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Resumen 

La electromiografía (EMG) es una técnica de registro de la actividad eléctrica 

producida por los músculos esqueléticos mediante electrodos intramusculares 

o superficiales. Este TFG aborda el diseño e implementación de reconocimiento 

de gestos de la mano basado en el procesamiento de señales EMG y de 

orientación obtenidas del sensor Trigno Duo de Delsys. Para la diferenciación 

de movimientos se han utilizado modelos de aprendizaje máquina o Machine 

Learning como Random Forest, KNN, Linear SVC, Logistic Regression o 

Gradient Boosting. Se han entrenado los modelos mediante la validación 

cruzada anidada para la selección de hiperparámetros junto a un esquema 

LOSO para evaluar la capacidad de generalización intersujeto. Los 

clasificadores lineares, Linear SVC y Logistic Regression obtuvieron los mejores 

resultados con 75% de precisión. 

Palabras clave: 

Aprendizaje automático, Electromiografía, Orientación, Validación cruzada 

anidada, LOSO 

Abstract 

Electromyography (EMG) is a technique used to record the electrical activity 

produced by skeletal muscles using intramuscular or surface electrodes. This 

Final Degree Project focuses on the design and implementation of a hand 

gesture recognition system based on processing of EMG signals and 

orientations data acquired from the Trigno Duo Sensor by Delsys. To distinguish 

between different hand movements, various machine learning models were 

employed, included Random Forest, Linear SVC, Logistic Regression and 

Gradient Boosting. The models were trained using nested cross-validation for 

hyperparameter tuning, combined with a Leave-One-Subject-Out (LOSO) 

scheme to asses inter-subject generalization. Linear classifiers, specifically 

Linear SVC and Logistic Regression, achieved the best performance with an 

accuracy of 75% 

Key words 

Machine Learning, Electromyography, Orientation, Nested cross-validation, 

LOSO 
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1      Introducción 
En los últimos años, el desarrollo de sistemas de control basados en señales 

biológicas ha adquirido gran relevancia para el desarrollo de interfaces hombre-

máquina. El reconocimiento de gestos de la mano presenta una de las 

estrategias destacadas para la comunicación entre hombre y máquina. Esta 

estrategia se utiliza en diferentes aplicaciones como prótesis inteligentes, 

reconocimiento del lenguaje de signos, dispositivos de rehabilitación o 

dispositivos de control.  

Los sistemas para el reconocimiento de gestos de la mano pueden utilizar 

dispositivos como guantes, cámaras, unidades de medición inercial (IMUs), 

sensores de señales electromiográficas (EMGs) o combinaciones de estos 

sensores, como de señales EMG y IMU [1]. 

Los sistemas de adquisición de datos como guantes o cámaras de visión tienen 

limitaciones. Por ejemplo, no pueden ser usados en casos de pacientes con 

amputaciones o con lesiones nerviosas que no puedan realizar movimientos 

con la mano. En cambio, los sistemas de reconocimiento que gestos que se 

basan en señales de EMG pueden ayudar a la rehabilitación de estos pacientes, 

aunque también tienen sus inconvenientes, como el ruido que generan [1].  

La electromiografía es una técnica de registro de la actividad eléctrica 

producida por los músculos esqueléticos, cuyo uso más extendido se da en el 

ámbito de la medicina para detectar señales neuromusculares y seguir su 

evolución. La adquisición de esas señales se consigue mediante electrodos 

intramusculares (método invasivo) o superficiales, (sEMG, método no invasivo) 

[2].  

En este proyecto se utilizarán las señales EMGs y de orientación 

proporcionadas por el sensor “Trigno Duo” de Delsys para desarrollar un 

algoritmo de Machine Learning (ML) que pueda detectar tres estados 

fundamentales de la mano: reposo, mano abierta y mano cerrada. Este enfoque 

pretende contribuir al desarrollo de sistemas de control más accesibles y 

eficientes para personas con discapacidades motoras, así como a la mejora de 

interfaces hombre-máquina en general.  

A lo largo del presente documento se describirán las diferentes etapas para la 

realización del proyecto, como las fases de adquisición de datos y 

procesamiento de señales, la extracción y selección de características, la 

construcción y validación de modelos de clasificación de Machine Learning y 
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su posterior implementación en tiempo real. También se presentarán los 

dispositivos y el software utilizados durante el proyecto. 

1.1 Electromiografía 

La electromiografía es la disciplina que trata con la detección, análisis y el uso 

de las señales eléctricas que se generan cuando los músculos se contraen de 

forma voluntaria. A esta señal se le conoce como señales electromiográficas 

(EMGs) [3]. Específicamente, las señales sEMG (electromiografía de superficie) 

proporcionan información sobre la actividad muscular de manera no invasiva, 

lo que las convierte en una fuente eficaz para rehabilitación de paciente 

amputados [4]. 

En el ámbito clínico la electromiografía es una metodología para registrar y 

analizar la actividad bioeléctrica del tejido muscular esquelético con el fin de 

diagnosticar y tratar enfermedades neuromusculares. 

La base de las señales EMG reside en las propiedades bioeléctricas del tejido 

muscular estriado. Los músculos estriados son los efectores de la motilidad 

voluntaria [5].  

La unidad motora (UM), que es la unidad anatómica y funcional del músculo, 

se forma por una motoneurona alfa y las fibras musculares (FMs) que inerva. 

El sistema nervioso central codifica el grado de contracción de las FMs 

mediante la frecuencia de los impulsos nerviosos de las motoneuronas, que se 

transmiten como potenciales de acción (PA) a las células musculares. Estos PA 

son despolarizadores de la membrana de las FMs, que se transmiten a lo largo 

de la fibra muscular a una velocidad de entre 3 y 5 m/s [5]. 

 

Figura 1. Unidad motora (UM) [2]. 
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Una contracción voluntaria débil activa un número escaso de UM, descargando 

potenciales de acción a bajas frecuencias. El aumento de fuerza de contracción 

implica un aumento progresivo de la frecuencia de descarga y el reclutamiento 

o activación de más UMs, por tanto la amplitud de la señal EMG aumenta 

correlativamente [5]. 

El registro de los cambios producidos por la descarga de las FMs de una UM se 

conoce como Potencial de Acción de Unidad Motora (PAUM). En condiciones 

normales, la amplitud media de los PAUM es de unos 0,5 mV y la duración varía 

entre 8 y 14 ms [5]. 

 

Figura 2. Señal EMG detectada en el antebrazo durante la contracción de la 

mano (A), reposo (B) y la extensión de la mano (C). 

 

Las señales EMG siempre están acompañadas de ruido, que puede ser de 

origen técnico o biológico, y generalmente supera la magnitud de la señal de 

interés en varios órdenes [5]. 

Algunas fuentes de ruido de origen técnico pueden ser del propio equipo de 

adquisición, la corriente alterna de la red eléctrica (50 Hz en Europa, 60 Hz en 

América) o las interferencias electromagnéticas del entorno. Mientras que otras 

fuentes de ruido de origen biológico pueden ser señales biológicas indeseadas, 

como actividades de UM lejanas, o la propia impedancia de la piel [5]. 

Por tanto, el filtrado de este ruido es crucial para obtener una representación 

inteligible de la actividad muscular. 

1.2 Estado del arte 

Una vez introducido el tema sobre el que va a tratar este trabajo y haberse 

introducido en el campo de la electromiografía, se procede a analizar proyectos 

similares de detección de movimientos de la mano ya existentes. En este 
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apartado se revisan los principales enfoques y líneas de investigación 

relacionados con el uso de sEMG en el reconocimiento de gestos, así como sus 

aplicaciones prácticas en el ámbito médico, asistencial y tecnológico. Además, 

se analizan las oportunidades y desafíos actuales que enfrenta esta tecnología 

en función del estado de la literatura científica y los proyectos recientes 

desarrollados en este contexto. 

 

1.2.1 Machine Learning para la caracterización y 

reconocimiento de gestos con señales electromiográficas 

El reconocimiento de gestos a partir de señales EMG representa un desafío 

significativo, dada la naturaleza intrínsecamente compleja de los procesos 

fisiológicos subyacentes y el comportamiento ruidoso inherente a la señal. A 

pesar de la existencia de modelos matemáticos que describen la fisiología de 

la EMG, estos no han proporcionado una solución analítica exacta para el 

problema del reconocimiento de gestos [6].  

En este contexto, los algoritmos de Machine Learning se han establecido como 

herramientas robustas y eficientes para estimar la distribución subyacente a la 

generación de gestos, permitiendo el desarrollo de estrategias más eficientes 

y precisas a nivel computacional para la caracterización de señales EMG [7]. 

Un modelo típico para el reconocimiento de gestos en tiempo real mediante 

EMG y Machine Learning comprende cuatro etapas fundamentales. 

 Adquisición de señales EMG: 

Se utilizan sensores, comúnmente de superficie (sEMG), para registrar la 

actividad eléctrica de los músculos. Dispositivos como el Myo Armband, que 

incorpora ocho sensores EMG de superficie y una IMU son ejemplos de 

herramientas utilizadas para este fin, midiendo hasta 200 muestras por 

segundo de actividad eléctrica muscular [6]. 
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Figura 3. Myo Armband [6]. 

 Prepocesamiento: 

Esta etapa es crucial para aislar la información relevante de la señal EMG del 

ruido, incluye técnicas como la rectificación, necesaria debido a los valores 

positivos y negativos de las señales EMG, y el filtrado para extraer información 

esencial y descartar el ruido [6]. 

 Extracción de características: 

Se aplican diversas técnicas en los dominios del tiempo, frecuencia y tiempo-

frecuencia para obtener información significativa que represente cada clase de 

gesto. En el dominio del tiempo se exploran características como el valor 

absoluto medio, coeficientes autorregresivos de n-ésimo orden, zero cross, 

longitud de la señal o el valor eficaz. En el dominio de la frecuencia, se 

consideran el espectro de potencia, las frecuencias media y mediana y los 

momentos espectrales. Para el dominio tiempo-frecuencia se utiliza la 

transformada de wavelet [6]. 

 Clasificación: 

En esta etapa, el vector de características extraído de las señales EMG se 

asigna a una clase de gesto específica. Se emplean dos categorías principales 

de clasificadores: 

Los clasificadores paramétricos tienen una complejidad constante respecto al 

número de ejemplos de entrenamiento, son fáciles de entender y rápidos. Entre 

estos se encuentra Logistic Regression, análisis discriminante linear (LDA), 
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redes neuronales artificiales (ANNs) y máquinas de vectores de soporte (SVMs) 

[7], [6]. 

Clasificadores no paramétricos tienen un número potencialmente infinito de 

parámetros y no asumen una función subyacente. Entre estos se encuentran 

los árboles de decisión y k Neirest Neighbours (KNN) [6]. 

Las utilidades de los modelos de reconocimiento de gestos basados en EMG 

son extensas y de gran impacto, abarcando campos de la medicina y la 

ingeniería. Algunas de las utilidades de estos modelos pueden ser las 

siguientes [6].  

 Prótesis inteligentes: 

Permiten a personas con amputaciones controlar dispositivos prostéticos a 

través de la actividad muscular residual, ya que las señales EMG pueden 

capturarse incluso en ausencia de la mano. 

 Dispositivos de rehabilitación: 

Facilitan terapias y es seguimiento del progreso en la recuperación de 

funciones motoras. 

 Sistemas de interacción persona-ordenador (Human-Computer 

Interaction, HCI): 

Posibilitan nuevas formas de control para diversas aplicaciones y entornos, 

mejorando la interfaz entre usuarios y tecnología. 

 

1.2.2 Aplicaciones clínicas de las señales EMG. 

Las sEMG han demostrado ser de gran utilidad en diversas aplicaciones 

clínicas, tanto para el sistema nervioso central (SNC) como para el periférico 

(SNP) [8]. 

Debido a la alta resolución temporal de las mediciones electrofisiológicas, 

sEMG se ha utilizado durante mucho tiempo para evaluar la activación del SNC 

sobre los músculos. Algunas aplicaciones incluyen la medición del momento de 

activación y duración de la señal del SNC, por ejemplo, en trastornos del 
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movimiento como la disfonía y los temblores. Este mismo tipo de análisis puede 

aplicarse a patrones de movimiento complejos, incluyendo la marcha normal y 

los trastornos asociados a la locomoción [8]. 

La combinación de múltiples señales de sEMG junto, por ejemplo, un 

acelerómetro, proporciona una buena representación visual de trastornos del 

movimiento difíciles de observar [8].  

El uso de sEMG permite una caracterización de diversas patologías 

neuromusculares asociadas al SNP descritas en los siguientes casos. 

Las sEMG han evolucionado como herramienta de apoyo en el diagnóstico de 

trastornos neuromusculares [9]. Aunque revisiones como la de Haig et al [10] 

concluyó que la literatura era insuficiente para justificar el uso de sEMG en el 

diagnóstico y manejo rutinario de enfermedades nerviosas y musculares, esta 

conclusión ha sido objeto de debate. Estudios posteriores sugieren que las 

sEMG pueden complementar eficazmente a la electromiografía invasiva, 

proporcionando información adicional relevante [8]. 

Asimismo, las sEMG derivan una métrica conocida como la velocidad de 

conducción de la fibra muscular (MFCV), esta métrica es considerada de las 

más valiosas debido a su vínculo directo con la fisiología muscular [8], [9]Se ha 

demostrado su valor en el diagnóstico en miopatías con función de membrana 

alterada, como la parálisis periódica hipokalémica (HOPP) y la miotonia 

congénita, donde se han encontrado alteraciones severas en la MFCV, incluso 

permitiendo la detección de portadores asintomáticos [8].. En el caso de la 

Esclerosis Lateral Amiotrófica (ALS), las sEMG han mostrado una MFCV 

significativamente aumentada en las unidades motoras sobrevivientes, 

complementando la información de las señales electromiográficas invasivas 

que muestran la pérdida de fibras [8]. 

