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ARTICLE INFO ABSTRACT

Keywords: Tree mortality is a crucial process in forest dynamics and a key component of forest growth models and simu-
Norway spruce lators. Factors like competition, drought, and pathogens drive tree mortality, but the underlying mechanism is
Survival

challenging to model. The current environmental changes are even complicating model approaches as they in-
fluence and alter all the factors involving mortality. However, innovative classification algorithms can go deep
into data to find patterns that can model or even explain their relationship. We use Logistic binomial Regression
as the reference algorithm for predicting individual tree mortality. However, different machine learning (ML)
alternatives already applied to other forest modeling topics can be used for this purpose. Here, we compare the
performance of five different ML algorithms (Decision Trees, Random Forest, Naive Bayes, K-Nearest Neighbour,
and Support Vector Machine) against Logistic binomial Regression in individual tree mortality classification
under 40 different case studies and a cross-validation case study. The data used corresponds to Norway spruce
long-term experimental plots, which have a total of 75,522 tree records and a 10.28 % mortality rate on average.
Through different case studies, when more variables were used, general performance improved as expected,
while more extensive datasets decreased the performance level of the algorithms. Performance was also higher
when plots remained without management compared to thinned ones. Random Forest outperformed the other
algorithms in all the cases except cross-validation, where it was the weaker one. Our results demonstrate the
potential of ML in assessing tree mortality. When the model application is not clearly defined and/or model
interpretability is needed, Logistic binomial Regression is still the best tool for evaluating individual tree
mortality.

Artificial intelligence
Supervised learning
Random Forest

Empirical mortality models

1. Introduction created an opportunity for forest management simulators (Bravo et al.,

2025; Mladenoff, 2004; Pretzsch et al., 2002), reducing the efforts and

Forest modeling has undergone continuous development during the
last decades in terms of system abstraction, objectives, and methods.
Born aimed to estimate timber yields over time, its evolution until our
times supposed an increase in model complexity (Shifley et al., 2017) for
a wide variety of processes and situations (Pretzsch, 2009), covering
local and regional levels (Bravo et al., 2011). This increase in complexity

specialized knowledge required when running models. Despite this
evolution, an already unsolved weakness of European forest models is
the estimation of single-tree mortality (Bugmann et al., 2019). Being a
critical point in all single-tree-based models (Boeck et al., 2014),
mortality-associated patterns and processes remain poorly understood
(Hiilsmann et al., 2016). Tree mortality is difficult to associate with a

Abbreviations: ANN, Artificial Neural Network; bai, basal area increment; BAL, basal area larger than the subject tree; dbh, tree diameter at breast height (1.30 m);
DT, Decision Trees; G, stand basal area; h, tree height; KNN, K-Nearest Neighbour; LR, Logistic binomial Regression; M, Martonne Aridity Index; ML, Machine
Learning; NB, Naive Bayes; RF, Random Forest; SDI, Stand Density Index; SI, Site Index; SPEI, Standardized Precipitation Evapotranspiration Index; SVM, Support

Vector Machine; TI, time elapsed.
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single factor (Wang et al., 2012), as different agents alter tree vitality,
like competition, pathogens, snow, fires and frosts, and droughts
(Waring, 1987). This situation increases mortality unpredictability,
which is even more complicated when including future climate condi-
tions (McDowell et al., 2020). For instance, while a clear relationship
between competition and mortality (Bravo-Oviedo et al., 2006; Mon-
serud and Sterba, 1999; Pretzsch et al., 2023b) as well as drought and
mortality are already known (Senf et al., 2020), prediction uncertainty
increases (Bugmann et al., 2019). Inconsistent patterns appear
(Thrippleton et al., 2021) under changing climate conditions. In addi-
tion, mortality is also affected by spontaneous patterns that cannot be
easily tracked, like wildfires or pest infections. In this situation, algo-
rithms that can go deeper in finding patterns in data can improve the
quality of mortality models.

In this context, Logistic binomial Regression (LR) has emerged as the
prevailing approach among scientists to predict individual tree mortal-
ity (Bravo et al., 2001; Bravo-Oviedo et al., 2006; Hiilsmann et al., 2016;
Hiilsmann et al., 2017; Pascual et al., 2022; Pretzsch et al., 2020; Salas-
Eljatib and Weiskittel, 2020; Shearman et al., 2019a, 2019b; Shifley
et al., 2017), allowing model interpretation and requiring a reasonably
low computing power. Currently, computing capacities have expanded
exponentially and are more accessible (Shifley et al., 2017), providing
the chance to use higher computational demanding alternatives to LR for
predicting tree mortality. Some Machine Learning (ML) algorithms are
examples of higher computationally demanding alternatives, especially
those belonging to the Deep Learning algorithms family, such as Arti-
ficial Neural Networks (ANN). ANN has already been used to model tree
mortality (da Rocha et al., 2018a, 2018b; Merkl and Hasenauer, 1998;
Reis et al., 2018) but returned questionable results when aimed at pre-
dicting death trees (da Rocha et al., 2018a, 2018b; Reis et al., 2018).
However, Random Forest (RF) has been tested with particular success
(McNellis et al., 2021; Shearman et al., 2019b). Although ML algorithms
are alternative tools to LR for predicting tree mortality and disen-
tangling the unknown patterns behind the data (Hiilsmann et al., 2016),
a comparison is needed to assess their efficacy against LR, the reference
methodology in this field.

