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A B S T R A C T

Tree mortality is a crucial process in forest dynamics and a key component of forest growth models and simu
lators. Factors like competition, drought, and pathogens drive tree mortality, but the underlying mechanism is 
challenging to model. The current environmental changes are even complicating model approaches as they in
fluence and alter all the factors involving mortality. However, innovative classification algorithms can go deep 
into data to find patterns that can model or even explain their relationship. We use Logistic binomial Regression 
as the reference algorithm for predicting individual tree mortality. However, different machine learning (ML) 
alternatives already applied to other forest modeling topics can be used for this purpose. Here, we compare the 
performance of five different ML algorithms (Decision Trees, Random Forest, Naive Bayes, K-Nearest Neighbour, 
and Support Vector Machine) against Logistic binomial Regression in individual tree mortality classification 
under 40 different case studies and a cross-validation case study. The data used corresponds to Norway spruce 
long-term experimental plots, which have a total of 75,522 tree records and a 10.28 % mortality rate on average. 
Through different case studies, when more variables were used, general performance improved as expected, 
while more extensive datasets decreased the performance level of the algorithms. Performance was also higher 
when plots remained without management compared to thinned ones. Random Forest outperformed the other 
algorithms in all the cases except cross-validation, where it was the weaker one. Our results demonstrate the 
potential of ML in assessing tree mortality. When the model application is not clearly defined and/or model 
interpretability is needed, Logistic binomial Regression is still the best tool for evaluating individual tree 
mortality.

1. Introduction

Forest modeling has undergone continuous development during the 
last decades in terms of system abstraction, objectives, and methods. 
Born aimed to estimate timber yields over time, its evolution until our 
times supposed an increase in model complexity (Shifley et al., 2017) for 
a wide variety of processes and situations (Pretzsch, 2009), covering 
local and regional levels (Bravo et al., 2011). This increase in complexity 

created an opportunity for forest management simulators (Bravo et al., 
2025; Mladenoff, 2004; Pretzsch et al., 2002), reducing the efforts and 
specialized knowledge required when running models. Despite this 
evolution, an already unsolved weakness of European forest models is 
the estimation of single-tree mortality (Bugmann et al., 2019). Being a 
critical point in all single-tree-based models (Boeck et al., 2014), 
mortality-associated patterns and processes remain poorly understood 
(Hülsmann et al., 2016). Tree mortality is difficult to associate with a 
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single factor (Wang et al., 2012), as different agents alter tree vitality, 
like competition, pathogens, snow, fires and frosts, and droughts 
(Waring, 1987). This situation increases mortality unpredictability, 
which is even more complicated when including future climate condi
tions (McDowell et al., 2020). For instance, while a clear relationship 
between competition and mortality (Bravo-Oviedo et al., 2006; Mon
serud and Sterba, 1999; Pretzsch et al., 2023b) as well as drought and 
mortality are already known (Senf et al., 2020), prediction uncertainty 
increases (Bugmann et al., 2019). Inconsistent patterns appear 
(Thrippleton et al., 2021) under changing climate conditions. In addi
tion, mortality is also affected by spontaneous patterns that cannot be 
easily tracked, like wildfires or pest infections. In this situation, algo
rithms that can go deeper in finding patterns in data can improve the 
quality of mortality models.

In this context, Logistic binomial Regression (LR) has emerged as the 
prevailing approach among scientists to predict individual tree mortal
ity (Bravo et al., 2001; Bravo-Oviedo et al., 2006; Hülsmann et al., 2016; 
Hülsmann et al., 2017; Pascual et al., 2022; Pretzsch et al., 2020; Salas- 
Eljatib and Weiskittel, 2020; Shearman et al., 2019a, 2019b; Shifley 
et al., 2017), allowing model interpretation and requiring a reasonably 
low computing power. Currently, computing capacities have expanded 
exponentially and are more accessible (Shifley et al., 2017), providing 
the chance to use higher computational demanding alternatives to LR for 
predicting tree mortality. Some Machine Learning (ML) algorithms are 
examples of higher computationally demanding alternatives, especially 
those belonging to the Deep Learning algorithms family, such as Arti
ficial Neural Networks (ANN). ANN has already been used to model tree 
mortality (da Rocha et al., 2018a, 2018b; Merkl and Hasenauer, 1998; 
Reis et al., 2018) but returned questionable results when aimed at pre
dicting death trees (da Rocha et al., 2018a, 2018b; Reis et al., 2018). 
However, Random Forest (RF) has been tested with particular success 
(McNellis et al., 2021; Shearman et al., 2019b). Although ML algorithms 
are alternative tools to LR for predicting tree mortality and disen
tangling the unknown patterns behind the data (Hülsmann et al., 2016), 
a comparison is needed to assess their efficacy against LR, the reference 
methodology in this field.

Due to its forestry relevance in Central Europe in terms of wood 
supply (von Teuffel et al., 2004) and its endangered status in the climate 
change context (Schlyter et al., 2006), this study was focused on pre
dicting Norway spruce (Picea abies (L.) H. Karst) mortality. Using data 
from Norway spruce long-term experimental plots from Bavaria (Ger
many), this work compares the individual tree mortality prediction of 
the mainly used ML classification algorithms under a broad set of study 
cases. Given this context, this work aims to develop user guidelines for 
fitting mortality models under different conditions, from using local 
datasets to using a National Forest Inventory, prioritizing model trans
ferability and/or accuracy. On the technical side, the comparison was 
carried out under different dataset sizes and the number of variables 
used to train models, thus imitating different technical situations faced 
by modelers according to the data available to use. On the biological 
side, the comparison was developed by splitting the dataset into 
different groups regarding thinning degrees (control, from above, from 
below) and inventory record length, aimed to imitate different modeler 
situations and understand if different dataset structures can affect the 
model performance due to the patterns found on data. In addition, 
model performance can be altered depending on the variability of data 
used to fit and apply models, as Hülsmann et al. (2017) found. To assess 
that, extra case studies were developed to track model applications 
under different thinning degrees, thus fitting models and applying them 
to different data structures. All comparisons were made based on each 
algorithm’s performance, and the training time spent for each algorithm 
was recorded to show the different computing demands. With this aim, 
we hypothesized that: HI) more extensive datasets and more variables 
available will improve all algorithms’ performance, where ML will 
outperform LR when using more information; HII) model performance is 
similar under different thinning degrees and using different datasets in 

the cross-validation; HIII) longer inventory records improve model 
performance.

