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A B S T R A C T

Background: Cardiovascular (CV) complications are the leading cause of death in patients with chronic kidney 
disease (CKD). Endothelin-1 (ET-1), a potent vasoconstrictor involved in both renal and vascular dysfunction, 
may represent a promising biomarker for the disease.
Methods: ET-1 plasma levels were quantified in 692 Spanish CKD patients (stages 1–5) and used to stratify in
dividuals into three clusters (cluster 3 meaning highest concentrations). Associations with CKD progression, CVE, 
and all-cause mortality were assessed over a mean follow-up of 48.6 ± 27.4 months using linear mixed-effects 
models and Cox regression analyses adjusted for conventional risk factors.
Results: ET-1 levels increased with CKD severity (mean±SD: 1.65 ± 0.71 pg/mL for stages 1–2; 1.82 ± 0.71 pg/ 
mL for stage 3; 2.39 ± 1.08 pg/mL for stages 4–5; p < 0.001). Higher ET-1 levels were independently associated 
with accelerated eGFR decline over 3 years (β = –12.64, p < 0.001 for cluster 2; and β = –11.71, p = 0.034 for 
cluster 3). Sixty-nine CVE (10.1 %) were recorded. Participants with higher ET-1 levels had significantly lower 
CV event-free survival [HR = 2.24 (1.12–4.45), p = 0.022, and HR = 2.50 (1.09–5.73), p = 0.03] for clusters 2 
and 3, respectively. ET-1 also predicted all-cause mortality (p < 0.001) although the association lost significance 
after adjusting for age. Random forest models for CV risk and all-cause mortality including the ET-1 cluster 
produced C-indices of 0.835 and 0.837, respectively.
Conclusions: Elevated ET-1 levels are independently associated with both CKD progression and CV complications. 
ET-1 may serve as a dual biomarker for renal deterioration and CV risk, potentially improving clinical stratifi
cation in CKD management.

1. Introduction

Chronic kidney disease (CKD), defined by abnormalities in renal 
function and/or structure lasting over 3 months with associated clinical 
consequences [1], has become a growing public health challenge. Car
diovascular (CV) complications are the primary cause of death in 

individuals with CKD [2], and this CV risk is evident across all stages of 
the disease, underscoring the complex interplay between kidney func
tion and CV health [3]. The disproportionately high rate of CV mortality 
in this patient population emphasizes the critical need to elucidate the 
underlying mechanisms driving these complications and to identify 
potential therapeutic targets.
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Among the various factors implicated in the pathogenesis of CV 
problems, the endothelin family has emerged as a key player, with 
endothelin-1 (ET-1) recognized as the main isoform involved in both 
vascular and renal pathophysiology [4]. Elevated levels of ET-1 have 
been proposed to contribute to renal impairment [5,6] and to play a 
pathophysiological role in many CV conditions, such as primary pul
monary hypertension, hypertension, atherosclerosis, coronary artery 
disease, cardiac hypertrophy or heart failure [7]. Given these effects of 
ET-1 in the kidney and the CV system, it is not surprising that ET-1 re
ceptor antagonists (ERAs) have shown promising results for its use in 
kidney disease, particularly for the selective ETA blockade [6,8,9].

Despite this background, and somewhat surprisingly, there is very 
little information on the association of ET-1 levels with the incidence of 
CV events (CVE) in the CKD setting. Moreover, no studies have 
addressed the link between ET-1 concentrations and the estimated 
glomerular filtration rate (eGFR) decline over time, reflecting the 
worsening of kidney function in patients with CKD. Therefore, in the 
present work, we have aimed to address these research gaps by deter
mining ET-1 plasma concentrations in a large cohort of patients with 
different degrees of CKD to establish putative associations with disease 
progression and the incidence of CV-related complications.

2. Methods

2.1. Subjects

Between 2017 and 2022, 692 Caucasian Spanish subjects with 
different stages of CKD (185 with stage 1–2, 181 with stage 3 and 326 
with stage 4–5) were recruited at the Nephrology Service and the 
Advanced CKD Unit of the Badajoz University Hospital during the pa
tients’ regular visits. Exclusion criteria for the study included trans
plantation, pregnancy or breastfeeding, active infection, cancer, and 
acute kidney injury. All participants were adults (over 18 years of age) 
and provided written informed consent for their involvement. The study 
was approved by the Ethics Committees of Badajoz University Hospital 
and conducted in compliance with the Declaration of Helsinki and its 
subsequent revisions.