Due to its forestry relevance in Central Europe in terms of wood
supply (von Teuffel et al., 2004) and its endangered status in the climate
change context (Schlyter et al., 2006), this study was focused on pre-
dicting Norway spruce (Picea abies (L.) H. Karst) mortality. Using data
from Norway spruce long-term experimental plots from Bavaria (Ger-
many), this work compares the individual tree mortality prediction of
the mainly used ML classification algorithms under a broad set of study
cases. Given this context, this work aims to develop user guidelines for
fitting mortality models under different conditions, from using local
datasets to using a National Forest Inventory, prioritizing model trans-
ferability and/or accuracy. On the technical side, the comparison was
carried out under different dataset sizes and the number of variables
used to train models, thus imitating different technical situations faced
by modelers according to the data available to use. On the biological
side, the comparison was developed by splitting the dataset into
different groups regarding thinning degrees (control, from above, from
below) and inventory record length, aimed to imitate different modeler
situations and understand if different dataset structures can affect the
model performance due to the patterns found on data. In addition,
model performance can be altered depending on the variability of data
used to fit and apply models, as Hiilsmann et al. (2017) found. To assess
that, extra case studies were developed to track model applications
under different thinning degrees, thus fitting models and applying them
to different data structures. All comparisons were made based on each
algorithm’s performance, and the training time spent for each algorithm
was recorded to show the different computing demands. With this aim,
we hypothesized that: HI) more extensive datasets and more variables
available will improve all algorithms’ performance, where ML will
outperform LR when using more information; HII) model performance is
similar under different thinning degrees and using different datasets in
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the cross-validation; HIII) longer inventory records improve model
performance.

2. Methods
2.1. Data

Data from long-term experimental plot networks in Bavaria (Ger-
many) were used in this study to predict individual tree mortality. We
selected pure stands of Norway spruce under different initial density
conditions and thinning experiments, all of them planted with different
research purposes but covering similar site quality conditions (Fig. 1).
Different densities and silvicultural regimes provide us with an extensive
range of local competition to assess tree mortality, while thinning de-
grees provide different structures on our datasets (Fig. 2).

While some plots included in that study have been measured since
1880, inventory data from different plots were selected from 1975 to the
present due to the climatic data available (Table 1), establishing a
common study period for all the experiments. As explained later, the
entire database was divided into different information availability levels
according to each case study. Information about diameter at breast
height (dbh) and tree position is available, the last one based on the
plantation spacing stablished on each experimental plot. Stand age was
assumed to be equal for all the trees in the plot as all the experiments are
even-aged stands, and its age was calculated based on the time elapsed
since its establishment. Basal area increment (bai) was calculated for
each tree and the period between measurements using dbh and age. The
main stand characteristics for each plot are detailed in Table 2. For
further information on the long-term experiments, see Pretzsch et al.
(2023a, 2023b).

Tree height (h) was only recorded for a portion of trees of each size
class on each inventory measurement. A log function was fitted (eq. 1) to
assess the height-diameter relationship for each plot and tree age, esti-
mating the height of the rest of the trees.

h = a+b-In(dbh) m

where:

- h is the total tree height (m).

- dbh it the tree diameter at breast height (cm).

- a and b are empirical parameters calculated for each plot and age.

For all the trees, neighborhood variables were calculated by creating
virtual subplots around them, considering trees inside the subplot as
their main competitors. Each subplot radii were calculated as a third
part of the subject tree height, considering competition dependent on
the tree size. For those subplots closest to the border, a weight value (w)
was also calculated to supply the lack of information on the outside plot
area, assuming homogeneity with the trees inside the subplot and
applying the weight value directly to the stand estimated variables
(Fig. 3) as shown in eq. 2.

Nw =Nw, 2

where:

- Nw is the subplot weighted density (trees/ha).

- N is the subplot estimated density (trees/ha).

- w is the weight value estimated according to the subplot area with
and without information.

On each subplot, local variables concerning competition (N, BAL
(Wykoff, 1990), Hegyi index (Hegyi, 1974), G local (Steneker and Jarvis,
1963) and SDI (Reineke, 1933) adapted for Norway spruce (Pretzsch and
Biber, 2005)), growth (bai), time elapsed (TI), and tree social position
(dbh/dg (Lynch et al., 1999) and h/hm (Alenius et al., 2003)) were
estimated as detailed in Table 3. Trees with dbh under 5 cm (trees from
regeneration) were not included in our analysis, and trees from different
species were just considered to estimate subplot variables, not as subject
trees. Thus, 75,522 tree records were available as subject trees, while it
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Fig. 1. Norway spruce long-term experimental plots located in Germany (left) and detailed location in Bavaria (right).

was reduced to consider time-elapsed variables between measurements.
Finally, 56,628 tree records were studied, including the different mea-
surements of each one in consecutive inventories, with a total of 5824
dead tree records (10.28 %).

Site quality, time elapsed between inventory editions, and climate
variables were estimated at plot level due to their homogeneity for each
subplot. Productivity was studied through the Site Index (SI), calculated
based on the plot dominant height at 100 years using the Bavarian
Norway spruce yield tables (Assmann and Franz, 1972). Based on pre-
vious work (Caicoya and Pretzsch, 2021), SI was dynamically estimated
each year, reflecting site quality changes over time. Time elapsed be-
tween inventory editions was calculated using the time between mea-
surements, and the annual bai of each tree and plot was calculated
linearly. Historical monthly climate data were taken from CRU-TS 4.06
(Harris et al., 2020) and downscaled with WorldClim 2.1 (Fick and
Hijmans, 2017). Thus, average minimum and maximum temperature
(°C) and total precipitation (mm) were downloaded monthly for the
period 1975-2021 with 2.5 min of spatial resolution. Local data for each
experimental site were extracted, and mean temperature (°C) and total
precipitation (mm) were calculated each year when measurements were
developed. De Martonne Aridity Index (M) (Martonne, 1926) and the
Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-
Serrano et al., 2010) were estimated, the second one for six months
before August. Both indexes were calculated as described by their au-
thors to consider the climate in our study. A categorical variable rep-
resenting the experiment was not included, as it is indirectly captured
through the previous experiment-level covariates. Data curation and all
the calculations were developed using R (R Core Team, 2021).