2. Methods

2.1. Data

Data from long-term experimental plot networks in Bavaria (Ger
many) were used in this study to predict individual tree mortality. We 
selected pure stands of Norway spruce under different initial density 
conditions and thinning experiments, all of them planted with different 
research purposes but covering similar site quality conditions (Fig. 1). 
Different densities and silvicultural regimes provide us with an extensive 
range of local competition to assess tree mortality, while thinning de
grees provide different structures on our datasets (Fig. 2).

While some plots included in that study have been measured since 
1880, inventory data from different plots were selected from 1975 to the 
present due to the climatic data available (Table 1), establishing a 
common study period for all the experiments. As explained later, the 
entire database was divided into different information availability levels 
according to each case study. Information about diameter at breast 
height (dbh) and tree position is available, the last one based on the 
plantation spacing stablished on each experimental plot. Stand age was 
assumed to be equal for all the trees in the plot as all the experiments are 
even-aged stands, and its age was calculated based on the time elapsed 
since its establishment. Basal area increment (bai) was calculated for 
each tree and the period between measurements using dbh and age. The 
main stand characteristics for each plot are detailed in Table 2. For 
further information on the long-term experiments, see Pretzsch et al. 
(2023a, 2023b).

Tree height (h) was only recorded for a portion of trees of each size 
class on each inventory measurement. A log function was fitted (eq. 1) to 
assess the height-diameter relationship for each plot and tree age, esti
mating the height of the rest of the trees. 

h = a+ b⋅ln(dbh) (1) 

where:
- h is the total tree height (m).
- dbh it the tree diameter at breast height (cm).
- a and b are empirical parameters calculated for each plot and age.
For all the trees, neighborhood variables were calculated by creating 

virtual subplots around them, considering trees inside the subplot as 
their main competitors. Each subplot radii were calculated as a third 
part of the subject tree height, considering competition dependent on 
the tree size. For those subplots closest to the border, a weight value (w) 
was also calculated to supply the lack of information on the outside plot 
area, assuming homogeneity with the trees inside the subplot and 
applying the weight value directly to the stand estimated variables 
(Fig. 3) as shown in eq. 2. 

Nw = N⋅w, (2) 

where:
- Nw is the subplot weighted density (trees/ha).
- N is the subplot estimated density (trees/ha).
- w is the weight value estimated according to the subplot area with 

and without information.
On each subplot, local variables concerning competition (N, BAL 

(Wykoff, 1990), Hegyi index (Hegyi, 1974), G local (Steneker and Jarvis, 
1963) and SDI (Reineke, 1933) adapted for Norway spruce (Pretzsch and 
Biber, 2005)), growth (bai), time elapsed (TI), and tree social position 
(dbh/dg (Lynch et al., 1999) and h/hm (Alenius et al., 2003)) were 
estimated as detailed in Table 3. Trees with dbh under 5 cm (trees from 
regeneration) were not included in our analysis, and trees from different 
species were just considered to estimate subplot variables, not as subject 
trees. Thus, 75,522 tree records were available as subject trees, while it 
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was reduced to consider time-elapsed variables between measurements. 
Finally, 56,628 tree records were studied, including the different mea
surements of each one in consecutive inventories, with a total of 5824 
dead tree records (10.28 %).

Site quality, time elapsed between inventory editions, and climate 
variables were estimated at plot level due to their homogeneity for each 
subplot. Productivity was studied through the Site Index (SI), calculated 
based on the plot dominant height at 100 years using the Bavarian 
Norway spruce yield tables (Assmann and Franz, 1972). Based on pre
vious work (Caicoya and Pretzsch, 2021), SI was dynamically estimated 
each year, reflecting site quality changes over time. Time elapsed be
tween inventory editions was calculated using the time between mea
surements, and the annual bai of each tree and plot was calculated 
linearly. Historical monthly climate data were taken from CRU-TS 4.06 
(Harris et al., 2020) and downscaled with WorldClim 2.1 (Fick and 
Hijmans, 2017). Thus, average minimum and maximum temperature 
(◦C) and total precipitation (mm) were downloaded monthly for the 
period 1975–2021 with 2.5 min of spatial resolution. Local data for each 
experimental site were extracted, and mean temperature (◦C) and total 
precipitation (mm) were calculated each year when measurements were 
developed. De Martonne Aridity Index (M) (Martonne, 1926) and the 
Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente- 
Serrano et al., 2010) were estimated, the second one for six months 
before August. Both indexes were calculated as described by their au
thors to consider the climate in our study. A categorical variable rep
resenting the experiment was not included, as it is indirectly captured 
through the previous experiment-level covariates. Data curation and all 
the calculations were developed using R (R Core Team, 2021).

2.2. Algorithms

Logistic binary Regression (LR) was the reference used in this study, 
as it is a traditional methodology used in tree mortality classification 
(Bravo-Oviedo et al., 2006; Merkl and Hasenauer, 1998; Shearman et al., 
2019a). As Machine Learning (ML) alternatives, five different algo
rithms were applied in our study, selected based on their popularity and 
application in different forestry topics. Decision Trees (DT) is a non- 
parametric supervised learning method that can be used for regression 
and classification. It tries to predict simple decision rules inferred from 
data variables to create a model, and it is easy to use but can be unstable 

