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Introduction

Evolutionary Partial Differential Equations (PDEs) constitute a fundamental mathemat-
ical framework for modelling a broad spectrum of time-dependent phenomena governed
by underlying physical laws. These equations model everything from classic phenomena
such as heat and chemical diffusion, atmospheric and fluid dynamics, and the propa-
gation of vibrational phenomena to complex phase transitions in materials science, the
spatio-temporal spread of pandemics, and even large-scale dynamics in the social sciences.
Nevertheless, analytical solutions are available only in a very limited number of specific
cases. This limitation makes the development of efficient and stable numerical methods
essential for bridging these models with their practical applications. In this context, the
present thesis is situated within the field of the numerical analysis of partial differential
equations.

Partial Differential Equations can be studied through a wide range of approaches. In
general, the diversity of their properties and qualitative behaviours makes a unified analy-
sis challenging, if not impossible. The theory of semigroups of operators, however, allows
a broad class of evolutionary PDEs to be formulated as abstract evolution equations in
a common framework of Banach spaces X. This perspective is particularly advantageous
for numerical analysis, and especially for the design of time-integration methods, as it
provides a unified framework to study the stability and convergence of numerical schemes
across a wide variety of PDEs. This abstract formulation does not, however, resolve all
difficulties. The gain in generality shifts the challenge to verify whether each equation
under consideration fits within the framework, and in what precise manner. For this
theory, we will rely on the following standard references [31, 32, 39, 53, 66, 77].

Once a PDE is formulated, approximating its solutions typically involves two main
steps. First, the equation must be discretized in space, which transforms the PDE into
a system of differential equations whose integration often leads to a stiff problem. The
main challenges at this stage stem from the discretization of the differential operators
while accounting for the geometry of the domain and the boundary conditions. Common
approaches include finite difference, finite element, and spectral methods. In turn, the
resulting semi-discrete system must be integrated in time using an appropriate scheme,
with multi-step and Runge–Kutta methods being among the most widely employed.

Our work focuses on the time integration of PDEs after spatial discretization. Mul-
tistep methods, particularly BDF schemes, are widely used due to their versatility and
ease of implementation. However, incorporating variable step size strategies in this frame-
work is considerably more involved. A more restrictive limitation arises from the second
Dahlquist barrier, which establishes that no explicit linear multistep method can be A-
stable. Moreover, the maximal order of an implicit A-stable linear multistep method is
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Chapter 0: Introduction

two. BDF methods, which are A(ϑ)-stable up to order six, see their stability regions
shrink as the order increases, rendering them impractical beyond order six. While these
methods remain suitable in many contexts, the pursuit of stable numerical schemes with
higher orders of convergence does not end with them.

Alternatively, Runge–Kutta methods constitute another major class of time integra-
tion schemes. Among its advantages are ease of implementation, including the possibility
of easily integrating variable-step strategies, as well as the large number of scenarios in
which they can be used. However, the biggest drawback of these methods in the integra-
tion of PDEs comes from the phenomenon of order reduction [71, 76]. It happens that for
a Runge–Kutta method of order p, applied to approximate a solution u ∈ C([0,∞), X),
exhibits an order of convergence 0 ≤ µ ≤ p, which is related to the stage order of the
method q ≤ p rather than to p itself. In the context of classical PDEs, µ is fractional, no
matter how regular the solution u is (in space and time). In [8, 59, 60], optimal orders of
these methods are shown. Because of this, several techniques in the literature have been
devised to avoid it.

Some of them are based on considering additional restrictions on the coefficients of
the methods so that they not only satisfy the classical order conditions, but also some
stiff order ones [48, 52] or, more recently, weak stage order conditions [16, 14, 15]. That
implies less freedom in the choice of coefficients, so that the error constants of the methods
cannot be minimized in the same way, and also the number of stages which is required
to obtain a certain order of accuracy may increase, and thus the computational cost of
the method. A similar, interesting approach was recently introduced in [68], where the
authors add new nodes to the Runge–Kutta tableau, leading to the need of adding some
extra evaluations of f .

Another technique for linear problems was suggested in [21], which consists of convert-
ing the problem, through the solution of several elliptic problems, to one for which order
reduction is not observed. This procedure has the advantage to be valid for any method,
but the solution of the corresponding elliptic problems also means a non-negligible com-
putational cost. Moreover, the generalization of this technique to nonlinear problems has
just been performed in [20], where the non-natural hypothesis that f(t, u) vanishes for
nul u must be made.

A third procedure is based on modifying the boundary values for the stages which are
in some way predetermined [1, 2, 3, 4, 5, 6, 28, 65]. That means very little computational
cost because the number of nodes on the boundary is negligible with respect to the number
of nodes on the whole domain. For linear problems, the expressions for the modified
boundaries depend on spatial and time derivatives of data [2] (more particularly, the
boundary condition and the source term). If analytic expressions are known for data,
that is not a problem. However, in many practical problems, an analytic expression is not
known, but just the values at some instants of time. Due to that, numerical differentiation
is required to approximate the required modified boundary values for the stages, and it
is well known that numerical differentiation is unstable when the grid is refined [70]. For
nonlinear problems, there exists the need to resort to numerical differentiation, even if
analytic expressions of data are known, when the required order is high enough [6]. We
attempt to avoid this issue.

We also note that order reduction is not exclusive to Runge–Kutta methods; it also
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manifests in other families, for instance, in exponential and deferred correction methods.
The exponential methods introduced in [42, 43, 44] are designed to satisfy some stiff
order conditions thereby avoiding order reduction for homogeneous boundary conditions.
However, the problem persists for time-dependent boundary conditions. In a series of
papers [23, 24, 25, 26, 27], modifications to the exponential Runge–Kutta methods are
proposed to alleviate or avoid the order reduction, while other approaches consider a
correction of the problem itself [9]. Similarly, this issue has been studied for spectral
deferred methods in various papers [58, 73]. Multistep methods do not suffer from this
phenomenon, but they have other practical limitations such as the already mentioned
second Dahlquist barrier.

The main objective of this PhD dissertation is to design a new family of rational
methods that overcome the order reduction phenomenon. We build upon an A-stable
rational function of order p that approximates the exponential, which may coincide with
the rational stability function of a Runge–Kutta method (see [38]). On this basis, we
propose and analyze a family of numerical schemes that, on the one hand, inherit the
order of convergence p of the rational approximation, and, on the other hand, need only
evaluations of the source term and boundary data. In doing so, they avoid the need
for numerical differentiation that, as we commented, is one of the main drawbacks of
most existing methods designed to avoid order reduction. In the works that give rise to
this thesis [11, 12, 10], and throughout this report, we consider different versions of the
abstract evolution problem

u′(t) = Au(t) + f(t, u(t)), 0 < t < T,

u(0) = u0,

∂u(t) = g(t), 0 < t < T,

(1)

so that ideas for designing methods that avoid order reduction are progressively developed
through increasingly complex versions of the problem.

In Chapter 1, we have summarized some of the results necessary for the development
of the theory we present. These are not new results, but we believe it is appropriate to in-
clude them in this report for two reasons: (i) to present them in an organized manner that
facilitates clarity of exposition, and (ii) to make the report more accessible to researchers
in applied fields who may not be fully familiar with some of the concepts involved. Ac-
cordingly, in Section 1.1 we recall the basic notions of semigroup theory, including the
definitions of semigroups of operators and analytic semigroups, the Hille–Yosida theorem,
and some illustrative examples. Since much of our analysis and convergence results require
the use of an operational calculus—that is, a framework for constructing and studying
operators of the form f(A), where f is a function and A a (generally unbounded) op-
erator in a Banach space—we review typical constructions of this kind in Section 1.2.
Finally, we conclude the chapter by recalling the fundamental properties of Runge–Kutta
methods. This includes, on the one hand, a review of the rational approximation of semi-
groups by rational functions of their generators and the corresponding properties (see
[18, 17, 29, 36, 40, 49, 61, 62, 63]), and, on the other hand, a discussion of the origin of
the order reduction phenomenon in the setting of Banach spaces.

Once we have reviewed these concepts, we address the construction of the announced
methods. Following [10], we consider first the linear, nonhomogeneous version of (1) with
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homogeneous boundary conditions. The idea to construct them is based on the remark
that the homogeneous version of (1) (i.e., f = 0) can be discretized by using an A-
acceptable approximation r(z) to ez. To this end, it is enough to implement the rational
approximation, defined by the recurrence

un+1 = r(τA)un, n ≥ 0, (2)

with initial value u0 ∈ X and constant step size τ > 0. In this situation there is no
order reduction [18]. A step in the recurrence needs solving s linear systems involving A,
where s is the number of poles (accounted along their multiplicities) of r(z). Furthermore,
when f = 0, an A-stable RK method applied to such a homogeneous problem becomes
the rational method based on its own stability function. Notice that in this situation the
abcissa c of the Runge–Kutta tableau are not required whatsover.

The main idea is just to cast a non homogeneous IVP into an enlarged, homogeneous
problem which is then discretized by a rational method. Essentially, this is achieved by
treating f as a new unknown (see Section 2.2), in the line of the approach used in [33]
for equations with memory. The resulting discretization is in principle theoretical, but
can be implemented within the optimal order just by using auxiliary evaluations of f .
To this end, some discrete time grid is required and it turns out that sensible choices of
such grids lead to procedures that, per step, require (i) just a new evaluation of f and
(ii) solving a number s of linear systems. Thus, we propose a procedure that avoids the
order reduction phenomenon. When r(z) is the stability function of a RK method, the
new approach maintains the same number s of linear systems per step, as in the Runge–
Kutta case, but now only one new evaluation of f is needed. In Section 2.3, we discuss
some implementation issues and show numerical illustrations in simple PDEs.

In Chapter 3, we address the extension of these methods to the semilinear case, still
under homogeneous boundary conditions. The basic idea for adapting the scheme to
this new framework is straightforward. The freedom to select the time grid in the linear
case is now exploited in order to evaluate the nonlinear source term f(t, u(t)) at time
points where the numerical approximations un can be used to replace u(tn), leading to
f(tn, u(tn)) ≈ f(tn, un). However, the nonlinear setting requires a more refined analysis,
distinguishing between different types of nonlinearities and incorporating sharp regular-
ization estimates. A new version of the discrete Gronwall inequality is also required for
the analysis. Finally, we conclude the chapter by discussing some implementation aspects
and presenting numerical examples that illustrate the theory.

This work concludes by extending rational methods to initial boundary value problems.
In these problems, order reduction is more pronounced: the convergence order typically
decreases by one compared to homogeneous boundary conditions. By a standard transfor-
mation, such problems can be reformulated as abstract evolution equations in a Banach
space, with boundary conditions appearing as a source term involving a derivative. Us-
ing the techniques introduced earlier, we construct a numerical scheme that recovers the
optimal order p of the rational function without requiring numerical differentiation of the
data.

In this chapter, we also study the full discretization of the method, including the effects
of spatial discretization in the error bounds. To illustrate this, the examples employ a
higher-order spatial discretization, which also leads to a mass matrix similar to that
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arising in finite element methods. This demonstrates the computational versatility of
the proposed rational methods, making them suitable for realistic applications requiring
complex spatial discretizations (meteorology, fluid mechanics, etc).

Finally, the chapter closes by synthesizing the obtained results along the two parallel
directions pursued after Chapter 2: the extension of the methods to semilinear prob-
lems, on the one hand, and to initial boundary value problems, on the other. With the
results established up to this point, it becomes straightforward to analyze the methods
for semilinear problems with boundary conditions, with which this thesis comes to its
conclusion.
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Chapter 1

Preliminaries

From a philosophical perspective, the exponential function
may be viewed as a link between the seemingly contradictory
positions of Heraclitus on the one side and Parmenides on
the other,. . . . While the time dependent function
t 7→ T (t)—the semigroup—reflects the aspect of permanent
change in a deterministic autonomous system, its generator
A stands for the eternal, timeless principle behind the
system. The exponential functions ties both aspects together
through the formula T (t) = exp(tA).

Tanja Hahn and Carla Perazzolli.

As it is explained in the Introduction, the framework adopted in our study of Partial
Differential Equations relies on various techniques from functional analysis. Given that
both the analytical treatment of PDEs and their numerical analysis can be approached
in many different ways, we find it useful to summarize the main results that we regard as
essential for understanding the construction, analysis, and implementation of the methods
that form the core of this work. While most of these results are well-established and
familiar to specialists in the field, they are included here for the sake of completeness and
to assist readers who may not be acquainted with this particular perspective.

In Section 1.1 we introduce the basic concepts of the theory of semigroups of bounded
linear operators, that allows us to formulate the Partial Differential Equations we consider
as abstract evolution equations in Banach spaces. This abstract framework is useful be-
cause we can consider simultaneously a wide variety of PDEs within the same framework.
We briefly present the basic definitions, generation results and describe some archetypal
examples that will appear in our theory or numerical experiments. Since most of our anal-
ysis of convergence and stability results are based on the rational approximation of these
semigruoups, we consider convenient to explain how different operators of the form f(A),
where f is in a certain class of funtions and A is the generator of the semigroup, are con-
structed. This is the content of Section 1.2. Finally, in Section 1.3 we review some aspects
of the Runge–Kutta methods in relation to the time integration of PDEs. On the one
hand, we recall basic definitions of these methods, with special emphasis on the rational
stablity functions, and then we enumerate the fundamental stability and approximation
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results for semigroups obtained via these rational functions, which constitute the basis
for the analysis of our methods. On the other hand, we conclude with some remarks on
the implementations of these methods and the causes of the order reduction phenomenon,
which is precisely the issue we aim to avoid through the design of our methods.

1.1 Semigroups of linear operators

1.1.1 Definitions and first properties

Partial Differential Equations (PDEs) are those who govern a wide variety of models
in natural and social science. The study of these equations may be considered from
many different approaches that contemplate levels of abstraction and generality. To our
purposes, we find it very convenient to consider those PDEs that can be formulated under
the framework of semigroups of operators in Banach spaces developed in [31, 32, 53, 66, 77].
This framework covers many of the equations that are commonly encountered in practice
and it allows us to work with them in an unitary way.

Definition 1.1 (Semigroup of operators). Let X be a Banach space. A one parameter
family {T (t)}t≥0 of bounded linear operators from X into X is a semigroup of bounded
linear operators on X if

(a) T (0) = I, the identity operator on X.

(b) T (t+ s) = T (t)T (s) for every t, s ≥ 0 (the semigroup property).

One of these semigroups is said to be strongly continuous if

lim
t→0

T (t)x = x for everyx ∈ X.

A strongly continuous semigroup will be called a C0 semigroup.

Definition 1.2 (Infinitesimal generator of a semigroup). The linear operator A defined
in the domain

D (A) =

{
x ∈ X : lim

t→0

T (t)x− x
t

∈ X
}

by

Ax = lim
t→0

T (t)x− x
t

, for x ∈ D (A) , (1.1)

is the infinitesimal generator of the semigroup {T (t)}t≥0. The semigroups of linear op-

erators are usually written as
{
etA
}
t≥0

due to the analogy between their properties and
those of the exponential function. We will adopt this notation in what follows.

For every semigroup
{
etA
}
t≥0

of class C0 there exist constants ω ∈ R and M ≥ 1 such
that

∥etA∥ ≤Meωt. (1.2)

If ω ≤ 0,
{
etA
}
t≥0

is called uniformly bounded and, if additionally M = 1, it is called a

C0 semigroup of contractions. For every M ≥ 1, ω ∈ R we denote by G (X,M,ω) the set

8



1.1 Semigroups of linear operators

of all the infinitesimal generators of C0 semigroups of operators in X satisfying the bound
(1.2).

Recall that if A is a linear, not necessarily bounded operator in X, the resolvent
set ρ (A) of A is the open set of all complex numbers λ for which λI − A is invertible,
that is, (λI − A)−1 is a bounded linear operator in X. The family R(λ) = (λI − A)−1,
λ ∈ ρ (A), of bounded linear operators is called the resolvent of A. The following theorem,
whose first version was proved independently by Einar Hille and Kōsaku Yosida in 1948,
establishes sufficient and necessary conditions on the resolvent of linear operators A to be
the infinitesimal generator of a semigroup of operators.

Theorem 1.3 (Hille–Yosida). A linear (unbounded) operator A is the infinitesimal gen-
erator of a C0 semigroup of operators

{
etA
}
t≥0

, that is, A ∈ G(X,M,ω) for some M ≥ 1
and ω ∈ R, if and only if

(a) A is closed and D (A) is dense in X.

(b) The resolvent set ρ (A) of A contains the half plane {λ ∈ C : Re(λ) > ω} and, for
every Re(λ) > ω,

∥ (λI − A)−n ∥ ≤ M

(Reλ− ω)n
n = 1, 2, . . . .

One of the consequences of the previous theorem is the fact that the resolvent of A is
the Laplace transform of the corresponding semigroup. In fact, if A ∈ G(X,M,ω), then
for every λ ∈ C on the half plane Reλ ≥ ω, it is true that, for every u ∈ X,

(λI − A)−1 u =

∫ ∞

0

e−λt etA u dt. (1.3)

Notice that the previous integral is absolutely convergent due to (1.2).

Now, we are in conditions to formulate the simplest case of abstract evolution Cauchy
problem in the Banach space X: the homogeneous initial value problem (see, e.g., The-
orem 4.1.3 in [66]). As we will show in the examples, this is an abstract framework for
various differential equations problems.

Theorem 1.4. A function u : [0,∞) → X is a classical solution of the initial value
problem {

u′(t) = Au(t) t > 0,

u(0) = u0,
(1.4)

if it is continuous for t ≥ 0, continuously differentiable and u(t) ∈ D (A) for t > 0 and
(1.4) is satisfied. The initial value problem (1.4) has a unique classical solution u(t), which
is continuously differentiable on [0,∞), for every initial value u0 ∈ D (A), if and only if
A is the infinitesimal generator of a C0 semigroup.
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1.1.2 Analytic semigroups

The semigroups related to parabolic evolution problems typically may be extended from
the ray [0,∞) to a sector on the complex plane. These are the semigroups whose infinites-
imal generator A is sectorial, that is, such that the following resolvent bound

∥ (λI − A)−1 ∥ ≤ M

|λ− ω|
, (1.5)

where M ≥ 1 is satisfied on the sector {λ ∈ C : 0 ≤ |arg (λ− ω)| ≤ π − θ, λ ̸= ω}, for
a certain angle 0 < θ < π/2. The semigroup of operators generated by one of these
generators results to be defined in a sector of the form Sθ = {z ∈ C : |arg(z)| < π/2− θ}.
Notice that the angles defining both sectors are complementary.

Definition 1.5 (Analytic semigroup). Let Sθ, 0 < θ < π/2, be a right-hand sector on
the complex plane and T (z) be a bounded linear operator for every z ∈ Sθ. We say that
{T (z)}z∈Sθ

is analytic semigroup in Sθ if

1. z 7→ T (z) is analytic in Sθ,

2. T (0) = I and lim
z→0
z∈Sθ

T (z)x = x, for every x ∈ X.

3. T (z1 + z2) = T (z1)T (z2), for z1, z2 ∈ Sθ.

A semigroup is called analytic if it is analytic in some sector Sθ containing the real
axis. We may denote it as

{
ezA
}
z∈Sθ

.
Clearly, the restriction of an analytic semigroup to the real positive axis is a C0 semi-

group. The following theorem (see, e.g., Theorem 2.5.2 in [66]) gives necessary and suffi-
cient conditions for a C0 semigroup to be extended to a sector.

Theorem 1.6. Let A ∈ G (X,M,ω) be the infinitesimal generator of a linear semigroup
of operators

{
etA
}
t≥0

, and fix 0 < θ < π/2. The following statements are equivalent:

1.
{
etA
}
t≥0

can be extended to an analytic semigroup in Sθ and

∥T (z)∥ ≤Mθ′ e
ωRez (1.6)

for every closed subset S̄θ′ , θ
′ > θ, of Sθ.

2. There exists a constant C such that for every λ = σ + τi with σ > ω, τ ̸= 0,

∥ (λI − A)−1 ∥ ≤ C

|τ |
. (1.7)

3. There exists M ≥ 1 such that

∥ (λI − A)−1 ∥ ≤ M

|λ− ω|
(1.8)

on the sector {λ ∈ C : 0 ≤ |arg (λ− ω)| ≤ π − θ, λ ̸= ω}.
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1.1 Semigroups of linear operators

4. etA is differentiable for t > 0 and there exists a constant C such that

∥A etA∥ ≤ C

t
eωt for t > 0. (1.9)

We denote by G(X,M,ω, θ) the set of all the infinitesimal generators of analytic semi-
groups in the sector Sθ that satisfy these equivalent conditions.

