre dispositivos máxima (para que ESP-NOW funcione): la

distancia máxima, según el proveedor, en la que la tecnología esp-now

funciona es de 200 metros.

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

79

Conclusiones e Implicaciones

En este proyecto se ha logrado desarrollar una librería funcional para la

simulación de una memoria compartida entre dispositivos ESP32 usando el

protocolo de comunicación inalámbrica ESP-NOW. Este objetivo principal ha

sido cumplido, proporcionando una herramienta que permite la sincronización

entre nodos para la compartición de estructuras de datos entre ellos, de forma

eficiente y sin necesidad de infraestructura de red adicional.

La solución implementada ha demostrado que es posible abstraer la

comunicación inalámbrica entre microprocesadores como si de una memoria

compartida se tratara a través del uso de una librería, facilitando el uso y por

ello, el desarrollo de herramientas en computación distribuida. La librería ha

sido validada, confirmando su correcto funcionamiento mediante la

implementación de pruebas empleando dispositivos ESP32.

Como posibles líneas de trabajo futuras, se propone:

1. Añadir integración con otros protocolos de comunicación como MQTT,

LoRa o WiFi para una interoperabilidad híbrida.

2. Asegurar el soporte con otros microprocesadores.

En definitiva, este proyecto no solo presenta una solución concreta a un

problema planteado, sino que también establece una base sólida para futuros

desarrollos de proyectos relacionados con la intercomunicación entre

dispositivos, de forma eficiente, sencilla y sin infraestructura externa.

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

81

Bibliografía

1. https://docs.keyestudio.com/projects/KS5016/en/latest/docs/

2. https://rmd.jcyl.es/web/es/territorio-rural-inteligente.html

3. https://wiki.keyestudio.com/KS5016_Keyestudio_ESP32_PLUS_Develop
ment_Board

4. https://www.arsys.es/blog/codigo-bloqueante-nodejs

5. https://www.electrosoftcloud.com/esp-now-conecta-dos-o-mas-esp32-

esp8266/

6. https://www.espressif.com/sites/default/files/documentation/esp32-
wroom-32_datasheet_en.pdf

7. https://www.guiahardware.es/zigbee/

8. https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/que-es-

un-callback/

9. https://www.luisllamas.es/como-usar-esp-now-en-esp32/

10. https://www.matternet.com/

11. https://www.siemens.com/es/es/productos/software/mindsphere.html

12. https://www.silabs.com/wireless/technology

13. https://www.ti.com/lit/ds/symlink/cc2530.pdf?ts=1749028684669&
ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fes-
mx%252FCC2530

14. https://www.youtube.com/watch?v=bEKjCDDUPaU

15. https://www.youtube.com/watch?v=QmvMtgNs9r8

16. https://www.youtube.com/watch?v=VGoiUk-jkjE&list=PL-

Hb9zZP9qC40uOyYYYPrGeAClL2z97oU

https://docs.keyestudio.com/projects/KS5016/en/latest/docs/
https://rmd.jcyl.es/web/es/territorio-rural-inteligente.html
https://wiki.keyestudio.com/KS5016_Keyestudio_ESP32_PLUS_Development_Board
https://wiki.keyestudio.com/KS5016_Keyestudio_ESP32_PLUS_Development_Board
https://www.arsys.es/blog/codigo-bloqueante-nodejs
https://www.electrosoftcloud.com/esp-now-conecta-dos-o-mas-esp32-esp8266/
https://www.electrosoftcloud.com/esp-now-conecta-dos-o-mas-esp32-esp8266/
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.guiahardware.es/zigbee/
https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/que-es-un-callback/
https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/que-es-un-callback/
https://www.luisllamas.es/como-usar-esp-now-en-esp32/
https://www.matternet.com/
https://www.siemens.com/es/es/productos/software/mindsphere.html
https://www.silabs.com/wireless/technology
https://www.ti.com/lit/ds/symlink/cc2530.pdf?ts=1749028684669&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fes-mx%252FCC2530
https://www.ti.com/lit/ds/symlink/cc2530.pdf?ts=1749028684669&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fes-mx%252FCC2530
https://www.ti.com/lit/ds/symlink/cc2530.pdf?ts=1749028684669&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fes-mx%252FCC2530
https://www.youtube.com/watch?v=bEKjCDDUPaU
https://www.youtube.com/watch?v=QmvMtgNs9r8
https://www.youtube.com/watch?v=VGoiUk-jkjE&list=PL-Hb9zZP9qC40uOyYYYPrGeAClL2z97oU
https://www.youtube.com/watch?v=VGoiUk-jkjE&list=PL-Hb9zZP9qC40uOyYYYPrGeAClL2z97oU

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

83

Apéndice

Caso práctico de utilización:

En una red con tres dispositivos: A, B y C se quiere simular una memoria

compartida de la siguiente forma:

• Entre A y B se creará un Bloque Ana de tamaño 50, con los siguientes

accesos:

- A tendrá acceso a los índices del 0 al 25

- B tendrá acceso a los índices del 26 al 40

• Entre B y C se creará un Bloque Bea de tamaño 100, con los siguientes

accesos:

- B tendrá acceso a los índices del 0 al 50 y del 75 al 99.

- C tendrá acceso a los índices del 51 al 74.

• Entre A, B y C se creará un Bloque Carla de tamaño 200, con los siguientes

accesos:

- A tendrá acceso a los índices del 0 al 25

- B tendrá acceso del 26 al 75

- C tendrá acceso del 76 al 150.