2.2. Algorithms

Logistic binary Regression (LR) was the reference used in this study,
as it is a traditional methodology used in tree mortality classification
(Bravo-Oviedo et al., 2006; Merkl and Hasenauer, 1998; Shearman et al.,
2019a). As Machine Learning (ML) alternatives, five different algo-
rithms were applied in our study, selected based on their popularity and
application in different forestry topics. Decision Trees (DT) is a non-
parametric supervised learning method that can be used for regression
and classification. It tries to predict simple decision rules inferred from
data variables to create a model, and it is easy to use but can be unstable

due to data variability. Random Forest (RF) is an algorithm that fits
several DT on various sub-samples and averages them to improve model
accuracy. It can reach better performance levels than DT but is more
computing demanding. Naive Bayes (NB) is a supervised learning al-
gorithm based on the application of Bayes’ theorem, which assumes a
“naive” conditional independence between every pair of variables. It
alleviates problems related to the model dimensionality while often
failing to produce good estimations for the correct class probability. K-
nearest neighbour (KNN) is another supervised model used for classifi-
cation and regression tasks. In the classification context, KNN predicts
the class of a data point based on a majority vote of its k-nearest
neighbors in the feature space. For regression, it predicts the value by
averaging the values of its k-nearest neighbors. It is easy to use without
assumptions but can struggle with imbalanced datasets. Support Vector
Machine (SVM) algorithms are used for classification, regression, and
outlier detection. They are effective in high-dimensional spaces but have
difficulties dealing with big datasets. Artificial Neural Networks (ANN)
were initially considered but finally excluded due to the complexity of
adapting this algorithm for each case study. All the analyses were con-
ducted using different case studies (detailed in the next section) under a
supervised learning approach, as records of dead and alive trees were
part of the initial dataset. Analysis was developed on R (R Core Team,
2021) using the caret library (Kuhn, 2008), as it facilitates the model
parameters optimization and selects the model through repetitive cross-
validation procedures. Through the caret library, LR was performed
using the “glm” method; DT using the “rpart” method; RF using the “rf”
method; NB using the “naive_bayes” method; KNN using the “knn”
method, estimating k value using the square root of the train dataset
length; and SVM using “svmLinearWeights2” method. Due to the
excessive computational resources required, all the analyses were run on
a process server hosted at iuFOR-University of Valladolid, provided with
80 cores and 256 GB RAM.

Algorithms were compared based on the best model performance.
Resources needed for training models in terms of time are available in
Appendix A as a comparison, as they all were run with the same system.
Different metrics were estimated for each model and algorithm to
compare their performance, thus prediction accuracy (ACC), also split
into alive (ACCyjive) and dead (ACCqeaq) trees prediction accuracy; area
under the precision/recall curve (AUPRC) (Saito and Rehmsmeier,
2015), Matthews Correlation Coefficient (MCC) (Matthews, 1975) and
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Fig. 2. Alive, dead, and thinned trees are distributed among dbh classes per each experimental site. The first box (up-left) includes all the information about the

experimental site.

Cohen’s Kappa coefficient (K) (Cohen, 1960). MCC was used in this work
to compare algorithms in a single value, as is the one recommended for
imbalanced datasets (Chicco, 2017; Chicco and Jurman, 2020). How-
ever, the remaining metrics already mentioned can be consulted in the
“Data availability” section. These metrics were calculated using the R
package ROCR (Sing et al., 2005) and irr (Gamer et al., 2019) in the case
of Cohen’s Kappa coefficient. Besides metrics, training resources were
assessed through the time required to perform the training process per
model and algorithm, all conducted using the same HPC service for
homogeneity.

A standard workflow was implemented across algorithms and case
studies (Fig. 4). First, the data was loaded, the first algorithm was
selected, and a timer was activated. For each model proposal (all vari-
able combinations proposed for model fitting), the data was normalized
(except the independent variable) and randomly split into train (80 %)
and test (20 %) datasets. At this point, another timer was activated, and
the model was fitted. Resulting predictions were received as a proba-
bility of dead (1) or alive (0) while real inventory data takes two possible
values: 1 (dead) or 0 (alive). To deal with that, a threshold value was
selected, maximizing the success of predictions, thus testing all the
possibilities from 0 and 1 (3 decimals) and choosing the value which
maximized the MCC metric. The threshold value was used to convert the
probability from predictions to a binary value, classifying trees as dead

(1) or alive (0). After that, metrics for comparing models and algorithms
were calculated, and the second timer stopped, recording the time
needed per model. At the end of this process, a new model proposal was
selected. Once the process had run through all model proposals, the first
timer was stopped (recording the time spent developing all the previous
processes), all output results were saved, and the next algorithm was
selected. When no more algorithms were available, the process finished.

This methodology was applied to all the case studies detailed in the
following section. For all the models obtained from each algorithm and
case study, the best model was selected based on the higher MCC value.

2.3. Case studies description

2.3.1. Data-based case studies

These case studies aimed at representing different data availability
configurations of users when fitting tree mortality models. We selected
the size of the dataset and the number of available variables as primary
drivers, studying both independently and combined.

The first analysis involved the size of the dataset. After data curation,
the original dataset had a total of 75,522 records. As variables con-
cerning time elapsed between measurements were considered and could
not be estimated on the first plot record, the amount of data available for
this study was 56,628, thus losing each tree’s first record information.
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Research experiment details and mean climate variables. The coordinates column shows the longitude and latitude in degrees, minutes and seconds using the WGS84
datum. Climate data is expressed as the range of time elapsed between the inventories used from each research experiment.

Research experiment Abbreviation Number of plots Coordinates Total annual rainfall Mean annual temperature

[mm] [°C]

