g . . ESCUELA DE INGENIERIAS
Universidad deValladolid INDUSTRIALES

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingenieria de Tecnologias Industriales

Desarrollo de una libreria para compartir

variables entre procesadores ESP32

Autor:

Martinez Ortega, Javier Antonio

Tutor:

De Pablo Gomez, Santiago
Tecnologia Electrénica

Valladolid, Julio, 2025.

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Resumen

Este Trabajo de Fin de Grado tiene como objetivo crear una libreria en C++
desarrollada en el entorno de programacion Arduino IDE que permita la
intercomunicacion entre microprocesadores mediante el protocolo ESP-NOW.
La libreria facilitara el envio, lectura y escritura de variables compartidas
mediante la simulacion de una memoria comin (memoria compartida) entre
dispositivos.

Dado que la implementacion de la tecnologia ESP-NOW puede resultar
compleja, esta libreria simplifica el proceso, ofreciendo una interfaz accesible
para gestionar la intercomunicacion entre nodos de forma eficiente sin
necesidad de estructura Wi-Fi adicional. Ademas, se consigue facilitar el
proceso de creacion de herramientas software reduciendo los conocimientos
técnicos necesarios para ello.

Palabras Clave

ESP32, ESP-NOW, Memoria Compartida, Computacion Distribuida, loT

Abstract

This Final Degree Project aims to create a C++ library developed in Arduino IDE
programing environment, design to enable intercommunication between
microprocessors through the ESP-NOW protocol. This library will make sending,
reading and writing of shared variables simple by simulating a common memory
(shared memory) between devices.

Since the implementation of ESP-NOW technology could be complex, this library
summarizes the process, offering an accessible interface for efficiently
managing intercommunication between nodes without needing an extra WiFi
infrastructure. Furthermore, this facilitates the development of software tools,
reducing technical knowledge required to do so.

Keywords

ESP32, ESP-NOW, Shared Memory, Distributed Computing, loT

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores

ESP32
Indice
Contenido
INtroduccion Y ObJETIVOccuniiiiieie e 7
JUSHIfICACION ... et eaas 9
REIEVANCIA. ...ivuiiiiiiiiiiii e 9
FuNdamentacion TEOMICAcuuuveiuueieiie ettt e e e eeaeeeeaas 9
ANTECEUABNTES. ... ittt 11
Vinculacion con competencias del TiUIOeuevvveeeiieiiieiiieeieeeiee e, 14
=TT o T PSPPSR 14
ESPECITICACIONES .euiveiiiiiiie e e e e ee e e 14
Codigo: Archivo MemoriaCompartida.n.......cooeiiiiiiiiiiiiiiiiiiiieieeeeee. 15
Caodigo: Archivo MemoriaCompartida.Cpp «..oeeeeeeneeneeeeieeieeeieeieeeeeaneannens 17
FUuNCiones BIOCKING:cueiiniiiii e 17
1. MemoriaCompartida::esDirecCionMac() ...eeueeneenieeeieeineeneeneenennes 17
2. MemoriaCompartida::ConvertirMacStringABytes()cccuvevrenrennnnne. 18
3. MemoriaCompartida:Registrar() cocoeeeeeeeeeeieieeiieieeeeceeeeeeeeene, 19
4. MemoriaCompartida:NormalizarMac()cceeeeeeveeeieeeeeeieeeeeennne. 23
5. MemoriaCompartida::DiSPOSITIiVOS() ceueuerereririeiiriiiiiieeiieieeeenenans 24
6. MemoriaCompartida:Borrar() coeeeeeeeeeveeeieeeeieeeeeieieeieeeeieeeeeneenanns 24
7. MemoriaCompartida::CrearBloqueMemoria()...ceceeeeeeeeenenineneenannns 29
8. MemoriaCompartida:VincularVector()...ooeeveeeeveeeieeieeieeeeieeeenenne. 31
9. MemoriaCompartida::CrearVectorValoresResponsabilizados() 34
10. MemoriaCompartida::MostrarMemoria()cocoeeveeeeeenveeenvenennnn.. 37
11. MemoriaCompartida::InfoMostrarMemoria(); ...c.cocveeeeenrenennen.n. 39
12. MemoriaCompartida::EscribirMemoria() oococeveeeeeeenenveeeneenennnn.. 39
13. MemoriaCompartida::EnviarValorDeMemoria()......c.cccceeuvenennen... 43
14. MemoriaCompartida::EditarValorDeMemoria()c.ceevuenennen... 46
15, MemoriaCompartida:zAlIas() ceeeeeeeeeeeeeneeeeeeieeeeeeeeeeeeneeeeneanens 48
16. MemoriaCompartida:€SANaS()...ceeeueeeeireeiieeiieiieeieeeeee e, 52
17. MemoriaCompartida::ConvertirAliasAMacString()cceceeeuvennenns 52

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

18. MemoriaCompartida:init() coveeeeeeeeeneieiiiiieeeeecrereeeeeens 53
Funciones NON-BIOCKINGc.couuiimiiiiiiiiii e 54

1. MemoriaCompartida::enEnvioDeDatos()......ceoveveveieieieiiiinininennnnans 54

2. MemoriaCompartida::enRecepcionDeDatos() ..ceoevveeenveninennenennen.n. 54
Variables GIODaIEScouiiiiiii e 74
(070] 01 (=) 4 (o PP PP PPPPPPPRPPPN 76
ALCANCE. ettt e ens 76
OPOMUNIAAAES «eeinieiiiiiiei ettt ee e e e eae e e seeeneeaneanan 77
LimItaCIiONES «.neeiniii ettt et eaae 77
Conclusiones € IMpliCaCIONESccueeininiiiie e 79
BiblOBrafia.ccceeieieeieiiie e 81
1Y o =T Lo [T TRt 83
Anexo A: MemoriaCompartida.nccooeeniniiiii e, 91
Anexo B: MemoriaCompartida.Cpp.....occveeniiureiiiineirieeiieee e eeeeneenenns 93

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Introduccion y objetivo

En el ambito del internet de las cosas (IoT), la comunicacion eficiente entre
dispositivos representa un pilar fundamental para el desarrollo de soluciones
autonomas. Los microcontroladores ESP32 permiten implementar redes de
comunicacion inalambricas, versatiles y de bajo coste entre dispositivos gracias
a su conectividad Wi-Fi y Bluetooth integradas.

ESP-NOW es una tecnologia de comunicacion inalambrica desarrollada por
Espressif Systems que ofrece una alternativa eficiente a las redes Wi-Fi
tradicionales ya que permite la comunicacion directa de dispositivos sin
necesidad de una infraestructura de red centralizada. Sin embargo, poder
dominar esta tecnologia para el manejo de informacion a través de redes Wi-Fi
sigue siendo un problema para muchos desarrolladores.

En este proyecto se propone el diseno y desarrollo de una libreria software para
que, a nivel de programacion, el intercambio de informacion entre dispositivos
sea mas simple y practico, permitiendo que la creacion de redes sea mas
eficiente y sencilla.

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Justificacion

Relevancia

En la actualidad, el crecimiento exponencial de dispositivos conectados ha
generado una necesidad creciente de desarrollar soluciones loT eficientes y de
bajo coste donde, ademas, las soluciones simples y flexibles cada vez ganan
mayor protagonismo. Con tecnologias como ESP-NOW se consigue una
comunicacion directa entre dispositivos en entornos donde no es viable
establecer infraestructuras centralizadas de red como las tradicionales,
ademas, se elimina la necesidad de requerir puntos de acceso Wi-Fi o
servidores intermedios para ello.

A pesar de las claras ventajas de la tecnologia ESP-NOW, esta ofrece también
ciertos desafios técnicos que dificultan su implementacién en aplicaciones
complejas. Por ello, la creacion de una libreria que facilite la comparticion de
datos en memoria entre dispositivos ESP32 utilizando ESP-NOW supone una
mejora practica y necesaria para ecosistemas de desarrollo con
microcontroladores. Esta herramienta permitiria:

1. Reducir la complejidad a la hora de crear soluciones software.

2. Mejorar la eficiencia a la hora de transmitir datos entre
dispositivos.

3. Permitir el desarrollo de soluciones autbnomas en entornos sin
conectividad.

En definitiva, este proyecto proporciona una solucion que facilita el diseno de
redes colaborativas en el entorno loT para los desarrolladores con distintos
niveles de experiencia técnica.

Fundamentacion Teorica

La computacién distribuida trata de ejecutar tareas coordinadas empleando
multiples dispositivos con el objetivo de resolver un problema. Para ello, uno
de los modelos de comunicacion mas empleado es el de la memoria
compartida donde diferentes nodos tienen la capacidad de acceder a la
memoria de los demas compartiendo datos con el resto de nodos dentro de la
misma red.

Esta comparticion se hace de forma inalambrica, por ello, para la aplicacion
creada se usaran placas ESP32 de KeyStudio KS5016. Se trata de unas placas
integradas con un moédulo ESP32-WROOM-32: con conectividad Wi-Fi y
bluetooth. Son compatibles con el entorno de Arduino IDE, y con las
especificaciones técnicas siguientes:

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

e Voltaje: 3,3V-5V

¢ Intensidad maxima de salida: 1,2A
e Potencia maxima de salida: 10W

e Temperatura de trabajo: -10°C-50°C
e Dimensiones: 69*54*15,5mm

e Peso: 25,5¢

Ademas, integra gran cantidad de puertos de entrada y salida para poder
conectar multitud de dispositivos.

Partes:

12C communication interface

14 digital ports
SCL SDA [
l l L l L Iii

Peset button 14 digital ports

USB(5V) = SN EREEE communication
ol oo © ERCON
-38832323333333
2
ESP 32

. &= 1 LR -J , L B B ,
Fix screw Power input Analog port
Extg—:‘rparlf Output port (3.3V)
power interface VIN(7-12V
DC(7-12V) Analog port ()
(3.3V)

1. Modulo ESP32-WROOM-32: Se trata de un microprocesador de alto
rendimiento y bajo consumo desarrollado por Espressif Systems.
Permite conectividad Wi-Fi IEEE 802.11 b/g/n (2.4 GHz) para
comunicaciones de medio alcance y capacidad de conectividad a
una red LAN y bluetooth v4.2 BR/EDR y BLE. Contiene una memoria
SRAM de 520KB para instrucciones y datos.

Conector USB: para la alimentacion y carga de programas.

Boton reset: para resetear el microprocesador.

4. Entradasy salidas

w N

10

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

La aplicacion se ha desarrollado en el entorno de programacion de Arduino:
“Arduino IDE” debido a su simplicidad y gran ecosistema. “Arduino IDE” se trata
de un entorno de programacion de codigo abierto, centrado en desarrollo de
codigo para microcontroladores. Permite facilitar el desarrollo de software
debido a su accesibilidad e interfaz intuitiva, consiguiendo disminuir la
necesidad de conocimientos técnicos para crear herramientas software. Este
entorno permite programacion en lenguaje C y C++, contiene un compilador
integrado, capacidad para trabajar con gran variedad de placas y bibliotecas,
ya sean desarrolladas por Arduino o por la comunidad global de desarrolladores
con la que el entorno de programacion cuenta. Ademas, no requiere de
hardware de altas prestaciones para funcionary la carga de programas se hace
realmente sencilla debido a la capacidad del IDE de deteccion de puertos,
compilacion y carga de firmware.

Debido a la accesibilidad, sencillez y capacidad de programacion en diferentes
tipos de placas, ademas de la gran cantidad de librerias de las que dispone, se
ha elegido “Arduino IDE” como entorno de programacion para el desarrollo de
esta aplicacion.

Antecedentes

La comparticion de datos entre dispositivos ha sido y continda siendo un pilar
fundamental en el desarrollo de proyectos de computacion distribuida. Entre
las distintas tecnologias desarrolladas para ello, la memoria compartida ha
demostrado ser una de las soluciones mas utiles y eficientes, especialmente
en sistemas donde se requiere un intercambio de informacion rapido y directo.

Este intercambio de informacion requiere de un protocolo determinado que
pueda soportar la intercomunicacion entre dispositivos. Entre los protocolos
mas empleados usados por empresas importantes se encuentran:

- WiFitradicional: Requiere infraestructura de red, presenta alto consumo
energético, alcance medio y latencias relativamente altas.

Ejim.: MindSphere de Siemens. Es un sistema operativo capaz de
conectar dispositivos, obtener datos y utilizarlos para su analisis.

- LoRa: Proporciona bajo consumo y alto alcance, pero requiere
infraestructura externa (Gateway) ademas de presentar mayor
complejidad.

Ejm.: Territorio Rural Inteligente (TRI): proyecto de la junta de Castilla y
Le6n en coordinacion con SATEC para la monitorizacion de parametros
de servicios publicos en municipios pequenos a lo largo de la
comunidad. En este proyecto, debido a las grandes distancias que se
han de recorrer se emplea tecnologia LoRa para el envio de parametros.

11

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

- Bluetooth (BLE): Ofrece bajo consumo energético, pero tiene un alcance
corto y posibilidad de conexiéon con un nimero limitado de dispositivos.
Ejm.: Pulseras de actividad. Utilizan Bluetooth para el envio de
parametros biométricos al movil.

- MQTT: Requiere de un broker, e infraestructura externa, lo que le anade
complejidad.

Ejem.: Matternet, empresa dedicada a la intercomunicacion entre
drones.

- ZigBee: Protocolo de bajo consumo y alcance medio, pero con alto grado
de complejidad.

Ejm.: Bombillas inteligentes como Philips Hue. Utilizan tecnologia ZigBee
para la comunicacion en malla entre las bombillas y entre las bombillas
y el dispositivo movil.

- ESP-NOW: No es un protocolo empleado generalmente por las
empresas, sin embargo, presenta caracteristicas interesantes que
deben tenerse en cuenta: Bajo consumo, alcance medio, ausencia de
necesidad de infraestructura de red.

Se priorizaran protocolos que no requieran de infraestructura externa, y que
ofrezcan un alcance medio-alto. Los protocolos que cumplen estas condiciones
son ESP-NOW y ZigBee, ambos cumplen caracteristicas similares. Por ello la
eleccion del protocolo dependera principalmente de las caracteristicas y
accesibilidad de las placas que implementen estos protocolos. A continuacion,
se comparan los dispositivos mas representativos que emplean ESP-NOW y
ZigBee:

- ESP-32 (Espressif): Soporta protocolos ESP-NOW, Bluetooth y WiFi.
Presenta mayor consumo energético que los dispositivos EF32 y
CC2530. Los entornos de programacion compatibles incluyen Arduino,
ESP-IDF y MicroPython, ofreciendo gran flexibilidad y facilidad de
desarrollo.

- EF32(Silicon Labs): Compatible con ZigBee y BLE, tiene menor consumo
energético que el ESP32 pero mayor que el CC2530. Su entorno de
programacion es Simplicity Studio, especifico para esta plataforma.

- CC2530 (Texas Instruments): Emplea exclusivamente ZigBee y presenta
menor consumo energético que ESP32 y EF32. Se programa mediante
Code Composer studio.

A pesar de requerir mayor consumo energético, los dispositivos ESP32
destacan por su versatilidad en protocolos de comunicacion ya que, ademas
de poder emplear el protocolo ESP-NOW, pueden utilizar Bluetooth y WiFi, cosa
que el EF32, esta limitado a ZigBee y BLE, mientras que el CC2530 solo soporta
ZigBee.

12

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

El ecosistema de desarrollo para los dispositivos ESP32 también es mas amplio
y accesible, facilitando la programacion y acelerando el proceso de desarrollo,
a diferencia de los dispositivos EF32 y CC2530, que requieren de plataformas
mas especificas, necesitando conocimientos y herramientas particulares.

Por estas razones, se elige ESP32 como dispositivo donde desarrollar la libreria
y por lo tanto, se empleara ESP-NOW como protocolo de comunicacion.

Cabe destacar que, a pesar de sus ventajas, ESP-NOW presenta una alta
complejidad en su implementacion, dificultando su adopcion por
desarrolladores como solucion en proyectos de programacion. Por ello, surge
la necesidad de crear una libreria que facilite la creacion de una memoria
compartida para la comparticion de datos en memoria entre dispositivos
ESP32.

Tradicionalmente, el concepto de memoria compartida implica una region
comun de memoria fisica accesible desde multiples nodos. Sin embargo,
cuando se trabaja con dispositivos fisicamente separados, como son los ESP-
32, la memoria compartida debe ser simulada a través de comunicacion
inalambrica entre los nodos.

Actualmente, existen multiples soluciones que permiten este intercambio de
informacion, cada uno con sus ventajas e inconvenientes. Se conocen
numerosos proyectos famosos de empresas conocidas que usan diferentes
protocolos de comunicacion para el desarrollo de productos:

- Google Docs: Permite crear, editar y borrar documentos
simultaneamente entre diferentes usuarios desde la nube. Se trata de
una memoria compartida simulada, ya que Google mantiene una
memoria compartida sincronizada de cada documento.

- Dropbox: Permite sincronizar archivos entre diferentes dispositivos
guardandolos en la nube. Funciona como una memoria compartida
asincrona.

- Apache Ignite: Plataforma de computacion distribuida que permite
compartir memoria fisica entre diferentes nodos. Se trata de una
memoria compartida real.

A pesar de estas soluciones, la mayoria de las herramientas existentes estan
disenadas para entornos con infraestructura de red como ordenadores y
servidores. En el ambito de los microcontroladores y en arquitecturas de bajo
consumo como los ESP32, no se disponen de librerias estandarizadas, de facil
implementacion que permitan la comparticion directa de variables entre nodos
sin requerir de infraestructura externa.

En este contexto, la comunidad de desarrolladores ha creado diferentes
proyectos que permiten la intercomunicacion y sincronizacion de datos entre

13

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

microcontroladores empleando protocolos como MQTT o LoRa. Sin embargo,
no es comun encontrar soluciones genéricas y reutilizables en forma de
librerias que permitan simular una memoria compartida empleando ESP-NOW.

Por ello, aparece una oportunidad para el desarrollo de herramientas que
faciliten la programacion distribuida entre nodos ESP-32, reduciendo la
complejidad de su manejo y permitiendo aprovechar las ventajas del protocolo
ESP-NOW.

Vinculacion con competencias del Titulo

Este proyecto se enmarca en el ambito de la informatica industrial, la
programacion de sistemas embebidos, la electronica industrial, y las
tecnologias de la comunicacion.

Diseno

La libreria pretende que los dispositivos puedan actuar como emisores y
receptores de datos a la vez para conseguir una comunicacion entre
dispositivos fluida. Por ello, todos los dispositivos son capaces de leer y escribir
datos en la memoria compartida, crear nuevas memorias compartidas
definiéndolas a través de un nombre y un tamano, ademas de ser capaces de
registrar y borrar dispositivos de su lista de “peer”.

Especificaciones

1. La libreria debe permitir el registro de dispositivos para asegurar la
intercomunicacion entre ambos. Esto se conseguira mediante las
direcciones MAC de los dispositivos ESP-32.

2. La libreria debe permitir borrar el registro de un dispositivo empleando
nuevamente la direccion MAC.

3. La libreria debe permitir informar al usuario de los dispositivos que
estan registrados.

4. La libreria debe permitir crear segmentos de memoria (Bloques de
memoria) con un nombre y tamano concretos.

5. La libreria debe permitir vincular los bloques de memoria creados con
los creados en otros dispositivos si coinciden en nombre y tamano.

14

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

6. La libreria debe permitir informar al usuario del contenido de cualquier
posicion de memoria dentro de un bloque de memoria creado.

7. La libreria debe permitir escribir en las direcciones de memoria dentro
de los blogues de memoria creados.

8. La libreria debe permitir dar acceso a ciertas posiciones de memoria
dentro de un bloque de memoria creado y vinculado con otro dispositivo.
De forma que, para un bloque de memoria vinculado, cada dispositivo
solo podra escribir en las posiciones de memoria a las que se tenga
acceso.

9. Lalibreria debe permitir asociar las direcciones MAC del dispositivo local
y de los registrados a un nombre concreto definido por el usuario para
usarlo en aquellas funciones donde la direccion MAC sea necesaria con
el fin de simplificar el uso de estas funciones (Ejm: funcion Borrar).

Cddigo: Archivo MemoriaCompartida.h

La definicion de todas las funciones y variables globales se muestran en el
siguiente archivo: MemoriaCompartida.h:

#ifndef MEMORIACOMPARTIDA H
#define MEMORIACOMPARTIDA H

#include <esp_now.h>
#include <WiFi.h>
#include <vector>
#include <string>
#include <stdlib.h>
#include <stdint.h>

typedef MensajeEstructurado{
text[240];
} Mensaje_ Estructurado;

MemoriaCompartida{

MemoriaCompartida();
init();
Registrar(String& mac);
Borrar(String& Mac);
Dispositivos();

15

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

EscribirMemoria(String NombreBloque, Indice,
String Valor);
EditarValorDeMemoria(String MacReceptor, String
NombreBloque, Indice, Valor);
enRecepcionDeDatos (esp_now_recv_info* info,
DatosRecibidos, tamafo);
enEnvioDeDatos (MAC,
status);
ConvertirMacStringABytes(String& macString,
macBytes);
String NormalizarMac(String& Mac);
MostrarMemoria(String NombreBloque, Indice);
std: :vector< *> MemoriaDispositivos;
Alias ();
esAlias(String Alias);
String ConvertirAliasAMacString(String Alias);
AsignarVectorMemoriaCompartida(String Mac, String
NombreBloque) ;
CrearBloqueMemoria(String NombreBloque,
TamanoBloque);
VincularVector();
EnviarValorVinculado(String NombreBloque, Indice,
String Valor);
InfoMostrarMemoria(String NombreBloque,
Indice);
CrearVectorValoresResponsabilizados(String
NombreBloque, IndiceMin, IndiceMax);

MensajeEstructurado MensajeEnviado;
MensajeEstructurado MensajeRecibido;
peerMAC[6];
RespuestaRecibida;
EnvioCompletado;
::vector<String> DispositivosConectados;
esDireccionMac(String& mac);
::vector<String> DispositivosAlias;
::vector<String> Bloques;
::vector<String> VectoresVinculados;
::vector<String> ValoresResponsabilizados;
::vector<String> ListaRespuestasPendientes;
i ivector< > Respuestas;
SePuedeEscribir;

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Codigo: Archivo MemoriaCompartida.cpp

El archivo .cpp contiene variables globales y funciones que siguen dos tipos de
tecnologia distinta: funciones “blocking” y funciones “non-blocking”. Las
funciones “blocking” son aquellas que detienen la ejecucion del programa
hasta que se completa la operacion solicitada. Este tipo de funciones son mas
simples de implementar, pero pueden ocasionar problemas de rendimiento ya
que el programa debe esperar a ejecutar por completo una tarea para
comenzar con la siguiente.