Se comienza con el registro de los dispositivos:

En A se registra B y C, y en B se registra C, de esta manera los 3 dispositivos

estarán registrados entre sí. Para el registro se utilizarán las direcciones MAC

sacadas por pantalla nada más ejecutar el programa:

El dispositivo A será el de la MAC: “EC:64:C9:99:CF:78”

El dispositivo B será el de la MAC: “EC:64:C9:99:D1:88”

El dispositivo C será el de la MAC: “34:98:7A:BC:6F:DC”

Para registrar B y C desde A:

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

84

Y para registrar C desde B:

Ahora, todos los dispositivos estarán registrados. Esto se comprobará

ejecutando la función de Dispositivos en cada dispositivo:

En el dispositivo A:

En el dispositivo B:

En el dispositivo C:

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

85

Una vez comprobado que todos los dispositivos están registrados entre sí, se

procede con la creación de los bloques de memoria especificados:

En A se crea el bloque Ana de tamaño 50 y Carla de tamaño 200:

Ambos bloques se intentarán vincular con B y C nada más ser creados, pero

no se vincularán por que estos dispositivos aún no tienen creado ningún

bloque:

En B se crea el bloque Ana 50 (que se vinculará automáticamente con el

bloque Ana de A), Bea 100 y Carla 200 (que se vinculará automáticamente

con el bloque Carla de A):

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

86

En C se crea el bloque Bea 100 (que se vinculará automáticamente con el

bloque Bea de B) y el bloque Carla 200 (que se vinculará automáticamente

con el bloque Carla de A y B):

Los bloques ya están vinculados según se ha definido al inicio. A

continuación, se procede con la obtención de acceso de cada dispositivo a

cada bloque.

A debe tener acceso en el bloque Ana a los índices del 0 al 25 y en el bloque

Carla igual:

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

87

B debe tener acceso en el bloque Ana a los índices del 26 al 40, en el bloque

Bea a los índices del 0 al 50 y del 75 al 99, y en el bloque Carla debe tener

acceso a los índices del 26 al 75:

C debe tener acceso en el bloque Bea a los índices del 51 al 74, y en el

bloque Carla los índices del 76 al 150:

Como comprobación,

En A intentará escribir en:

- Bloque Ana, índice 1

- Bloque Ana, índice 30

- Bloque Carla, índice 10

- Bloque Carla, índice 140

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

88

En B se intentará escribir en:

- Bloque Ana, índice 20

- Bloque Ana, índice 35

- Bloque Bea, índice 5

- Bloque Bea, índice 60

- Bloque Bea, índice 80

- Bloque Carla, índice 15

- Bloque Carla, índice 40

- Bloque Carla, índice 170

En C se intentará escribir en:

- Bloque Bea, índice 45

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

89

- Bloque Bea, índice 70

- Bloque Carla, índice 0

- Bloque Carla, índice 45

- Bloque Carla, índice 110

Y se comprueba también, que en los casos donde sí se ha podido escribir, el

cambio se refleja en el resto de bloques vinculados del resto de dispositivos:

Cuando A escribe en Ana en el índice 1 un 10, en B aparece:

Cuando A escribe en Carla en el índice 10 un 100, en B y C aparece:

Cuando B escribe en Ana en el índice 35 un 350, en A aparece:

Cuando B escribe en Bea en el índice 5 un 50, en C aparece:

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

90

Cuando B escribe en Bea en el índice 80 un 800, en C aparece:

Cuando B escribe en Carla en el índice 40 un 400, en B y C aparece:

Cuando C escribe en Bea en el índice 70 un 700 aparece en B:

Cuando C escribe en Carla en el índice 110 un 1100 aparece en A y B:

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

91

Anexo A: MemoriaCompartida.h

#ifndef MEMORIACOMPARTIDA_H

#define MEMORIACOMPARTIDA_H

#include <esp_now.h>

#include <WiFi.h>

#include <vector>

#include <string>

#include <stdlib.h>

#include <stdint.h>

typedef struct MensajeEstructurado{

 char text[240];

} Mensaje_Estructurado;

class MemoriaCompartida{

public:

 MemoriaCompartida();

 void init();

 void Registrar(const String& mac);

 void Borrar(String& Mac);

 void Dispositivos();

 static void EscribirMemoria(String NombreBloque, int Indice,

String Valor);

 static void EditarValorDeMemoria(String MacReceptor, String

NombreBloque, int Indice, int Valor);

 static void enRecepcionDeDatos(const esp_now_recv_info* info,

const uint8_t* DatosRecibidos, int tamaño);

 static void enEnvioDeDatos (const uint8_t* MAC,

esp_now_send_status_t status);

 static bool ConvertirMacStringABytes(const String& macString,

uint8_t* macBytes);

 static String NormalizarMac(const String& Mac);

 static uint32_t MostrarMemoria(String NombreBloque, int Indice);

 static std::vector<uint32_t*> MemoriaDispositivos;

 void Alias ();

 static bool esAlias(String Alias);

 static String ConvertirAliasAMacString(String Alias);

 void AsignarVectorMemoriaCompartida(String Mac, String

NombreBloque);

 static void CrearBloqueMemoria(String NombreBloque, uint32_t

TamanoBloque);

 static void VincularVector();

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

92

 static void EnviarValorVinculado(String NombreBloque, int Indice,

String Valor);

 static uint32_t InfoMostrarMemoria(String NombreBloque, int

Indice);

 static void CrearVectorValoresResponsabilizados(String

NombreBloque, int IndiceMin, int IndiceMax);

private:

 static MensajeEstructurado MensajeEnviado;

 static MensajeEstructurado MensajeRecibido;

 static uint8_t peerMAC[6];

 static bool RespuestaRecibida;

 static std::vector<String> DispositivosConectados;

 static bool esDireccionMac(const String& mac);

 static std::vector<String> DispositivosAlias;

 static std::vector<String> Bloques;

 static std::vector<String> VectoresVinculados;

 static std::vector<String> ValoresResponsabilizados;

 static std::vector<String> ListaRespuestasPendientes;

 static std::vector<int> Respuestas;

 static bool SePuedeEscribir;

};

#endif

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

93

Anexo B: MemoriaCompartida.cpp

#include "Memoriacompartida.h"

MensajeEstructurado MemoriaCompartida::MensajeEnviado;

MensajeEstructurado MemoriaCompartida::MensajeRecibido;

uint8_t MemoriaCompartida::peerMAC[6];

bool MemoriaCompartida::RespuestaRecibida = false;

std::vector<String> MemoriaCompartida::DispositivosConectados;

std::vector<uint32_t*> MemoriaCompartida::MemoriaDispositivos;

std::vector<String> MemoriaCompartida::DispositivosAlias;

std::vector<String> MemoriaCompartida::Bloques;

std::vector<String> MemoriaCompartida::VectoresVinculados;

std::vector<String> MemoriaCompartida::ValoresResponsabilizados;

std::vector<String> MemoriaCompartida::ListaRespuestasPendientes;

std::vector<int> MemoriaCompartida::Respuestas;

bool MemoriaCompartida::SePuedeEscribir;