Notice that the last condition in the previous theorem implies that for every t > 0,
the operator etA : X → D (A) is bounded, this property is typically known as parabolic
smoothing. One consequence of this property is that the hypothesis u0 ∈ D(A) in The-
orem 1.4, required for the initial value problem (1.4) to admit a unique solution, can be
weakened to u0 ∈ X. This relaxes the regularity requirements on the initial data, as the
following theorem shows (see, e.g., Theorem 4.1.4 in [66]).

Theorem 1.7. If A is the infinitesimal generator of an analytic semigroup, then for every
u0 ∈ X the initial value problem{

u′(t) = Au(t) t > 0,

u(0) = u0,

has a unique solution.

Even for more complex initial value problems, weaker assumptions on the initial data
are possible when the semigroup is analytic.

1.1.3 Some examples

In the following, we explain some paradigmatic examples with a double purpose: to clarify
the theory and to present some of the cases we will use in the numerical examples.

The matrix exponential

Let X be the euclidean space Rd and A be the matrix of a linear operator A : X → X.
It is well known (e.g., [67]) that the solution of the linear system of differential equations

{
u′(t) = Au(t) t > 0,

u(0) = u0 ∈ Rd,
(1.10)

has a unique solution given by the matrix exponential

etA =
∞∑
n=0

(tA)n

n!

by means of u(t) = etAu0. Notice that A has a finite spectrum and it clearly satisfies the
hypothesis of Hille–Yosida theorem, D(A) = X and the properties of the matrix expo-
nential guarantee that

{
etA
}
t≥0

is in fact a semigroup of linear operators with generator

A. Moreover, if every λ ∈ σ(A) is such that Reλ < ω, then

∥etA∥ ≤Metω,

11



Chapter 1: Preliminaries

for a constant M ≥ 1, that is, A ∈ G
(
Rd,M, ω

)
. The fact that σ(A) is finite, and then

bounded, implies that −A is also the generator of a semigroup and then
{
etA
}
t∈R is in

fact a group. It can also be proved that A generates an analytic semigroup, since it is
straightforward to find a sector that contains the bounded set σ(A).

The translation semigroup

Let X = Cub ([0,∞) ,C) be the space of all bounded, uniformly continuous functions on
[0,∞) endowed with the supremum norm ∥ · ∥∞ (see [32] for different choices of X). The
operators T (t) : X → X, t ≥ 0, defined by

(T (t)f) (s) = f(t+ s), t, s ∈ [0,∞) (1.11)

are called the left translations by t. We claim that {T (t)}t≥0 is a C0 semigroup of operators
in X since:

1. T (0)f = f , T (0) is the identity operator in X.

2. (T (t)T (s)f) (r) = f(t+ s+ r) = (T (t+ s)f) (r), the semigroup property holds,

3. limt→0 ∥T (t)f − f∥∞ = 0 since the functions are uniformly continuous.

Moreover, ∥T (t)f∥∞ ≤ ∥f∥∞, so in this case we can take M = 1 and ω = 0; it is in fact
a C0 semigroup of contractions. A direct calculation shows that, if f is differentiable,

lim
t→0

(T (t)f) (s)− f(s)
t

= lim
t→0

f(t+ s)− f(s)
t

= f ′(s),

so the infinitesimal generator A of the semigroup is defined by Af = f ′ for every f ∈ D(A)
in the domain D(A) = {f ∈ X : f ′ ∈ X}. However, this semigroup is not analytic unless
we impose further conditions on the functions of the space X.

The diffusion semigroup

The details of this construction can be found, for instance, in [19, 66]. Let Ω ⊂ Rd be
a regular domain with smooth boundary ∂Ω and the space of complex-valued functions
X = L2 (Ω). We take D (A) = H2 (Ω) ∩ H1

0 (Ω) and define a realisation of the Laplacian
operator A : D (A) → X by Af = ∆f , for every f ∈ D(A). In this case, the abstract
evolution problem (1.4) stands for the heat diffusion equation in Ω,

u′(t) = ∆u(t), t > 0,

u(0) = u0 ∈ X,
u(t)|∂Ω = 0, t > 0,

(1.12)

for a given initial data. Notice that the homogeneous Dirichlet boundary conditions have
been incorporated in the definition of the domain A, since u|∂Ω = 0 for every u ∈ H1

0 (Ω).
One possibility is to write the solution of (1.12) taking into account that there exists

12



1.1 Semigroups of linear operators

a basis of the Hilbert space L2 (Ω) formed by eigenfunctions of ∆ (with zero Dirichlet
boundary conditions), i.e., {

∆en = λnen, inΩ,

en = 0, in ∂Ω,
(1.13)

with λn < 0, for n = 1, 2, . . . . Given an initial data u0 ∈ X,

u0 =
∞∑
n=1

⟨u0, en⟩ en,

and the solution is given by the function

u(t) =
∞∑
n=1

⟨u0, en⟩ eλnt en

It can then be shown that the operator T (t) : L2 (Ω)→ L2 (Ω) given by

u0 =
∞∑
n=1

⟨u0, en⟩ en 7→ T (t)u0 =
∞∑
n=1

⟨u0, en⟩ eλnt en, t > 0,

is a semigroup of bounded, linear operators with infinitesimal generator A = ∆. Moreover,
the operator A generates an analytic semigroup that can be extended to every sector
Sθ = {z ∈ C : |arg(z)| < θ}, 0 < θ < π/2. As a consequence, the initial value problem
(1.12) has a solution for every u0 ∈ X and the semigroup regularises the solution for any
positive time, that is, etAu0 ∈ D(A) for every t > 0.

Within the framework of semigroups of operators, more complicated variants of this
problem can also be formulated. For example, one can prove that a parabolic operator of
the form

A (x,D)u =
∑

|α|≤2m

aα(x)D
αu (1.14)

in the space Lp (Ω), 1 < p < ∞, generates an analytic semigroup whenever the coeffi-
cients aα are sufficiently smooth functions and the operator satisfies the strong ellipticity
condition, that is, when there exists a constant c > 0 such that

Re(−1)m
∑

|α|=2m

aα(x) ξ
α ≥ c |ξ|2m ,

for every x ∈ Ω̄ and ξ ∈ Rd.
Another typical example where an explicit formula for the semigroup can be given is

the case where Ω = Rd. Here the Laplacian operator A = ∆ is defined on the domain
D(A) = H2(Rd) ⊂ L2(Rd). The solution of the diffusion problem{

ut(t, x) = ∆u(t, x), t > 0, x ∈ Rd,

u(0, x) = u0(x) ∈ L2(Rd), x ∈ Rd,
(1.15)

13
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is given explicitly by the convolution with the Gaussian heat kernel :

K(t, x) =
1

(4πt)d/2
exp

(
−|x|

2

4t

)
, t > 0, x ∈ Rd. (1.16)

The solution operator takes the form

u(t, x) = (T (t)u0)(x) = (Kt ∗ u0)(x) =
∫
Rd

K(t, x− y)u0(y)dy. (1.17)

This defines again an analytic semigroup with infinitesimal generator A. This construction
extends to Lp(Rd) for 1 ≤ p <∞. The Gaussian kernel representation is fundamental in
parabolic theory, connecting semigroup methods with classical solutions.

1.2 Operational calculus

In the context of closed operators A ∈ G (X,M,ω), most of the results presented in
this text require defining the operator f(A) for a certain class of functions f . This
can be done in different ways to work with various types of functions and operators,
although always in such a way that these constructions coincide for functions that admit
both definitions. Throughout this work, it will be useful to employ two approaches: the
functional calculus of Hille–Phillips [41] and that of Dunford–Taylor [30]. For instance,
the results of convergence and stability in [18, 40] use the Hille–Phillips approach while [8,
36, 49, 61, 62, 63] require techniques similar to Dunford–Taylor calculus. After presenting
both definitions and their most important properties, we explain why they are equivalent
and we show some examples.

The easiest case to define the function of an operator is to consider polynomials p of a
certain degree. In this case, the operators p(A) can be defined in a recursive way. We set

D (An) =
{
x ∈ D

(
An−1

)
: An−1x ∈ D (A)

}
andAnx = A

(
An−1x

)
,

and for p(z) = a0+a1 z+ · · ·+an zn, we have the unbounded operator p(A) : D (An)→ X
defined by

p(A) = a0 I + a1A+ · · ·+ anA
n.

It turns out that p(A) is also a closed operator and the spectral mapping property
σ(p(A)) = p(σ(A)) is satisfied (see [30]). When f is a general analytic function, it is
not immediately clear how to define the operator f(A). Nonetheless, we seek a defini-
tion that satisfies certain properties which lend meaning to the concept. In particular,
we require that if Au = λu for some u ∈ X, then f(A)u = f(λ)u. In fact, this may
be the basis for defining f(A) when X = Rd and A is a diagonalizable matrix. In the
infinite-dimensional case that concerns us, this property will follow as a consequence of
the definition.

The operational calculus of Dunford–Taylor

In [69], in the context of Banach algebras, the elements f(x) are defined for every element
x of the Banach algebra when f is analytic in a neighbourhood of the spectrum σ(x). In

14



1.2 Operational calculus

our context of linear operators in Banach spaces, this guarantees that if A is a bounded,
linear operator with spectrum σ(A) (that is also bounded), f is analytic in a neighbour-
hood of σ(A) and Γ is a simple contour positively oriented surrounding σ(A) inside that
neighbourhood, then the formula

f(A) =
1

2πi

∫
Γ

f(λ) (λI − A)−1 dλ

defines an operator that satisfy the properties we expect. The key to extend this definition
is in [30]. We assume that f : U → C is analytic in U and at infinity, that is, g(z) = f(1/z)
is analytic in z = 0. As a consequence, the following limit exists

lim
z→∞

f(z) = lim
z→0

g(z) = f(∞) ∈ C.

Since f is analytic in z = ∞, its poles f are contained in a disk D(0,M). Then, for
M < r < R, the Cauchy theorem and the fact that f is analytic guarantee that

f(z) =
1

2πi

∫
ΓR

f(λ) (λI − A)−1 dλ− 1

2πi

∫
Γr

f(λ) (λI − A)−1 dλ, if r < |z| < R,

with ΓR,Γr circumferences of radius R, r. Taking limits when R → ∞ and using again
the Cauchy theorem,

f(z) = f(∞) +
1

2πi

∫
Γ

f(λ) (λI − A)−1 dλ, (1.18)

where Γ is a simple contour whose bounded component contains the poles of f and is
positively oriented.

To consider bounded, closed operators A whose spectrum σ(A) is, in general, un-
bounded, we set a conformal mapping of the form Φ(µ) = (µ − α)−1, with α ∈ ρ(A), to
define

f(A) = f
(
Φ−1 (A− αI)−1) ,

with the formula (1.18) and the bounded operator (A − αI)−1. The following result
summarises the properties of these operators (see Theorems 7.4.4-7.4.10 in [30]).

Proposition 1.8. Let F(A) be the set of analytic functions on a neighbourhood of σ(A)
and at infinity. Let U be an open set that contains σ(A) and whose boundary Γ consists
of a finite number of Jordan curves and such that f is analytic on U ∪ Γ. Then, for
f ∈ F(A),

f(A) = f(∞) I +
1

2πi

∫
Γ

f(λ) (λI − A)−1 dλ. (1.19)

In addition, for f, g, h ∈ F(A), h with a zero of order m, 0 ≤ m ≤ ∞ at infinity, p
polynomial of degree n, the following statements hold true:

1. (f + g)(A) = f(A) + g(A),

2. (fg)(A) = f(A)g(A)
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3. σ(f(A)) = f(σ(A) ∪ {∞}), and σ(p(A)) = p(σ(A)).

4. If g ∈ F(f(A)), F (z) = g(f(z)), then F ∈ F(A) and F (A) = g(f(A)).

5. If Au = λu for λ ∈ σ(A), then f(A)u = f(λ)u.

6. If u ∈ D(An), then h(A)u ∈ D(An+m), where m + n = ∞ if m = ∞, and
p(A)f(A)u = f(A)p(A)u.

7. If 0 ≤ n ≤ m and h0(z) = p(z)h(z), then h0 ∈ F(A) and h0(A) = p(A)h(A).

The operational calculus of Hille–Phillips

The framework presented in [41] allows to define f(A) for closed operators A ∈ G (X,M,ω)
that generate a C0 semigroup etA and functions f that are Laplace transform of bounded
Borel measures. If µ is a bounded Borel measure on R, with suppµ ⊂ R+, and ω ≥ 0 is
such that ∫ ∞

0

eωt d |µ| (t) <∞, (1.20)

then we denote by M̃ω the set of Laplace transforms

f(z) =

∫ ∞

0

ezt dµ(t), for Re(z) ≤ ω, (1.21)

of this measures. The idea is to define f(A), for f ∈ M̃ω and A ∈ G(X,M,ω) via the
Bochner integral

f(A) =

∫ ∞

0

etA dµ(t).

The properties of this operator are stated in the following result. The first part of the
lemma provides an useful criterion to verify if a function f belongs to M̃ω, while the
second guarantees the correct definition of f(A) and shows a bound for the norm.

Proposition 1.9. Let ω ≥ 0 and A ∈ G (X,M,ω).

1. Let f be a bounded, analytic function in the half-plane {z ∈ C : Re(z) ≤ ω} and
f(ω)(t) = f(ω + it) for t ∈ R. Then, if f(ω) ∈ L2 (R) and f ′

(ω) ∈ L2 (R), then there

exists a bounded measure µ with suppµ ⊂ R+ and satisfying (1.20) such that

f(z) =

∫ ∞

0

eztdµ(t), for Re(z) ≤ ω, and

∫ ∞

0

eωtd|µ|(t) ≤
√
2∥f(ω)∥1/22 ∥f ′

(ω)∥
1/2
2 ,

(1.22)

that is to say, f ∈ M̃ω.

2. If f is the Laplace transform of µ, then the integral

f(A) =

∫ ∞

0

etA dµ(t), for Re(z) ≤ ω,
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1.2 Operational calculus

defines a bounded operator in X. The mapping f 7→ f(A) is an homomorphism

from M̃ω to the algebra of bounded linear operators in X. In addition, we have

∥f(A)∥ ≤M

∫ ∞

0

eωt d|µ|(t). (1.23)

3. If f, g ∈ M̃ω and f(z) = zk g(z) for z ∈ C≤ω, k > 0, then

f(A) = g(A)Aku, for k ∈ D(Ak).

Notice that in this definition it is also required that f is analytic on a neighbourhood
of the spectrum of A.

4. If f ∈ M̃0 is the Laplace transform of a bounded Borel measure µ with suppµ ⊂ R+

and h(z) = f(τz) for τ > 0, then h ∈ M̃0 and it is the Laplace transform of another
Borel measure ν with supp ν ⊂ R+ satisfying∫ ∞

0

d |µ| (t) =
∫ ∞

0

d |ν| (t).

In particular, if A ∈ G(X,M, 0), then

∥f(τA)∥ ≤M

∫ ∞

0

d |µ| (t), for τ > 0. (1.24)

Notice that, under the hypotheses of the previous proposition, if u ∈ D(A) is such
that Au = λu, then

f(A)u =

∫ ∞

0

etAu dµ(t) =

∫ ∞

0

etλu dµ(t) = f(λ)u.

Equivalence of the two approaches

The Hille–Phillips construction is more demanding for the operator A, which must be
the generator of a C0 semigroup of operators, not just a closed operator. The Dunford–
Taylor construction, however, requires working with analytic functions at infinity, which
excludes working with functions such as the exponential defined on a half-plane. Notice
that if f ∈ M̃ω is the Laplace transform of a measure µ, then it can be easily checked
that f is analytic at infinity and f(∞) = µ({0}). The fact is that the bounds of f(A)
(1.22)-(1.23) in terms of the function f are useful in some contexts (see, e.g., [18, 40]),
specially working with C0 semigroups, while in the analytic case it is sometimes more
fruitful bounding directly the Cauchy integral (1.19) (see, e.g., [36, 49, 61, 62, 63]).

If for a certain analytic function f and a closed operator A both definitions allows to
define the operators fDT (A), fHP (A), then both operators coincide. In fact, if we assume
that A ∈ G(X,M,ω) (so that Hille–Phillips makes sense) and that f is analytic on C≤ω

and at infinity (so that Dunford–Taylor makes sense) and that it is the Laplace transform
of a measure µ, then, for u ∈ D(A2), γ > ω,
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fHP (A)u =

∫ ∞

0

etAu dµ(t) = f(∞)u+

∫ ∞

0

etAuχ{t>0} dµ(t)

= f(∞)u+

∫ ∞

0

(
1

2πi

∫ γ+i∞

γ−i∞
eλt (λI − A)−1 u dλ

)
χ{t>0} dµ(t)

= f(∞)u+
1

2πi

∫ γ+i∞

γ−i∞
(λI − A)−1 u

∫ ∞

0

eλt χ{t>0} dµ(t) dλ

= f(∞)u+
1

2πi

∫ γ+i∞

γ−i∞
(f(λ)− f(∞)) (λI − A)−1 u dλ

= f(∞)u+ (fDT (A)− f(∞))u = fDT (A)u,

where in the third equality the inversion formula for the Laplace transform of C0 semi-
groups was used, see [66, Corollary 1.7.5]. Since D(A2) is dense in X, the bounded
operators fDT (A), fHP (A) coincide.

Examples

To conclude the section, we describe some examples of operators of the form f(A), for
A ∈ G(X,M,ω), that are then required in the text.

(a) Polynomials. Polynomials and power of the operator A were defined at the be-
ginning of the section. They define unbounded closed operators p(A) for every
polynomial.

(b) Rational functions. Since A ∈ G(X,M,ω) generates a semigroup, the Hille–
Yosida condition (1.3) guarantees that the spectrum σ(A) is contained in the half-
plane {z ∈ C : Re(z) ≤ ω}. If r is a rational function with |r(z)| ≤ 1, for Re(z) ≤ 0,
it can be developed into simple fractions like

r(z) = r∞ +
k∑

ℓ=1

mℓ∑
j=1

rj,ℓ
(1− zwℓ)j

, Re(wℓ) > 0, 1 ≤ l ≤ k. (1.25)

Set

τ0(r, ω) =

{
+∞, if ω ≤ 0,
min1≤ℓ≤k Re(1/wℓ)/ω, if ω > 0,

(1.26)

so that, in view of (1.3), for 0 < τ < τ (r, ω) (notice that for ω ≤ 0, there is not
upper restriction on τ), it makes sense to define the linear, bounded operator in X

r(τA) = r∞I +
k∑

ℓ=1

mℓ∑
j=1

rℓj(I − τwℓA)
−j. (1.27)

Notice that although in this case the operator has been directly defined, it can also
be fit into the two constructions presented in the section.
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On the one hand, for the Hille–Phillips construction, it suffices to note that r(∞) =
r∞ is the Laplace transform of the Dirac-delta measure dµ(t) = r∞ δ0(t) while
the simple fractions rℓ,j(z) = rℓ,j(z) = rℓ,j(1 − wℓz)

−j satisfy the conditions in

Proposition 1.9-(a), so r(τz) ∈ M̃ω and the Hille–Phillips calculus may be applied.
In fact, for r0(z) = (z0 − z)−1, with Rez0 > ω, we have

(z0 − z)−1 =

∫ ∞

0

etz e−tz0 dt.

Hence in this case, by formula (1.3),

r0(A) =

∫ ∞

0

etA e−tz0 dt = (z0I − A)−1,

and the homomorphy of Proposition 1.9 guarantees that this definition coincides
with that of (1.27).

On the other hand, r is clearly analytic at infinity and on a open set containing
σ(τA), for 0 < τ < τ0, so r(τA) can be defined via Dunford–Taylor. We have
already proved that this definition gives the same operator than the Hille–Phillips
one and therefore that of (1.27). In addition, one can extend this definition to the
more general case where A is sectorial and r is defined in an neighbourhood of its
spectrum.

In this case of rational functions, both constructions are commonly used in differ-
ent contexts to derive bounds related to the convergence and stability of rational
methods, as we will see in the next section.