2.2. Endothelin-1 plasma levels determination

Blood samples (3 mL) were collected from each participant in EDTA 
tubes, and plasma was promptly separated by centrifugation at 3000 
rpm for 10 min. Plasma samples were then aliquoted into 500 μL por
tions and stored at − 80 ◦C until further analysis. The quantification of 
ET-1 was performed using the ELLA™ system (Bio-Techne, Minneapolis, 
USA), an automated microfluidic ELISA platform designed for low- 
volume samples and equipped with 32-well cartridges. Briefly, 50 µL 
of plasma—diluted with an equal amount of sample diluent—was 
dispensed into each well. Subsequently, 1 mL of wash buffer was loaded 
into the designated buffer ports. The immunoassay process was auto
matically conducted using the Simple Plex Runner software (version 
3.9.0.28) through several stages, namely system initialization, micro
fluidic sample distribution, and incubation within glass nano-reactor 
(GNR) channels. These channels contained immobilized capture anti
bodies, biotin-labeled detection antibodies, and streptavidin-conjugated 
fluorescent dyes. Fluorescence signals were then elicited by laser exci
tation and recorded. The resulting fluorescence intensities, expressed in 
relative fluorescence units, were translated into ET-1 concentrations via 
reverse interpolation against a standard calibration curve provided by 
the manufacturer. As each microfluidic pathway includes three GNRs, 
every sample was measured in triplicate per well, with mean values 
reported.

2.3. Main clinical variables

Renal patients were stratified diagnostically and prognostically using 

the KDIGO classification, the progression risk table, and the 
CONSORTIUM-CKD equation [10]. Kidney function was evaluated with 
the CKD-EPI equation. Proteinuria was characterized as exceeding 500 
mg (or albuminuria >300 mg) in a 24-hour urine collection. When 
proteinuria surpassed 1 g, a kidney biopsy was performed to confirm the 
diagnosis. Patient files were examined to extract data on kidney func
tion, general biochemical parameters, and CVE documented during the 
follow-up period. Participants were monitored until the earliest occur
rence of a CVE, death, or the study’s endpoint (September 2024). CVE 
included acute coronary syndrome, acute myocardial infarction, coro
nary bypass, coronary catheterization requiring angioplasty, death from 
CV cause, lower limb ischemia, peripheral artery disease, stroke, sudden 
death, and typical angina with positive stress tests.

2.4. Statistical analysis

To study the association between categorical and quantitative vari
ables, T-test/ANOVA or Mann-Whitney/Kruskal-Wallis tests were used, 
depending on the number of groups and data distribution. Categorical 
variables were summarized as absolute frequencies and percentages, 
whereas quantitative variables were expressed as mean ± standard de
viation. Chi square or Fisher exact tests were used for the association 
between categorical variables. Logistic regression models were carried 
out to establish the association of the analyzed variables with clinical 
parameters. Clinical and demographic covariates incorporated into each 
model for adjustment were chosen according to clinical criteria and/or 
univariate analyses.

We carried out cluster analyses to group the patients according to 
their ET-1 concentrations. For the whole population, the analysis by the 
optimal univariate k-means method produced three different clusters 
[mean (range): 1.276 (0.268–1.730), 2.188 (1.740–2.830) and 3.482 
(2.850–5.860) pg/mL] that were analyzed in relation to the severity of 
CKD, eGFR decline over time, CV event-free survival and all-cause 
mortality. To assess whether ET-1 levels were associated with the 
eGFR decline, a linear mixed-effects model was fitted. The model 
included fixed effects for time (3-year follow-up), ET-1 cluster, diabetes, 
hypertension, body-mass index (BMI) and smoking status, with patients 
established as random effect. Age and sex were not included as they are 
already used to calculate eGFR values. For this analysis, only patients 
with a baseline eGFR> 15 mL/min/1.73 m² were studied, as the phys
iological status of subjects with lower eGFR values, i.e., close to dialysis 
is significantly altered, which, together with the polypharmacy 
commonly required at this stage results generate confounding factors 
that could affect the validity of the analysis. Associations with CV risk 
and mortality were assessed in Kaplan-Meier curves and Cox regression 
models adjusted for meaningful covariates and expressed as hazard ra
tios (HR) with 95 % confidence intervals (CI) in parenthesis.