MemoriaCompartida::MemoriaCompartida() {}

bool MemoriaCompartida::esDireccionMac(const String& mac) {

 if (mac.length() != 17) {

 return false;

 }

 for (int i = 0; i < mac.length(); i++) {

 if (i % 3 == 2) {

 if (mac[i] != ':') {

 return false;

 }

 } else if (!isxdigit(mac[i])) {

 return false;

 }

 }

 return true;

}

bool MemoriaCompartida::ConvertirMacStringABytes(const String&

macString, uint8_t* macBytes) {

 int elementos[6];

 if (sscanf(macString.c_str(), "%x:%x:%x:%x:%x:%x", &elementos[0],

&elementos[1], &elementos[2], &elementos[3], &elementos[4],

&elementos[5]) == 6) {

 for (int i = 0; i < 6; i++) {

 macBytes[i] = (uint8_t)elementos[i];

 }

 return true;

 }

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

94

 return false;

}

void MemoriaCompartida::Registrar(const String& mac) {

 if (esDireccionMac(mac)) {

 if (!ConvertirMacStringABytes(mac, peerMAC)) {

 Serial.println("Error al convertir la Mac.");

 return;

 }

 uint8_t MacBytesLocal[6];

 WiFi.macAddress(MacBytesLocal);

 bool MismaMac = true;

 for (int i = 0; i < 6; i++) {

 if (peerMAC[i] != MacBytesLocal[i]) {

 MismaMac = false;

 break;

 }

 }

 if (MismaMac) {

 Serial.println("Error: La MAC introducida es la de este

dispositivo.");

 return;

 }

 esp_now_peer_info_t InfoPeer = {};

 memcpy(InfoPeer.peer_addr, peerMAC, 6);

 InfoPeer.channel = 0;

 InfoPeer.encrypt = false;

 if (esp_now_is_peer_exist(peerMAC)) {

 Serial.println("Error: Este dispositivo ya está registrado.");

 return;

 } else {

 esp_err_t Resultado = esp_now_add_peer(&InfoPeer);

 if (Resultado != ESP_OK) {

 Serial.println("Error al agregar peer temporalmente");

 return;

 }

 }

 strcpy(MensajeEnviado.text, "Prueba de conexión");

 Serial.print("Iniciando conexión con: ");

 Serial.println(mac);

 esp_err_t ResultadoDeEnvio = esp_now_send(peerMAC,

(uint8_t*)&MensajeEnviado, sizeof(MensajeEnviado));

 if (ResultadoDeEnvio == ESP_OK) {

 Serial.println("Conectando...");

 RespuestaRecibida = false;

 unsigned long Contador = millis();

 while (millis() - Contador < 20000) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

95

 if (RespuestaRecibida == true) {

 esp_now_add_peer(&InfoPeer);

 break;

 }

 }

 if (!RespuestaRecibida) {

 Serial.println("No se pudo conectar. Eliminando

dispositivo.");

 esp_now_del_peer(peerMAC);

 }

 } else {

 Serial.print("Error al conectar. Código de error: ");

 Serial.println(ResultadoDeEnvio);

 esp_now_del_peer(peerMAC);

 }

 } else {

 Serial.println("Dirección MAC no válida.");

 }

}

void MemoriaCompartida::enRecepcionDeDatos(const esp_now_recv_info*

info, const uint8_t* DatosRecibidos, int tamaño) {

 memcpy(&MensajeRecibido, DatosRecibidos, sizeof(MensajeRecibido));

 if (strcmp(MensajeRecibido.text, "Prueba de conexión") == 0) {

 String MacString = "";

 for (int i = 0; i < 6; i++) {

 MacString += String(info->src_addr[i], HEX);

 if (i < 5) {

 MacString += ":";

 }

 }

 if (find(DispositivosConectados.begin(),

DispositivosConectados.end(), MacString) ==

DispositivosConectados.end()) {

 DispositivosConectados.push_back(MacString);

 }

 if (!esp_now_is_peer_exist(info->src_addr)) {

 esp_now_peer_info_t InfoPeer = {};

 memcpy(InfoPeer.peer_addr, info->src_addr, 6);

 InfoPeer.channel = 0;

 InfoPeer.encrypt = false;

 if (esp_now_add_peer(&InfoPeer) != ESP_OK) {

 Serial.println("Error al agregar el peer temporalmente.");

 return;

 }

 }

 strcpy(MensajeEnviado.text, "Recibido");

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

96

 esp_err_t ResultadoDeEnvio = esp_now_send(info->src_addr,

(uint8_t*)&MensajeEnviado, sizeof(MensajeEnviado));

 Serial.print(NormalizarMac(MacString));

 Serial.println(" está intentando conectarse.");

 if (ResultadoDeEnvio == ESP_OK) {

 Serial.println("Iniciando conexión...");

 } else {

 Serial.print("Error al iniciar conexión. Código de error: ");

 Serial.println(ResultadoDeEnvio);

 }

 } else if (strcmp(MensajeRecibido.text, "Recibido") == 0) {

 RespuestaRecibida = true;

 String MacString = "";

 for (int i = 0; i < 6; i++) {

 MacString += String(info->src_addr[i], HEX);

 if (i < 5) {

 MacString += ":";

 }

 }

 if (find(DispositivosConectados.begin(),

DispositivosConectados.end(), MacString) ==

DispositivosConectados.end()) {

 DispositivosConectados.push_back(MacString);

 VincularVector();

 }

 } else if (strncmp(MensajeRecibido.text, "Borrado", 7) == 0) {

 String mensajeRecibido = MensajeRecibido.text;

 int espacioPos = mensajeRecibido.indexOf(' ');

 if (espacioPos != -1) {

 String MacString = mensajeRecibido.substring(espacioPos + 1);

 Serial.print("El dispositivo ");

 Serial.print(MacString);

 Serial.println(" ha solicitado borrar su registro.");

 if (DispositivosConectados.empty()) {

 Serial.println("No hay dispositivos para borrar.");

