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SUMMARY

Chronic kidney disease (CKD) is a major risk factor for cardiovascular events (CVE). We assessed whether 

circulating levels and genetic variability of endocrine fibroblast growth factors (FGF19, FGF21, and FGF23) 

could predict CV risk in these patients. In 1,182 participants (815 CKD patients and 367 controls), plasma 

FGF concentrations and 46 gene variants were analyzed, with participants followed-up for a mean of 

37.6 ± 25.7 months for CVE. Clustering based on combined scores for all three FGF concentrations correlated 

strongly with CKD severity (p < 0.001) and predicted CVE after adjusting for other risk factors [hazard ratio 

(HR) = 2.03 (1.02–4.05), p = 0.044]. Four SNPs, notably FGF19 rs1307968 [odds ratio OR = 5.14 

(1.53,17.27), p = 0.008], were also independently associated with CVE. Incorporating both combined FGF 

concentration scores and the relevant genetic variants into traditional risk models significantly improved pre

diction accuracy (AUC increased from 0.713 to 0.779; p < 0.0001). These findings suggest that combining FGF 

biomarkers with genetic information may enhance CV risk stratification in CKD patients.

INTRODUCTION

The cause of chronic kidney disease (CKD) is unknown in a sig

nificant percentage of patients, which hinders an etiological 

diagnosis, targeted therapy, and early prevention campaigns. 

Additionally, traditional markers of the disease such as glomer

ular filtration rate (GFR) estimation and albuminuria only stand 

out when kidney damage is advanced, but early identification 

of CKD is important to improve patients’ survival and reduce 

associated comorbidities, particularly of cardiovascular (CV) na

ture, hence the need for novel biomarkers.1

The fibroblast growth factor (FGF) family comprises 22 mem

bers, of which three (FGF19, FGF21, and FGF23) act as circu

lating hormones.2 Alterations in circulating concentrations of 

these endocrine FGFs have been implicated in the pathogenesis 

of multiple chronic diseases and have recently been pointed out 

as potential biomarkers of CKD.3,4 FGF19 is a regulator of bile 

acid synthesis and glucose metabolism, which has been associ

ated with diabetes and CV risk.5,6 However, studies on this factor 

in CKD are very scarce, with small sample sizes and conflicting 

findings.4,7–9 With regard to FGF21, elevated concentrations 

have been linked to CV disease (CVD) in the general population10

and to abnormalities in glucose and lipid metabolism in end- 

stage kidney disease (ESKD), again mostly in undersized 

studies.8,11 Finally, FGF23, whose major target is the kidney, in

duces urinary phosphate excretion.12 Circulating levels of FGF23 

increase early during CKD and may increase up to 1,000-fold in 

patients on dialysis.13,14 Furthermore, its effect on poor out

comes in CKD may be modulated by its impact on anemia and 

systemic inflammation.15

Genetics also plays a role in CKD; however, and somewhat 

surprisingly given the aforementioned background, data on the 
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impact of genetic variants in these genes are very scarce in the 

renal setting. There are some interesting results regarding their 

association with renal function16 or CV events (CVEs),17,18 but re

sults with regard to CKD specifically have been controversial.19

In general, available studies only analyze a small number of 

known SNPs, mainly in the FGF23 gene, while FGF21 or 

FGF19 variability remains virtually unexplored.

In the present work, we have measured plasma concentra

tions of FGF19, 21, and 23 in a large group of patients with 

CKD and ESKD and control subjects, as well as identified clini

cally relevant genetic variants and tag-SNPs. These are variants 

that capture the whole genetic variability of FGF19, FGF21, and 

FGF23 and their respective receptors (FGFR1 and FGFR4). With 

this, the primary goal of this study was to develop a model con

taining FGF concentrations and related genetic variants, which, 

in conjunction with other relevant clinical and demographic char

acteristics, may be useful to predict CV risk in CKD patients. 

Secondarily, we also aimed to establish whether the combined 

study of endocrine FGFs may have a prognostic value in CKD, 

as well as to determine the effect of genetic variability on the 

circulating concentrations of these FGFs.

RESULTS

Median age and interquartile range (IQR) were 68 years (17) for 

CKD patients and 71 years (17) for controls, while the percentage 

of male subjects was 64.4% and 51.9% in these two groups. The 

prevalence of classical CV risk factors, including diabetes mellitus, 

hypertension, smoking, and dyslipidemia, was significantly 

elevated in the CKD group (p < 0.0001 in all cases). As anticipated, 

biochemical parameters also differed greatly between CKD pa

tients and controls. Among the most frequent causes for CKD, dia

betic nephropathy ranked first (24.5%), followed by nephroangio

sclerosis (17.9%) and interstitial nephropathy (11.7%). Causes 

were unknown in 18.2% of cases. Table 1 summarizes demo

graphic and clinical characteristics of the study population.

Endocrine FGF plasma levels

Plasma concentrations of all assessed endocrine FGFs signifi

cantly differed between CKD stages (Figure S1). Median (IQR) 

values for controls, CKD3, CKD4-5, and CKD5d were as follows: 

for FGF19: 124.5 (129.43), 153.5 (138.65), 257.0 (182.0), and 

357.0 (350.0) pg/mL, p < 0.0001; for FGF21: 140.5 (256.58), 

352.0 (504.0), 708.0 (914.0), and 1,267.0 (2,090.0) pg/mL, 

p < 0.0001; and for FGF23: 88.9 (138.4), 202.0 (204.5), 623.0 

(591.0), and 1,971.0 (3,464.0) pg/mL, p < 0.0001.