(c) Fractional powers of the operator. The fractional powers of an infinitesimal
generator are of special interest when considering evolution problems with nonlin-
earities. They are introduced, for instance, in [66, 78]. Their properties will be
crucial to analyze the methods for semilinear problems that we introduce in Chap-
ter 3. In addition, these operators are also interesting in themselves as they model
some natural phenomena under recent investigation. To cite an example, there are
anomalous diffusion phenomena that fit with an evolution governed by fractional
powers of the Laplacian [57, 56, 72].

First of all, we define the fractional powers (−A)α, α > 0, for A ∈ G(X,M,ω).
We assume first that ω < 0, so that 0 /∈ ρ(A).
Then, we can define the operator by an integral path

(−A)−α = − 1

2πi

∫
Γ

λ−α (λI + A)−1 dλ, (1.28)

where the path Γ runs in the resolvent set of −A from ∞e−iϑ to ∞eiϑ, where
0 < ϑ < π/2 if etA is a C0 semigroup and 0 < ϑ < π/2 + θ if etA is an analytic
semigroup defined in a sector Sθ. Alternatively, it can be defined via a Laplace
transform by

(−A)−α =
1

Γ(α)

∫ ∞

0

tα−1etA dt. (1.29)
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Both definitions are equivalent and it can be checked that they coincide with the
(integer) powers (−A)−n for n = 1, 2, . . . . These operators turn out to be one-
to-one, so we can define the positive powers by inverting the last negatives. For
D((−A)α) = R((−A)−α) the range of A−α, we define

(−A)α = ((−A)−α)−1.

The fractional powers satisfy the following properties:

1. (−A)α is a bounded operator for α < 0 and a closed operator with domain
D(Aα) for α > 0.

2. 0 < β ≤ α implies D((−A)α) ⊂ D(Aβ)

3. If α, β are real then (−A)α+βu = (−A)α (−A)βu for u ∈ D((−A)γ where
γ = max {α, β, α + β}.

4. For α > 0, the operator (−A)α is the generator of an analytic semigroup.

5. For t > 0, it occurs that ∥(−A)αtαetA∥ ≤Meωt.

If A ∈ G(X,M,ω), with ω ≥ 0, one can set ω∗ > ω and define the operators
(ω∗I − A)α in an analogous way.

(d) The exponential function. As already anticipated in Section 1.1., the semigroup
of operators

{
etA
}
t≥0

is a generalization of the exponential function or the expo-
nential of a matrix to the case of unbounded closed operators. This is consistent
with the Dunford–Taylor and Hille–Phillips constructions. For the first case, if
A ∈ G(X,M,ω) generates a C0 semigroup, one has the integral representation, for
u ∈ D(A2),

etAu =
1

2πi

∫ γ+i∞

γ−i∞
etλ(λI − A)−1u dλ, (1.30)

with a real γ > ω. If, in addition, it is true that A ∈ G(X,M,ω, θ) generates an
analytic semigruoup, then we have the stronger result

etA =
1

2πi

∫
Γ

etλ(λI − A)−1 dλ, (1.31)

where Γ is a smooth curve in ρ(A) running from ω +∞e−iϑ to ω +∞eiϑ for θ <
ϑ < π/2, and the integral converges in the strong operator topology. Notice that
in this case the exponential function is analytic in a neighbourhood of σ(A) and at
infinity, so it fits the conditions of the Dunford–Taylor calculus.

For the Hille–Phillips approach, notice that the exponential function f(z) = etz is
the Laplace transform a point mass at t, so f(A) is the semigroup again.

1.3 Runge–Kutta methods and order reduction

1.3.1 Basic properties of Runge–Kutta methods

Although we have general results for the existence and uniqueness of some PDEs, it is
not possible in general to have an explicit formula for the solution that may be used in
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practical applications. Then, the need arises to develop numerical methods to efficiently
approximate the solution of differential equations in order to calculate them and use them
for practical purposes.

Among all the methods for integrating a time evolution problem, Runge–Kutta meth-
ods have a prominent place due to their efficiency, versatility in implementation and the
possibility of being used together with different types of spatial discretizations of the
PDEs. The development and study of these methods is the result of a large collective
effort, carried out with particular intensity during the 1960s and 1970s. The cornerstone
references for this topic are [37, 38], which offer a comprehensive and systematic synthesis
of decades of research on numerical methods for differential equations. Since the aim
of this thesis is to design a new family of rational methods, intimately related to the
Runge–Kutta ones, its main properties are summarized in the following.

We denote by
c W

bT
, b, c ∈ Rs,W ∈ Rs×s,

the Butcher tableau of a given Runge–Kutta method of order p ≥ 1. The stability function
of the method

r(z) = 1 + zbT (I − zW )−1 e, e = [1, . . . , 1]T ∈ Rs, (1.32)

plays a fundamental role in our research, since it will be the starting point. It arises when
considering the numerical solution of the test problem{

u′(t) = λu(t) t > 0,

u(0) = u0.
(1.33)

The numerical approximation obtained after n steps of the Runge–Kutta method with
time-step length τ > 0 to the latter can be written as

un+1 = r(τλ)un, for n ≥ 0, that is, un = rn (τλ)u0, for n ≥ 1.

The function contains information about the convergence and stability properties of the
method. If the method has order of convergence p, then the stability function approxi-
mates the exponential ez with the same order p, that is,

r(z)− ez = O
(
zp+1

)
as z → 0. (1.34)

Notice that eλt is precisely the exact solution of the test problem (1.33), that must be
approximated with order p by the method. However, the qualitative behaviour of the
exact solution for Reλ < 0,

lim
t→0

eλt u0 = 0, (1.35)

related to the stability of the numerical approximations, is not reproduced by the numer-
ical solution unless the condition |r(z)| < 1 is satisfied. That is the fact that motivates
the following definition.

Definition 1.10. A Runge–Kutta method and, by extension, its corresponding rational
function is called
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1. A-stable, if |r(z)| ≤ 1 for Re z ≤ 0,

2. A(ϑ)-stable, if |r(z)| ≤ 1 for every z ∈ {λ ∈ C : |arg(−λ)| < ϑ}.

3. Strongly A-stable (resp. strongly A(ϑ)-stable) if r is A-stable (resp A(ϑ)-stable) and
r∞ = r(∞) is such that |r∞| < 1.

Runge–Kutta methods are not only used to solve scalar equations, but they can also
be used to solve systems of differential equations or evolutionary equations of the form
(1.4). Let us assume that one of the two following cases is true:

(a) A ∈ G(X,M,ω) generates a C0 semigroup of linear operators and r is an A-stable
rational function.

(b) A ∈ G(X,M,ω, θ) generates an analytic semigroup of linear operators and r is a
strongly A(ϑ)-stable rational function, with θ < ϑ.

In particular, A could be the matrix of a linear system of differential equations. In both
cases above, according to Section 1.2, there exist an upper time-step length τ0 such that
r(τA) is a well defined bounded, linear operator for every 0 < τ < τ0. Moreover, due to
the stability property of r, it is true that |r(z)| ≤ 1 for every z ∈ σ(τA), for 0 < τ < τ0.
Then, the corresponding recurrence to approximate (1.4) with time-step length 0 < τ < τ0
is

un+1 = r(τA)un, for n ≥ 0, that is, un = rn (τA)u0, for n ≥ 1. (1.36)

It is not obvious if a Runge–Kutta method of order p will show again order of convergence
p when applied to the abstract problem (1.4), that is, if the error ∥

(
etA − rn (τA)

)
u0∥

is O(τ p) when τ tends to 0. We are also interested in up to what extent the stability
property |rn(τz)| ≤ 1 is conserved when substituting z by A. The convergence question
was answered in 1979 by Hersch and Kato [40], who also proved a weak bound for stability,
∥|rn(τA)∥ = O(n), and conjectured that ∥rn(τA)∥ = O(

√
n). In the same year, Brenner

and Thomée [18] proved the stability conjecture and refined the convergence proof using
the Hille–Phillips calculus. Further improvements can be found in [49, 61]. We summarize
these results since they are essential to our work.

Theorem 1.11. Let A ∈ G(X,M,ω) and r be an A-stable rational function that approx-
imates the exponential with order p. There exist three constants,

Ce = Ce(r) > 0, Cs(n) = Cs(r, n) > 0, κ = κ(r) ≥ 1,

such that the following hold for 0 < τ < τ0(r, ω), and ω
+ = max {0, ω}:

(a) The stability bound,

∥rn(τA)∥ ≤M Cs(n) e
ω+κtn , tn = nτ, Cs(n) = O(

√
n). (1.37)

(b) The optimal convergence estimate

∥rn(τA)u0 − etnAu0∥ ≤ CeM tn τ
p′ eω

+κtn ∥Ap′+1u0∥, n ≥ 1, (1.38)

valid for u0 ∈ D(Ap′+1) with 1 ≤ p′ ≤ p.
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1.3 Runge–Kutta methods and order reduction

If we also assume that A generates an analytic semigroup and that r is strongly A-stable,
then the following hold

(c) The optimal parabolic error estimate

∥rn(τA)u0 − etnAu0∥ ≤ CeM τ p
′
eω

+κtn ∥Ap′u0∥, n ≥ 1, (1.39)

valid for u0 ∈ D(Ap′) with 1 ≤ p′ ≤ p.

(d) The bad initial data error estimate

∥rn(τA)u0 − etnAu0∥ ≤ CeM n−p eω
+κtn ∥u0∥, n ≥ 1, (1.40)

valid for every u0 ∈ X.

Remark 1.12. Some clarifications and comments on the previous theorem.

(a) The weak stability (1.37) is optimal in general; it is sharp for A = d/dx in the
maximum-norm [17], and it can be improved depending on the behaviour of r(z)
(Theorem 2 of [18]) and on the nature of the operator A. For instance, the term
Cs(n) becomes O(1) in the following cases:

(a1) for r(z) = 1/(1− z), which corresponds to the implicit Euler method,

(a2) for rm,n(z) = Pm/Qn the Padé approximant of ez with degree of Pm = m and
degree of Qn = n, whenever n = m− 1. This is the case of Radau methods.

(a3) when X is a Hilbert space and A an ω-dissipative operator,

(a4) when r(z) is A(ϑ)-stable and A ∈ G(X,M,ω, θ) generates an analytic semi-
group with θ < ϑ.

(b) The convergence estimate (1.38) shows that with sufficient regularity the Runge–
Kutta method maintains the order of convergence p when integrating homogeneous
problems in Banach spaces. Observe that Cs(n) does not appear in (1.38), so that
the convergence is optimal even in cases of weak stability. However, stability af-
fects the treatment of the nonhomogeneous problems as well as the analysis of full
discretizations.

(c) If r(z) is A(ϑ)-stable and A ∈ G(X,M,ω, θ) generates an analytic semigroup with
θ < ϑ, the stability and the mentioned error estimates (1.37-1.40) remain valid.

Remark 1.13. In some cases in this work, we deal with semigroups whose growth bound
has the form (1.2), but includes an additional linear factor:

∥etA∥ ≤M(1 + αt)eωt.

In this case, the formulas (1.37)–(1.40) remain valid upon adding a linear factor of the
form (1 + αtn) to the bound. This holds because, for such a semigroup, it is true that

∥etA∥ ≤Mω̃e
ω̃t, where Mω̃ =

α

ω̃ − ω
e(ω̃−ω)/α−1M,
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for every ω̃ > ω. In particular, we have A ∈ G(X,Mω̃, ω̃), so we can apply (1.37)–(1.40)
with these constants. As a result, we obtain a term of the form Mω̃e

ω̃tn on the right-hand
side, which we can minimize over ω̃ > ω to obtain

Mω̃min
eω̃mintn = (1 + αtn)e

ωtn ,

as desired.

When A generates an analytic semigroup, there is a discrete analogue of the parabolic
smoothing formula (1.9). The following results (Theorem 1.1. and Lemma 2.2. in [36])
will be useful to deal with nonlinear problems in Chapter 4.

Theorem 1.14. Let A ∈ G(X,M,ω, θ) and r(z) be a strongly A(ϑ)-stable rational func-
tion with θ < ϑ. Then, there exist K > 0 and τ̄ > 0 depending on M , θ and the rational
function such that for all n ≥ 1 integer and 0 < τ < τ̄ , tn = nτ , the following estimate
hold:

∥A (rn(τA)− rn∞I) ∥ ≤
Keω̄ tn

tn
, (1.41)

where ω̄ = 3ω/2. Moreover, for α ∈ (0, 1), it is true that

∥ (rn (τA)− rn∞I)x∥α ≤
Keω̄ tn

tαn
∥x∥, x ∈ X. (1.42)

1.3.2 Efficient implementation of the Runge–Kutta methods in
the linear case

We briefly describe in this section the way in which we implement the Runge–Kutta
methods to solve linear problems of the form{

u′(t) = Au(t) + f(t) t > 0,

u(0) = u0,
(1.43)

The corresponding adaptations of the proposed algorithms to deal with initial boundary
value problems are not described exhaustively, since the key ideas are covered in the linear
case.

We consider a Runge–Kutta method of s stages and order p with Butcher tableau
defined by the vectors b, c ∈ Rs and a matrix W ∈ Rs×s, which we assume to be either
diagonalizable or lower triangular. The stability function of the method is then given by
formula (1.27). Our goal is to show how a step of the method can be done by solving s
linear systems (resolvents of A) and avoiding products of the form Au, that are numerically
unstable.

Let τ > 0 be the time step size and N the total number of steps, we denote tn = τn,
0 ≤ n ≤ N . The Kronecker product (of a matrix and an operator) is denoted by ⊗. We
describe the method in the Banach space X, but notice that in practice we work with an
spatial discretization of X, A, f .
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1.3 Runge–Kutta methods and order reduction

Once we have computed the numerical approximation un for some integer 0 ≤ n ≤
N − 1, the internal stages Un = {U i

n}
s
i=1 ∈ Xs are defined by

Un = (e⊗ I)un + τ (W ⊗ A)Un + τ (W ⊗ I)Fn, (1.44)

where e = [1, . . . , 1]T ∈ Xs and Fn = {f(tn + τci)}si=1. The stages are then the solution
of the system of s equations in D(A)

(I − τ (W ⊗ A))Un = (e⊗ I)un + τ (W ⊗ I)Fn. (1.45)

Let ξ ∈ Rs be such that bT = ξTW , which is always possible under our assumptions
on W . Notice that

r∞ = lim
z→∞

(
1 + zbT (1− zW )−1 e

)
= 1− bTW−1e = 1− ξTe. (1.46)

Then, once we have computed the stages Un ∈ Xs, a step of the method is done by

un+1 = un + τ
(
bT ⊗ A

)
Un + τ

(
bT ⊗ I

)
Fn

= un +
(
bT ⊗ A

)
(I − τ (W ⊗ A))−1 ((e⊗ I)un + τ (W ⊗ I)Fn) + τ

(
bT ⊗ I

)
Fn

= un − ξT (I − τ (W ⊗ A)− I) (I − τ (W ⊗ A))−1 ((e⊗ I)un + τ (W ⊗ I)Fn)

+ τξT (W ⊗ I)Fn

= un + ξTUn + ξT (τ (W ⊗ I)Fn − (e⊗ I)un + τ (W ⊗ I)Fn)

= r∞un + ξTUn,

which is a linear combination of the previous step and the stages. It turns out that we
avoid evaluating the unbounded operator A.

To conclude, we explain how to solve the linear systems (1.45) depending on the
structure of the matrix.

(a) W ∈ Rs×s is invertible. There exists an invertible matrix P ∈ Rs×s such that
W = PΛP−1, where Λ is a diagonal matrix with eigenvalues λ1, . . . , λs ∈ C. In this
case the system (1.45) is equivalent to

P (I − τ (W ⊗ A)) P−1Un = (e⊗ I)un + τ (W ⊗ I)Fn, (1.47)

so we can solve it by doing

(1) ηn = P−1 ((e⊗ I)un + τ (W ⊗ I)Fn) ∈ Xs,

(2) solve (P−1Un)
k
= (I − τλjA)−1 ηkn, for k = 1, . . . , s,

(3) un = P (P 1Un).

In this case, the linearity of the problem and the fact that the matrix is diagonaliz-
able allow the computation of the stages to be decoupled.
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(b) W ∈ Rs×s is lower triangular, that is, W = Λ+T where Λ is a diagonal matrix with
eigenvalues λ1, . . . , λs ∈ R and T is nilpotent, that is, T s = 0. In this case

(I − τ (W ⊗ A))−1 = (I − τ (Λ⊗ A)− τ (T ⊗ A))−1

= (I − τ (D ⊗ A))−1 (I − τ (I − τ (D ⊗ A))−1 (T ⊗ A)
)−1

=
s−1∑
k=0

[
(I − τ (D ⊗ A))−1 (T ⊗ A)

]k
(I − τ (D ⊗ A))−1 , (1.48)

since the terms of this geometric series are zero for k ≥ s. In fact, T is lower
triangular and for {V i}si=1 ∈ Xs such that V i = 0, for i = 1, . . . , l, then [(T ⊗ A)]i =
0 for i = 1, . . . , l + 1, and so is

[
(I − τ (D ⊗ A))−1 (T ⊗ A)V

]i
= 0, due to the fact

that D is diagonal. Moreover, the identity

(T ⊗ A) (I − τ (D ⊗ A))−1 = D−1T (I − τ (D ⊗ A)− I) (I − τ (D ⊗ A))−1

= D−1T −D−1T (I − τ (D ⊗ A))−1

allows us not to evaluate the unbounded operator A.

By carefully analyzing formula (1.48), taking into account the diagonal structure
of D and the lower triangular structure of T , and by leveraging the formula for
products of resolvents with T , one can apply a Horner-like algorithm to solve the
system in D(A)s in (1.45) solving only s linear systems and avoiding matrix-vector
products with A. The verification is left to the reader, but is done by computing
the following steps. We part form ηn = (e⊗ I)un+ τ (W ⊗ I)Fn ∈ Xs. During the
iteration, we update the components of the vector ηn, which will eventually contain
the values of Un. For k = 1, . . . , s,

(1) solve (I − τλkA)−1 ηkn ∈ X,

(2) for j = k + 1, . . . , s, store

ηjn ← ηjn −
Tjk
dk

(
ηkn − (I − τλkA)−1 ηkn

)
,

(3) and then store
ηjn ← (I − τλkA)−1 ηkn.

After the iteration, we get Un ← ηn.

1.3.3 Interpolation spaces and order reduction

We end this chapter with a brief explanation of why order reduction occurs and what
orders of convergence can be expected in the problems we will discuss. To this end,
we start this section by commenting on some results concerning interpolation spaces,
which are essential to understand the order reduction phenomenon. The analysis of order
reduction in different scenarios can be found in [8, 59, 60, 71], whereas for the interpolation
spaces the classic reference is [75] and for further results we suggest [13, 50, 54].
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1.3 Runge–Kutta methods and order reduction

Interpolation spaces and boundary conditions

Let us assume that A ∈ G(X,M,ω) is an infinitesimal generator of a C0 semigroup, fix
ω∗ > ω, and for ν ≥ 0, set Xν = D ((ω∗I − A)ν). The space Xν is endowed with the
graph norm ∥ · ∥ν of (ω∗I − A)ν . It is well known that Xν is independent of ω∗ > ω and
that changing ω∗ > ω results in an equivalent norm.