 } else {

 for (auto it = DispositivosConectados.begin(); it !=

DispositivosConectados.end(); ++it) {

 if (NormalizarMac(*it) == NormalizarMac(MacString)) {

 ConvertirMacStringABytes(MacString, peerMAC);

 DispositivosConectados.erase(it);

 esp_now_del_peer(peerMAC);

 Serial.print("El dispositivo ");

 Serial.print(MacString);

 Serial.println(" ha sido eliminado.");

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

97

 for (size_t i = 0; i < VectoresVinculados.size(); i++) {

 if(NormalizarMac(VectoresVinculados[i]) ==

NormalizarMac(*it)) {

 VectoresVinculados.erase(VectoresVinculados.begin()

+ (i - 1));

 VectoresVinculados.erase(VectoresVinculados.begin()

+ (i - 1));

 i -= 1;

 }

 }

 break;

 }

 }

 }

 }

 } else if (strncmp(MensajeRecibido.text, "Editar", 6) == 0) {

 String Mensaje = String(MensajeRecibido.text);

 int PrimerEspacio = Mensaje.indexOf(' ');

 int SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio + 1);

 int TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio + 1);

 String NombreBloque = Mensaje.substring(PrimerEspacio + 1,

SegundoEspacio);

 String IndiceStr = Mensaje.substring(SegundoEspacio + 1,

TercerEspacio);

 String ValorStr = Mensaje.substring(TercerEspacio + 1);

 int IndiceBytes = IndiceStr.toInt();

 String MacStr = "";

 for (int i = 0; i < 6; i++) {

 MacStr += String(info->src_addr[i], HEX);

 if (i < 5) MacStr += ":";

 }

 for (size_t i = 0; i < Bloques.size(); ++i) {

 for (size_t j = 0; j < VectoresVinculados.size(); ++j) {

 if (Bloques [i] == VectoresVinculados [j] && Bloques[i] ==

NombreBloque) {

 uint32_t TamanoBloque = Bloques [i + 1].toInt();

 if (IndiceBytes >= 0 && IndiceBytes < TamanoBloque) {

 } else {

 Serial.println("Enviando error a emisor...");

 uint8_t MacBytes[6];

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

98

 ConvertirMacStringABytes(MacStr, MacBytes);

 strcpy(MensajeEnviado.text, "Error 3: Índice fuera de

rango");

 esp_err_t Result = esp_now_send(info->src_addr,

(uint8_t*)&MensajeEnviado, sizeof(MensajeEnviado));

 return;

 }

 }

 }

 }

 EscribirMemoria(NombreBloque, IndiceBytes, ValorStr);

 delayMicroseconds(200);

 } else if (strncmp(MensajeRecibido.text, "Error 1", 7) == 0) {

 Serial.print("Mensaje recibido: ");

 Serial.println(MensajeRecibido.text);

 } else if (strncmp(MensajeRecibido.text, "Error 2", 7) == 0) {

 Serial.print("Mensaje recibido: ");

 Serial.println(MensajeRecibido.text);

 } else if (strncmp(MensajeRecibido.text, "Error 3", 7) == 0) {

 Serial.print("Mensaje recibido: ");

 Serial.println(MensajeRecibido.text);

 } else if (strncmp(MensajeRecibido.text, "Vincular", 8) == 0){

 String Mensaje = String(MensajeRecibido.text);

 int PrimerEspacio = Mensaje.indexOf(' ');

 int SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio + 1);

 String NombreBloque = Mensaje.substring(PrimerEspacio + 1,

SegundoEspacio);

 String TamanoBloque = Mensaje.substring(SegundoEspacio + 1);

 int TamanoBloqueBytes = TamanoBloque.toInt();

 for (size_t i = 0; i < Bloques.size(); i++){

 if(Bloques[i] == NombreBloque){

 if (Bloques[i+1] == TamanoBloque){

 String MacStr = "";

 for (int i = 0; i < 6; i++) {

 MacStr += String(info->src_addr[i], HEX);

 if (i < 5) MacStr += ":";

 }

 ConvertirMacStringABytes(MacStr,peerMAC);

 NormalizarMac(MacStr);

 VectoresVinculados.push_back(NombreBloque);

 VectoresVinculados.push_back(MacStr);

 char Texto[50];

 sprintf(Texto, "Vinculando %s ", NombreBloque.c_str());

 strcpy(MensajeEnviado.text, Texto);

 esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

99

 Serial.print("El vector: ");

 Serial.print(NombreBloque);

 Serial.print(" se está intentando vincular con ");

 Serial.println(NormalizarMac(MacStr));

 Serial.println("Vinculando...");

 for (int i = 0; i < TamanoBloqueBytes; i++) {

 if(MostrarMemoria(NombreBloque, i) != 0) {

 EditarValorDeMemoria(MacStr, NombreBloque, i,

MostrarMemoria(NombreBloque, i));

 delayMicroseconds(1000);

 }

 }

 Serial.println("Vinculación completada");

 sprintf(Texto, "Vinculado %s", NombreBloque.c_str());

 strcpy(MensajeEnviado.text, Texto);

 esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

 }

 }

 }

 } else if (strncmp(MensajeRecibido.text, "Vinculando", 10) == 0) {

 String Mensaje = String(MensajeRecibido.text);

 Serial.println(Mensaje);

 int PrimerEspacio = Mensaje.indexOf(' ');

 String NombreBloque = Mensaje.substring(PrimerEspacio + 1);

 String MacStr = "";

 for (int i = 0; i < 6; i++) {

 MacStr += String(info->src_addr[i], HEX);

 if (i < 5) MacStr += ":";

 }

 Serial.print("El dispositivo ");

 Serial.print(NormalizarMac(MacStr));

 Serial.print(" está intentando vincular el bloque ");

 Serial.println(NombreBloque);

 Serial.println("Vinculando...");

 } else if (strncmp(MensajeRecibido.text, "Vinculado", 9) == 0) {

 Serial.println("Vinculación completada.");

 String Mensaje = String(MensajeRecibido.text);

 int PrimerEspacio = Mensaje.indexOf(' ');

 String NombreBloque = Mensaje.substring(PrimerEspacio + 1);

 String MacStr = "";

 for (int i = 0; i < 6; i++) {

 MacStr += String(info->src_addr[i], HEX);

 if (i < 5) MacStr += ":";

