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ABSTRACT: The coffee industry is a vital sector of global agriculture. Coffee is one of 
the most widely traded plant products in the world. Coffee fruit ripeness affects the taste 
and aroma of the final brewed beverage, coffee farms’ overall yield and economic viability. 
Traditional methods of assessing coffee fruit ripeness, which rely on manual inspection by 
skilled workers, are labor-intensive, time-consuming, and prone to subjective interpretation. 
In this study, we have used the YOLOv9 (You Only Look Once) algorithm that outperformed 
previous versions particularly by using a new lightweight network architecture called the 
gelan-c model. The objective of this study was to identify and classify quickly and accurately 
the degree of ripeness of the harvested coffee fruits into the following classes: unripe, 
ripe-red, ripe-yellow, and overripe. The images were captured during harvesting with a 
commercial harvester in a coffee farm in the southern region of the state of Minas Gerais, 
Brazil. Data augmentation was performed to increase the dataset in terms of images 
and bounding boxes. Detection performance was obtained for image sizes between 128 
and 640 px. The best performance was achieved with an image size of 640 px, reaching 
a precision level of 99 %, a recall of 98.5 %, an F1-Score of 98.75 %, a mAP@0.5 of 
99.25 %, and a mAP@0.5:0.95 of about 85 % during the validation phase. Our study 
significantly outperforms previous studies on fruit classification in terms of models used, 
data augmentation strategies, and overall performance.
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Introduction

Coffee (Coffea arabica L.) is one of the most traded plant 
products in the world. Brazil is the largest producer and 
a significant exporter (Santos et al., 2023). Fruit ripeness 
affects the taste and aroma of the final brewed beverage 
and the overall yield and economic viability of coffee 
farms.

Coffee harvesting is a critical process in coffee 
production, and enhancing its performance can 
significantly reduce overall production costs (Souza et 
al., 2023). This process aims to harvest as many ripe 
coffee berries as possible without removing the unripe 
ones. However, traditional methods of assessing coffee 
fruit ripeness rely on manual inspection by skilled 
workers, are labor-intensive, time-consuming, and 
prone to subjective interpretation. This information is 
used to set up the harvester and the harvesting process.

The You Only Look Once (YOLO) algorithm, 
first introduced by Redmon et al. (2016), has evolved 
through several iterations, each bringing improvements 
in performance. YOLOv3 introduced the Darknet-53 
backbone network, while YOLOv4 enhanced 
performance with features such as Weighted-Residual-
Connections and Cross-Stage-Partial-connections 
(Bochkovskiy et al., 2020). YOLOv5 brought faster 
processing speeds and reduced model sizes, whereas 
YOLOv7 integrated Extended Efficient Layer 
Aggregation Network modules, improved learning 

efficiency (Wang et al., 2022). YOLOv9 was enhanced 
by a new lightweight network architecture known as 
the Generalized Efficient Layer Aggregation Network 
(GELAN) (Wang et al., 2024).

Several studies have demonstrated the 
effectiveness of YOLO in agricultural settings (Cuong 
et al., 2022; Fu et al., 2022; Li et al., 2023b; Santana 
et al., 2023). Moreover, a study by Eron et al. (2024) 
compared versions of YOLO. Although EfficientNet 
showed slightly higher accuracy in some cases, it 
required significantly more training time, making 
it less practical for real-time applications. The main 
objective of this work is 1) to obtain images of coffee 
fruits during the mechanized harvesting process and 2) 
to use the YOLOv9 algorithm to identify and classify 
the degree of ripeness of harvested coffee fruits into 
four classes.

Materials and Methods

This section describes the materials and means to 
achieve the two objectives. First, we describe the image 
acquisition device used to obtain images of the coffee 
fruits during the mechanized harvesting and labeling 
processes. Second, we explain how the YOLO algorithm 
is used to identify and classify quickly and accurately 
the degree of ripeness of the harvested coffee fruits into 
the following classes: unripe, ripe-red, ripe-yellow, and 
overripe.
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Data acquisition and labeling

In certain cases, harvesters have used cameras to 
improve the harvesting process. For example, a camera 
was mounted on the harvester’s exit spout to generate 
maturity maps and capture images of all the harvested 
fruit (Bazame et al., 2021). In a subsequent study, 
Bazame et al. (2022) estimated the coffee yield using 
the same system and compared it with data obtained by 
a device on the coffee harvester. In the present study, 
the images of the coffee fruits were captured using 
a device designed to capture higher quality images 
during the harvesting process and placed in a position 
different from those of previous studies. The device 
was designed according to the working conditions of 
the harvester, avoiding light variation over time and 
vibration during the harvesting process. This system 
consisted of (Figure 1):

• Support for coupling the camera to the harvesting 
machine.