Min Mean Max Min Mean Max
Denklingen 05 DEN 05 3 ig: :(2): :135” i] 1036 1078 1119 6.6 6.9 7.2
Denklingen 606 DEN 606 6 ig; ;?i ;g/}; 903 1066 1181 7.6 8.0 8.8
Eurach 605 EUR 605 7 ‘1‘;: 4212: ig:li 1012 1108 1296 7.7 8.6 9.9
Fiirstenfeldbruck 612 FFB 612 21 ‘1‘;: (1)2: 8‘71”}13\1 834 894 993 7.3 8.2 9.0
Sachsenried 602 SAC 602 4 igj g?i 3:‘?‘\1 916 1132 1200 7.5 8.0 8.6
Sachsenried 607 SAC 607 12 ;‘Z: iz: Z;H];:\I 1088 1223 1348 7.5 7.6 7.8
Sachsenried 67 SAC 67 3 ‘1120 ;1(5; (1)2”}13\1 1155 1207 1262 6.5 7.1 7.9
Sachsenried 68 SAC 68 3 ‘1‘(7)0 ‘51?): (1)2”?\] 1155 1207 1262 6.5 7.1 7.9
Schongau 623 SON 623 7 ‘1‘2: gi: 2‘81”}13\1 1044 1239 1487 7.2 7.7 8.7
Vohenstrauf3 622 VOH 622 9 ‘1‘5: ig: ég:li 696 859 1057 6.7 7.3 8.5
Weifenburg 613 WBU 613 7 ‘1‘;: gf): 1?”];:\1 694 832 1038 6.9 7.8 8.8
Zusmarshausen 603 ZUS 603 6 ‘1‘3: zg: 22:/1;:\] 843 886 933 7.0 8.2 9.4
Zusmarshausen 604 ZUS 604 4 ‘;gz 22: ;2”% 843 892 933 7.0 8.4 9.4

Table 2

Structural characteristics for each research experiment were calculated from the single tree subplots, using 1/3 of the subject tree’s height as a subplot radii. SDI
denotes the stand density index, and dg is the quadratic mean diameter.

Research Stand density SDI Age dg Acquisition
experiment [tree/ha] [adm] [years] [cm] year
Min Mean Max Min Mean Max Min Mean Max Min Mean Max First Last

DEN 05 10.0 27.2 57.0 709 1654 3304 138 140 143 41.1 51.2 69.6 1985 1991
DEN 606 4.0 35.1 102.0 282 1647 4699 45 52 62 13.7 22.0 37.8 1998 2015
EUR 605 1.0 14.2 59.0 62 1031 3461 21 36 63 5.0 19.1 42.9 1973 2015
FFB 612 1.0 17.2 74.4 48 1209 3575 27 35 48 5.2 20.1 53.1 1996 2017
SAC 602 5.0 27.9 92.0 302 1672 4136 27 35 51 8.7 15.8 34.3 1989 2013
SAC 607 2.0 34.1 87.6 291 1444 4640 48 53 60 14.9 25.5 40.3 2001 2013
SAC 67 7.7 22.6 55.2 571 1489 3271 126 128 131 42.9 53.8 66.4 1985 1990
SAC 68 1.9 29.0 58.7 57 1536 2778 125 127 130 27.6 49.1 65.6 1985 1990
SON 623 3.0 26.0 71.9 246 1535 3827 27 33 43 8.4 16.6 33.0 1999 2015
VOH 622 1.0 8.0 28.9 27 667 3785 23 30 44 5.2 17.7 42.0 1997 2018
WBU 613 3.0 29.2 104.0 184 1506 4680 55 70 100 11.7 25.5 53.3 1982 2016
ZUS 603 1.0 29.4 118.0 66 1381 4537 17 31 54 5.0 13.9 46.5 1980 2017
ZUS 604 2.0 22.9 87.0 153 1290 4425 21 33 54 6.8 14.6 34.0 1985 2017

Then, the original dataset was randomly split into three different cate-
gory sizes, hence considering different user data availability situations:
small, medium, and big datasets, detailed in Table 4.

The second analysis involved the number of variables proposed for
the model. For this, we grouped variables by topics (tree size, produc-
tivity, competition, growth, inventory time elapsed, climate, and social
position), and different model proposals were made based on the
number of variables we wanted to implement in the model, thus rep-
resenting different situations of data availability when fitting models.
Model proposals (with various numbers of variables) were developed by
combining one variable from each group to avoid correlation. Variables
for model proposals were studied before variable selection to prevent
correlation. Variables concerning tree size, growth/time, and climate
topics were not correlated so that they could be included separately or
grouped in model proposals. Different case studies were proposed by
selecting the number of variables available to fit the model. Thus, each

case study comprises different model proposals generated by combining
variables among topics (I = 10 proposals; II = 30 proposals, III = 90
proposals; IV = 180 proposals) detailed in Table 3.

A third analysis was conducted by crossing both analyses. Thus, each
dataset size and variable case study were studied together, presenting 12
different case studies through all the possible combinations (3 dataset
sizes x 4 variable groups).

2.3.2. Mortality under different thinning degrees and inventory records
length

Forestry-related aspects of the data were also considered in addi-
tional case studies. Thinning degrees and inventory record lengths were
used to represent them.

The used dataset includes three different thinning degrees for each
plot (Table 4): unthinned (control), thinning from above (above) and
thinning from below (below). As each situation represents a different
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Fig. 3. Example of experimental design using subplots. A circle with a size
related to the tree height of the subject tree was used to calculate its stand
neighborhood, applying the weight value (w) on their estimation when no in-
formation is available due to a close border.

Table 3

Variables used to fit the models by topic and case studies where they were
included: dbh is the diameter at breast height; slenderness is the ratio h/dbh; SI
is the Site Index; BAL is the basal area larger than the subject tree; G local is the
local stand basal area; N is the stand density; SDI is the stand density index; bai is
the annual basal area increment; TI is the time elapsed; M is the Martonne
Aridity Index; SPEI is the Standardized Precipitation Evapotranspiration Index;
dbh/dg is the ratio of the tree diameter at breast height and the stand quadratic
mean diameter; h/hm is the ratio of the tree height and the stand mean height.

Topic Variables Case
study
Tree size dbh I, 11, 111,
slenderness v
Site productivity (plot) SI (Assmann and Franz, 1972) 1, 11, 111,
v
Tree competition (subplot) BAL (Wykoff, 1990) I, 11, 111,
Hegyi index (Hegyi, 1974) v
G local (Steneker and Jarvis, 1963)
N
SDI (Reineke, 1933) adapted for Norway
spruce (Pretzsch and Biber, 2005)
Tree growth and inventory bai 11, 111,
time elapsed (plot) TI v
Climate (plot) M (Martonne, 1926) 1L, IV
SPEI (Vicente-Serrano et al., 2010)
Tree social position dbh/dg (Lynch et al., 1999) v

(subplot) h/hm (Alenius et al., 2003)

stand management and forest structure affecting mortality patterns, we
split the original dataset by thinning groups to assess their differences.
Additionally, all possible combinations with each variable case study
were carried out. This resulted in 12 case studies (3 thinning degrees x 4
variable groups). A second analysis was carried out by grouping 2
thinning degrees and discarding the third, studying each variable case
study combination too and resulting in 12 additional case studies (3
thinning degrees combination x 4 variable groups).