A combined score for the three FGF levels was obtained for 

each participant using exploratory factor analysis (see detailed 

description in STAR Methods), with a Cronbach’s alpha of 

0.77. The score was computed summarizing the standardized 

values of FGF19, FGF21, and FGF23 weighted by 0.282, 

0.461, and 0.799, respectively. Subjects were then assigned to 

five different groups according to a cluster analysis based on 

this score. Figure 1 shows that individuals with higher scores 

were predominantly found in the most severe stages of the dis

ease. Conversely, lower scores were massively overrepresented 

in subjects with higher eGFR values. Differences were statisti

cally significant between all CKD stages (p < 0.001).

Given that these endocrine FGFs have also been involved in 

glucose homeostasis, insulin resistance, and diabetes, we also 

assessed whether the FGF combined score was associated 

with the incidence of diabetic nephropathy, the most common 

cause of CKD in our cohort. This association was not statistically 

significant [median and IQR scores for patients with diabetic ne

phropathy or other causes were − 0.03 (1.01) and − 0.07 (0.80), 

p = 0.815, respectively]. However, when we analyzed the associ

ation with diabetes, diabetic patients had significantly higher 

scores than nondiabetic patients [− 0.14 (0.85) vs. − 0.43 (0.67), 

p < 0.001]. The fact that many diabetic patients had their CKD 

cause diagnosed as ‘‘unknown’’ instead of ‘‘diabetic nephropa

thy’’ is most likely behind this observation.

Impact of genetic variants on circulating levels of 

endocrine FGFs

A total of 787 participants consented to SNP genotyping. We 

analyzed the influence of variants in the five genes studied 

(FGF19, FGF21, FGF23, FGFR1, and FGFR4) on the circulating 

endocrine FGFs levels. A linear regression model adjusted 

for age, sex, body mass index (BMI), hypertension, diabetes, 

and smoking was performed in a codominant model of inheri

tance. Figure 2 shows the degree of statistical association for 

the assessed SNPs. Remarkably, six (rs2231861, rs2548957, 

rs35650232, rs739320, rs838133, and rs499765) of the eleven 

FGF21 SNPs significantly modified FGF19 concentrations. After 

Bonferroni correction for multiple testing, carriers of the homozy

gous variant genotypes of rs739320 and rs838133 still showed 

reduced FGF19 levels compared with wild-type carriers 

(215.94 ± 137.23 vs. 306.55 ± 222.66 pg/mL, p < 0.001 

and 233.23 ± 170.67 vs. 324.43 ± 238.44 pg/mL, p < 0.001, 

respectively). FGF21 rs838133 was also significantly associated 

with FGF23 plasma levels (992.6 ± 1868.0 vs. 1815.6 ± 

4597.8 pg/mL, p < 0.05); however, this association did not sur

vive Bonferroni correction. Detailed information on all selected 

SNPs can be found in Table S1.

Association of endocrine FGF levels with cardiovascular 

event-free survival

A total of 836 participants were followed-up for a mean of 37.6 ± 

25.7 months to record the occurrence of CVE. Sixty-nine events 

(8.3%) were registered in this period, the vast majority of them 

(64) in the CKD patients. Subjects who experienced CVEs were 

older (p < 0.01), had higher BMI (p < 0.05) and potassium values 

(p < 0.05), and showed a higher incidence of diabetes 

(p < 0.0001) and greater occurrence of CVE prior to the start of 

the study (p < 0.01). These and other features of individuals 

with and without CVE are listed in Table 2.

Kaplan-Meier analyses showed that higher levels of FGF21 

and FGF23 were associated with worse event-free survival 

(log rank p = 0.035 and p < 0.0001, respectively). Figure 3

shows the analysis by tertiles (T) conducted with Cox models 

adjusted for other risk factors, namely age, sex, BMI, hyperten

sion, diabetes, total cholesterol, calcium levels, smoking, esti

mated GFR (eGFR), and CKD diagnosis, where higher FGF23 

concentrations were associated with worse event-free survival: 

T1 vs. T3 [22.00 ± 12.42 vs. 62.14 ± 22.07 months, hazard ratio 

(HR) = 2.96 (1.12–7.86), p = 0.029]. In addition, a statistical 
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trend toward higher CV risk was observed for individuals in the 

T1 of FGF19 concentrations compared to those in T3 [27.70 ± 

20.79 vs. 47.74 ± 26.87 months, HR = 1.73 (0.86–3.47), 

p = 0.123].

Next, subjects were divided into two groups according to the 

cluster analysis based on the combined score for all three FGFs 

concentrations. Figure 4 shows that individuals within cluster 2, 

with higher scores, had significantly lower CV event-free survival 

compared to those in cluster 1 according to the adjusted Cox 

model [21.46 ± 14.73 vs. 40.53 ± 26.24 months; HR = 2.03 

(1.02–4.05), p = 0.044].