On the other hand, the real interpolation method [75] provides different intermediate
spaces Xν,p = [X0, X1]ν,p with norms ∥ · ∥ν,p, 0 ≤ ν < 1, 1 ≤ p ≤ ∞. It is important to
notice that (see Theorem 4.17 of [54])

Xν+ϵ,p ↪→ Xν ↪→ Xν−ϵ,p, 0 ≤ p, q ≤ ∞, 0 ≤ ν − ϵ < ν + ϵ ≤ 1

with continuous embeddings. As a consequence, for 0 < ν∗ < 1, u ∈ X, it is true that

u /∈ Xν,p for ν < ν∗ ≤ 1⇔ u /∈ Xν for ν < ν∗ ≤ 1. (1.49)

Now we illustrate the previous concepts in the context of typical evolutionary PDEs in
an Lp, p ≥ 1, framework. Let us consider X = Lp (Ω), p ≥ 1, where Ω ⊂ Rd is a bounded
domain with regular boundary Γ. Moreover, we are given two linear partial differential
operators P,Q on Ω of orders m and k ≤ m− 1/p, respectively, with smooth coefficients.
Typically, the operator A acts on

D(A) = {ϕ ∈ Wm,p (Ω) /Qϕ|Γ = 0} , (1.50)

and Aϕ = Pϕ for ϕ ∈ D(A). Set ν∗ = (k + 1/p)/m. Notice that the values of a function
u ∈ Lp on Ω or Γ may not be defined, since u is not necessarily a continuous function
in Ω. By Sobolev embedding theorems (see, e.g., [19, 77]), functions in Wm,p(Ω) exhibit
improved regularity depending on the balance between m, p and the space dimension d.
In particular, whenever m > d/p one has the continuous embedding

Wm,p(Ω) ↪→ C(Ω),

so that boundary values are well defined in the classical sense. Moreover, there exists a
constant M depending on d,m, p such that

∥u∥∞ ≤M∥u∥m,p for u ∈ Wm,p(Ω). (1.51)

However, when this condition is not fulfilled, continuity up to the boundary is no longer
guaranteed, and the notion of trace has to be defined in a weaker sense. Moreover,
the trace theorem (see e.g. [75, 77]) guarantees that the trace of Q, i.e., the operator
∂ : ϕ 7→ Qϕ|Γ, can be understood as a linear, bounded operator from W νm,p(Ω) to Lp(Ω)
whenever ν > ν∗. The remarkable result in [50] states that for the p-real interpolation
method, there holds that

Xν,p = [X0, X1]ν,p =

{
W νm,p (Ω) , if ν < ν∗,
W νm,p (Ω) ∩ ker∂, if ν > ν∗.

(1.52)

This means that when interpolating, the boundary condition does not need to be imposed
when the trace operator does not make sense. Therefore, if the trace of a smooth mapping
ϕ : Ω→ C is different from 0 on Γ, then ϕ cannot belong to Xν,p for ν > ν∗. Notice that
this is also true for the domains of the fractional powers of Xν according to (1.49). This
fact is what governs order reduction.
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Order reduction for RK methods

As we commented in a previous section, when a Runge–Kutta method used in its rational
form (1.36) is applied to a homogeneous problem (1.4), it achieves its classic order of
convergence p whenever the initial data has sufficient regularity; this is the content of the
convergence estimate (1.38). However, for nonhomogeneous problems of the form{

u′(t) = Au(t) + f(t) t > 0,

u(0) = u0,
(1.53)

the order of convergence p is not achieved in general no matter the time regularity of its
solution. Actually, let u ∈ Cp ([0,∞), X) be the solution of (1.53). The local error of the
Runge–Kutta method applied to this problem is given by the expression [8, 59, 60]

ϵn =

p∑
l=q+1

τ l

l!
rl (τA)u

(l)(tn) +O
(
τ p+1

)
, (1.54)

where
rl(z) = zbT (1− zW )−1 (cl − lcl−1

)
, for q + 1 ≤ l ≤ p. (1.55)

Moreover, the order conditions of the method guarantee that

rl(z) = zp−qr∗l (z), for q + 1 ≤ l ≤ p, (1.56)

for certain rational mappings r∗l (z), q + 1 ≤ l ≤ p. Notice that since rl(z) and r∗l (z),
q+1 ≤ l ≤ p, possess no poles on the half-plane Re(z) ≤ 0, we can argue as in (1.27) and
see that the operators rl(τA) and r

∗
l (τA), q+1 ≤ l ≤ p, are bounded for 0 < τ < τ0 (r, ω).

For x ∈ Xp−q we also have (Theorem 1.9.3) that

∥rl(τA)x∥ ≤ CeM τ p−q∥u∥p−q, q + 1 ≤ l ≤ p,

and, by interpolation, we deduce that for x ∈ Xν , 0 ≤ ν ≤ p− q,

∥rl(τA)x∥ ≤ CeM τ ν∥x∥ν , q + 1 ≤ l ≤ p.

Thus, in view of (1.54), for u ∈ Cp+1 ([0,∞), Xν), we get

∥ϵn∥ = O(τ q+1+ν) sup
0≤t≤nτ

∥u(p+1)(t)∥ν .

Therefore, only under the stronger assumption u ∈ Cp+1 ([0,∞), Xp−q) we reach the opti-
mal local order p+ 1.

The origin of the order reduction phenomenon relies in the fact that, as we mentioned
in (1.52), all we can expect in the context of standard PDEs is that u ∈ Cp+1 ([0,∞), Xν∗),
for some well defined value 0 < ν∗ < 1. Setting ν = ν∗ (or ν = min(ν∗ + 1, p − q) when
r(∞) ̸= 1), we easily get the error estimate

∥u(tn)− un∥ = Cs(r, n)τ
q+ν sup

0≤t≤nτ
∥up+1(t)∥ν , n ≥ 1,
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1.3 Runge–Kutta methods and order reduction

where Cs(r, n) stands for the stability bound of the recurrence.
These ideas can be extended to the situation of variable step sizes. Besides, for constant

step sizes and in case r(∞) ̸= 1, the clever summation-by-parts argument in [59, 60]
(extended in [8] to general semigroups) leads to the improvement

∥u(tn)− un∥ = Cs(r, n)τ
q+µ+1 sup

0≤t≤nτ
∥up+1(t)∥ν , n ≥ 1,

where µ = min(ν, p−q−1). It is worth noticing that such a fractional order of convergence
is the one occurring in practical computation.
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Chapter 2

Rational methods for abstract,
linear, nonhomogeneous problems
without order reduction

One had to journey through the icy wasteland of abstraction,
in order to definitively arrive at concrete philosophizing.

Theodor Adorno

2.1 Introduction

In this chapter we are concerned with the numerical time integration of abstract, linear,
nonhomogeneous initial value problems (IVP) of the form{

u′(t) = Au(t) + f(t), t > 0,

u(0) = u0,
(2.1)

where A ∈ G(X,M,ω) is the infinitesimal generator of a semigroup of operators, u0 ∈ X
and f : (0,∞) → X is a source term. We begin with this class of problems, as they
represent the simplest setting in which order reduction occurs. Starting from a rational
A-stable approximation r(z) to the exponential of order p, we construct a family of stable
methods of the same order that, in fact, avoid order reduction. These methods constitute
the foundation for the approaches developed in subsequent chapters to address more
complex problems.

We recall some basic results related to the problem (2.1). Any classical solution of
(2.1) can be written using the variation-of-constants formula

u(t) = etA u0 +

∫ t

0

e(t−s)A f(s) ds. (2.2)

Different assumptions on the regularity of the source term f lead to different possi-
ble assumptions on the regularity of the initial data. It is known [31, 66] that for

31
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f ∈ L1 ((0,∞, X), the problem (2.1) has a unique mild solution for every initial data
u0 ∈ X, that is, a function that satisfies (2.2). If in addition further one of the following
hypothesis:

(a) f ∈ L1 ((0,∞, X) is continuously differentiable on (0,∞),

(b) f ∈ L1 ((0,∞, X) is continuous on (0,∞), f(t) ∈ D(A) for t > 0 and Af ∈
L1 ((0,∞, X),

is satisfied, then the IVP has a unique classical solution for every u0 ∈ D(A). Under
the further assumption that A ∈ G(X,M,ω, θ) generates an analytic semigroup and that
f ∈ L1 ((0,∞, X) is locally Hölder continuous, then the existence and uniqueness of
a classical solution requires only u0 ∈ X. Finally, we point out that optimal regularity
results for the solution u in terms of that of f is studied, for instance, in [53, 77].

Our goal is then to numerically approximate the solutions of (2.1). As previously an-
ticipated in the introduction, our strategy to design a method without order reduction is
to cast a nonhomogeneous IVP into an enlarged homogeneous problem. Essentially, this
is achieved by treating f as a new unknown, in the line of the approach used in [33] for
equations with memory. Then, the fact that a rational method applied to a homogeneous
problem achieves the classic order of the method p (1.38) allows us to integrate the en-
larged system without order reduction if the initial condition is regular enough. Finally,
we use some evaluations of f to approximate this theoretical discretization within the
adequate order of convergence. We want to emphasize that this abstract construction is
useful to design these methods but, as we will show, the resulting schemes have computa-
tional requirements similar to those of Runge–Kutta ones. As the epigraph reflects, this
abstract framework is essential to a complete understanding of this family of methods,
which prove to be both simple and efficient. Once a rational function r(z) is fixed, we
still have freedom in choosing the set of nodes cn at which the function f will be eval-
uated at each step to completely determine the scheme we will use. We will discuss the
benefits and disadvantages of each possible choice. These ideas are developed throughout
Section 2.2.1, whereas the final analysis of the convergence of the methods under different
hypotheses is carried out in Section 2.2.2. There, we prove Theorem 2.6 that is the main
result of the chapter. In Section 2.2.3, we explain in detail how an efficient variable-step
version of the proposed methods would be implemented.

Finally, in Section 2.3, we present numerical illustrations demonstrating the perfor-
mance of the proposed methods for the time integration of various prototypical PDEs.

2.2 Derivation and analysis of the method

2.2.1 Motivation of the scheme and previous results

We introduce some notation we require on functional Banach spaces. Given a complex
Banach space X and m ≥ 0, let Cmub([0,∞), X) denote the space formed by all the map-
pings h : [0,∞) → X such that h(j), 0 ≤ j ≤ m, are bounded and uniformly continuous
on [0,∞). Set, for m ≥ 0 and 0 ≤ t ≤ ∞,

∥h∥m,t = max
0≤j≤m

sup
0≤s≤t

∥h(j)(s)∥. (2.3)
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2.2 Derivation and analysis of the method

The space Cmub([0,∞), X) endowed with the norm ∥ · ∥m,∞, is a Banach space. We now
study the semigroup of translations on Cub([0,∞), X), whose properties are summarized
in the following lemma.

Proposition 2.1. Let X be a Banach space and Cub ([0,∞), X) endowed with the supre-
mum norm. Then, the semigroup of translations TB(t) : Cub ([0,∞), X)→ Cub ([0,∞), X),
t ≥ 0, defined by

[TB(t) v] (s) = v(t+ s), v ∈ Cub ([0,∞), X) , s ≥ 0,

is a C0 semigroup. The operator B : D(B) ⊂ Cub ([0,∞), X)→ Cub ([0,∞), X) defined in

D(B) = {v ∈ Cub ([0,∞), X) : v′ ∈ Cub ([0,∞), X)} = C1ub([0,∞), X) (2.4)

by Bv = v′, is the infinitesimal generator of the semigroup and we can write TB(t) = eBt,
for t ≥ 0. In fact, it is true that D(Bm) = Cmub([0,∞), X) for m = 1, 2, . . . . Moreover, the
bound

∥etBv∥∞ ≤ ∥v∥∞
holds for every v ∈ Cub ([0,∞), X).

Proof. It is clear from the definition that {TB(t)}t≥0 satisfies the properties (a), (b) in
Definition 1.1. To prove the strong continuity, notice that since every v ∈ Cub ([0,∞), X)
is uniformly continuous, the difference

∥ [TB(t) v] (s)− v(s)∥∞ = ∥v(t+ s)− v(s)∥∞ (2.5)

tends to 0 when t → 0 uniformly on s ∈ [0,∞), due to the uniform continuity of the
elements of Y , so {TB(t)}t≥0 is a C0 semigroup. If v ∈ D(B), by formula (1.1), the
following limit exists

[B v](s) = lim
t→0

v(t+ s)− v(s)
t

= v′(s),

so Bv = v′ ∈ Cub ([0,∞), X). On the other hand, if v, v′ ∈ Cub ([0,∞), X), then the
fundamental theorem of calculus implies that∥∥∥∥v(t+ s)− v(s)

t
− v′(s)

∥∥∥∥
∞
≤ max

s≤u≤t+s
∥v′(u)− v′(s)∥,

and the fact that v′ is uniformly continuous implies that v ∈ D(B) and Bv = v′. Finally,
notice that

∥etB v∥∞ = ∥v(t+ ·)∥∞ ≤ ∥v∥∞.

We also define the operator L : Cub ([0,∞), X) → X defined by Lv = v(0), for
v ∈ Cub ([0,∞), X), the Banach product space Z = X × Cub ([0,∞), X) with the norm
∥(u, v)∥Z = ∥u∥+ ∥v∥∞ and the operator

G

(
u
v

)
=

(
A L
0 B

)(
u
v

)
, for (u, v)T ∈ D (G) := D (A)×D (B) . (2.6)
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Chapter 2: Rational methods for abstract, linear problems

The following proposition states some properties of the operator G, which turns out to
be the infinitesimal generator of a semigroup in the space Z. Remind that we were trying
to cast the IVP (2.1) into an enlarged homogeneous problem with the same solution.
The following result establishes that the homogeneous problem reated to G is in fact the
enlarged system we were looking for. We also provide a way to compute the resolvents of
G in terms of the resolvents of A and B.

Proposition 2.2. Let A ∈ G(X,M,ω) and G be the operator defined in (2.6). Then,

(a) G is the infinitesimal generator of a C0 semigroup of bounded, linear operators{
etG
}
t≥0

in the space Z. More precisely, the semigroup is

etG =

(
etA

∫ t

0
e(t−s)AL · ds

0 etB

)
(2.7)

and it has growth

∥etG∥ ≤M(1 + t) eω
+ t. (2.8)

In particular, G ∈ G(Z,Mω̃, ω̃) for every ω̃ > ω+ and an adequate Mω̃ > M .

(b) Let u0 ∈ D(A), f ∈ D(B). Then, the solution of the IVP{
U ′(t) = GU(t), t ≥ 0,
U(t0) = (u0, f)

T ,
(2.9)

is given by U(t) = (u(t), v(t))T = etG(u0, f)
T , t ≥ 0, so even the generalised solutions

of (2.1) are provided by the first component of the solutions of (2.9).

(c) The k-th powers of the resolvent of the operator G can be expressed by computing
k separate resolvents of the operators A and B. In fact, for every (u0, v0)

T ∈
X × Cub ([0,∞), X), we can obtain Uk = (uk, vk)

T = (λI − G)−k(u0, v0)
T via the

following recurrence

vj = (λI −B)−1 vj−1, uj = (λI − A)−1 (uj−1 + Lvj) , for j = 1, . . . , k. (2.10)

Proof. The system (2.9) is

u′(t) = Au(t) + Lv(t), v′(t) = B v(t).

Taking into account Proposition 2.1 and the definition of L,

v(t) = f(t+ ·), Lv(t) = f(t),

so we obtain {
u′(t) = Au(t) + f(t), t ≥ 0,
u(0) = u0,

(2.11)
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2.2 Derivation and analysis of the method

By continuity, we conclude that even the generalised solutions of (2.11) are provided by
the first component of the solutions of (2.9). The variation-of-constants formula (2.2)
implies that

∥u(t)∥ ≤M eωt∥u0∥+ tM eωt∥f∥∞ ≤M (1 + t) eω
+t∥(u0, f)T∥Z ,

and together with
∥v(t)∥∞ ≤ ∥f∥∞ ≤ ∥(u0, f)T∥Z ,

leads to
∥U(t)∥Z ≤M (1 + t) eω

+t ∥(u0, f)T∥Z .
To prove (c), notice that the identity Uk = (λI −G)−1Uk−1 leads to the equation(

λI − A −L
0 λI −B

)(
uk
vk

)
=

(
uk−1

vk−1

)
,

that can be immediately expressed as

vk = (λI −B)−1vk−1 = (λI −B)−kv0,

and

uk = (λI − A)−1 (uk−1 + Lvk) = (λI − A)−1
(
uk−1 + L(λI −B)−kv0

)
. (2.12)

At this point, it seems natural to apply a rational method to (2.9) and retain the first
components to approximate the solutions of (2.1). In this way, it is clear by (1.38) that
no order reduction occurs if (u0, f)

T ∈ D(Gp+1). This leads to the recurrence

Ūn+1 = r (τG)

(
ūn
v̄n

)
= r∞

(
ūn
v̄n

)
+

k∑
ℓ=1

mℓ∑
j=1

rℓj (I − τwℓG)
−j

(
ūn
v̄n

)
. (2.13)

Thus, assuming that u, f ∈ Cp+1 ([0,∞), X), it is clear that U ∈ Cp+1 ([0,∞), Z), and
since (2.9) is a homogeneous problem, U ∈ C ([0,∞), D (Gp+1)). Notice that D (Gp+1)
may be different from D (Ap+1) × D (Bp+1), so u may not lie in D (Ap+1). Under this
assumption, the convergence result (1.38) together with Remark 1.13 applied to G and
initial data u0 and v0 = f guarantees that

∥u(tn)− ūn∥ ≤ CeM(1 + tn) tn τ
peω

+κtn
(
∥u(p+1)∥∞ + ∥f (p+1)∥∞

)
, n ≥ 1, (2.14)

whereas the same result with generator B and initial data v0 leads to

∥f(tn + ·)− v̄n∥∞ = ∥etnBf − rn(τB)f∥∞ ≤ Cetnτ
p∥f (p+1)∥∞, n ≥ 1, (2.15)

a bound that guarantees that we can use the exact values of the source term f(tn + s)
instead of the terms of the recurrence v̄n(s), since they are similar within the order of
convergence that we deserve.

We need an explicit isolate expression for the recurrence of ūn where the resolvents of
the operator G does not appear, but only resolvents of A and B. To this end, we use part
(c) in Proposition 2.2.

35



Chapter 2: Rational methods for abstract, linear problems

Proposition 2.3. The recurrence for ūn in (2.13) can be written as

ūn+1 = r (τA) ūn + τE(τ)v̄n, v̄n+1 = r (τB) v̄n, n ≥ 1, (2.16)

where E(τ) : Cub ([0,∞), X)→ X is the linear operator given by

E(τ)v =
k∑

ℓ=1

mℓ∑
j=1

rℓ,jwℓ

j∑
i=1

(I − τwℓA)
−j+i−1 L (I − τwℓB)−i v, (2.17)

for v ∈ Cub ([0,∞), X), which is bounded for 0 < τ < τ0.

Proof. Taking into account the discrete variation-of-constants formula and the recurrence
(2.12) with λ = 1/τwℓ, the first component of the resolvent

(I − τwℓG)
−j

(
ūn
v̄n

)
(2.18)

is given by the expression

(I − τwℓA)
−j ūn + τwℓ

j∑
i=1

(I − τwℓA)
−j+i−1 L (I − τwℓB)−i v̄n. (2.19)

Thus, the fist component of (2.13) can be developed as

ūn+1 = r∞ ūn +
k∑

ℓ=1

mℓ∑
j=1

rℓ,j (I − τwℓA)
−j ūn

+ τ
k∑

ℓ=1

mℓ∑
j=1

rℓ,jwℓ

j∑
i=1

(I − τwℓA)
−j+i−1 L (I − τwℓB)−i v̄n

= r(τA)ūn + τE(τ) v̄n.

The fact that the operator E(τ) is bounded for 0 < τ < τ0 follows from the fact that the
resolvents (I − τwℓA)

−j are bounded for 0 < τ < τ0 and that the resolvents (I − τwℓB)−j

are bounded for every τ > 0.

However, even thought the semigroup of translations
{
etB
}
t≥0

is trivial, the resolvents
of B cannot be computed in a direct way by using evaluations of the argument f along a
discrete mesh. However, for our purposes, it will be sufficient to approximate the resolvent
with a suitable order. Recalling from basic theory of semigroups that (1.3), then

(λI −B)−1 =

∫ ∞

0

e−λsesB ds,

so we see that [
(λI −B)−1 v

]
(t) =

∫ ∞

0

e−λsv(t+ s) ds, (2.20)
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2.2 Derivation and analysis of the method

for t ≥ 0 and v ∈ Cub ([0,∞), X). Though in principle it makes sense to approximate
(2.20) by some adequate quadrature formula, our approach is based on Lemma 2.4 below
that also allows us to approximate F (τB) for more general functions F , in particular, for
the powers of the resolvent of B. In what follows, for v ∈ Cub ([0,∞), X), c ∈ Rp and
t, τ > 0 such that t + τc ≥ 0, v(t + τc) denotes [v(t+ τc1), . . . , v(t+ τcp)]

T . Moreover,
for a vector γ ∈ Cq, we set γT · v(t+ τc) =

∑
i=1 γiv(t+ τci) ∈ X.