The length of inventory records of each plot was also used to un-
derstand the amount of time that the same plot was measured. It aimed
to determine if different algorithms could take advantage of more

Ecological Informatics 88 (2025) 103140

Start process

meee
algarthms

no mare
algarthms

Finish process

proposals
finlshed

propasals not
finizhed

data

normalization

split data:
train‘test

start
model timer

fit model
(train data)

write results predict values

(test data)

select
threshold

binary
classification

stop
model timer

Fig. 4. Flowchart summarizing the model fitting process for each algorithm.

Table 4

Final dataset sizes for each data-based and forest-based case study. The first
measurement of each plot was removed from each dataset due to the lack of
variables concerning time, so values on that table exclude initial measurements.

Case study Dataset Dead Dead trees
size (n) trees (n) proportion (%)
Dataset size small 2830 299 10.66
medium 19,983 2099 10.50
big 56,628 5824 10.28
Thinning degrees  control 11,380 1663 14.61
thinning from 34,319 2826 8.23
above
thinning from 10,929 1355 12.21
below
Inventory 3to5 12,644 1412 11.17
records length 6 15,183 883 5.81
7 11,063 1555 14.06
8to9 17,738 1974 11.12

information available in the same inventory. Thus, the original dataset
was split into four groups (Table 4) where the size of the original dataset
was similar: plots with three to five records, six records, seven records,
and eight to nine records. Those groups were combined with each var-
iable case study, conducting 16 case studies (4 inventory records length
x 4 variable groups).
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2.3.3. Cross-validation among thinning degrees

While previous case studies used different data subsamples to
compare algorithms, this case study wants to test the performance of
each algorithm when training and testing datasets are different, simu-
lating a typical situation when a user applies an already existing model
to its data. This approach explores the model performance deviations
caused by different data origins and structures, quantifying the loss of
predicting accuracy. With that in mind, we selected the best model per
algorithm fitted for each previous thinning degree case study. In all
cases, the number of variables used corresponds to case III for homo-
geneity. Thus, models fitted on just one type of thinning (i.e., thinning
from below) were applied to the three datasets grouped by thinning
degree (control, from below, from above), having three different results
by model. A second analysis was carried out by grouping 2 thinning
degrees on the fitting process (i.e., control + thinning from below) and
applied to the three datasets grouped by thinning degree (control, from
below, from above) as in the previous case. Performance assessed by
MCC was used to compare them among all the possible combinations.

3. Results
3.1. Effect of dataset size and variable number (HI)

Case studies involving different dataset sizes showed various levels
of performance on each algorithm, as shown in Fig. 5A. A clear trend is
shown among algorithms (except for KNN): performance was lower
when more data was provided. In all the cases, RF was the better algo-
rithm. Cases involving variables (Fig. 5B) showed reduced differences
among the algorithm’s performance with the lower number of variables
(case), increasing in the rest of the cases. That increase was higher in RF
than in other algorithms, showing the best performance among all
studied cases. All the algorithms consistently improved the performance
level in the II and III case studies concerning the previous one. In
contrast, performance was similar when comparing III and IV, with
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smooth variations without a common trend. Analyzing both dataset size
and variables used (Fig. 5C) when using a low number of variables (case
D), the differences among algorithms’ performance were lower inde-
pendent of the dataset size. When the number of variables increases,
then algorithms’ performance differences also increase, and when the
size of the dataset increases, differences among algorithms are more
considerable. RF was the algorithm that performed better in all the case
studies, and performance also increased more than others when more
variables were provided. An increasing number of variables improved
performance for all the algorithms, but cases III and IV showed no
common trends.

3.2. Effect of different thinning degrees (HII)

When splitting data among thinning degrees (Fig. 6A) performance
was better in control plots compared to those where thinning was
applied consistently among algorithms. In all the cases, RF showed
better performance and a lower performance reduction for above and
below thinning degrees compared to control, which was registered in
both RF and SVM. DT and SVM performed better on plots where thin-
ning from above was applied compared to thinning from below, while
the rest of the algorithms showed the opposite trend. When combining
both thinning degrees and variables used (Fig. 6B) control plots showed
better performance among classifiers than thinned ones, consistently
among combinations. RF always reached the best performance, while
differences comparing RF to other classifiers were higher when more
variables were used. The performance improved for most of the cases
regarding variables, comparing case I to Il and case II to IIL. Still, no clear
improvements were shown when comparing cases III and IV.

3.3. Effect of inventory records length (HIII)

When data was split by inventory record length (Fig. 7A) RF still
performed the best in all the case studies. Differences were not