Association of genetic variability in endocrine FGF 

genes with cardiovascular events

Four out of the 46 variants studied were found to be signifi

cantly associated with CV risk in Cox regression models 

Table 1. Characteristics of the participants included in the study

Control (n = 367) CDK3 (n = 239) CDK4-5 (n = 333) CDK 5D (n = 243) pa pb

Males (%) 190 (51.8%) 157 (65.7%) 215 (64.6%) 153 (63.0%) <0.0001 0.820

Age (years) 68.0 (17.0) 72.0 (14.0) 71.0 (19.0) 70.0 (19.0) <0.0001 0.734

Weight (kg) 82.0 (21.88) 79.0 (15.6) 78.85 (21.43) 72.65 (18.25) 0.044 <0.0001

BMI 28.38 (5.92) 29.05 (5.69) 28.80 (7.22) 26.60 (8.63) 0.003 <0.0001

Glucose (mg/dL) 100.5 (20.0) 107.0 (46.0) 101.5 (30.0) 115.0 (69.0) 0.006 <0.0001

Total cholesterol (mg/dL) 174.0 (44.0) 171.0 (59.0) 144.0 (48.0) 139.0 (45.0) <0.0001 <0.0001

Cholesterol HDL (mg/dL) 54.5 (21.0) 46.0 (19.0) 44.0 (20.0) 39.0 (20.0) <0.0001 0.001

Cholesterol LDL (mg/dL) 96.0 (36.0) 91.0 (49.0) 68.7 (40.0) 67.0 (36.0) <0.0001 <0.0001

Dyslipidemia

Yes 56 (31.5%) 51 (55.4%) 229 (70.9%) 122 (50.4%) <0.0001 <0.0001

No 122 (68.5%) 41 (44.6%) 93 (28.8%) 120 (49.6%)

Hemoglobin 14.45 (1.9) 13.6 (2.35) 11.7 (1.92) 11.2 (1.9) <0.0001 <0.0001

Calcium (mg/dL) 9.45 (0.4) 9.55 (0.61) 9.3 (0.7) 9.25 (0.68) <0.0001 <0.0001

Potassium (mEq/L) 4.4 (0.5) 4.7 (0.7) 4.9 (0.8) 4.75 (1.15) <0.0001 <0.0001

Sodium (mEq/L) 141.0 (3.0) 142.0 (3.0) 141.0 (3.0) 140.0 (6.0) <0.0001 <0.0001

Phosphorus (mg/dL) 3.2 (0.79) 3.4 (0.71) 3.9 (1) 4.2 (1.4) <0.0001 <0.0001

ACR (mg/g) 8.52 (27.43) 82.97 (267.69) 410.19 (1052.51) – <0.0001 <0.0001

eGFR (ml/min/1.73 m2) 99.0 (22.35) 41.83 (17.19) 17.0 (7.0) – <0.0001 <0.0001

Albuminuria (mg/24 h) 10.85 (34.61) 105.12 (395.93) 420.0 (1070.53) <0.0001 <0.0001

Cystatin C 0.85 (0.28) 1.52 (0.57) 2.81 (0.91) – <0.0001 <0.0001

PTH 55.97 (30.26) 66.25 (49.43) 182 (169.5) 315 (282) <0.0001 <0.0001

Vitamin D – 22.6 (16.96) 21.6 (14.4) 24.4 (13.72) – 0.325

C-reactive protein (mg/L) 1.4 (1.95) 2.65 (7.31) 2.9 (6.25) 3.9 (8) 0.0003 0.129

Hypertension

Yes 218 (59.6%) 197 (82.4%) 286 (85.9%) 180 (75.3%) <0.0001 0.005

No 148 (40.4%) 42 (17.6%) 47 (14.1%) 59 (24.7%)

DM

Yes 62 (16.9%) 94 (39.3%) 158 (47.4%) 126 (52.7%) <0.0001 0.013

No 305 (83.1%) 144 (60.7%) 175 (52.6%) 113 (47.3%)

HbA1c (%) 6.3 (1.35) 6.8 (1.67) 6.6 (1.3) 6 (1.25) 0.043 0.0005

Smoking

Non-smoker 215 (59.9%) 102 (43.6%) 148 (44.6%) 115 (51.09%) <0.0001 0.278

Former smoker 89 (24.8%) 91 (38.9%) 137 (41.3%) 83 (36.7%)

Current smoker 55 (15.3%) 37 (15.8%) 47 (14.2%) 28 (12.4%)

Systolic pressure (mmHg) 132.0 (24.0) 140.0 (27.0) 143.0 (35.0) 141.0 (31.0) <0.0001 0.076

Diastolic pressure (mmHg) 80.0 (16.0) 78.0 (17.0) 74.0 (19.0) 64.0 (20.0) <0.0001 <0.0001

Pulse pressure (mmHg) 52.0 (21.0) 61.0 (25.0) 68.0 (34.0) 70.5.0 (30.0) <0.0001 0.004

BMI, body mass index; eGFR, estimated glomerular filtration rate; CVE, cardiovascular event; DM, diabetes mellitus; ACR, albumin to creatinine ratio. 