• Anti-vibration mount for the camera.

• GoPro Hero seven video camera at a distance of 0.2 m 
from the conveyor belt. Images were taken in full HD 
definition (1920 × 1080), 60 fps, 1080P, ISO 1600 and 
1/800 shutter speed.

• LED lighting system with 4 × 3.5 W bulbs.

• Rubber curtains.

The device is designed to be attached to the 
harvester, positioned on the cross belt, and between the 
vertical conveyors (Figure 2A). The cross conveyor leads 
the harvested coffee fruit to the bulk tank or the discharge 
spout, depending on the needs of the harvesting process 
(Figure 2B). Thus, the images collected correspond to 
the coffee fruits stripped from one side of the coffee 

plants. Following this, in the next pass of the harvester, 
the images of the fruits corresponding to the other side 
of the coffee plants in the adjacent planting line are 
collected. 

The use of the device aligns with the requirements 
of a commercial harvester model equipped with a 
storage tank for harvested coffee. This harvester model 
is popular for its ability to enhance autonomy during 
the harvesting process. Installing the device at the end 
of the unloading conveyor belt or the entrance to the 
tank would capture a more comprehensive mixture 
of fruit ripeness from both sides of the plants, as was 
demonstrated in the study by Bazame et al. (2021) 
and can also be used to yield monitoring as shown by 
Bazame et al. (2022). Considering that the harvester 
makes the outward pass in a coffee planting line and the 
return pass in the adjacent planting line, by monitoring 
one side of each line at a time, it is possible to assess 
variability in fruit ripeness in a plot with the same sun 
exposure characteristics, which strongly influence fruit 
ripeness. This focused approach could provide practical 
insights for managing ripeness. Therefore, monitoring 
only one side may lead to an initial approach which 
assesses variability of the sun-exposed and shaded sides 
on planting lines.

For this study, eight videos were recorded in full 
HD (1920 × 1080, 60 fps) with an approximate duration 
of 10-20 min each. All videos were recorded under the 
actual working conditions of the coffee harvester, which 
can include vibration, occlusion, and overlapping of 
coffee fruits. The frames of all videos were extracted 
to create a dataset. The images were selected randomly, 
resulting in 200 Red-Blue-Green (RGB) images of 
harvested coffee fruits. All images were captured with 
a GoPro Hero seven video camera at 0.2 m from the 
conveyor belt, attached to a device designed for use on 
the harvester, without zoom or flash, and were saved 
with an image resolution of 96 DPI. All images were 

Figure 1 – Equipment used to capture images of harvested coffee 
fruits.

Figure 2 – Device attached to the coffee harvester to collect 
images. A) Side view of the device attached to the harvester 
on the cross-conveyor belt for transporting the harvested 
coffee fruit. B) Rear view of the coffee harvester with the device 
mounted on top of the machine and on the cross-conveyor belt.
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taken during the harvest in a commercial coffee farm 
located in the municipality of Lavras, in the southern 
region of the Minas Gerais state – Brazil (21°10’17” 
S, 44°58’47” W, altitude 934 m). The images used in 
this study were taken between 11 and 20 July 2023. 
A harvester, model Coffee Express 200, was used to 
harvest coffee fruits. The study areas were cultivated 
with Arabica coffee (C. arabica) of different cultivars. 

For labeling, three stages of ripeness are 
commonly used to classify the fruits: unripe, ripe. and 
overripe (Bazame et al., 2021; Khojastehnazhand et al., 
2019). Coffee fruits in the unripe and overripe stages 
were predominantly close to green and brown colors, 
respectively. However, at the ripe stage, the coffee fruits 
may be yellow or red, depending on the cultivar of the 
coffee plant. The Graphical User Interface Label-Studio 
(https://github.com/HumanSignal/label-studio) was used 
for bounding box labeling.