Lemma 2.4. Let F be a rational mapping with no poles on the half-plane Re(z) ≤ 0
and bounded at infinity and c ∈ Rp with ck ̸= cj for k ̸= l. Then, there exists a unique
γ = {γk}pk=1 ∈ Cp and C > 0 such that for t, τ > 0, t+ τc ≥ 0,

∥F (τB) v(t+ ·)− γT · v(t+ τc+ ·)∥ ≤ Cτ p∥Bpv∥, v ∈ D(Bp) (2.21)

Proof. Let us consider the Taylor expansions

F (z) = f0 + f1z + · · ·+ fp−1z
p−1 +O (zp) ,

eckz = 1 + ckz + · · ·+
cp−1
k

(p− 1)!
zp−1 +O (zp) , 1 ≤ k ≤ p,

and try to find γ = {γk}pk=1 such that

H(z) = F (z)−
p∑

k=1

γke
ckz = O (zp) .

This leads to the Vandermonde system

cj1γ1 + · · ·+ cjpγp = j! fj, 0 ≤ j ≤ p− 1, (2.22)

which, since ck ̸= cl for k ̸= l, has a unique solution. We denote by V (c) the Vandermonde
matrix of the system and by f̃ = {j! fj}p−1

j=0, so the previous system is V (c) γ = f̃ .

Set Pp−1(z) =
∑p−1

k=0 fkz
k. For v ∈ D(Bp), the above calculation implies that, for

t > 0, τ > 0, with t+ τck ≥ 0, 1 ≤ k ≤ p,

p−1∑
k=0

fkτ
kv(k)(t)−

p∑
j=1

γjv(t+ τcj) =

p−1∑
k=0

τ kv(k)(t)

(
fk −

p∑
j=1

γjc
k
j

k!

)
−

p∑
j=1

γj Rj

= −
p∑

j=1

γj Rj, (2.23)

where Rj is the integral remainder

Rj =
1

(p− 1)!

∫ τ cj

0

(τcj − s)p−1 v(p)(t+ s) ds, 1 ≤ j ≤ p,

which is in fact bounded by

∥Rj∥ ≤
(τ |cj|)p

p!
∥Bpv∥, 1 ≤ j ≤ p. (2.24)
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Chapter 2: Rational methods for abstract, linear problems

Then, by (2.23) and (2.24),∥∥∥∥∥
p−1∑
k=0

fkτ
kv(k)(t)−

p∑
j=1

γjv(t+ τcj)

∥∥∥∥∥ ≤
(

1

(p− 1)!
∥f̃∥∞∥V (c)−1∥∞ max

1≤k≤p
|ck|p

)
τ p∥Bp v∥

(2.25)

Since this is also valid for t + s, with s ≥ 0, we can claim that there exists C1 > 0
(depending only on F and c) such that

∥Pp−1(τB)SB(t)v − γT · v(t+ τck + ·)∥ ≤ C1τ
p∥Bpv∥, . (2.26)

Let us now consider the rational mapping F0(z) = (F (z)− Pp−1(z))/z
p, that is bounded

on the half plane Re(z) ≤ 0. Given that (F −F (∞)), F ′, F0 and F
′
0 are square integrable

along the imaginary axis, Proposition 1.9.1 implies that F (z), F0(z) ∈ M̃0. Moreover, by
Proposition 1.9.3, we have

F (τB)v − Pp−1(τB)w = τ pF0(τB)Bpw, w ∈ D(Bp),

and, by Proposition 1.9.4, the norms ∥F0(τB)∥ are uniformly bounded, for τ > 0, by the
total variation of the original measure of F0. Therefore, there exists C2 > 0 such that

∥F (τB)w − Pp−1(τB)w∥ ≤ C2τ
p∥Bpw∥, w ∈ D(Bp),

an estimate that, applied to w = SB(t)v, leads to

∥F (τB)SB(t)v − Pp−1(τB)SB(t)v∥ ≤ C2τ
p∥Bpv∥. (2.27)

To conclude the proof, we just write

F (τB)SB(t)v − γT · v(t+ τc) = (I) + (II),

where

(I) = F (τB)SB(t)v − Pp−1(τB)SB(t)v,

(II) = Pp−1(τB)SB(t)v − γT · v(t+ τc),

and recall (2.27) and (2.26).

Remark 2.5. The proof of Lemma 2.4 shows that the constant C in (2.21) increases
linearly with the terms max1≤k≤p |ck|p and ∥V (c)−1∥∞. This means that although it is
impossible to approximate the resolvent with order p using any nodes, some node choices
will give larger errors due to the increase on the constant. We briefly describe how these
terms influence the error:

� The factor ∥V (c)−1∥∞ is related to the interpolation properties of the chosen set of
nodes (see e.g. [34, 35]), and we expect it to grow with the Lebesgue constant. To
reduce the number of function evaluations, it is interesting to consider equispaced
nodes. It can be checked that the norm ρ of the matrix of the system (2.22) (with
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2.2 Derivation and analysis of the method

respect to the maximum norm) is minimal among the equispaced nodes when we
use the p centered nodes (2.41). With such a choice, the values of ρ , for 3 ≤ p ≤ 9,
are approximately [2, 5, 9.5, 16.7, 37.4, 133.5, 356], moderate enough for practical
use at least for p ≤ 7.

However, other nodes, such as the Chebyshev nodes, may also be of interest, since
they minimize the Lebesgue constant, although they have the drawback that p
function evaluations per step are required.

� The factor max1≤k≤p |ck|p shows that nodes with larger absolute value result in larger
errors. Therefore, among all the equispaced nodes, the most central ones are those
that contribute to a bigger reduction of this factor. Chebyshev nodes have also good
properties in this point.

We finally propose the following method. Set D = {c ∈ Rp/ci ̸= cj, i ̸= j} and choose
a sequence cn, n ≥ 1, in D. Lemma 2.4 applied to Fℓ,i(z) = (1 − wℓz)

−i, 1 ≤ ℓ ≤ k,
1 ≤ i ≤ mℓ, and a vector cn, provides γ

n
ℓ,i ∈ Rp that leds to an approximation of order p

(in the sense of (2.21))

L (I − τwℓB)−i v ≈ γn
ℓ,i

T · v (τcn) . (2.28)

We then adopt

un+1 = r∞ un

+
k∑

ℓ=1

mℓ∑
j=1

rℓ,j (I − τwℓA)
−j

(
un + τwℓ

j∑
i=1

(I − τwℓA)
i−1 γn

ℓ,i
T · f (tn + τcn)

)
= r (τA)un + τEn(τ)f (tn + τcn) , (2.29)

where En(τ) : X
p → X, 0 < τ < τ0, is the bounded, linear operator defined by

En(τ)f (tn + τcn) =
k∑

ℓ=1

mℓ∑
j=1

rℓ,jwℓ

j∑
i=1

(I − τwℓA)
−j+i−1 γn

ℓ,i
T · f (tn + τcn) , (2.30)

whose dependence on n is only due to the possibility of choosing different nodes at each
step. Notice that the vector of abscissa cRK of the Runge–Kutta method is neither used
in (2.29) nor related to cn. Note that the formula in the first lines in (2.29) is written in
a more explicit way (that shows how the method can be implemented), while the last line
is more compact and will be useful in the analysis of the method. Recalling (2.17) and in
view of (2.28) there holds

∥En(τ)f(tn + τcn)− E(τ)f(tn + ·)∥ ≤ Knτ
p∥f (p)∥∞, (2.31)

for some Kn = Kn(cn) > 0. One step in (2.29) requires solving s resolvents of A, as in
the homogeneous case. In fact, it is a straightforward verification that (2.29) is equivalent
to computing the s resolvents

Un
ℓ,0 = un, Un

ℓ,j = (I − τwℓA)
−1 (Un

ℓ,j−1 + τwℓ γ
n
ℓ,j

T · f (tn + τcn)
)
, (2.32)
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for 1 ≤ ℓ ≤ k, 1 ≤ j ≤ mℓ, and then taking the linear combination

un+1 = r∞ un +
k∑

ℓ=1

mℓ∑
j=1

rℓ,j Uℓ,j. (2.33)

Moreover, for arbitrary cn, it also requires p evaluations of the function f . However, the
vectors cn can be chosen in such a way that only one evaluation per step is done for n ≥ 2
(see Section 2.3 for details). To prove convergence we also require that all the cn lie in a
compact set K ⊂ D, in such a way that Kn(cn) ≤ K when n ≥ 1.

2.2.2 Analysis of convergence

We state the main result of the chapter, that assures that the method (2.29) converges
to the solution of (2.1) without order reduction. Anyway, the optimal order p could be
reduced in case of weak stability (1.37).

Theorem 2.6. Let u : [0,∞)→ X be the solution of (2.1) to be approximated in the in-
terval [0, T ] with constant step size 0 < τ = T/N < τ0. Assume that u ∈ Cp+1 ([0,∞), X),
f ∈ Cp+1 ([0,∞), X). Let un be the numerical approximation to u(tn) obtained by the
modified rational method (2.29) with nodes cn in some compact set K ⊂ D. Then, there
exists a constant K = K(K) > 0 such that, for 0 ≤ n ≤ N ,

∥u(tn)− un∥ ≤ KCeCs(n)(1 + tn)tnMeω
+κtnτ p

(
∥u(p+1)∥∞ + ∥f (p)∥∞ + ∥f (p+1)∥∞

)
.

(2.34)

Proof. First, notice that (2.16) can be written as

ūn+1 = r (τA) ūn + τE(τ) rn (τB) f,

and subtracting this expression from (2.29),

un+1 − ūn+1 = r (τA) (un − ūn) + τ (En(τ)f(tn + τcn)− E(τ)rn (τB) f)

= r (τA) (un − ūn) + τ (En(τ)f(tn + τcn)− E(τ)f(tn + ·))
+ τ (E(τ) (f(tn + ·)− rn (τB) f)) ,

with u0 = ū0. Then, by the variation-of-constants formula, the error can be bounded by
three terms

∥u(tn)− un∥ ≤ (I) + (II) + (III), (2.35)

where

(I) = ∥u(tn)− ūn∥,

(II) = τ

n−1∑
k=0

∥rn−k (τA) ∥∥Ek(τ)f(tk + τck)− E(τ)f(tk + ·)∥,

(III) = τ
n−1∑
k=0

∥rn−k (τA) ∥∥E(τ)
(
f(tk + ·)− rk (τB) f

)
∥.
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2.2 Derivation and analysis of the method

To bound these terms, we proceed as follows. A bound for (I) is given by (2.14). Moreover,
taking into account the compactness of K, (1.37) and (2.31) we get

(II) ≤ KM Cs(n) tn e
ω+κtn τ p∥f (p)∥∞, K = K(K).

Finally, the fact that E(τ) is bounded together with (1.37) and (2.15) assures that

(III) ≤M CeCs(n) t
2
n e

ω+κtn τ p∥f (p+1)∥∞,

and the proof concludes combining the three estimates.

When both the semigroup
{
etA
}
t≥0

and the source term f(t) admit analytic continu-
ations to some sector

Sθ = {z ∈ C / |arg(z)| ≤ θ} , 0 < θ < π/2,

it is possible to reformulate Theorem 2.6 in the line of (1.39). Moreover, as we mentioned,
the stability constant Cs(n) can be dropped so the order p is actually recovered and
further results concerning bad initial values and a variable step size version of the method
can be considered.

We introduce the space Aub (Sθ, X) of all bounded, uniformly continuous, analytic
functions f from Sθ to X endowed with the supremum norm, that turns out to be a
Banach space. This is in fact equivalent to the Laplace transform F of f having an
analytic extension to a sector of the form {λ ∈ C : 0 ≤ |arg (λ)| ≤ π − θ, λ ̸= ω}.

There we define the analytic semigroup of translations SBθ
: Aub (Sθ, X)→ Aub (Sθ, X)

given by
[SBθ

(z) v] (w) = v(z + w), for v ∈ Aub (Sθ, X) , w ∈ Sθ.

We can take D (Bθ) = Aub (Sθ, X), the corresponding generator is Bθ : Yθ → Yθ with
Bθv = v′ for v ∈ Aub (Sθ, X). A similar proof to that in Proposition 2.1 guarantees that
this is a C0 semigroup of operators. To see that it is in fact an analytic semigroup, we
can check condition 4 in Theorem 1.6, which is a direct consequence of the fact that, for
f ∈ Aub (Sθ, X), the Cauchy theorem implies that

|f ′(t)| ≤ ∥f∥∞
|t sin θ|

,

for t > 0.
Then, the semigroup generated by Gθ = X × Aub (Sθ, X) becomes analytic too (see,

e.g., section 2.3 in [77]) and we can state the analytic version of Theorem 2.6.

Theorem 2.7. Let u : [0,∞) → X be the solution of (2.1) to be approximated on the
interval [0, T ] with constant step size 0 < τ = T/N < τ0. Assume that A ∈ G(X,M,ω, θ)
generates an analytic semigroup of linear operators and r is a strongly A(ϑ)-stable rational
function, with θ < ϑ. Assume also that u ∈ Cp ([0, T ], X), f ∈ Aub (Sθ, X). Let un be the
numerical approximation to u(tn) obtained by the modified rational method (2.29) with
nodes cn in some compact set K ⊂ D. Then, there exists a constant K = K(K) > 0 such
that

∥u(tn)− un∥ ≤ KM Ce (1 + tn) e
ω+κtn τ p

(
∥u(p)∥∞ + ∥f (p)∥∞

)
, 0 ≤ n ≤ N.
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Proof. The proof is similar to that of Theorem 2.6, but in this case we take advantage
of the optimal parabolic estimate (1.39) instead of (1.38). We split the local error in the
same three terms as in (2.35). Then, the estimate (1.39) applied to Gθ and initial data
u0 and f leads to

(I) ≤M Ce (1 + tn) e
ω+κtnτ p

(
∥u(p)∥∞ + ∥f (p)∥∞

)
.

Moreover, as we mentioned in Section 3, in the analytic case Cs(n) is O(1), so that

(II) ≤ K CsM tn e
ω+κtn τ p ∥f (p)∥∞, K = K(K).

To conclude, the application of (1.39) to Bθ with initial data f and (1.37) gives

(III) ≤M CsCe tne
ω+κtn τ p∥f (p)∥∞,

thus completing the proof.

2.2.3 Variable step size version of the methods

The numerical scheme (2.29) turns out to be efficient in terms of computational cost
required per step. However, solving evolution equations of the form (2.1) in practical
scenarios naturally leads to the need for a variable step size strategy compatible with
the method. In this section, we describe how to adapt the typical variable step size
implementations of the Runge–Kutta methods to the case of the rational schemes that
we propose.

The variable step size implementations of the Runge–Kutta methods is based on the
construction of embedded Runge–Kutta pairs. These are methods that share the same
matrix W ∈ Rs×s and node vector c ∈ Rs, but they have different weights b, b̂ ∈ Rs, in
such a way that they have orders of convergence p and p − 1, respectively. The Butcher
tableau is typically written in the form

c W
bT

b̂T

, b, c ∈ Rs,W ∈ Rs×s,

This embedded pair allows to calculate an efficient estimate of the local error by sub-
tracting the numerical approximation to the solution produced by the two methods. This
estimate of the local error is the key for using a method with variable step size, since
it allows to decide to increase the step size when the errors are small and to decrease it
when the errors are large. In this way, a balance between efficiency and error control is
maintained.

To adapt this framework to our rational method schemes, notice that the rational
stability function of the methods are given by

r1(z) = 1 + zbT (I − zW )−1 e, r2(z) = 1 + zb̂T (I − zW )−1 e, e = [1, . . . , 1]T ∈ Rs.
(2.36)
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This formula shows that the poles of both rational mappings are determined by the
common matrix W and does not depend on b, b̂ whatsoever. They can be developed into
simple fractions like

r1(z) = r∞ +
k∑

ℓ=1

mℓ∑
j=1

rj,ℓ
(1− zwℓ)j

, r2(z) = r̂∞ +
k∑

ℓ=1

mℓ∑
j=1

r̂j,ℓ
(1− zwℓ)j

.

We can then consider two different schemes of orders p − 1, p of the form (2.29) corre-
sponding to each rational function with the same nodes cn ∈ Rp in each step. For the
scheme of order p− 1, it is not necessary to use p nodes instead of p− 1, but since both
rational functions have the same poles, after this choice of nodes we will have to solve
exactly the same linear systems for both methods. An efficient estimate of the local error
may be constructed in this way after solving the linear systems. In fact, after solving the
s linear systems in (2.32), we can take

ESTn+1 = (r∞ − r̂∞) un +
k∑

ℓ=1

mℓ∑
j=1

(rℓ,j − r̂ℓ,j) Uℓ,j. (2.37)

as an estimate of the local error that allows us to decide the variation of the step size in
the following step. Then a step of the method can be done by taking

un+1 = r(τnA)un + τnE(τn)f(tn + τncn).

The convergence analysis for the variable step size case follows closely the arguments
given in the proof of Theorem 2.6. The analysis of the local error is essentially the same.
For the stability analysis, one needs to investigate the growth of the product

n∏
j=0

∥r(τjA)∥,

for which (1.37) provides the corresponding bound in the constant step size case. For
general semigroups, the techniques of the Hille–Phillips functional calculus (as previously
described in Section 1 and in [18]) can be employed to show that the latter shows a similar
bound to that in (1.37) whenever a ≤ τn/τm ≤ b, for n,m ≥ 0, and some constants
0 < a < b. Moreover, for analytic semigroups A ∈ G(X,M,ω, θ) and A(ϑ)-stable rational
functions with ϑ > θ, it was proved in [62] that the estimate

n∏
j=0

∥r(τjA)∥ ≤ Cs

holds for every sequence of positive step sizes.

2.3 Practical Implementation and Results

2.3.1 Efficient implementation of the methods

In this section we focus on the practical aspects of the rational methods introduced in the
previous one. First, we show how these methods can be implemented efficiently. Then,

43



Chapter 2: Rational methods for abstract, linear problems

we present several numerical results to show the convergence behaviour of the proposed
method.

We deal with simple partial differential equations which are integrated by the method
of lines. The spatial discretization is accomplished by standard finite differences. If h > 0
stands for the space-discretization parameter, we are led to systems of ordinary differential
equations {

u′h(t) = Ahuh(t) + fh(t), t ≥ 0,
uh(0) = u0,h.

(2.38)

To focus on the error due to time integration we proceed as follows:

1. We start from a known solution u(t, x) of (2.1), corresponding to some source term
f , so that u takes values in the intermediate space Xν , with ν < ν∗ (ν∗ given in
Section 1.3).

2. We adjust fh in such a way that the restriction of u to the discrete mesh is the exact
solution of (2.38).

3. We accept as reasonable that the order reduction of the RK method applied to
(2.38) is close to the one determined by ν∗ [21].

4. We compare a RK method with its rational version (2.29).

The illustrations use a constant step size τ > 0 and the auxiliary vectors cn, n ≥ 0,
are chosen to be either the explicit nodes

cEn =

{
[−n,−n+ 1, . . . , p− 1− n] for n = 0, . . . , p− 2
[−p+ 1,−p+ 2, . . . , 0] for n > p− 2,

(2.39)

the implicit nodes

cIn =

{
[−n,−n+ 1, . . . , p− 1− n] for n = 0, . . . , p− 3
[−p+ 2,−p+ 2, . . . , 1] for n > p− 3,

(2.40)

the centered nodes

cCn =

{
[−n,−n+ 1, . . . , p− 1− n] for n = 0, . . . , p− 3
[−p̂,−p̂+ 1, . . . , p̂] for n > p− 3,

(2.41)

where p̂ = (p− 1)/2, or the Chebyshev nodes

cTn =

{
cos

(
π

2

2k − 1

p

)}p

k=1

, for n ≥ 0. (2.42)

Notice that with the choices of nodes cEn , c
I
n, c

C
n only one function evaluation per step is

required for n ≥ 1. Although we call them explicit-implicit-centered, in the linear case
discussed in this chapter all sets of nodes operate in the same way and with the same
computational cost. The use of Chebyshev nodes requires p evaluations of f per step,
since the previous evaluations cannot be used again in the following step. However, they
are optimal for Lagrange interpolation and Remark 2.5 suggests its use which, as we shall
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see, turns out to be more efficient in some cases. We consider the Runge–Kutta and the
rational methods with cEn , c

I
n in all the cases, since we want to compare our methods with

the Runge–Kutta and cEn , c
I
n are the basis to integrate nonlinear problems. We alternate

the use of cCn and cTn to show different behaviours.
Concerning the implementation, first of all, we need linear solvers for the involved

systems
(I − τwℓAh)xh = yh ∈ Xh, 1 ≤ l ≤ k. (2.43)

In practice, the spatial discretization is included in the scheme via the particular form
that these solvers take. Since we use a fixed time step for the integration, the linear
systems to be solved at each time step share the same matrices. Therefore, when the
solver allows it, an LU factorization of each matrix can be precomputed and reused
throughout the integration, significantly reducing the computational cost by avoiding
redundant operations in the repeated resolution of these systems.