Median (interquartile range) or count (percentage) values are shown.
ap values for controls vs. all CKD patients.
bp values for the difference between CKD stages.
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adjusted by age, sex, BMI, diabetes, hypertension, smoking 

status, history of CVE, and CKD diagnosis. Table 3 shows 

that a gene-dose effect was observed for FGF19 rs1307968, 

as HR values increased from 1.84 (1.01,3.36), p = 0.048 for het

erozygous carriers to 5.14 (1.53,17.27), p = 0.008 for homozy

gous carriers. In addition, homozygous variant genotypes of 

FGF23 rs11063112 (p = 0.006) and FGFR4 rs31776 (p = 

0.003) also significantly increased the risk for CVE. In contrast, 

heterozygous carriers of FGFR4 rs351855 displayed better CV 

event-free survival (p = 0.024).

Risk model for cardiovascular events

Finally, we assessed the putative role of the relevant genetic var

iants (rs1307968, rs11063112, rs31776, and rs351855) and the 

two-group cluster based on the combined score representing 

FGFs levels as CV biomarkers by using ROC analysis. The addi

tion of these two elements to a multivariate logistic regression 

model consisting of classic risk CV factors significantly 

increased its area under curve (AUC) from 0.713 (0.686,0.739) 

to 0.779 (0.756,0.802), p < 0.0001 (Figure 5).

DISCUSSION

CKD remains highly prevalent and is strongly associated with 

increased risk of adverse CV outcomes.20 Effective CKD preven

tion depends on early risk identification and strategies to slow 

progression, but these efforts are hindered by limited under

standing of its etiopathogenesis, highlighting the need for 

studies to identify predictive biomarkers.

In the present work, plasma levels of all endocrine FGFs stud

ied showed a consistent correlation with the severity of CKD. The 

relationship between FGF23 and CKD has long been known.13 In 

contrast, fewer studies, with limited sample size and some con

flicting results, have analyzed FGF21, particularly FGF19 in this 

setting.4,7–9 Our findings not only confirm that all endocrine 

FGF levels are dysregulated in CKD but also highlight the poten

tial utility in clinical practice of a composite FGF score integrating 

circulating concentrations of FGF19, FGF21, and FGF23. By 

capturing multisystemic biochemical alterations associated 

with mineral metabolism, metabolic stress, and inflammation, 

the score utilized in the present work may provide a more 

nuanced and biologically relevant stratification than that ob

tained from the levels of individual FGFs, as well as open the 

door to the use of additional biomarkers of CKD severity beyond 

traditional parameters like eGFR and albuminuria. In the same 

line, Toro et al. have reported the use of a combined biomarker, 

including FGF23 and other non-FGF compounds, for the devel

opment of CKD in patients with sepsis.21

Given the interconnection of endocrine FGFs with pathways 

perturbed in CKD and implicated in CVD, these factors have 

garnered significant attention as potential biomarkers for CV risk 

in renal patients.2,22 Our findings showed that patients with 

elevated FGF23 levels had lower CV event-free survival after 

adjustment for other risk factors. This agrees with previous studies 

that demonstrated an independent association between high 

FGF23 levels and increased risk of CVE in CKD patients (reviewed 

in23–25), an association that appears to be more pronounced in in

dividuals with CKD compared to those without the condition.26

Figure 1. Distribution of combined scores summarizing plasma levels of FGF19, FGF21 and FGF23 in the participants according to the 

severity of chronic kidney disease 

CKD5d stage denotes patients on dialysis. CKD, chronic kidney disease. Median [minimum, maximum] values are given for each cluster.
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Numerous physiological explanations, e.g., endothelial dysfunc

tion or arterial stiffness, have been proposed for the impact of 

raised FGF23 on CVD,27–31 but it should be remarked that it is still 

debatable whether FGF23 levels follow, rather than induce, CVD in 

conditions such as CKD.23 In addition, we observed a statistical 

trend indicating that higher levels of FGF19 were also associated 

with lower event-free survival rates. In this regard, available 

studies for FGF19 are not only scarce but also contradicting. 

Hao et al. have reported that low FGF19 levels were associated 

with increased severity of coronary artery disease.32 Conversely, 

a positive correlation between FGF19 concentrations and subclin

ical atherosclerosis in male diabetic patients has also been 

found,33 while Yamamoto et al. described that FGF19 levels 

tended to be high in older CKD patients with a history of CVD,4 re

Figure 2. Influence of genetic variants on 

endocrine FGFs plasma concentrations in 

a codominant model of inheritance 

Variants in FGF19 and FGFR4 genes are not 

shown as they did not produce any significant 

association. Darker colors denote a higher degree 

of association.

ports that agree with our results. It should 

be noted, however, that the overall exist

ing evidence of the involvement of 

FGF19 in CVD is often times indirect 

and, in any case, considerably weaker 

than that of FGF23. Finally, regarding 

FGF21, its association with CVD lost sig

nificance when adjusted by other risk fac

tors. In the same line, a very recent men

delian randomization study by He et al., 

which aimed to establish a causal relation

ship between FGF21 and six CVDs, found 

no evidence of this link.34 In any case, 

studies suggesting the opposite also 

exist,35,36 although none of them was car

ried out in the CKD setting. Most interest

ingly, we have shown that the calculated 

FGF combined score not only correlated 

with CKD severity, but it was also an inde

pendent CV risk factor, which suggests 

that this tool could play a role in improving 

the integrated care of CKD patients, 

particularly in relation to CV risk, a major 

concern in this population.