Two fast unified random forests for survival (RF-SRC) by Breiman’s 
method were conducted to predict the risk of CVE and mortality. The 
variables included in the model were age, sex, body mass index, hy
pertension, diabetes, smoking, history of CVE, as well as the ET-1 clus
ter. The number of trees to grow was 1000, and the splitting rule was 
based on long-rank score method. The variable importance was 
measured by permutation. The events according to ET-1 cluster were 
estimated with the model, interpreted as the expected number of events 
for an individual with the same covariates. The discriminative power of 
the models was expressed with the concordance index (C-index) for right 
censored event times.

Statistical power calculations were carried out taking as reference 
previous studies reporting a significant ET-1 increase (from 1.5 up to 10- 
fold) in individuals who have experienced CVE compared to healthy 
subjects [11,12]. Considering the 692 individuals studied, an estimated 
2-fold increase in ET-1 circulating concentrations, a CVE incidence in 
CKD of 10 % and an alpha error of 0.05, the obtained statistical power 
for the association of ET-1 levels with the main outcome, CVE, was 0.99 
(GPower v. 3.1.9.6, Kiel University, Germany).
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All the analyses were conducted with different packages in the R 
environment. The threshold for statistically significant associations was 
set at p < 0.05.

3. Results

In this study, patients with CKD stage 4–5 were significantly older 
than those with CKD stage 1–2 (p < 0.0001), whilst the proportion of 
males was higher in the CKD 3 group (p = 0.021). The prevalence of 
classical CV risk factors—including BMI (p = 0.033), diabetes mellitus (p 
< 0.0001), hypertension (p = 0.024), and smoking (p = 0.027) increased 
with the severity of the disease. Among the most frequent causes for 
CKD, diabetic nephropathy ranked first (24.4 %), followed by neph
roangiosclerosis (17.8 %) and interstitial nephropathy (11.5 %). Causes 
were unknown in 18.2 % of cases. Table 1 presents demographic and 
clinical characteristics of the study population.

3.1. Association of endothelin-1 levels with renal function

Plasma concentrations of ET-1 differed significantly across CKD 
stages (p < 0.001). Mean (and standard deviation) concentrations were 
1.65 (0.71) pg/mL for CKD stages 1–2, 1.82 (0.71) pg/mL for CKD stage 

3, and 2.39 (1.08) pg/mL for CKD stages 4–5 (Fig. 1A). Since ET-1 role in 
diabetes has also been extensively studied, we compared its concentra
tions between patients with and without diabetes, ET-1 levels were 
significantly higher in diabetic patients compared with non-diabetic 
patients (2.25 ± 0.97 and 1.92 ± 0.94, p < 0.0001).

Based on their ET-1 levels, participants were then clustered into 
three groups, which were used in further analyses (see below). In
dividuals with higher values (cluster 3) were predominantly distributed 
in the more advanced stages of CKD, whereas lower values (cluster 1) 
were significantly overrepresented among individuals with higher eGFR 
(Fig. 1B). Statistically significant differences were observed across all 
CKD stages (p < 0.001).

We then assessed whether ET-1 levels can also be indicative of CKD 
progression. According to the results of the linear mixed-effects model, 
and after adjusting by meaningful covariates, patients with higher ET-1 
levels showed a greater decline in eGFR over 3 years compared with 
patients with the lowest ET-1 concentrations in cluster 1. Table 2 shows 
the β coefficients for clusters 2 [− 12.64 (p < 0.001)] and 3 [− 11.71 (p =
0.034)].