Por otro lado, las sEMG se consideran la herramienta principal para el estudio 

de los determinantes electrofisiológicos de la fatiga muscular patológica. Se ha 

demostrado un comportamiento anormal de la MFCV durante las pruebas de 

fatiga en la enfermedad de McArdle y la dominancia de fibras tipo I. También 

se ha observado un aumento anormal en la frecuencia de potencia mediana 

de las sEMG en deficiencia de carnitina [8]. 

Además, las sEMG pueden detectar las fasciculaciones en algunas neuropatías 

mejor que las señales de electromiografía invasivas, debido a la posibilidad de 

grabar durante periodos más largos [9]. 

Finalmente, a través de las sEMG es posible obtener información detallada 

sobre la localización de las unidades motoras, la dirección de las fibras 

musculares, la posición de la placa motora y la transición fibra-tendón [8]. 
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A pesar de los avances, la aplicación de las señales sEMG en el entorno clínico 

presenta desafíos significativos como la complejidad de las señales sEMG y el 

gran número de variables que la influyen exigen un análisis crítico y cuidadoso 

para evitar sesgos en las conclusiones. Estas variables pueden ser de carácter 

técnico, experimental, fisiológico o descriptivo [9] 

A nivel técnico las condiciones ambientales y especificaciones de los equipos, 

así como, la imposibilidad de ajustar las modificaciones de la señal causadas 

por los tejidos entre la fuente y la superficie de la piel son limitaciones 

inherentes que pueden afectar a la calidad de las señales sEMG [9] 

A nivel experimental, el procedimiento de medición (preparación de la piel, 

configuración y la localización y orientación de electrodos) y condiciones de 

contracción pueden influir en la lectura de las señales sEMG [9]. 

A nivel descriptivo, el procesamiento de las señales y el análisis estadístico a 

menudo requieren la adhesión a hipótesis de estacionalidad o normalidad, lo 

que puede llevar a resultados erróneos si se aplican incorrectamente [9]. 

A nivel fisiológico, las características estructurales y funcionales del sistema 

neuromuscular son distintas en cada individuo, lo que afecta directamente a la 

lectura de las señale sEMG al introducir variabilidad interindividual en su forma 

y comportamiento [9].  

Finalmente, la falta de estandarización en sensores, configuraciones, 

colocación de electrodos y protocolos de registro ha dificultado la integración 

de las sEMG en el uso clínico rutinario [9],  

Sin embargo, la utilidad de una técnica no invasiva para la evaluación de la 

función neuromuscular es clara. Iniciativas como el proyecto SENIAM (Surface 

EMG for the Non-Invasive Assessment of Muscles) en Europa y las 

recomendaciones de la International Society of Electromyography and 

Kinesiology (ISEK) buscan establecer una base de conocimiento robusta y 

estandarizada [9]. 

 

1.2.3 Señales EMG para sistemas HCI 

Las señales EMG son consideradas una fuente principal para nuevas formas 

de desarrollar sistemas HCI. Un dispositivo de entrada basado en señales EMG 

permite interpretar las contracciones musculares como comandos que pueden 

ser procesados por un sistema computacional. Una de las principales ventajas 

de este enfoque es que la captación de las señales puede realizarse de forma 

no invasiva mediante electrodos colocados sobre la superficie de la piel, lo que 
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facilita su integración en aplicaciones prácticas sin generar incomodidad en el 

usuario. 

La implementación de un HCI efectivo requiere clasificar las señales EMG 

procesadas, lo cual es la parte más difícil del sistema. La elección de la 

metodología de clasificación depende del campo de aplicación. La mayoría de 

los clasificadores en el campo están basados en redes neuronales, debido a 

sus numerosas ventajas en el procesamiento y clasificación de bioseñales [11]. 

 

Figura 4. Los primeros pasos para la clasificación de movimientos de la mano 

utilizando señales sEMG [11]. 

 

Las aplicaciones de la clasificación de las señales sEMG abarcan una amplia 

gama de campos. 

Se ha integrado en sistemas que facilitan el uso de software y ordenadores 

personales por parte de personas con discapacidades motoras, posibilitando 

la escritura, la navegación web o el manejo de interfaces mediante actividad 

muscular [11]. 

En el área del entretenimiento y la realidad virtual, las señales sEMG actúan 

como entrada para videojuegos inmersivos y equipos de ejercicio físico, 

mejorando la experiencia del usuario [11].  

También han surgido aplicaciones innovadoras como los sistemas de 

conversión de gestos de voz, diseñados para mejorar la comunicación de 

personas con capacidad auditiva o del habla. También se han desarrollado 
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interfaces basadas en EMG para el control del puntero del ratón, así como 

sistemas avanzados de reconocimientos de gestos [11].  

 

1.2.4 Control de prótesis. 

En este estudio se propone el control de una prótesis antropomórfica 

controlada mediante señales de sEMG [12]. 

La prótesis de mano utiliza una estructura compacta hecha de una aleación de 

aluminio y que cuenta con 5 dedos, con tamaño similar a los dedos de una 

mano humana, 15 articulaciones y 4 grados de libertad controlados por cuatro 

diferentes actuadores (Figura 3). Con esta prótesis, el paciente sería capaz de 

realizar hasta ocho movimientos diferentes con lo que sería capaz de realizar 

acciones para manipular objetos.  

 

Figura 5. Prótesis de mano [12]. 

 

En este estudio se procesan las señales de EMG para reconocer los patrones 

de movimiento. Las partes fundamentales para el reconocimiento de estos 

movimientos por las señales EMG incluyen un preprocesamiento de los datos, 

el segmentado en ventanas de esos datos, la extracción y selección de 

características. 

Las características correspondientes se extraen de las diferentes activaciones 

de los músculos. Estas características se utilizan para representar las señales 

EMGs originales y están divididas en tres categorías: Características en el 

dominio del tiempo, en el dominio de la frecuencia y en el dominio del tiempo-

frecuencia. 

Finalmente, se utiliza un método de clasificación lineal conocido como Análisis 

Discriminante Lineal (LDA) basado en aprendizaje supervisado para identificar 

los patrones correspondientes a distintos gestos o movimientos. El LDA es un 

clasificador lineal que busca maximizar la separación entre clases proyectando 

los datos en un espacio de menor dimensión. 
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1.2.5 Control de juegos mediante reconocimiento de gestos de 

la mano (Hand Gesture Recognition, HGR) 

En este estudio desarrollado por Zhang et al. en 2009 [13], se utilizó un 

acelerómetro 3D y sensores EMG para desarrollar un sistema de 

reconocimiento de gestos de la mano. Este sistema busca habilitar interfaces 

naturales para videojuegos y otras aplicaciones. 

Los autores desarrollaron un sistema portátil basado en una unidad que 

incorpora cuatro sensores EMG superficiales y un acelerómetro 3D, ambos 

fijados en el antebrazo del usuario.  

Durante este estudio se puso como objetivo reconocer 18 movimientos 

diferentes, entre los que se incluyen movimientos de los dedos y movimientos 

circulares de la mano en diferentes orientaciones. 

La detección de gestos se realizó mediante un modelo multistream de Hidden 

Markov Models, fusionando las señales a nivel de decisión. 

La detección de gestos fue validada mediante una aplicación de control de un 

cubo de Rubik virtual, demostrando el potencial de estos sensores para 

interfaces naturales en aplicaciones interactivas. 

 

1.2.6 Sistema de reconocimiento de lenguaje de signos  

mediante señales EMG superficiales  

En el estudio de Savur y Sahin [14] se introduce un sistema de reconocimiento 

en tiempo real del alfabeto del lenguaje de signos americano utilizando 

exclusivamente señales de electromiografía superficiales. 

Para este experimento se utilizaron ocho electrodos secos colocados en el 

antebrazo derecho del sujeto, simulando una Myo Armband, capturando los 26 

gestos correspondientes a las letras del alfabeto. En el procesamiento de las 

señales se aplicó un filtro digital Butterworth pasabanda de orden 3 entre 5-

500 Hz y un filtro notch en 50 Hz para eliminar ruido de línea. Además, se 

segmento la señal en ventanas continuas de duración 2 segundos cada una. 

En este proyecto se sigue la siguiente metodología: 

De cada ventana de los datos EMG se calcularon exclusivamente 

características en el dominio temporal. En concreto las características fueron 

medidas simples como valor absoluto medio (MAV), RMS, desviación estándar 

(SD), media modificada del valor absoluto (MMAV), integral cuadrática (SSI), 

detector logarítmico (LOG), cambio de amplitud medio (AAC), longitud fractal 
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(MFL), valor mínimo y máximo, etc... No se capturaron ninguna característica 

en el dominio de la frecuencia ni transformadas espectrales. 

Para la clasificación de los movimientos se utilizó un clasificador SVM (Support 

Vector Machine) para asignar cada ventana de características al gesto 

correspondiente. 

El sistema se probó en condiciones de tiempo real con un solo sujeto voluntario 

conocedor del lenguaje de señas americano. Se definieron 26 clases gestuales 

diferentes que incluían tanto gestos estáticos como dinámicos. 

El reconocimiento se dividió en dos etapas. Una primera etapa consistió en 

pruebas offline sobre datos grabados, donde el SVM alcanzó un 91,1% de 

precisión. En la segunda etapa, se realizaron pruebas en tiempo real, con el 

sujeto ejecutando los gestos y el sistema procesándolos con un retardo 

mínimo. En tiempo real se obtuvo un 82.3 % de precisión. 

 

1.3 Objetivos del proyecto 

El presente Trabajo de Fin de Grado tiene como propósito el diseño de un 

sistema inteligente capaz de detectar y clasificar en tiempo real distintos gestos 

de la mano a partir del procesamiento de señales sEMG y de orientación 

provenientes del sensor Trigno Duo de Delsys. Esta propuesta se enmarca en 

el contexto de interfaces naturales de usuario, aportando una solución no 

invasiva y de bajo coste para aplicaciones en el ámbito de la rehabilitación, 

accesibilidad y sistemas interactivos basados en reconocimiento de gestos. 

El objetivo general del proyecto se basa en desarrollar un sistema de 

reconocimiento de gestos de la mano mediante técnicas de aprendizaje 

automático, utilizando como entradas señales EMG y de orientación. 

Para ello, se han definido los siguientes objetivos específicos: 

 Diseñar y configurar un entorno de adquisición que permita la recogida 

sincronizada y fiable de señales sEMG y datos de orientación 

proporcionados por el sensor Trigno Duo. 

 Implementar técnicas de filtrado digital para atenuar el ruido y las 

inteferencias presentes en las señales sEMG y de orientación, 

garantizando su calidad y estabilidad para su posterior análisis. 

 Diseñar un protocolo de recogida de datos con multiples sujetos y 

movimientos controlados, permitiendo el etiquetado preciso de las 

muestras para su uso en tareas de clasificación supervisada. 
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 Aplicar métodos de extracción de características a partir de ventanas 

temporales solapadas, calculando métricas relevantes en el dominio 

temporal, frecuencial y del tiempo-frecuencia. 

 Evaluar técnicas de selección de características para optimizar el 

conjunto de atributos, minimizando la redundancia y mejorando el 

rendimiento computacional. 

 Entrenar diversos modelos de clasificación con distintos escaladores de 

datos y ventanas de tiempo y comparar cual ofrece un mejor 

rendimiento. 

 Obtener una precisión (accuracy) aproximada del 80%. 
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2     Hardware empleado 
Durante este apartado del proyecto, se describe el hardware empleado para la 

adquisición de señales de EMG y de orientación, detallando sus características 

técnicas y su modo de funcionamiento.  

Delsys es una empresa estadounidense dedicada a la fabricación de sensores 

de electromiografía, orientación y aceleración [15]. Cuentan con diferentes 

sensores con diferentes números de electrodos (todos ellos secos, sin geles 

conductores). Entre ellos se encuentra el sensor Trigno Duo con el que se 

desarrollara este proyecto. A continuación, se muestra una imagen del 

dispositivo (Figura 6). 

 

Figura 6. Sensor Trigno Duo Lite de Delsys [15]. 

 

Este dispositivo cuenta con dos electrodos de plata independientes capaz de 

enviar señales de sEMG independientes con una frecuencia de muestreo 

máxima de 2148 Hz por canal y con un rango máximo de ±11 mV. La empresa 

Delsys específica un ancho de banda de frecuencias comprendidas entre 10 

Hz y 850 Hz o entre 20 Hz y 450Hz. Los dispositivos Trigno Duo pueden ser 

utilizados para capar las señales de diferentes músculos o de diferentes 

regiones del mismo músculo. 

Además, los sensores Trigno cuentan con una Unidad de Medición Inercial 

(IMU) acoplada al dispositivo Trigno Avanti (Figura 3) que cuenta con nueve 

grados de libertad, capaz de proporcionar señales de aceleración, rotación e 

información del campo magnético terrestre. El acelerómetro puede enviar 

señales desde el rango de ±2 g hasta ±16 g con un ancho de banda de entre 

24 Hz hasta 450 Hz y el giróscopo puede dar información desde ± 250º/s hasta 

los ± 2000 º/s con un ancho de banda de 24 Hz hasta 360 Hz. El sensor es 
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capaz de estimar la orientación en el espacio 3D desde nueve canales distintos 

de información. Esta IMU puede enviar información de las señales de 

orientación a 10 Hz [16]. 

 

Figura 7. Referencia señales sEMG y IMU, Sensor Trigno [15]. 

 

La comunicación del sensor Trigno Duo se realiza a través de una estación base 

conectada al PC mediante el protocolo de comunicación inalámbrico 

personalizado de Trigno, o a través del protocolo estándar Bluetooth Low 

Energy (BLE) con dispositivos Android. 