Por el contrario, las funciones “non-blocking” permiten ejecutar mas de una
tarea a la vez al no detener la ejecucion del programa, consiguiendo una
ejecucion continua del mismo sin interrupciones.

Funciones Blocking:

Entre las funciones “blocking” creadas, se encuentran funciones de registroy
borrado de dispositivos, funciones de lectura y escritura de datos, funciones
de creacion y vinculacion de blogues de memoria y otras funciones de
caracter secundario.

1. MemoriaCompartida::esDireccionMac()

MemoriaCompartida: :esDireccionMac(String& mac) {
if (mac.length() != 17) {
return false;
}
for (i =0; i< mac.length(); i++) {
if (1% 3 ==2) {
if (mac[i] !'= ":") {
return false;
}
} else if (l!isxdigit(mac[i])) {
return false;

}

1o
2.
B
4.
50
6.
7
8.
g,

}

return true;

La funcion esDireccionMac permite validar si una cadena de texto (String mac)
tiene el formato adecuado para ser una direccion MAC y poder emplear esa
cadena de texto en otras funciones.

17

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

La funcion primeramente comprueba si la longitud de la cadena de texto
introducida es de 17 caracteres: 6 caracteres hexadecimales (12 caracteres
en total) y 5 dos puntos que sirven para separar los pares de caracteres. Si la
longitud no es de 17, la funcién devuelve “false”.

if (mac.length() '= 17) {

return false;

A continuacién, se recorre la cadena de texto usando un bucle “for”,

Por un lado, se comprueba que cada tercer caracter es un signo de puntuacion
“” a través de dos condiciones “if”. Si no se cumple, se devuelve un “false”.

Por otro lado, se comprueba que cada primer y segundo caracter es un
hexadecimal usando la funcion “isxdigit()”. Y si no lo es, se devuelve un “false”.

for (i=0; i< mac.length(); i++) {
if (1% 3 ==2) {
if (mac[i] !'= ":") {
return false;

}
} else if (lisxdigit(mac[i])) {
return false;

Por ultimo, si ninguna de las condiciones anteriores devuelve un “false”, la
funcion devolvera un “true”: la cadena de texto tiene el formato de direccion
MAC correcto, y la variable se podra usar en otras funciones de la libreria.

14. return true;

Esta funcion es una implementacion simple pero efectiva y fundamental a la
hora de validar las direcciones MAC, asegura una correcta identificacion de los
dispositivos para la utilizacion en funciones y operaciones que requieran de
direcciones MAC.

2. MemoriaCompartida::ConvertirMacStringABytes()

MemoriaCompartida: :ConvertirMacStringABytes(String

macString, macBytes) {

18

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

elementos[6];
if (sscanf(macString.c_str(), "%x:%x:%Xx:%x:%X:%x",
&elementos[0@], &elementos[1l], &elementos[2], &elementos[3],
&elementos[4], &elementos[5]) == 6) {
for (i=09;1i<6; i++) {

macBytes[i] = ()elementos[i];

}

return true;

}

return false;

La funcion ConvertirMacStringABytes permite convertir una cadena de texto
(String macString) en un vector de bytes (uint8_t macBytes) para su utilizacion
en comunicaciones entre dispositivos a través de protocolos de red.

Primero, se utiliza la funcion “sscanf()” para extraer los seis caracteres
hexadecimales contenidos en “macString” e introducirlos en el vector de
enteros “elementos” de tamano seis previamente creado. Cada caracter
hexadecimal se introduce en cada posicion del vector “elementos”. A través de
la condicion “if”, si se devuelve un vector con seis elementos, se convertira
cada elemento del vector en un “uint8_t” y se almacenara en el vector
“macBytes” a través de un “for” y se devuelve un “true”. Si la cadena no tiene
seis elementos se devuelve un “false”.

La funcion “ConvertirMacStringABytes” es simple y directa. Gracias a la funcion
“sscanf”, que permite simplificar el cédigo mucho. Ademas, es imprescindible
en funciones donde se pretenda comunicar dispositivos entre si.

MemoriaCompartida::Registrar()

3

1 MemoriaCompartida: :Registrar(String& mac) {
2 if (esDireccionMac(mac)) {

E] if (!ConvertirMacStringABytes(mac, peerMAC)) {

4. Serial.println("Error al convertir la Mac.");
5

6

7

8

9

return;

MacBytesLocal[6];
WiFi.macAddress(MacByteslLocal);
MismaMac = true;
for (i=0;1<6; i++) {
if (peerMAC[i] != MacByteslLocal[i]) {
MismaMac = false;

19

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores

ESP32

break;

}
if (MismaMac) {
Serial.println("Error: La MAC introducida es la de este

dispositivo.");

return;

InfoPeer = {};
memcpy (InfoPeer.peer_addr, peerMAC, 6);
InfoPeer.channel = 0;
InfoPeer.encrypt = false;
if (esp_now_is peer_ exist(peerMAC)) {
Serial.println("Error: Este dispositivo ya esta

registrado.");

return;
} else {
Resultado = esp now_add_peer(&InfoPeer);
if (Resultado != ESP_OK) {
Serial.println("Error al agregar peer temporalmente");
return;
}
}

strcpy(MensajeEnviado.text, "Prueba de conexiodn");
Serial.print("Iniciando conexidén con: ");
Serial.println(mac);
ResultadoDeEnvio = esp _now_send(peerMAC,
*)&MensajeEnviado, sizeof(MensajeEnviado));
if (ResultadoDeEnvio == ESP_OK) {
Serial.println("Conectando...");
RespuestaRecibida = false;
Contador = millis();
while (millis() - Contador < 20000) {
if (RespuestaRecibida == true) {
esp_now_add peer(&InfoPeer);
break;

}

}
if (!RespuestaRecibida) {
Serial.println("No se pudo conectar. Eliminando

dispositivo.");

esp_now_del peer(peerMAC);

}
} else {
Serial.print("Error al conectar. Cédigo de error: ");

Serial.println(ResultadoDeEnvio);
esp now_del peer(peerMAC);

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

}
} else {

Serial.println("Direccidén MAC no vdalida.");

La funcion “Registrar()” permite agregar dispositivos a la red utilizando el
protocolo ESP-NOW y asegura que el dispositivo con la direccion MAC que se
pretende registrar esta en alcance suficiente para el intercambio de
informacion.

Esta funcion realizara diferentes procesos de verificacion:

1. Se verifica que la cadena de texto (String mac) contiene una
direccion MAC valida empleando la funcion “esDireccionMac()” a
través de una condicion “if”.

2. Dentro de la condicion anterior se verifica si se ha podido convertir
la cadena de texto (mac) a bytes guardados en la variable “peerMac”
a través de la funcion “ConvertirMacStringABytes()”.

if (esDireccionMac(mac)) {
if (!ConvertirMacStringABytes(mac, peerMAC)) {
Serial.println("Error al convertir la Mac.");
return;

}

3. Se realiza una tercera comprobacion: Que la cadena de texto (mac)
no contenga la direccion MAC del propio dispositivo y se intente
registrar un dispositivo que es él mismo. Para ello se crea una
variable “uint8_t MacBytesLocal[6]” donde se guarda el contenido
de la direccion de memoria del propio dispositivo a través de la
funcion de ESP-NOW “WiFi.macAddress()”. Se declara una variable
booleana “MismaMac” y se inicializa en true. A través de un “for” se
comprueba que cada elemento de “peerMac” sea distinto a
“MacBytesLocal”. Si es asi, la variable booleana se pone en “false”
y se sale del bucle. En una nueva condicidbn se comprueba que si
“MismaMac” es “true” salte un error por pantalla.

MacBytesLocal[6];
WiFi.macAddress(MacBytesLocal);
MismaMac = true;
for (i=20; 1< 6; i++) {

if (peerMAC[i] != MacByteslLocal[i]) {
MismaMac = false;
break;

}

21

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

}
if (MismaMac) {
Serial.println("Error: La MAC introducida es la de

este dispositivo.");
return;

}

4. Se realiza una cuarta comprobacion: La cadena de texto (mac) no
debe contener la direccion MAC de un dispositivo ya registrado.
Usando la libreria ESP-NOW se prepara un objeto
“esp_now_peer_info_t” que guarda la informacion del dispositivo
qgue se quiere registrar en una variable “InfoPeer”. A través de una
condicion “if” y la funcion “esp_now_is_peer_exist()” de ESP-NOW se
verifica si la MAC contenida en el vector “peerMAC” ya esta
registrada en la red y si es asi saca un mensaje de error por pantalla.

InfoPeer = {};
memcpy (InfoPeer.peer_addr, peerMAC, 6);
InfoPeer.channel = 0;
InfoPeer.encrypt = false;
if (esp_now_is_peer_exist(peerMAC)) {
Serial.println("Error: Este dispositivo ya esta
registrado.");
return;

}

5. Como Uultima comprobacion se verifica si el dispositivo se ha
agregado correctamente. Con el objeto “esp_err_t” de ESP-NOW que
contiene informacion sobre un posible error guardada en la variable
“Resultado”, si el “Resultado” no contiene “ESP_OK” significa que
no se ha podido agregar el dispositivo y salta un error.

.else {
Resultado = esp now_add_peer(&InfoPeer);
if (Resultado != ESP_OK) {
Serial.println("Error al agregar peer

temporalmente");
return;

}
}

Una vez hechas todas las comprobaciones, se atiende al proceso especifico de
registro de un dispositivo. Primero se envia el mensaje “Prueba de conexion” al
dispositivo con direccion MAC almacenada en “peerMAC” utilizando
“esp_now_send()” de ESP-NOW.

22

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

strcpy(MensajeEnviado.text, "Prueba de conexién");
Serial.print("Iniciando conexién con: ");

Serial.println(mac);
ResultadoDeEnvio = esp now_send(peerMAC,
*)&MensajeEnviado, sizeof(MensajeEnviado));

Una vez enviado el mensaje se esperara veinte segundos a recibir un mensaje
de vuelta para verificar si la conexion fue exitosa y el dispositivo esta en
alcance. Si se recibe el mensaje dentro del tiempo establecido, el dispositivo
queda registrado y se mantiene en la red, pero si no se recibe mensaje, se
elimina el peer.

if (ResultadoDeEnvio == ESP_OK) {
Serial.println("Conectando...");
RespuestaRecibida = false;
Contador = millis();
while (millis() - Contador < 20000) {
if (RespuestaRecibida == true) {
esp_now_add peer(&InfoPeer);
break;

}

}
if (!RespuestaRecibida) {

Serial.println("No se pudo conectar. Eliminando
dispositivo.");
esp_now_del peer(peerMAC);
}
}

Por Gltimo, se saca por pantalla un error si no se recibe respuesta y se elimina
el peer y si el contenido de la MAC (mac) introducido no es una direccion MAC
valida.

else {
Serial.print("Error al conectar. Cédigo de error: ");
Serial.println(ResultadoDeEnvio);
delay(10);

esp_now_del peer(peerMAC);
} else {
Serial.println("Direccidén MAC no valida.");

4. MemoriaCompartida::NormalizarMac()

23

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

String MemoriaCompartida::NormalizarMac(String& Mac) {
String MacNormalizada = Mac;

MacNormalizada.toUpperCase();
return MacNormalizada;

La funcion “NormalizarMac()” es una funcidon muy sencilla que asegura que
todos los caracteres estén en mayusculas. Es una funcién muy Gtil a la hora de
tener que comparar direcciones MAC a lo largo del cédigo.

5. MemoriaCompartida::Dispositivos()

MemoriaCompartida: :Dispositivos() {

if (DispositivosConectados.empty()) {
Serial.println("No hay dispositivos conectados.");
Serial.println("Dispositivo local: ");
Serial.println(WiFi.macAddress());
delay(100);
else {
Serial.println("Dispositivo local:");
Serial.println(WiFi.macAddress());
Serial.println("Dispositivos conectados: ");
for (i = 0; 1 < DispositivosConectados.size(); ++i) {

Serial.println(NormalizarMac(DispositivosConectados[i]));

O 00 NOUVT B WDN R

}

}
Serial.println();

La funcion “Dispositivos()” permite informar sobre la cantidad de dispositivos
registrados en una red.

A través de una condicion “if” se comprueba si hay dispositivos conectados:
- Si no es asi, muestra la direccion MAC del dispositivo local.

- Si si es asi, muestra tanto la direccion MAC del dispositivo local como las de
los dispositivos conectados.

MemoriaCompartida::Borrar()

MemoriaCompartida: :Borrar(String& Mac) {
Registrado = false;

if (lesDireccionMac(Mac)) {
if (lesAlias(Mac)){

A w N P e

24

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Serial.println("Error: Formato de MAC invalido.");
return;
}
if(esAlias(Mac)){
ConvertirAliasAMacString(Mac);
String mac = ConvertirAliasAMacString(Mac);
Mac = mac;

}

if (NormalizarMac(Mac) == NormalizarMac(WiFi.macAddress())) {
Serial.println("Error: La MAC introducida es la de este
dispositivo.");
return;
}
if (!ConvertirMacStringABytes(Mac, peerMAC)) {
Serial.println("Error al convertir la MAC");
return;
}
for (it = DispositivosConectados.begin(); it !=
DispositivosConectados.end(); ++it) {
if (NormalizarMac(*it) == NormalizarMac(Mac)) {
Texto[30];
sprintf(Texto, "Borrado %s", WiFi.macAddress().c_str());
strcpy(MensajeEnviado.text, Texto);
esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));
DispositivosConectados.erase(it);
esp_now_del peer(peerMAC);
Serial.print("El dispositivo ");
Serial.print(Mac);
Serial.println(" ha sido elimindado.");
Registrado = true;
for (i = @; 1 < VectoresVinculados.size(); i++) {
if(NormalizarMac(VectoresVinculados[i]) ==
NormalizarMac(*it)) {
VectoresVinculados.erase(VectoresVinculados.begin() + (i

- 1));

VectoresVinculados.erase(VectoresVinculados.begin() + (i

-1));

}

break;

}

for (i =0; i < DispositivosAlias.size(); i += 2) {

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

if (NormalizarMac(DispositivosAlias[i]) ==
NormalizarMac(Mac)) {
DispositivosAlias.erase(DispositivosAlias.begin() + i);
DispositivosAlias.erase(DispositivosAlias.begin() + i);
Registrado = true;
break;

}
delay(100);

esp_now_del peer(peerMAC);
Registrado = true;
if (!Registrado) {
Serial.println("Error: Dispositivo no registrado.");

La funcién “Borrar()” permite eliminar un dispositivo de la lista de “peers” de la
red, de la lista de dispositivos conectados y de la lista de vectores vinculados.
Busca una direccion MAC determinada y la elimina si se encuentra entre los
dispositivos conectados.

Primero se crea una variable booleana (Registrado) que servira, al final del
codigo, para avisar al usuario si la cadena de texto “Mac” no contuviese una
direccion MAC registrada en el dispositivo.

2q Registrado = false;

Esta funcion realiza una serie de comprobaciones:

1. Se verifica que la cadena de texto (String Mac) contiene una direccion
MAC valida empleando la funcion “esDireccionMac()” a través de una
condicion “if”. Si no es una direccion MAC valida, se realiza otra
comprobacion mas: Se verifica si el contenido de la cadena de texto
“Mac” es un alias a través de la funcion “esAlias()”.

+ Si no es asi, saca por pantalla un error.
+ Si si es asi se ejecuta la funcion “ConvertirAliasAMacString()”
para obtener la direccion MAC vinculada a ese alias.
3. if (lesDireccionMac(Mac)) {
if (lesAlias(Mac)){
Serial.println("Error: Formato de MAC invalido.");
return;

}

if(esAlias(Mac)){
ConvertirAliasAMacString(Mac);
String mac = ConvertirAliasAMacString(Mac);

26

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Mac = mac;

2. Si el contenido de la cadena de texto “Mac” si es una direccion Mac se
realiza la siguiente verificacion: Con ayuda de la funcion
“NormalizarMac()” se comprueba si la cadena de texto contiene la
direccion del propio dispositivo, si es asi, devuelve un mensaje de error.
14.if (NormalizarMac(Mac) == NormalizarMac(WiFi.macAddress()))

{
15. Serial.println("Error: La MAC introducida es la de este
dispositivo.");
return;

3. SinoeslaMAC del propio dispositivo, realiza la siguiente comprobacion:
Con “ConvertirMacStringABytes()” se verifica si se ha podido convertir la
cadena de texto (Mac) a bytes guardados en la variable “peerMac”.
18.if (!ConvertirMacStringABytes(Mac, peerMAC)) {

Serial.println("Error al convertir la MAC");
return;

Una vez completadas todas las comprobaciones para asegurar el correcto
funcionamiento del flujo se procede con la eliminacion del dispositivo.
Mediante un “for” se recorren todos los dispositivos almacenados en la lista
“DispositivosConectados”, cuando un elemento del vector coincide con la
direccion MAC almacenada en la cadena de texto, se prepara el mensaje
“Borrado” y se envia al dispositivo con dicha MAC, se elimina el dispositivo del
vector de “DispositivosConectados()” y se imprime un mensaje informando al
usuario. Mediante otro “for” se recorre el vector “VectoresVinculados” y cuando
el contenido de ese vector sea igual a la direccion MAC que se quiere borrar, se
elimina tanto esa direccion MAC como el vector vinculado a esa MAC de vector
“VectoresVinculados”.

for (it = DispositivosConectados.begin(); it !=

DispositivosConectados.end(); ++it) {
if (NormalizarMac(*it) == NormalizarMac(Mac)) {
Texto[30];
sprintf(Texto, "Borrado %s", WiFi.macAddress().c_str());

strcpy(MensajeEnviado.text, Texto);

esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

DispositivosConectados.erase(it);

esp_now_del peer(peerMAC);

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Serial.print("El dispositivo ");
Serial.print(Mac);
Serial.println(" ha sido elimindado.");
Registrado = true;
for (i = 9; i < VectoresVinculados.size(); i++) {
if(NormalizarMac(VectoresVinculados[i]) ==
NormalizarMac(*it)) {
VectoresVinculados.erase(VectoresVinculados.begin() + (i
- 1));
VectoresVinculados.erase(VectoresVinculados.begin() + (i

- 1));

Luego se recorre el vector “DispositivosAlias” para, una vez borrada la MAC del
peer y del listado “DispositivosConectados”, borrar del vector
“DispositivosAlias” tanto la direccion MAC con el alias asociado a esa MAC.

for (i =0; 1 < DispositivosAlias.size(); i += 2) {
if (NormalizarMac(DispositivosAlias[i]) ==
NormalizarMac(Mac)) {
DispositivosAlias.erase(DispositivosAlias.begin() + i);
DispositivosAlias.erase(DispositivosAlias.begin() + i);
Registrado = true;
break;

Por Gltimo, con un “delay” de 0,1 segundos, se ayuda al sistema a estabilizarse
y elimina la MAC introducida si no ha sido eliminada a través del flujo anterior,
es decir, si se hubiese introducido una direccion MAC de un dispositivo no
registrado. Ademas, si la variable booleana creada anteriormente devuelve un
“false” se saca por pantalla un mensaje de error.

delay(100);

esp_now_del peer(peerMAC);
Registrado = true;

if (!Registrado) {

Serial.println("Error: Dispositivo no registrado.");

}

28

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

La funcién “Borrar” sirve para validar, buscar y eliminar cualquier referencia
(direccion MAC o/y Alias) de cualquier dispositivo que tenga el dispositivo que
lo ejecuta. Ademas, es capaz de detectar errores e informar de ellos al usuario.

7. MemoriaCompartida::CrearBloqueMemoria()

MemoriaCompartida: :CrearBloqueMemoria(String NombreBloque,
TamanoBloque) {
if (NombreBloque.length() == 0) {
Serial.println("E1l nombre del bloque no puede estar vacio.");
return;
}
for (i =0; i< Bloques.size(); i += 2) {
if (Bloques[i] == NombreBloque) {
Serial.println("Error: E1 nombre del bloque ya existe.");
return;

O 00 NOUVT b WN

}
if (TamanoBloque == 0){

Serial.println("Error: E1 tamafio deber ser un numero y mayor
ell);

return;

EspacioGastado = 0;
for (i =0; i < Bloques.size(); i += 2){
EspacioGastado += (Bloques[i + 1].toInt()) * 4;
}
Memorialibre = ESP.getFreeHeap();
Memorialibre -= EspacioGastado;
if (TamanoBloque * 4 > MemorialLibre) {
Serial.print("Error: No hay suficiente memoria disponible

para este bloque. Espacio libre disponible: ");
Serial.println(MemorialLibre/4);
return;

}
Bloques.push_back(NombreBloque);

Bloques.push_back(String(TamanoBloque));

Serial.print("Bloque de memoria '");

Serial.print(NombreBloque);

Serial.print("' creado con tamafio de ");

Serial.print(TamanoBloque);

Serial.println(" direcciones de memoria.");

* DireccionMemoria = (*Imalloc(TamanoBloque *

sizeof());

29

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

if (DireccionMemoria != NULL) {
MemoriaDispositivos.push_back(DireccionMemoria);
for (i =0; i < TamanoBloque; i++) {
DireccionMemoria[i] = ©;

}

VincularVector();
} else {
Serial.println("Error al reservar memoria para el bloque.");

La funcion “CrearBlogueMemoria()” permite crear bloques de memoria con
nombre y tamano variable para su posterior asignacion a dispositivos
determinados.

Mediante una condicion “if” se asegura de que el nombre introducido no esté
vacio:

if (NombreBloque.length() == 0) {
Serial.println("E1l nombre del bloque no puede estar vacio.");
return;

Luego se asegura de que el nombre introducido no esté repetido:

for (i =0; i < Bloques.size(); i += 2) {
if (Bloques[i] == NombreBloque) {
Serial.println("Error: E1 nombre del bloque ya existe.");
return;

Y también asegura que el tamano introducido sea valido: un nimero mayor a
0.

12.if (TamanoBloque == 0){
134 Serial.println("Error: E1 tamafio deber ser un numero y mayor
ae");
return;

A continuacion, se calcula el espacio disponible para avisar al usuario de si hay
espacio suficiente para crear dicho bloque:

EspacioGastado = 0;

for (i =0; i < Bloques.size(); i +=

30

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

EspacioGastado += (Bloques[i + 1].toInt()) * 4;

MemorialLibre = ESP.getFreeHeap();
Memorialibre -= EspacioGastado;
if (TamanoBloque * 4 > MemorialLibre) {
Serial.print("Error: No hay suficiente memoria disponible
para este bloque. Espacio libre disponible: ");
Serial.println(MemorialLibre/4);
return;

Una vez creado el bloque, se estructura el vector “Bloques” a pares, de forma
que la informacion de cada bloque se almacena cada dos elementos: en los
impares (primera posicion, tercera...) se almacena el nombre del bloque. En las
posiciones pares (segunda, cuarta...) se almacena el tamano del bloque, de
forma que el vector estara formado por lo nombres de los bloques creados
seguidos de su respectivo tamano.