3.2. Association of endothelin-1 levels with cardiovascular risk in CKD 
patients

A total of 683 participants were followed for a mean of 48.6 ± 27.4 
months to record the occurrence of CVE. During this period, 69 events 
(10.1 %) were documented. Participants who experienced CVE had 
significantly higher age (p = 0.002), glucose levels (p < 0.0001), all 
types of cholesterol (p < 0.05), and urinary albumin-to-creatinine ratio 
(UACR) values (p = 0.004). Regarding cardiac biomarkers, patients with 
CVE showed higher levels of both troponin and NT-proBNP compared to 
those without events (p < 0.01). These and other features of individuals 
with and without CVE are listed in Table 3.

Survival analyses were carried out in the three groups based on the 
cluster stratification of ET-1 concentrations. Elevated ET-1 levels were 
significantly associated with reduced CV event-free survival (59.44 ±
26.39, 43.10 ± 87 and 35.55 ± 23.90, for clusters 1, 2 and 3, respec
tively, p = 0.002, Fig. 2). After controlling for other CV risk factors, 
namely age, sex, BMI, hypertension, diabetes, smoking status, and his
tory of CVE, this association remained significant (p = 0.034). HR values 
for individuals in cluster 3 (highest ET-1 levels) and cluster 2 (inter
mediate ET-1 levels) compared to those in cluster 1 (lowest ET-1 levels) 
were 2.50 (1.09–5.73), p = 0.03 and 2.24 (1.12–4.45), p = 0.022, 
respectively.

3.3. Association of endothelin-1 levels with all-cause mortality in CKD 
patients

Follow-up showed that ET-1 circulating concentrations were signif
icantly associated with overall survival, 61.82 ± 25.71, 45.59 ± 26.08 
and 36.59 ± 24.97), for clusters 1, 2 and 3, respectively, p < 0.001, 
Fig. 3. HR values for clusters 2 and 3 were 2.00 (1.17–3.43), p = 0.012 
and 3.32 (1.82–6.05), p < 0.001. However, when age was added to the 
Cox regression model containing additional risk factors (age, sex, BMI, 
hypertension, diabetes, smoking status, and history of CVE), the differ
ences between clusters lost statistical significance (p = 0.237).

A random forest model including the ET-1 cluster and relevant 
covariates (age, sex, BMI, diabetes, hypertension, smoking and CV his
tory) was implemented for both CV event-free survival and all-cause 
mortality. C-indices for both models were respectively 0.835 and 
0.837. Fig. 4A-B shows the ranking of variable importance for each 
model, where ET-1 ranked fourth for CV risk and third for all-cause 
mortality. The estimation of the number of events according to the ET- 
1 cluster is depicted in Fig. 4C-D.

Table 1 
Participant characteristics included in the study.

CKD 1–2 (N 
= 185)

CKD 3 (N =
181)

CKD 4–5 (N 
= 326)

ʃP-value

Males (%) 105 (56.8)a 128 (70.7) 209 (64.1) 0.021
Age (Years) 56.8 

(12.8)a,b
67.1 
(10.1)c

68.9 (14.0) <0.0001

Weight (Kg) 80.5 (17.2) 84.2 (50.9) 81.4 (50.0) 0.367
BMI 28.5 (5.1) a,b 29.4 (4.5) 29.4 (5.3) 0.033
Glucose (mg/dL) 106.1 (23.5)a 125.6 

(51.0)c
111.3 (37.0) 0.001

Total cholesterol (mg/ 
dL)

176.6 (38.4)b 175.7 
(39.9)c

148.3 (36.7) <0.0001

HDL cholesterol (mg/ 
dL)

58.7 
(44.1)a,b

50.2 (43.5) 48.0 (16.8) <0.0001

LDL cholesterol (mg/ 
dL)

105.9 
(105.6)b

98.6 
(50.0)c

73.8 (30.7) <0.0001

Total calcium (mg/dL) 9.5 (0.4)b 9.5 (0.5)c 9.4 (3.5) <0.0001
Potassium (mEq/L) 4.6 (3.2)a,b 4.7 (0.5)c 5.0 (0.6) <0.0001
Sodium (mEq/L) 141.4 (2.3)b 141.5 