To get the s :=
∑k

ℓ=1mℓ vectors γ
n
ℓ,j ∈ Rp, 1 ≤ ℓ ≤ k, 1 ≤ j ≤ mℓ, required in (2.30),

we consider the expansions

(1− wℓ z)
−j =

p−1∑
q=0

(
−j
q

)
(−1)qwq

ℓz
q +O(zp)

and solve the s corresponding Vandermonde systems (2.22), for F (z) = (1 − wℓz)
−j,

1 ≤ l ≤ k, 1 ≤ j ≤ mℓ and cn, n ≥ 0. It is clear that, in our context, we can restrict the
task to solve such systems for 0 ≤ n ≤ p.

Finally, once we know the coefficients, (2.30) is implemented in a Horner like algorithm,
by using the available linear solvers. We describe how to implement this for the specific
methods we used in the experiments. The rational function of the first method has several
simple poles, while the second has a single multiple pole. For a general rational function
with several multiple poles, it would suffice to combine the development of these two
specific cases, grouping each multiple pole into blocks.

Notice that the rational function r(z) may have a pair of complex conjugate numbers
wℓ, w̄ℓ as poles. When this is the case, it is straightforward to verify that the factors rℓ, r̄ℓ
and the corresponding vectors provided by Lemma 2.4 are also conjugates γℓ,j, γ̄ℓ,j, for
every rational mapping F . As a consequence, the sum

rℓ(I − τwℓA)
−1
(
un + τγℓ,j · f(tn + τcn)

)
+ r̄ℓ(I − τw̄ℓA)

−1
(
un + τ γ̄ℓ,j · f(tn + τcn)

)
is real whenever u(t), f(t) ∈ R, for every t ≥ 0, and one expects a real approximation un.
Furthermore, complex arithmetic can be avoided by working directly with the real and
imaginary parts of the involved quantities and rearranging the systems, if necessary.

We consider rational methods based on two classical Runge–Kutta schemes: the three-
stage Gauss method and the three-stage SDIRK method. Our aim is to illustrate the
theorems and present different implementations, since the poles of the Gauss method are
simple whereas those of SDIRK are multiple. For a detailed discussion of the efficiency
of Runge–Kutta methods in practical scenarios, see for instance [46, 47]. Nevertheless,
many other Runge–Kutta schemes can be adapted to our framework in a similar way,
even in a variable step size formulation.
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The 3-stages Gauss method (see, e.g., [38]) is the Runge–Kutta method with the
following Butcher tableau

1
2
−

√
15
10

5
36

2
9
−

√
15
15

5
36
−

√
15
30

1
2

5
36

+
√
15
24

2
9

5
36
−

√
15
24

1
2
+

√
15
10

5
36

+
√
15
30

2
9
+

√
15
15

5
36

5
18

4
9

5
18

.

The method has s = 3 stages and order of convergence p = 6, it is A-stable and it has
a rational stability function that can be written in the form

r(z) =
r1

1− w1z
+

r2
1− w2z

+
r3

1− w3z
− 1, (2.44)

with rℓ, wℓ ∈ C, Re(wℓ) > 0, for ℓ = 1, 2, 3. As the method has order p = 6, in each step
we fix cn ∈ R6 and obtain three vectors γn

ℓ ∈ R6 by solving the mentioned linear systems.
Then, a step of the method is done by computing

un+1 =
3∑

ℓ=1

rℓ (I − τwℓA)
−1 (un + τ wℓ γ

n
ℓ · f (tn + τcn)

)
− un.

The 3-stages SDIRK method (see, e.g., [38]) is defined by the tableau

γ γ

1

2

1

2
− γ γ

1− γ 2γ 1− 4γ γ

δ 1− 2δ δ

γ =
1√
3
cos
( π
18

)
+

1

2
, δ =

1

6(2γ − 1)2
.

This method has s = 3 stages, order of convergence p = 4, it is A-stable and it has a
stability function of the form

r(z) =
3∑

j=1

rj (1− γz)−j . (2.45)

Since r∞ = 0, the method is in fact strongly A-stable. Once again, after choosing nodes
cn ∈ R4 and solving the corresponding linear systems to obtain γn

j ∈ R4, the scheme is

un+1 =
3∑

j=1

rj (I − τγA)−j un + τ

3∑
j=1

rj γ

3∑
i=1

(I − τγA)−j+i−1 γn
j · f (tn + τcn) . (2.46)

This formula can be computed in practice by using the Horner-like form of the algorithm.
In fact, if we define recursively the values

Un
0 = un, Un

j = (I − τγA)−1
(
Un
j−1 + τ γ γn

j · f (tn + τcn)
)
,
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for j = 1, 2, 3, then (2.46) is equivalent to

un+1 =
3∑

j=1

rj (I − τγA)−j
(
Un
j−1 + τ γ γn

j · f (tn + τcn)
)
=

3∑
j=1

rj U
n
j . (2.47)

This formula recalls that a step of the scheme can be computed by solving s linear systems
even in the case of multiple poles.

2.3.2 Numerical experiments

Hyperbolic problem

We consider a hyperbolic problem in the unit interval with homogeneous boundary con-
ditions, 

ut(t, x) = −ux(t, x) + f(t, x), 0 ≤ t ≤ 1, 0 ≤ x ≤ 1,
u(0, x) = u0(x), 0 ≤ x ≤ 1,
u(t, 0) = 0, 0 ≤ t ≤ 1,

(2.48)

where f : [0, 1]× [0, 1]→ C, u0 : [0, 1]→ C. In order to fit the problem in our framework,
we take X = L2[0, 1], A = −d/dx, D(A) = {u ∈ H1[0, 1] : u(0+) = 0}. The operator A
satisfies (1.2) with ω = 0 and M = 1. We adjust the data u0 and f in such a way that
u(t, x) = xet, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, is the solution of the problem (2.48). According to
the results in Chapter 1, it is straightforward to prove that u(t, ·) ∈ Xν , 0 ≤ t ≤ tf , for
every 0 < ν < 1.5.

Table 2.1: Errors and orders for the hyperbolic example (2.48) solved with RK and rational SDIRK3
method with h=1/100, tf = 1.

Runge–Kutta Explicit Implicit Chebyshev

step size error order error order error order error order
5.000e-02 5.735e-05 – 5.550e-05 – 8.452e-06 – 1.264e-05 –
2.500e-02 5.207e-06 3.46 3.748e-06 3.89 6.517e-07 3.70 8.978e-07 3.82
1.250e-02 4.562e-07 3.51 2.430e-07 3.95 4.475e-08 3.86 5.951e-08 3.92
6.250e-03 3.887e-08 3.55 1.546e-08 3.97 2.925e-09 3.94 3.825e-09 3.96
4.167e-03 9.101e-09 3.58 3.072e-09 3.99 5.864e-10 3.96 7.627e-10 3.98

We discretize (2.48) by the method of lines, combining upwind finite diference for the
discretization in space and the 3-stage SDIRK method (p = 4, q = 1) for the integration
in time (see, e.g., [38]). The matrix of the semidiscrete system (2.38) of this spatial
discretization on the uniform grid xi = ih, for i = 1, . . . , N , with h = 1/N , is

Ah =
1

h


−1
1 −1

. . . . . .

1 −1

 . (2.49)

It is clear that the sparsity of the matrix allows us to solve the systems (2.43) with a
Thomas-like algorithm with O(N) operations and memory usage. The SDIRK3 method
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suffers from order reduction, and according to the main result in [8], the reduced order
turns out to be p∗ = q + ν + 1 = 3.5. The method is implemented with the different
nodes cn proposed (2.39-2.42), leading to the results shown in Table 2.1. The order p is
achieved with the rational methods. In this problem, the nodes that minimize the error
are cIn.

Figure 2.1. Errors of the different implementations for the hyperbolic example (2.48) solved
with RK and rational SDIRK3 method with h=1/100, tf = 1.
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Parabolic problem in 1D

We consider the one-dimensional heat equation with homogeneous boundary conditions
ut(t, x) = uxx(t, x) + f(t, x), 0 ≤ t ≤ tf , 0 ≤ x ≤ 1,
u(0, x) = u0(x), 0 ≤ x ≤ 1,
u(t, 0) = 0, 0 ≤ t ≤ tf ,
u(t, 1) = 0, 0 ≤ t ≤ tf ,

(2.50)

where f : [0, 1] × [0, 1] → C, u0 : [0, 1] → C. In this case we consider X = L2[0, 1],
A = d2/dx2, D(A) = H2[0, 1] ∩H1

0 [0, 1]. It is known that under these considerations the
operator A satisfies (1.2) with ω = 0 and M = 1. We adjust the data u0 and f in such a
way that u(t, x) = (1 − x) sin(tx)et2x, 0 ≤ t ≤ tf , 0 ≤ x ≤ 1, is the solution of problem
(2.50). In this case, the results in Chapter 1 prove that u(t, ·) ∈ Xν , 0 ≤ t ≤ tf , for every
0 < ν < 1.25.

The problem (2.50) is discretized combining centered finite difference for the discretiza-
tion in space and either the 3-stages Gauss method (p = 6, q = 3) or the 3-stage SDIRK
method (p = 4, q = 1) for the integration in time. In this case the matrix of the
semidiscrete system (2.38) of this spatial discretization on the uniform grid xi = ih, for
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Table 2.2: Errors and orders for the parabolic example (2.50) solved with RK and rational SDIRK3
method with h=1/100, tf = 1.

Runge–Kutta Explicit Implicit Chebyshev

step size error order error order error order error order
5.000e-02 5.910e-05 – 2.156e-05 – 8.418e-07 – 1.481e-06 –
2.500e-02 9.256e-06 2.67 1.478e-06 3.87 8.838e-08 3.25 1.802e-07 3.04
1.250e-02 1.248e-06 2.89 9.899e-08 3.90 9.943e-09 3.15 1.699e-08 3.41
6.250e-03 1.486e-07 3.07 6.591e-09 3.91 9.249e-10 3.43 1.395e-09 3.61
3.125e-03 1.661e-08 3.16 4.343e-10 3.92 7.540e-11 3.62 1.044e-10 3.74
1.563e-03 1.802e-09 3.20 2.819e-11 3.95 5.559e-12 3.76 7.301e-12 3.84

i = 1, . . . , N , with h = 1/(N + 1), is

Ah =
1

h2


−2 1
1 −2 1

. . . . . . . . .

1 −2

 . (2.51)

The linear systems (2.43) can be solved using the Thomas algorithm with O(N) operations
and memory usage. Regarding the time integrators, according to [8], the reduced orders
are p∗ = q + ν + 1 = 5.25 for the Gauss3 and p∗ = q + ν + 1 = 3.25 for the SDIRK3.
Tables 2.2 and 2.3 show the numerical orders obtained, which are in good agreement
with the expected orders. Notice that figure 2.2 shows that the rational methods based
on SDIRK3 are more efficient than the Runge–Kutta if the computational cost is just
measured in terms of number of steps (we recall that the number of linear systems to be
solved at each step is the same in all cases but the number of function evaluations may
differ significantly). Conversely, in the Gauss3 case the Runge–Kutta is more efficient
than the rational method with nodes cE despite of the fact that the rational one has
better order of convergence. Remark 2.5 explains this behaviour. The other choices of
nodes do improve efficiency over Runge–Kutta methods. It is also consistent with the
content of this remark the fact that Chevyshev nodes (2.42) are better for higher orders
p than the uniform nodes.

Table 2.3: Errors and orders for the parabolic example (2.50) solved with RK and rational Gauss3
method with h=1/100, tf = 2.

Runge–Kutta Explicit Implicit Chebyshev

step size error order error order error order error order
4.000e-02 1.261e-07 – 7.920e-06 – 7.720e-08 – 1.069e-10 –
2.000e-02 3.395e-09 5.22 1.318e-07 5.91 1.276e-09 5.92 1.897e-12 5.82
1.333e-02 3.877e-10 5.35 1.162e-08 5.99 1.135e-10 5.97 1.904e-13 5.67
1.000e-02 8.183e-11 5.41 2.067e-09 6.00 2.017e-11 6.00 ** **
8.000e-03 2.436e-11 5.43 5.415e-10 6.00 5.039e-12 6.22 ** **
6.667e-03 9.133e-12 5.38 1.819e-10 5.98 1.089e-12 8.40 ** **
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Figure 2.2. Errors of the different implementations for the parabolic example (2.50) solved
with RK and rational SDIRK3, tf = 1, and Gauss3, tf = 2, with h=1/100.
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Parabolic problem in 2D

Finally, we study the two dimensional problem in the square domain Ω = (0, 1) × (0, 1),
again with homogeneous Dirichlet boundary conditions,

ut(t, x, y) = ∆u(t, x, y) + f(t, x, y), 0 ≤ t ≤ tf , (x, y) ∈ Ω,
u(0, x, y) = u0(x, y), (x, y) ∈ Ω,
u(t, x, y) = 0, 0 ≤ t ≤ tf , (x, y) ∈ ∂Ω,

(2.52)

where f : [0, 1] × Ω̄ → C, u0 : Ω̄ → C. We consider X = L2 (Ω), A = ∆, D(A) =
H2 (Ω) ∩H1

0 (Ω). The bound (1.2) holds with ω = 0 and M = 1. We adjust the data u0
and f in such a way that u(t, x, y) = x3y(x − 1)(y − 1)3et, 0 ≤ t ≤ tf , (x, y) ∈ Ω̄, is the
solution of the problem (2.52).

Table 2.4: Errors and orders for the parabolic example (2.52) solved with RK and rational SDIRK3
method with h=1/100, tf = 1.

Runge–Kutta Explicit Implicit Centered

step size error order error order error order error order
5.000e-02 9.612e-07 – 2.904e-08 – 1.311e-09 – 7.333e-10 –
2.500e-02 1.645e-07 2.55 1.745e-09 4.06 6.841e-11 4.26 1.007e-10 2.86
1.250e-02 2.417e-08 2.77 1.081e-10 4.01 7.403e-12 3.21 1.337e-11 2.91
6.250e-03 3.038e-09 2.99 7.008e-12 3.95 8.825e-13 3.07 1.332e-12 3.33
3.125e-03 3.372e-10 3.17 4.638e-13 3.92 8.320e-14 3.41 1.118e-13 3.57
1.563e-03 3.474e-11 3.28 3.118e-14 3.89 7.372e-15 3.50 9.126e-15 3.61

We discretize in space with centered finite differences on the uniform grid (xi, yj) =
(ih, jh), for i, j = 1, . . . , N , with h = 1/(N + 1). If we consider lexicographic order to
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order the grid points, the matrix Ah is the N2 ×N2 tridiagonal-block matrix

Ah =
1

h2


D J
J D J

. . . . . . . . .

J D

 , (2.53)

where D and J are the N ×N matrices

D =


−2 1
1 −2 1

. . . . . . . . .

1 −2

 , J =


0 1
1 0 1

. . . . . . . . .

1 0

 .

In this case, we solve the systems (2.43) using an iterative algorithm: the gradient con-
jugate method. This method avoids explicitly constructing the matrix Ah, so that the
function values in the mesh are stored in a matrix that mimics the structure of the do-
main. To solve the system, only a subroutine is needed to apply the system matrix on
the function values, which is very efficient due to the sparsity of Ah. We consider again
SDIRK3 and Gauss3 for the time integration and, by the same reasoning, the main result
in [50] guarantees that u(t, ·, ·) ∈ Xν , 0 ≤ t ≤ tf , for every 0 < ν < 1.25, so the expected
orders of convergence of the Gauss3 and SDIRK3 methods are the same as in the previous
one-dimensional case. We now consider also the centered nodes (2.41).

Table 2.5: Errors and orders for the parabolic example (2.52) solved with RK and rational Gauss3
method with h = 1/100, tf = 2.

Runge–Kutta Explicit Implicit Centered

step size error order error order error order error order

1.667e-01 1.100e-10 – 1.119e-09 – 3.391e-11 – 7.852e-12 –
1.111e-01 1.325e-11 5.22 9.316e-11 6.13 3.149e-12 5.86 5.538e-13 6.54
8.333e-02 2.893e-12 5.29 1.586e-11 6.15 5.694e-13 5.94 8.454e-14 6.53
6.667e-02 8.831e-13 5.32 4.021e-12 6.15 1.483e-13 6.03 2.117e-14 6.21
5.556e-02 3.344e-13 5.33 1.315e-12 6.13 4.791e-14 6.20 8.214e-15 5.19

We achieve order p with the rational methods as it is shown in Tables 2.4 and 2.5.
The centered nodes turn out to have a similar behaviour than the implicit nodes for p = 4
but turn out more accurate when p = 6, as Remark 2.5 predicts. The rational method
with explicit nodes are once again inadequate against Runge–Kutta when p = 6 in terms
of error against time step size (see also figure 2.3).

51
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Figure 2.3. Errors of the different implementations for the parabolic example (2.50) solved
with RK and rational SDIRK3, tf = 1, and Gauss3, tf = 2, with h=1/100.
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Chapter 3

Rational methods for abstract,
semilinear problems without order
reduction

True Laws of Nature cannot be linear.

Albert Einstein

3.1 Introduction

After designing the family of methods (2.29) to time-integrate linear problems, we aim
to extend them to nonlinear problems. In particular, in this chapter we consider their
extension to semilinear problems of the form{

u′(t) = Au(t) + f(t, u(t)), 0 < t < T,

u(0) = u0.
(3.1)

The key point in fitting these problems into the semigroup framework [31, 39, 53, 66]
is the domain of definition of the source term f , which determines the class of admissible
nonlinearities. We briefly motivate the necessity of this choice. Typically, one assumes
that the source term f is defined on a fractional domain, f : [0,∞)×Xα → X, 0 ≤ α <
1, and satisfies a (global or local) Lipschitz condition of the form

∥f(t, u)− f(t, v)∥ ≤ L∥u− v∥α, for u, v ∈ Xα.

When this is the case, there are at least two main reasons for requiring f to be defined
on a restricted space Xα, rather than on X, when dealing with typical PDEs in Lp spaces.
The first, more obvious, reason is that the source term may involve partial derivatives of u.
In our context, this requires that the domain of f is a suitable Sobolev space where such
derivatives are well defined. The second reason is that, for a function to satisfy a Lipschitz
condition in a nontrivial case, it is usually necessary for the functions to be bounded; that
is, the domain of f must be a subset of L∞. According to Sobolev embeddings (1.51), this
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Chapter 3: Rational methods for abstract, semilinear problems without order reduction

can be achieved by imposing additional regularity on the considered Sobolev spaces. For
this reason, we must adopt different assumptions on the nature of the semigroup and the
space Xα depending on the particular nonlinearity under consideration. In Section 3.3,
we present some specific cases that illustrate these facts.

Before describing the numerical approximation, it is useful to recall that problem (3.1)
admits a unique continuous mild solution u : [0, T ]→ Xα under such a suitable Lipschitz
condition on f and u0 ∈ Xα, that is, a function satisfying the variation-of-constants
formula

u(t) = etAu0 +

∫ t

0

e(t−s)Af(s, u(s)) ds, 0 < t < T. (3.2)

The mild solution need not be classical. However, additional regularity of f (for instance,
if f is continuously differentiable) ensures that u is a classical solution of (3.1). See the
main references [31, 39, 53, 66] for further details.

We now outline the content of this chapter. In Section 3.2.1, we first explain the
main hypotheses on problem (3.1), which are closely related to the discussion above on
the framework for nonlinearities, and we propose the numerical scheme for their time
integration, based on that of Chapter 2. In Section 3.2.2, we state some preliminary
results needed to prove the main result of the chapter, Theorem 3.7, which is established
in Section 3.2.3. The method for semilinear problems requires a process of precomputing
some numerical approximations to the first time steps, similar to what is done in multistep
methods; we explain how to carry this out within our framework in Section 3.2.4. Finally,
in Section 3.3, we present numerical experiments and discuss practical implementation
issues.

3.2 Derivation and analysis of the method

3.2.1 Main assumptions and the proposed method

The goal of this section is then to extend the scheme (2.29) for linear problems (2.1) to
semilinear problems of the form (3.1). The construction of the new numerical scheme and
the analysis of its convergence require familiarity with the material presented in Chapter 2.