due to data variability. Random Forest (RF) is an algorithm that fits 
several DT on various sub-samples and averages them to improve model 
accuracy. It can reach better performance levels than DT but is more 
computing demanding. Naive Bayes (NB) is a supervised learning al
gorithm based on the application of Bayes’ theorem, which assumes a 
“naive” conditional independence between every pair of variables. It 
alleviates problems related to the model dimensionality while often 
failing to produce good estimations for the correct class probability. K- 
nearest neighbour (KNN) is another supervised model used for classifi
cation and regression tasks. In the classification context, KNN predicts 
the class of a data point based on a majority vote of its k-nearest 
neighbors in the feature space. For regression, it predicts the value by 
averaging the values of its k-nearest neighbors. It is easy to use without 
assumptions but can struggle with imbalanced datasets. Support Vector 
Machine (SVM) algorithms are used for classification, regression, and 
outlier detection. They are effective in high-dimensional spaces but have 
difficulties dealing with big datasets. Artificial Neural Networks (ANN) 
were initially considered but finally excluded due to the complexity of 
adapting this algorithm for each case study. All the analyses were con
ducted using different case studies (detailed in the next section) under a 
supervised learning approach, as records of dead and alive trees were 
part of the initial dataset. Analysis was developed on R (R Core Team, 
2021) using the caret library (Kuhn, 2008), as it facilitates the model 
parameters optimization and selects the model through repetitive cross- 
validation procedures. Through the caret library, LR was performed 
using the “glm” method; DT using the “rpart” method; RF using the “rf” 
method; NB using the “naive_bayes” method; KNN using the “knn” 
method, estimating k value using the square root of the train dataset 
length; and SVM using “svmLinearWeights2” method. Due to the 
excessive computational resources required, all the analyses were run on 
a process server hosted at iuFOR-University of Valladolid, provided with 
80 cores and 256 GB RAM.

Algorithms were compared based on the best model performance. 
Resources needed for training models in terms of time are available in 
Appendix A as a comparison, as they all were run with the same system. 
Different metrics were estimated for each model and algorithm to 
compare their performance, thus prediction accuracy (ACC), also split 
into alive (ACCalive) and dead (ACCdead) trees prediction accuracy; area 
under the precision/recall curve (AUPRC) (Saito and Rehmsmeier, 
2015), Matthews Correlation Coefficient (MCC) (Matthews, 1975) and 

Fig. 1. Norway spruce long-term experimental plots located in Germany (left) and detailed location in Bavaria (right).
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Cohen’s Kappa coefficient (K) (Cohen, 1960). MCC was used in this work 
to compare algorithms in a single value, as is the one recommended for 
imbalanced datasets (Chicco, 2017; Chicco and Jurman, 2020). How
ever, the remaining metrics already mentioned can be consulted in the 
“Data availability” section. These metrics were calculated using the R 
package ROCR (Sing et al., 2005) and irr (Gamer et al., 2019) in the case 
of Cohen’s Kappa coefficient. Besides metrics, training resources were 
assessed through the time required to perform the training process per 
model and algorithm, all conducted using the same HPC service for 
homogeneity.

A standard workflow was implemented across algorithms and case 
studies (Fig. 4). First, the data was loaded, the first algorithm was 
selected, and a timer was activated. For each model proposal (all vari
able combinations proposed for model fitting), the data was normalized 
(except the independent variable) and randomly split into train (80 %) 
and test (20 %) datasets. At this point, another timer was activated, and 
the model was fitted. Resulting predictions were received as a proba
bility of dead (1) or alive (0) while real inventory data takes two possible 
values: 1 (dead) or 0 (alive). To deal with that, a threshold value was 
selected, maximizing the success of predictions, thus testing all the 
possibilities from 0 and 1 (3 decimals) and choosing the value which 
maximized the MCC metric. The threshold value was used to convert the 
probability from predictions to a binary value, classifying trees as dead 

(1) or alive (0). After that, metrics for comparing models and algorithms 
were calculated, and the second timer stopped, recording the time 
needed per model. At the end of this process, a new model proposal was 
selected. Once the process had run through all model proposals, the first 
timer was stopped (recording the time spent developing all the previous 
processes), all output results were saved, and the next algorithm was 
selected. When no more algorithms were available, the process finished.

This methodology was applied to all the case studies detailed in the 
following section. For all the models obtained from each algorithm and 
case study, the best model was selected based on the higher MCC value.

2.3. Case studies description

2.3.1. Data-based case studies
These case studies aimed at representing different data availability 

configurations of users when fitting tree mortality models. We selected 
the size of the dataset and the number of available variables as primary 
drivers, studying both independently and combined.

The first analysis involved the size of the dataset. After data curation, 
the original dataset had a total of 75,522 records. As variables con
cerning time elapsed between measurements were considered and could 
not be estimated on the first plot record, the amount of data available for 
this study was 56,628, thus losing each tree’s first record information. 

Fig. 2. Alive, dead, and thinned trees are distributed among dbh classes per each experimental site. The first box (up-left) includes all the information about the 
experimental site.
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Then, the original dataset was randomly split into three different cate
gory sizes, hence considering different user data availability situations: 
small, medium, and big datasets, detailed in Table 4.

The second analysis involved the number of variables proposed for 
the model. For this, we grouped variables by topics (tree size, produc
tivity, competition, growth, inventory time elapsed, climate, and social 
position), and different model proposals were made based on the 
number of variables we wanted to implement in the model, thus rep
resenting different situations of data availability when fitting models. 
Model proposals (with various numbers of variables) were developed by 
combining one variable from each group to avoid correlation. Variables 
for model proposals were studied before variable selection to prevent 
correlation. Variables concerning tree size, growth/time, and climate 
topics were not correlated so that they could be included separately or 
grouped in model proposals. Different case studies were proposed by 
selecting the number of variables available to fit the model. Thus, each 

case study comprises different model proposals generated by combining 
variables among topics (I = 10 proposals; II = 30 proposals, III = 90 
proposals; IV = 180 proposals) detailed in Table 3.

A third analysis was conducted by crossing both analyses. Thus, each 
dataset size and variable case study were studied together, presenting 12 
different case studies through all the possible combinations (3 dataset 
sizes x 4 variable groups).

2.3.2. Mortality under different thinning degrees and inventory records 
length

Forestry-related aspects of the data were also considered in addi
tional case studies. Thinning degrees and inventory record lengths were 
used to represent them.

The used dataset includes three different thinning degrees for each 
plot (Table 4): unthinned (control), thinning from above (above) and 
thinning from below (below). As each situation represents a different 

Table 1 
Research experiment details and mean climate variables. The coordinates column shows the longitude and latitude in degrees, minutes and seconds using the WGS84 
datum. Climate data is expressed as the range of time elapsed between the inventories used from each research experiment.