Bloques.push back(NombreBloque);
Bloques.push_back(String(TamanoBloque));
Serial.print("Bloque de memoria '");
Serial.print(NombreBloque);

Serial.print("' creado con tamafio de ");
Serial.print(TamanoBloque);
Serial.println(" direcciones de memoria.");

Por ultimo, con la funcién “malloc” se reserva ese espacio de memoria a ese
bloque concreto.

* DireccionMemoria = *Imalloc(TamanoBloque *
sizeof());
if (DireccionMemoria != NULL) {
MemoriaDispositivos.push_back(DireccionMemoria);
for (i = 9; i < TamanoBloque; i++) {
DireccionMemoria[i] = ©;
}
VincularVector();
} else {
Serial.println("Error al reservar memoria para el
bloque.");

8. MemoriaCompartida::VincularVector()
MemoriaCompartida: :VincularVector() {

if (DispositivosConectados.size() == 0) {

31

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Serial.println("No hay dispositivos conectados para
vincular.");
return;
}
if (Bloques.size() == 0) {
Serial.println("No hay bloques creados para vincular.");
return;
}
for (i =1; i < Bloques.size(); i += 2) {
std: :vector< > IndiceDispositivo;
for (j = @; j < VectoresVinculados.size(); j++) {
if (Bloques[i - 1] == VectoresVinculados[j]) {
IndiceDispositivo.push_back(j + 1);
}
}
for (j = @; j < DispositivosConectados.size(); j++) {
yaVinculado = false;
for (k = 0; k < IndiceDispositivo.size(); k++) {
if (DispositivosConectados[j] ==
VectoresVinculados[IndiceDispositivo[k]]) {
yaVinculado = true;
Serial.print("El dispositivo ");
Serial.print(NormalizarMac(DispositivosConectados[j]));
Serial.print(" ya tiene vinculado el bloque ");
Serial.println(Bloques[i - 1]);
break;
}
}
if (lyaVinculado) {
Texto[100];
sprintf(Texto, "Vincular %s %lu", Bloques[i - 1].c_str(),
Bloques[i].toInt());
strcpy(MensajeEnviado.text, Texto);
ConvertirMacStringABytes(DispositivosConectados[j],
peerMAC) ;
esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

Serial.print("El vector: ");

Serial.print(Bloques[i - 1]);

Serial.print(" se esta intentando vincular con ");
Serial.println(NormalizarMac(DispositivosConectados[j]));

}
}

IndiceDispositivo.clear();

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

La funcién VincularVector() permite sincronizar el contenido de un bloque de
memoria creado con otros dispositivos registrados siempre que estos tengan
un bloque creado con el mismo nombre y tamano.

Primero se verifica que haya dispositivos registrados para poder vincular
vectores, en caso contrario informa al usuario:

if (DispositivosConectados.size() == 0) {
Serial.println("No hay dispositivos conectados para

vincular.");
return;

A continuacion, se verifica que haya bloques creados para poder vincular con
otro dispositivo:

f (Bloques.size() == 0) {
Serial.println("No hay bloques creados para vincular.");
return;

Una vez hechas las verificaciones, se recorre el vector “Blogues” y
“VectoresVinculados” y se comprueba que el nombre del bloque sea del mismo
que el bloque vinculado. En ese caso se almacena el indice del vector
“VectoresVinculados” en el vector previamente creado “IndiceDispositivo” para
su utilizacion posteriormente.

10. for (i=1; i < Bloques.size(); i += 2) {
std: :vector«< > IndiceDispositivo;
for (j = @; j < VectoresVinculados.size(); j++) {
if (Bloques[i - 1] == VectoresVinculados[j]) {
IndiceDispositivo.push_back(j + 1);

}

Ahora se recorre el vector “DispositivosConectados” y el vector
“IndiceDispositivo” y en caso de que un dispositivo registrado sea uno de los
almacenados en el vector “VectoresVinculados”, se tomara el bloque como ya
vinculado. En caso de que el bloque no haya sido vinculado con ningdn
dispositivo, se prepara el mensaje para iniciar el flujo de vinculacién y se
informa de ello al usuario.

17. for (j = @; j < DispositivosConectados.size(); j++) {

yaVinculado = false;
for (k = 0; k < IndiceDispositivo.size(); k++) {

33

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

if (DispositivosConectados[j] ==
VectoresVinculados[IndiceDispositivo[k]]) {
yaVinculado = true;
Serial.print("El dispositivo ");
Serial.print(NormalizarMac(DispositivosConectados[j]));
Serial.print(" ya tiene vinculado el bloque ");
Serial.println(Bloques[i - 1]);
break;
}
}
if (!yaVinculado) {
Texto[100];
sprintf(Texto, "Vincular %s %lu", Bloques[i - 1].c_str(),
Blogues[i].toInt());
strcpy(MensajeEnviado.text, Texto);
ConvertirMacStringABytes (DispositivosConectados[j],
peerMAC) ;
esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

Serial.print("El vector: ");

Serial.print(Bloques[i - 1]);

Serial.print(" se esta intentando vincular con ");
Serial.println(NormalizarMac(DispositivosConectados[j]));

”

Una vez completado el mensaje de envio, se limpia el vector “IndiceDispositivo
mediante la funcién “clear()”, para su reutilizacion.

IndiceDispositivo.clear();

9. MemoriaCompartida::CrearVectorValoresResponsabilizados()

MemoriaCompartida: :CrearVectorValoresResponsabilizados(String
NombreBloque, IndiceMin, IndiceMax) {
BloqueEncontrado = false;
BloqueVinculado = false;
TamanoBloque;
for (i =0; i < Bloques.size(); i += 2) {
if (NombreBloque == Bloques [i]) {
BloqueEncontrado = true;
TamanoBloque = Bloques[i+1].toInt();
break;

2.
3o
4.
S
6.
VE
8.
9,

=

34

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

}
if (!BloqueEncontrado) {

Serial.print("Error: E1 vector ");
Serial.print(NombreBloque);
Serial.println(" no esta creado en este dispositivo");
return;
else {
for (i = 0; i < VectoresVinculados.size(); i++) {
if (NombreBloque == VectoresVinculados[i]) {
BloqueVinculado = true;
break;

}
if (!BloqueVinculado) {

Serial.println("Error: Primero hay que vincular el
vector.");
return;

}

if (IndiceMin > IndiceMax || IndiceMax > TamanoBloque) {
Serial.println("Error: Indices mal definidos.");
return;

}

for (i = 0; 1 < VectoresVinculados.size(); i++) {
if (NombreBloque == VectoresVinculados[i]) {

ListaRespuestasPendientes.push_back(VectoresVinculados[i+1]);
ListaRespuestasPendientes.push_back("0");
Texto[100];
sprintf(Texto, "Responsable %s %d %d",
NombreBloque.c_str(), IndiceMin, IndiceMax);
strcpy(MensajeEnviado.text, Texto);
ConvertirMacStringABytes(VectoresVinculados[i+1], peerMAC);
esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

La funcion CrearVectorValoresResponsabilizados() permite enviar el mensaje
“Responsable” para su procesamiento en otra funcion.

Primero se obtiene el tamano del bloque recorriendo el vector “Bloques()” y

guardando el tamano en una variable. Con el mismo flujo se obtiene si el bloque
ha sido encontrado en el vector “Bloques()” o no.

35

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

BloqueEncontrado = false;
BloqueVinculado = false;
TamanoBloque;
for (i =0; i < Bloques.size(); i += 2) {
if (NombreBloque == Bloques [i]) {
BloqueEncontrado = true;
TamanoBloque = Bloques[i+1].toInt();
break;

2.
3.
4.
5.
6.
7
8.
9,

12.if (!BloqueEncontrado) {
Serial.print("Error: E1 vector ");
Serial.print(NombreBloque);
Serial.println(" no esta creado en este dispositivo");
return;

Si el bloque se encuentra, se averigua mediante un “for” si ese bloque esta
vinculado. Si no lo esta se imprime un mensaje de error.

else {
for (i = 0@; i < VectoresVinculados.size(); i++) {
if (NombreBloque == VectoresVinculados[i]) {
BloqueVinculado = true;
break;

¥

}
if (!BloqueVinculado) {

Serial.println("Error: Primero hay que vincular el
vector.");
return;

Si el indice menor es mayor que el indice mayor o viceversa, se imprime otro
mensaje de error.

if (IndiceMin > IndiceMax || IndiceMax > TamanoBloque) {
Serial.println("Error: Indices mal definidos.");

return;

Una vez hechas Ilas comprobaciones, se recorre el vector
“VectoresVinculados()” y cuando ese vector contenga el nombre del bloque, se

36

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

enviara el mensaje “Responsable” a la direccion MAC con ese nombre
vinculado. El vector “VectoresVinculados” esta estructurado a pares, siendo el
primer elemento el bloque vinculado, y el segundo elemento la direccion MAC
con la que ese bloque esta vinculado. Ademas, se crean los vectores
“ListaRespuestasPendientes()” que sera de utilidad en la funcion que procese
este mensaje: el “Callback” “EnRecepcionDeDatos()”.

for (i =0; i < VectoresVinculados.size(); i++) {
if (NombreBloque == VectoresVinculados[i]) {

ListaRespuestasPendientes.push_back(VectoresVinculados[i+1]);

ListaRespuestasPendientes.push back("0");
Texto[100];
sprintf(Texto, "Responsable %s %d %d",

NombreBloque.c str(), IndiceMin, IndiceMax);
strcpy(MensajeEnviado.text, Texto);
ConvertirMacStringABytes(VectoresVinculados[i+1], peerMAC);
esp_now_send(peerMAC, (*)&MensajeEnviado,

sizeof(MensajeEnviado));

10.MemoriaCompartida::MostrarMemoria()
MemoriaCompartida: :MostrarMemoria(String NombreBloque,
Indice) {
index = -1;
for (i = 0; i < Bloques.size(); i += 2) {
if (Bloques[i] == NombreBloque) {
index = i/2;
}
}
if (index == -1) {
return -1;

O 00 N O UVl & WN

}

* DireccionMemoria = MemoriaDispositivos[index];
if (DireccionMemoria != nullptr) {
for (i =0; i < Bloques.size(); ++i) {
if (Bloques[i] == NombreBloque) {
TamanoBloque = Bloques [i + 1].toInt();
if (Indice >= 0 && Indice < TamanoBloque) {
return DireccionMemoria[Indice];
} else {
return -1;

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

La funcion “MostrarMemoria()” permite mostrar el valor almacenado dentro de
una posicion especifica de un bloque de memoria.

Primero se recorre el vector Bloques de dos en dos y se comprueba si el
contenido de ese vector es el nombre del bloque almacenado en la variable
“NombreBloque”. Si el contenido del vector es el nombre del bloque
especificado, la variable “index” valdra la posicion en la que el vector contiene
el nombre del bloque, dividido entre dos, esto es debido a que el “for” recorre
el vector de dos en dos. En caso contrario la variable “index” devolvera un -1.

index = -1;
for (i =0; i < Bloques.size(); i += 2) {
if (Bloques[i] == NombreBloque) {
index = i/2;

}
if (index == -1) {
return -1;

O 00 N O U1 A WN

=
® -

A continuacion, se obtiene un puntero a la memoria del bloque usando el
indice. Se recorre el vector Bloques y se comprueba si el vector contiene el
nombre del bloque concreto para obtener el tamano del bloque y poder
comprobar si el indice introducido es mayor o no al tamano del bloque definido
en la funcion CrearBloqueMemoria().

* DireccionMemoria = MemoriaDispositivos[index];
if (DireccionMemoria != nullptr) {
for (i =0; 1 < Bloques.size(); ++i) {
if (Bloques[i] == NombreBloque) {
TamanoBloque = Bloques [i + 1].toInt();
if (Indice >= 0 && Indice < TamanoBloque) {
return DireccionMemoria[Indice];

} else {
return -1;

38

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

11.MemoriaCompartida::InfoMostrarMemoria();
MemoriaCompartida: :InfoMostrarMemoria(String
NombreBloque, Indice) {
index = -1;
for (i = 0; i < Bloques.size(); i += 2) {
if (Bloques[i] == NombreBloque) {
index = i/2;

}

if (index == -1) {
Serial.println ("Error: E1 bloque de memoria no existe");
return -1;

O 00 N O U1 B WN

* DireccionMemoria = MemoriaDispositivos[index];
if (DireccionMemoria != nullptr) {
for (i =0; i < Bloques.size(); ++i) {
if (Bloques[i] == NombreBloque) {

TamanoBloque = Bloques [i + 1].toInt();

if (Indice >= 0 && Indice < TamanoBloque) {

Serial.print("Valor del bloque de memoria ");

Serial.print(NombreBloque);

Serial.print(" en la direccién de memoria reservada ");

Serial.print(Indice);

Serial.print(": ");

Serial.println(DireccionMemoria[Indice]);

return DireccionMemoria[Indice];

else {

Serial.println("Error: Indice fuera de rango.");

return -1;

La funcion “InfoMostrarMemoria()” es similar a la funciéon “MostrarMemoria”,
la Unica diferencia es que esta permite informar al usuario del valor obtenido,
o de si existe algin error, mientras que la otra no lo hace.
“MostrarMemoria()’se usa para realizar comparaciones internas para el
correcto del funcionamiento del sistema y si sacase mensajes cada vez que se
usa, saturaria el monitor serial de mensajes.

12.MemoriaCompartida::EscribirMemoria()
MemoriaCompartida: :EscribirMemoria(String Mac, Indice,

String Valor) {

39

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

if (lesDireccionMac(Mac)) {

if (lesAlias(Mac)){

Serial.println("Error: Formato de MAC de bloque de memoria
reservado invalido.");

return;

}

if(esAlias(Mac)){
ConvertirAliasAMacString(Mac);
String mac = ConvertirAliasAMacString(Mac);
Mac = mac;

}

std: :vector<String> Dispositivos = DispositivosConectados;
Dispositivos.push back(WiFi.macAddress());
Mac.toUppercCase();
index = -1;
for (i =0; i < Dispositivos.size(); ++i) {
String MaclLocal = Dispositivos[i];
MacLocal.toUpperCase();
if (MacLocal == Mac) {
index = i;
break;

}
if (index == -1) {
Serial.println("No se ha asignado memoria para este
dispositivo.");
return;
}
if (index < MemoriaDispositivos.size()) {
* DireccionMemoria = MemoriaDispositivos[index];
ValorBytes = Valor.toInt();
if (ValorBytes == 0 && Valor != "0") {
Serial.println("Valor no vdlido. Asegirate de que el valor
sea un numero.");
return;

TamanoMaximo = (CalcularMemoria() + 59) /
Dispositivos.size();
if (Indice < @ || Indice >= TamanoMaximo) {
Serial.println("Indice fuera de rango.");

return;

}

DireccionMemoria[Indice] = ValorBytes;

Serial.print("Escrito el valor ");
Serial.print(ValorBytes);

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Serial.print(" en la direccién de memoria ");
Serial.print(Indice);
Serial.print(" del bloque de memoria reservado a la direccion

MAC ");
Serial.println(Mac);

La funcion “EscribirMemoria()” permite escribir un valor determinado dentro de
una posicion especifica de un bloque de memoria asignado a un dispositivo.

Primero se verifica que la cadena de texto (String Mac) contiene una direccion
MAC valida empleando la funcién “esDireccionMac()” a través de una condicion
“if”. Si no es una direccion MAC valida, se realiza otra comprobacion: Se verifica
si el contenido de la cadena de texto “Mac” es un alias a través de la funcion
“esAlias()”.

+ Si no es asi, saca por pantalla un error.

+ Si si es asi se ejecuta la funcion “ConvertirAliasAMacString()” para
obtener la direccion MAC vinculada a ese alias.
if (lesDireccionMac(Mac)) {
if (lesAlias(Mac)){
Serial.println("Error: Formato de MAC de bloque de memoria
reservado invalido.");
return;

}

if(esAlias(Mac)){
ConvertirAliasAMacString(Mac);
String mac = ConvertirAliasAMacString(Mac);
Mac = mac;

A continuacion, se crea el vector “Dispositivos”, donde se almacena la direccion
MAC de los dispositivos conectados y del dispositivo local. Ademas, se crea la
variable “index”, que sirve para avisar al usuario cuando la cadena de texto
introducida (Mac) no es la direccion MAC de ningun dispositivo registrado. Se
recorren todos los dispositivos almacenados en el vector “Dispositivos”,
cuando la direccion MAC de uno de estos dispositivos registrados coincide con
la direccion MAC de la variable “Mac”, la variable indice pasa de valer “-1” a
valer la posicion del vector “Dispositivos” donde esta almacenada la MAC. Si la
direccion MAC de “Mac” no se encuentra en el vector “Dispositivos” se informa

41

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

al usuario del error, pues se esta intentando acceder al bloque de memoria
asignado a un dispositivo que no tiene ningln bloque de memoria asignado.

13.std: :vector<String> Dispositivos = DispositivosConectados;
Dispositivos.push_back(WiFi.macAddress());
Mac.toUpperCase();
index = -1;
for (i =0; 1 < Dispositivos.size(); ++1i) {
String Maclocal = Dispositivos[i];
MacLocal.toUpperCase();
if (MaclLocal == Mac) {
index = i;
break;

}
if (index == -1) {
Serial.println("No se ha asignado memoria para este
dispositivo.");
return;

A través de la condicion “if” se asegura de que el dispositivo al cual se intenta
escribir en memoria tenga un bloque de memoria reservado. Si es asi, el
puntero “DireccionMemoria” apunta al bloque de memoria reservado a ese
dispositivo. Ademas, se almacena el valor a escribir en la direccién de memoria
(String Valor) a entero y se saca por pantalla un error si este no es un valor
numeérico.
if (index < MemoriaDispositivos.size()) {
* DireccionMemoria = MemoriaDispositivos[index];
ValorBytes = Valor.toInt();
if (ValorBytes == 0 && Valor != "0") {
Serial.println("Valor no vdlido. Asegurate de que el valor
sea un numero.");
return;

Por ultimo, se comprueba que no se esta intentando escribir fuera de los limites
del bloque reservado, si es asi, se avisa al usuario, y si el indice es correcto y
no se pretende escribir fuera de los limites, se actualiza el valor almacenado
en la posicion definida por la variable “Indice” con el valor “ValorBytes”.

TamanoMaximo = (CalcularMemoria() + 59) /
Dispositivos.size();

if (Indice < @ || Indice >= TamanoMaximo) {
Serial.println("Indice fuera de rango.");
return;

42

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

}

DireccionMemoria[Indice] = ValorBytes;

Serial.print("Escrito el valor ");
Serial.print(ValorBytes);
Serial.print(" en la direccién de memoria ");

Serial.print(Indice);

Serial.print(" del bloque de memoria reservado a la direcciodn
");

Serial.println(Mac);

13.MemoriaCompartida::EnviarValorDeMemoria()

MemoriaCompartida: :EnviarValorVinculado(String NombreBloque,
Indice, String Valor){
ValorBytes = Valor.toInt();
BloqueVinculado = false;
BloqueResponsabilizado = false;
for (i = 0; i < VectoresVinculados.size(); i++) {

if(NombreBloque == VectoresVinculados[i]) {

BloqueVinculado = true;

¥

O 00 N O U1 B WN

}
if(BloqueVinculado) {

if(ValoresResponsabilizados.size() == 0) {
Serial.println("Error: Antes debes responsabilizarte de
unos indices.");
} else{
for(i = @; i < ValoresResponsabilizados.size(); i++)

if (NombreBloque == ValoresResponsabilizados[i]) {
BloqueResponsabilizado = true;
if (Indice < ValoresResponsabilizados[i+1].toInt() ||
Indice > ValoresResponsabilizados[i+2].toInt()) {
Serial.print("Error: Para el bloque ");
Serial.print(NombreBloque);
Serial.print(" solo puedes escribir entre ");
Serial.print(ValoresResponsabilizados[i+1]);
Serial.print(" y ");
Serial.println(ValoresResponsabilizados[i+2]);
else {
EscribirMemoria(NombreBloque, Indice, Valor);
if (VectoresVinculados.size() > 0) {

43

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

for (i 9; i < VectoresVinculados.size();

i++) {

if (NombreBloque == VectoresVinculados[i]) {
EditarValorDeMemoria(VectoresVinculados[i+1],
NombreBloque, Indice, ValorBytes);
delayMicroseconds(200);

} else {
EscribirMemoria(NombreBloque, Indice, Valor);

La funcién “EnviarValorVinculado()” permite escribir en un bloque de memoria
e indice definido un valor determinado. Ademas, envia un mensaje a todos los
dispositivos que tengan vinculados ese mismo bloque para gestionar el
mensaje y poder escribir en el blogue de memoria de los otros dispositivos.

Primero se crean todas las variables necesarias para la correcta utilizacion de
la funcion. Se recorre el vector “VectoresVinculados” y si el bloque en el que se
desea escribir pertenece al vector: el bloque estara vinculado a otros
dispositivos. realizan las comprobaciones necesarias para un correcto
funcionamiento de la funcion:

ValorBytes = Valor.toInt();
BloqueVinculado = false;
BloqueResponsabilizado = false;
for (i = 0; i < VectoresVinculados.size(); i++) {
if(NombreBloque == VectoresVinculados[i]) {
BloqueVinculado = true;

}

2.
3.
4.
S
6.
VE
8.
9.