 }

 VectoresVinculados.push_back(NombreBloque);

 VectoresVinculados.push_back(MacStr);

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

100

 } else if (strncmp(MensajeRecibido.text, "Responsable", 11) == 0)

{

 String Mensaje = String(MensajeRecibido.text);

 int PrimerEspacio = Mensaje.indexOf(' ');

 int SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio + 1);

 int TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio + 1);

 String NombreBloque = Mensaje.substring(PrimerEspacio + 1,

SegundoEspacio);

 String StrIndiceMin = Mensaje.substring(SegundoEspacio + 1,

TercerEspacio);

 String StrIndiceMax = Mensaje.substring(TercerEspacio + 1);

 uint32_t IndiceMin = StrIndiceMin.toInt();

 uint32_t IndiceMax = StrIndiceMax.toInt();

 String MacStr = "";

 for (int i = 0; i < 6; i++) {

 MacStr += String(info->src_addr[i], HEX);

 if (i < 5) MacStr += ":";

 }

 ConvertirMacStringABytes(MacStr,peerMAC);

 for (size_t i = 0; i < ValoresResponsabilizados.size(); i++) {

 if (NombreBloque == ValoresResponsabilizados[i]) {

 if ((IndiceMin >= ValoresResponsabilizados[i+1].toInt() &&

IndiceMin <= ValoresResponsabilizados[i+2].toInt()) || (IndiceMax >=

ValoresResponsabilizados[i+1].toInt() && IndiceMax <=

ValoresResponsabilizados[i+2].toInt()) || (IndiceMin <=

ValoresResponsabilizados[i+1].toInt() && IndiceMax >=

ValoresResponsabilizados[i+2].toInt())) {

 char Texto[100];

 sprintf(Texto, "ResponsError %s %d %d",

NombreBloque.c_str(), ValoresResponsabilizados[i+1].toInt(),

ValoresResponsabilizados[i+2].toInt());

 strcpy(MensajeEnviado.text, Texto);

 esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

 } else {

 char Texto[100];

 sprintf(Texto, "ResponsExito %s %d %d",

NombreBloque.c_str(), IndiceMin, IndiceMax);

 strcpy(MensajeEnviado.text, Texto);

 esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

 }

 }

 }

 if (ValoresResponsabilizados.size() == 0) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

101

 char Texto[100];

 sprintf(Texto, "ResponsExito %s %d %d", NombreBloque.c_str(),

IndiceMin, IndiceMax);

 strcpy(MensajeEnviado.text, Texto);

 esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

 }

 } else if ((strncmp(MensajeRecibido.text, "ResponsError", 12) ==

0) || ((strncmp(MensajeRecibido.text, "ResponsExito", 12) == 0))) {

 String Mensaje = String(MensajeRecibido.text);

 int PrimerEspacio = Mensaje.indexOf(' ');

 int SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio + 1);

 int TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio + 1);

 String NombreBloque = Mensaje.substring(PrimerEspacio + 1,

SegundoEspacio);

 String StrIndiceMin = Mensaje.substring(SegundoEspacio + 1,

TercerEspacio);

 String StrIndiceMax = Mensaje.substring(TercerEspacio + 1);

 uint32_t IndiceMin = StrIndiceMin.toInt();

 uint32_t IndiceMax = StrIndiceMax.toInt();

 if (strncmp(MensajeRecibido.text, "ResponsError", 12) == 0) {

 Respuestas.push_back(0); // 0 = Error

 }

 if (strncmp(MensajeRecibido.text, "ResponsExito", 12) == 0) {

 Respuestas.push_back(1); // 1 = Exito

 }

 String MacStr = "";

 for (int i = 0; i < 6; i++) {

 MacStr += String(info->src_addr[i], HEX);

 if (i < 5) MacStr += ":";

 }

 ConvertirMacStringABytes(MacStr,peerMAC); //No hace falta

 for (size_t i = 0; i < ListaRespuestasPendientes.size(); i++) {

 if (ListaRespuestasPendientes[i] == MacStr) {

 ListaRespuestasPendientes[i+1] = "1";

 break;

 }

 }

 bool TodosRespondieron = true;

 for (size_t i = 1; i < ListaRespuestasPendientes.size(); i += 2)

{

 if (ListaRespuestasPendientes[i] != "1") {

 TodosRespondieron = false;

 break;

 }

 }

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

102

 bool ExisteError = false;

 if (TodosRespondieron) {

 for (size_t i = 0; i < Respuestas.size(); i++) {

 if (Respuestas[i] == 0) {

 ExisteError = true;

 break;

 }

 }

 if (ExisteError) {

 Serial.print("Error: Para el bloque ");

 Serial.print(NombreBloque);

 Serial.print(" no puedes responsabilizarte de unos índices

entre ");

 Serial.print(IndiceMin);

 Serial.print(" y ");

 Serial.println(IndiceMax);

 } else {

 Serial.print("Para el bloque ");

 Serial.print(NombreBloque);

 Serial.print(" este dispositivo solo podrá escribir entre

las posiciones ");

 Serial.print(IndiceMin);

 Serial.print(" y ");

 Serial.println(IndiceMax);

 ValoresResponsabilizados.push_back(NombreBloque);

 ValoresResponsabilizados.push_back(StrIndiceMin);

 ValoresResponsabilizados.push_back(StrIndiceMax);

 }

 Respuestas.clear();

 ListaRespuestasPendientes.clear();

 }

 }

}

void MemoriaCompartida::enEnvioDeDatos(const uint8_t* MAC,

esp_now_send_status_t status) {

 if (status == ESP_NOW_SEND_SUCCESS) {

 } else {

 Serial.println("Error al enviar el mensaje");

 }

}

void MemoriaCompartida::Dispositivos() {

 if (DispositivosConectados.empty()) {

 Serial.println("No hay dispositivos conectados.");

 Serial.println("Dispositivo local: ");

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

103

 Serial.println(WiFi.macAddress());

 delay(100);

 } else {

 Serial.println("Dispositivo local:");

 Serial.println(WiFi.macAddress());

 Serial.println("Dispositivos conectados: ");

 for (size_t i = 0; i < DispositivosConectados.size(); ++i) {

 Serial.println(NormalizarMac(DispositivosConectados[i]));