(2.5)c
139.7 (9.4) 0.001

ACR (mg/g) in urine 
24h

98 (364)a,b 405 (982)c 963 (1.287) <0.0001

eGFR CKD-EPI, lm/ 
min/1.73 m2

93.8 
(17.0)a,b

42.9 (9.9)c 17.4 (6.3) <0.0001

Endothelin 1.65 
(0.71)a,b

1.82 
(0.71)c

2.39 (1.08) <0.0001

Systolic blood 
pressure. (mmHg)

137.2 
(23.1)a,b

143.5 
(25.2)

145.0 (25.5) <0.0001

Diastolic blood 
pressure. (mmHg)

81.5 (12.7) 
a,b

77.7 (15.1) 75.2 (13.5) <0.0001

Pulse pressure, 
(mmHg)

55.3 (17.6) 
a,b

65.8 (21.4) 69.6 (23.6) <0.0001

Hypertension (%) ​ ​ ​ 0.024
No 42 (22.7) a,b 25 (13.8) 45 (13.8) ​
Yes 143 (77.3) 156 (86.2) 281 (86.2) ​

Diabetes mellitus (%) ​ ​ ​ <0.0001
No 155 (83.8) 

a,b
96 (53.0) 173 (53.1) ​

Yes 30 (16.2) 85 (47.0) 153 (46.9) ​
Smoking (%) ​ ​ ​ 0.027

Non smoker 89 (48.6)a 60 (34.9)c 143 (44.0) ​
Ever smoker 94 (51.4) 112 (65.1) 182 (56.0) ​

BMI, body mass index; eGFR, estimated glomerular filtration rate; ACR, albumin 
to creatinine ratio.
ʃ p-value for the difference between all groups.
a significant differences with the CKD3 group.
b significant differences with the CKD4–5 group.
c significant differences with the CKD4–5 group.
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4. Discussion

CKD represents a significant and growing global health challenge 
characterized by a progressive decline in renal function frequently 
associated with a substantial burden of CV morbidity and mortality [13]. 
Effective CKD management depends on early risk identification and 
intervention, but limited understanding of its mechanisms highlights the 
need for research on reliable biomarkers.

Our results showed that ET-1 levels solidly correlated with the 
severity of CKD, as concentrations were significantly higher in patients 
with more advanced stages of the disease, which agrees with previous 
studies carried out in undersized cohorts [14,15]. In contrast, Sagi et al., 
also in a small group of patients, did not find significant differences 
between CKD stages [16]. The ET-1-CKD link is supported by several 
physiopathological mechanisms. Indeed, the activation of ETA by ET-1 
has been shown to directly target the structure and function of podo
cytes, inducing proteinuria [17]. In addition, it has been suggested that 
ET-1 induces mesangial cell proliferation and fibrosis within the 
glomeruli [18] and exacerbates the damage to the endothelial glyco
calyx, also increasing albuminuria [19]. Furthermore, systemic over
expression of ET-1 has been linked to inflammation in the kidney by 
mediating the effects of angiotensin II [18] and to impaired control over 
sodium and fluid homeostasis [20]. Moreover, in clinical trials, 
ETA-selective ERAs have been shown to reduce albuminuria and slow 
kidney function decline in CKD patients. However, their clinical use has 
been limited due to concerns about fluid retention and heart failure, and 
today they are only approved for the treatment of primary pulmonary 
hypertension and, recently, for IgA nephropathy [21].

Interestingly, our results also show that basal ET-1 circulating 

concentrations could also be indicative of CKD progression, as patients 
with higher values had a greater eGFR decline over time. To date, this 
association had only been indirectly studied by clinical trials designed to 
examine the effects of ERAs. For instance, in the recent DUET and 
PROTECT trials, sparsentan, a dual ET-1-angiotesin receptor antagonist, 
was associated with a slower annual rate of eGFR decline [22,23], 
although its benefits did not seem to improve those observed for irbe
sartan, which only targets angiotensin [24]. Also indirectly, a recent 
prospective study in a large cohort showed that higher concentrations of 

Fig. 1. A, plasma concentrations of endothelin-1 (pg/mL) stratified by CKD stage; B, distribution of endothelin-1 clusters across CKD stages. *p < 0.01; **p < 0.001.