Using the YOLO model to detect coffee fruit 
ripeness

This study employed the YOLOv9 algorithm, a single-
stage target recognition deep learning algorithm. This 
YOLO version offers significant improvements over 
earlier versions, particularly through the use of the 
GELAN. This architecture optimizes gradient path 
planning, allowing for faster and more precise object 
detection, making it ideal for agricultural applications 
such as classifying coffee fruit ripeness during 
mechanized harvesting. Notably, this is the first study 
applying YOLOv9 and gelan-c specifically in the context 
of coffee bean ripeness detection. While YOLO models 
have been extensively studied in other agricultural 
applications, their use with gelan-c in this domain opens 
new avenues for real-time, high-precision detection in 
challenging environments.

To classify the coffee fruits into four ripeness 
stages (unripe, ripe-red, ripe-yellow, and overripe), the 
YOLOv9 model was trained on a dataset augmented with 
bounding boxes for each fruit. This dataset consisted of 
440 images and 13,130 bounding boxes. The model’s 
performance was evaluated on images of various sizes 
(128 to 640 px) and the best results were achieved with 
a 640-px image size, yielding a 99 % precision level, 
98.5 % recall, an F1-Score of 98.75 %, and a mAP@0.5 
of 99.25 %. 

These results underscore the ability of YOLOv9 
with gelan-c to handle real-time agricultural tasks 
with high precision, particularly in detecting small or 
overlapping fruits in complex environments.

Performance evaluation

Several experiments were performed to analyze the 
YOLOv9 algorithm using the configuration shown in 
Table 1. These experiments varied the image size from 
128 × 128 to 640 × 640 px.

The original dataset consisted of 63 images with 
1,880 bounding boxes. However, data augmentation 
improves the results, increasing the dataset to 440 images 
and 13,130 bounding boxes. The different augmentations 
used in this study are illustrated in Figure 3A and B 
horizontal flip and rotation between –45° and +45°; 
vertical flip and brightness adjustment between –30 and 
+30 % (Figure 3C and D); blur up to 2.5 px and noise 
up to 3 % of px (Figure 3E and F); original image (Figure 
3G). The dataset was randomly divided into three parts: 
training, validation, and test sets, with the percentages 
of images being 70, 15, and 15 %, respectively, which is 
a standard distribution used in similar studies.

The gelan-c model was selected for its efficient 
and lightweight integration of multiple computational 
blocks to improve precision and speed.

Results

The performance achieved by the YOLOv9 architecture 
using the gelan-c model is in Figure 4. It shows five 
graphs, each corresponding to an experiment during 
the validation phase. The horizontal axis represents the 
number of epochs, while the vertical axis represents 
the measured values, ranging from 0 to 1. These graphs 
show an excellent detection performance for image sizes 
between 256 and 640 px, while the performance drops 
significantly for 128 px, with values decreasing to almost 
half for most measurements.

Performance tends to stabilize around 250 epochs 
from 416 px. The best performance was achieved with 
an image size of 640 px, reaching a precision level of 
99 %, a recall of 98.5 %, an F1-Score of 98.75 %, an 
mAP@0.5 of 99.25 %, and a mAP@0.5:0.95 of around 
85 % during the validation phase.

A random frame from a conveyor belt video 
showcasing different stages of ripening of coffee fruits 
is shown in Figure 5A and B. Figure 5A shows the 
original frame, while Figure 5B illustrates the detection 
results, including bounding boxes with class names and 
confidence scores, which are generally high. A graph of 
the total number of coffee fruits detected per image is 
shown in Figure 6.

Table 1 – Specific parameters of the YOLOv9 (You Only Look 
Once) algorithm.

Factor Value
Model gelan-c
Input Image size [128, 254, 320, 416, 512, 640]
Images 440
Bounding boxes 13,130
Epochs 300
Batch size 8
Confidence threshold 0.50
Optimizer SGD
Learning rate 0.01
SGD = stochastic gradient descent.
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To evaluate the model using the weights 
obtained during training, a video was recorded of a 
moving production line showcasing coffee fruits at 
various stages of ripeness: overripe, ripe red, ripe 
yellow, and unripe. Four graphs, each representing 
detections per frame for different stages of coffee fruit 
ripening, are contained in Figure 7. Finally, a graph of 
the percentage of classes detected per frame is shown 
in Figure 8.