Throughout the chapter, we want to distinguish between the hyperbolic and parabolic
case, since for the latter some results can be improved. For reasons that will become clear
in the next paragraph, we will refer to the weaker hypothesis of the first case with α = 0
and with α > 0 to the stronger hypothesis of the second case.

Hypothesis H1.

� If α = 0, let A : D (A) ⊂ X → X be a densely defined and closed linear operator
on X satisfying the resolvent condition

∥ (λI − A)−n ∥ ≤ M

(Reλ− ω)n
(3.3)

on the plane {λ ∈ C : Reλ > ω} for M ≥ 1, ω ∈ R. That is, A ∈ G (X,M,ω).
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� If α > 0, let A : D (A) ⊂ X → X be a densely defined and closed linear operator
on X satisfying the resolvent condition

∥ (λI − A)−1 ∥ ≤ M

|λ− ω|
(3.4)

on the sector {λ ∈ C : 0 ≤ |arg (λ− ω)| ≤ π − θ, λ ̸= ω} for M ≥ 1, ω ∈ R and
sectorial angle 0 < θ < π/2, that is, A ∈ G (X,M,ω, θ).

Under this assumption, the operator A is the infinitesimal generator of an analytic
semigroup

{
etA
}
t≥0

. Fixed ω∗ > ω, the fractional powers of Ã = ω∗I − A are well

defined. We set Xα = D(Ãα) endowed with the graph norm ∥ · ∥α of Ã. It is well
known that Xα is independent of ω∗ > ω and that changing ω∗ > ω results in an
equivalent norm. In addition to (1.2), we now also have the estimate

∥tαÃαetA∥ ≤Metω. (3.5)

The class of nonlinearities f allowed in this setting depends on the nature of the
semigroup

{
etA
}
t≥0

.

Hypothesis H2.

� If α = 0 and
{
etA
}
t≥0

is just a C0 semigroup, we assume that f : [0, T ]×X → X is
locally Lipschitz continuous. Thus, there exists a real number L such that

∥f(t, ξ)− f(t, η)∥ ≤ L∥ξ − η∥ (3.6)

for all t ∈ [0, T ] and max (∥ξ∥, ∥η∥) ≤ R.

� If α > 0 and
{
etA
}
t≥0

is analytic, we can afford stronger nonlinearities and we

assume that f : [0, T ] × Xα → X is locally Lipschitz. Thus, there exists a real
number L such that

∥f(t, ξ)− f(t, η)∥ ≤ L∥ξ − η∥α (3.7)

for all t ∈ [0, T ] and max (∥ξ∥α, ∥η∥α) ≤ R.

We note that for the convergence proofs in the chapter, it is sufficient that (3.6) and
(3.7) holds in a strip along the exact solution. Although, by simplicity, we assume that f
is locally Lipschitz.

The methods designed in [10] part from a rational mapping

r(z) = r∞ +
k∑

ℓ=1

mℓ∑
j=1

rℓ,j (1− wℓz)
−j , (3.8)

that may be the stability function of a Runge–Kutta method of order p. Again, when the
semigroup is analytic, we can consider a wider class of rational mappings as a starting
point.

Let r(z) be a rational function that approximates the exponential ez with order p ≥ 1,
that is, it satisfies (1.34).
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Hypothesis H3.

• If α = 0, we assume that r is A-acceptable.

• If α > 0 and A ∈ G (X,M,ω, θ), we assume that r is strongly A(ϑ)-acceptable
with ϑ > θ.

Under these assumptions, the theory in Chapter 1 guarantees that there exists a number
τ0 > 0 such that the operator

r(τA) = r∞ I +
k∑

ℓ=1

mℓ∑
j=1

rℓ,j (I − τwℓA)
−j (3.9)

is well defined for every 0 < τ < τ0.

We part from the scheme for linear problems (2.29), that requires evaluating the source
term f in the times tn + τcn ≥ 0. However, when integrating a semilinear problem we
cannot dispose directly of the values of f , since they depend on the solution u that we
are trying to approximate. We then propose to choose integer nodes cn ∈ Zp, so that the
times tn + τcn fall on the time grid and we can approximate the source term using the
approximate values of the function f(tn, u(tn)) ≈ f(tn, un).

In what follows we will consider the use of the nodes cn = [−p + 1, . . . , 0] ∈ Zp

or cn = [−p + 2, . . . , 1] ∈ Zp. The first choice requires the use of the previous values
Un = [un−p+1, . . . , un] to compute un+1, so it is explicit; whereas the second choice requires
Un = [un−p+2, . . . , un+1], and an implicit scheme turns up.

The proposed scheme can be written in a form which is analogous to (2.29),

un+1 = r (τA)un + τEn(τ)f (tn + τcn,Un) , n ≥ p− 1. (3.10)

Starting values u0, u1, · · · , up−1, must be provided. In Section 4.2.5 we explain how to
compute the first values within this framework. In Section 4.3 we discuss in depth the
consequences of choosing each of the node possibilities.

3.2.2 Preliminaries: discrete inequalities and regularisation

In this section we state some results which are required to prove the convergence of the
scheme (3.10) in the following ones.

The first lemmas are aimed at proving a variant of the discrete Gronwall lemma which
is necessary for the proof of the main result of the chapter. The following lemma collects
some bounds whose proof is elementary, but which are stated together for the sake of
clarity.

Lemma 3.1. Let 1 ≤ k ≤ n− 1, p ≥ 1, m+(k) = inf(n− 1, k + p− 1) and δ, α ∈ (0, 1).
Assume that τ > 0 and that tm = mτ , for 0 ≤ m ≤ n. Then the following inequalities
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hold:

m+(k)∑
m=k

t−α
n−m ≤ p1+α t−α

n−k, (3.11)

τ

n−1∑
m=0

t−α
n−m ≤

t1−α
n

1− α
, (3.12)

m+(k)∑
m=k

δn−m−1 ≤ p δ1−pδn−k−1, (3.13)

n−1∑
m=1

δn−m−1 ≤ 1

1− δ
. (3.14)

Proof. To prove the first inequality notice that, for k ≤ m ≤ m+(k),

t−α
n−m

t−α
n−k

=
(n− k)α

(n−m)α
=

(
1 +

m− k
n−m

)α

≤ (1 + p− 1)α = pα,

which proves (3.11), since the sum has at most p terms. For the second inequality, notice
that

τ
n−1∑
m=0

t−α
n−m = τ

n∑
m=1

t−α
m ≤ τ 1−α

∫ n

0

ds

sα
≤ t1−α

n

1− α
.

The third one is true since, for m ≤ k ≤ m+(k),

δn−m−1 = δk−mδn−k−1 ≤ δ1−pδn−k−1,

and again the sum has at most p terms. The last inequality is just the sum of a geometric
series.

We now state the following lemma, which is a variant of the discrete Gronwall lemma
introduced in [55].

Lemma 3.2. Let τ > 0, N ≥ 1 and tn = nτ , 0 ≤ n ≤ N . Let ξn be a sequence of real
positive numbers with ξ0 = 0 and

(a) ξpn =
n∑

k=n−p+1

ξk or (b) ξpn =
n+1∑

k=n−p+2

ξk, for p− 1 ≤ n ≤ N − 1. (3.15)

Assume that there exist α ∈ (0, 1), δ ∈ [0, 1) and K0, K1 ≥ 0 such that

max
0≤k≤p−1

ξk ≤ K0 (3.16)

and that

ξn+p−1 ≤ K0 +K1

n−1∑
m=0

(
τ t−α

n−m + τ 1−αδn−m−1
)
ξpm+p−1, n ≥ 0. (3.17)
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Then, there exists a constant K ≥ 0 depending on γ, α, T = Nτ,K1, p, δ such that

ξn ≤ KK0 for n ≥ p− 1. (3.18)

Proof. We first assume case (a) in (3.15). Notice that

ξn+p−1 ≤ K0 +K1

n−1∑
m=0

(
τ t−α

n−m + τ 1−αδn−m−1
) m∑
k=m−p+1

ξk+p−1

= K0 +K1

n−1∑
k=−p+1

m+(k)∑
m=m−(k)

(
τt−α

n−m + τ 1−αδn−m−1
)
ξk+p−1,

where m−(k) = max {k, 0} and m+(k) = min {k + p− 1, n− 1} are the values that allow
the previous sum to be reordered. Now, we use the estimates in Lemma 3.1. For −p+1 ≤
k ≤ 0, m−(k) = 0, and formulas (3.12), (3.14) imply that, for a constant K > 0 depending
on T, δ, α, it is true that

m+(k)∑
m=0

(
τ t−α

n−m + τ 1−α δn−m−1
)
ξk+p−1 ≤ K ξk+p−1.

On the other hand, for 1 ≤ k ≤ n− 1, m−(k) = k, and taking into account (3.11), (3.13),

m+(k)∑
m=k

(
τ t−α

n−m + τ 1−α δn−m−1
)
ξk+p−1 ≤ K

(
τ t−α

n−k + τ 1−αδn−k−1
)
ξk+p−1.

Then, we combine the latter and (3.16) to get that, for n ≥ 0,

ξn+p−1 ≤ KK0 +KK1

n−1∑
k=1

(
τ t−α

n−k + τ 1−αδn−k−1
)
ξk+p−1, (3.19)

for another constant K. If we consider case (b), we obtain an additional term

KK1 τ
1−αξn+p−1

in the right hand side. It is clear that, for small enough τ , case (b) may be reduced to
formula (3.19). The proof concludes applying Lemma 2.1. in [36].

Hereafter, the letter K denotes general positive constants that may depend on the
semigroup (M , ω, α), the rational method (C, γ) or the interval [0, T ] of integration, but
that does not depend on any considered particular solution u, source term f or step size
τ .

When A generates an analytic semigroup and we work with functions u : [0, T ]→ Xα,
we expect the numerical approximations to the solution to be in the space Xα, not just
in X. Since the nonlinearity f takes values in X, the linear part of the numerical scheme,
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governed by the operator constructed from the rational function r (τA), must have some
regularisation property that guarantees that the numerical solutions are in Xα. This is
what motivates the results with which this section ends.

First of all, we have to recall the estimate (1.42). In accordance with the remarks after
Lemma 3.2, we use it in the form

∥ (r (τA)− r∞I)x∥ ≤ K∥x∥, x ∈ X,

where K is understood that depends on ω, T . This shows that the linear part of the
numerical sheme regularises the solution after any amount of time steps. Moreover, we
state in the following lemma that the operators E(τ) and En(τ) satisfy a similar property.

Lemma 3.3. Let α ∈ (0, 1), A ∈ G(X,M,ω, θ) and E(τ), En(τ) be the operators defined
in (2.16) and (2.29), respectively. For 0 ≤ β ≤ α, it is true that

∥E(τ) v∥β ≤ K τ−β∥v∥∞, for v ∈ Cub ([0,∞), X) , (3.20)

∥En(τ)v∥β ≤ K τ−β∥v∥Xp , forv ∈ Xp, (3.21)

where ∥ · ∥Xp corresponds to the maximum of the norm of each component in X.

Proof. For A ∈ G(X,M,ω, θ) and 0 < τ < τ0, formula (1.8) implies that there exists a
constant K such that

∥ (I − τwℓA)
−n ∥ ≤ M

|1− τwℓ ω|n
≤ K.

Moreover,

A (I − τwℓA)
−n =

1

τwℓ

(
(I − τwℓA)

−1 − I
)
(I − τwℓA)

−n+1 ,

so we also have that

∥A (I − τwℓA)
−n ∥ ≤ K

τ
.

These formulas are particular cases of the boundedness of r(τA) and (1.41) for the func-
tions r(z) = (1− wℓ z)

−n, 1 ≤ ℓ ≤ k. The same reasoning proves that

∥ (I − τwℓB)−n ∥ ≤ 1.

Then, the proof concludes since it is true that for the interpolation spaceXβ = [X,D(A)]β,
0 ≤ β ≤ α,

∥ (I − τwℓA)
−1 ∥β ≤

K

τβ
,

and E(τ), En(τ) are linear combinations of resolvents of A.

To conclude, we state a lemma which is based on these results that will be useful in
the proof of the main theorem.
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Lemma 3.4. Let 0 < α < 1. Under hypotheses H1 and H3, let ξm ∈ Xα, 0 ≤ m ≤ n.
Then, there exists a positive constant K (that may be different in each case) such that
the following estimates hold∥∥∥∥∥τ

n−1∑
m=0

rn−m−1 (τA) ξm

∥∥∥∥∥
α

≤ Kτ

n−2∑
m=0

(
∥ξm∥
tαn−m−1

+ γn−m−1∥ξm∥α
)
+ τ∥ξn−1∥α, (3.22)∥∥∥∥∥τ

n−1∑
m=0

rn−m−1 (τA) ξm

∥∥∥∥∥
α

≤ K

(
max

0≤m≤n−2
∥ξm∥+ τ max

0≤m≤n−1
∥ξm∥α

)
. (3.23)

Proof. Taking into account the regularization estimate (1.42), the left hand side in (3.22)
and (3.23) is bounded by∥∥∥∥∥τ

n−1∑
m=0

(
rn−m−1 (τA)− rn−m−1

∞
)
ξm

∥∥∥∥∥
α

+

∥∥∥∥∥τ
n−1∑
m=0

rn−m−1
∞ ξm

∥∥∥∥∥
α

≤ τ
n−2∑
m=0

K

tαn−m−1

∥ξm∥+ τ∥ξn−1∥α + τ
n−2∑
m=0

γn−m−1∥ξm∥α,

which proves (3.22). To prove (3.23), notice that

τ
n−2∑
m=0

∥ξm∥
tαn−m−1

≤ τ 1−α

(∫ n

0

1

sα
ds

)
max

0≤m≤n−2
∥ξm∥

≤ τ 1−αn1−α

1− α
max

0≤m≤n−2
∥ξm∥ ≤

T 1−α

1− α
max

0≤m≤n−2
∥ξm∥,

and

τ
n−1∑
m=0

γn−m−1∥ξm∥α ≤ τ

(
∞∑

m=0

γm

)
max

0≤m≤n−1
∥ξm∥α ≤ τ

1

1− γ
max

0≤m≤n−1
∥ξm∥α.

In the case α = 0, instead of the above lemma it will be sufficient to use the direct
bound ∥∥∥∥∥τ

n−1∑
m=0

rn−m−1 (τA) ξm

∥∥∥∥∥ ≤ τ Cs(n)
n−1∑
m=0

∥ξm∥, (3.24)

for which no hypothesis on |r∞| is required.

3.2.3 Analysis of convergence

Before stating the main theorem of the chapter, we have to prove a previous result. This
theorem simply generalises the convergence result of the method for linear problems,
Theorem 2.6, to the case where we deal with spaces Xα. The proof is similar to that of
that theorem, but now taking into account the regularisation results.
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For the rest of the section, assume hypotheses H1, H2 and H3, and let h : [0, T ]→ X
to be h(t) = f(t, u(t)). The linear problem{

v′(t) = Av(t) + h(t), 0 < t < T,

v(0) = u0,
(3.25)

has u as a solution and is now discretized by means of the recurrence

vn+1 = r (τA) vn + τEn(τ)h (tn + τcn) , n ≥ 1, (3.26)

for some sequence {cn}N−1
n=0 . We firstly state the version of Proposition 2.2 for the space

Xα that we require in the theorem.

Proposition 3.5. Let A ∈ G(X,M,ω, θ) and G be the operator defined in (2.6). Then,
G is the infinitesimal generator of a C0 semigroup of bounded, linear operators

{
etG
}
t≥0

in the space Zα = Xα × Cub ([0,∞), X). The semigroup is the one given by (2.7) and it
has growth

∥etG∥α ≤M(1 + tα) eω
+ t. (3.27)

In particular, G ∈ G(Zα,Mω̃, ω̃) for every ω̃ > ω+ and an adequate Mω̃ > M .

Proof. The proof is a direct consequence of the variation-of-constants formula and the
regularity estimate (3.5).

Theorem 3.6. Under the hypotheses of Lemma 3.4, let u : [0, T ]→ Xα be the solution of
(3.25) to be approximated on the interval [0, T ]. Assume also that u ∈ Cp+1 ([0, T ], Xα),
h ∈ Cp+1 ([0, T ], X). If vn is the numerical approximation to u(tn) given by (3.26) with
constant step size 0 < τ = T/N < τ0,

∥u(tn)− vn∥α ≤ K τ p
(
∥u(p+1)∥α,∞ + ∥h(p)∥∞ + ∥h(p+1)∥∞

)
, 0 ≤ n ≤ N. (3.28)

Proof. Since the previous proposition states that SG is a semigroup in Xα × Y and the
convergence estimate (1.38) guarantees that, for the abstract scheme

v̄n+1 = r (τA) v̄n + τE(τ) rn (τB)h, n ≥ 1, (3.29)

we get global error of order p,

∥u(tn)− v̄n∥α ≤ C τ p
(
∥u(p+1)∥α,∞ + ∥h(p+1)∥∞

)
. (3.30)

Then subtracting (3.29) from (3.26),

vn+1 − v̄n+1 = r (τA) (vn − v̄n) + τ (En(τ)h(tn + τcn)− E(τ) rn (τB)h)

= r (τA) (vn − v̄n) + τ (En(τ)h(tn + τcn)− E(τ)h(tn + ·))
+ τ (E(τ) (h(tn + ·)− rn (τB)h)) , for n ≥ 0,
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with v0 = v̄0. Then, by the variation-of-constants formula, the error ∥vn− v̄n∥α is bounded
by the sum of the two terms

(I) =

∥∥∥∥∥τ
n−1∑
m=0

rn−m−1 (τA) (Em(τ)h(tm + τcm)− E(τ)h(tm + ·))

∥∥∥∥∥
α

,

(II) =

∥∥∥∥∥τ
n−1∑
m=0

rn−m−1 (τA)E(τ) (h(tm + ·)− rm (τB)h)

∥∥∥∥∥
α

.

The proof is concluded taking into account (3.23), the regularisation estimates (3.21) and
(3.20), and the approximation estimate (2.21). Notice that in this case Cs(n) = O(1),
because the semigroup is analytic.

Now, we are in position to state and prove the main result.

Theorem 3.7. For 0 ≤ α < 1, let u : [0, T ] → Xα be the solution of (3.1) to be
approximated in the interval [0, T ]. Let us assume hypotheses H1, H2 and H3 and also
that u ∈ Cp+1 ([0, T ], Xα) and h ∈ Cp+1 ([0, T ], X). If un is the numerical approximation
to u(tn) given by (3.10) with constant step size 0 < τ = T/N < τ0, and u0, · · · , up−1 ∈ Xα

are starting values satisfying

∥u(tn)− un∥α ≤ C0 τ
p, 0 ≤ n ≤ p− 1, (3.31)

then,

∥u(tn)− un∥α ≤ K Cs(n) τ
p
(
∥u(p+1)∥α,∞ + ∥h(p)∥∞ + ∥h(p+1)∥∞

)
, 0 ≤ n ≤ N.

(3.32)

Proof. Along the proof we denote fn = f(tn + τcn,Un), hn = h(tn + τcn) and en =
∥u(tn)− un∥α, for 0 ≤ n ≤ N , and

epn =



n∑
k=n−p+1

ek, if cn = [−p+ 1, · · · , 0],

n+1∑
k=n−p+2

ek, if cn = [−p+ 2, · · · , 1],
(3.33)

for p− 1 ≤ n ≤ N . We recall (3.10) and (3.26) to get, for 0 ≤ n ≤ N ,

un+p − vn+p = r (τA) (un+p−1 − vn+p−1) + τEn+p−1(τ) (fn+p−1 − hn+p−1) . (3.34)

By the discrete variation-of-constants formula,

un+p−1 − vn+p−1 =r (τA)
n (up−1 − vp−1)

+ τ

n−1∑
m=0

r (τA)n−m−1Em+p−1(τ) (fm+p−1 − hm+p−1) , (3.35)
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for 0 ≤ n ≤ N − p+ 1. We use (3.21) and the Lipschitz property of f to get

∥Em+p−1(τ) (fm+p−1 − hm+p−1) ∥ ≤ K Lepm+p−1, 0 ≤ m ≤ N − p,

and

∥Em+p−1(τ) (fm+p−1 − hm+p−1) ∥α ≤ τ−αK Lepm+p−1, 0 ≤ m ≤ N − p.