Si el bloque esta vinculado, solo se podra escribir en él si tiene unos indices
responsabilizados, esto es, un dispositivo con un vector vinculado con otro
dispositivo solo podra escribir valores en los indices que tenga permiso. Este
permiso viene definido por el vector “ValoresResponsabilizados()”. En los
indices que no sea asi, solo se podra mostrar el valor del indice. Si se intenta
escribir en unos indices a los que el dispositivo no tiene permiso para ello, se

44

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

mostrara un mensaje de error. Si se intenta escribir en unos indices con
permiso, se escribird dicho dato y se llamara a la funciéon
“EditarValorDeMemoria” encargada de preparar el mensaje para que el resto
de dispositivos también lo hagan.

if(BloqueVinculado) {
if(ValoresResponsabilizados.size() == 0) {
Serial.println("Error: Antes debes responsabilizarte de
unos indices.");
} else {
for(i = 9; i < ValoresResponsabilizados.size(); i++)

if (NombreBloque == ValoresResponsabilizados[i]) {
BloqueResponsabilizado = true;
if (Indice < ValoresResponsabilizados[i+1].toInt() ||
Indice > ValoresResponsabilizados[i+2].toInt()) {
Serial.print("Error: Para el bloque ");
Serial.print(NombreBloque);
Serial.print(" solo puedes escribir entre ");
Serial.print(ValoresResponsabilizados[i+1]);
Serial.print(" y ");
Serial.println(ValoresResponsabilizados[i+2]);
else {
EscribirMemoria(NombreBloque, Indice, Valor);
if (VectoresVinculados.size() > @) {
for (i =0; i < VectoresVinculados.size();
i++) {
if (NombreBloque == VectoresVinculados[i]) {
EditarValorDeMemoria(VectoresVinculados[i+1],
NombreBloque, Indice, ValorBytes);
delayMicroseconds(200);

Si el blogue no esta vinculado, simplemente se escribira en dicho bloque de
forma local.

else {

EscribirMemoria(NombreBloque, Indice, Valor);

}

45

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

41.}

14.MemoriaCompartida::EditarValorDeMemoria()

MemoriaCompartida: :EditarValorDeMemoria(String MacReceptor,
String NombreBloque, Indice, Valor) {
if (!esDireccionMac(MacReceptor)) {

if (lesAlias(MacReceptor)){
Serial.println("Error: Formato de MAC invalido.");
return;

}

if(esAlias(MacReceptor)){
ConvertirAliasAMacString(MacReceptor);
String mac = ConvertirAliasAMacString(MacReceptor);
MacReceptor = mac;

O 00 NOUVT b WN

¥
}

if (NormalizarMac(MacReceptor) ==
NormalizarMac (WiFi.macAddress())) {

Serial.println("Error: La MAC introducida es la de este
dispositivo.");
return;
}
if (!ConvertirMacStringABytes(MacReceptor, peerMAC)) {
Serial.println("Error al convertir la MAC");
return;

Texto[100];
sprintf(Texto, "Editar %s %d %d", NombreBloque.c_str(), Indice,
Valor);
strcpy(MensajeEnviado.text, Texto);
ConvertirMacStringABytes(MacReceptor, peerMAC);
esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));
26.}

La funcion “EditarValorDeMemoria()” permite enviar un mensaje para que los
dispositivos que lo reciban lo procesen y escriban de forma local en el bloque
de memoria reservado por “NombreBloque” en el indice definido por “Indice”
un valor definido por “Valor”.

Primero se realizan las comprobaciones necesarias para un correcto
funcionamiento de la funcion:

4. Se verifica que la cadena de texto (String MacReceptor) contiene una
direccion MAC valida empleando la funcion “esDireccionMac()” a través

46

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

de una condicion “if”. Si no es una direccion MAC valida, se realiza otra
comprobacion: Se verifica si el contenido de la cadena de texto
“MacReceptorinterna” es un alias a través de la funcion “esAlias()”.

+ Si no es asi, saca por pantalla un error.

+ Si si es asi se ejecuta la funcion “ConvertirAliasAMacString()”
para obtener la direccion MAC vinculada a ese alias.
if (!esDireccionMac(MacReceptorInterna)) {
if (lesAlias(MacReceptorInterna)){
Serial.println("Error: Formato de MAC de bloque de
memoria reservado invalido.");
return;

}

if(esAlias(MacReceptorInterna)){
ConvertirAliasAMacString(MacReceptorInterna);
String Mac =
ConvertirAliasAMacString(MacReceptorInterna);
MacReceptorInterna = Mac;

5. Si el contenido de la cadena de texto “MacReceptor” si es una direccion
Mac se realiza la siguiente verificacion: Con ayuda de la funcion
“NormalizarMac()” se comprueba si la cadena de texto contiene la
direccion del propio dispositivo, si es asi, devuelve un mensaje de error.

13. if (NormalizarMac(MacReceptor) ==
NormalizarMac (WiFi.macAddress())) {
14. Serial.println("Error: La mac introducida es la del
propio dispositivo.");
return;

6. Sinoesla MAC del propio dispositivo, realiza la siguiente comprobacion:
Con “ConvertirMacStringABytes()” se verifica si se ha podido convertir la
cadena de texto (Mac) a bytes guardados en la variable “peerMac”:

if (!ConvertirMacStringABytes(MacReceptor, peerMAC)) {
Serial.println("Error al convertir la direccién MAC.");

return;

Una vez hechas las comprobaciones se prepara el mensaje “Editar” seguido de
la direccion MAC del bloque de memoria donde se contiene la direccion de
memoria a editar definida por “Indice” y el valor a editar: “Valor”.

47

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Texto[100];
sprintf(Texto, "Editar %s %d %d", NombreBloque.c_str(),
Indice, Valor);
strcpy(MensajeEnviado.text, Texto);

ConvertirMacStringABytes(MacReceptor, peerMAC);
esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));
26.}

15.MemoriaCompartida::Alias()
MemoriaCompartida::Alias() {
Serial.print("Introduce alias para ");
Serial.print(WiFi.macAddress());
Serial.print(" (dispositivo local): ");
while (Serial.available() == 0) {}
String AliaslocalIntroducido = Serial.readStringUntil('\n');
AliaslocalIntroducido.trim();
Serial.println(AliasLocalIntroducido);
if (AliasLocallIntroducido.length() > @) {
esAliaslLocalConMacVinculada = false;
for (i =0; i < DispositivosAlias.size(); i++) {
if (DispositivosAlias[i] == WiFi.macAddress()) {
DispositivosAlias[i + 1] = AliaslLocalIntroducido;
esAliaslLocalConMacVinculada = true;
break;

¥

O 00 NOUVT b WDN R

}

if (l'esAliaslLocalConMacVinculada) {
DispositivosAlias.push back(WiFi.macAddress());
DispositivosAlias.push_back(AliasLocalIntroducido);

}
}

for (i =0; 1 < DispositivosConectados.size(); i++) {
Serial.print("Introduce alias para ");
Serial.print(NormalizarMac(DispositivosConectados[i]));
Serial.print(": ");
while (Serial.available() == 0) {}
String AliasConectadoIntroducido =

Serial.readStringUntil('\n"');

AliasConectadoIntroducido.trim();
Serial.println(AliasConectadoIntroducido);

if (AliasConectadoIntroducido.length() > @) {
esAliasConectadoRepetido = false;

48

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

for (j = 0; j < DispositivosAlias.size(); j++) {
if (DispositivosAlias[j + 1] ==
AliasConectadoIntroducido) {
esAliasConectadoRepetido = true;
break;

}
if (esAliasConectadoRepetido) {

Serial.println("Error: E1 alias ya esta en uso.
Introduzca otro alias.");

i--3

continue;

esAliasConectadoConMacVinculada = false;
for (j = 0; j < DispositivosAlias.size(); j++) {
if (DispositivosAlias[j] == DispositivosConectados[i]) {

DispositivosAlias[j + 1] = AliasConectadoIntroducido;
esAliasConectadoConMacVinculada = true;
break;

}

if (lesAliasConectadoConMacVinculada) {
DispositivosAlias.push_back(DispositivosConectados[i]);
DispositivosAlias.push back(AliasConectadoIntroducido);

}

Serial.println("Alias asignado a los dispositivos:");
for (i =0; i < DispositivosAlias.size(); i++) {
Serial.println(NormalizarMac(DispositivosAlias[i]));

La funcion “Alias()” permite asignar y vincular un alias al dispositivo local y a
cada dispositivo registrado facilitando la identificacion de cada dispositivo
mediante el uso de nombres legibles. El flujo se divide en dos partes similares:
por un lado, la asignacion de un alias al dispositivo local y por otro, la asignacion
de un alias a cada dispositivo conectado.

Primero se pide al usuario introducir el alias para el dispositivo local:

Serial.print("Introduce alias para ");
Serial.print(WiFi.macAddress());

Serial.print(" (dispositivo local): ");
while (Serial.available() == 0) {}
String Aliaslocallntroducido = Serial.readStringUntil('\n');

49

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

AliasLocalIntroducido.trim();

Serial.println(AliasLocalIntroducido);

Y se comprueba si el alias introducido es valido, si es asi se entra en el “for”
para recorrer el vector “DispositivosAlias”, si el vector no contiene la direccion
MAC del dispositivo local, se la anade al igual que el alias introducido
anteriormente. En caso de que el vector si contenga la direccion MAC del
dispositivo (esto ocurre cuando se esté haciendo una actualizacion del alias,
de forma que la direccion MAC del dispositivo local ya ha sido anadido en el
vector mediante el flujo definido anteriormente), actualiza el alias vinculado al
dispositivo local. Este siempre se encuentra en la posicion siguiente a la de la
direccion MAC del dispositivo local:

if (AliasLocallIntroducido.length() > @) {
esAliaslLocalConMacVinculada = false;
for (i = 0; i < DispositivosAlias.size(); i++) {
if (DispositivosAlias[i] == WiFi.macAddress()) {
DispositivosAlias[i + 1] = AliaslLocalIntroducido;
esAliaslLocalConMacVinculada = true;
break;

}
}

if (l'esAliaslLocalConMacVinculada) {
DispositivosAlias.push back(WiFi.macAddress());
DispositivosAlias.push_back(AliasLocalIntroducido);

}
}

Una vez definido el flujo para la asignacion del alias del dispositivo local, se
define el flujo para la asignacion de los dispositivos conectados. Se recorre el
vector “DispositivosConectados”, y para cada posicion (que contiene una
direccion MAC) se pide al usuario introducir un alias:

23. for (i =0; i < DispositivosConectados.size(); i++) {
Serial.print("Introduce alias para ");
Serial.print(NormalizarMac(DispositivosConectados[i]));
Serial.print(": ");
while (Serial.available() == 0) {}

String AliasConectadoIntroducido =
Serial.readStringUntil('\n"');

AliasConectadoIntroducido.trim();

Serial.println(AliasConectadoIntroducido);

50

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Y se comprueba que es un alias valido, si es asi, se recorre el vector
“DispositivosAlias”, si el vector contiene el mismo alias que se intenta vincular
a un dispositivo (se esta intentado vincular un mismo alias a dos direcciones
MAC distintas), salta un error avisando al usuario y se pide que vuelva a
introducir un alias, reduciendo el contador del “for” en uno:

if (AliasConectadoIntroducido.length() > @) {
esAliasConectadoRepetido = false;
for (j = 0; j < DispositivosAlias.size(); j++) {
if (DispositivosAlias[j + 1] ==
AliasConectadoIntroducido) {
esAliasConectadoRepetido = true;
break;

}
if (esAliasConectadoRepetido) {

Serial.println("Error: E1 alias ya esta en uso.
Introduzca otro alias.");

a3

continue;

A continuacion, se recorre el vector “DispositivosAlias” nuevamente. Si el vector
contiene la direccion MAC del dispositivo al que se intenta vincular un alias (se
esta intentado cambiar el alias) se actualiza dicho alias, y si el vector no
contiene la direccion MAC del dispositivo al que se intenta vincular un alias, se
anade tanto la direccion MAC como el alias al vector.

esAliasConectadoConMacVinculada = false;
for (j = 0; j < DispositivosAlias.size(); j++) {
if (DispositivosAlias[j] == DispositivosConectados[i]) {
DispositivosAlias[j + 1] = AliasConectadoIntroducido;
esAliasConectadoConMacVinculada = true;
break;

}

if (lesAliasConectadoConMacVinculada) {
DispositivosAlias.push_back(DispositivosConectados[i]);
DispositivosAlias.push back(AliasConectadoIntroducido);

Por Gltimo se saca por pantalla los alias introducidos a cada dispositivo:

51

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

59.Serial.println("Alias asignado a los dispositivos:");
for (i =0; 1 < DispositivosAlias.size(); i++) {

Serial.println(NormalizarMac(DispositivosAlias[i]));

16.MemoriaCompartida::esAlias()
MemoriaCompartida::esAlias(String Alias) {
for (i =1; i < DispositivosAlias.size(); i += 2) {
if (DispositivosAlias[i] == Alias) {
return true;
}
}

return false;

00 NOUVT A WN B

}

La funcion “esAlias()” permite comprobar si el contenido de una cadena de
texto es un alias guardado en el vector “DispositivosAlias”.

Se recorre dicho vector estructurado de la siguiente forma:

1. En primera posicion: la direccion MAC local.

2. En segunda posicion: el alias vinculado a la direccion MAC local (si lo
hay).

3. Entercera posicion: la direccion MAC de un dispositivo conectado.

4. En cuarta posicion: el alias vinculado a la direccion MAC del dispositivo
anterior (si lo hay)

5. La estructura continla si hubiese mas dispositivos conectados.

Si el contenido de la cadena de texto (String Alias) contiene un alias
perteneciente al vector “DispositivosAlias” se devuelve un “true”. En caso
contrario se devuelve un “false”.

17.MemoriaCompartida::ConvertirAliasAMacString()
String MemoriaCompartida::ConvertirAliasAMacString(String Alias)

{
for (i =1; i < DispositivosAlias.size(); i += 2) {
if (DispositivosAlias[i] == Alias) {

return DispositivosAlias[i - 1];
}
}

return K

52

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

La funcion “ConvertirAliasAMacString” sirve para obtener la direccion MAC
vinculada a un alias a partir del contenido de una cadena de texto. Como la
estructura del vector “DispositivosAlias” es fija y definida, se puede obtener la
MAC vinculada a un alias a partir del propio alias: Se recorre el vector
“DispositivosAlias” mediante un “for”, si el contenido de la cadena de texto
(String Alias) contiene un alias perteneciente al vector “DispositivosAlias”, se
devuelve el contenido del vector en la posicion anterior a dicho alias.

18.MemoriaCompartida::init()

MemoriaCompartida::init() {
WiFi.mode(WIFI_STA);
delay(2000);
Serial.print("MAC del dispositivo: ");
Serial.println(WiFi.macAddress());
if (esp_now_init() != ESP_OK) {
Serial.println("Error al inicializar ESP-NOW.

Reiniciando...");
ESP.restart();

}
Serial.println("ESP-NOW iniciado correctamente.");
esp_now_register recv_cb(enRecepcionDeDatos);
esp_now_register_send_cb(enEnvioDeDatos);
delay(2000);
Serial.println("ESP-32 listo.");

La funcion “init()” se encarga de inicializar el dispositivo, y configurar la
funcionalidad de ESP_NOW.

Mediante la funcion “WiFi.mode(WIFI_STA)” se configura el dispositivo en modo
estacion. A continuacion, se anade un “delay” de 2 segundos para asegurarse
de la correcta configuracion en modo estacion. Se informa al usuario de cual
es la MAC del dispositivo local, se le avisa si inicializa correctamente o si ocurre
algun error al inicializar y se reinicia en ese caso. Se utilizan las funciones de
ESP-NOW “esp_now_register_recv_cb” y “esp_now_register_send_cb” para
registrar los “callbacks” de las funciones “enRecepcionDeDatos” vy
“enEnvioDeDatos” respectivamente. Se ejecuta un “delay” de 2 segundos
nuevamente para asegurar la correcta configuracion del dispositivo y se saca
por pantalla un mensaje avisando al usuario de que el dispositivo esta listo.

Esta funcion sera necesaria siempre que se pretenda crear una herramienta
empleando esta libreria. Por ejemplo, en el archivo main:

53

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

#include <MemoriaCompartida.h>
#include "esp_system.h"

MemoriaCompartida MemCom;

setup() {
Serial.begin(115200);

delay(2000);
MemCom.init();

}

Si no se incluye esta funcion, el resto de funciones pueden no funcionar
correctamente.

Funciones Non-Blocking

Las funciones “non-blocking” creadas son las de manejo y procesamiento de
mensajes mediante un flujo definido. En esta libreria hay creadas dos funciones
que siguen esta tecnologia, estas funciones son ambas “Callback” de envio y
de recepcion de datos. Los “Callback” o funciones de retrollamada son
funciones que se pasan como argumento a otras funciones con el objetivo de
que esta se ejecute en algin momento.

Los dos “Callback” definidos en esta libreria son:

1. MemoriaCompartida::enEnvioDeDatos()

MemoriaCompartida: :enEnvioDeDatos(
status) {
if (status == ESP_NOW_SEND SUCCESS) {

} else {
Serial.println("Error al enviar el mensaje");

}

EnvioCompletado = true;

}

La funcion “enEnvioDeDatos()” permite conocer cual es el estatus de un
mensaje enviado a través de ESP-NOW. Esta funcion se ejecuta de forma
automatica cada vez que se envia un mensaje. A través de una condicion “if”
se informa de si ha habido un error en el envio de datos.

2. MemoriaCompartida::enRecepcionDeDatos()

54

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

MemoriaCompartida: :enRecepcionDeDatos(
esp_now_recv_info* info, DatosRecibidos,
tamafio) {

memcpy (&MensajeRecibido, DatosRecibidos,
sizeof(MensajeRecibido));
if (strcmp(MensajeRecibido.text, "Prueba de conexiodn") == 0) {
String MacString = "";
for (i=09;1i<6; i++) {
MacString += String(info->src_addr[i], HEX);
if (1 < 5) {
MacString += ":";
}
}

if (find(DispositivosConectados.begin(),
DispositivosConectados.end(), MacString) ==
DispositivosConectados.end()) {
DispositivosConectados.push_back(MacString);
}
if (lesp_now _is peer_ exist(info->src_addr)) {
InfoPeer = {};
memcpy (InfoPeer.peer addr, info->src_addr, 6);
InfoPeer.channel = 0;
InfoPeer.encrypt = false;

if (esp_now_add_peer(&InfoPeer) != ESP_OK) {
Serial.println("Error al agregar el peer
temporalmente.");
return;

¥

strcpy(MensajeEnviado.text, "Recibido");
ResultadoDeEnvio = esp_now_send(info->src_addr,
*)&MensajeEnviado, sizeof(MensajeEnviado));
Serial.print(MacString);
Serial.println(" esta intentando conectarse.");
if (ResultadoDeEnvio == ESP_OK) {
Serial.println("Iniciando conexién...");
} else {
Serial.print("Error al iniciar conexidén. Cédigo de error:

Serial.println(ResultadoDeEnvio);
}
else if (strcmp(MensajeRecibido.text, "Recibido") == 0) {
RespuestaRecibida = true;
String MacString = "";
for (i=0;1<6; i++) {
MacString += String(info->src_addr[i], HEX);
if (i < 5) {

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

MacString += ":";
}
}

if (find(DispositivosConectados.begin(),
DispositivosConectados.end(), MacString) ==
DispositivosConectados.end()) {
DispositivosConectados.push_back(MacString);
}
} else if (strncmp(MensajeRecibido.text, "Borrado", 7) == 0) {
String mensajeRecibido = MensajeRecibido.text;
espacioPos = mensajeRecibido.indexOf("' ');
if (espacioPos != -1) {
String MacString = mensajeRecibido.substring(espacioPos +
1);
Serial.print("El dispositivo ");
Serial.print(MacString);
Serial.println(" ha solicitado borrar su registro.");
if (DispositivosConectados.empty()) {
Serial.println("No hay dispositivos para borrar.");
} else {
for (it = DispositivosConectados.begin(); it !=
DispositivosConectados.end(); ++it) {
if (NormalizarMac(*it) == NormalizarMac(MacString)) {
ConvertirMacStringABytes(MacString, peerMAC);
DispositivosConectados.erase(it);
esp_now_del peer(peerMAC);
Serial.print("El dispositivo ");
Serial.print(MacString);
Serial.println(" ha sido eliminado con éxito.");
for (i =9; i < VectoresVinculados.size();
i++) {
if(NormalizarMac(VectoresVinculados[i]) ==
NormalizarMac(*it)) {
c VectoresVinculados.erase(VectoresVinculados.begin
() + (1 -1));

VectoresVinculados.erase(VectoresVinculados.begin

O+ ({1 -1));

} else if (strncmp(MensajeRecibido.text, "Editar", 6) == 0) {
Serial.println("Mensaje recibido");

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Serial.println(MensajeRecibido.text);
String Mensaje = String(MensajeRecibido.text);

PrimerEspacio = Mensaje.indexOf("' ');
SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio + 1);
TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio + 1);

String NombreBloque = Mensaje.substring(PrimerEspacio + 1,
SegundoEspacio);

String IndiceStr = Mensaje.substring(SegundoEspacio + 1,
TercerEspacio);

String ValorStr = Mensaje.substring(TercerEspacio + 1);

IndiceBytes IndiceStr.toInt();
String MacStr = "";
for (i=0; 1i<6; i++) {
MacStr += String(info->src_addr[i], HEX);
if (i < 5) MacStr += ":";
}
for (i =0; 1 < Bloques.size(); ++i) {
for (j = 0; j < VectoresVinculados.size(); ++j) {
if (Bloques [i] == VectoresVinculados [j] &&
Bloques[i] == NombreBloque) {
101. TamanoBloque = Bloques [i + 1].toInt();
102. if (IndiceBytes >= © && IndiceBytes < TamanoBloque)
{
103. } else {
104. Serial.println("Enviando error a emisor...");
105. MacBytes[6];
106. ConvertirMacStringABytes(MacStr, MacBytes);
107. strcpy(MensajeEnviado.text, "Error 3: Indice fuera de
rango");
108. Result = esp now_send(info->src_addr,
(*)&MensajeEnviado, sizeof(MensajeEnviado));
109. return;
110.
111.
112.
113.
114. EscribirMemoria(NombreBloque, IndiceBytes, ValorStr);
115. delayMicroseconds(200);
116. } else if (strncmp(MensajeRecibido.text, "Error 3", 7)
{
117. Serial.print("Mensaje recibido: ");
118. Serial.println(MensajeRecibido.text);

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

119. } else if (strncmp(MensajeRecibido.text, "Vincular", 8)
0){

120. String Mensaje = String(MensajeRecibido.text);

121. PrimerEspacio = Mensaje.indexOf(' ');

122. SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio +
1);

123 String NombreBloque = Mensaje.substring(PrimerEspacio + 1,
SegundoEspacio);

124. String TamanoBloque = Mensaje.substring(SegundoEspacio +
1);

125. TamanoBloqueBytes = TamanoBloque.toInt();

126. for (i =0; 1 < Bloques.size(); i++){

127. if(Bloques[i] == NombreBloque){

128. if (Bloques[i+1] == TamanoBloque){

129 String MacStr = "";

130. for (i=09; 1< 6; i++) {

131. MacStr += String(info->src_addr[i], HEX);

132. if (i < 5) MacStr += ":";

EER }

134. ConvertirMacStringABytes(MacStr,peerMAC);

135. NormalizarMac(MacStr);

136. VectoresVinculados.push_back(NombreBloque);

137. VectoresVinculados.push_back(MacStr);

138.