Considering the importance of endo

crine FGF levels for CKD, it is undoubt

edly relevant to analyze intrinsic factors 

of the patient that could alter these con

centrations. A remarkable finding was 

that several FGF21 genetic variants, 

particularly rs739320 and rs838133, 

were associated with modified FGF19 

plasma levels. Given that FGF21 and 

FGF19 participate in overlapping regula

tory pathways—particularly those gov

erning the regulation of energy balance and the metabolism of 

glucose, bile acid, and lipids—the presence of genetic variants 

influencing FGF21 function/expression might induce compensa

tory changes in FGF19 levels to preserve metabolic homeosta

sis.37 Interestingly, rs739320 has previously been related to a 

more favorable kidney function profile,38 although the authors 

did not propose any mechanistic explanation. Now, our findings 

indicate that rs739320, by decreasing abnormally high FGF19 

levels in CKD patients, could lead to better control of glucose ho

meostasis and regulation of lipid synthesis,39 which in turn could 

contribute to the observed beneficial effect on kidney function.

Furthermore, we have shown that genetic variability of 

the endocrine FGF system may be associated with CV risk in 

CKD. Most notably, FGF19 rs1307968 carriers had lower CV 
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event-free survival. This is a novel finding, as there is no informa

tion available in the literature regarding this SNP, except for an 

association with the risk for cleft lip.40 rs1307968 was included 

in the study as an intronic tag-SNP, i.e., it represents genetic 

variability in an area of the gene locus. Therefore, the SNP 

must likely be in high linkage disequilibrium (LD) with another 

functional variant on which the observed clinical effect would 

be dependent. A putative candidate is rs1452459680 C/G, which 

is in almost complete LD and is located within a transcription fac

tor binding site. We also found a detrimental effect of the FGF23 

rs11063112AA genotype. Consistently, a large study in hemodi

alysis patients has reported that this variant was associated with 

CV mortality.17 We did not observe that this SNP affected FGF23 

levels, which increase CV risk; therefore, another underlying 

mechanism must be considered, e.g., altered mRNA stability, 

since the SNP lies within the 3′UTR region. A third SNP, 

FGFR4 rs31776, was also linked to high CV risk. This variant is 

located in a splicing region and as such could translate into 

altered function of the receptor, which could contribute to the 

observed impact. Our results indicate that this could be a variant 

worth of further examination, as there are no previous studies on 

its clinical implications. The last significant genotype was FGFR4 

rs351855 G/A, which produces a Gly388Arg substitution that 

SIFT and PolyPhen repositories regard as deleterious or possibly 

damaging. It has been reported that the A-allele is linked to 

decreased risk of coronary artery disease41 and stroke,42 which 

is in line with our observation that GA carriers were at lower risk 

of CV events in our cohort. Conversely, Selllier et al.43 did not find 

an association of this SNP with CV events in a CKD population, 

although the authors only considered left ventricular hypertrophy 

and atherosclerosis. In any case, it was only the heterozygous 

genotype that was significantly associated with CV risk in our pa

tients, and hence caution must be exerted when extrapolating 

these results. In any case, these genetic results from a homoge

neous, sizable cohort add to the existing evidence, arguing for 

the utility of early genotyping in the CKD setting.44

Finally, the addition of the combined scores representing FGF 

levels through a two-group cluster, along with the four relevant 

genetic variants to a CV risk model containing classic risk fac

tors, significantly improved its predicting ability from 71% to 

78%. We have in the past shown that both genetics and 

biomarker concentrations can be used to improve risk models 

for CKD patients.45,46 In this case, it should be remarked that 

although both the SNPs and the combined levels had a profound 

effect on CV event-free survival, the ROC analysis is based on bi

nary logistic regression (event yes/no), and therefore the time 

variable is not considered. This may have limited the observed 

model improvement of 6.6 percentual points, which, while it 

may not justify by itself its use in clinical routine, provides a 

strong platform for future biomarker-driven strategies to improve 

risk stratification and management in CKD patients. In any case, 

our findings build upon previous evidence47 that there is much 

room for improvement in the use of traditional markers such as 

eGFR and albuminuria in the CKD setting. New biomarkers are 

urgently needed, as CKD is predicted to become one of the 

top five causes of death worldwide by 2040, mainly because of 

its CV complications.48

To our knowledge, this is the first study that generates a com

bined score for all three endocrine FGFs to establish associa

tions with CKD severity and CV risk. Moreover, the simultaneous 

genetic study allowed us to identify relevant variants for the inci

dence of CVE, which improved CV risk models already contain

ing the FGFs clusters and other classic risk factors. In summary, 

we present herein a combined score that integrates FGF19, 21, 

and 23 circulating concentrations and that could function as a 

dual-risk biomarker in renal patients, capturing both renal and 

cardiovascular vulnerability. Furthermore, the combination of 

Table 2. Demographic and clinical features of participants that 

did or did not experience cardiovascular events in the study

No CVE 

(n = 767)

CVE 

(n = 69) p value

Sex

Men 467 (60.9%) 52 (75.4%) 0.015

Women 300 (39.1%) 17 (24.6%)