Para recibir las lecturas de datos del sensor se realiza mediante el dispositivo 

Trigno Lite. Este se trata de un receptor USB cuyo máximo número de sensores 

conectados al mismo es cuatro. 

 

Figura 8. Dispositivo Delsys Trigno Duo Lite. 

 

El sensor Trigno Duo cuenta con una batería recargable que tiene una 

autonomía de entre 2 y 6 horas dependiendo de las condiciones de uso. Para 

la recarga del sensor se cuenta con una base de carga (Trigno Lite) que tiene 

capacidad para recargar hasta cuatro sensores a la vez. 
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Figura 9. Base de carga del sistema Delsys Trigno Lite. 

 

El sensor Trigno Duo esta encapsulado en una carcasa de policarbonato 

totalmente hermética para evitar cualquier filtración que pueda dañar la 

electrónica y así poder aumentar la duración del dispositivo. Al ser un 

dispositivo que suele estar en contacto con la piel de los pacientes, debe de 

ser resistente al sudor y ser fácilmente lavable. 

Para evitar estas filtraciones, el sensor no cuenta con botón de encendido, ni 

enchufe de carga. Para el encendido del dispositivo, este cuenta con un 

interruptor magnético interno, el cual se activa al colocarse en el candado 

magnético localizado en la base de carga. El apagado del sensor se realiza por 

tiempo o por comunicación inalámbrica. 

Para poder trabajar con el sensor es conveniente saber en qué modo se utiliza, 

para ello, el fabricante añade un sistema de LED en el sensor que indica el 

estado del sensor con diferentes colores. El código de colores viene 

especificado en el manual de usuario.  
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3     Metodología del proyecto 
Una vez introducido el proyecto y haberse familiarizado con los conceptos de 

señales de sEMG y diferentes estudios realizados con Machine Learning, se 

procederá a realizar una breve explicación de los pasos a seguir para la 

realización de este trabajo.  

Para ello se ha realizado un diagrama de bloques mediante el cual se 

esquematizará el proyecto basándose en los estudios anteriormente 

presentados. 

Este proyecto presentará siete diferentes etapas que estructuran de forma 

lógica y secuencial el flujo de trabajo. Estas etapas comprenden: la extracción 

de datos del sensor, el filtrado de datos de las señales sEMG, la recogida de 

datos de distintos sujetos, la extracción de características y la selección de las 

más relevantes, el entrenamiento y validación del mejor modelo de Machine 

Learning y la implementación de este modelo en tiempo real. 

El diagrama de bloques propuesto se muestra en la Figura 10. 
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Figura 10. Diagrama de bloques realizado para este trabajo. Los bloques 

rectangulares indican procesos, mientras que los bloques con formas de 

paralelogramo indican entrada de datos. 
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3.1 Extracción de datos del sensor 

La primera etapa de este proceso será la extracción de datos del sensor Trigno 

Duo de Delsys descrito anteriormente. 

Para ello la propia empresa Delsys proporciona una librería llamada Aeropy.py 

para configurar el uso del sensor Trigno Duo. El softwares de Aeropy se 

desarrolló para ser usado junto con Trigno Wireless Biofeedback System, que 

en este trabajo se trata del dispositivo USB Delsys Trigno Lite (Figura 4).  

Aeropy encapsula la llamada e inicialización de un objeto de la parte 

precompilada de la librería BaseInstance, la cual representa la base a la cual 

se conectan los sensores, en este caso al dispositivo USB Delsys Trigno Lite 

[17].  

Las funciones más importantes utilizadas para la configuración de este sensor 

son los de la tabla 1:  

 

Función Descripción  

Conectar a Trigno USB 

ValidateBase(…) Llamada principal a Trigno Base. 

Administración de sensores 

ScanSensors() Escanea sensores ya emparejados. 

GetSesnsorsNames() Devuelve el nombre de los sensores. 

GetAllSampleModes(…) Devuelve una lista de los modos de 

funcionamiento del sensor. (datos, 

frecuencia) 

SetSampleMode( … ) Establece un modo de toma de 

datos. 

Configuración previa a la recolección de datos. 

Configure( … ) Configura el Pipeline de transmisión 

de datos 

IsPipelineConfigure( … ) Devuelve ‘True’ si el Pipeline está 

correctamente configurado. 

Gestión de colección de datos. 

Start( … ) Comienza la recolección de datos. 
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CheckYTDataQueue() Devuelve ‘True’ si hay nuevos datos 

YT** en el buffer interno. 

PollYTData() Extrae los datos YT de la cola (si hay) 

Stop() Detiene la recolección de datos. 

Tabla 1. Funciones Básicas Aeropy.py. 

 

Los datos YT que se extraen del sensor hacen referencia a un conjunto de 

muestras temporales organizadas como pares de valores (T, Y) donde la 

estructura de los datos es la siguiente:  

Dictionary<Guid, List<(double T, double Y)>> 

Guid: Es un identificador único de cada canal del sensor (por ejemplo, un canal 

de EMG). 

List<(double T, double Y)>: Es una lista de tuplas donde cada tupla contiene:  

 T: Indica el instante de tiempo en segundos donde se tomó la muestra. 

 Y: Indica el valor de la muestra. Por ejemplo, el valor en voltaje de la 

señal EMG. 

A través de esta librería se ha realizado un programa para extraer los datos del 

sensor de forma que se obtiene las dos señales EMGs (1926 Hz) y las señales 

de orientación de la IMU (74 Hz). 

 

3.2 Filtrado de señales 

Como ya se ha comentado anteriormente, uno de los principales 

inconvenientes de las señales sEMG es lo sensibles que son al ruido.  

Las señales EMGs superficiales contienen la señal que origina el músculo y 

varios artefactos ruidosos que son endémicos e inevitables. Estos artefactos 

contaminan las señales EMGs y pueden llevar a malinterpretaciones de la 

señal. Estos artefactos ocurren especialmente cuando la señal se obtiene 

durante contracciones dinámicas y cuando está destinada a proporcionar 

información sobre la fisiología y anatomía de los músculos [18]. 

Para evitar que estos artefactos afecten al análisis y procesamiento posterior 

de los datos, es fundamental aplicar un preprocesamiento adecuado a las 

señales brutas de sEMG.  

En este trabajo, el filtrado de señales sEMG se ha implementado a través de 

una clase personalizada en Python denominada EMG_filters. Esta clase aplica 
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un conjunto de filtros de forma secuencial para limpiar las señales de forma 

eficiente en tiempo real. El proceso consta de las siguientes etapas: 

En primer lugar, se elimina el ruido que se puede generar por las interferencias 

eléctricas. Para ello se han empleado dos filtros de notch (rechaza banda), uno 

centrado en 50 Hz y otro en 150 Hz, ambos con un factor de calidad (Q) de 30. 

El primer filtro elimina directamente la componente de 50 Hz típica de la red 

europea, y el segundo atenúa posibles armónicos que puedan aparecer a 150 

Hz [5].  

Una vez suprimido el ruido de red, se aplica un filtro pasa banda de 4º orden, 

con frecuencias de corte de entre 20 Hz y 450 Hz. Este filtro permite conservar 

únicamente la banda útil de las señales EMG, ya que la actividad muscular se 

concentra típicamente en estas frecuencias. Las componentes de baja 

frecuencia (<20 Hz) suelen estar asociadas a artefactos de movimiento, 

mientras que las de alta frecuencia (>450 Hz) suelen estar asociadas con el 

ruido electrónico y térmico [18]. 

Finalmente, para facilitar la interpretación de la actividad muscular y preparar 

la señal para posteriores etapas, como la extracción de características, se 

calcula la envolvente de la señal EMG filtrada. Esto se realiza en dos pasos.  

Primero se aplica la transformada de Hilbert para obtener la envolvente 

instantánea de la señal. Luego, esta señal se pasa por un filtro pasa bajo de 3º 

orden con una frecuencia de corte de 12 Hz, que actúa como suavizador. Esto 

elimina oscilaciones rápidas y permite obtener una señal más estable que 

representa el nivel de activación muscular de forma clara [19]. 

El resultado del filtrado de las señales se puede ver en la figura 11, donde se 

puede apreciar las señales roja y azul que pertenecen a las señales sEMG que 

se reciben de los electrodos en bruto, y la señal verde es la señal sEMG filtrada. 
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Figura 11. Filtrado de las señales EMG. 

 

3.3 Recogida de datos 

Para el desarrollo del presente trabajo, se llevó a cabo un proceso de recogida 

de datos de las señales sEMG y de orientación del sensor Trigno Duo de Delsys.  

Para ello se realizó un programa propio en Python utilizando las funciones que 

ofrece Delsys mediante su librería Aeropy.py descritas en la tabla 1. Este 

programa gráfico en tiempo real las señales sEMG de los dos electrodos, tanto 

en crudo como filtradas, y las señales de orientación en ángulos de Euler. 

Se hicieron pruebas a 12 participantes de entre 20 y 30 años sanos, sin 

ninguna lesión. Estos participantes realizaron una serie de movimientos de la 

mano predefinidos: mano cerrada, reposo y mano abierta, los cuales fueron 

etiquetados en tiempo real mediante una interfaz gráfica (Figura 12). 
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Figura 12. Interfaz gráfica diseñada para visualizar las señales sEMG y de 

orientación. 

 

Esta interfaz cuenta con botones de mano cerrada, mano abierta y reposo para 

registrar correctamente los movimientos en la de recogida de datos. 

Para medir correctamente las señales electromiográficas se seleccionaron dos 

músculos del antebrazo cuyas funciones contrarias y complementarias que 

resultan ideales para detectar los movimientos de apertura y cierre de la mano. 

El músculo extensor de los dedos y el músculo flexor superficial de los dedos 

(Figura 13). Estudios de actividad muscular han mostrado que el músculo 

extensor de los dedos concentra su activación durante la extensión de los 

dedos (apertura de la mano), mientras que el músculo flexor superficial se 

activa principalmente durante la flexión de los mismos (gesto de cerrar la 

mano) [20].  
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Figura 13. Músculo flexor superficial de los dedos (A) y músculo extensor de 

los dedos (B). 

 

La colocación de los sensores se realizó siguiendo las recomendaciones del 

protocolo SENIAM [21] , orientando los electrodos de forma longitudinal sobre 

el eje de las fibras musculares, localizando el punto medio del vientre muscular, 

y manteniendo una separación adecuada para optimizar la calidad de la señal 

y evitar la interferencia por ondas tendinosas o estructuras articulares. 

La colocación del dispositivo de referencia, que también incluye la IMU, se 

realizó en la zona posterior de la mano, ya que es una zona eléctricamente 

neutra en relación con los músculos implicados, con el fin de reducir 

interferencias en la señal sEMG registrada. Además, es una colocación óptima 

para la medición de la orientación de la muñeca. La colocación exacta de los 

electrodos se muestra en la figura 14. 
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Figura 14. Colocación del sensor para la recogida de datos. 

 

La frecuencia de las señales de sEMG fue de 1926 Hz, mientras que la 

frecuencia de las señales de orientación fue de 74 Hz. Cada movimiento fue 

repetido dos veces por cada usuario durante un periodo de aproximadamente 

20 s. Por tanto, se recogieron un total de 77040 (40 s*1926 Hz) datos de 

señales sEMG y 2960 (40 s *74 Hz) datos de señales de orientación de cada 

usuario, obteniendo así un conjunto de datos equilibrado y representativo. 

Los datos fueron almacenados en formato CSV para su posterior 

procesamiento, extracción de características y entrenamiento de modelos de 

clasificación. 

 

3.4 Extracción de características de las señales sEMG 

y orientación. 

3.4.1 Introducción  

Una vez tomadas muestras de los distintos voluntarios para crear una base de 

datos, se procedió a la extracción de características con el objetivo de 

transformar los datos temporales en un conjunto de atributos relevantes para 

la clasificación de los movimientos de la mano. 

Las señales sEMG deben de ser previamente segmentadas antes de la 

extracción de características. Estas señales no pueden ser segmentadas en 

función de su forma debido a su carácter estocástico, sino que se deben 

segmentar atendiendo a intervalos de tiempo.  

Las señales sEMG son no estacionarias, lo que significa que sus propiedades 

(como la media o la varianza) cambian con el tiempo. Esta no estacionariedad 
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causa complejidades y puede afectar catastróficamente los resultados, 

especialmente el análisis de frecuencia. Sin embargo, un segmento temporal 

más corto de una señal sEMG puede considerarse localmente estacionario 

[22].  

 

3.4.2 Segmentación de las señales  

Esta técnica es conocida como windowing o ventanización y, es un proceso 

crucial en el análisis de señales sEMG, ya sea para aplicaciones de diagnóstico 

o para el desarrollo de sistemas de control basados en sEMG, como los 

dispositivos robóticos de rehabilitación y asistencia. Este proceso consiste en 

dividir las señales sEMG en partes más pequeñas, llamadas segmentos o 

ventanas, para analizar las características de la señal.  

El objetivo es extraer información útil de cada ventana que pueda distinguir una 

clase de movimiento o actividad muscular de otra [23].  

La duración de la ventana es un factor crítico que puede afectar al rendimiento 

del sistema. El tamaño de la ventana debe ser lo suficientemente larga en el 

tiempo como para contener información que represente el patrón de la señal 

original [23].  

Un tamaño de ventana demasiado pequeño puede contener mayor varianza y 

menor sesgo, mientras que ventanas más grandes tienen mayor sesgo y menor 

varianza. Además, hay que considerar otros factores como el rendimiento en 

tiempo real, la carga computacional y la precisión del sistema diseñado [24].  

Existen dos técnicas diferentes de windowing (ventanización) (Figura 15): 

 Disjoint windowing (Ventanización disjunta): En esta técnica la ventana 

se caracteriza únicamente por el tamaño de la ventana. Además, las 

ventanas son distintas y no se superponen. 