 }

 }

 Serial.println();

}

String MemoriaCompartida::NormalizarMac(const String& Mac) {

 String MacNormalizada = Mac;

 MacNormalizada.toUpperCase();

 return MacNormalizada;

}

void MemoriaCompartida::Borrar(String& Mac) {

 bool Registrado = false;

 if (!esDireccionMac(Mac)) {

 if (!esAlias(Mac)){

 Serial.println("Error: Formato de MAC inválido.");

 return;

 }

 if(esAlias(Mac)){

 ConvertirAliasAMacString(Mac);

 String mac = ConvertirAliasAMacString(Mac);

 Mac = mac;

 }

 }

 if (NormalizarMac(Mac) == NormalizarMac(WiFi.macAddress())) {

 Serial.println("Error: La MAC introducida es la de este

dispositivo.");

 return;

 }

 if (!ConvertirMacStringABytes(Mac, peerMAC)) {

 Serial.println("Error al convertir la MAC");

 return;

 }

 for (auto it = DispositivosConectados.begin(); it !=

DispositivosConectados.end(); ++it) {

 if (NormalizarMac(*it) == NormalizarMac(Mac)) {

 char Texto[30];

 sprintf(Texto, "Borrado %s", WiFi.macAddress().c_str());

 strcpy(MensajeEnviado.text, Texto);

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

104

 esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

 DispositivosConectados.erase(it);

 esp_now_del_peer(peerMAC);

 Serial.print("El dispositivo ");

 Serial.print(Mac);

 Serial.println(" ha sido elimindado.");

 Registrado = true;

 for (size_t i = 0; i < VectoresVinculados.size(); i++) {

 if(NormalizarMac(VectoresVinculados[i]) ==

NormalizarMac(*it)) {

 VectoresVinculados.erase(VectoresVinculados.begin() + (i -

1));

 VectoresVinculados.erase(VectoresVinculados.begin() + (i -

1));

 i -= 1;

 }

 }

 break;

 }

 }

 for (int i = 0; i < DispositivosAlias.size(); i += 2) {

 if (NormalizarMac(DispositivosAlias[i]) == NormalizarMac(Mac)) {

 DispositivosAlias.erase(DispositivosAlias.begin() + i);

 DispositivosAlias.erase(DispositivosAlias.begin() + i);

 Registrado = true;

 break;

 }

 }

 delay(100);

 esp_now_del_peer(peerMAC);

 Registrado = true;

 if (!Registrado) {

 Serial.println("Error: Dispositivo no registrado.");

 }

}

void MemoriaCompartida::CrearBloqueMemoria(String NombreBloque,

uint32_t TamanoBloque) { // Actualizada

 if (NombreBloque.length() == 0) {

 Serial.println("El nombre del bloque no puede estar vacío.");

 return;

 }

 for (size_t i = 0; i < Bloques.size(); i += 2) {

 if (Bloques[i] == NombreBloque) {

 Serial.println("Error: El nombre del bloque ya existe.");

 return;

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

105

 }

 }

 if (TamanoBloque == 0){

 Serial.println("Error: El tamaño deber ser un número y mayor a

0");

 return;

 }

 uint32_t EspacioGastado = 0;

 for (size_t i = 0; i < Bloques.size(); i += 2){

 EspacioGastado += (Bloques[i + 1].toInt()) * 4;

 }

 uint32_t MemoriaLibre = ESP.getFreeHeap();

 MemoriaLibre -= EspacioGastado;

 if (TamanoBloque * 4 > MemoriaLibre) {

 Serial.print("Error: No hay suficiente memoria disponible para

este bloque. Espacio libre disponible: ");

 Serial.println(MemoriaLibre/4);

 return;

 }

 Bloques.push_back(NombreBloque);

 Bloques.push_back(String(TamanoBloque));

 Serial.print("Bloque de memoria '");

 Serial.print(NombreBloque);

 Serial.print("' creado con tamaño de ");

 Serial.print(TamanoBloque);

 Serial.println(" direcciones de memoria.");

 uint32_t* DireccionMemoria = (uint32_t*)malloc(TamanoBloque *

sizeof(uint32_t));

 if (DireccionMemoria != NULL) {

 MemoriaDispositivos.push_back(DireccionMemoria);

 for (size_t i = 0; i < TamanoBloque; i++) {

 DireccionMemoria[i] = 0;

 }

 VincularVector();

 } else {

 Serial.println("Error al reservar memoria para el bloque.");

 }

}

void MemoriaCompartida::VincularVector() {

 if (DispositivosConectados.size() == 0) {

 Serial.println("No hay dispositivos conectados para vincular.");

 return;

 }

 if (Bloques.size() == 0) {

 Serial.println("No hay bloques creados para vincular.");

 return;

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

106

 }

 for (size_t i = 1; i < Bloques.size(); i += 2) {

 std::vector<int> IndiceDispositivo;

 for (size_t j = 0; j < VectoresVinculados.size(); j++) {

 if (Bloques[i - 1] == VectoresVinculados[j]) {

 IndiceDispositivo.push_back(j + 1);

 }

 }

 for (size_t j = 0; j < DispositivosConectados.size(); j++) {

 bool yaVinculado = false;

 for (size_t k = 0; k < IndiceDispositivo.size(); k++) {

 if (DispositivosConectados[j] ==

VectoresVinculados[IndiceDispositivo[k]]) {

 yaVinculado = true;

 Serial.print("El dispositivo ");

 Serial.print(NormalizarMac(DispositivosConectados[j]));

 Serial.print(" ya tiene vinculado el bloque ");

 Serial.println(Bloques[i - 1]);

 break;

 }

 }

 if (!yaVinculado) {

 char Texto[100];

 sprintf(Texto, "Vincular %s %lu", Bloques[i - 1].c_str(),

Bloques[i].toInt());

 strcpy(MensajeEnviado.text, Texto);

 ConvertirMacStringABytes(DispositivosConectados[j],

peerMAC);

 esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

 Serial.print("El vector: ");

 Serial.print(Bloques[i - 1]);

 Serial.print(" se está intentando vincular con ");

 Serial.println(NormalizarMac(DispositivosConectados[j]));