Age, years 65.3 (14.4) 70.9 (9.8) 0.004

Weight, kg 80.2 (42.6) 79.1 (16.6) 0.234

BMI, kg/m2 28.8 (5.5) 30.0 (5.1) 0.038

Glucose, mg/dL 119.1 (54.0) 148.5 (61.7) <0.0001

Total cholesterol, mg/dL 155.6 (38.9) 146.0 (42.7) 0.027

HDL cholesterol, mg/dL 50.4 (32.6) 41.8 (12.7) 0.001

LDL cholesterol, mg/dL 82.7 (62.4) 76.1 (43.8) 0.023

Total calcium, mg/dL 9.4 (3.5) 9.9 (7.6) 0.001

Potassium, mEq/L 4.9 (1.7) 5.0 (0.8) 0.014

Sodium, mEq/L 140.1 (6.6) 140.5 (3.2) 0.896

ACR (mg/g) in urine 24 h 629 (1.108) 876 (1.507) 0.237

Hypertension

No 154 (20.2%) 9 (13.0%) 0.134

Yes 609 (79.8%) 60 (87.0%)

History of CVE

No 572 (74.6%) 39 (59.1%) 0.009

Yes 195 (25.4%) 27 (40.9%)

Diabetes

No 454 (59.5%) 18 (26.1%) <0.0001

Yes 309 (40.5%) 51 (73.9%)

Smoking

Non-smoker/former 617 (83.0%) 53 (80.3%) 0.578

Smoker 126 (17.0%) 13 (19.7%)

Systolic blood pressure, 

mmHg

141.8 (25.0) 151.3 (34.0) 0.056

Diastolic blood pressure, 

mmHg

75.1 (14.5) 73.8 (23.3) 0.113

Pulse pressure, mmHg 66.6 (22.6) 77.4 (22.9) 0.002

CKD stage

Control 176 (22.9%) 5 (7.2%) <0.0001

CKD 3 77 (10.0%) 15 (21.7%)

CKD 4–5 304 (39.6%) 17 (24.6%)

CKD5d 210 (27.4%) 32 (46.4%)

BMI, body mass index; CVE, cardiovascular event; CKD, chronic kidney 

disease. 

Mean (standard deviation) values or count (percentage) are shown.
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this score with the identified CV-related genetic variants, as well 

as traditional risk factors, holds the potential to significantly 

improve the management of CV-related complications in CKD.

Limitations of the study

The incidence of CVE was not very high, which could have 

affected the statistical stability of our analyses. For instance, it 

forced us to choose a different clusterization method to study 

event-free CV survival. Also in this regard, only patients with 

CKD stage ≥3 (with higher likelihood of CVE) were included in 

the study; while the inclusion of CKD1/2 patients would have 

been valuable, their participation would have also lowered 

even further the percentage of CVE registered. Second, while 

the ELISA methodology was sound, potential batch effects or 

intra-assay variability cannot be ruled out. Third, genetic material 

and CV follow-up data were not available for all 1,182 partici

pants, although the resulting cohorts were still sizable.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will 

be fulfilled by the lead contact, Guillermo Gervasini (ggervasi@unex.es).

Materials availability

This study did not generate any new material.

Data and code availability

• Source data for this study have been uploaded to Figshare and 

are openly available at https://figshare.com/articles/dataset/FGFs_ 

in_CKD/29108150?file=55074824 with https://doi.org/10.6084/m9. 

figshare.29108150.

Figure 3. Cardiovascular event-free survival analysis stratified by tertiles of FGFs concentrations 

p value for Cox-adjusted models is shown: *p = 0.029 vs. T1.

Figure 4. Cardiovascular event-free survival in the two groups yiel

ded by the cluster analysis based on the scores summarizing all 

three FGF concentrations 

p value for Cox-adjusted model: *p = 0.044.

Table 3. Hazard ratios for genetic variants with significant 

associations with cardiovascular event-free survival in the 

population of study

SNP Genotype No CVE CVE HR (95% CI) p value

FGF19 

rs1307968

A/A 76.3% 65.0% Reference

A/G 22.4% 30.0% 1.84 (1.01,3.36) 0.048

G/G 1.2% 5.0% 5.14 (1.53,17.27) 0.008

FGF23 

rs11063112

T/T 55.7% 50.8% reference

T/A 39.0% 39.0% 0.96 (0.52,1.78) 0.894

A/A 5.4% 10.2% 3.78 (1.48,9.65) 0.006

FGFR4 

rs31776

G/G 45.8% 42.2% reference

G/A 45.4% 37.5% 0.93 (0.51,1.72) 0.828

A/A 8.8% 20.3% 3.02 (1.46,6.25) 0.003

FGFR4 

rs351855

G/G 47.2% 63.1% reference

G/A 43.3% 32.3% 0.51 (0.29,0.92) 0.024

A/A 9.6% 4.6% 0.31 (0.07,1.31) 0.111

CVE, cardiovascular event; HR (95% CI), hazard ratio with 95% confi

dence intervals.
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• All the different codes for the R packages used are included in the key 

resources table.