small medium big

04 05 06 07

Fig. 5. Algorithm performance for each dataset size (A), number of variables used (B), and both dataset size and number of variables (C) were measured using the
MCC metric. On graphs A and B, the x-axis refers to the dataset sizes group (graph A) and the number of variables used (graph B); y-axis values represent the
performance of the best model obtained on each case study based on the MCC metric; and each algorithm is shown under a different color according to the legend. In
Graph C, dataset sizes group (x-axis upper), the number of variables used per dataset group (x-axis down) and the algorithms used (y-axis) according to its
abbreviation (SVM: Support Vector Machine; KNN: K-Nearest Neighbour; NB: Naive Bayes; RF: Random Forest; DT: Decision Trees; LR: Logistic Regression) is shown,
while color intensity represents the performance of the best model obtained on each case study based on the MCC metric.
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Fig. 6. Algorithm performance for each thinning degree (A) and both thinning degree and number of variables (B) was measured using the MCC metric. In graph A,
the x-axis refers to the thinning degree; y-axis values represent the performance of the best model obtained on each case study based on the MCC metric; and each
algorithm is shown under a different color according to the legend. In graph B, thinning degrees (x-axis upper), the number of variables used per dataset group (x-axis
down) and the algorithms used (y-axis) according to its abbreviation (SVM: Support Vector Machine; KNN: K-Nearest Neighbour; NB: Naive Bayes; RF: Random
Forest; DT: Decision Trees; LR: Logistic Regression) is shown, while color intensity represents the performance of the best model obtained on each case study based on
the MCC metric.
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Fig. 7. Algorithm performance for each inventory record length (A) and inventory record length and number of variables (B) is measured using the MCC metric. In
graph A, the x-axis refers to the inventory record length; y-axis values represent the performance of the best model obtained on each case study based on the MCC
metric; and each algorithm is shown under a different color according to the legend. In graph B, inventory record length (x-axis upper), the number of variables used
per dataset group (x-axis down) and the algorithms used (y-axis) according to its abbreviation (SVM: Support Vector Machine; KNN: K-Nearest Neighbour; NB: Naive
Bayes; RF: Random Forest; DT: Decision Trees; LR: Logistic Regression) is shown, while color intensity represents the performance of the best model obtained on each
case study based on the MCC metric.
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significant in most cases, and trends were difficult to find in the case
studies. Different behaviors regarding case studies were also shown for
each algorithm’s performance. LR improved with the record length,
while SVM enhanced in the second and third case studies but not in the
last one; DT and RF performed better with the smaller record length, and
then performance was maintained similar but a bit lower; NB and KNN
varied among cases with different trends. Consistently among record-
length cases (Fig. 7B) performance was improved when more variables
were used to fit the models, while cases III and IV showed no apparent
differences. Results were obtained when comparing just the variables
used to fit models, and RF was the best algorithm among all the case
studies.

3.4. Cross-validation for different thinning degrees (HIII)

Differences were also found among the application case studies for
different thinning degrees (Fig. 8). There, results showed how the al-
gorithm’s performance decreased when models were applied over data
from different thinning degrees, consistently among algorithms and case
studies. While LR and DT showed lower performance decreases in some
cases, that trend was inconsistent. In some cases, the decrease was lower
in NB, SVM, or KNN. Among all case studies, the higher performance loss
when using a different thinning degree dataset was registered in RF.

Similar trends were found when using data from two thinning de-
grees to fit the model (Fig. 9). All the algorithms have reduced their
performance level, although LR showed more stability. NB and KNN
showed reductions in their performance depending on the dataset used
for predictions, having on case A and C similar performance levels when
predicting mortality by using the thinning from above dataset. The rest
of the algorithms, including RF, showed more unstable behaviors.

4. Discussion

Patterns and dynamics behind tree mortality remain poorly under-
stood, penalizing accurate mortality predictions (Hiilsmann et al.,
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2016). This difficulty increases when mortality tries to be assessed under
climate change conditions (Bugmann et al., 2019). While Logistic
binomial Regression (LR) is, by far, the most used algorithm to assess
tree mortality (Bravo-Oviedo et al., 2006; Hiilsmann et al., 2016;
Hiilsmann et al., 2017; Pretzsch et al., 2020; Shearman et al., 2019a,
2019b; Shifley et al., 2017), the results of this work among all the case
studies show how Random Forest (RF) is the algorithm that reaches the
overall best performance level. However, RF is the most demanding
computing power and the weaker when applying its models to different
datasets to those it was trained on, and the interpretability of its results
is also a handicap.

4.1. Thinning degrees and cross-validation performance

Algorithms’ performance across the different thinning degrees
showed consistent results. Algorithm performance in control plots was
higher than in those where thinning was applied (both from above and
below). This is linked to the forest dynamics, as natural, mainly
competition-driven mortality is better represented when no in-
terventions are made, and models can find more robust relationships
between covariates provided. When harvests are applied, it was proved
that thinning from below reduces the natural mortality in small trees
(Dodson et al., 2013; Powers et al., 2010) and thinning from above can
increase it (Powers et al., 2010), both altering the short-term stand dy-
namics after its application. Our data shows that the mortality rate is
higher on control plots than on thinned ones, as thinning anticipates
mortality. That means that classification rules change when silviculture
is applied, which strengthens the alteration of mortality through thin-
ning and can be essential for modeling when trying to find patterns in
data. When thinning was used, the algorithm performance was lower,
and there were no clear trends among the thinning degrees. The per-
formance of models trained on thinning from below data was expected
to be closer to control plots regarding mortality prediction, as trees are
more prone to die due to their size, but that trend was not found.

Cross-validation case studies regarding different thinning degrees
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Fig. 8. Algorithm performance for each cross-application case study using different test datasets. On each graph, the x-axis represents the thinning degrees data used;
y-axis values represent the performance of the best model obtained on each case study based on the MCC metric; and each algorithm is shown under a different color
according to the legend. The shadowed area represents the case when the thinning degree model and data coincide. One RF value is omitted on graph A (thinning
from below) as it takes the same value as NB; one RF value is omitted on graph C as it takes a negative value out of the scale.
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Fig. 9. Algorithm performance for each cross-application case study when using 2 grouped datasets as training data. On each graph, the x-axis represents the
thinning degrees data used; y-axis values represent the performance of the best model obtained on each case study based on the MCC metric; and each algorithm is
shown under a different color according to the legend. The shadowed area represents the grouped thinning degrees model and its performance. Missing values

represent cases when performance is under 0.