 }

 }

 IndiceDispositivo.clear();

 }

}

void MemoriaCompartida::CrearVectorValoresResponsabilizados(String

NombreBloque, int IndiceMin, int IndiceMax) {

 bool BloqueEncontrado = false;

 bool BloqueVinculado = false;

 uint32_t TamanoBloque;

 for (size_t i = 0; i < Bloques.size(); i += 2) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

107

 if (NombreBloque == Bloques [i]) {

 BloqueEncontrado = true;

 TamanoBloque = Bloques[i+1].toInt();

 break;

 }

 }

 if (!BloqueEncontrado) {

 Serial.print("Error: El vector ");

 Serial.print(NombreBloque);

 Serial.println(" no está creado en este dispositivo");

 return;

 } else {

 for (size_t i = 0; i < VectoresVinculados.size(); i++) {

 if (NombreBloque == VectoresVinculados[i]) {

 BloqueVinculado = true;

 break;

 }

 }

 if (!BloqueVinculado) {

 Serial.println("Error: Primero hay que vincular el vector.");

 return;

 }

 }

 if (IndiceMin > IndiceMax || IndiceMax > TamanoBloque) {

 Serial.println("Error: Indices mal definidos.");

 return;

 }

 for (size_t i = 0; i < VectoresVinculados.size(); i++) {

 if (NombreBloque == VectoresVinculados[i]) {

 ListaRespuestasPendientes.push_back(VectoresVinculados[i+1]);

 ListaRespuestasPendientes.push_back("0");

 char Texto[100];

 sprintf(Texto, "Responsable %s %d %d", NombreBloque.c_str(),

IndiceMin, IndiceMax);

 strcpy(MensajeEnviado.text, Texto);

 ConvertirMacStringABytes(VectoresVinculados[i+1], peerMAC);

 esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

 }

 }

}

uint32_t MemoriaCompartida::MostrarMemoria(String NombreBloque, int

Indice) { //Editada

 size_t index = -1;

 for (size_t i = 0; i < Bloques.size(); i += 2) {

 if (Bloques[i] == NombreBloque) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

108

 index = i/2;

 }

 }

 if (index == -1) {

 return -1;

 }

 uint32_t* DireccionMemoria = MemoriaDispositivos[index];

 if (DireccionMemoria != nullptr) {

 for (size_t i = 0; i < Bloques.size(); ++i) {

 if (Bloques[i] == NombreBloque) {

 uint32_t TamanoBloque = Bloques [i + 1].toInt();

 if (Indice >= 0 && Indice < TamanoBloque) {

 return DireccionMemoria[Indice];

 } else {

 return -1;

 }

 }

 }

 }

}

uint32_t MemoriaCompartida::InfoMostrarMemoria(String NombreBloque,

int Indice) {

 size_t index = -1;

 for (size_t i = 0; i < Bloques.size(); i += 2) {

 if (Bloques[i] == NombreBloque) {

 index = i/2;

 }

 }

 if (index == -1) {

 Serial.println ("Error: El bloque de memoria no existe");

 return -1;

 }

 uint32_t* DireccionMemoria = MemoriaDispositivos[index];

 if (DireccionMemoria != nullptr) {

 for (size_t i = 0; i < Bloques.size(); ++i) {

 if (Bloques[i] == NombreBloque) {

 uint32_t TamanoBloque = Bloques [i + 1].toInt();

 if (Indice >= 0 && Indice < TamanoBloque) {

 Serial.print("Valor del bloque de memoria ");

 Serial.print(NombreBloque);

 Serial.print(" en la dirección de memoria reservada ");

 Serial.print(Indice);

 Serial.print(": ");

 Serial.println(DireccionMemoria[Indice]);

 return DireccionMemoria[Indice];

 } else {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

109

 Serial.println("Error: Índice fuera de rango.");

 return -1;

 }

 }

 }

 }

}

void MemoriaCompartida::EscribirMemoria(String NombreBloque, int

Indice, String Valor) {

 std::vector<String> Dispositivos = DispositivosConectados;

 Dispositivos.push_back(WiFi.macAddress());

 size_t index = -1;

 for (size_t i = 0; i < Bloques.size(); i += 2) {

 if (Bloques[i] == NombreBloque) {

 index = i/2;

 }

 }

 if (index == -1) {

 Serial.println ("Error: El bloque de memoria no existe");

 return;

 }

 uint32_t* DireccionMemoria = MemoriaDispositivos[index];

 uint32_t ValorBytes = Valor.toInt();

 if (ValorBytes == 0 && Valor != "0") {

 Serial.println("Error: Valor no válido. Asegúrate de que el

valor sea un número.");

 return;

 }

 bool BloqueVinculado = false;

 if (DireccionMemoria != nullptr) {

 for (size_t i = 0; i < Bloques.size(); ++i) {

 if (Bloques[i] == NombreBloque) {

 uint32_t TamanoBloque = Bloques [i + 1].toInt();

 if (Indice >= 0 && Indice < TamanoBloque) {

 DireccionMemoria[Indice] = ValorBytes;

 Serial.print("Escrito el valor ");

 Serial.print(DireccionMemoria[Indice]);

 Serial.print(" en la dirección de memoria reservada ");

 Serial.print(Indice);

 Serial.print(" del bloque de memoria ");

 Serial.println(NombreBloque);

 SePuedeEscribir = true;

 }

 }

 }

 }

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

110

}

void MemoriaCompartida::EditarValorDeMemoria(String MacReceptor,

String NombreBloque, int Indice, int Valor) { //Editada

 if (!esDireccionMac(MacReceptor)) {

 if (!esAlias(MacReceptor)){

 Serial.println("Error: Formato de MAC inválido.");

 return;

 }

 if(esAlias(MacReceptor)){

 ConvertirAliasAMacString(MacReceptor);

 String mac = ConvertirAliasAMacString(MacReceptor);

 MacReceptor = mac;

 }

 }

 if (NormalizarMac(MacReceptor) ==

NormalizarMac(WiFi.macAddress())) {

 Serial.println("Error: La MAC introducida es la de este

dispositivo.");

 return;

 }

 if (!ConvertirMacStringABytes(MacReceptor, peerMAC)) {

 Serial.println("Error al convertir la MAC");

 return;