 

 Overlap windowing (Ventanización superpuesta): En esta técnica la 

ventana se caracteriza tanto por el tamaño de ventana como por el 

tamaño del solapamiento (overlap size). Esta técnica permite usar 

tamaños de ventanas más grandes sin introducir demoras significativas 

en la operación a tiempo real del dispositivo. Sin embargo, la carga 

computacional es mayor que en la técnica de ventanización disjunta 

[24]. El número de ventanas al aplicar la ventanización superpuesta se 

puede calcular como en la siguiente ecuación [12]. 

 

𝑁º 𝑑𝑒 𝑣𝑒𝑛𝑡𝑎𝑛𝑎𝑠 =  
𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑 𝑑𝑒 𝑙𝑜𝑠 𝑑𝑎𝑡𝑜𝑠 − 𝑡𝑎𝑚𝑎ñ𝑜 𝑑𝑒 𝑣𝑒𝑛𝑡𝑎𝑛𝑎

𝑡𝑎𝑚𝑎ñ𝑜 𝑑𝑒𝑙 𝑠𝑜𝑙𝑎𝑝𝑎𝑚𝑖𝑒𝑛𝑡𝑜
+ 1 
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Figura 15. Comparación de las técnicas de ventanización disjunta y 

superpuesta [12]. 

 

3.4.3 Características de las señales 

Una vez segmentadas las señales sEMG en periodos de tiempo más cortos, se 

procede a extraer las características de cada ventana. 

Aunque los clasificadores pueden entrenarse utilizando las señales filtradas, 

normalmente se obtienen mejores resultados al extraer características de 

dichas señales antes del entrenamiento del modelo. La extracción de 

características también permite reducir la dimensionalidad, lo que simplifica el 

procesamiento y la clasificación posteriores [25].  

Las características se pueden clasificar en tres categorías diferentes: 

características en el dominio del tiempo, características en el dominio de la 

frecuencia y características en el dominio tiempo-frecuencia. Comúnmente se 

utilizan combinaciones de estas para trabajar con modelos de clasificación 

[25]. 

Las características del dominio del tiempo (TD) son evaluadas basándose en la 

amplitud de la señal que varía en el tiempo. La amplitud de la señal depende 

del estado y tipo de músculo que se estudie en el trabajo. Estas características 

no requieren ninguna transformación adicional en la señal. Estos elementos 

hacen que las características TD tengan un coste computacional muy bajo [25].  

Las características en el dominio de la frecuencia (FD) son generalmente 

propiedades estadísticas de la densidad espectral de potencia (PSD) de las 

señales EMG. Estas se calculan mediante métodos paramétricos o un 

periodograma [26].  
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Las características FD se utilizan principalmente para la evaluación de la fatiga 

muscular y el análisis del reclutamiento de unidades motoras. Los cambios en 

las señales EMG dentro de este dominio están relacionados con variaciones en 

la frecuencia de potencia mediana (MPF), que varía debido a un cambio hacia 

frecuencias más bajas [26].  

 

Las características en el dominio del tiempo-frecuencia (TFD) combinan la 

información del tiempo y la frecuencia, permitiendo caracterizar la información 

de frecuencia variable en diferentes ubicaciones temporales. Esto es crucial 

para las señales EMG, ya que son inherentemente estacionarias. 

 

Su principal ventaja es que superan la limitación de las características TD, que 

solo son adecuadas para señales estacionarias, localizan la energía tanto en el 

tiempo como en la frecuencia, lo que permite una descripción precisa de 

fenómenos físicos [26].  

 

3.4.4 TSFEL 

Para este proyecto se utilizó la librería TSFEL (Time Series Feature Extraction 

Library), una herramienta en Python diseñada para facilitar la extracción 

automática de características temporales [27] (Figura 16). 

 

 

Figura 16. Logo de la librería TSFEL [27]. 

 

Esta librería organiza las características extraídas en distintas categorías según 

el dominio del análisis, incluyendo el dominio temporal, el dominio estadístico, 

el dominio espectral y el dominio fractal, lo que permite capturar patrones 

relevantes en distintas dimensiones de la señal [28]. 

 

 Características temporales: Analizan los cambios y patrones del 

conjunto de datos a lo largo del tiempo. Capturan información como 
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tendencias, ciclos, correlaciones temporales, la cual es esencial para 

entender comportamientos dinámicos y predecir valores futuros. En 

este conjunto se incluyen las características del dominio del tiempo que 

son sensibles al orden de las observaciones. 

En este grupo se incluyen características como Waveform Lenght (WL), 

Zero Crossing (ZC), Slope Sign Changes (SSC), y transformaciones como 

autocorrelación. 

 Características estadísticas: Resumen los datos utilizando estadísticas 

descriptivas. Incluyen medidas como la media, la varianza, la asimetría 

(skewness) y curtosis, proporcionando una visión general de la 

distribución de los datos, su tendencia central, dispersión y forma. En 

este conjunto se incluyen características que no son sensibles al orden 

de las observaciones. 

 Características espectrales: Se centran en el dominio de la frecuencia 

de los datos. Al transformar los datos utilizando técnicas como FFT, la 

transformada de Fourier o la transformada Wavelet, revelan 

periodicidades subyacentes, armónicos y componentes de frecuencia, 

lo cual es crucial para identificar patrones cíclicos y oscilaciones. 

 Características fractales: Describen la complejidad y la autosimilitud de 

los datos en diferentes escalas. Se derivan de la teoría fractal e incluyen 

medidas como la dimensión fractal, capturando los patrones intrincados 

e irregularidades que suelen estar presentes en sistemas naturales y 

complejos. 

Las características que ofrece esta librería son las mostradas en la tabla 2 [27]: 

 

Característica Descripción 

Temporales 

auc(signal, fs) Calcula el área bajo de la curva de la 

señal utilizando la regla del trapecio. 

autocorr(signal) Calcula el primer cruce 1/e de la 

función de autocorrelación (ACF).  

calc_centroid(signal,fs) Calcula el centroide a lo largo del eje 

de tiempo. 

distance(signal) Calcula la distancia recorrida por la 

señal. 

lempel_ziv(signal[, threshold]) Calcula el índice complejo de 

Lempel-Ziv (LZ), normalizado por la 

longitud de la señal. 

mean_abs_diff(signal) Calcula la diferencia absoluta de la 

media de la señal. 

https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.distance
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.lempel_ziv
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.mean_abs_diff
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mean_diff(signal) Calcula las diferencias de la media 

de la señal. 

median_abs_diff(signal) Calcula la diferencia absoluta 

mediana de la señal. 

median_diff(signal) Calcula las diferencias medianas de 

la señal. 

negative_turning(signal) Calcula el número de inflexión 

negativos de la señal. 

neighbourhood_peaks(signal[, n]) Calcula el número de picos en un 

vecindario definido de la señal. 

positive_turning(signal) Calcula el número positive de puntos 

de inflexión de la señal. 

slope(signal) Calcula la pendiente de la señal. 

sum_abs_diff(signal) Calcula la suma de las diferencias 

absolutas de la señal. 

zero_cross(signal) Calcula la tasa de cruces por cero de 

la señal. 

Estadísticas 

abs_energy(signal) Calcula la energía absoluta de la 

señal. 

average_power(signal,fs) Calcula la potencia media de la 

señal. 

calc_max(signal) Calcula el máximo valor de la señal. 

calc_median(signal) Calcula el valor medio de la señal. 

calc_std(signal) Calcula la mediana de la señal. 

calc_min(signal) Calcula el valor mínimo de la señal. 

calc_var(signal) Calcula la varianza de la señal. 

ecdf(signal[,d]) Calcula el valor de ECDF (función 

distributiva acumulativa empírica) a 

lo largo del eje del tiempo. 

ecdf_percentile(signal[, percentile])  Calcula el valor del percentil de ECDF 

(función distributiva acumulativa 

empírica). 

ecdf_percentile_count(signal[, 

percentile]) 

Calcula las sumas acumulativas de 

las muestras que son menores que 

el percentil. 

ecdf_slope(signal[,p_init, p_end]) Calcula la pendiente de la ECDF 

(función distributiva acumulativa 

empírica) entre dos percentiles. 

entropy(signal[, prob]) Calcula la entropía de la señal 

utilizando la entropía de Shannon. 

hist_mode(signal[, nbins])  Calcula la moda de un histograma 

utilizando un número dado de 

intervalos (bins) distribuidos 

linealmente. 

interq_range(signal) Calcula el rango interquartilico de la 

señal. 

kurtosis(signal) Calcula kurtosis de la señal. 

mean_abs_deviation(signal) Calcula la desviación absoluta media 

de la señal. 

https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.mean_diff
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.median_abs_diff
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.median_diff
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.negative_turning
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.neighbourhood_peaks
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.positive_turning
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.slope
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.sum_abs_diff
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.zero_cross
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.calc_median
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.calc_std
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.calc_min
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.calc_var
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.ecdf
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.ecdf_percentile
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.ecdf_percentile_count
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.ecdf_percentile_count
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.ecdf_slope
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.entropy
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.hist_mode
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.interq_range
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.kurtosis
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.mean_abs_deviation
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median_abs_deviation(signal) Calcula la desviación absoluta 

mediana de la señal 

pk_pk_distance(signal) Calcula la distancia entre los picos. 

rms(signal) Calcula la raíz cuadrática media de la 

señal. 

skewness(signal) Calcula la asimetría de la señal. 

Espectrales 

fundamental_frequency(signal, fs) Calcula la frecuencia fundamental 

de la señal. 

human_range_energy(signal, fs) Calcula el ratio de energía en el 

rango humano. 

lpcc(signal[, n_coeff]) Calcula la predicción linear de los 

coeficientes cepstrales. 

max_frequency(signal, fs) Calcula la máxima frecuencia de la 

señal. 

max_power_spectrum(signal, fs) Calcula la máxima potencia 

espectral de la señal. 

median_frequency(signal, fs) Calcula la frecuencia mediana de la 

señal.  

mfcc(signal, fs[,pre_emphasis, nfft,…]) Calcula los coeficientes cepstrales 

de MEL. 

power_bandwidth(signal, fs) Calcula el ancho de banda de la 

densidad espectral de potencia de la 

señal. 

spectral_centroid(signal, fs) Centroide del espectro. 

spectral_decrease(signal, fs) Representa la cantidad de 

disminución de la amplitud del 

espectro. 

spectral_distance(signal, fs) Calcula la distancia de la señal 

espectral. 

spectral_entropy(signal, fs) Calcula la entropía de la señal 

espectral basándose en la 

transformada de Fourier. 

spectral_kurtosis(signal, fs)  Mide la planitud de una distribución 

alrededor de su valor medio. 

spectral_positive_turning(signal,fs) Calcula el número de puntos de 

inflexión positivos de la magnitud fft 

de la señal. 

spectral_roll_off(signal, fs) Calcula el desplazamiento espectral 

de la señal. 

spectral_roll_on(signal, fs) Calcula el inicio espectral de la señal. 

spectral_skewness(signal, fs) Mide la asimetría de una distribución 

alrededor de su valor medio. 

spectral_slope(signal, fs) Calcula la pendiente espectral. 

spectral_spread(signal, fs) Mide la dispersión del espectro 

alrededor de su valor medio. 

spectral_variation(signal, fs) Calcula cantidad de variación del 

espectro a lo largo del tiempo. 

https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.median_abs_deviation
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.pk_pk_distance
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.rms
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.skewness
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.fundamental_frequency
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.human_range_energy
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.lpcc
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.max_frequency
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.max_power_spectrum
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.median_frequency
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.mfcc
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.power_bandwidth
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectral_centroid
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectral_decrease
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectral_distance
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectral_entropy
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectral_kurtosis
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectral_positive_turning
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectral_roll_off
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectral_roll_on
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectral_skewness
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectral_slope
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectral_spread
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectral_variation
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spectrogram_mean_coeff(signal,fs[, 

bins]) 

Calcula la densidad media de la 

potencia espectral (PSD) para cada 

frecuencia a través de la duración 

total de la señal tomada del 

espectrograma. 

wavelet_abs_mean(signal, fs[, 

wavelet, ...]) 

Calcula el valor medio absoluto de la 

Transformada Wavelet Continua 

(CWT) en cada escala Wavelet. 

wavelet_energy(signal, fs[, wavelet, 

max_width]) 

Calcula la energía de la 

Transformada Wavelet Continua 

(CWT) para cada escala Wavelet.  

wavelet_entropy(signal, fs[, wavelet, 

max_width]) 

Calcula la entropía de la 

Transformada Wavelet Continua 

(CWT) para cada escala Wavelet. 

wavelet_std(signal, fs[, wavelet, 

max_width]) 

Calcula la desviación estándar de la 

Transformada Wavelet Continua 

(CWT) para cada escala Wavelet 

wavelet_var(signal, fs[, wavelet, 

max_width]) 

Calcula la varianza de la 

Transformada Wavelet Continua 

(CWT) para cada escala Wavelet. 

Fractales 

dfa(signal) Calcula el Análisis de Fluctuación Sin 

Tendencia (DFA) de la señal. 

higuchi_fractal_dimension(signal Calcula la dimensión fractal de la 

señal usando el método de Higuchi 

(HFD) 

hurst_exponent(signal) Calcula la exponente de Hurst de la 

señal a través del análisis de rango 

reescalado (R/S)  

maximum_fractal_length(signal) Calcula la longitud máxima del 

fractal de la señal, la cual es la 

longitud media en la escala más 

pequeña media a partir del gráfico 

logarítmico que determina la 

dimensión fractal (FD). 

mse(signal[, m, maxscale, tolerance]) Calcula la entropía multiescala 

(MSE) de la señal, que realiza un 

análisis de entropía sobre múltiples 

escalas temporales. 

petrosian_fractal_dimension(signal)  Calcula la dimensión Fractal de 

Petrosian de la señal. 