• All other items are also available in the key resources table.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study approval and ethical statement

All patients were over 18 years of age and gave written consent for their participation in the study, which was approved by the Ethics 

Committee of the Badajoz University Hospital (No 220421) and was carried out in accordance with the Declaration of Helsinki and its 

subsequent revisions.

Patient enrollment

This was a multicentre, observational cohort study, with a baseline cross-sectional biomarker/genetic assessment and prospective 

follow-up for incident CVE. A total of 1182 Spanish Caucasian subjects were recruited in a 6-year period (2017-2022). Of them, 815 

patients were diagnosed with different CKD stages [239 (29.3%) with stage 3; 333 (40.9%) with stage 4/5 and 243 (29.8%) with stage 

5d –dialysis], who were enrolled at the Nephrology Service of Badajoz University Hospital and several dialysis units in the province of 

Badajoz (Badajoz, Zafra and Llerena Hospitals and FRESENIUS clinic). In addition, 367 volunteers with normal renal function were 

recruited from the Badajoz University Hospital and several primary healthcare centers in Soria (Spain). The percentage of male sub

jects was 64.4% on patients and 51.9% on controls. Other characteristics can be found in Table 1 of the results.

Inclusion criteria for the patient group were being over 18 years of age and meeting clinical criteria for CKD, with or without a confir

matory biopsy, with an estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2. Control subjects must also be over 18 years of 

age, a eGFR >60 ml/min/1.73 m2. Transplantation, pregnancy or breastfeeding, active infection, cancer, or acute kidney injury were 

all considered exclusion criteria.

Main clinical variables

Diagnostic and prognostic stratification of patients was made using the KDIGO classification, the KDIGO table of risk of progression 

and the CONSORTIUM-CKD equation (www.kidney risk failure.org). Kidney function was assessed by the glomerular filtration rate 

(GFR) estimated by the CKD-EPI formula. Proteinuria was defined as a value greater than> 500mg (or albuminuria> 300mg) in 24h 

urine. A biopsy was conducted to confirm diagnosis when proteinuria was over 1g. Clinical records of the study participants were 

reviewed to retrieve data on renal function, general biochemistry, and CVE experienced during the follow-up, which was possible 

in 836 out of the 1182 individuals. These were followed until the earliest of CVE, death, or end of study (September 2024). CVE 

included death from CV cause, acute myocardial infarction, acute coronary syndrome, coronary catheterization requiring angio

plasty, coronary bypass, typical angina with positive stress tests, sudden death, stroke, peripheral artery disease and lower limb 

ischemia.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Human database This study https://doi.org/10.6084/m9.figshare.29108150

Software and algorithms

Simple Plex Runner software 

(v.3.9.0.28)

Bio-techne https://www.bio-techne.com/resources/instrument-software-download-center

Haploview software Broad Institute https://www.broadinstitute.org/haploview

DMwR2 package R https://cran-archive.r-project.org/web/checks/2025/2025-07-10_check_results_ 

DMwR2.html

Nortest package R https://cran.r-project.org/web/packages/nortest/

Psych package R https://cran.r-project.org/web/packages/psych/refman/psych.html

EFAtools package R https://cran.r-project.org/web/packages/EFAtools/index.html

Ckmeans.1d.dp package R https://pubmed.ncbi.nlm.nih.gov/27942416/

Cluster package R https://cran.r-project.org/web/packages/cluster/index.html

SPSS statistics IBM https://www.ibm.com/es-es/products/spss

GPower 3.1 University of Kiel, 

Germany

https://scispace.com/pdf/gpower-a-general-power-analysis-program- 

3urzlpnewc.pdf
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METHOD DETAILS

Determination of FGF circulating levels

Blood samples were collected and immediately subjected to plasma separation on the day of the participant’s visit to the corre

sponding hospital Service. The determination of endocrine FGFs (FGF19, FGF21 and FGF23) was carried out in an ELLATM equip

ment (Bio-Techne, Minneapolis, USA), which is an automated, low-volume, microfluidic ELISA platform with 32-well cartridges that 

allowed the simultaneous analysis of all three analytes. In brief, 50 μL of diluted plasma with equal volume of sample diluent were 

added to each well, followed by the addition of 1 mL of wash buffer to the corresponding buffer inlets. Automated immunoassay an

alyses were initiated via Simple Plex Runner software (v.3.9.0.28), and consisted of system start-up, microfluidic sample splitting, 

incubation within glass nano-reactor (GNR) channels containing immobilized capture antibody, biotinylated detection antibody 

and streptavidin dye conjugate, laser excitation of fluorophores and detection of fluorescence signals. Relative fluorescence units 

for each GNR were converted to FGFs concentrations by inverse fitting to a master calibration curve established by the manufacturer. 

Because each microfluidic channel has three GNRs, triplicate measurements were produced for each well/sample (average values 

are given).