139. Texto[50];

140. sprintf(Texto, "Vinculando %s ",
NombreBloque.c_str());

141. strcpy(MensajeEnviado.text, Texto);

142. esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

143. Serial.print("El vector: ");

144. Serial.print(NombreBloque);

145. Serial.print(" se esta intentando vincular con ");

146. Serial.println(NormalizarMac(MacStr));

147. Serial.println("Vinculando...");

148. for (i = @; i < TamanoBloqueBytes; i++) {

149. if(MostrarMemoria(NombreBloque, i) != 0) {

150. EditarValorDeMemoria(MacStr, NombreBloque, i,
MostrarMemoria(NombreBloque, i));

151. delayMicroseconds(1000);

152. }

153. }

154. Serial.println("Vinculacion completada™);

155. sprintf(Texto, "Vinculado %s", NombreBloque.c_str());

156. strcpy(MensajeEnviado.text, Texto);

157. esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

}

}
}

} else if (strncmp(MensajeRecibido.text, "Vinculando", 10)

String Mensaje = String(MensajeRecibido.text);
Serial.println(Mensaje);
PrimerEspacio = Mensaje.indexOf("' ');

String NombreBloque = Mensaje.substring(PrimerEspacio + 1);
String MacStr = "";
for (i=09;1<6; it+) {

MacStr += String(info->src_addr[i], HEX);

if (i < 5) MacStr += ":";
}
Serial.print("El dispositivo ");
Serial.print(NormalizarMac(MacStr));
Serial.print(" estd intentando vincular el bloque ");
Serial.println(NombreBloque);
Serial.println("Vinculando...");
else if (strncmp(MensajeRecibido.text, "Vinculado", 9)

Serial.println("Vinculacion completada.");
String Mensaje = String(MensajeRecibido.text);
PrimerEspacio = Mensaje.indexOf(' ');
String NombreBloque = Mensaje.substring(PrimerEspacio + 1);
String MacStr = "";
for (i=0; 1< 6; i++) {
MacStr += String(info->src_addr[i], HEX);
if (i < 5) MacStr += ":";
}
VectoresVinculados.push_back(NombreBloque);
VectoresVinculados.push back(MacStr);
else if (strncmp(MensajeRecibido.text, "Responsable", 11)
{
String Mensaje = String(MensajeRecibido.text);
PrimerEspacio = Mensaje.indexOf("' ');
SegundoEspacio = Mensaje.indexOf("' ', PrimerEspacio +

TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio +

193.

194. String NombreBloque = Mensaje.substring(PrimerEspacio + 1,
SegundoEspacio);

185, String StrIndiceMin = Mensaje.substring(SegundoEspacio + 1,
TercerEspacio);

196. String StrIndiceMax = Mensaje.substring(TercerEspacio + 1);

197. IndiceMin = StrIndiceMin.toInt();

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

198. IndiceMax = StrIndiceMax.toInt();

1919

200. String MacStr = "";

201. for (i=0; 1< 6; i++) {

202. MacStr += String(info->src_addr[i], HEX);

203. if (i < 5) MacStr += ":";

204. }

205. ConvertirMacStringABytes(MacStr,peerMAC);

206. for (i = 0; i < ValoresResponsabilizados.size();
i++) {

207. if (NombreBloque == ValoresResponsabilizados[i]) {

208. if ((IndiceMin >=
ValoresResponsabilizados[i+1].toInt() && IndiceMin <=
ValoresResponsabilizados[i+2].toInt()) || (IndiceMax >=
ValoresResponsabilizados[i+1].toInt() && IndiceMax <=
ValoresResponsabilizados[i+2].toInt()) || (IndiceMin <=
ValoresResponsabilizados[i+1].toInt() & & IndiceMax >=
ValoresResponsabilizados[i+2].toInt())) {

209. Texto[100];

210. sprintf(Texto, "ResponsError %s %d %d",
NombreBloque.c_str(), ValoresResponsabilizados[i+1].toInt(),
ValoresResponsabilizados[i+2].toInt());

211. strcpy(MensajeEnviado.text, Texto);

212. esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

213. } else {

214. Texto[100];

215. sprintf(Texto, "ResponsExito %s %d %d",
NombreBloque.c str(), IndiceMin, IndiceMax);

216. strcpy(MensajeEnviado.text, Texto);

217. esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

218. }

219. }

220. }

221. if (ValoresResponsabilizados.size() == 0) {

222. Texto[100];

223. sprintf(Texto, "ResponsExito %s %d %d",
NombreBloque.c_str(), IndiceMin, IndiceMax);

224, strcpy(MensajeEnviado.text, Texto);

225. esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

226. }

227. } else if ((strncmp(MensajeRecibido.text, "ResponsError",
12) == @) || ((strncmp(MensajeRecibido.text, "ResponsExito", 12)

String Mensaje = String(MensajeRecibido.text);

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

PrimerEspacio = Mensaje.indexOf("' ');
SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio +

1);

TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio +

1);

232. String NombreBloque = Mensaje.substring(PrimerEspacio + 1,
SegundoEspacio);

2334 String StrIndiceMin = Mensaje.substring(SegundoEspacio +
1, TercerEspacio);

234. String StrIndiceMax = Mensaje.substring(TercerEspacio +
1);

235 IndiceMin = StrIndiceMin.toInt();

236. IndiceMax = StrIndiceMax.toInt();

237 if (strncmp(MensajeRecibido.text, "ResponsError", 12) ==
0) {

238. Respuestas.push_back(0);

239, }

240. if (strncmp(MensajeRecibido.text, "ResponsExito", 12) ==
0) {

241. Respuestas.push back(1);

242. }

243. String MacStr = "";

244 for (i=0; 1< 6; i++) {

245, MacStr += String(info->src_addr[i], HEX);

246. if (i < 5) MacStr += ":";

247. }

248. ConvertirMacStringABytes(MacStr,peerMAC);

249. for (i = 9; 1 < ListaRespuestasPendientes.size();
i++) {

250. if (ListaRespuestasPendientes[i] == MacStr) {

251. ListaRespuestasPendientes[i+1] = "1";

252. break;

253. }

254, }

255 TodosRespondieron = true;

256. for (i =1; i < ListaRespuestasPendientes.size(); i
E=R20

257. if (ListaRespuestasPendientes[i] != "1") {

258. TodosRespondieron = false;

259. break;

260.

261.

262. ExisteError = false;

263. if (TodosRespondieron) {

264. for (i =0; i < Respuestas.size(); i++) {

265. if (Respuestas[i] == 0) {

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

266. ExisteError = true;

Y break;

268. }

269. }

270. if (ExisteError) {

271. Serial.print("Error: Para el bloque ");

272. Serial.print(NombreBloque);

273. Serial.print(" no puedes responsabilizarte de unos
indices entre ");

274. Serial.print(IndiceMin);

275. Serial.print(" y ");

276. Serial.println(IndiceMax);

277. else {

278. Serial.print("Para el bloque ");

279. Serial.print(NombreBloque);

280. Serial.print(" este dispositivo solo podra escribir
entre las posiciones ");

281. Serial.print(IndiceMin);

282. Serial.print(" y ");

PEER Serial.println(IndiceMax);

284. ValoresResponsabilizados.push back(NombreBloque);

285. ValoresResponsabilizados.push back(StrIndiceMin);

286. ValoresResponsabilizados.push_back(StrIndiceMax);

287. }

288. Respuestas.clear();

289. ListaRespuestasPendientes.clear();

290.

291l

292.

La funcion “enRecepcionDeDatos()” es el “Cerebro” de la libreria, se encarga
de gestionar los datos recibidos a través de la comunicacion ESP-NOW. Esta
funcién se activa de forma automatica siempre que el dispositivo reciba datos
a través de ESP-NOW, interpreta y toma decisiones en funcion del contenido
del mensaje recibido. Todas las funciones de envio de mensajes definidas
anteriormente estarian incompletas sin la utilizacion de esta funcion.

Primero se guarda el mensaje recibido en la variable “MensajeRecibido”.

memcpy (&MensajeRecibido, DatosRecibidos,

sizeof(MensajeRecibido));

A continuacion, se procesara el mensaje de maneras diferentes dependiendo
del contenido del mismo:

62

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

e Procesamiento de mensaje enviado por la funcion “Registrar()”:

- Si se recibe el mensaje “Prueba de conexion”, se guarda la direccion
MAC que envi6é dicho mensaje en la variable “MacString” a través de
“info->src_addr”, se agrega al vector “DispositivosConectados” si no
esta registrado ya y se agrega como peer si no lo esta ya usando la
funcion “esp_now_add_peer()”. Una vez hecho esto, se envia el mensaje
“Recibido” de vuelta al dispositivo que envié “Prueba de conexion”.

if (strcmp(MensajeRecibido.text, "Prueba de conexiodn") ==
0) {
String MacString = "";
for (i=09; 1< 6; i++) {
MacString += String(info->src_addr[i], HEX);
if (i < 5) {
MacString += ":";
}
}
if (find(DispositivosConectados.begin(),
DispositivosConectados.end(), MacString) ==
DispositivosConectados.end()) {
DispositivosConectados.push back(MacString);
¥
if (lesp_now_is_peer_exist(info->src_addr)) {
InfoPeer = {};
memcpy (InfoPeer.peer_addr, info->src_addr, 6);
InfoPeer.channel 0;
InfoPeer.encrypt = false;
if (esp_now_add_peer(&InfoPeer) != ESP_OK) {
Serial.println("Error al agregar el peer
temporalmente.");
return;

}
}

strcpy(MensajeEnviado.text, "Recibido");
ResultadoDeEnvio = esp_now_send(info-

>src_addr, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

Serial.print(MacString);

Serial.println(" esta intentando conectarse.");

if (ResultadoDeEnvio == ESP_OK) {

Serial.println("Iniciando conexioén...");
} else {

Serial.print("Error al iniciar conexidén. Cédigo de
error: ");

63

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Serial.println(ResultadoDeEnvio);

- Si el mensaje recibido es “Recibido”, se almacena la direccion MAC del
dispositivo que envia dicho mensaje. Esta parte del cédigo sirve como
comprobacion de dos dispositivos estan en alcance.

34.else if (strcmp(MensajeRecibido.text, "Recibido") == 0) {

RespuestaRecibida = true;
String MacString = "";
for (i=09; 1< 6; i++) {

MacString += String(info->src_addr[i], HEX);

if (i < 5) {

MacString += ":";

}

}

if (find(DispositivosConectados.begin(),
DispositivosConectados.end(), MacString) ==
DispositivosConectados.end()) {
DispositivosConectados.push_back(MacString);

*El dispositivo A envia “Prueba de conexion” si el dispositivo B recibe “Prueba
de conexion” guarda la MAC de Ay envia “Recibido”. Si el dispositivo A recibe
“Recibido” guarda la MAC de B.

e Procesamiento del mensaje enviado por la funcion “Borrar()”

- Si los 7 primeros caracteres del mensaje recibido son “Borrado”, se
almacena el mensaje recibido en la variable “mensajeRecibido” para
poder tratarla y obtener la direccion MAC de quien envi6 el mensaje. Se
imprime un mensaje para dar a conocer al usuario del dispositivo que
se ha recibido una solicitud de borrado, se revisa si hay algun dispositivo
conectado y se imprime un mensaje si no es asi. A continuacion,
mediante un “for”, se recorre todos los dispositivos registrados y se
compara mediante un “if” cada direccion almacenada con la del
mensaje recibido. Si ambas direcciones son iguales se elimina el
dispositivo de la lista de dispositivos conectados y se elimina de la red
mediante la funciéon de ESP-NOW “esp_now_del_peer”. Por Gltimo, se
imprime un mensaje por pantalla informando al usuario sobre la
eliminacion del dispositivo 'y se elimina del vector
“VectoresVinculados()” el dispositivo borrado junto al bloque vinculado.
46.else if (strncmp(MensajeRecibido.text, "Borrado", 7) ==

{

47. String mensajeRecibido = MensajeRecibido.text;

64

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

espacioPos = mensajeRecibido.indexOf("' ');
if (espacioPos != -1) {
String MacString =
mensajeRecibido.substring(espacioPos + 1);
Serial.print("El dispositivo ");
Serial.print(MacString);
Serial.println(" ha solicitado borrar su registro.");
if (DispositivosConectados.empty()) {
Serial.println("No hay dispositivos para borrar.");
} else {
for (it = DispositivosConectados.begin(); it
I= DispositivosConectados.end(); ++it) {
if (NormalizarMac(*it) == NormalizarMac(MacString))

ConvertirMacStringABytes(MacString, peerMAC);
DispositivosConectados.erase(it);
esp_now_del peer(peerMAC);
Serial.print("El dispositivo ");
Serial.print(MacString);
Serial.println(" ha sido eliminado con éxito.");
for (i = 09; i < VectoresVinculados.size();
i++) {
if(NormalizarMac(VectoresVinculados[i]) ==
NormalizarMac(*it)) {
VectoresVinculados.erase(VectoresVinculados.b
egin() + (1 - 1));
VectoresVinculados.erase(VectoresVinculados.b
egin() + (1 - 1));
i-=1;
}
}

break;

e Procesamiento del mensaje enviado por la funcion

“EditarValorDeMemoria()”

- Si los 6 primeros caracteres del mensaje recibido son “Editar”, se
procede con la siguiente parte del cddigo. Primero se imprime un
mensaje informando al usuario del mensaje recibido y se almacena el
mensaje en la variable “Mensaje” para poder manipularla. Se buscan
las posiciones de los espacios para poder extraer las diferentes

65

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

variables: ElI nombre del blogue de memorias reservado
(NombreBloque), el indice donde se almacenara el dato a editar
(IndiceStr) y el valor del dato (ValorStr). Ademas, se convierte el indice
en un entero y se obtiene la MAC del dispositivo emisor (MacStr) a través
de “info->src_addr”. Mediante dos “for” se recorren los vectores
“Bloques()” y “DispositivosAsignados()” y con una condicion “if” se
comprueba cuando el elemento de los mismos son iguales y son iguales
al contenido de “NombreBloque”, ya que, para este caso concreto, el
tamano del bloque se encontrara en la posicion siguiente del vector
“Bloques()”. Mediante una condicion “if” se comprueba si el indice
introducido es valido: que sea mayor que O y menor que el tamano del
bloque y se prepara un mensaje de error si no es asi. Y se llama a la
funcion de “EscribirMemoria” para escribir el valor en el indice del
blogue de memoria concretos.

else if (strncmp(MensajeRecibido.text, "Editar", 6)

{
Serial.println("Mensaje recibido");
Serial.println(MensajeRecibido.text);

String Mensaje = String(MensajeRecibido.text);

PrimerEspacio = Mensaje.indexOf(' ');
SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio
+ 1);

TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio

+ 1);

String NombreBloque = Mensaje.substring(PrimerEspacio +
1, SegundoEspacio);

String IndiceStr = Mensaje.substring(SegundoEspacio +
1, TercerEspacio);
String ValorStr = Mensaje.substring(TercerEspacio + 1);

IndiceBytes = IndiceStr.toInt();
String MacStr = "";
for (i=20; 1< 6; i++) {
MacStr += String(info->src_addr[i], HEX);
if (i < 5) MacStr += ":";
}
for (i =0; i < Bloques.size(); ++i) {
for (j = @; j < VectoresVinculados.size();
++3) {
if (Bloques [i] == VectoresVinculados [j] &&
Bloques[i] == NombreBloque) {

66

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

101. TamanoBloque = Bloques [i +
1].toInt();

102. if (IndiceBytes >= 0 && IndiceBytes <
TamanoBloque) {

103. } else {

104. Serial.println("Enviando error a emisor...");

105. MacBytes[6];

106. ConvertirMacStringABytes(MacStr, MacBytes);

107. strcpy(MensajeEnviado.text, "Error 3: Indice
fuera de rango");

108. Result = esp now send(info->src_addr,
(*)&MensajeEnviado, sizeof(MensajeEnviado));

109. return;

110.

111.

112.

113.

114. EscribirMemoria(NombreBloque, IndiceBytes, ValorStr);

115. delayMicroseconds(200);

- Si los siete primeros caracteres del mensaje recibido son “Error 37,
correspondiente al intento de modificar una direccion de memoria a la
qgue un bloque no tiene acceso (el indice es mayor al tamano del bloque),
se imprime dicho mensaje de error.

116. else if (strncmp(MensajeRecibido.text, "Error 3", 7)

0) {

117. Serial.print("Mensaje recibido: ");
118. Serial.println(MensajeRecibido.text);
119. }

e Procesamiento del mensaje enviado por la funcién “VincularVector()”

- Silos ocho primeros caracteres del mensaje recibido son “Vincular”, se
sacan los parametros recibidos del mensaje: el nombre del bloque y el
tamano del bloque. Se almacena en “VectoresVinculados()” el nombre
del bloque y la direccion MAC del dispositivo del que se recibe el
mensaje y se preparan dos mensajes de aviso a modo de respuesta:

+ Primero se prepara el mensaje “Vinculando”.
+ A continuacion se ejecuta la funcion de “EditarValorDeMemoria ()" y
se ejecuta el flujo para escribir en memorias de otros dispositivos solo
en los valores ya sobrescritos para que el contenido del bloque de
memoria de todos los dispositivos sea el mismo.
+Por Gltimo se prepara el mensaje “Vinculado”.

. else if (strncmp(MensajeRecibido.text, "Vincular", 8)

0){

67

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores

ESP32

68

120. String Mensaje = String(MensajeRecibido.text);

121. PrimerEspacio = Mensaje.indexOf(' ');

122. SegundoEspacio = Mensaje.indexOf(' ',
PrimerEspacio + 1);

123. String NombreBloque = Mensaje.substring(PrimerEspacio
+ 1, SegundoEspacio);

124. String TamanoBloque =
Mensaje.substring(SegundoEspacio + 1);

125. TamanoBloqueBytes = TamanoBloque.toInt();

126. for (i =0; i < Bloques.size(); i++){

127. if(Bloques[i] == NombreBloque){

128. if (Bloques[i+1] == TamanoBloque){

129. String MacStr = "";

130. for (i=09;1<6; it+) {

131. MacStr += String(info->src_addr[i], HEX);

132. if (i < 5) MacStr += ":";

EER }

134. ConvertirMacStringABytes (MacStr,peerMAC);

135. NormalizarMac(MacStr);

136. VectoresVinculados.push_back(NombreBloque);

137. VectoresVinculados.push back(MacStr);

138.

139. Texto[50];

140. sprintf(Texto, "Vinculando %s ",
NombreBloque.c_str());

141. strcpy(MensajeEnviado.text, Texto);

142. esp_now_send(peerMAC,
¢ *)&MensajeEnviado, sizeof(MensajeEnviado));

143. Serial.print("E1l vector: ");

144. Serial.print(NombreBloque);

145. Serial.print(" se esta intentando vincular con
")

146. Serial.println(NormalizarMac(MacStr));

147. Serial.println("Vinculando...");

148. for (i = 0; i < TamanoBloqueBytes; i++) {

149. if(MostrarMemoria(NombreBloque, i) != 0) {

150. EditarValorDeMemoria(MacStr, NombreBloque,
i, MostrarMemoria(NombreBloque, i));

151. delayMicroseconds(1000);

152. }

153. }

154. Serial.println("Vinculacién completada");

155. sprintf(Texto, "Vinculado %s",
NombreBloque.c_str());

156. strcpy(MensajeEnviado.text, Texto);

157. esp_now_send(peerMAC,
(*)&MensajeEnviado, sizeof(MensajeEnviado));

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

- Silos diez primeros caracteres del mensaje recibido son “Vinculando”,
se obtienen los parametros del mensaje recibido y se imprime un
mensaje de aviso, dando a conocer al usuario el comienzo del proceso
de vinculacion.

161. else if (strncmp(MensajeRecibido.text, "Vinculando", 10)
== 0) {

162. String Mensaje = String(MensajeRecibido.text);

163. Serial.println(Mensaje);

164. PrimerEspacio = Mensaje.indexOf("' ');

165. String NombreBloque = Mensaje.substring(PrimerEspacio
+1);

166. String MacStr = "";

167. for (i=0; 1< 6; i++) {

168. MacStr += String(info->src_addr[i], HEX);

169. if (i < 5) MacStr += ":";

170. }

171. Serial.print("E1l dispositivo ");

172. Serial.print(NormalizarMac(MacStr));

IVER Serial.print(" estd intentando vincular el bloque ");

174. Serial.println(NombreBloque);

175. Serial.println("Vinculando...");

176. }

- Silos siete primeros caracteres del mensaje recibido son “Vinculado”,
se saca el parametro requerido del mensaje recibido, se avisa al
usuario de la finalizacion del proceso de vinculacion y se construye el
vector “VectoresVinculados”, almacenando el nombre del bloque
seguido de la direccion MAC a la que esta vinculada.

176. else if (strncmp(MensajeRecibido.text, "Vinculado", 9)

177. Serial.println("Vinculacién completada.™);
178. String Mensaje = String(MensajeRecibido.text);
179. PrimerEspacio = Mensaje.indexOf("' ');

180. String NombreBloque = Mensaje.substring(PrimerEspacio
+1);

181. String MacStr = "";

182. for (i=20;1<6; i++) {

183. MacStr += String(info->src_addr[i], HEX);

184. if (i < 5) MacStr += ":";

69

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

185. }
186. VectoresVinculados.push_back(NombreBloque);

187. VectoresVinculados.push back(MacStr);
188. }
e Procesamiento del mensaje enviado por la funcion

“CrearVectorValoresResponsabilizados”

- Silos 11 primeros caracteres del mensaje recibido son “Responsable”,
se obtienen los parametros del mensaje recibido, se recorre el vector
“ValoresResponsabilizados”. Empezando por el final, si el dispositivo no
tiene ningln valor responsabilizado, se envia de vuelta un mensaje de
“ResponsExito”, indicandole al dispositivo que tiene permiso de
responsabilizarse de esos indices (este tendra que esperar a que todos
los dispositivos le digan lo mismo para poder responsabilizarse de unos
inidces). Si el dispositivo si tiene valores responsabilizados,
comprobara que los indices a los que el otro dispositivo quiere tener
acceso son validos, esto es, que ningln indice de un bloque pueda ser
accedido por mas de un dispositivo. Si son validos, se enviara el
mensaje “ResponsExito” y en caso contrario “ResponsError”.

188. else if (strncmp(MensajeRecibido.text, "Responsable",
11) == 0) {

189. String Mensaje = String(MensajeRecibido.text);

190. PrimerEspacio = Mensaje.indexOf("' ');

191. SegundoEspacio = Mensaje.indexOf(' ',
PrimerEspacio + 1);

192. TercerEspacio = Mensaje.indexOf(' ',
SegundoEspacio + 1);

193.

194. String NombreBloque = Mensaje.substring(PrimerEspacio
+ 1, SegundoEspacio);

195. String StrIndiceMin
Mensaje.substring(SegundoEspacio + 1, TercerEspacio);

196. String StrIndiceMax = Mensaje.substring(TercerEspacio
+1);

197. IndiceMin = StrIndiceMin.toInt();

198. IndiceMax = StrIndiceMax.toInt();

199.