Discussion

Our study provides a detailed analysis of the 
performance of the YOLOv9 algorithm using the gelan-c 
model to detect coffee fruit ripening stages. When 
comparing our results with two previous studies on fruit 
classification, we observe significant differences in the 
models employed, data augmentation strategies, and 
overall performance.

Figure 3 – Images enhanced with data augmentation: A and B) horizontal flip and rotation between –45° and +45°; C and D) vertical flip and 
brightness adjustment between –30 % and +30 %; E and F) blur up to 2.5 px and noise up to 3 % of px; G) original image.

Figure 4 – Performance of the YOLOv9 (You Only Look Once) model with gelan-c during the validation phase.
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augmentation and a dataset of similar size (though 
slightly smaller), their model achieved a precision of 
85.6 %, a recall of 84.7 %, an F1-Score of 85.1 %, and a 
mAP@0.5 of 84.2 %. In contrast, our study, which used 
the YOLOv9 algorithm with the gelan-c model and a 
more extensive and diverse dataset, yielded significantly 
better results in detecting coffee fruit ripening stages. 
Our model achieved higher precision, recall, and overall 
performance metrics, highlighting the effectiveness of 
our approach in agricultural fruit classification tasks.

However, to our knowledge, no prior studies have 
applied YOLOv9 with the gelan-c architecture in the 
context of coffee fruit ripeness detection, making our 
work a novel contribution to this area of agricultural 
research. The ability of YOLOv9 to manage complex 
challenges such as occlusion and overlapping fruits 
during mechanized harvesting further highlights its 
suitability for this task. However, this may vary according 
to crop yield and harvester dynamic. Alternatively, 
we authors have implemented modules to deal with 
occlusions. A specific module to detect citrus fruit in 
occlusion scenarios was developed, demonstrating good 
performance with a precision level of 90.6 %, a mAP@50 
of 83.2 %, and a mAP@50:95 of 60.3 % (Lin et al., 2024). 
In contrast, our study with YOLOv9 outperformed these 
models, achieving a precision level of 99 %, a recall of 
98.5 %, and an F1-Score of 98.75 %. This underscores 
the effectiveness of YOLOv9, especially when paired 
with the gelan-c architecture, which optimizes gradient 
paths for real-time performance, making it more suitable 
for mechanized coffee harvesting environments where 

Figure 7 – Each detected class per frame.

Figure 6 – Total detections per frame. YOLO = You Only Look 
Once.

Figure 5 – A random frame with the different ripening stages of coffee 
fruits: A) Original frame and B) Detection in the original frame.

First, we compare our study with Bazame et al. 
(2021), who used a YOLOv3-tiny model to classify coffee 
fruits into three ripening stages: unripe, ripe, and overripe. 
Despite using higher resolution images (up to 896 px) 
and employing data augmentation to compensate for a 
small initial dataset, they achieved a maximum precision 
level of 83 %, a recall of 82 %, an F1-Score of 82 %, and 
an mAP@0.5 of 83 %. Although data augmentation was 
applied, their results were limited to using an older model 
and a smaller, less diverse dataset compared to ours. 
Our study used the more advanced YOLOv9 algorithm 
and a significantly larger augmented dataset with an 
additional ripening class (ripe-yellow). This provided a 
more comprehensive training set, allowing our model 
to achieve superior performance metrics by effectively 
generalizing across a wider variety of data conditions.

Second, an improved YOLOv7-based multi-task 
deep convolutional neural network, the MTD-YOLOv7 
model, was employed to classify cherry tomatoes into 
four maturity stages (green, turning, ripe, and fully 
ripe) (Wenbai et al., 2024). Despite employing data 
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accuracy and speed are essential. Our mAP@0.5 of 
99.25 % and mAP@0.5:0.95 of 85 % further highlight 
the superior capability of YOLOv9 in handling intricate 
details like occlusion and overlapping berries, challenges 
frequently encountered in agricultural settings. 