Table 2 
Linear mixed-effects model for the association of clusters of endothelin-1 con
centrations with the decline of estimated glomerular filtration rate over time.

Value Std. 
Error

t-value p-value

Intercept 77.09 9.20 8.37 <0.0001
Time (years) − 1.77 0.15 − 11.55 <0.0001
Cluster 2: 2.188 [1.740–2.830] pg/ 

mL
− 12.64 3.33 − 3.79 0.0002

Cluster 3: 3.482 [2.850–5.860] pg/ 
mL

− 11.71 5.49 − 2.13 0.034

Diabetes − 17.94 3.40 − 5.27 <0.0001
Hypertension − 1.43 4.05 − 0.35 0.724
Body-mass index 0.04 0.32 0.13 0.898
Smoking status (ever/never) − 6.97 3.10 − 2.25 0.025

Table 3 
Demographic and clinical features of participants that did or did not experience 
cardiovascular events in the study. BMI, body mass index; eGFR, estimated 
glomerular filtration rate; ACR, albumin to creatinine ratio.

No CVE (n = 614) CVE (n = 69) p-value

Males (%) 390 (63.5) 48 (69.6) 0.315
Age (Years) 64.7 (14.0) 70.4 (8.9) 0.002
Weight (Kg) 82.2 (46.3) 79.7 (13.8) 0.791
BMI 29.1 (5.1) 29.4 (4.8) 0.541
Glucose (mg/dL) 111.8 (37.5) 131.5 (48.7) <0.0001
Total cholesterol (mg/dL) 163.9 (39.5) 155.6 (47.5) 0.023
HDL cholesterol (mg/dL) 52.1 (35.3) 46.0 (15.1) 0.039
LDL cholesterol (mg/dL) 89.4 (68.4) 81.4 (42.7) 0.027
Total calcium (mg/dL) 9.4 (0.5) 10.2 (7.4) 0.404
Potassium (mEq/L) 4.8 (2.0) 4.9 (0.7) 0.016
Sodium (mEq/L) 140.4 (7.6) 140.8 (2.9) 0.963
ACR (mg/g) in urine 24 h 578 (1.041) 1.068 (1.607) 0.004
Endothelin 2.01 (0.95) 2.35 (1.1) 0.008
Troponin 45.8 (44.5) 81.0 (143.8) 0.007
NT_proBNP 2.674 (5.861) 5.606 (8.460) 0.0004
Hypertension (%) ​ ​ 0.415

No 103 (16.8) 9 (13.0) ​
Yes 511 (83.2) 60 (87.0) ​

History of CV event ​ ​ 0.0001
No 393 (76.0) 32 (52.5) ​
Yes 124 (24.0) 29 (47.5) ​

Diabetes mellitus (%) ​ ​ 0.0003
No 388 (63.2) 28 (40.6) ​
Yes 226 (36.8) 41 (59.4) ​

Smoking (%) ​ ​ 0.644
Non smoker / Former 492 (81.5) 53 (79.1) ​
Smoker 112 (18.5) 14 (20.9) ​
Systolic blood pressure. mmHg 141.8 (23.5) 151.9 (34.9) 0.023
Diastolic blood pressure. mmHg 77.4 (13.1) 77.7 (20.9) 0.428
Pulse pressure. mmHg 64.3 (22.1) 74.2 (23.9) 0.001
CKDstage_1_2_ctrles ​ ​ 0.001

CKD 1–2 174 (28.3) 7 (10.1) ​
CKD 3 154 (25.1) 25 (36.2) ​
CKD 4–5 286 (46.6) 37 (53.6) ​
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several endothelial inflammatory mediators induced by ET-1 were 
associated with a greater eGFR decrease [25]. Now, our data adds to this 
incidental evidence to support the notion that ET-1 concentrations 

might be useful to monitor the progression of renal damage.
Individuals with CKD face a higher likelihood of succumbing to CV 

diseases than progressing to kidney failure [2]. In this regard, ET-1 has 

Fig. 2. Cardiovascular event-free survival in the three groups yielded by the cluster analysis based on endothelin-1 concentrations.