Tabla 2. Características de la librería TSFEL 

 

3.5 Selección de características 

3.5.1  Introducción 

Una vez extraídas todas las características, es crucial abordar la complejidad 

inherente a la gran cantidad de atributos disponibles en las señales EMG. Un 

elevado número de entradas en el reconocimiento de patrones puede dificultar 

https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectrogram_mean_coeff
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.spectrogram_mean_coeff
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.wavelet_abs_mean
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.wavelet_abs_mean
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.wavelet_energy
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.wavelet_energy
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.wavelet_entropy
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.wavelet_entropy
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.wavelet_std
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.wavelet_std
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.wavelet_var
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.wavelet_var
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.dfa
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.higuchi_fractal_dimension
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.hurst_exponent
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.maximum_fractal_length
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.mse
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#tsfel.feature_extraction.features.petrosian_fractal_dimension
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el rendimiento del posterior entrenamiento del modelo clasificador, además, el 

análisis completo de todas las características disponibles requiere un alto 

esfuerzo computacional. Por lo tanto, es necesario elegir el enfoque adecuado 

para la selección de características, ya que cada problema tiene su mejor 

conjunto de características y seleccionar el conjunto óptimo es esencial para 

lograr un alto rendimiento del clasificador [29].  

A continuación, se analizan los métodos y técnicas que se pueden utilizar para 

que los modelos funcionen mejor y de manera eficiente. 

 

3.5.2 Métodos basados en filtros 

Los métodos de filtro se utilizan generalmente como un paso de 

preprocesamiento de datos, la selección de características es independiente a 

cualquier algoritmo de Machine Learning [30]. Un ejemplo es encontrar la 

correlación entre cada característica y el objetivo y descartar aquellas que no 

alcanzan un umbral. Estos métodos son fáciles y rápidos, pero no son tan 

eficaces como otros métodos [31]. Algunos métodos basados en filtros son: 

 Umbral de varianza: La eliminación de características con varianza nula 

o casi nula que no aportan información discriminativa es esencial para 

la construcción de un modelo. Es decir, una característica que sea del 

mismo valor para todas o gran parte de las ventanas de las señales de 

EMG es una característica no válida [32]. 

 Correlación de Pearson: Se usa como una medida para cuantificar la 

dependencia lineal entre dos variables continuas X e Y, su valor varía 

entre -1 a 1 [30]. 

 LDA: El análisis discriminante lineal se usa para encontrar una 

combinación lineal de características que caracteriza o separa dos o 

más clases, o niveles, de una variable categórica [30]. 

 ANOVA: El filtro ANOVA (Analysis of Variance) es similar a la eliminación 

de características por varianza, pero este, en vez de eliminar 

características de poca o nula varianza, selecciona las características 

que tienen más significancia estadística con respecto a las clases 

mediante análisis de varianza [33]. 

 Chi-cuadrado: Es una prueba estadística que se aplica a los grupos de 

características categóricas para evaluar la probabilidad de correlación 

o asociación entre ellos utilizando su distribución de frecuencia [30]. 

Esta prueba permite eliminar las características que probablemente 

sean independientes de la clase, y, por lo tanto, irrelevantes para la 

clasificación [34].  
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3.5.3 Métodos de envoltura (wrapper) 

Estos métodos necesitan de un algoritmo de Machine Learning y utiliza su 

rendimiento como criterio de evaluación. Esto significa que el clasificador actúa 

como la función objetivo para encontrar el subconjunto óptimo de 

características que minimice el error de generalización. Estos métodos actúan 

como un preprocesamiento para clasificar las características, seleccionando 

aquellas con el ranking más alto para aplicarlas a un predictor. 

A diferencia de los métodos de filtro, los métodos de envoltura consideran 

directamente la interacción entre las características y el rendimiento del 

clasificador. 

Los métodos de envoltura tienden a ofrecer un mejor rendimiento de 

clasificación en comparación con los métodos de filtro. Sin embargo, son 

computacionalmente más costosos, debido a la re-ejecución del algoritmo de 

aprendizaje para cada subconjunto de datos [35].

 

Figura 17 Gráfica de los métodos de envoltura [30]. 

 

Algunos de los ejemplos más comunes de métodos de envoltura son los 

siguientes: 

 Selección hacia delante (Forward Selection): es un método iterativo en 

el que se comienza sin tener ninguna característica en el modelo. En 

cada iteración, se añade una característica que mejora el modelo de 

clasificación hasta que la adición de una nueva característica no mejore 

el rendimiento del modelo [30]. 

 Eliminación hacia atrás (Backward Selection): se comienza con un grupo 

en el que se encuentran todas las características y se va eliminando la 

característica menos significativa en cada iteración, lo que mejora el 

rendimiento del modelo. Este método se repite hasta que no se observe 

ninguna mejora en la eliminación de características. [30] 
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 Eliminación de características recursivas (Recursive Feature 

Elimination): La eliminación de características recursivas (RFE) es un 

algoritmo de optimización que busca encontrar el subconjunto de 

funciones con mejor rendimiento predictivo. Este método crea 

repetidamente modelos y deja de lado la mejor o la peor característica 

de rendimiento en cada iteración. El proceso se repite hasta alcanzar el 

número deseado de características [30]. 

En este trabajo, RFE se ha implementado utilizando como estimador un 

Random Forest Classifier. Este clasificador permite evaluar la 

importancia de cada característica de manera robusta, gracias a su 

capacidad para capturar relaciones no lineales y manejar datos de alta 

dimensión. Al finalizar el proceso, las características seleccionadas 

corresponden a aquellas que el modelo ha considerado más relevantes 

para la tarea de clasificación. 

 

3.5.4 Métodos embebidos 

Los métodos embebidos (Embedded Methods) integran la selección de 

características directamente en el proceso de entrenamiento del modelo. A 

diferencia de los métodos de filtro o de envoltura, estos son más eficientes y 

aprovechan las interacciones entre las variables mientras entrenan el modelo 

[36]. Algunos ejemplos de estos métodos son los siguientes: 

 LASSO: La regularización L1 o LASSO reduce algunos de los coeficientes 

a cero, lo que indica que ciertos predictores o características serán 

multiplicados por cero para estimar el valor objetivo. Por lo tanto, no se 

añadirán a la predicción final del objetivo, esto significa que estas 

características pueden eliminarse, ya que no están contribuyendo a la 

predicción final [36], [37]. 

 RIDGE: La regularización L2 o RIDGE no reduce ningún coeficiente a 

cero a diferencia de LASSO, sino que solo aproxima a cero los 

coeficientes [36]. 

 Elastics Nets: Elastic Nets es una combinación de la regularización L1 y 

L2. Esta se beneficia de ambas penalizaciones para estabilidad y 

selección simultánea [36].  

También existen algunos algoritmos como SVM (Support Vector Machine) con 

características incorporadas mediante métodos embebidos que también 

permiten determinar automáticamente qué atributos quedan activos [37]. 
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3.6 Selección del mejor Modelo de Machine Learning 

3.6.1 Introducción 

Una vez finalizadas las etapas de preprocesamiento de datos, extracción y 

selección de características, se procede a entrenar y evaluar distintos modelos 

de clasificación con el objetivo de identificar aquel que ofrezca el mejor 

rendimiento para la detección de los movimientos de la mano a partir de las 

señales sEMG y de orientación. Esta etapa es crucial, ya que la elección del 

modelo más adecuado puede influir significativamente en la precisión y 

robustez del sistema final. 

Para ello, se compararán distintos algoritmos clasificadores de Machine 

Learning bajo un mismo marco experimental aplicando técnicas de validación 

cruzada anidada y aplicando métricas de rendimiento como la precisión, la 

sensibilidad y el F1-score. 

A continuación, se describen los modelos de clasificación supervisada 

comparados durante el proyecto. 

3.6.2 Modelos de Machine Learning 

 Linear SVC (SVM lineal): 

Linear SVC implementa una SVM de kernel lineal. Busca el hiperplano 

óptimo que separa las clases maximizando el margen entre ellas. Este 

hiperplano se obtiene resolviendo un problema de Programación 

Cuadrática convexo cuyo objetivo es minimizar un error de clasificación 

regularizado. En la práctica, Linear SVC de scikit-learn utiliza la pérdida 

squared hinge y una regularización L2 sobre el vector de pesos [38]. 

 Regresión Logística: 

La regresión logística es un modelo lineal probabilístico para 

clasificación binaria. Se calcula una combinación lineal de las variables 

de entrada ‘x’ y se aplica la función sigmoide: 

𝑝(𝑦 = 1|𝑥) = 𝜎(𝑤 ∗ 𝑥 + 𝑏) =
1

1 + 𝑒−(𝑤∗𝑥+𝑏)
 

El parámetro 𝑤 se ajusta típicamente mediante máxima verosimilitud 

(optimización de la entropía cruzada). Para problemas multiclase se 

emplea softmax (regresión logística multinomial). La regresión logística 

es conceptualmente similar al SVM lineal, pero usa pérdida logística 

convexa en lugar de hinge [39]. 
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 K-Nearest Neighbors (KNN): 

K-Nearest-Neighbors (Figura 18) es un clasificador de aprendizaje 

supervisado no paramétrico que utiliza la proximidad para hacer 

clasificaciones o predicciones sobre la agrupación de un punto de datos 

individual. Es uno de los algoritmos de clasificación y regresión más 

populares y sencillos que se utilizan en machine learning a día de hoy 

[40]. 

En el contexto de la clasificación, la forma más simple del modelo kNN 

consiste en predecir la etiqueta de clase objetivo como aquella que está 

más representada entre los k ejemplo de entrenamiento más similares 

a un punto de consulta determinado. En otras palabras, la etiqueta de 

cada clase puede ser considerada como la moda de las k etiquetas de 

entrenamiento o el resultado de una votación por pluralidad [41]. 

En el caso de predicciones binarias (problemas de clasificación con dos 

clases), siempre hay una mayoría o un empate. Por tanto, una votación 

por mayoría también es automáticamente una votación por pluralidad. 

Sin embargo, en escenarios de múltiples clases, no se requiere una 

mayoría para realizar una predicción con KNN [41]. 

 

Figura 18. Diagrama conceptual de un modelo KNN [40]. 

 

 Random Forest: 

Random Forest (Figura 19) es un ensamblado de árboles de decisión 

basado en bagging o embolsado. Cada árbol se entrena con una 

muestra Bootstrap (muestreo con reemplazo) de los datos y, además, 

en cada división del árbol se usa un subconjunto aleatorio de 

características (subespacio aleatorio). Al tener muchos árboles no 

correlacionados, el bosque promedia las predicciones individuales, 
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reduciendo la varianza sin aumentar el sesgo. Esto suele evitar el 

sobreajuste de un solo árbol. El resultado es un clasificador robusto que 

maneja bien tanto clasificación binaria como multiclase [42].  

 

Figura 19. Diagrama conceptual de un modelo Random Forest [42]. 

 

 Gradient Boosting (árboles de gradiente clásicos): 

Gradient Boosting construye un modelo aditivo de manera progresiva, 

etapa por etapa. El funcionamiento de este algoritmo se basa en un 

modelo fuerte inicial y en cada iteración se entrena un modelo débil 

(usualmente un árbol pequeño) para corregir los errores del conjunto 

actual. El modelo resultante es la suma (o votación) de todos los árboles 

débiles. En particular AdaBoost ajusta pesos en instancias mal 

clasificadas, mientras que Gradient Boosting Machine minimiza 

gradientes de pérdida. En esencia, estos métodos comparten la idea de 

que cada árbol mejora donde el anterior falla [43].  

 XGBoost (eXtreme Gradient Boosting): 

XGBoost es una implementación escalable y optimizada de Gradient 

Boosting. XGBoost añade regularización (L1/L2) y técnicas eficientes 

(uso de gradientes de segundo orden, manejo de datos dispersos, cache 

inteligente) para mejorar la velocidad y precisión. Matemáticamente, en 

cada iteración se minimiza una función objetivo que incluye la función 

de pérdida y un término de complejidad del árbol, usando aproximación 

mediante Taylor de segundo orden. El resultado es un potente ensamble 

que suele lograr resultados de vanguardia en muchas tareas de 

clasificación [44]. 
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 Catboost 

CatBoost es otra implementación de Gradient Boosting sobre árboles de 

decisión, con innovaciones para datos reales. Sus dos aportes clave son 

el “ordered boosting” y un tratamiento especial de variables 

categóricas. El “ordered boosting” entrena usando permutaciones de 

los datos para evitar filtrado de información objetivo (target leakage), 

logrando estimaciones menos sesgadas. Además, CatBoost convierte 

categóricas de forma innovadora [45]. 

Como resultado, CatBoost suele superar a otros boosted trees en 

calidad de predicción en diversos conjuntos de datos. En esencia, 

matemáticamente es similar a XGBoost, con estas mejoras algorítmicas 

específicas [45]. 

A continuación se muestra en la tabla 3 un resumen recogiendo los modelos 

de clasificación con sus principales ventajas e inconvenientes. 

 

Modelo Tipo Ventajas Inconvenientes 
Linear SVC Lineal Rápido, efectivo en 

espacios de alta 

dimensión, buen 

rendimiento con 

características relevantes 

No maneja bien datos 

no linealmente 

separables sin kernel. 

Logistic 

Regression 

Lineal Interpretable, rápido, útil 

para datos linealmente 

separables 

Menor rendimiento si 

los datos no tienen 

relación lineal 

KNN No 

paramétrico 

Simple, no requiere 

entrenamiento, útil con 

datos bien distribuidos. 