Research experiment Abbreviation Number of plots Coordinates Total annual rainfall 
[mm]

Mean annual temperature 
[◦C]

Min Mean Max Min Mean Max

Denklingen 05 DEN 05 3
10◦ 50′ 32″ E 
47◦ 52′ 15” N 1036 1078 1119 6.6 6.9 7.2

Denklingen 606 DEN 606 6 10◦ 49′ 26″ E 
47◦ 51′ 36” N

903 1066 1181 7.6 8.0 8.8

Eurach 605 EUR 605 7 11◦ 20′ 20″ E 
47◦ 46′ 48” N

1012 1108 1296 7.7 8.6 9.9

Fürstenfeldbruck 612 FFB 612 21
11◦ 05′ 04″ E 
48◦ 14′ 07” N 834 894 993 7.3 8.2 9.0

Sachsenried 602 SAC 602 4
10◦ 45′ 37″ E 
47◦ 51′ 06” N 916 1132 1200 7.5 8.0 8.6

Sachsenried 607 SAC 607 12 47◦ 52′ 01″ E 
10◦ 49′ 23” N

1088 1223 1348 7.5 7.6 7.8

Sachsenried 67 SAC 67 3 10◦ 45′ 13″ E 
47◦ 50′ 03” N

1155 1207 1262 6.5 7.1 7.9

Sachsenried 68 SAC 68 3
10◦ 45′ 18″ E 
47◦ 50′ 03” N 1155 1207 1262 6.5 7.1 7.9

Schongau 623 SON 623 7
10◦ 45′ 54″ E 
47◦ 51′ 58” N 1044 1239 1487 7.2 7.7 8.7

Vohenstrauß 622 VOH 622 9 12◦ 26′ 26″ E 
49◦ 40′ 59” N

696 859 1057 6.7 7.3 8.5

Weißenburg 613 WBU 613 7 11◦ 02′ 16″ E 
49◦ 00′ 11” N

694 832 1038 6.9 7.8 8.8

Zusmarshausen 603 ZUS 603 6
48◦ 23′ 49″ E 
10◦ 28′ 46” N 843 886 933 7.0 8.2 9.4

Zusmarshausen 604 ZUS 604 4
48◦ 23′ 56″ E 
10◦ 28′ 59” N

843 892 933 7.0 8.4 9.4

Table 2 
Structural characteristics for each research experiment were calculated from the single tree subplots, using 1/3 of the subject tree’s height as a subplot radii. SDI 
denotes the stand density index, and dg is the quadratic mean diameter.

Research 
experiment

Stand density 
[tree/ha]

SDI 
[adm]

Age 
[years]

dg 
[cm]

Acquisition 
year

Min Mean Max Min Mean Max Min Mean Max Min Mean Max First Last

DEN 05 10.0 27.2 57.0 709 1654 3304 138 140 143 41.1 51.2 69.6 1985 1991
DEN 606 4.0 35.1 102.0 282 1647 4699 45 52 62 13.7 22.0 37.8 1998 2015
EUR 605 1.0 14.2 59.0 62 1031 3461 21 36 63 5.0 19.1 42.9 1973 2015
FFB 612 1.0 17.2 74.4 48 1209 3575 27 35 48 5.2 20.1 53.1 1996 2017
SAC 602 5.0 27.9 92.0 302 1672 4136 27 35 51 8.7 15.8 34.3 1989 2013
SAC 607 2.0 34.1 87.6 291 1444 4640 48 53 60 14.9 25.5 40.3 2001 2013
SAC 67 7.7 22.6 55.2 571 1489 3271 126 128 131 42.9 53.8 66.4 1985 1990
SAC 68 1.9 29.0 58.7 57 1536 2778 125 127 130 27.6 49.1 65.6 1985 1990
SON 623 3.0 26.0 71.9 246 1535 3827 27 33 43 8.4 16.6 33.0 1999 2015
VOH 622 1.0 8.0 28.9 27 667 3785 23 30 44 5.2 17.7 42.0 1997 2018
WBU 613 3.0 29.2 104.0 184 1506 4680 55 70 100 11.7 25.5 53.3 1982 2016
ZUS 603 1.0 29.4 118.0 66 1381 4537 17 31 54 5.0 13.9 46.5 1980 2017
ZUS 604 2.0 22.9 87.0 153 1290 4425 21 33 54 6.8 14.6 34.0 1985 2017
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stand management and forest structure affecting mortality patterns, we 
split the original dataset by thinning groups to assess their differences. 
Additionally, all possible combinations with each variable case study 
were carried out. This resulted in 12 case studies (3 thinning degrees x 4 
variable groups). A second analysis was carried out by grouping 2 
thinning degrees and discarding the third, studying each variable case 
study combination too and resulting in 12 additional case studies (3 
thinning degrees combination x 4 variable groups).

The length of inventory records of each plot was also used to un
derstand the amount of time that the same plot was measured. It aimed 
to determine if different algorithms could take advantage of more 

information available in the same inventory. Thus, the original dataset 
was split into four groups (Table 4) where the size of the original dataset 
was similar: plots with three to five records, six records, seven records, 
and eight to nine records. Those groups were combined with each var
iable case study, conducting 16 case studies (4 inventory records length 
x 4 variable groups).

Fig. 3. Example of experimental design using subplots. A circle with a size 
related to the tree height of the subject tree was used to calculate its stand 
neighborhood, applying the weight value (w) on their estimation when no in
formation is available due to a close border.

Table 3 
Variables used to fit the models by topic and case studies where they were 
included: dbh is the diameter at breast height; slenderness is the ratio h/dbh; SI 
is the Site Index; BAL is the basal area larger than the subject tree; G local is the 
local stand basal area; N is the stand density; SDI is the stand density index; bai is 
the annual basal area increment; TI is the time elapsed; M is the Martonne 
Aridity Index; SPEI is the Standardized Precipitation Evapotranspiration Index; 
dbh/dg is the ratio of the tree diameter at breast height and the stand quadratic 
mean diameter; h/hm is the ratio of the tree height and the stand mean height.