showed interesting results related to model applicability. While perfor-
mance patterns among algorithms were similar when training and test
data came from the same thinning degree, their reaction to different test
datasets showed different patterns. RF was the algorithm that signifi-
cantly reduced its performance when applying its models to different
thinning datasets. The other Machine Learning (ML) algorithms reacted
differently, drastically decreasing their performance in some cases
without any common trend. LR was also affected when modifying the
test dataset, but performance reductions were smoother. When models
were trained on datasets combining two thinning intensities, RF
continued to exhibit similar trends, whereas Naive Bayes (NB) and K-
Nearest Neighbors (KNN) maintained their performance levels more
effectively. LR showed a remarkable performance decline when trained
on control data combined with one thinning dataset (e.g., thinning from
below) and tested on the other thinning dataset (e.g., thinning from
above). However, when trained on both thinning datasets, its perfor-
mance predicting with the control dataset improved. This may reflect
the challenges posed by mortality dynamics under different manage-
ment regimes, where thinning disturbances increase prediction diffi-
culty for some algorithms. While it is expected to develop species-
specific models to predict mortality (Franklin et al., 1987; Hiilsmann
et al., 2017) and also regional models due to its variation in different
geographical areas (Hiilsmann et al., 2017; Monserud and Sterba, 1999),
our results suggest the idea of developing models to predict mortality
under different thinning degrees, as proposed by Bravo-Oviedo et al.
(2006). In addition, in long-term simulations, the performance of mor-
tality models often declines following thinning events due to shifts in
mortality behavior within stands. Our results suggest that these models
can recover their predictive accuracy over time, but their handicap to
taking into account the changes immediately after thinning highlights a
critical area for improvement.

A similar approach did not report differences in tree mortality be-
tween managed and unmanaged forest (natural reserves) patterns, but it
stressed the importance of the similar ecological processes between
forests used for calibration and validation (Hiilsmann et al., 2017). That
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ecological processes also interact with mortality rates after thinning
(Dodson et al., 2013; Powers et al., 2010), triggering different forest
dynamics that alter the forest behavior before thinning. Results shown
here related to the model performance reduction on cross-validation
support the necessity to go deeper into the study of thinning effects on
tree mortality. In addition, the effects of applying different data struc-
tures on fitting and predicting would be an interesting topic to address
when using forest simulators. Frequently, the origin of the data used to
fit the models differs from the data used for predictions, which can
compromise the reliability of the predictions. When simulating long
study periods, the error propagation is unknown, and the use of non-
appropriate data structures can alter the reliability of predictions.

4.2. Size, variables, and inventory records length performance

The size of the dataset was directly related to the accuracy of pre-
dictions, which was consistent with all the algorithms. While it was
expected that a more extensive dataset would provide higher accuracy
on predictions as many authors expected (Bugmann et al., 2019; Wunder
et al., 2008), we found the opposite results, even when small and
medium-sized datasets were randomly selected from the bigger ones,
thus avoiding deviations in data selection. The higher performance of
the algorithms in smaller datasets can be related to the increase of data
heterogeneity of the bigger ones (Hiilsmann et al., 2017; Sheil and May,
1996), as different data structures (i.e., thinning degrees) are studied
together.

The number of variables used to fit the models ordered from case I to
IV, as more variables are included, was an essential factor when deter-
mining prediction accuracy. Hiilsmann et al. (2018, 2017) and Zhang
et al. (2009) reported the importance of tree size, competition, and
growth as covariates in predicting mortality, all included in our study.
The competition was proved to have higher explanatory power when
applied to the individual tree neighborhood instead of the plot (Rohner
et al., 2012), as we performed in this work. Our results verify the
importance of growth as a covariate as predictions improve in case II
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compared to case I among all algorithms. Consistently among algo-
rithms, an increase in the number of variables until case III enhances the
accuracy of predictions (with exceptions), while an excess of variables in
case IV shows different trends among algorithms with minor changes.
That can be related to the high explanatory power of covariates already
included in the model compared with the social position of the tree
included in case IV. While LR used to be fitted using a low number of
variables with high explanatory power, algorithms like RF can support a
higher number of variables even when their explanatory power is lower.
In this context, RF can minimize overfitting by averaging multiple de-
cision trees, reducing the impact of variance caused by overfitting in
individual trees (Breiman, 2001). This capability, combined with its
ability to capture nonlinear relationships, increases the overall perfor-
mance of the model (Breiman, 2001), which might explain the results
obtained in our study. Alternative variables candidates like tree age or
height were excluded from the analysis, and variable transformations
and interactions were not tested.

Different trends regarding the number of records per inventory were
found for each algorithm. While LR improves its performance when
more records of the same inventory are available on the data provided,
RF and Naive Bayes (NB) follow the same trend except in one case study.
Decision Trees (DT), K-Nearest Neighbour (KNN), and Support Vector
Machine (SVM) showed different behaviors. As shown in previous works
(Hiilsmann et al., 2017). However, that information may already be
captured indirectly through other covariates included in the model,
suggesting that its influence is embedded within the existing predictors.

4.3. ML modeling implications

Differences among algorithms were observed for each case study,
providing helpful information to reference in future studies. RF was the
algorithm that better performed in all study cases except on the cross-
application with different thinning degrees. Differences among the
other algorithms’ performance are hard to rate, as no clear results are
obtained from their comparison. LR, the reference algorithm, always
remains in between in terms of performance, while the other ML algo-
rithms got fewer stable scores in performance depending on the case
study. The higher performance of RF compared to other algorithms
under different conditions of data size, number of variables, and data
type (thinning and records classes) enhances the idea of selecting RF to
assess tree mortality in future works. Other advantages were noticed in
previous works related to forestry (Cutler et al., 2007; McNellis et al.,
2021; Shearman et al., 2019b; Zhao et al., 2019), like its performance to
estimate forest quality (Zhao et al., 2019) and to find complex in-
teractions on predictor variables for ecological classification (Cutler
et al., 2007). So, in those cases, RF is a good alternative when a higher
predictivity rate is needed, i.e., when working with National Forest In-
ventories. However, its application should be made on data with a
similar structure to the training one, as performance in the cross-
validation case studies reported the worst predictions among algo-
rithms. Thus, performance reduction can be related to the differences in
covariate interactions, as RF creates more complex relationships than
other algorithms (Cutler et al., 2007). In that case, while our results did
not provide clear trends for each algorithm, LR can be considered the
more robust algorithm as it remained with a more consistent perfor-
mance when it was drastically reduced in some cases on ML algorithms.
Furthermore, while computer power limitations are lower each time
(Shifley et al., 2017), the time spent training each algorithm (and
computer requirements not studied here) should be considered. While
RF was by far the algorithm with the highest computing time demanded,
SVM also shows higher requirements than LR and the other ML algo-
rithms. In addition, when more data is used to train the algorithms and
more variables are provided, the time requirements increase for all the
algorithms, with some exceptions.