Lento con grandes 

datasets, sensible al 

ruido y escala de datos. 

Random 

Forest 

Ensamble 

(Árboles) 

Maneja no linealidades, 

robusto al sobreajuste, 

buen rendimiento general 

Puede ser más lento, 

menos interpretable 

que modelos lineales. 

Gradient 

Boosting 

Ensamble 

(Boosting) 

Precisión elevada, captura 

relaciones lineales no 

complejas  

Más lento que otros 

modelos, sensible al 

ruido si no se ajusta 

bien 

XGBoost Ensamble  

(Boosting) 

Alta precisión, manejo 

eficiente de valores nulos, 

regularización 

incorporada 

Complejidad alta, 

requiere ajuste de 

hiperparámetros. 

CatBoost Ensamble 

(Boosting) 

Buen rendimiento con 

datos categóricos, manejo 

automático de valores 

nulos 

Menos conocido, 

documentación algo 

limitada. 

Tabla 3. Modelos de Machine Learning utilizados en este trabajo para la 

determinación de los gestos de la mano. 
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3.6.3 Métodos de escalado 

Antes de entrenar los modelos de clasificación, es necesario aplicar un 

escalado a las características extraídas. Este proceso tiene como objetivo 

garantizar que todas las variables tengan un rango comparable, evitando que 

aquellas con valores más grandes dominen el aprendizaje del modelo.  

En este trabajo se han comparado cuatro estrategias distintas de escalado: 

 Min-Max Scaler: Este escalador transforma linealmente los datos 

originales en un rango específico. Sea 𝑥𝑚𝑖𝑛 y 𝑥𝑚𝑎𝑥 el valor mínimo y el 

máximo de una variable en el conjunto de datos de entrenamiento. El 

algoritmo Min-max escala un valor 𝑣 de dicha variable a un nuevo valor 

𝑣′ utilizando la ecuación siguiente: 

𝑣′ =
𝑣 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
+ 𝑥𝑚𝑖𝑛 

Esta transformación mapea los valores originales de las muestras de 

entrenamiento en el intervalo [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] a [-1,1] o [0,1], dependiendo 

del rango especificado, preservando la distribución relativa de los datos 

[46]. 

 Standard Scaler (Z-score): En este algoritmo, el nuevo valor 𝑣′ de una 

variable de escala a partir del valor original v utilizando la siguiente 

fórmula: 

𝑣` =
(𝑣 − 𝑥̅)

𝜎
 

Donde 𝑥̅ y 𝜎 son la media y la desviación estándar de los valores de la 

variable en las muestras de entrenamiento respectivamente. Tras esta 

transformación, los nuevos valores tendrán una media de 0 y una 

desviación estándar de 1 [46]. 

 Robust Scaler: Este algoritmo es un método de escalado de datos que 

se propone para mejorar la precisión de datos biomédicos. Una de sus 

características fundamentales es que es intrínsecamente robusto a los 

valores atípicos. 

El algoritmo Robust Scaler funciona escalando los datos a un intervalo 

apropiado, específicamente el intervalo [0,1], utilizando una función 

logística generalizada para ajustar la función de densidad acumulada 

empírica de los datos [46]. 

 None: Se incluyen también experimentos sin aplicar ningún tipo de 

normalización, para evaluar si ciertos modelos (como los basados en 
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árboles, que no se ven afectados por escalas) funcionan 

adecuadamente sin este preprocesamiento. 

 

3.6.4 Selección y validación de modelos. 

3.6.4.1 Introducción. 

Una vez explicados los modelos de Machine Learning y los escaladores que se 

van a utilizar en el proyecto, se procede a explicar el proceso de selección y 

validación de los modelos, así como los criterios empleados para la selección 

del mejor modelo predictivo. 

Uno de los aspectos fundamentales en el desarrollo de modelos de aprendizaje 

automático supervisado es la estimación precisa de su rendimiento en datos 

no vistos. Para evitar una evaluación optimista o sesgada del modelo, es 

necesario emplear técnicas de validación que separen adecuadamente los 

conjuntos de entrenamiento y prueba. 

En este trabajo se ha optado por el uso de validación cruzada k-fold anidada 

(nested k-fold cross-validation), por ser una de las estrategias más robustas y 

recomendadas en escenarios donde se lleva a cabo selección de 

hiperparámetros, combinada con un esquema Leave-One-Subject-Out (LOSO). 

El esquema LOSO junto a nested CV es el preferido para abordar las diferencias 

interindividuales en la distribución de las características de las señales sEMG 

y para garantizar que los modelos de Machine Learning desarrollados sean 

robustos y generalizables a nuevos sujetos. 

 

3.6.4.2 Cross Validation.  

La validación cruzada (Cross-validation, CV) es un método de remuestreo 

utilizado para evaluar modelos de aprendizaje automático con un conjunto de 

datos limitado [47]. 

El método CV consiste en dividir los datos en un conjunto de entrenamiento y 

otro conjunto de prueba. Se entrenan los datos con el conjunto de 

entrenamiento y luego se evalúa el resultado con el conjunto de prueba. Pero 

con este método solo evalúas el modelo una vez, entonces no se puede saber 

si el resultado fue aleatorio o no. Para ello es necesario evaluar el modelo 

múltiples veces para poder tener más confianza en el diseño del modelo. 

Este método tiene un parámetro llamado k que se refiere al número de grupos 

en los que se va a dividir el conjunto de datos. Por eso este procedimiento se 

suele denominar k-fold CV. 
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La validación cruzada se utiliza principalmente para estimar la capacidad del 

modelo de reconocer datos no conocidos. Es decir, se usa una muestra limitada 

para estimar como el modelo funcionaría en general a la hora de hacer 

predicciones de datos no utilizados durante el entrenamiento. 

El procedimiento general de la validación cruzada k-fold es el siguiente [47]: 

 Mezcla aleatoriamente el conjunto de datos. 

 Divide el conjunto de datos en k grupos. 

 Para cada grupo único: 

o Toma el grupo como conjunto de datos de prueba. 

o Toma los grupos restantes como conjunto de entrenamiento. 

o Ajusta el modelo usando el conjunto de entrenamiento y lo 

evalúa con el conjunto de prueba. 

o Conserva la puntuación de evaluación y descarta el modelo. 

 Resume la capacidad del modelo utilizando el conjunto de puntuaciones 

obtenidas en las evaluaciones. 

La selección del valor k en la validación cruzada k-fold es un aspecto crítico, ya 

que puede influir significativamente en la estimación del rendimiento del 

modelo. Una elección inapropiada puede provocar una valoración errónea de 

la capacidad predictiva del modelo generando resultados con alta varianza (si 

el rendimiento depende excesivamente de los datos de entrenamiento 

específicos) o con alto sesgo (si se sobreestima la calidad del modelo) [47]. 

Existen tres formas comunes para determinar el valor k: 

1. Representatividad estadística: El valor k se escoge de forma que 

permita que cada partición de entrenamiento sea lo suficientemente 

grande como para representar de forma adecuada el conjunto de datos 

original- 

2. k=10: Es una elección empírica habitual, ya que proporciona un 

equilibrio aceptable entre sesgo y varianza. Se ha demostrado que, en 

la práctica, k=10 suele ofrecer estimaciones fiables del rendimiento del 

modelo. 

3. k=n: En este caso, k se iguala al tamaño del conjunto de datos (k=n), de 

modo que en cada iteración se utiliza un único ejemplo como conjunto 

de prueba y el resto como conjunto de entrenamiento. Esta técnica 

garantiza que cada observación se utilice como dato de prueba, 

maximizando así el aprovechamiento del conjunto de datos. Este 
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método también se conoce como LOOCV (Leave One Out Cross 

Validation). 

 

3.6.4.3 Nested CV 

El inconveniente que tiene k-fold CV ocurre cuando se utiliza el mismo conjunto 

de datos tanto para ajustar como para seleccionar el modelo, se corre el riesgo 

de obtener una evaluación sesgada positiva de su desempeño [48]. 

Una forma de mitigar es anidar el procedimiento de optimización de 

hiperparámetros dentro del procedimiento de selección del modelo. A esta 

técnica se le conoce como double cross-validation o nested cross-validation y 

es una de las técnicas preferidas para evaluar y comparar modelo de Machine 

Learning.  

Nested CV es una técnica que aborda el problema de la optimización de 

hiperparámetros y la selección del modelo para intentar solucionar un 

problema de sobreajuste del conjunto de datos [48]. 

Este procedimiento considera la optimización de hiperparámetros como parte 

inherente del propio modelo, e integra dicha optimización dentro de un 

esquema más amplio de validación cruzada k-fold utilizado para evaluar y 

comparar distintos modelos. 

En este enfoque, el procedimiento de CV para la optimización de 

hiperparámetros se encuentra anidada dentro de otro ciclo de CV utilizado para 

la selección del modelo. Esta estructura de doble bucle es lo que da nombre al 

método como double CV. 

Como se ha explicado antes, en k-fold CV se entrena un modelo con k-1 

subconjuntos de datos, llamado conjunto de entrenamiento, y se evalúa con el 

subconjunto restante, llamado subconjunto de prueba. 

En nested CV, cada conjunto de entrenamiento generado por el bucle externo 

se utiliza como entrada para un procedimiento de optimización de 

hiperparámetros, como grid search o random search, que encuentra el mejor 

conjunto de hiperparámetros para el modelo. La evaluación del conjunto de 

hiperparámetros se realiza utilizando k-fold CV que divide el conjunto de datos 

de entrenamiento en k pliegues [48]. 

Con este procedimiento, la búsqueda de hiperparámetros no tiene posibilidad 

de sobreajustarse al conjunto de datos, ya que únicamente se expone a un 

subconjunto de los datos proporcionado por validación cruzada externa. Esto 

elimina el riesgo de que el procedimiento de búsqueda sobreentrene le 
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conjunto de datos original, proporcionando así una estimación menos sesgada 

del rendimiento del modelo. 

El mayor inconveniente de nested CV es el gran incremento de número de 

evaluaciones que se tienen que realizar a los modelos. Si n*k modelos son 

entrenados y evaluados en la búsqueda de hiperparámetros de un modelo CV 

tradicional, entonces en el procedimiento nested CV este número aumenta a 

k*n*k [48].  

 

3.6.4.4 LOSO 

Para la validación externa de los modelos se ha integrado, junto a la técnica 

nested CV, el esquema LOSO. Esta combinación permite evaluar de manera 

más rigurosa la capacidad de generalización de los modelos [49]. 

El procedimiento LOSO es usado para estimar el rendimiento de los algoritmos 

de Machine Learning cuando estos son usados para realizar predicciones 

sobre datos que no se han utilizado durante la etapa de entrenamiento. 

Es un método computacionalmente costoso, ofrece una estimación fiable y no 

sesgada del rendimiento del modelo. 

El esquema LOSO es una estrategia de validación fundamental en el 

aprendizaje automático, especialmente cuando se trabaja con datos que 

tienen una estructura jerárquica, como es el caso de las señales biológicas, 

como las sEMG, donde múltiples mediciones provienen del mismo individuo 

[50]. 

El principio de LOSO recae en los datos de un sujeto completo se dejan fuera 

de la etapa de entrenamiento para conformar el conjunto de prueba, mientras 

que los datos de todos los demás sujetos se utilizan para entrenar el modelo. 

Este proceso se repite de manera iterativa hasta que los datos de cada sujeto 

han sido usados una vez como conjunto de prueba. Si el estudio incluye n 

sujetos, se realizarán n iteraciones, aseguran que el modelo sea evaluado en 

datos de un sujeto que no ha pertenecido al grupo de sujetos del entrenamiento 

[50]. 

La recomendación de usar LOSO en aplicaciones con señales biológicas es 

debido a varias razones críticas que abordan las complejidades inherentes a 

este tipo de datos [50]. 

 La violación de la suposición de independencia: CV asume que todas las 

muestras son independientes y provienen de una distribución idéntica. 

Sin embargo, en el procesamiento de señales biológicas, esta 

suposición no se puede garantizar debido a la posible presencia de 
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estructuras jerárquicas, correlaciones espacio-temporales o procesos 

no estacionarios [50]. 

 Estimación del sesgo de la muestra y la generalizabilidad (Argumento de 

jerarquía): Se recomienda específicamente LOSO CV en lugar de CV para 

estudios de diagnóstico clínico con múltiples sujetos. Los resultados de 

CV estándar, deben ser considerados sesgados de forma optimista, lo 

que significa que se puede sobreestimar el rendimiento real del modelo. 

Mientras que LOSO CV simula la inclusión de nuevos datos de futuros 

sujetos en el análisis. Esto es crucial para evaluar la generalizabilidad 

de la metodología [51]. 

 Evitar la sobreestimación de la precisión: Métodos como la CV pueden 

sobreestimar masivamente la precisión de la predicción [50], [51] . Esto 

ocurre porque el algoritmo puede identificar implícitamente la identidad 

de la persona basándose en características únicas del sujeto. En 

cambio, LOSO CV garantiza que los conjuntos de entrenamiento y 

prueba contengan registros de diferentes sujetos, forzando al modelo a 

aprender características generalizables de la condición biológica en 

lugar de características específicas del modelo [51]. 

 

 

Figura 20. Una visualización del esquema LOSO CV y CV en un escenario de 

diagnóstico [51]. 

 

No obstante, debido a su elevado coste computacional, LOSO no resulta 

adecuada para conjuntos de datos muy grandes con decenas o miles de 

sujetos. 

 

3.6.5 Métricas de evaluación. 

Una vez definidos los esquemas de validación utilizados, LOSO y nested CV, 

resulta fundamental establecer cómo se evaluará el rendimiento de los 
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modelos de clasificación. Para ello se recurren a una serie de métricas de 

evaluación que permiten cuantificar la eficacia del modelo en la tarea de 

clasificación. 