Topic Variables Case 
study

Tree size dbh 
slenderness

I, II, III, 
IV

Site productivity (plot) SI (Assmann and Franz, 1972) I, II, III, 
IV

Tree competition (subplot) BAL (Wykoff, 1990) 
Hegyi index (Hegyi, 1974) 
G local (Steneker and Jarvis, 1963) 
N 
SDI (Reineke, 1933) adapted for Norway 
spruce (Pretzsch and Biber, 2005)

I, II, III, 
IV

Tree growth and inventory 
time elapsed (plot)

bai 
TI

II, III, 
IV

Climate (plot) M (Martonne, 1926) 
SPEI (Vicente-Serrano et al., 2010)

III, IV

Tree social position 
(subplot)

dbh/dg (Lynch et al., 1999) 
h/hm (Alenius et al., 2003)

IV

Fig. 4. Flowchart summarizing the model fitting process for each algorithm.

Table 4 
Final dataset sizes for each data-based and forest-based case study. The first 
measurement of each plot was removed from each dataset due to the lack of 
variables concerning time, so values on that table exclude initial measurements.

Case study Dataset 
size (n)

Dead 
trees (n)

Dead trees 
proportion (%)

Dataset size small 2830 299 10.66
medium 19,983 2099 10.50
big 56,628 5824 10.28

Thinning degrees control 11,380 1663 14.61
thinning from 
above

34,319 2826 8.23

thinning from 
below

10,929 1355 12.21

Inventory 
records length

3 to 5 12,644 1412 11.17
6 15,183 883 5.81
7 11,063 1555 14.06
8 to 9 17,738 1974 11.12
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2.3.3. Cross-validation among thinning degrees
While previous case studies used different data subsamples to 

compare algorithms, this case study wants to test the performance of 
each algorithm when training and testing datasets are different, simu
lating a typical situation when a user applies an already existing model 
to its data. This approach explores the model performance deviations 
caused by different data origins and structures, quantifying the loss of 
predicting accuracy. With that in mind, we selected the best model per 
algorithm fitted for each previous thinning degree case study. In all 
cases, the number of variables used corresponds to case III for homo
geneity. Thus, models fitted on just one type of thinning (i.e., thinning 
from below) were applied to the three datasets grouped by thinning 
degree (control, from below, from above), having three different results 
by model. A second analysis was carried out by grouping 2 thinning 
degrees on the fitting process (i.e., control + thinning from below) and 
applied to the three datasets grouped by thinning degree (control, from 
below, from above) as in the previous case. Performance assessed by 
MCC was used to compare them among all the possible combinations.

3. Results

3.1. Effect of dataset size and variable number (HI)

Case studies involving different dataset sizes showed various levels 
of performance on each algorithm, as shown in Fig. 5A. A clear trend is 
shown among algorithms (except for KNN): performance was lower 
when more data was provided. In all the cases, RF was the better algo
rithm. Cases involving variables (Fig. 5B) showed reduced differences 
among the algorithm’s performance with the lower number of variables 
(case I), increasing in the rest of the cases. That increase was higher in RF 
than in other algorithms, showing the best performance among all 
studied cases. All the algorithms consistently improved the performance 
level in the II and III case studies concerning the previous one. In 
contrast, performance was similar when comparing III and IV, with 

smooth variations without a common trend. Analyzing both dataset size 
and variables used (Fig. 5C) when using a low number of variables (case 
I), the differences among algorithms’ performance were lower inde
pendent of the dataset size. When the number of variables increases, 
then algorithms’ performance differences also increase, and when the 
size of the dataset increases, differences among algorithms are more 
considerable. RF was the algorithm that performed better in all the case 
studies, and performance also increased more than others when more 
variables were provided. An increasing number of variables improved 
performance for all the algorithms, but cases III and IV showed no 
common trends.

3.2. Effect of different thinning degrees (HII)

When splitting data among thinning degrees (Fig. 6A) performance 
was better in control plots compared to those where thinning was 
applied consistently among algorithms. In all the cases, RF showed 
better performance and a lower performance reduction for above and 
below thinning degrees compared to control, which was registered in 
both RF and SVM. DT and SVM performed better on plots where thin
ning from above was applied compared to thinning from below, while 
the rest of the algorithms showed the opposite trend. When combining 
both thinning degrees and variables used (Fig. 6B) control plots showed 
better performance among classifiers than thinned ones, consistently 
among combinations. RF always reached the best performance, while 
differences comparing RF to other classifiers were higher when more 
variables were used. The performance improved for most of the cases 
regarding variables, comparing case I to II and case II to III. Still, no clear 
improvements were shown when comparing cases III and IV.

3.3. Effect of inventory records length (HIII)

When data was split by inventory record length (Fig. 7A) RF still 
performed the best in all the case studies. Differences were not 

Fig. 5. Algorithm performance for each dataset size (A), number of variables used (B), and both dataset size and number of variables (C) were measured using the 
MCC metric. On graphs A and B, the x-axis refers to the dataset sizes group (graph A) and the number of variables used (graph B); y-axis values represent the 
performance of the best model obtained on each case study based on the MCC metric; and each algorithm is shown under a different color according to the legend. In 
Graph C, dataset sizes group (x-axis upper), the number of variables used per dataset group (x-axis down) and the algorithms used (y-axis) according to its 
abbreviation (SVM: Support Vector Machine; KNN: K-Nearest Neighbour; NB: Naive Bayes; RF: Random Forest; DT: Decision Trees; LR: Logistic Regression) is shown, 
while color intensity represents the performance of the best model obtained on each case study based on the MCC metric.

A. Vázquez-Veloso et al.                                                                                                                                                                                                                      Ecological Informatics 88 (2025) 103140 

7 



Fig. 6. Algorithm performance for each thinning degree (A) and both thinning degree and number of variables (B) was measured using the MCC metric. In graph A, 
the x-axis refers to the thinning degree; y-axis values represent the performance of the best model obtained on each case study based on the MCC metric; and each 
algorithm is shown under a different color according to the legend. In graph B, thinning degrees (x-axis upper), the number of variables used per dataset group (x-axis 
down) and the algorithms used (y-axis) according to its abbreviation (SVM: Support Vector Machine; KNN: K-Nearest Neighbour; NB: Naive Bayes; RF: Random 
Forest; DT: Decision Trees; LR: Logistic Regression) is shown, while color intensity represents the performance of the best model obtained on each case study based on 
the MCC metric.