A point to consider in all the ML algorithms is the difficulty of
interpreting their results (Shearman et al., 2019b), which is a critical
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aspect in every research field. LR offers simplicity in this regard,
providing an equation where the effect of each covariate can be easily
understood. In contrast, the interpretation of ML algorithms requires
different approaches; rather than offering a clear equation, they rely on
methods like feature importance or partial dependence plots, which
many users may not yet be familiar with. While some algorithms like DT
are easily interpretable, others like RF are more complex and are eval-
uated primarily through predictive performance metrics. This can
obscure the relationships between covariates that lead to a result.
Consequently, when understanding causality is crucial, LR provides a
more straightforward and interpretable framework. However, when the
goal is to obtain a better prediction rate, they have been proven to be
good alternatives for forestry (McNellis et al., 2021) and even in other
topics, like health, where comparisons were also made to find the better
algorithm for a particular application (Aldossary et al., 2022; Maydanchi
et al., 2023). That debate about the prediction level and the under-
standability of the models has been extensively discussed in the litera-
ture related to this topic.

Deep Learning alternatives like ANN were initially considered but
were finally excluded due to their architectural complexity (Reis et al.,
2018) and adaptation requirements to each case study. In addition, even
though ANN was applied in different works assessing tree mortality
(Bayat et al., 2019; da Rocha et al., 2018a; Reis et al., 2018), a com-
parison with other algorithms could prove if they are a better alternative
than RF to reach better performance levels. In that field, metrics selected
when assessing model predictions must be appropriate, considering data
structure and objectives (Ferri et al., 2009). Different metrics were
estimated in this work and can be consulted on the complementary data.
Metrics related to the overall classification accuracy of the model are not
appropriate as a performance measurement when working with imbal-
anced data (Chen and Breiman, 2004). MCC (Matthews, 1975) was
selected to compare algorithms because, as explained by Chicco (2017)
and Chicco and Jurman (2020), MCC is a good choice when dealing with
imbalanced datasets as it properly considers the ratio of the confusion
matrix size. Examples of estimating tree mortality showed how selecting
a non-proper metric to assess model performance provides confusing
results. In some cases, models showed a high significance on prediction
but provided inferior dead tree prediction rates (da Rocha et al., 2018a,
2018b; Reis et al., 2018), evaluated separately. In other cases, the pre-
diction of dead tree was not even considered (Bayat et al., 2019). Finally,
model applicability must be considered depending on the user’s pur-
pose. While LR models can be applied through an equation, ML models
must be used through the file containing the previously trained model.
That fact reduces their applicability for some users due to the knowledge
required and the higher complexity of the model transferability, while
its importance is lower for advanced users. In addition, the inclusion of
mortality models into Decision Support Systems like SILVA (Pretzsch
et al., 2002) or SIMANFOR (Bravo et al., 2025) implies that tree death
predictions will be estimated using simulated covariates (Hiilsmann
et al., 2017), thus increasing the error in predictions.

5. Conclusion

This study compared Machine Learning algorithms’ performance by
assessing individual tree mortality. A performance improvement was
found consistently among algorithms when more variables were used to
fit the model, while more extensive datasets decreased the performance
level of the algorithms. Datasets from control plots provided better
performance levels than those acquired on thinned ones, while cross-
validation decreased model performance, consistent with all algo-
rithms. No clear trends were found when using different inventory re-
cord lengths. Random Forest was the algorithm with higher performance
levels in all the study cases. At the same time, cross-validation drasti-
cally reduced its performance, while Logistic binomial Regression
seemed to be more robust in those cases. Our results suggest that
Random Forest is a good choice if higher prediction levels are required,
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Appendix A. Appendix

The differences are very clear when comparing the time spent on train models per algorithm and case studies. As expected, more data requires more
time, consistently among algorithms (Fig. A.1.Fig. A.1A). By default, RF time requirements are more extensive, and the time necessities increase more
than other algorithms among study cases. SVM also shows higher time demand than other algorithms, but differences with RF are more significant.
Regarding the number of variables (Fig. A.1.B), in this case, they were split by the number of covariates used in the model instead of the variables case
study to extract more information. RF algorithm needs more time among case studies, followed by SVM. The increment in time needed when more
variables are included in the model is inconsistent among algorithms. RF needs more time to fit models with six than with 7 and 8 covariates, while
SVM reduces the time required with more than seven covariates. Comparing among algorithms, the necessity of RF grows considerably as more
variables are included in the model. Combining dataset size and number of variables (Fig. A.1.C), it looks like the differences in time required are
bigger when more data is provided, and there are some peaks (appreciable just in RF and SVM) of time needed when fitting models with 6 and 7
covariates, respectively.
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Fig. A.1. The average time used to train a single model per algorithm across dataset size (A), number of variables (B), and both dataset size and number of variables
(C) measured by the time needed to train a single model in minutes. On graphs A and B, the x-axis refers to the dataset sizes group (graph A) and the number of
variables used (graph B); y-axis values represent the time (minutes) needed to fit a single model; and each algorithm is shown under a different color according to the
legend. In Graph C, the dataset sizes group (x-axis upper), the number of variables used per dataset group (x-axis down) and the algorithms used (y-axis) according to
its abbreviation (SVM: Support Vector Machine; KNN: K-Nearest Neighbour; NB: Naive Bayes; RF: Random Forest; DT: Decision Trees; LR: Logistic Regression) are
shown, while color intensity represents the time needed to fit a single model in minutes.

Data availability

File name: ML_individual_tree_mortality.zip.

Developer: Aitor Vazquez Veloso.

Contact information: aitor.vazquez.veloso@uva.es

Software required: R.

Availability: The full raw dataset and intermediate curation/analysis
data used in that publication, the code and the results are available at
this DOI on Zenodo: doi: https://doi.org/10.5281/zenodo.14970488

Cost: Free.
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