Las métricas de evaluación utilizadas en este trabajo han sido la accuracy 

(exactitud), precision (precisión), el recall (sensibilidad) y el F1-score. 

Las métricas de evaluación se emplean al menos en tres aplicaciones 

principales. Evaluar la capacidad de generalización del clasificador entrenado 

cuando se prueba con datos no vistos, como evaluador para la selección del 

modelo y como discriminador para seleccionar la solución óptima entre todas 

las soluciones generadas durante el entrenamiento de la clasificación [52]. 

Para los problemas de clasificación binaria, la evaluación de la discriminación 

de la solución óptima durante el entrenamiento se deriva de una matriz de 

confusión (Figura 21). Esta matriz, donde las filas representan la clase predicha 

y las columnas la clase real, se define mediante los siguientes componentes 

[52]: 

 True positive (TP): Número de instancias positivas correctamente 

clasificadas. 

 False negative (FN): Número de instancias positivas incorrectamente 

clasificadas. (predichas como negativas). 

 False positive (FP): Número de instancias negativas incorrectamente 

clasificadas (predichas como positivas). 

 True negative (TN): Número de instancias negativas correctamente 

clasificadas. 

 

Figura 21. Ejemplo de matriz de confusión [53]. 
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A partir esta matriz de confusión, se derivan varias métricas ampliamente 

usadas para evaluar el rendimiento de un clasificador en problemas de 

clasificación multiclases [52].  

 Accuracy (Acc): 

También conocida como precisión o exactitud. Esta métrica mide la 

proporción de predicciones correctas sobre el número total de 

instancias evaluadas. Es la métrica más utilizada en la práctica, tanto 

para problemas de clasificación binaria como multiclase. Se calcula 

como: 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

 Precision (P): 

Precision se utiliza para medir la proporción de instancias positivas que 

son correctamente predichos de entre el total de instancias que el 

modelo predijo como positivas. Es decir, responde a la pregunta: de 

todas las instancias que mi modelo clasificó como positivas ¿Cuántas 

eran realmente positivas? Se calcula como: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 Recall (R) o Sensivity (sen): 

Recall, también conocido como sensitivity, mide la fracción de 

instancias positivas que son correctamente clasificados. Es decir, 

responde a la pregunta: de todas las instancias que eran realmente 

positivas, ¿Cuántas logró identificar correctamente el modelo? Se 

calcula como: 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 

 F1-score: 

Esta métrica representa la media armónica entre los valores de recall y 

precision. F1-score ha sido reportada como un buen discriminador y ha 

demostrado un mejor rendimiento que accuracy en la optimización de 

clasificadores para problemas de clasificación binaria. Se calcula como: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
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4     Presentación de resultados 
Una vez explicada la metodología de este trabajo, en esta sección se presentan 

y analizan los resultados obtenidos tras el entrenamiento y validación de los 

modelos de clasificados desarrollados anteriormente.  

Para ello se ha llevado a cabo un exhaustivo proceso experimental en el que se 

han considerado tamaños de ventana deslizante diferentes con un 

solapamiento del 40% durante la segmentación de los datos, con el objetivo de 

evaluar el impacto del parámetro temporal en el rendimiento del sistema de 

reconocimiento de datos. 

Se han evaluado tres tamaños de ventana diferentes: 0,25 s con un 

solapamiento de 0,1 s (w1), 0,5 s con un solapamiento de 0,2 s (w2), y 1 s con 

un solapamiento de 0,4 s (w3). Cada configuración ha sido sometida al mismo 

proceso de extracción y selección de características y posterior normalización 

mediante los métodos de escalado explicados en el apartado 3.6.3. 

Posteriormente se han entrenado y validado los modelos utilizando un 

esquema de Nested CV combinado con una validación intersujeto LOSO, 

garantizando así una evaluación robusta y generalizable. 

A continuación se presentan los resultados obtenidos para cada combinación 

de modelo, escalador y tamaño de ventana, evaluados mediante métricas 

estándar para problemas de clasificación multiclase como accuracy, precision, 

recall y F1-score explicadas en el apartado 3.6.4.5.  

Este análisis permite identificar no solo que modelo ofrece el mejor rendimiento 

general, sino también como el prepocesamiento temporal afecta a la capacidad 

predictiva del sistema en contexto del reconocimiento de movimientos de la 

mano a partir de señales sEMG y de orientación. 

4.1 Selección de características 

En primer lugar, se comenzará con la selección de características. El objetivo 

de este paso es identificar y conservar únicamente aquellas variables más 

relevantes y discriminativas para la tarea de clasificación, eliminando 

información redundante, irrelevante o ruidosa. 

En este trabajo se han extraído las características y seleccionado las 

características siguiendo el mismo método para las ventanas w1, w2 y w3. 
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De cada señal sEMG se han extraído las todas las características 

proporcionadas por la librería TSFEL presentadas en la Tabla 2 del apartado 

3.4.4. Posteriormente se han realizado los mismos métodos de selección de 

características para las tres ventanas de tiempo diferente. Estos métodos de 

selección se han aplicado a todo el conjunto de características en común, es 

decir a las características extraídas de la señal sEMG1 y a las características 

extraídas a la señal sEMG2. 

En primer lugar, se han eliminado las características con varianza nula o casi 

nula que no aportan información discriminativa para el modelo. Para este 

método se ha aplicado un umbral de varianza de 0.01.  

A partir de estas características se han seleccionado las 50 mejores 

características mediante el filtro de ANOVA. Finalmente se seleccionan las 

mejores 20 características con el método de envoltura de RFE utilizando como 

estimador Random Forest Classifier, (apartado 3.5.3). 

Después de aplicar estos filtros queda un conjunto de 20 características a las 

que se añade el valor de la media de los datos de orientación durante la 

duración de las ventanas expresados en ángulos de Euler. 

A continuación, se muestran las características seleccionadas para cada 

tamaño de ventana diferente (Tabla 4). 

w1 w2 w3 

absolute_energy_EMG1 absolute_energy_EMG1 absolute_energy_EMG

1 

average_power_EMG1 average_power_EMG1 average_power_EMG1 

ecdf_percentile_0_EMG

1 

mfcc_1_EMG1 ecdf_percentile_1_EM

G1 

ecdf_percentile_1_EMG

1 

mfcc_10_EMG1 maximum_fractal_leng

th_EMG1 

max_EMG1 mfcc_2_EMG1 max_EMG1 

máximum_fractal_lengt

h_EMG1 

mfcc_9_EMG1 mean_EMG1  

mean_EMG1 maximum_fractal_lengt

h_EMG1 

median_EMG1 

mediant_EMG1 spectral_decrease_EMG

1 

root_mean_square_E

MG1 
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root_mean_square_EM

G1 

spectral_disctance_EM

G1 

spectral_decrease_EM

G1 

spectral_decrease_EMG

1 

sum_absolute_diff_EM

G1 

spectral_disctance_E

MG1 

spectral_distance_EMG

1 

absolute_energy_EMG2 sum_absolute_diff_EM

G1 

absolute_energy_EMG2 average_power_EMG2 absolute_energy_EMG

2 

average_power_EMG2 mfcc_1_EMG2 average_power_EMG2 

ecdf_percentile_0_EMG

2 

mfcc_10_EMG2 ecdf_percentile_0_EM

G2 

máximum_fractal_lengt

h_EMG2 

mfcc_11_EMG2 histogram_mode_EMG

2 

mean_EMG2 máximum_fractal_lengt

h_EMG2 

máximum_fractal_leng

th_EMG2 

median_EMG1 spectral_distance_EMG

2 

median_EMG2 

min_EMG2 spectral_distance_EMG

2 

min_EMG2 

root_mean_square_EM

G1 

spectral_positive_turnni

ng_points_EMG2 

spectral_decrease_EM

G2 

sum_absolute_diff_EM

G2 

sum_absolute_diff_EM

G2 

sum_absolute_diff_EM

G2 

Tabla 4. Características seleccionadas para cada tamaño de ventana 

 

Con el objetivo de analizar la estabilidad y consistencia de las características 

seleccionadas durante el entrenamiento del modelo, se realizó una 

comparación entre las distintas ventanas w1, w2 y w3. A continuación se muestra 

un diagrama de Venn que ilustra las características compartidas y exclusivas 

de cada ventana temporal. 
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Figura 22. Diagrama de Venn de las características compartidas por las 

ventanas temporales. 

 

Este diagrama (Figura 22) muestra que existe un conjunto de dieciséis 

características comunes entre todas las ventanas (zona rosa), lo cual indica 

una gran robustez frente a cambios en la duración de la ventana de extracción. 

La ventana w1 y w3 presentan una pequeña cantidad de características 

exclusivas, mientras que la ventana w2 no aporta ninguna característica 

exclusiva. También se observan intersecciones parciales entre pares de 

ventanas, dos características comunes entre w1 y w2, dos entre w2 y w3 y una 

entre w1 y w3.  

Estos resultados indican que, aunque algunas características pueden 

depender de la duración de la ventana, existe un núcleo común amplio que se 

mantiene estable independiente de la variación del tamaño de la ventana, lo 

cual es deseable para garantizar la generalización del modelo 

independientemente de la segmentación temporal empleada. 

A continuación se muestran las características que pertenecen al núcleo 

común de todas las ventanas, aquellas que pertenecen a la intersección entre 

dos ventanas y aquellas que son exclusivas únicamente de una ventana. 
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Características comunes a w1, w2 y w3 

absolute_energy_EMG1 

absolute_energy_EMG2 

average_power_EMG1 

ecdf_percentile_0_EMG2 

ecdf_percentile_1_EMG1 

max_EMG1 

maximum_fractal_length_EMG1 

maximum_fractal_lengtn_EMG2 

mean_EMG1 

median_EMG1 

median_EMG2 

min_EMG2 

root_mean_square_EMG1 

spectral_decrease_EMG1 

spectral_distance_EMG1 

sum_absolutte_diff_EMG2 

Tabla 5. Características comunes a las ventanas w1, w2 y w3. 

 

Características comunes a w1 y w2 

ecdf_percentile_0_EMG1 

mean_EMG2 

Tabla 6. Características comunes a las ventanas w1 y w2. 

 

Características comunes a w1 y w3 

average_power_EMG2 

Tabla 7. Características comunes a las ventanas w1 y w3. 
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Características comunes a w2 y w3 

spectral_decrease_EMG2 

sum_absolute_diff_EMG1 

Tabla 8. Características comunes a las ventanas w2 y w3. 

 

Características únicas a w1 

Root_mean_square_EMG2 

Tabla 9. Características únicas a w1. 

 

Características únicas a w3 

Histogram_mode_EMG2 

Tabla 10. Características únicas a w3. 

 

4.2 Selección del tamaño de ventana 

Una vez seleccionadas las características para cada ventana mediante 

técnicas de extracción y reducción de dimensionalidad, se procedió a 

determinar el tamaño óptimo de ventana para el análisis de las señales sEMG 

y de orientación. 

Para ello se evaluaron las diferentes combinaciones de tamaño de ventana e 

incrementos, w1, w1 y w3, midiendo el impacto en el rendimiento de los 

clasificadores mediante las métricas anteriormente comentadas. 

La selección del tamaño óptimo se basó en los resultados obtenidos por el valor 

medio de las métricas de evaluación de todos los modelos entrenados durante 

el proceso de entrenamiento. 
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Ventanas Métricas 

Accuracy Precision F1-score Recall 

w1 0,632±0,055 0,655±0,05 0,628±0,056 0,632±0,055 

w2 0,657±0,048 0,681±0,042 0,653±0,047 0,657±0,048 

w3 0,664±0,052 0,681±0,054 0,659±0,053 0,664±0,052 

Tabla 11. Resultados de las métricas obtenidos con cada tamaño de ventana. 

 

 

Figura 23. Comparativa de métricas de rendimiento en función del tamaño de 

ventana de extracción. 

 

En base a los datos mostrados de la tabla 11 y la figura 23 se puede observar 

que el tamaño de ventana de tiene un impacto directo sobre el rendimiento del 

modelo de clasificación. En la figura 23 se puede observar como la ventana w3 
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presenta, en general, mejores resultados, con medias más elevadas en las 

métricas de evaluación, y menor dispersión. Por el contrario, la ventana w1 

tiende a generar un rendimiento más variable y con valores centrales inferiores. 

Estos resultados evidencian que el tamaño e incremento de la ventana de 

extracción influyen significativamente en el desempeño del modelo, lo cual es 

un factor crítico en tareas de clasificación de señales de sEMG. 

 

4.3 Selección del mejor modelo 

Una vez se ha seleccionado la mejor ventana para la extracción de datos se 

llevará a cabo el proceso de seleccionar el mejor modelo de clasificación. 

En este apartado se presentan los resultados obtenidos tras el proceso de 

entrenamiento y evaluación presentados en el apartado 3.6.4 para la ventana 

de extracción de datos seleccionada anteriormente. 

Se muestran los valores de las métricas explicadas en el apartado 3.6.5 para 

cada combinación de modelo y escalador. El análisis de estos resultados 

permite identificar la combinación que ofrece mejor equilibrio entre las 

métricas evaluadas y una mayor estabilidad en el rendimiento, lo que justifica 

su elección como movimiento más óptimo para la tarea de clasificación de 

movimientos de la mano. 