200. String MacStr = "";

201. for (i=0; 1< 6; i++) {

202. MacStr += String(info->src_addr[i], HEX);

203. if (i < 5) MacStr += ":";

204, }

205. ConvertirMacStringABytes(MacStr,peerMAC);

206. for (i=09; 1«
ValoresResponsabilizados.size(); i++) {

70

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores

ESP32

71

if (NombreBloque == ValoresResponsabilizados[i])

if ((IndiceMin >=
ValoresResponsabilizados[i+1].toInt() && IndiceMin <=
ValoresResponsabilizados[i+2].toInt()) || (IndiceMax >=
ValoresResponsabilizados[i+1].toInt() && IndiceMax <=
ValoresResponsabilizados[i+2].toInt()) || (IndiceMin <=
ValoresResponsabilizados[i+1].toInt() && IndiceMax >=
ValoresResponsabilizados[i+2].toInt())) {

209. Texto[100];

210. sprintf(Texto, "ResponsError %s %d %d",
NombreBloque.c_str(),
ValoresResponsabilizados[i+1].toInt(),
ValoresResponsabilizados[i+2].toInt());

211. strcpy(MensajeEnviado.text, Texto);

212. esp now send(peerMAC,
¢ *)&MensajeEnviado, sizeof(MensajeEnviado));

AR } else {

214. Texto[100];

215. sprintf(Texto, "ResponsExito %s %d %d",
NombreBloque.c str(), IndiceMin, IndiceMax);

216. strcpy(MensajeEnviado.text, Texto);

217. esp_now_send(peerMAC,

(*)&MensajeEnviado, sizeof(MensajeEnviado));

218. }

219. }

220. }

221. if (ValoresResponsabilizados.size() == 0) {

222. Texto[100];

223. sprintf(Texto, "ResponsExito %s %d %d",
NombreBloque.c_str(), IndiceMin, IndiceMax);

224. strcpy(MensajeEnviado.text, Texto);

225. esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

226. }

227. }

Si el mensaje recibido es “ResponsError” o “ResponsExito” se obtiene
los parametros necesarios del mensaje recibido. Por cada
“ResponsError” que se recibe se anade un valor O al vector
“Respuestas”, y por cada “ResponsExito” recibido se le anade un 1. Se
recorre el vector “ListaDeRespuestasPendientes” compuesto de las
direcciones MAC de los dispositivos que faltan por responder
“ResponsExito” o “ResponsError” y se ahade tantos unos como
dispositivos haya sin responder. Esto sirve, para posteriormente, volver
a recorrer el vector. Si dicho vector contiene algin uno no se procedera

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores

ESP32

72

con la siguiente parte del flujo. Cuando el vector solo contenga ceros,
se recorre el vector “Respuestas”, si este vector contiene algin O es
porque alglin dispositivo ha enviado “ResponsError”: el dispositivo esta
intentando tener acceso a unos indices de un bloque que ya son
accedidos por otro dispositivo, y se avisa de ello. En caso contrario, se
avisa al usuario del éxito en la responsabilizacion y se estructura el
vector “”ValoresResponsabilizados” en trios de datos: primero el
nombre del bloque, luego el indice minimo al que se tiene acceso y
luego el maximo.

227. else if ((strncmp(MensajeRecibido.text, "ResponsError",
0) || ((strncmp(MensajeRecibido.text,

"ResponsExito", 12) == 0))) {

228. String Mensaje = String(MensajeRecibido.text);

228 PrimerEspacio = Mensaje.indexOf(' ');

230. SegundoEspacio = Mensaje.indexOf(' ',
PrimerEspacio + 1);

231. TercerEspacio = Mensaje.indexOf(' ',
SegundoEspacio + 1);

232.

PEER String NombreBloque =
Mensaje.substring(PrimerEspacio + 1, SegundoEspacio);

234. String StrIndiceMin =
Mensaje.substring(SegundoEspacio + 1, TercerEspacio);

235, String StrIndiceMax =
Mensaje.substring(TercerEspacio + 1);

236. IndiceMin = StrIndiceMin.toInt();

237 IndiceMax = StrIndiceMax.toInt();

ER if (strncmp(MensajeRecibido.text, "ResponsError",
12) == 0) {

239. Respuestas.push _back(9);

240. }

241. if (strncmp(MensajeRecibido.text, "ResponsExito",
12) == 0) {

242. Respuestas.push_back(1);

243. }

244, String MacStr = "";

245, for (i=0;1i<6; it+) {

246. MacStr += String(info->src_addr[i], HEX);

247. if (i < 5) MacStr += ":";

248. }

249, ConvertirMacStringABytes(MacStr,peerMAC);

250. for (i=09; 1«
ListaRespuestasPendientes.size(); i++) {

251. if (ListaRespuestasPendientes[i] == MacStr)

252. ListaRespuestasPendientes[i+1] = "1";

EER break;

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores

ESP32

73

254.
255.
256.
257.

258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.

TodosRespondieron = true;

for (i=1; 1«
ListaRespuestasPendientes.size(); i += 2) {

if (ListaRespuestasPendientes[i] != "1") {
TodosRespondieron = false;
break;

ExisteError = false;

if (TodosRespondieron) {

for (i = 0; 1 < Respuestas.size(); i++) {
if (Respuestas[i] == 0) {
ExisteError = true;
break;

}
}

if (ExisteError) {
Serial.print("Error: Para el bloque ");
Serial.print(NombreBloque);
Serial.print(" no puedes responsabilizarte de

unos indices entre ");

275.
276.
277.
278.
279.
280.
281.

Serial.print(IndiceMin);

Serial.print(" y ");
Serial.println(IndiceMax);

else {

Serial.print("Para el bloque ");
Serial.print(NombreBloque);

Serial.print(" este dispositivo solo podra

escribir entre las posiciones ");

282.
283.
284.
285.

Serial.print(IndiceMin);
Serial.print(" y ");
Serial.println(IndiceMax);

ValoresResponsabilizados.push_back(NombreBloque);

286.

ValoresResponsabilizados.push_back(StrIndiceMin);

287.

ValoresResponsabilizados.push_back(StrIndiceMax);

288.
289.
290.
291.
292.
293. }

}

}

}

Respuestas.clear();
ListaRespuestasPendientes.clear();

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

La

funcion “enRecepcionDeDatos()” es una funcidon compleja que permite

manejar los mensajes recibidos a través de ESP-NOW y toma decisiones
dependiendo del contenido del mensaje:

- Confirma la conexion entre dispositivos y los registra.

- Elimina dispositivos.

- Vincula bloques de memoria.

- Da permisos de edicion a determinados indices en cada bloque.
- Modifica valores de memoria.

- Informa sobre errores.

Variables Globales

Las variables globales son aquellas que se definen fuera de cualquier funcion
y por ello, pueden ser accedidas desde cualquier parte del codigo. Estas
variables se utilizan para almacenar datos fuera de la definicion de las propias
funciones. Las variables globales creadas son las siguientes:

1.

4.

74

MensajeEstructurado MemoriaCompartida::MensajeEnviado;

La variable de tipo “MensajeEstructurado” denominada “MensajeEnviado”,
permite almacenar el contenido de un mensaje enviado a un dispositivo.
El tipo de variable “MensajeEstructurado” viene definido en el archivo
“MemoriaCompartida.h” se trata de una variable de tipo “struct” que
contiene un dnico campo: una cadena de caracteres de hasta 240
posiciones.

MensajeEstructurado MemoriaCompartida::MensajeRecibido;

La variable de tipo “MensajeEstructurado” denominada
“MensajeRecibido”, permite almacenar el contenido de un mensaje
recibido por un dispositivo.

El tipo de variable “MensajeEstructurado” viene definido en el archivo
“MemoriaCompartida.n” se trata de una variable de tipo “struct” que
contiene un Unico campo: una cadena de caracteres de hasta 240
posiciones.

uint8_t MemoriaCompartida::peerMAC[6];
La variable “peerMAC” sirve para obtener el resultado al aplicar la funcion

“ConvertirMacStringABytes()” a lo largo de todo el codigo.

bool MemoriaCompartida::RespuestaRecibida = false;

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

La variable “Respuestarecibida” sirve para, en el flujo del registro de
dispositivos, saber si el dispositivo que se pretende registrar esta en
alcance o no.

5. std::vector<String> MemoriaCompartida::DispositivosConectados;
El vector “DispositivosConectados” sirve para almacenar las direcciones
MAC del resto de dispositivos registrados por un dispositivo.
Ejem.: Para un dispositivo A registrado a B y C, el vector
“DispositivosConectados” en el dispositivo A sera:
DispositivosConectados: MAC B, MAC C

6. std::vector<uint32_t*> MemoriaCompartida::MemoriaDispositivos;
El vector “MemoriaDispositivos” almacena los punteros que apuntan a
direcciones especificas dentro de bloques de memoria creados.

7. std::vector<String> MemoriaCompartida::DispositivosAlias;
El vector “DispositivosAlias” almacena a pares la direccion MAC de un
dispositivo junto al alias introducido por el usuario si lo hay.

8. std::vector<String> MemoriaCompartida::Blogues;
El vector “Bloques” almacena a pares el nombre de un bloque de memoria
reservado acompanado de su tamano.
Ejem.: Para un bloque de memoria llamado Ana de tamano 50 direcciones
de memoria y un bloque de memoria llamado Bea de 100 direcciones de
memoria, el vector “Bloques” en el dispositivo donde se han creado sera:
Bloques: Ana, 50, Bea, 100

9. std:vector<String> MemoriaCompartida::VectoresVinculados;

El vector “VectoresVinculados” almacena a pares el nombre de un bloque
de memoria reservado junto a la direccion MAC del dispositivo que tenga
ese mismo bloque de memoria vinculado.

Ejm.: Para un bloque de memoria llamado “Ana” vinculado con el dispositivo
By C, un bloque de memoria llamado “Bea” vinculado con el dispositivo Cy
un bloque de memoria llamado Carla, no vinculado con ningun dispositivo,
el contenido de “VectoresVinculados” en el dispositivo A es:
VectoresVinculados: Ana, MAC B, Ana, MAC C, Bea, MAC C

10.std::vector<String> MemoriaCompartida::ValoresResponsabilizados;

El vector “ValoresResponsabilizados” almacena en trios de datos el nombre
de un bloque vinculado con otro dispositivo, el indice menor (de ese bloque)

75

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

al cual el dispositivo tiene acceso, y el indice mayor (de ese bloque) al cual
el dispositivo tiene acceso.

Ejm.: Para un bloque de memoria vinculado entre dos dispositivos: Ay B
llamado Ana de tamano 50, donde A se responsabiliza de las posiciones 1
a la 15, el vector “VectoresVinculados” en A es:

VectoresVinculados: Ana, 1, 15

11.std::vector<String> MemoriaCompartida::ListaRespuestasPendientes;
El vector “ListaRespuestasPendientes” almacena 0’s 6 1’s en funcion de si
el dispositivo ha recibido una respuesta o no en el flujo de
responsabilizacion de indices de un bloque. Si el vector solo contiene O’s
no respondid nadie, si solo contiene 1’s respondieron todos.

12.std::vector<int> MemoriaCompartida::Respuestas;
El vector “Respuestas” almacena 0’s 6 1’s en funcion de si el dispositivo ha
recibido una respuesta del tipo “ResponsError” o “ResponsExito” en el flujo
de responsabilizacion de indices de un bloque, almacenando un O en caso
de error y un 1 en caso de éxito.

13.bool MemoriaCompartida::SePuedeEscribir;
La variable booleana “SePuedeEscribir” permite al sistema conocer, dado
el flujo, si es posible escribir en un bloque de memoria creado en un
dispositivo o no.

Contexto

Alcance

Esta libreria permite la intercomunicacion entre nodos para la simulacién de
una memoria compartida entre dispositivos ESP32 usando ESP-NOW. La
libreria proporciona mecanismos para el envio y recepcion de estructuras de
datos permitiendo sincronizar la informacién entre los diferentes nodos de
forma eficiente y sin necesidad de una infraestructura de red.

Por ello, el alcance de este proyecto se limita a:

1. Uso exclusivo del protocolo ESP-NOW para la comunicacion
inalambrica entre nodos. Este proyecto no incluye la integracion con
otros protocolos que no sean ESP-NOW como puede ser MQTT o LoRa
o WiFi tradicional.

2. La implementacién y validacion de la libreria Unicamente sobre
dispositivos ESP32. No se asegura que todas las funcionalidades

76

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

disenadas en la libreria deban funcionar con otro tipo de
microprocesador.

Oportunidades

La libreria puede usarse en cualquier entorno, ya sea profesional o de ocio, y
con cualquier nivel de conocimiento técnico para el desarrollo de herramientas
software donde la intercomunicacion entre dispositivos en entornos sin
infraestructura WI-Fi sea necesaria.

La libreria es especialmente Util en: entornos loT y de domética donde la alta
velocidad de transferencia de datos sea necesaria, y en proyectos de
sensorizacion en zonas remotas.

Limitaciones

En cuanto a las limitaciones técnicas de la libreria, cabe destacar:

1. Tamano de los mensajes: el tamano de los mensajes enviados entre
dispositivos no debera ser mayor a 250 bytes.

2. Cantidad de dispositivos conectados: la cantidad de dispositivos a
registrar no debera ser mayor a 20.

3. Memoria pequena: los dispositivos esp32 suelen tener una memoria
pequena que puede no ser suficiente para el tipo de proyecto que se
esté realizando. Aunque como solucion sencilla podria usarse una
memoria externa.

4. Distancia entre dispositivos maxima (para que ESP-NOW funcione): la
distancia maxima, segln el proveedor, en la que la tecnologia esp-now
funciona es de 200 metros.

77

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Conclusiones e Implicaciones

En este proyecto se ha logrado desarrollar una libreria funcional para la
simulaciéon de una memoria compartida entre dispositivos ESP32 usando el
protocolo de comunicacion inalambrica ESP-NOW. Este objetivo principal ha
sido cumplido, proporcionando una herramienta que permite la sincronizacion
entre nodos para la comparticion de estructuras de datos entre ellos, de forma
eficiente y sin necesidad de infraestructura de red adicional.

La soluciéon implementada ha demostrado que es posible abstraer la
comunicacion inalambrica entre microprocesadores como si de una memoria
compartida se tratara a través del uso de una libreria, facilitando el uso y por
ello, el desarrollo de herramientas en computacion distribuida. La libreria ha
sido validada, confirmando su correcto funcionamiento mediante la
implementacion de pruebas empleando dispositivos ESP32.

Como posibles lineas de trabajo futuras, se propone:

1. Anadir integracion con otros protocolos de comunicacion como MQTT,
LoRa o WiFi para una interoperabilidad hibrida.
2. Asegurar el soporte con otros microprocesadores.

En definitiva, este proyecto no solo presenta una solucidon concreta a un
problema planteado, sino que también establece una base sélida para futuros
desarrollos de proyectos relacionados con la intercomunicacion entre
dispositivos, de forma eficiente, sencilla y sin infraestructura externa.

79

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores

ESP32

Bibliografia

1. https://docs.keyestudio.com/projects/KS5016/en/latest/docs/

2. https://rmd.jcyl.es/web/es/territorio-rural-inteligente.html

3. https://wiki.keyestudio.com/KS5016_Keyestudio ESP32_PlLUS Develop
ment_Board

4. https://www.arsys.es/blog/codigo-bloqueante-nodejs

5. https://www.electrosoftcloud.com/esp-now-conecta-dos-o-mas-esp32-
esp8266/

6. https://www.espressif.com/sites/default/files/documentation/esp32-
wroom-32_datasheet_en.pdf

7. https://www.guiahardware.es/zigbee/

8. https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/que-es-
un-callback/

9. https://www.luisllamas.es/como-usar-esp-now-en-esp32/

10. https://www.matternet.com/

11. https://www.siemens.com/es/es/productos/software/mindsphere.html

12. https://www.silabs.com/wireless/technology

13. https://www.ti.com/lit/ds/symlink/cc2530.pdf?ts=1749028684669&
ref url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fes-
mx%252FCC2530

14. https://www.youtube.com/watch?v=bEKiCDDUPaU

15. https://www.youtube.com/watch?v=QmvMtgNs9r8

16. https://www.youtube.com/watch?v=VGoiUk-jkjE&list=Pl -

81

Hb9zZP9qC40uOyYYYPrGeAClL2z970U

https://docs.keyestudio.com/projects/KS5016/en/latest/docs/
https://rmd.jcyl.es/web/es/territorio-rural-inteligente.html
https://wiki.keyestudio.com/KS5016_Keyestudio_ESP32_PLUS_Development_Board
https://wiki.keyestudio.com/KS5016_Keyestudio_ESP32_PLUS_Development_Board
https://www.arsys.es/blog/codigo-bloqueante-nodejs
https://www.electrosoftcloud.com/esp-now-conecta-dos-o-mas-esp32-esp8266/
https://www.electrosoftcloud.com/esp-now-conecta-dos-o-mas-esp32-esp8266/
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.guiahardware.es/zigbee/
https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/que-es-un-callback/
https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/que-es-un-callback/
https://www.luisllamas.es/como-usar-esp-now-en-esp32/
https://www.matternet.com/
https://www.siemens.com/es/es/productos/software/mindsphere.html
https://www.silabs.com/wireless/technology
https://www.ti.com/lit/ds/symlink/cc2530.pdf?ts=1749028684669&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fes-mx%252FCC2530
https://www.ti.com/lit/ds/symlink/cc2530.pdf?ts=1749028684669&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fes-mx%252FCC2530
https://www.ti.com/lit/ds/symlink/cc2530.pdf?ts=1749028684669&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fes-mx%252FCC2530
https://www.youtube.com/watch?v=bEKjCDDUPaU
https://www.youtube.com/watch?v=QmvMtgNs9r8
https://www.youtube.com/watch?v=VGoiUk-jkjE&list=PL-Hb9zZP9qC40uOyYYYPrGeAClL2z97oU
https://www.youtube.com/watch?v=VGoiUk-jkjE&list=PL-Hb9zZP9qC40uOyYYYPrGeAClL2z97oU

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Apéndice
Caso practico de utilizacion:

En una red con tres dispositivos: A, B y C se quiere simular una memoria
compartida de la siguiente forma:

e Entre Ay B se creara un Bloque Ana de tamano 50, con los siguientes
accesos:
- Atendra acceso a los indices del O al 25
- Btendra acceso a los indices del 26 al 40
e Entre By C se creara un Bloque Bea de tamano 100, con los siguientes
accesos:
- Btendra acceso a los indices del 0 al 50 y del 75 al 99.
- Ctendra acceso a los indices del 51 al 74.
e Entre A, By C se creara un Bloque Carla de tamano 200, con los siguientes
accesos:
- Atendra acceso a los indices del O al 25
- Btendraacceso del 26 al 75
- Ctendra acceso del 76 al 150.

Se comienza con el registro de los dispositivos:

En A se registra By C, y en B se registra C, de esta manera los 3 dispositivos
estaran registrados entre si. Para el registro se utilizaran las direcciones MAC
sacadas por pantalla nada mas ejecutar el programa:

El dispositivo A sera el de la MAC: “EC:64:C9:99:CF:78”

18:43:30.212 —> MAC del dispositivo: EC:64:C9:99:CF:78

18:43:30.250 —> ESP-NOW iniciado correctamente.
18:43:32_.256 —-> ESP-32 listo.
El dispositivo B sera el de la MAC: “EC:64:C9:99:D1:88”
29_858 -> MAC del dispositivo: EC:64:C9:99:D1:8
29_858 -> ESP-NOW iniciado correctamente.
31.857 —> ESP-32 listo.
El dispositivo C sera el de la MAC: “34:98:7A:BC:6F:DC”
18:50:38.806 —> MAC del dispositivo: 34:98:7A:BC:6F:DC
18:50:38.806 —> ESP-NOW iniciado correctamente.
18:50:40.811 -> ESP-32 listo.

Para registrar By C desde A:

Registrar EC:64:C9:99:D1:88 || Reqistrar 34:98:7FA:BC.6F:DC

83

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

18:54 Registrar EC:64:C9:9%:D1:88

18:54:25_.430 -> Iniciando conexidn con: EC:64:C9:99:D1:88
18:54:25_477 —-> Conectando. ..

18:54:25.477 -> No hay bloques creados para vincular.

18:54:29.773 —> Registrar 34:98:7A:BC:6F:DC
18:54:29.773 —> Iniciando conexidon con: 34:98:7A:BC:6F:DC
18:54:29_811 —-> Conectando. ..

18:54:29.811 -> No hay bloques creados para vincular.

Y para registrar C desde B:
Registrar 34:98.7/A:BC.6F.DC
0.049 —> Registrar 34:98:7A:BC:6F:DC
0.049 —> Iniciando conexiétn con: 34:98:7A:BC:6F:DC

0.049 —> Conectando...

0.049 -> No hay blogues creados para vincular.

Ahora, todos los dispositivos estaran registrados. Esto se comprobara
ejecutando la funcion de Dispositivos en cada dispositivo:

‘ Dispositivos|

En el dispositivo A:

18:58:53.468 —> Dispositivo local:
18:58:53_.468 > EC:64:C9:99:CF:78
18:58:53.469 —-> Dispositivos conectados:
18:58:53.469 —> EC:64:C9:99:D1:88
18:58:53.469 —> 34:98:7A:BC:6F:DC
18:58:53.469

En el dispositivo B:
18:59:24.392 —> Dispositivo local:
18:59:24_.392 —> EC:64:C9:99:D1:88

Dispositivos conectados:

EC:z64:C9:99:CF:78
34:-98:TA-BC:6F:DC

En el dispositivo C:

84

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Dispositivo local:

34:98:TA:BC:-6F:DC
Dispositivos conectados:
EC:64:C9:99:CF:78
EC:64:C9:99:D1:88

Una vez comprobado que todos los dispositivos estan registrados entre si, se
procede con la creacion de los bloques de memoria especificados:
En A se crea el bloque Ana de tamano 50 y Carla de tamano 200:

Ambos bloques se intentaran vincular con By C nada mas ser creados, pero
no se vincularan por que estos dispositivos alin no tienen creado ningln

vector: Ana se estid intentando wincular con EC:64:C9:99:D1:88
vector: Ana se estd intentando vincular con 34:98:7A :6F:DC

vector: Carla se esta intentando vincular con EC:6 99:D1:88

vector: Carla se esta intentando vincular con 34:98:7A:BC:6F:DC

En B se crea el bloque Ana 50 (que se vinculard automaticamente con el
bloque Ana de A), Bea 100 y Carla 200 (que se vinculara automaticamente
con el bloque Carla de A):

Bloque de memoria 'BEna' creado con tamafio de 50 direcciones de memoria.
El vector: Bna se estd intentando vincular con EC:6 }:99:CF: 78
El vector: Bna se estda intentando vincular con 34:98:7A:BC:6F:DC
> Vinculando Ana
El dispositivo EC:64:C9:99:CF:78 esta intentando vincular el blogque Ana

> Vinculando. - .