Fig. 7. Algorithm performance for each inventory record length (A) and inventory record length and number of variables (B) is measured using the MCC metric. In 
graph A, the x-axis refers to the inventory record length; y-axis values represent the performance of the best model obtained on each case study based on the MCC 
metric; and each algorithm is shown under a different color according to the legend. In graph B, inventory record length (x-axis upper), the number of variables used 
per dataset group (x-axis down) and the algorithms used (y-axis) according to its abbreviation (SVM: Support Vector Machine; KNN: K-Nearest Neighbour; NB: Naive 
Bayes; RF: Random Forest; DT: Decision Trees; LR: Logistic Regression) is shown, while color intensity represents the performance of the best model obtained on each 
case study based on the MCC metric.
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significant in most cases, and trends were difficult to find in the case 
studies. Different behaviors regarding case studies were also shown for 
each algorithm’s performance. LR improved with the record length, 
while SVM enhanced in the second and third case studies but not in the 
last one; DT and RF performed better with the smaller record length, and 
then performance was maintained similar but a bit lower; NB and KNN 
varied among cases with different trends. Consistently among record- 
length cases (Fig. 7B) performance was improved when more variables 
were used to fit the models, while cases III and IV showed no apparent 
differences. Results were obtained when comparing just the variables 
used to fit models, and RF was the best algorithm among all the case 
studies.

3.4. Cross-validation for different thinning degrees (HIII)

Differences were also found among the application case studies for 
different thinning degrees (Fig. 8). There, results showed how the al
gorithm’s performance decreased when models were applied over data 
from different thinning degrees, consistently among algorithms and case 
studies. While LR and DT showed lower performance decreases in some 
cases, that trend was inconsistent. In some cases, the decrease was lower 
in NB, SVM, or KNN. Among all case studies, the higher performance loss 
when using a different thinning degree dataset was registered in RF.

Similar trends were found when using data from two thinning de
grees to fit the model (Fig. 9). All the algorithms have reduced their 
performance level, although LR showed more stability. NB and KNN 
showed reductions in their performance depending on the dataset used 
for predictions, having on case A and C similar performance levels when 
predicting mortality by using the thinning from above dataset. The rest 
of the algorithms, including RF, showed more unstable behaviors.

4. Discussion

Patterns and dynamics behind tree mortality remain poorly under
stood, penalizing accurate mortality predictions (Hülsmann et al., 

2016). This difficulty increases when mortality tries to be assessed under 
climate change conditions (Bugmann et al., 2019). While Logistic 
binomial Regression (LR) is, by far, the most used algorithm to assess 
tree mortality (Bravo-Oviedo et al., 2006; Hülsmann et al., 2016; 
Hülsmann et al., 2017; Pretzsch et al., 2020; Shearman et al., 2019a, 
2019b; Shifley et al., 2017), the results of this work among all the case 
studies show how Random Forest (RF) is the algorithm that reaches the 
overall best performance level. However, RF is the most demanding 
computing power and the weaker when applying its models to different 
datasets to those it was trained on, and the interpretability of its results 
is also a handicap.

4.1. Thinning degrees and cross-validation performance

Algorithms’ performance across the different thinning degrees 
showed consistent results. Algorithm performance in control plots was 
higher than in those where thinning was applied (both from above and 
below). This is linked to the forest dynamics, as natural, mainly 
competition-driven mortality is better represented when no in
terventions are made, and models can find more robust relationships 
between covariates provided. When harvests are applied, it was proved 
that thinning from below reduces the natural mortality in small trees 
(Dodson et al., 2013; Powers et al., 2010) and thinning from above can 
increase it (Powers et al., 2010), both altering the short-term stand dy
namics after its application. Our data shows that the mortality rate is 
higher on control plots than on thinned ones, as thinning anticipates 
mortality. That means that classification rules change when silviculture 
is applied, which strengthens the alteration of mortality through thin
ning and can be essential for modeling when trying to find patterns in 
data. When thinning was used, the algorithm performance was lower, 
and there were no clear trends among the thinning degrees. The per
formance of models trained on thinning from below data was expected 
to be closer to control plots regarding mortality prediction, as trees are 
more prone to die due to their size, but that trend was not found.

Cross-validation case studies regarding different thinning degrees 

Fig. 8. Algorithm performance for each cross-application case study using different test datasets. On each graph, the x-axis represents the thinning degrees data used; 
y-axis values represent the performance of the best model obtained on each case study based on the MCC metric; and each algorithm is shown under a different color 
according to the legend. The shadowed area represents the case when the thinning degree model and data coincide. One RF value is omitted on graph A (thinning 
from below) as it takes the same value as NB; one RF value is omitted on graph C as it takes a negative value out of the scale.
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showed interesting results related to model applicability. While perfor
mance patterns among algorithms were similar when training and test 
data came from the same thinning degree, their reaction to different test 
datasets showed different patterns. RF was the algorithm that signifi
cantly reduced its performance when applying its models to different 
thinning datasets. The other Machine Learning (ML) algorithms reacted 
differently, drastically decreasing their performance in some cases 
without any common trend. LR was also affected when modifying the 
test dataset, but performance reductions were smoother. When models 
were trained on datasets combining two thinning intensities, RF 
continued to exhibit similar trends, whereas Naive Bayes (NB) and K- 
Nearest Neighbors (KNN) maintained their performance levels more 
effectively. LR showed a remarkable performance decline when trained 
on control data combined with one thinning dataset (e.g., thinning from 
below) and tested on the other thinning dataset (e.g., thinning from 
above). However, when trained on both thinning datasets, its perfor
mance predicting with the control dataset improved. This may reflect 
the challenges posed by mortality dynamics under different manage
ment regimes, where thinning disturbances increase prediction diffi
culty for some algorithms. While it is expected to develop species- 
specific models to predict mortality (Franklin et al., 1987; Hülsmann 
et al., 2017) and also regional models due to its variation in different 
geographical areas (Hülsmann et al., 2017; Monserud and Sterba, 1999), 
our results suggest the idea of developing models to predict mortality 
under different thinning degrees, as proposed by Bravo-Oviedo et al. 
(2006). In addition, in long-term simulations, the performance of mor
tality models often declines following thinning events due to shifts in 
mortality behavior within stands. Our results suggest that these models 
can recover their predictive accuracy over time, but their handicap to 
taking into account the changes immediately after thinning highlights a 
critical area for improvement.