Genetic analyses

DNA was purified from whole blood samples using a standard phenol-chloroform extraction method followed by ethanol precipita

tion. Five genes, namely FGF19, FGF21, FGF23, FGFR1, FGFR4, were studied using two different approaches. First, tag-SNPs, 

which define the variability of a specific area in a gene locus, were previously identified. For this, we obtained all the SNPs registered 

for Europeans for each gene (www.internationalgenome.org) and inserted this information into Haploview software (https://www. 

broadinstitute.org/haploview) using Ensembl’s VCF to PED converter tool. Assuming a threshold of r2 = 0.8 and a minimum allele 

frequency (MAF) of 0.05, the Haploview tagger function generated 46 tag-SNPs by pairwise tagging, which captured 100% of the 

variability registered in the European population for these five genes. Second, we also included in the analyses 15 variants for which 

there were reports supporting their functional/clinical impact on endocrine FGFs.16,19,49 Genotyping analyses were then performed 

using a customized panel on a QuantStudioTM 12K Flex Real-Time PCR System (Life Technologies, Carlsbad, California, USA) via 

TaqMan® OpenArray technology. Each run incorporated quality controls, consisting of sample trios sourced from the Coriell Institute 

Biorepository. These analyses were conducted at the Centro Nacional de Genotipado-Instituto de Salud Carlos III (CeGen-ISCIII; 

Madrid, Spain).

QUANTIFICATION AND STATISTICAL ANALYSIS

Qualitative variables were described as frequencies, and quantitative variables were summarized as medians with interquartile 

ranges, since none of them met the normality assumption. To study the association between categorical and quantitative variables 

Kruskal-Wallis tests were used. Chi squared tests were used for the association between categorical variables. Linear regression 

models adjusted by meaningful covariates were carried out to establish the association of the FGF plasma concentrations with ge

netic variants in a codominant model of inheritance. The association of FGF levels or genetic variants with CV event-free survival was 

assessed in Kaplan-Meier curves and Cox regression models that were adjusted for meaningful covariates. Clinical and demographic 

covariates incorporated into each model for adjustment were chosen according to clinical criteria and/or univariate analyses. Asso

ciations were expressed as hazard ratios (HR) with 95% confidence intervals.

An exploratory factor analysis (EFA) was carried out to describe the structure of FGFs levels and underlying latent factors. The out

liers were identified by LOF (local outlier factors) algorithm, excluding the top 5th percentile from EFA, and the correlation matrix was 

computed by the Spearman method. The suitability of data for the analysis was evaluated using Bartlett’s test of sphericity, ensuring 

all inter-item correlations were below 0.8. According to Kaiser rule and parallel analysis, the information of all three FGFs could be 

explained with one factor, whose internal consistency was measured by Cronbach’s alpha. This factor was used, together with 

the standardized FGFs concentrations, to create a global score representing the circulating levels of endocrine FGFs for each partic

ipant by using the Thurstone regression-based method, according to the following formula, where FGF are expressed in pg/mL:

score = 0:282 ∗
FGF19 − 253:2

209:1
+ 0:461 ∗

FGF21 − 929:8

1416:2
+ 0:799 ∗

FGF23 − 1277:7

3553:4 

Next, we carried out cluster analyses to group the population according to this score. For the whole population, the analysis by the 

optimal univariate k-median method produced five clusters that were analyzed in relation to the severity of CKD. The score intervals 

were [-0.911-0.420] for cluster 1, [-0.415,0.132] for cluster 2, [0.140, 1.158] for cluster 3, [1.211,3.856] for cluster 4, and [4.101,9.634] 

for cluster 5. However, in the subset of patients followed up for CV events, and because of the limited number of events registered, 

such clusterization resulted in cluster 5 (with the highest scores but a low number of patients) having no events. Therefore, for this 

particular CV analysis, we decided to apply instead the partitioning around medoids method of clusterization, which produced 

only two groups with a more balanced presence of events. The score intervals were [-0.802,0.711] for cluster 1, and [0.729,9.634] 

for cluster 2.
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To assess the potential use of FGFs concentrations and genetic variability as biomarkers of CV risk in the CKD setting, multivariate 

logistic regression models were performed. Areas under receiving operating characteristic (ROC) curves (AUCs) were calculated for 

models containing traditional risk factors, before and after the addition of the two CV cluster groups based on the combined score 

and the statistically significant genetic variants. AUCs were compared using De Long’s test. Models with AUC values from 0.70 to 

0.79 are generally considered as having good discriminative power, while those with AUC≥0.80 are excellent. The methodology 

takes into account ‘‘sensitivity’’ (True Positive Rate), which is the proportion of patients with their condition correctly identified, 

and ‘‘specificity’’ (True Negative Rate), the proportion of patients without the condition correctly excluded. Given the relatively low 

incidence of events, the dataset was balanced by over-sampling techniques prior to the model construction.

Considering the 836 individuals with cardiovascular follow-up, a CVE incidence of 8.3% (69 patients with CVE and 767 without), 

and a two-sided alpha of 0.05, this sample provides 87.4% power to detect a standardized effect size (Cohen’s d) of 0.4 between 

patients with and without CVE, according to calculations based on the Wilcoxon-Mann-Whitney test (GPower v. 3.1.9.6, Kiel Univer

sity, Germany).

All the analyses were conducted with different packages in the R environment (See key resources table) and IBM SPSS v.22.0 

(SPSS Inc., Chicago, IL, USA v.22.0). The threshold for statistically significant associations was set at p < 0.05. In the genetic asso

ciation study, Bonferroni correction for the 46 SNPs assayed lowered the significance threshold to 0.001. Still, we cannot rule out that 

the statistical power might be limited for detecting small genetic effects.
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