> Vinculacidn completada.

Bloque de memoria '"Bea' creado con tamafio de 100 direcciones de memoria.
El dispositivo EC:64:C9:99:CF:78 ya tiene winculado el bloque Ana
El vector: Ana se estid intentando vincular con 34:98:7A:BC:6F:DC
El vector: Bea se estd intentando wvincular con EC :78

.000 —> El vector: Bea se esta intentando vincular con 34:98:7A:BC:6F:DC

85

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Bloque de memoria 'Carla' creado con tamafio de 200 direcciones de memoria.

El dispositivo EC:64:C9 "F: 78 ya tiene wvinculado el bloque Ana

El vector: se estd i l incular con 34:98:7A:BC:6F:

El vector: se estd intentando wincular con EC:64:C9:99:CF:

El vector: se esta intentando vincular con 34:98:7A:BC:6F:

El vector: Carla se esta intentando vincular con E

El vector: Carla se esta intentando wvincular con 34:98:

Vinculande Carla

El dispositivo EC:64:C9:99:CF:78 estad intentando wvincular el bloque Carla

Vinculando. ..

Vinculacién completada.

En C se crea el bloque Bea 100 (que se vinculara automaticamente con el
bloque Bea de B) y el bloque Carla 200 (que se vinculara automaticamente
con el bloque Carla de Ay B):

19:13:05.02: 'Bea" creado con tamafio de 100 dir iones de memoria.
19:13:05.023 —> El1 wvector: Bea esta intentando wincular con EC:64:C9:99:CF:78
19:13:05.023 -> E1 vector: Bea esta intentando wincular con EC:64:C9:99:D1:88
19:13:05. -> Vinculando Bea

19:13:05.074 -> El1 dispositivo EC:64:C9:99:D1:88 esta intentando vincular el bloque Bea
19:13:05. —> Vinculando. ..

19:13:05.074 -> Vinculacién completada.

19:14:02.596 —> Blogque de memoria 'Carla' creado con tamafioc de 200 direcciones de memoria.
19:14:02.627 —-> E1 vector: Bea se esta intentando vincular con EC:64:C9:99:CF:78
19:14:02.627 —> E1l dispositivo EC:64:C9:99:D1:88 ya tiene w lado el blogque Bea
19:14:02.627 -> E1l vector: Carla se esta intentando vincular 64:C9:99:CF:78
19:14:02.627 —-> E1 vector: Carla se esta intentando vincular - 99:D1:88
19:14:02.675 —> Vinculando Carla

19:14:02.675 —> E1 dispositivo EC:64:C9:99:CF:78 esta intentando vincular el bloque Carla
19:14:02.675 —> Vinculando. ..

19:14:02.675 -> Vinculando Carla

19:14:02.675 —> E1 dispositivo EC:64:C9:99:D1:88 esta intentando vincular el bloque Carla
19:14:02.675 —> Vinculando...

19:14:02.675 —> Vinculacibén completada.

Los bloques ya estan vinculados segun se ha definido al inicio. A
continuacion, se procede con la obtencion de acceso de cada dispositivo a
cada bloque.

A debe tener acceso en el bloque Ana a los indices del O al 25 y en el bloque
Carla igual:

‘ Acceso Ana 0 25

‘ Acceso Carla 0 25|

sitivo solo podra escribir entre las posiciones 0 y 25
ositivo solo podra escribir entre las iciones 0 y 25

86

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

B debe tener acceso en el bloque Ana a los indices del 26 al 40, en el bloque
Bea a los indices del 0 al 50 y del 75 al 99, y en el bloque Carla debe tener
acceso a los indices del 26 al 75:

‘ Acceso Ana 26 40|

‘ Acceso Bea 0 50
‘ Acceso Bea TH 9¢

‘ Acceso Carla 26 75

:25:14.120 —> Para el blogue e di sitd solo podra escribir entre las posiciones 26 y 40
5:54_985 ->» Para el bloque i sitd solo podra escribir entre las posiciones 0 y 50
:12.506 —> Para el bloque siti solo podra escribir entre las posiciones 75 y 99

:26:55.556 —> Para el blogue Carla este dispositivo solo podra escribir entre las posiciones 26 y 75

C debe tener acceso en el bloque Bea a los indices del 51 al 74, y en el
bloque Carla los indices del 76 al 150:

Acceso Bea 51 74

‘ Acceso Carla 76 150

19:28:01.123 > Para el bleque Bea este dispositivo sole podra escribir entre las posiciones 51

19:28:24_.717 —> Para el bloque Carla este dispositivo solo podra escribir entre las posiciones 7

Como comprobacion,
En A intentara escribir en:
Blogue Ana, indice 1

‘ Escribir Ana 1 10

19:40:54.843 —> Escrito el valor 10 en la direccidén de memoria reservada 1 del blogue de memoria Ana

- Bloque Ana, indice 30

‘ Escribir Ana 30 300

19:41:33.903 —> Error: Para el bloque Ana solo puedes escribir entre 0 y 25

- Bloque Carla, indice 10

‘ Escribir Carla 10 100|

19:43:15.489 -> Escrito el valor 100 en la direccién de memoria reservada 10 del bleque de memoria Carla

- Bloque Carla, indice 140

87

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Escribir Carla 140 1400

19:43:56.880 -> Error: Para el blogue Carla solo puedes escribir entre 0 v 25

En B se intentara escribir en:
Bloque Ana, indice 20

‘ Escribir Ana 20 200

19:50:28.709 -> Error: Para el bloque Ana solo puede

- Blogue Ana, indice 35
‘ Escribir Ana 35 350

19:51:20.290 -> Escrito el walor 350 en la direccién de memoria reservada 35 del bloque de memoria Ana

- Bloque Bea, indice 5

‘ Escribir Bea 5 50

19:54:21.898 —> Valor del blogue de memoria Bea en la direccidn de memoria reservada 5: 50

- Bloque Bea, indice 60
Escribir Bea 60 600

19:56:48.489 —> Error: Para el blogue Bea solo puedes escribir entre 0 y 50

:48.489 —-> Error: Para el blogue Bea solo puedes escribir entre 75 y 99

- Bloque Bea, indice 80

Escribir Bea 80 800|

19:58:21.256 -> Escrito el wvalor 800 en la direccidén de memoria reservada 80 del bloque de memoria Bea

- Bloque Carla, indice 15

Escribir Carla 15 150

20:00:48.848 -> Error: Para el blogue Carla solo puedes escribir entre 26 y 75

- Bloque Carla, indice 40
‘ Escribir Carla 40 400

20:01:38.034 —> Escrito el valor 400 en la direccidén de memoria reservada 40 del blogque de memoria Carla

- Bloque Carla, indice 170
| Escribir Carla 170 1700

20:00:48.848 —> Error: Para el blogue Carla solo puedes escribir entre 26 y 75

En C se intentara escribir en:
- Bloque Bea, indice 45

88

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores

ESP32
Escribir Bea 45 450

20:04:43.912 —> Error: Para el bloque Bea solo puedes escribir entre 51 y 74

- Blogue Bea, indice 70

‘ Escribir Bea 70 700|

20:05:32.859 -> Escrito el valor 700 en la direccidn de memoria reservada 70 del bloque de memoria Bea

- Bloque Carla, indice O

‘ Escribir Carla 0 0|

20:08:02.431 > Error: Para el blogue Carla solc puedes escribir entre 76 y 150

- Bloque Carla, indice 45

Escribir Carla 45 450

20:08:02.431 —> Error: Para el blogue Carla solo puedes escribir entre 76 y 150

- Bloque Carla, indice 110

‘ Escribir Carla 110 1100

20:10:03.290 —> Escrito el wvalor 1100 en la direccién de memoria reservada 110 del blogue de memoria Carla

Y se comprueba también, que en los casos donde si se ha podido escribir, el
cambio se refleja en el resto de bloques vinculados del resto de dispositivos:
Cuando A escribe en Ana en el indice 1 un 10, en B aparece:

‘ Memona Ana 1

19:46:42.256 —> Valor del blogue de memoria Ana en la direccién de memoria reservada 1: 10

Cuando A escribe en Carla en el indice 10 un 100, en By C aparece:

‘ Memoria Carla 10|

19:49:37.715 —> Valor del blogue de memoria Carla en la direccidn de memoria reservada 10: 100

Cuando B escribe en Ana en el indice 35 un 350, en A aparece:

‘ Memoria Ana 35|

19:52:56.728 —> Valor del blogque de memoria Ana en la direccién de memoria reservada 35: 350

Cuando B escribe en Bea en el indice 5 un 50, en C aparece:

89

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

‘ Memoria Bea 5|

19:56:05.663 —> Valor del blogque de memoria Bea en la direccién de memoria reservada 5: 50

Cuando B escribe en Bea en el indice 80 un 800, en C aparece:

‘ Memoria Bea 80|

.492 —> Valor del blogue de memoria Bea en la direccidn de memoria reservada 80: 800

Cuando B escribe en Carla en el indice 40 un 400, en By C aparece:

‘ Memoria Carla 40|

20:02:53.821 —> Valor del blogue de memoria Carla en la direccidn de memoria reservada 40: 400

Cuando C escribe en Bea en el indice 70 un 700 aparece en B:

‘ Memoria Bea 70|

20:07:13.137 —-> Valor del blogue de memoria Bea en la direccidén de memoria reservada 70: 700

Cuando C escribe en Carla en el indice 110 un 1100 aparece en Ay B:

‘ Memoria Carla 110|

20:11:29.500 —> Valor del blogque de memoria Carla en la direccién de memoria reservada 110: 1100

90

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Anexo A: MemoriaCompartida.h

#ifndef MEMORIACOMPARTIDA_H
#define MEMORIACOMPARTIDA H

#include <esp_now.h>
#include <WiFi.h>
#include <vector>
#include <string>
#include <stdlib.h>
#include <stdint.h>

typedef MensajeEstructurado{
text[240];
} Mensaje_Estructurado;

MemoriaCompartida{

MemoriaCompartida();
init();
Registrar(String& mac);
Borrar(String& Mac);
Dispositivos();
EscribirMemoria(String NombreBloque, Indice,
String Valor);
EditarValorDeMemoria(String MacReceptor, String
NombreBloque, Indice, Valor);
enRecepcionDeDatos (esp_now_recv_info* info,
DatosRecibidos, tamafno) ;
enEnvioDeDatos (MAC,
status);
ConvertirMacStringABytes(String& macString,
macBytes);
String NormalizarMac(String& Mac);
MostrarMemoria(String NombreBloque, Indice);
std: :vector«< *> MemoriaDispositivos;
Alias ();
esAlias(String Alias);
String ConvertirAliasAMacString(String Alias);
AsignarVectorMemoriaCompartida(String Mac, String
NombreBloque) ;
CrearBloqueMemoria(String NombreBloque,
TamanoBloque);
VincularVector();

91

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

EnviarValorVinculado(String NombreBloque, Indice,
String Valor);
InfoMostrarMemoria(String NombreBloque,
Indice);
CrearVectorValoresResponsabilizados(String
NombreBloque, IndiceMin, IndiceMax);

MensajeEstructurado MensajeEnviado;
MensajeEstructurado MensajeRecibido;
peerMAC[6];
RespuestaRecibida;
::vector<String> DispositivosConectados;

esDireccionMac(String& mac);
::vector<String> DispositivosAlias;
::vector<String> Bloques;

::vector<String> VectoresVinculados;
::vector<String> ValoresResponsabilizados;
::vector<String> ListaRespuestasPendientes;
::vector< > Respuestas;

SePuedeEscribir;

92

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Anexo B: MemoriaCompartida.cpp

#include "Memoriacompartida.h"

MensajeEstructurado MemoriaCompartida: :MensajeEnviado;
MensajeEstructurado MemoriaCompartida::MensajeRecibido;
MemoriaCompartida: :peerMAC[6];

MemoriaCompartida: :RespuestaRecibida = false;

::vector<String> MemoriaCompartida::DispositivosConectados;
::vector< *> MemoriaCompartida: :MemoriaDispositivos;
::vector<String> MemoriaCompartida::DispositivosAlias;
::vector<String> MemoriaCompartida: :Bloques;
::vector<String> MemoriaCompartida: :VectoresVinculados;
::vector<String> MemoriaCompartida::ValoresResponsabilizados;
::vector<String> MemoriaCompartida::ListaRespuestasPendientes;
:ivector< > MemoriaCompartida: :Respuestas;

MemoriaCompartida: :SePuedeEscribir;

MemoriaCompartida: :MemoriaCompartida() {}

MemoriaCompartida: :esDireccionMac(String& mac) {
if (mac.length() != 17) {
return false;
}
for (i=0; i< mac.length(); i++) {
if (1% 3 ==2) {
if (mac[i] !'= ":") {
return false;
}
} else if (l!isxdigit(mac[i])) {
return false;
}
}

return true;

MemoriaCompartida: :ConvertirMacStringABytes(String
macString, macBytes) {
elementos[6];
if (sscanf(macString.c_str(), "%x:%x:%x:%x:%x:%x", &elementos[0],
&elementos[1], &elementos[2], &elementos[3], &elementos[4],
&elementos[5]) == 6) {
for (i=0;1i<6; i++) {
macBytes[i] = ()elementos[i];

}

return true;

93

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

return false;

MemoriaCompartida: :Registrar(String& mac) {
if (esDireccionMac(mac)) {
if (!ConvertirMacStringABytes(mac, peerMAC)) {
Serial.println("Error al convertir la Mac.");
return;

MacBytesLocal[6];
WiFi.macAddress(MacByteslLocal);
MismaMac = true;
for (i=09;1i<6; it+) {
if (peerMAC[i] != MacByteslLocal[i]) {
MismaMac = false;
break;
}
}
if (MismaMac) A
Serial.println("Error: La MAC introducida es la de este
dispositivo.");
return;

InfoPeer = {};
memcpy (InfoPeer.peer_addr, peerMAC, 6);
InfoPeer.channel = 0;
InfoPeer.encrypt = false;
if (esp_now_is_peer_exist(peerMAC)) {
Serial.println("Error: Este dispositivo ya estd registrado.");
return;
} else {

Resultado = esp now add peer(&InfoPeer);
if (Resultado != ESP_OK) {
Serial.println("Error al agregar peer temporalmente");
return;

}

strcpy(MensajeEnviado.text, "Prueba de conexién");
Serial.print("Iniciando conexidén con: ");
Serial.println(mac);
ResultadoDeEnvio = esp _now_send(peerMAC,
*)&MensajeEnviado, sizeof(MensajeEnviado));

if (ResultadoDeEnvio == ESP_OK) {

Serial.println("Conectando...");

RespuestaRecibida = false;

Contador = millis();
while (millis() - Contador < 20000) {

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

if (RespuestaRecibida == true) {
esp_now_add_peer(&InfoPeer);
break;

}
}
if (!RespuestaRecibida) {
Serial.println("No se pudo conectar. Eliminando
dispositivo.");
esp_now_del peer(peerMAC);
}
} else {
Serial.print("Error al conectar. Cédigo de error: ");
Serial.println(ResultadoDeEnvio);
esp _now_del peer(peerMAC);
}
} else {
Serial.println("Direccién MAC no valida.");
}
}

MemoriaCompartida: :enRecepcionDeDatos(esp_now_recv_info
info, DatosRecibidos, tamano) {
memcpy (&MensajeRecibido, DatosRecibidos, sizeof(MensajeRecibido));

if (strcmp(MensajeRecibido.text, "Prueba de conexién") == 0) {
String MacString = "";
for (i=0;1i<6; i++) {
MacString += String(info->src_addr[i], HEX);
if (1 < 5) {

MacString += ":";
}
}

if (find(DispositivosConectados.begin(),
DispositivosConectados.end(), MacString) ==
DispositivosConectados.end()) {
DispositivosConectados.push_back(MacString);
}
if (lesp_now_is peer_exist(info->src_addr)) {
InfoPeer = {};
memcpy (InfoPeer.peer_addr, info->src_addr, 6);
InfoPeer.channel = 0;
InfoPeer.encrypt = false;
if (esp_now_add_peer(&InfoPeer) != ESP_OK) {
Serial.println("Error al agregar el peer temporalmente.");
return;

}
}

strcpy(MensajeEnviado.text, "Recibido");

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

ResultadoDeEnvio = esp _now_send(info->src_addr,
*)&MensajeEnviado, sizeof(MensajeEnviado));
Serial.print(NormalizarMac(MacString));
Serial.println(" estd intentando conectarse.");
if (ResultadoDeEnvio == ESP_OK) {
Serial.println("Iniciando conexiédn...");
} else {
Serial.print("Error al iniciar conexidén. Cédigo de error: ");
Serial.println(ResultadoDeEnvio);
}
else if (strcmp(MensajeRecibido.text, "Recibido") == 0) {
RespuestaRecibida = true;
String MacString = "";
for (i=0;1<6; i++) {
MacString += String(info->src_addr[i], HEX);
if (i < 5) {
MacString += ":";
}
}

if (find(DispositivosConectados.begin(),
DispositivosConectados.end(), MacString) ==
DispositivosConectados.end()) {
DispositivosConectados.push_back(MacString);
VincularVector();
}
} else if (strncmp(MensajeRecibido.text, "Borrado", 7) == 0) {
String mensajeRecibido = MensajeRecibido.text;
espacioPos = mensajeRecibido.indexOf(' ');
if (espacioPos != -1) {
String MacString = mensajeRecibido.substring(espacioPos + 1);
Serial.print("El dispositivo ");
Serial.print(MacString);
Serial.println(" ha solicitado borrar su registro.");
if (DispositivosConectados.empty()) {
Serial.println("No hay dispositivos para borrar.");
} else {
for (it = DispositivosConectados.begin(); it !=
DispositivosConectados.end(); ++it) {
if (NormalizarMac(*it) == NormalizarMac(MacString)) {
ConvertirMacStringABytes(MacString, peerMAC);
DispositivosConectados.erase(it);
esp_now_del peer(peerMAC);
Serial.print("El dispositivo ");
Serial.print(MacString);
Serial.println(" ha sido eliminado.");

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

for (i =0; i < VectoresVinculados.size(); i++) {
if(NormalizarMac(VectoresVinculados[i]) ==
NormalizarMac(*it)) {
VectoresVinculados.erase(VectoresVinculados.begin()
+ (1 -1));
VectoresVinculados.erase(VectoresVinculados.begin()
+ (1 -1));

break;

} else if (strncmp(MensajeRecibido.text, "Editar", 6) == 0) {
String Mensaje = String(MensajeRecibido.text);

PrimerEspacio = Mensaje.indexOf(' ');
SegundoEspacio = Mensaje.indexOf("' '
TercerEspacio = Mensaje.indexOf ("

, PrimerEspacio + 1);
, SegundoEspacio + 1);

String NombreBloque = Mensaje.substring(PrimerEspacio + 1,
SegundoEspacio);

String IndiceStr = Mensaje.substring(SegundoEspacio + 1,
TercerEspacio);

String ValorStr = Mensaje.substring(TercerEspacio + 1);

IndiceBytes IndiceStr.toInt();
String MacStr = "";
for (i=0;1i<6; i++) {
MacStr += String(info->src_addr[i], HEX);
if (i < 5) MacStr += ":";
}
for (i =0; i < Bloques.size(); ++i) {
for (j = @; j < VectoresVinculados.size(); ++j) {
if (Bloques [i] == VectoresVinculados [j] && Bloques[i] ==
NombreBloque) {
TamanoBloque = Bloques [i + 1].toInt();
if (IndiceBytes >= 0 && IndiceBytes < TamanoBloque) {

} else {
Serial.println("Enviando error a emisor...");
MacBytes[6];

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

ConvertirMacStringABytes(MacStr, MacBytes);
strcpy(MensajeEnviado.text, "Error 3: Indice fuera de

rango");
Result = esp_now_send(info->src_addr,
*)&MensajeEnviado, sizeof(MensajeEnviado));
return;

EscribirMemoria(NombreBloque, IndiceBytes, ValorStr);
delayMicroseconds(200);
else if (strncmp(MensajeRecibido.text, "Error 1", 7) == 0) {
Serial.print("Mensaje recibido: ");
Serial.println(MensajeRecibido.text);
else if (strncmp(MensajeRecibido.text, "Error 2", 7) == 0) {
Serial.print("Mensaje recibido: ");
Serial.println(MensajeRecibido.text);
else if (strncmp(MensajeRecibido.text, "Error 3", 7) == 0) {
Serial.print("Mensaje recibido: ");
Serial.println(MensajeRecibido.text);
else if (strncmp(MensajeRecibido.text, "Vincular", 8) == 0){
String Mensaje = String(MensajeRecibido.text);
PrimerEspacio = Mensaje.indexOf(' ');
SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio + 1);
String NombreBloque = Mensaje.substring(PrimerEspacio + 1,
SegundoEspacio);
String TamanoBloque = Mensaje.substring(SegundoEspacio + 1);
TamanoBloqueBytes = TamanoBloque.toInt();
for (i =0; i < Bloques.size(); i++){
if(Bloques[i] == NombreBloque){
if (Bloques[i+1] == TamanoBloque){
String MacStr = "";
for (i=09; 1<6; i++) {
MacStr += String(info->src_addr[i], HEX);
if (i < 5) MacStr += ":";
}
ConvertirMacStringABytes (MacStr, peerMAC);
NormalizarMac(MacStr);
VectoresVinculados.push_back(NombreBloque);
VectoresVinculados.push_back(MacStr);

Texto[50];
sprintf(Texto, "Vinculando %s ", NombreBloque.c_str());
strcpy(MensajeEnviado.text, Texto);
esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

n

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Serial.print("El vector: ");
Serial.print(NombreBloque);
Serial.print(" se esta intentando vincular con ");
Serial.println(NormalizarMac(MacStr));
Serial.println("Vinculando...");
for (i = 0; 1 < TamanoBloqueBytes; i++) {
if(MostrarMemoria(NombreBloque, i) != @) {
EditarValorDeMemoria(MacStr, NombreBloque, i,
MostrarMemoria(NombreBloque, i));
delayMicroseconds(1000);

}
¥

Serial.println("Vinculacién completada");

sprintf(Texto, "Vinculado %s", NombreBloque.c str());

strcpy(MensajeEnviado.text, Texto);

esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

} else if (strncmp(MensajeRecibido.text, "Vinculando", 10) == 0) {
String Mensaje = String(MensajeRecibido.text);
Serial.println(Mensaje);