Modelo Escalador Métricas de evaluación 

Accuracy F1-Score Precision Recall 

Ada_boost Standard 0,6541 0,6444 0,6894 0,6541 

Robust 0,6597 0,6536 0,6597 0,6957 

Min_max 0,6647 0,6588 0,6957 0,6647 

none 0,6510 0,6588 0,6859 0,6510 

Cat_boost Standard 0,6984 0,6964 0,7233 0,6984 

Robust 0,6962 0,6944 0,7237 0,6962 

Min_max 0,6964 0,6947 0,7240 0,6964 

none 0,6964 0,6947 0,7240 0,6964 

Decision_tree Standard 0,6157 0,6019 0,6518 0,6157 

Robust 0,6132 0,5897 0,6280 0,6132 
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Min_max 0,5859 0,5620 0,5859 0,5907 

none 0,6642 0,6524 0,6684 0,6642 

Gradient_boosting Standard 0,6881 0,6782 0,7055 0,6881 

Robust 0,6881 0,6787 0,7164 0,6881 

Min_max 0,6881 0,6782 0,7055 0,6881 

none 0,6881 0,6782 0,7054 0,6881 

KNN Standard 0,6282 0,6309 0,6453 0,6282 

Robust 0,5703 0,5654 0,5837 0,5703 

Min_max 0,6327 0,6395 0,6555 0,6327 

none 0,4857 0,4932 0,5082 0,4857 

Linear_SVC Standard 0,7034 0,6983 0,7073 0,7034 

Robust 0,6488 0,6437 0,6462 0,6488 

Min_max 0,7262 0,7273 0,7304 0,7262 

none 0,5556 0,5490 0,5463 0,5556 

Logistic_regression Standard 0,7017 0,7273 0,7304 0,7017 

Robust 0,7479 0,7445 0,7627 0,7479 

Min_max 0,7070 0,7075 0,7086 0,7070 

none 0,7137 0,7128 0,7139 0,7137 

Random_forest Standard 0,6753 0,6658 0,6959 0,6753 

Robust 0,6931 0,6868 0,7114 0,6931 

Min_max 0,6625 0,6487 0,6709 0,6625 

none 0,6887 0,6812 0,7077 0,6887 

Xg_boost Standard 0,6859 0,6797 0,7100 0,6859 

Robust 0,6895 0,6823 0,7116 0,6895 

Min_max 0,6870 0,6810 0,120 0,6870 

none 0,6814 0,6755 0,7073 0,6814 

Tabla 12. Resultados de las métricas de cada modelo con cada escalador con 

ventana w3. 
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La tabla 12 muestra los resultados obtenidos por distintos algoritmos de 

clasificación combinados con las diferentes técnicas de escalado propuestas 

en el apartado 3.6.3. 

Entre los modelos evaluados, Logistic Regression con el escalador Robust 

obtiene el mejor rendimiento global alcanzando un accuracy del 74,79%, un 

F1-score de 0,7445 y un precision del 76,27%, lo que refleja una buena 

capacidad de discriminación entre las tres clases diferentes.  

También destaca el rendimiento de Linear SVC con el escalador Min_max 

logrando un accuracy de 72,62%, un F1-score de 0,7273 y un precision del 

73,04%, confirmando la efectividad de los clasificadores lineales. 

En contraparte, modelos como KNN sin escalado o Decision Tree presentan los 

peores resultados, con valores de accuracy inferiores al 60%, lo que evidencia 

una menor capacidad de generalización en este contexto. Por otro lado, 

modelos basados en ensamblado, como CatBoost y Gradient Boosting, 

muestran un rendimiento sólido y consistente en todas las configuraciones de 

escalado, con valores de accuracy cercanos al 70%. 

 

Figura 24. Diagrama de barras comparando las métricas de evaluación por 

modelo con ventana w3. 
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En el diagrama mostrado en la figura 24 se muestran las diferentes métricas 

de evaluación promedio para cada uno de los modelos de clasificación 

evaluados tras aplicar diferentes escaladores. 

Los valores obtenidos corresponden a la media obtenida por cada modelo, 

considerando todas las combinaciones de escaladores utilizadas durante la 

validación cruzada. 

Se observa que los modelos Logistic Regression, Catboost y Linear SVC 

muestran un rendimiento superior y consistente en todas las métricas, 

destacando Logistic Regression que alcanza unos valores de accuracy de 

71,76%, F1-score 0,7165 y precision de 72,16%.  

Por el contrario, modelos como KNN y Decision Tree presentan un rendimiento 

más bajo, especialmente como F1-score y recall, lo que indica una menor 

capacidad para generalizar correctamente entre clases. 

A partir de la tabla 12 y la figura 20 se puede concluir que el escalado de 

característica influye notablemente de algunos modelos, especialmente en los 

lineales como Logistic Regression y Linear SVC. 

Los métodos basados en boosting (Catboost, xgboost, Gradient boosting) 

ofrecen buenos resultados de forma consistente, siendo menos sensibles al 

tipo de escalado que se le aplique. 

Finalmente, modelos como KNN y Decision Tree presentan un rendimiento más 

limitado, probablemente debido a su menor capacidad para capturar 

relaciones complejas en los datos sEMG. 

Para seleccionar el mejor modelo se escogerá aquel modelo que presente 

mayor accuracy en el rendimiento del entrenamiento tanto con los datos 

habiendo aplicado un escalado, como en el rendimiento con los valores medios 

al aplicar todos los métodos de escalado. 

El modelo que mejor responde a estos requisitos es el modelo de Logistic 

Regression con una accuracy media de aproximadamente el 72% y una 

accuracy de aproximadamente el 75% aplicando el método de escalado 

Robust. 

A continuación se muestra la matriz de confusión del modelo Logistic 

Regression normalizada. 
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Figura 25. Matriz de confusión para el modelo Logistic Regression. 

 

La matriz de confusión normalizada de la figura 25 refleja el desempeño del 

modelo en la clasificación de los tres estados de la mano: abierta, cerrada y 

reposo. 

El modelo presenta su mejor rendimiento en la detección del movimiento mano 

cerrada con una tasa del 85%, el modelo también presenta un buen 

rendimiento en la detección del movimiento reposo con una tasa del 82%.  

Cabe destacar que la clase mano abierta es la que presenta mayor 

ambigüedad, con un 53% de tasa de acierto. Es decir, un 42% de los casos 

siendo mal clasificados, especialmente confundidos con el estado mano 

cerrada un 29% de las veces, y un 13% de las veces con el estado de reposo. 

Este patrón sugiere que los movimientos mano abierta y mano cerrada 

comparten características similares que pueden inducir al error del clasificador. 
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5      Discusión de los resultados. 
El presente trabajo ha permitido evaluar la eficacia de distintos algoritmos de 

clasificación aplicados al reconocimiento de gestos de la mano mediante 

señales EMG y de orientación. Durante la fase de validación offline se 

observaron resultados sólidos en términos precisión y robustez, especialmente 

en contextos intra-sujeto.  

Entre los modelos evaluados, los clasificadores lineales, como Linear SVC o 

Logistic Regression destacaron por ofrecer un rendimiento superior en 

comparación con modelos más complejos como los basados en árboles de 

decisión o ensambles. Esta tendencia sugiere que el prepocesamiento ha 

generado un espacio de características bien estructurado y linealmente 

separable. Esto hace que los modelos más simples funcionen mejor que otros 

más complejos, que podrían estar sobreajustado o siendo innecesariamente 

sofisticados para la estructura real de los datos. 

Otro aspecto relevante fue el análisis del impacto del tamaño de las ventanas 

deslizantes utilizadas durante la segmentación de las señales. En este estudio 

se utilizaron tres configuraciones distintas de ventana: w1, w2 y w3. Los 

resultados experimentales mostraron que los mejores desempeños 

clasificatorios se obtuvieron con las ventanas w2 y w3, lo que sugiere que, en 

este caso, una mayor duración de ventana permitió capturar de forma más 

completa la evolución temporal de los gestos musculares. 

La ventana w1, aunque ofrece mayor resolución temporal y tiempos de 

respuesta más rápidos, tendieron a generar características más inestables y 

con menor capacidad discriminativa. Por otro lado, las ventanas más largas 

permiten promediar mejor la actividad muscular a lo largo del tiempo, 

generando representaciones más robustas de cada gesto. 

En consecuencia, en este caso, un mayor tamaño de ventana mejora la 

separabilidad entre clases, especialmente entre gestos con señales 

electromiográficas similares. No obstante, esta elección también depende del 

equilibrio deseado entre precisión y capacidad de respuesta en tiempo real, y 

sería recomendable en el futuro realizar una optimización del tamaño de 

ventana adaptada al proceso, especialmente si se desea una implementación 

interactiva o en entornos clínicos. 

Uno de los principales retos identificados fue la alta tasa de confusión entre los 

gestos mano abierta y mano cerrada. A pesar de que ambos movimientos 

presentan diferencias biomecánicas claras, sus patrones electromiográficos 

pueden solaparse, especialmente cuando la intensidad de la contracción 

muscular no es suficientemente distinta o el gesto no se realiza con 

consistencia. Además, la similitud en la activación de grupos musculares 
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flexores y extensores durante ambas acciones podría contribuir a esta 

ambigüedad en la señal EMG, dificultando su correcta clasificación incluso tras 

la extracción de características. 

Por el contrario, el gesto reposo mostró una mayor facilidad de discriminación, 

presumiblemente debido a la ausencia de activación muscular significativa, lo 

que genera un patrón de señal distintivo respecto a los gestos activos. 

En términos cuantitativos, la accuracy alcanzada por el mejor modelo fue 

aproximadamente del 75%, ligeramente por debajo del objetivo inicial del 80%. 

Esta diferencia puede atribuirse a la variabilidad intersujeto, la complejidad 

inherente a las señales EMG y la similitud entre algunos de los gestos 

considerados. Aun así, los resultados obtenidos son prometedores y sientan 

una base sólida para futuras mejoras, tanto en la adquisición como en 

procesamiento de datos.  

En caso de querer continuar con el proyecto, y mejorar los resultados, se 

pueden explorar las siguientes vías. 

 Incorporar técnicas de Deep Learning podría representar una mejora 

sustancial respecto a los modelos tradicionales evaluados. Por ejemplo, 

redes convolucionales (CNN) o recurrentes (LSTM/GRU), permitiría 

capturar patrones temporales y no lineares difíciles de modelar con 

clasificadores tradicionales. 

 Mejorar la calidad de adquisición de señales mediante un mapeo 

anatómico individualizado, además también se podría aumentar el 

número de individuos de los cuales recolectar datos. 

Este trabajo ha sido desarrollado dentro de la división de robótica médica del 

Instituto Universitario ITAP (Instituto de las Tecnologías Avanzadas de la 

Producción). 

Esta división se caracteriza por el desarrollo de tecnologías que aportan 

soluciones a retos quirúrgicos, sanitarios y de rehabilitación. 

Por tanto, una posible línea futura para este proyecto sería la integración en un 

videojuego serio enfocado en la rehabilitación de pacientes con problemas 

neuromotores en la mano. 
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6     Conclusiones 
El objetivo de este trabajo ha sido conseguir un algoritmo capaz de diferenciar 

los movimientos de mano cerrada, mano abierta y reposo a partir de las señales 

sEMG y de orientación obtenidas del sensor Trigno Duo de Delsys.  

Para ello se ha planteado un enfoque que combina la adquisición de datos en 

tiempo real del sensor, la recolección de datos con varios sujetos, el 

procesamiento de las señales de sEMG y de orientación, extracción de 

características, selección de atributos relevantes y entrenamiento de modelos 

de clasificación, todo ello con el objetivo de lograr una solución robusta y 

precisa que permita diferenciar entre movimientos de la mano en condiciones 

reales. 

Durante el proceso se ha realizado un sistema de adquisición de datos con 

visualización en tiempo real de las señales sEMG y de orientación y con 

etiquetado manual de las señales, lo que permitió construir una base de datos 

personalizada con información de diferentes sujetos.  

A partir de esta base de datos se ha aplicado una estrategia de ventanas 

deslizantes solapadas con tamaños e incrementos diferentes, estableciendo la 

ventana de 1 s con un desplazamiento de 0,4 s como la ventana más óptima 

para este proyecto. 

La extracción de características se realizó empleando la librería TSFEL, que 

proporcionó un amplio conjunto de descriptores temporales, estadísticos, 

espectrales y fractales, sobre los que se aplicó posteriormente una selección 

de características con métodos como eliminación de características por umbral 

de varianza, ANOVA y RFE, reduciendo la dimensionalidad a un total de 23 

características y mejorando la generalización de los modelos. 

Los experimentos realizados incluyeron una evaluación exhaustiva de 

diferentes clasificadores (Linear SVC, Logistic Regression, Random Forest, 

Gradient Boosting, entre otros) combinados con diferentes escaladores. La 

validación se efectuó mediante un esquema de nested k-fold para la selección 

de hiperparámetros, junto a un sistema LOSO para el entrenamiento del 

modelo, lo que garantiza una estimación fiable del rendimiento del modelo. 

De todos los modelos entrenados, Logistic Regression con el escalador Robust 

obtuvo los mejores resultados globales, alcanzando una accuracy del 74,79% 

y un F1-score de 0,7445.  

El análisis de la matriz de confusión reveló una buena capacidad para detectar 

correctamente los estados de reposo y mano cerrada, con tasas de acierto 
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superiores al 80%. Sin embargo, también se observó cierta confusión entre las 

clases mano abierta y mano cerrada. 

A partir del trabajo realizado se pueden extraer una serie de conclusiones: 

 Trabajar con señales EMG puede ser un proceso complicado debido su 

comportamiento estocástico y sensibilidad al ruido inherente a este tipo 

de señales. Por lo tanto se ha tenido que realizar un estudio sobre el 

correcto procesamiento de este tipo de señales. 

 En cuanto a la implementación de modelos de Machine Learning, se ha 

aprendido que para solucionar los problemas es necesario ajustar todos 

los parámetros de manera adecuada y seleccionar los atributos 

correctamente para el buen desempeño del modelo. También se ha 

aprendido que la elección en las técnicas de evaluación resulta clave 

para obtener unos resultados fiables y no sesgados del modelo. 
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