A similar approach did not report differences in tree mortality be
tween managed and unmanaged forest (natural reserves) patterns, but it 
stressed the importance of the similar ecological processes between 
forests used for calibration and validation (Hülsmann et al., 2017). That 

ecological processes also interact with mortality rates after thinning 
(Dodson et al., 2013; Powers et al., 2010), triggering different forest 
dynamics that alter the forest behavior before thinning. Results shown 
here related to the model performance reduction on cross-validation 
support the necessity to go deeper into the study of thinning effects on 
tree mortality. In addition, the effects of applying different data struc
tures on fitting and predicting would be an interesting topic to address 
when using forest simulators. Frequently, the origin of the data used to 
fit the models differs from the data used for predictions, which can 
compromise the reliability of the predictions. When simulating long 
study periods, the error propagation is unknown, and the use of non- 
appropriate data structures can alter the reliability of predictions.

4.2. Size, variables, and inventory records length performance

The size of the dataset was directly related to the accuracy of pre
dictions, which was consistent with all the algorithms. While it was 
expected that a more extensive dataset would provide higher accuracy 
on predictions as many authors expected (Bugmann et al., 2019; Wunder 
et al., 2008), we found the opposite results, even when small and 
medium-sized datasets were randomly selected from the bigger ones, 
thus avoiding deviations in data selection. The higher performance of 
the algorithms in smaller datasets can be related to the increase of data 
heterogeneity of the bigger ones (Hülsmann et al., 2017; Sheil and May, 
1996), as different data structures (i.e., thinning degrees) are studied 
together.

The number of variables used to fit the models ordered from case I to 
IV, as more variables are included, was an essential factor when deter
mining prediction accuracy. Hülsmann et al. (2018, 2017) and Zhang 
et al. (2009) reported the importance of tree size, competition, and 
growth as covariates in predicting mortality, all included in our study. 
The competition was proved to have higher explanatory power when 
applied to the individual tree neighborhood instead of the plot (Rohner 
et al., 2012), as we performed in this work. Our results verify the 
importance of growth as a covariate as predictions improve in case II 

Fig. 9. Algorithm performance for each cross-application case study when using 2 grouped datasets as training data. On each graph, the x-axis represents the 
thinning degrees data used; y-axis values represent the performance of the best model obtained on each case study based on the MCC metric; and each algorithm is 
shown under a different color according to the legend. The shadowed area represents the grouped thinning degrees model and its performance. Missing values 
represent cases when performance is under 0.
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compared to case I among all algorithms. Consistently among algo
rithms, an increase in the number of variables until case III enhances the 
accuracy of predictions (with exceptions), while an excess of variables in 
case IV shows different trends among algorithms with minor changes. 
That can be related to the high explanatory power of covariates already 
included in the model compared with the social position of the tree 
included in case IV. While LR used to be fitted using a low number of 
variables with high explanatory power, algorithms like RF can support a 
higher number of variables even when their explanatory power is lower. 
In this context, RF can minimize overfitting by averaging multiple de
cision trees, reducing the impact of variance caused by overfitting in 
individual trees (Breiman, 2001). This capability, combined with its 
ability to capture nonlinear relationships, increases the overall perfor
mance of the model (Breiman, 2001), which might explain the results 
obtained in our study. Alternative variables candidates like tree age or 
height were excluded from the analysis, and variable transformations 
and interactions were not tested.

Different trends regarding the number of records per inventory were 
found for each algorithm. While LR improves its performance when 
more records of the same inventory are available on the data provided, 
RF and Naive Bayes (NB) follow the same trend except in one case study. 
Decision Trees (DT), K-Nearest Neighbour (KNN), and Support Vector 
Machine (SVM) showed different behaviors. As shown in previous works 
(Hülsmann et al., 2017). However, that information may already be 
captured indirectly through other covariates included in the model, 
suggesting that its influence is embedded within the existing predictors.

4.3. ML modeling implications

Differences among algorithms were observed for each case study, 
providing helpful information to reference in future studies. RF was the 
algorithm that better performed in all study cases except on the cross- 
application with different thinning degrees. Differences among the 
other algorithms’ performance are hard to rate, as no clear results are 
obtained from their comparison. LR, the reference algorithm, always 
remains in between in terms of performance, while the other ML algo
rithms got fewer stable scores in performance depending on the case 
study. The higher performance of RF compared to other algorithms 
under different conditions of data size, number of variables, and data 
type (thinning and records classes) enhances the idea of selecting RF to 
assess tree mortality in future works. Other advantages were noticed in 
previous works related to forestry (Cutler et al., 2007; McNellis et al., 
2021; Shearman et al., 2019b; Zhao et al., 2019), like its performance to 
estimate forest quality (Zhao et al., 2019) and to find complex in
teractions on predictor variables for ecological classification (Cutler 
et al., 2007). So, in those cases, RF is a good alternative when a higher 
predictivity rate is needed, i.e., when working with National Forest In
ventories. However, its application should be made on data with a 
similar structure to the training one, as performance in the cross- 
validation case studies reported the worst predictions among algo
rithms. Thus, performance reduction can be related to the differences in 
covariate interactions, as RF creates more complex relationships than 
other algorithms (Cutler et al., 2007). In that case, while our results did 
not provide clear trends for each algorithm, LR can be considered the 
more robust algorithm as it remained with a more consistent perfor
mance when it was drastically reduced in some cases on ML algorithms. 
Furthermore, while computer power limitations are lower each time 
(Shifley et al., 2017), the time spent training each algorithm (and 
computer requirements not studied here) should be considered. While 
RF was by far the algorithm with the highest computing time demanded, 
SVM also shows higher requirements than LR and the other ML algo
rithms. In addition, when more data is used to train the algorithms and 
more variables are provided, the time requirements increase for all the 
algorithms, with some exceptions.