PrimerEspacio = Mensaje.indexOf(' ');

String NombreBloque = Mensaje.substring(PrimerEspacio + 1);
String MacStr = "";
for (i=0;1<6; i++) {

MacStr += String(info->src_addr[i], HEX);

if (i < 5) MacStr += ":";
}
Serial.print("El dispositivo ");
Serial.print(NormalizarMac(MacStr));
Serial.print(" estd intentando vincular el bloque ");
Serial.println(NombreBloque);
Serial.println("Vinculando...");
else if (strncmp(MensajeRecibido.text, "Vinculado", 9) == 0) {
Serial.println("Vinculacién completada.");
String Mensaje = String(MensajeRecibido.text);

PrimerEspacio = Mensaje.indexOf("' ');

String NombreBloque = Mensaje.substring(PrimerEspacio + 1);
String MacStr = "";
for (i=0;1i<6; i++) {

MacStr += String(info->src_addr[i], HEX);

if (i < 5) MacStr += ":";
}
VectoresVinculados.push_back(NombreBloque);
VectoresVinculados.push back(MacStr);

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

} else if (strncmp(MensajeRecibido.text, "Responsable", 11) == 0)
{
String Mensaje = String(MensajeRecibido.text);
PrimerEspacio = Mensaje.indexOf(' ');
SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio + 1);
TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio + 1);

String NombreBloque = Mensaje.substring(PrimerEspacio + 1,
SegundoEspacio);
String StrIndiceMin = Mensaje.substring(SegundoEspacio + 1,
TercerEspacio);
String StrIndiceMax = Mensaje.substring(TercerEspacio + 1);
IndiceMin = StrIndiceMin.toInt();
IndiceMax = StrIndiceMax.toInt();
String MacStr = "";
for (i=0; 1<6; it+) {
MacStr += String(info->src_addr[i], HEX);
if (i < 5) MacStr += ":";
}
ConvertirMacStringABytes (MacStr,peerMAC);
for (i = @; 1 < ValoresResponsabilizados.size(); i++) {
if (NombreBloque == ValoresResponsabilizados[i]) {
if ((IndiceMin >= ValoresResponsabilizados[i+1].toInt() &&
IndiceMin <= ValoresResponsabilizados[i+2].toInt()) || (IndiceMax >=
ValoresResponsabilizados[i+1].toInt() && IndiceMax <=
ValoresResponsabilizados[i+2].toInt()) || (IndiceMin <=
ValoresResponsabilizados[i+1].toInt() && IndiceMax >=
ValoresResponsabilizados[i+2].toInt())) {
Texto[100];
sprintf(Texto, "ResponsError %s %d %d",
NombreBloque.c_str(), ValoresResponsabilizados[i+1].toInt(),
ValoresResponsabilizados[i+2].toInt());
strcpy(MensajeEnviado.text, Texto);
esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));
} else {
Texto[100];
sprintf(Texto, "ResponsExito %s %d %d",
NombreBloque.c_str(), IndiceMin, IndiceMax);
strcpy(MensajeEnviado.text, Texto);
esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

if (ValoresResponsabilizados.size() == 0) {

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Texto[100];
sprintf(Texto, "ResponsExito %s %d %d", NombreBloque.c_str(),
IndiceMin, IndiceMax);
strcpy(MensajeEnviado.text, Texto);
esp _now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));
}
} else if ((strncmp(MensajeRecibido.text, "ResponsError", 12
@) || ((strncmp(MensajeRecibido.text, "ResponsExito", 12) == 0))) {
String Mensaje = String(MensajeRecibido.text);
PrimerEspacio = Mensaje.indexOf("' ');
SegundoEspacio = Mensaje.indexOf(' ', PrimerEspacio + 1);
TercerEspacio = Mensaje.indexOf(' ', SegundoEspacio + 1);
String NombreBloque Mensaje.substring(PrimerEspacio + 1,
SegundoEspacio);
String StrIndiceMin = Mensaje.substring(SegundoEspacio + 1,
TercerEspacio);
String StrIndiceMax = Mensaje.substring(TercerEspacio + 1);
IndiceMin = StrIndiceMin.toInt();
IndiceMax = StrIndiceMax.toInt();
if (strncmp(MensajeRecibido.text, "ResponsError", 12) == 0)
Respuestas.push _back(9);
}
if (strncmp(MensajeRecibido.text, "ResponsExito", 12) == @)
Respuestas.push _back(1l);
}
String MacStr = "";
for (i=0;1<6; i++) {
MacStr += String(info->src_addr[i], HEX);
if (i < 5) MacStr += ":";
}
ConvertirMacStringABytes(MacStr,peerMAC);
for (i = 09; i < ListaRespuestasPendientes.size(); i++) {
if (ListaRespuestasPendientes[i] == MacStr) {
ListaRespuestasPendientes[i+1] = "1";
break;

TodosRespondieron = true;
for (i = 1; i < ListaRespuestasPendientes.size(); i += 2)

if (ListaRespuestasPendientes[i] != "1") {
TodosRespondieron = false;
break;

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

ExisteError = false;
if (TodosRespondieron) {
for (i = 9; i < Respuestas.size(); i++) {
if (Respuestas[i] == 0) {
ExisteError = true;
break;

}
if (ExisteError) {

Serial.print("Error: Para el bloque ");

Serial.print(NombreBloque);

Serial.print(" no puedes responsabilizarte de unos indices

entre ");

Serial.print(IndiceMin);

Serial.print(" y ");

Serial.println(IndiceMax);

else {

Serial.print("Para el bloque ");

Serial.print(NombreBloque);

Serial.print(" este dispositivo solo podra escribir entre

las posiciones ");

Serial.print(IndiceMin);

Serial.print(" y ");

Serial.println(IndiceMax);

ValoresResponsabilizados.push_back(NombreBloque);

ValoresResponsabilizados.push_back(StrIndiceMin);

ValoresResponsabilizados.push back(StrIndiceMax);
}
Respuestas.clear();
ListaRespuestasPendientes.clear();

MemoriaCompartida: :enEnvioDeDatos(
status) {
if (status == ESP_NOW_SEND_SUCCESS) {

} else {
Serial.println("Error al enviar el mensaje");

}
}

MemoriaCompartida: :Dispositivos() {

if (DispositivosConectados.empty()) {
Serial.println("No hay dispositivos conectados.");
Serial.println("Dispositivo local: ");

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Serial.println(WiFi.macAddress());

delay(100);

else {

Serial.println("Dispositivo local:");

Serial.println(WiFi.macAddress());

Serial.println("Dispositivos conectados: ");

for (i = 0; i < DispositivosConectados.size(); ++i) {
Serial.println(NormalizarMac(DispositivosConectados[i]));

}
}

Serial.println();

}

String MemoriaCompartida::NormalizarMac(String& Mac) {
String MacNormalizada = Mac;
MacNormalizada.toUpperCase();
return MacNormalizada;

MemoriaCompartida: :Borrar(String& Mac) {
Registrado = false;
if (lesDireccionMac(Mac)) {
if (lesAlias(Mac)){
Serial.println("Error: Formato de MAC invalido.");
return;

}
if(esAlias(Mac)){
ConvertirAliasAMacString(Mac);

String mac = ConvertirAliasAMacString(Mac);
Mac = mac;

¥

if (NormalizarMac(Mac) == NormalizarMac(WiFi.macAddress())) {

Serial.println("Error: La MAC introducida es la de este
dispositivo.");

return;

}

if (!ConvertirMacStringABytes(Mac, peerMAC)) {
Serial.println("Error al convertir la MAC");
return;

}
for (it = DispositivosConectados.begin(); it !=
DispositivosConectados.end(); ++it) {
if (NormalizarMac(*it) == NormalizarMac(Mac)) {
Texto[30];
sprintf(Texto, "Borrado %s", WiFi.macAddress().c_str());
strcpy(MensajeEnviado.text, Texto);

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

DispositivosConectados.erase(it);

esp_now_del peer(peerMAC);

Serial.print("El dispositivo ");

Serial.print(Mac);

Serial.println(" ha sido elimindado.");

Registrado = true;

for (i =0; i < VectoresVinculados.size(); i++) {

if(NormalizarMac(VectoresVinculados[i]) ==
NormalizarMac(*it)) {
VectoresVinculados.erase(VectoresVinculados.begin() + (i -

1));

VectoresVinculados.erase(VectoresVinculados.begin() + (i -

1));

break;

}
for (i =0; i < DispositivosAlias.size(); i += 2) {
if (NormalizarMac(DispositivosAlias[i]) == NormalizarMac(Mac)) {
DispositivosAlias.erase(DispositivosAlias.begin() + i);
DispositivosAlias.erase(DispositivosAlias.begin() + i);
Registrado = true;
break;

}
delay(100);

esp_now_del peer(peerMAC);
Registrado = true;
if (!Registrado) {
Serial.println("Error: Dispositivo no registrado.");

}

MemoriaCompartida: :CrearBloqueMemoria(String NombreBloque,
TamanoBloque) {
if (NombreBloque.length() == 0) {
Serial.println("E1l nombre del bloque no puede estar vacio.");
return;
}
for (i =0; i < Bloques.size(); i += 2) {
if (Bloques[i] == NombreBloque) {
Serial.println("Error: E1 nombre del bloque ya existe.");
return;

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

}
}
if (TamanoBloque == 0){
Serial.println("Error: E1 tamafio deber ser un numero y mayor a
0");
return;

EspacioGastado = 0;
for (i =0; i < Bloques.size(); i += 2){
EspacioGastado += (Bloques[i + 1].toInt()) * 4;
}
MemorialLibre = ESP.getFreeHeap();
Memorialibre -= EspacioGastado;
if (TamanoBloque * 4 > MemorialLibre) {
Serial.print("Error: No hay suficiente memoria disponible para
este bloque. Espacio libre disponible: ");
Serial.println(Memorialibre/4);
return;
}
Bloques.push_back(NombreBloque);
Blogues.push back(String(TamanoBloque));
Serial.print("Bloque de memoria '");
Serial.print(NombreBloque);
Serial.print("' creado con tamafio de ");
Serial.print(TamanoBloque);
Serial.println(" direcciones de memoria.");
* DireccionMemoria = (*Imalloc(TamanoBloque *
sizeof());
if (DireccionMemoria != NULL) {
MemoriaDispositivos.push back(DireccionMemoria);
for (i = 0; i < TamanoBloque; i++) {
DireccionMemoria[i] = ©;
}
VincularVector();
} else {
Serial.println("Error al reservar memoria para el bloque.");

}
}

MemoriaCompartida: :VincularVector() {

if (DispositivosConectados.size() == 0) {
Serial.println("No hay dispositivos conectados para vincular.");
return;

}

if (Bloques.size() == 0) {
Serial.println("No hay bloques creados para vincular.");
return;

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

}
for (i =1; i < Bloques.size(); i += 2) {
std: :vector< > IndiceDispositivo;
for (j = 0; j < VectoresVinculados.size(); j++) {
if (Bloques[i - 1] == VectoresVinculados[j]) {
IndiceDispositivo.push_back(j + 1);
}
}
for (j = @0; j < DispositivosConectados.size(); j++) {
yaVinculado = false;
for (k = 9; k < IndiceDispositivo.size(); k++) {
if (DispositivosConectados[j] ==
VectoresVinculados[IndiceDispositivo[k]]) {
yaVinculado = true;
Serial.print("El dispositivo ");
Serial.print(NormalizarMac(DispositivosConectados[j]));
Serial.print(" ya tiene vinculado el bloque ");
Serial.println(Bloques[i - 1]);
break;

}
if (lyaVinculado) {
Texto[100];

sprintf(Texto, "Vincular %s %lu", Bloques[i - 1].c_str(),
Bloques[i].toInt());

strcpy(MensajeEnviado.text, Texto);

ConvertirMacStringABytes (DispositivosConectados[j],
peerMAC) ;

esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

Serial.print("El vector: ");

Serial.print(Bloques[i - 1]);

Serial.print(" se esta intentando vincular con ");
Serial.println(NormalizarMac(DispositivosConectados[j]));

}

IndiceDispositivo.clear();

}

MemoriaCompartida: :CrearVectorValoresResponsabilizados(String
NombreBloque, IndiceMin, IndiceMax) {
BloqueEncontrado = false;
BloqueVinculado = false;
TamanoBloque;
for (i =0; i < Bloques.size(); i += 2) {

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

if (NombreBloque == Bloques [i]) {
BloqueEncontrado = true;
TamanoBloque = Bloques[i+1].toInt();
break;

}
if (!BloqueEncontrado) {

Serial.print("Error: E1 vector ");
Serial.print(NombreBloque);
Serial.println(" no esta creado en este dispositivo");
return;
else {
for (i = 0; i < VectoresVinculados.size(); i++) {
if (NombreBloque == VectoresVinculados[i]) {
BloqueVinculado = true;
break;

}

}
if (!BloqueVinculado) {

Serial.println("Error: Primero hay que vincular el vector.");
return;

}
}

if (IndiceMin > IndiceMax || IndiceMax > TamanoBloque) {
Serial.println("Error: Indices mal definidos.");
return;

¥

for (i = 0; i < VectoresVinculados.size(); i++) {
if (NombreBloque == VectoresVinculados[i]) {
ListaRespuestasPendientes.push_back(VectoresVinculados[i+1]);
ListaRespuestasPendientes.push_back("0");
Texto[100];
sprintf(Texto, "Responsable %s %d %d", NombreBloque.c_str(),
IndiceMin, IndiceMax);
strcpy(MensajeEnviado.text, Texto);
ConvertirMacStringABytes(VectoresVinculados[i+1], peerMAC);
esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

MemoriaCompartida: :MostrarMemoria(String NombreBloque,
Indice) {
index = -1;
for (i = 0; i < Bloques.size(); i += 2) {
if (Bloques[i] == NombreBloque) {

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

index = i/2;

}
if (index == -1) {
return -1;

* DireccionMemoria = MemoriaDispositivos[index];
if (DireccionMemoria != nullptr) {
for (i =0; i < Bloques.size(); ++i) {
if (Bloques[i] == NombreBloque) {
TamanoBloque = Bloques [i + 1].toInt();
if (Indice >= 0 && Indice < TamanoBloque) {
return DireccionMemoria[Indice];
} else {
return -1;

MemoriaCompartida: :InfoMostrarMemoria(String NombreBloque,
Indice) {
index = -1;
for (i =0; i < Bloques.size(); i += 2) {
if (Bloques[i] == NombreBloque) {
index = i/2;

}

if (index == -1) {
Serial.println ("Error: E1l bloque de memoria no existe");
return -1;

* DireccionMemoria = MemoriaDispositivos[index];
if (DireccionMemoria != nullptr) {
for (i =0; 1 < Bloques.size(); ++i) {
if (Bloques[i] == NombreBloque) {
TamanoBloque = Bloques [i + 1].toInt();

if (Indice >= 0 && Indice < TamanoBloque) {
Serial.print("Valor del bloque de memoria ");
Serial.print(NombreBloque);
Serial.print(" en la direccién de memoria reservada ");
Serial.print(Indice);
Serial.print(": ");
Serial.println(DireccionMemoria[Indice]);
return DireccionMemoria[Indice];

} else {

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Serial.println("Error: Indice fuera de rango.");
return -1;

MemoriaCompartida: :EscribirMemoria(String NombreBloque,
Indice, String Valor) {
std: :vector<String> Dispositivos = DispositivosConectados;
Dispositivos.push_back(WiFi.macAddress());
index = -1;

for (i =0; i < Bloques.size(); i += 2) {

if (Bloques[i] == NombreBloque) {

index = i/2;

}
}
if (index == -1) {

Serial.println ("Error: El bloque de memoria no existe");

return;

* DireccionMemoria = MemoriaDispositivos[index];

ValorBytes = Valor.toInt();
if (ValorBytes == 0 && Valor != "0") {
Serial.println("Error: Valor no valido. Asegurate de que el
valor sea un numero.");
return;

BloqueVinculado = false;
if (DireccionMemoria != nullptr) {
for (i =0; 1 < Bloques.size(); ++i) {
if (Bloques[i] == NombreBloque) {
TamanoBloque = Bloques [i + 1].toInt();
if (Indice >= @ && Indice < TamanoBloque) {

DireccionMemoria[Indice] = ValorBytes;
Serial.print("Escrito el valor ");
Serial.print(DireccionMemoria[Indice]);
Serial.print(" en la direccién de memoria reservada
Serial.print(Indice);
Serial.print(" del bloque de memoria ");
Serial.println(NombreBloque);
SePuedeEscribir = true;

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

MemoriaCompartida: :EditarValorDeMemoria(String MacReceptor,
String NombreBloque, Indice, Valor) {
if (!esDireccionMac(MacReceptor)) {

if (lesAlias(MacReceptor)){
Serial.println("Error: Formato de MAC invalido.");
return;

}

if(esAlias(MacReceptor)){
ConvertirAliasAMacString(MacReceptor);
String mac = ConvertirAliasAMacString(MacReceptor);
MacReceptor = mac;

}
¥

if (NormalizarMac(MacReceptor) ==
NormalizarMac(WiFi.macAddress())) {
Serial.println("Error: La MAC introducida es la de este
dispositivo.");
return;
¥
if (!ConvertirMacStringABytes(MacReceptor, peerMAC)) {
Serial.println("Error al convertir la MAC");
return;

Texto[100];
sprintf(Texto, "Editar %s %d %d", NombreBloque.c str(), Indice,
Valor);
strcpy(MensajeEnviado.text, Texto);
ConvertirMacStringABytes(MacReceptor, peerMAC);
esp_now_send(peerMAC, (*)&MensajeEnviado,
sizeof(MensajeEnviado));

}

MemoriaCompartida: :EnviarValorVinculado(String NombreBloque,
Indice, String Valor){
ValorBytes = Valor.toInt();
BloqueVinculado = false;
BloqueResponsabilizado = false;
for (i = 0; i < VectoresVinculados.size(); i++) {

if(NombreBloque == VectoresVinculados[i]) {

BloqueVinculado = true;

}

}
if(BloqueVinculado) {

if(ValoresResponsabilizados.size() == 0) {

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

Serial.println("Error: Antes debes responsabilizarte de unos

indices.");
}
else{
for(i = 9; i < ValoresResponsabilizados.size(); i++) {
if (NombreBloque == ValoresResponsabilizados[i]) {
BloqueResponsabilizado = true;
if (Indice < ValoresResponsabilizados[i+1].toInt() ||
Indice > ValoresResponsabilizados[i+2].toInt()) {
Serial.print("Error: Para el bloque ");
Serial.print(NombreBloque);
Serial.print(" solo puedes escribir entre ");
Serial.print(ValoresResponsabilizados[i+1]);
Serial.print(" y ");
Serial.println(ValoresResponsabilizados[i+2]);
else {
EscribirMemoria(NombreBloque, Indice, Valor);

if (VectoresVinculados.size() > 0) {
for (i = 09; i < VectoresVinculados.size(); i++)

if (NombreBloque == VectoresVinculados[i]) {
EditarValorDeMemoria(VectoresVinculados[i+1],
NombreBloque, Indice, ValorBytes);
delayMicroseconds(200);

} else {
EscribirMemoria(NombreBloque, Indice, Valor);

}

MemoriaCompartida::Alias() {
Serial.print("Introduce alias para ");
Serial.print(WiFi.macAddress());
Serial.print(" (dispositivo local): ");
while (Serial.available() == 0) {}
String AliaslocalIntroducido = Serial.readStringUntil('\n");
AliasLocalIntroducido.trim();
Serial.println(AliasLocalIntroducido);
if (AliaslLocalIntroducido.length() > @) {

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

esAliaslocalConMacVinculada = false;
for (i =0; i < DispositivosAlias.size(); i++) {
if (DispositivosAlias[i] == WiFi.macAddress()) {
DispositivosAlias[i + 1] = AliaslLocalIntroducido;
esAliaslLocalConMacVinculada = true;
break;

}

if (lesAliaslLocalConMacVinculada) {
DispositivosAlias.push_back(WiFi.macAddress());
DispositivosAlias.push back(AliasLocalIntroducido);

}

for (i = 0; 1 < DispositivosConectados.size(); i++) {
Serial.print("Introduce alias para ");
Serial.print(NormalizarMac(DispositivosConectados[i]));
Serial.print(": ");
while (Serial.available() == 0) {}
String AliasConectadoIntroducido = Serial.readStringUntil('\n");
AliasConectadoIntroducido.trim();
Serial.println(AliasConectadoIntroducido);

if (AliasConectadoIntroducido.length() > @) {
esAliasConectadoRepetido = false;
for (j = 0; j < DispositivosAlias.size(); j++) {
if (DispositivosAlias[j + 1] == AliasConectadoIntroducido) {
esAliasConectadoRepetido = true;
break;

¥

}
if (esAliasConectadoRepetido) {

Serial.println("Error: E1l alias ya esta en uso. Introduzca
otro alias.");

==

continue;

esAliasConectadoConMacVinculada = false;
for (j = 0; j < DispositivosAlias.size(); j++) {
if (DispositivosAlias[j] == DispositivosConectados[i]) {
DispositivosAlias[j + 1] = AliasConectadoIntroducido;
esAliasConectadoConMacVinculada = true;
break;

}

if (lesAliasConectadoConMacVinculada) {
DispositivosAlias.push back(DispositivosConectados[i]);

Desarrollo de una Libreria Para Compartir Variables Entre Procesadores
ESP32

DispositivosAlias.push back(AliasConectadoIntroducido);

Serial.println("Alias asignado a los dispositivos:");
for (i =0; i < DispositivosAlias.size(); i++) {
Serial.println(NormalizarMac(DispositivosAlias[i]));

}

MemoriaCompartida: :esAlias(String Alias) {
for (i =1; i < DispositivosAlias.size(); i += 2) {
if (DispositivosAlias[i] == Alias) {
return true;

}

return false;

String MemoriaCompartida::ConvertirAliasAMacString(String Alias) {
for (i =1; i < DispositivosAlias.size(); i += 2) {

if (DispositivosAlias[i] == Alias) {
return DispositivosAlias[i - 1];

}

return g

MemoriaCompartida::init() {
WiFi.mode(WIFI_STA);
delay(2000);
Serial.print("MAC del dispositivo: ");
Serial.println(WiFi.macAddress());
if (esp_now_init() !'= ESP_OK) {
Serial.println("Error al inicializar ESP-NOW. Reiniciando...");
ESP.restart();
}
Serial.println("ESP-NOW iniciado correctamente.");
esp_now_register _recv_cb(enRecepcionDeDatos);
esp_now_register_send_cb(enEnvioDeDatos);
delay(2000);
Serial.println("ESP-32 listo.");

113