 }

 char Texto[100];

 sprintf(Texto, "Editar %s %d %d", NombreBloque.c_str(), Indice,

Valor);

 strcpy(MensajeEnviado.text, Texto);

 ConvertirMacStringABytes(MacReceptor, peerMAC);

 esp_now_send(peerMAC, (uint8_t*)&MensajeEnviado,

sizeof(MensajeEnviado));

}

void MemoriaCompartida::EnviarValorVinculado(String NombreBloque,

int Indice, String Valor){

 uint32_t ValorBytes = Valor.toInt();

 bool BloqueVinculado = false;

 bool BloqueResponsabilizado = false;

 for (size_t i = 0; i < VectoresVinculados.size(); i++) {

 if(NombreBloque == VectoresVinculados[i]) {

 BloqueVinculado = true;

 }

 }

 if(BloqueVinculado) {

 if(ValoresResponsabilizados.size() == 0) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

111

 Serial.println("Error: Antes debes responsabilizarte de unos

índices.");

 }

 else{

 for(size_t i = 0; i < ValoresResponsabilizados.size(); i++) {

 if (NombreBloque == ValoresResponsabilizados[i]) {

 BloqueResponsabilizado = true;

 if (Indice < ValoresResponsabilizados[i+1].toInt() ||

Indice > ValoresResponsabilizados[i+2].toInt()) {

 Serial.print("Error: Para el bloque ");

 Serial.print(NombreBloque);

 Serial.print(" solo puedes escribir entre ");

 Serial.print(ValoresResponsabilizados[i+1]);

 Serial.print(" y ");

 Serial.println(ValoresResponsabilizados[i+2]);

 } else {

 EscribirMemoria(NombreBloque, Indice, Valor); //Se llama

a escribir desde enviar porque si se hace al reves entra en bucle:

Escribir->Enviar->Editar->Escribir...

 if (VectoresVinculados.size() > 0) {

 for (size_t i = 0; i < VectoresVinculados.size(); i++)

{

 if (NombreBloque == VectoresVinculados[i]) {

 EditarValorDeMemoria(VectoresVinculados[i+1],

NombreBloque, Indice, ValorBytes);

 delayMicroseconds(200);

 }

 }

 }

 }

 }

 }

 }

 } else {

 EscribirMemoria(NombreBloque, Indice, Valor);

 }

}

void MemoriaCompartida::Alias() {

 Serial.print("Introduce alias para ");

 Serial.print(WiFi.macAddress());

 Serial.print(" (dispositivo local): ");

 while (Serial.available() == 0) {}

 String AliasLocalIntroducido = Serial.readStringUntil('\n');

 AliasLocalIntroducido.trim();

 Serial.println(AliasLocalIntroducido);

 if (AliasLocalIntroducido.length() > 0) {

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

112

 bool esAliasLocalConMacVinculada = false;

 for (int i = 0; i < DispositivosAlias.size(); i++) {

 if (DispositivosAlias[i] == WiFi.macAddress()) {

 DispositivosAlias[i + 1] = AliasLocalIntroducido;

 esAliasLocalConMacVinculada = true;

 break;

 }

 }

 if (!esAliasLocalConMacVinculada) {

 DispositivosAlias.push_back(WiFi.macAddress());

 DispositivosAlias.push_back(AliasLocalIntroducido);

 }

 }

 for (int i = 0; i < DispositivosConectados.size(); i++) {

 Serial.print("Introduce alias para ");

 Serial.print(NormalizarMac(DispositivosConectados[i]));

 Serial.print(": ");

 while (Serial.available() == 0) {}

 String AliasConectadoIntroducido = Serial.readStringUntil('\n');

 AliasConectadoIntroducido.trim();

 Serial.println(AliasConectadoIntroducido);

 if (AliasConectadoIntroducido.length() > 0) {

 bool esAliasConectadoRepetido = false;

 for (int j = 0; j < DispositivosAlias.size(); j++) {

 if (DispositivosAlias[j + 1] == AliasConectadoIntroducido) {

 esAliasConectadoRepetido = true;

 break;

 }

 }

 if (esAliasConectadoRepetido) {

 Serial.println("Error: El alias ya está en uso. Introduzca

otro alias.");

 i--;

 continue;

 }

 bool esAliasConectadoConMacVinculada = false;

 for (int j = 0; j < DispositivosAlias.size(); j++) {

 if (DispositivosAlias[j] == DispositivosConectados[i]) {

 DispositivosAlias[j + 1] = AliasConectadoIntroducido;

 esAliasConectadoConMacVinculada = true;

 break;

 }

 }

 if (!esAliasConectadoConMacVinculada) {

 DispositivosAlias.push_back(DispositivosConectados[i]);

Desarrollo de una Librería Para Compartir Variables Entre Procesadores
ESP32

113

 DispositivosAlias.push_back(AliasConectadoIntroducido);

 }

 }

 }

 Serial.println("Alias asignado a los dispositivos:");

 for (int i = 0; i < DispositivosAlias.size(); i++) {

 Serial.println(NormalizarMac(DispositivosAlias[i]));

 }

}

bool MemoriaCompartida::esAlias(String Alias) {

 for (int i = 1; i < DispositivosAlias.size(); i += 2) {

 if (DispositivosAlias[i] == Alias) {

 return true;

 }

 }

 return false;

}

String MemoriaCompartida::ConvertirAliasAMacString(String Alias) {

 for (int i = 1; i < DispositivosAlias.size(); i += 2) {

 if (DispositivosAlias[i] == Alias) {

 return DispositivosAlias[i - 1];

 }

 }

 return "";

}

void MemoriaCompartida::init() {

 WiFi.mode(WIFI_STA);

 delay(2000);

 Serial.print("MAC del dispositivo: ");

 Serial.println(WiFi.macAddress());

 if (esp_now_init() != ESP_OK) {

 Serial.println("Error al inicializar ESP-NOW. Reiniciando...");

 ESP.restart();

 }

 Serial.println("ESP-NOW iniciado correctamente.");

 esp_now_register_recv_cb(enRecepcionDeDatos);

 esp_now_register_send_cb(enEnvioDeDatos);

 delay(2000);

 Serial.println("ESP-32 listo.");

}