Fig. 3. Global survival in the three groups yielded by the cluster analysis based on endothelin-1 concentrations.
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been related to CV dysregulation since it was discovered [26,27]. Our 
findings show that elevated circulating levels of ET-1 were indepen
dently associated with a significantly reduced CV event-free survival 
(over 2 years less in patients within cluster 3 compared to those in 
cluster 1), suggesting a potential prognostic role of ET-1 in CV risk 
stratification. Accordingly, studies on patients with CV disease, without 
renal involvement, also have reported elevated ET-1 concentrations [11,
28–30]. Indeed, ET-1 has been recently proposed as a useful biomarker 
for some of these disorders [29,31]. In the CKD setting, however, the 
information on ET-1 impact on CVE is very scarce. In a small group of 
CKD patients, Peng et al. reported that ET-1 levels exhibited a significant 
correlation with markers of cardiac complications [15], which supports 
our observations in this large CKD cohort. Persistent ET-1 elevation in 
CKD supports its role as a central mediator in cardiorenal syndrome 
pathophysiology. Although causality cannot be confirmed, evidence 
suggests that ET-1 may contribute to the heightened CV risk in CKD 
patients through mechanisms such as the exacerbation of atherosclerosis 
[32], hypertension [21] or by promoting myocardial fibrosis and 
remodeling [15]. It should be noted that, regarding the results obtained 
for all-cause mortality, the association lost significance when age was 
included in the regression model, which suggests that caution should be 
exerted when extrapolating these results. Notwithstanding, an expla
nation for the effect of age on the model could be that we included a 
wide array of patients: from individuals with CKD stages 1–2, usually 
younger, to those with advanced renal dysfunction (stages 4–5), who 
were significantly older. This led to age having a disproportionate 
weight in the regression model, which may have overshadowed the 
impact of ET-1 levels.

Finally, our findings showed that a predicting CV risk model con
taining the ET-1 cluster displayed a very good discriminating ability of 
over 80 %. There seems to be no previous reports in the CKD setting, but 
some similar models have been tested in other populations. For instance, 
serum ET-1 levels have recently demonstrated promising prognostic 
value in CV risk models for patients with myocardial infarction [33] or 
heart failure [11]. Additionally, CT-proET-1, has also been utilized in 
models assessing coronary calcification and cardiac vasculopathies 
following heart transplantation [34]. Our findings open the door to the 
possibility of utilizing ET-1 as a CV biomarker in CKD as well. In the 
same manner, our observation that ET-1 played a relevant role in mor
tality risk in CKD, third variable in importance after age and diabetes, 

has also been confirmed in other patient populations. Thus, recent 
studies have shown that ET-1 and its precursor CT-proET-1 have prog
nostic value for short-term mortality in acute heart failure [11], 
ischemic stroke [35], and coronary artery disease [36].

This study presents several limitations. First, our CKD cohort 
included all stages of the disease, which allowed determining more 
precisely the role of ET-1 in the evolution of CKD, but, on the other hand, 
it also implied a higher heterogeneity of the population, particularly 
regarding age which might affect some of the analyses. Second, a longer 
follow-up could likely have resulted in a higher incidence of CVE and 
mortality, which would have increased the consistency of the models. 
Third, this marker requires further in-depth investigation before it can 
be considered for routine use in clinical practice. Finally, all our patients 
were Caucasians, and therefore the extrapolation of our results to other 
ethnicities might be limited.

Former studies had suggested that ET-1 could play a significant role 
in CKD; however, this is the first study to demonstrate, in a large and 
well-characterized cohort of renal patients, that baseline ET-1 levels not 
only increase with CKD severity, but are also independently associated 
with a higher incidence of CVE and faster decline in kidney function over 
time. Moreover, through advanced predictive models, we were able to 
show that ET-1 levels solidly correlate with the incidence of CV com
plications in CKD, which is the main cause of death in this population. 
Pending confirmation in prospective studies, these results, taken 
together, support the idea that ET-1 could be a very useful biomarker in 
CKD, both for the monitorization of renal function and CV 
comorbidities.
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