Additionally, Li et al. (2023a) used YOLOv7-CS, 
based on YOLOv7, to estimate bayberry yield. Compared 
with Single-Shot Detector, Region-based Convolutional 
Neural Network (Faster-RCNN), Deconvolutional Single-
Shot Detector, and YOLOv7X target detection algorithms, 
YOLOv7-CS increased the mAP 0.5 by 35.52, 56.74, 12.36, 
and 7.05 %, respectively. These results demonstrated 
YOLO’s greater capacity than other models. As regards 
the different versions of YOLO, Bazame et al. (2023) used 
four versions: YOLOv4, YOLOv4-tiny, YOLOv3, and 
YOLOv3-tiny to classify coffee fruits on tree branches 
into tree classes. The average precision level varies 
from 76 to 84 % according to the tree classes. YOLOv5, 
YOLOv7, and YOLOv5m6 were compared to classify four 
ripeness stages of coffee fruits, with the best results using 
YOLOv7 achieving a precision level of 85.2 %, a recall 
of 87.1 %, and a mAP@0.5 of 90.4 % (Eron et al., 2024). 
Despite these respectable results, our study surpasses 
Eron et al. (2024) findings in all key metrics, with a 14 % 
higher precision level and an 8.85 % higher mAP@0.5, 
demonstrating that the YOLOv9 with the gelan-c model 
offers significant advancements in terms of both accuracy 
and generalizability across different conditions.

Thus, while EfficientNet delivers strong accuracy 
in general-purpose tasks, its performance is constrained 
in agricultural applications, particularly on account 
of its limited efficiency on Advanced RISC Machines 
architectures and slow training times. On the other hand, 
both YOLOv7 and YOLOv8, though fast and efficient, 
struggle to capture the intricate details required for precise 
coffee ripeness classification. YOLOv9, with its optimized 
architecture, is better suited for real-time applications, 
making it a more robust choice for mechanized coffee 
harvesting.

In summary, our study demonstrates that the 
choice of model and data augmentation strategies can 
significantly impact the performance of fruit detection 
algorithms. Our approach using YOLOv9 and the 
gelan-c model, together with an extended and diverse 
dataset, represents a significant advance in the accurate 
classification of coffee ripening stages.

The coffee industry is a key sector of global 
agriculture. The ability to accurately determine fruit 
ripeness is important because it affects the taste and 
aroma of the final brewed beverage, as well as the overall 
yield and economic viability of coffee farms. Mechanized 
coffee harvesting aims to harvest as many ripe coffee 
fruits as possible without removing the unripe ones. In 
this study, the YOLOv9 algorithm with the gelan-c model 
was successfully used to identify and classify quickly 
and precisely the ripeness of harvested coffee fruits 
into the following classes: unripe, ripe-red, ripe-yellow, 
and overripe. The highest detection performances were 
obtained for image sizes between 256 and 640 px. 
Specifically, the best performance was achieved with an 
image size of 640 px, reaching a precision level of 99 %, 
a recall of 98.5 %, an F1-Score of 98.75 %, a mAP@0.5 
of 99.25 %, and a mAP@0.5:0.95 of around 85 % during 
the validation phase. It is also important to emphasize 
that our study significantly outperforms some previous 
studies on fruit classification in terms of models used, 
data augmentation strategies, and overall performance, 
as discussed in the previous section.

Future work could enhance the present study in 
several ways. First, the integration of multispectral or 
hyperspectral imaging techniques could be explored to 
improve the model’s ability to detect subtle variations 
in fruit ripening stages, such as distinguishing between 
early and late unripe stages. These techniques could 
enhance classification accuracy by providing additional 
spectral data that standard RGB images cannot capture. 
Secondly, expanding the dataset to include a broader 
range of environmental conditions, as well as addressing 
occlusion and overlapping of coffee berries would 
increase the model’s robustness. By incorporating data 
from diverse lighting conditions, angles, and background 
complexities, the model could better generalize across 
varied agricultural environments, especially in regions 
with different climate conditions. Finally, other machine 
learning algorithms, or newer versions of the YOLO 
algorithm as they become available, could be employed 
to compare the results of the present study with what 
could be achieved using these alternative techniques. 
Additionally, the ripeness data generated could be 
utilized to improve coffee plantation management 
practices and to establish correlations with beverage 
quality parameters.
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