A point to consider in all the ML algorithms is the difficulty of 
interpreting their results (Shearman et al., 2019b), which is a critical 

aspect in every research field. LR offers simplicity in this regard, 
providing an equation where the effect of each covariate can be easily 
understood. In contrast, the interpretation of ML algorithms requires 
different approaches; rather than offering a clear equation, they rely on 
methods like feature importance or partial dependence plots, which 
many users may not yet be familiar with. While some algorithms like DT 
are easily interpretable, others like RF are more complex and are eval
uated primarily through predictive performance metrics. This can 
obscure the relationships between covariates that lead to a result. 
Consequently, when understanding causality is crucial, LR provides a 
more straightforward and interpretable framework. However, when the 
goal is to obtain a better prediction rate, they have been proven to be 
good alternatives for forestry (McNellis et al., 2021) and even in other 
topics, like health, where comparisons were also made to find the better 
algorithm for a particular application (Aldossary et al., 2022; Maydanchi 
et al., 2023). That debate about the prediction level and the under
standability of the models has been extensively discussed in the litera
ture related to this topic.

Deep Learning alternatives like ANN were initially considered but 
were finally excluded due to their architectural complexity (Reis et al., 
2018) and adaptation requirements to each case study. In addition, even 
though ANN was applied in different works assessing tree mortality 
(Bayat et al., 2019; da Rocha et al., 2018a; Reis et al., 2018), a com
parison with other algorithms could prove if they are a better alternative 
than RF to reach better performance levels. In that field, metrics selected 
when assessing model predictions must be appropriate, considering data 
structure and objectives (Ferri et al., 2009). Different metrics were 
estimated in this work and can be consulted on the complementary data. 
Metrics related to the overall classification accuracy of the model are not 
appropriate as a performance measurement when working with imbal
anced data (Chen and Breiman, 2004). MCC (Matthews, 1975) was 
selected to compare algorithms because, as explained by Chicco (2017)
and Chicco and Jurman (2020), MCC is a good choice when dealing with 
imbalanced datasets as it properly considers the ratio of the confusion 
matrix size. Examples of estimating tree mortality showed how selecting 
a non-proper metric to assess model performance provides confusing 
results. In some cases, models showed a high significance on prediction 
but provided inferior dead tree prediction rates (da Rocha et al., 2018a, 
2018b; Reis et al., 2018), evaluated separately. In other cases, the pre
diction of dead tree was not even considered (Bayat et al., 2019). Finally, 
model applicability must be considered depending on the user’s pur
pose. While LR models can be applied through an equation, ML models 
must be used through the file containing the previously trained model. 
That fact reduces their applicability for some users due to the knowledge 
required and the higher complexity of the model transferability, while 
its importance is lower for advanced users. In addition, the inclusion of 
mortality models into Decision Support Systems like SILVA (Pretzsch 
et al., 2002) or SIMANFOR (Bravo et al., 2025) implies that tree death 
predictions will be estimated using simulated covariates (Hülsmann 
et al., 2017), thus increasing the error in predictions.

5. Conclusion

This study compared Machine Learning algorithms’ performance by 
assessing individual tree mortality. A performance improvement was 
found consistently among algorithms when more variables were used to 
fit the model, while more extensive datasets decreased the performance 
level of the algorithms. Datasets from control plots provided better 
performance levels than those acquired on thinned ones, while cross- 
validation decreased model performance, consistent with all algo
rithms. No clear trends were found when using different inventory re
cord lengths. Random Forest was the algorithm with higher performance 
levels in all the study cases. At the same time, cross-validation drasti
cally reduced its performance, while Logistic binomial Regression 
seemed to be more robust in those cases. Our results suggest that 
Random Forest is a good choice if higher prediction levels are required, 
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while other Machine Learning alternatives are inferior. However, when 
the model application is not clearly defined and/or model interpret
ability is needed, Logistic binomial Regression is still the best tool for 
assessing individual tree mortality.
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Appendix A. Appendix

The differences are very clear when comparing the time spent on train models per algorithm and case studies. As expected, more data requires more 
time, consistently among algorithms (Fig. A.1.Fig. A.1A). By default, RF time requirements are more extensive, and the time necessities increase more 
than other algorithms among study cases. SVM also shows higher time demand than other algorithms, but differences with RF are more significant. 
Regarding the number of variables (Fig. A.1.B), in this case, they were split by the number of covariates used in the model instead of the variables case 
study to extract more information. RF algorithm needs more time among case studies, followed by SVM. The increment in time needed when more 
variables are included in the model is inconsistent among algorithms. RF needs more time to fit models with six than with 7 and 8 covariates, while 
SVM reduces the time required with more than seven covariates. Comparing among algorithms, the necessity of RF grows considerably as more 
variables are included in the model. Combining dataset size and number of variables (Fig. A.1.C), it looks like the differences in time required are 
bigger when more data is provided, and there are some peaks (appreciable just in RF and SVM) of time needed when fitting models with 6 and 7 
covariates, respectively. 
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Fig. A.1. The average time used to train a single model per algorithm across dataset size (A), number of variables (B), and both dataset size and number of variables 
(C) measured by the time needed to train a single model in minutes. On graphs A and B, the x-axis refers to the dataset sizes group (graph A) and the number of 
variables used (graph B); y-axis values represent the time (minutes) needed to fit a single model; and each algorithm is shown under a different color according to the 
legend. In Graph C, the dataset sizes group (x-axis upper), the number of variables used per dataset group (x-axis down) and the algorithms used (y-axis) according to 
its abbreviation (SVM: Support Vector Machine; KNN: K-Nearest Neighbour; NB: Naive Bayes; RF: Random Forest; DT: Decision Trees; LR: Logistic Regression) are 
shown, while color intensity represents the time needed to fit a single model in minutes.

Data availability

File name: ML_individual_tree_mortality.zip.
Developer: Aitor Vázquez Veloso.
Contact information: aitor.vazquez.veloso@uva.es
Software required: R.
Availability: The full raw dataset and intermediate curation/analysis 

data used in that publication, the code and the results are available at 
this DOI on Zenodo: doi: https://doi.org/10.5281/zenodo.14970488

Cost: Free.
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Alenius, V., Hökkä, H., Salminen, H., Jutras, S., 2003. Evaluating estimation methods for 
logistic regression in modelling individual-tree mortality. In: Model. For. Syst. 
Workshop Interface real. Model. Parameter Estim. Process. Sesimbra port. 2-5 June 
2002, pp. 225–236. https://doi.org/10.1079/9780851996936.0225.
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