Then, we bound the sum in (3.35) combining the previous estimates together with (3.22).
On the other hand, the first term in (3.35) is bounded using (1.37), (3.28) and (3.31),
giving rise to

∥un+p−1 − vn+p−1∥α ≤M C Cs(n) τ
p
(
∥u(p+1)∥α,∞ + ∥h(p)∥∞ + ∥h(p+1)∥∞

)
+K LCs(n)

n−1∑
m=0

(
τ t−α

n−m + τ 1−α γn−m−1
)
epm+p−1,

for some other constants C and K. Notice that, due to (3.24), if α = 0 the term
τ 1−α γn−m−1 is unnecessary whereas if α > 0 then Cs(n) = O(1). Finally, to bound
the global error we combine the above estimate with Theorem 3.6 to get

en+p−1 ≤M C Cs(n) τ
p
(
∥u(p+1)∥α,∞ + ∥h(p)∥∞ + ∥h(p+1)∥∞

)
+K LCs(n)

n−1∑
m=0

(
τ t−α

n−m + τ 1−α γn−m−1
)
epm+p−1,

and the proof concludes by using the version of discrete Gronwall lemma in Lemma 3.2.
Notice that the hypothesis (3.31) is fully taken into account in this step.

3.2.4 Starting values

The scheme which has been presented requires evaluating the source term at each time
step. To do so, previously computed approximated values un can be used to evaluate f
at t = tn. Even so, we require some starting values u0, u1, . . . , up−1 to compute the first
step and start the recurrence process.

One first possibility is just to use an auxiliary method to compute the starting values.
However, in this context it is natural to look for values u0, . . . , up−1 that satisfy the implicit
scheme

un+1 = r (τA)un + τEn(τ) f (tn + τcn,Un) , 0 ≤ n ≤ p− 2, (3.36)

where in the first steps cn are such that tn + τcn = [0, τ, . . . , (p − 1)τ ]T and Un =
[u0, . . . , up−1]

T for 0 ≤ n ≤ p− 2. It is then necessary to show that the system (3.36) has
a unique solution that approximates the values u(tn), 1 ≤ n ≤ p− 1, within the adequate
order. To see this, we rewrite the system as a fixed point equation in Xp−1

α

U∗ = N (U∗) , (3.37)
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where N : Xp−1
α → Xp−1

α is the function defined by

U =


u1
...

up−1

 7→ N (U) =


ũ1
...

ũp−1



=


r (τA)u0 + τEn(τ) f

(
t0 + τc0, [u0,U

T ]T
)

r (τA) ũ1 + τEn(τ) f
(
t1 + τc1, [u0,U

T ]T
)

...
r (τA) ũp−2 + τEn(τ) f

(
tp−2 + τcp−2, [u0,U

T ]T
)
 .

To show that (3.37) has a unique solution it suffices to see thatN is a contractive mapping
for sufficiently small τ . In fact, if U,V ∈ Xp−1

α , the first component of N (U)−N (V) is

ũ1 − ṽ1 = τEn(τ)
(
f
(
t0 + τc0, [u0,U

T ]T
)
− f

(
t0 + τc0, [u0,V

T ]T
))
, (3.38)

so using (3.21) and the Lipschitz property of f

∥ũ1 − ṽ1∥α ≤ KLτ 1−α∥U−V∥α, (3.39)

where ∥U∥α for a vector U ∈ Xp
α denotes the maximum of the ∥ · ∥α-norm of its compo-

nents. Then we assume that ∥ũk− ṽk∥α ≤ kMk Lτ 1−α∥U−V∥α and proceed by induction
for 1 ≤ k ≤ p− 2,

∥ũk+1 − ṽk+1∥α ≤ K∥ũk − ṽk∥α +KLτ 1−α∥U−V∥α
≤ (k + 1)Kk+1 L τ 1−α∥U−V∥α.

Therefore,

∥N (U)−N (V)∥α ≤ pKp L τ 1−α∥U−V∥α, (3.40)

and the mapping is contractive for sufficiently small τ . In that case, the contractive
mapping theorem guarantees that (3.37) has a unique solution U = [u1 . . . , up−1]

T . To
conclude, we show that this fixed point approximates the solution with order p. We set
U(tn) = [u0, u(t1), . . . , u(tp−1)]

T for 0 ≤ n ≤ p − 2. Under the assumptions of Theorem
3.6, the scheme

ūn+1 = r (τA) ūn + τEn(τ)f (tn + τcn,U(tn)) , 0 ≤ n ≤ p− 2, (3.41)

is such that

∥ūn − u(tn)∥α ≤ C K τ p
(
∥u(p+1)∥α,∞ + ∥h(p)∥∞ + ∥h(p+1)∥∞

)
, 0 ≤ n ≤ p− 1. (3.42)

Then we have, for 0 ≤ n ≤ p− 2,

un+1 − ūn+1 = r (τA) (un − ūn) + τEn(τ) (f(tn + τcn,Un)− f(tn + τcn,U(tn))) ,
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and by the discrete variation-of-constants formula and (3.21), we get that ∥un − ūn∥α is
bounded by

τ

∥∥∥∥∥
n−1∑
m=0

r (τA)n−m−1Em(τA) (f(tm + τcm,Um)− f(tm + τcm,U(tm)))

∥∥∥∥∥
α

≤ pKLτ 1−α sup
1≤k≤p−1

∥u(tk)− uk∥α.

By the triangle inequality, the previous bound and (3.42)

∥un − u(tn)∥α ≤K τ p
(
∥u(p+1)∥α,∞ + ∥h(p)∥∞ + ∥h(p+1)∥∞

)
+ pKL τ 1−α sup

1≤k≤p−1
∥u(tk)− uk∥α. (3.43)

We can take the supremum in the left hand side and, for small enough τ , and another
constant K,

sup
1≤k≤p−1

∥u(tk)− uk∥α ≤ K τ p
(
∥u(p+1)∥α,∞ + ∥h(p)∥∞ + ∥h(p+1)∥∞

)
. (3.44)

In practice, we can compute the initial approximations with an auxiliary method, which
in our experiments is Euler implicit method, and then iterate the function N to obtain
initial values within the adequate order.

3.3 Practical implementations and Results

3.3.1 Efficient implementation of the methods

In this section we show numerical results which are obtained with the numerical scheme
(3.10) and different choices of the nodes. For the spatial discretization, we use finite
difference methods. We take h > 0 as discretization parameter and we are led to systems
of ODEs {

u′h(t) = Ahuh(t) + fh(t, uh(t)), t ≥ 0,

uh(0) = u0,h.
(3.45)

The implementation of the scheme (3.10) applied to the latter requires evaluating the
operator r (τAh). In practice, this means dealing with systems of equations of the form

(I − τ wℓAh)x = y,

so it is sufficient to have a routine that solves systems of this form and there is no need to
calculate the inverse of the matrix (I − τ wℓAh), which tipically has a sparse structure.

After the spatial discretization, scheme (3.10) is applied to the PDE in the discretized
form (3.45). Recall the discussion on Section 2.3, where accurate details on the imple-
mentation issues of the linear version (2.29) can be found. Such matters are the same in
this case by adding the dependence of the source term on the function u and choosing the
appropriate nodes. In all examples, the scheme is implemented in three ways:
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Chapter 3: Rational methods for abstract, semilinear problems without order reduction

1. Explicit mode. We choose cn = [−p+ 1, . . . , 0]T ∈ Rp, so un−p+1, . . . , un are used to
compute un+1.

2. Semiexplicit mode. First, we take a step with the explicit scheme to have an
approximation ũn+1 to u(tn+1). Then, we correct this approximation by taking
cn = [−p+ 2, . . . , 1] and using un−p+2, . . . , ũn+1 to compute un+1.

3. Implicit mode. We set a tolerance TOL and iterate the previous process until two
successive iterates ũ

[k]
n+1 and ũ

[k+1]
n+1 are such that

∥ũ[k]n+1 − ũ
[k+1]
n+1 ∥α ≤ TOL.

In all the numerical experiments below, the tolerance to calculate implicitly the starting
values or for the iteration in the implicit mode has been TOL = 10−14.

In this case we consider the 3-stages SDIRK method and RadauIA3. The 3-stages
Gauss method is not strongly A-stable, since its stability function is such that r∞ = −1,
so for problems that require α > 0 it does not fit in our framework. However, we find
that the numerical experiments also work with this method, but we do not include them.

The 3-stages RadauIA method (see, e.g., [38]) is the Runge–Kutta method with
the following Butcher tableau

0 1
9

−1−
√
6

18
−1+

√
6

18

6−
√
6

10
1
9

88+7
√
6

360
88−43

√
6

360

6+
√
6

10
1
9

88+43
√
6

360
88−7

√
6

360

1
9

16+
√
6

360
16+

√
6

360

.

The method has s = 3 stages and order of convergence p = 5, it is A-stable and it has
a rational stability function that can be written in the form

r(z) =
r1

1− w1z
+

r2
1− w2z

+
r3

1− w3z
,

with rℓ, wℓ ∈ C, Re(wℓ) > 0, for ℓ = 1, 2, 3. In particular, the method is strongly A-stable.
As the method has order p = 5, in each step we must fix cn ∈ R5 and obtain three vectors
γn
ℓ ∈ R5 by solving the linear systems (2.22). Then, a step of the method is done by

computing

un+1 =
3∑

ℓ=1

rℓ (I − τwℓA)
−1 (un + τ wℓ γ

n
ℓ · f (tn + τcn,Un)

)
.
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3.3.2 Numerical experiments

Parabolic problem in 1D

We consider a semilinear parabolic problem in the unit interval with homogeneous bound-
ary conditions,

ut(t, x) = uxx(t, x) + λ

(∫ 1

0

u(t, x) dx

)
ux + f(t, x), 0 ≤ t ≤ 1, 0 ≤ x ≤ 1,

u(0, x) = u0(x), 0 ≤ x ≤ 1,
u(t, 0) = 0, 0 ≤ t ≤ 1,
u(t, 1) = 0, 0 ≤ t ≤ 1.

(3.46)
where f : [0, 1]×Xα → C, u0 : [0, 1]→ Xα. In order to fit the problem in our framework,
we take X = L2[0, 1] and A = d2/dx2 with D(A) = H2[0, 1]∩H1

0 [0, 1]. We set α = 1/2, so
that according to (1.52), Xα = H1

0 [0, 1] and ∥·∥α = ∥·∥H1(0,1). We adjust the data u0 and f
in such a way that u(t, x) = x(1−x) et, 0 ≤ t, x ≤ 1, is the solution of the problem. Notice
that the source term satisfies the Lipschitz condition, since the Sobolev embedding (1.51)
guarantees that H1

0 [0, 1] ↪→ L∞[0, 1]. We consider various values of the parameter λ to
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Figure 3.1. Errors in the discrete norm ∥·∥H1(0,1) against number of time steps for the parabolic
problem (3.46) with λ = 1, two different time integrators and J = 100.

test how the different implementations of the scheme behave with respect to the stiffness
of the source term f . We discretize the problem in space by means of finite differences. To
this end, we fix a number J of uniformly distributed nodes xj = jh, 1 ≤ j ≤ J , in (0, 1),
with h = 1/(J + 1), the matrix of the semidiscrete system of the spatial discretization is
again (2.51), and the corresponding linear systems are solved using the Thomas algorithm.
The spatial derivatives ux and uxx are approximated by using central finite differences and
the standard three-point finite difference scheme, respectively; while the integral has been
approximated by using the composite Simpson’s rule. In this way, since the exact solution
is a polynomial of degree two in x, there are no spatial errors.
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Figure 3.2. Errors in the discrete norm ∥·∥H1(0,1) against number of time steps for the parabolic
problem (3.46) with λ = 1, two different time integrators and J = 100.

Table 3.1: Errors and order of convergence in Example 1 with the rational SDIRK3 method.

Explicit Semiexplicit Implicit

step size error order error order error order
5.000e-02 4.864e-07 – 1.095e-08 – 4.606e-09 –
2.500e-02 3.250e-08 3.90 2.952e-09 1.89 2.919e-09 0.66
1.250e-02 2.192e-09 3.89 3.451e-10 3.10 3.445e-10 3.08
7.692e-03 3.281e-10 3.91 6.201e-11 3.54 6.196e-11 3.53
4.545e-03 4.137e-11 3.94 8.748e-12 3.72 8.745e-12 3.72
2.632e-03 4.757e-12 3.96 1.075e-12 3.84 1.075e-12 3.83
1.563e-03 5.991e-13 3.97 1.410e-13 3.90 1.409e-13 3.90

Table 3.2: Errors and orders of convergence of Example 1, λ = 1, Radau IA3

Explicit Semiexplicit Implicit

step size error order error order error order
1.000e-01 6.995e-07 – 4.621e-08 – 3.550e-08 –
3.333e-02 2.858e-09 5.01 1.587e-10 5.16 1.553e-10 4.94
2.000e-02 2.209e-10 5.01 1.222e-11 5.02 1.218e-11 4.98
1.429e-02 4.094e-11 5.01 2.274e-12 5.00 2.274e-12 4.99
1.111e-02 1.163e-11 5.01 6.528e-13 4.97 6.540e-13 4.96
9.091e-03 4.261e-12 5.00 2.378e-13 5.03 2.377e-13 5.04
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As time integrators, we use the scheme (3.10) with the rational functions of the Runge–
Kutta methods SDIRK3 (p = 4) and the 3-stages RadauIA3 (p = 5) [38]. Notice that the
application of these RK methods does not give its classical order of convergence p, while
Tables 3.1 and 3.2 show that the scheme (3.10) does, as it is predicted by Theorem 3.7.
Both tables show results taking λ = 1.

In this case (λ = 1), it is interesting to note that in both cases the semiexplicit
mode involves an improvement of the error by slightly more than one order of magnitude.
However, the implicit mode does not practically improve on the semiexplicit mode, so its
higher computational cost is not justified. Moreover, if we take the number of systems
being solved in the integration as a magnitude for the computational cost, Figures 3.1
and 3.2 suggests that the explicit mode is more efficient than the semiexplicit one, since
the computational cost of the latter is twice that of the first for the same number of steps.

101 102 103

time steps

10-10

10-5

100

er
ro

rs
 in

 X
,

 n
or

m

6 = 30

Explicit

Semiexplicit

Implicit

102 103

time steps

10-12

10-10

10-8

10-6

10-4

10-2

er
ro

rs
 in

 X
,

 n
or

m

6 = 10

Explicit

Semiexplicit

Implicit

101 102 103

time steps

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

er
ro

rs
 in

 X
,

 n
or

m

6 = 1

Explicit

Semiexplicit

Implicit

Parabolic problem, SDIRK3 method

Figure 3.3. Errors in the discrete norm ∥·∥H1(0,1) against number of time steps for the parabolic
problem (3.46) with λ = 1, 10, 30 and the method SDIRK3.

Figures 3.1 and 3.2 show the error in the integration when the parameter λ is modified.
We take λ = 1, 10, 30 for SDIRK3 and λ = 1, 10, 15 for RadauIA3. With both methods
we observe that the explicit method does not perform out well when λ increases, while
the implicit one does not almost vary. The semiexplicit has an intermediate behaviour.
This is consistent with the well-known sensitivity of explicit methods to stiff problems,
whereas implicit methods handle it better due to their greater stability.

Parabolic problem in 2D

We consider a semilinear parabolic problem in the domain Ω = (0, 1)× (0, 1) with homo-
geneous boundary conditions,

ut(t, x, y) = ∆u(t, x, y) + u2 + f(t, x, y), 0 ≤ t ≤ 1, (x, y) ∈ Ω,
u(0, x, y) = u0(x, y), (x, y) ∈ Ω,
u(t, x, y) = 0, 0 ≤ t ≤ 1, (x, y) ∈ ∂Ω.

(3.47)
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Figure 3.4. Errors in the discrete norm ∥·∥H1(0,1) against number of time steps for the parabolic
problem (3.46) with λ = 1, 10, 15 and the method RadauIA3.

where f : [0, 1] × Ω → C, u0 : Ω → C. In order to fit the problem in our framework,
we take X = L2 (Ω), A = ∆ with D(A) = H2 (Ω) ∩ H1

0 (Ω). We set α = 3/4, so that
according to (1.52), Xα = H3/2 (Ω)∩H1

0 (Ω) and ∥ · ∥α = ∥ · ∥H3/2(0,1). We adjust the data
u0 and f in such a way that u(t, x, y) = x(1− x)y(1− y) et, 0 ≤ t, x ≤ 1, is the solution
of the problem.

We discretize the problem in space by means of finite differences. To this end, we fix
a number J of uniformly distributed nodes xj = jh, yk = kh, 1 ≤ j, k ≤ J , in (0, 1),
with h = 1/(J + 1). The spatial derivatives uxx and uyy are approximated by using the
standard three-point finite difference scheme, respectively, leading to the matrix (2.53)
under the lexicographical order. We solve the corresponding systems using the conjugate
gradient method. In this way, since the exact solution is a polynomial of degree two in x
and y, there are no spatial errors.

Table 3.3: Errors and orders of convergence of Example 2 with SDIRK3, J = 50.

Explicit Semiexplicit Implicit

step size error order error order error order
2.500e-02 1.402e-08 – 2.047e-10 – 1.791e-10 –
1.250e-02 9.234e-10 3.92 9.012e-11 1.18 8.930e-11 1.00
6.250e-03 6.197e-11 3.90 1.033e-11 3.12 1.031e-11 3.11
3.125e-03 4.095e-12 3.92 8.581e-13 3.59 8.571e-13 3.59
1.563e-03 2.641e-13 3.95 6.128e-14 3.81 6.128e-14 3.81

As time integrators, we use again the scheme (3.10) with the rational functions of the
Runge–Kutta methods SDIRK3 (p = 4) and 3-stages RadauIA3 (p = 5). Notice that the
application of these RK methods does not give its classical order of convergence p, while
Tables 3.3 and 3.4 show that the scheme (3.10) does, as it is predicted by Theorem 3.7.
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Table 3.4: Errors and orders of convergence of Example 2 with RadauIA3, J = 50.

Explicit Semiexplicit Implicit

step size error order error order error order
1.000e-01 5.600e-05 – 2.869e-06 – 3.188e-06 –
5.000e-02 2.322e-06 4.59 1.241e-07 4.53 1.320e-07 4.59
2.500e-02 8.220e-08 4.82 4.511e-09 4.78 4.665e-09 4.82
1.250e-02 2.721e-09 4.92 1.515e-10 4.90 1.542e-10 4.92
6.250e-03 8.746e-11 4.96 5.300e-12 4.84 5.340e-12 4.85

Hyperbolic problem

We consider a semilinear hyperbolic problem in the unit interval with periodic boundary
conditions,


ut(t, x) = −ux(t, x) + u− u3 + f(t, x), 0 ≤ t ≤ 1, 0 ≤ x ≤ 1,
u(0, x) = u0(x), 0 ≤ x ≤ 1,
u(t, 0) = u(t, 1), 0 ≤ t ≤ 1,

(3.48)

where f : [0, 1]× [0, 1]→ X, u0 : [0, 1]→ X. In order to fit the problem in our framework,
we take X = H1[0, 1], A = −d/dx with D(A) = {u ∈ H1[0, 1] : u(0) = u(1)} and α = 0,
so that ∥ · ∥α = ∥ · ∥X = ∥ · ∥H1(0,1). We adjust the data u0 and f in such a way that
u(t, x) = x3 et sin(π x)+(1−et), 0 ≤ t, x ≤ 1, is the solution of the problem. We fix again
number J of uniformly distributed nodes xj = jh, 1 < j ≤ J , in (0, 1), with h = 1/J ,
that leads to the matrix

Ah =
1

h


−1 1
1 −1

. . . . . .

1 −1

 . (3.49)

The corresponding systems are solved using a convenient adaptation of the Thomas al-
gorithm, so only O(N) operations and memory usage is required. The spatial derivatives
are approximated by upwind finite differences.

Tables 3.5 and 3.6 show the results for the hyperbolic problem with the scheme (3.10)
and the rational function of SDIRK3 and 3-stages RadauIA3, respectively. We find the
results to be similar to the parabolic problem.

Again, we obtain an improvement on the size of the error after the semiexplicit cor-
rection for a fixed step size and we observe that the order of the methods is in agreement
with that being predicted by Theorem 3.7.

Figure 3.5 presents the same information in a graphical form. In this problem, since
the semiexplicit method is approximately twice as costly per step as the explicit one, the
latter proves to be computationally more efficient.
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Figure 3.5. Error in the discrete norm associated to ∥ · ∥H1(0,1) against number of time steps
for the hyperbolic problem (3.48) with two different time integrators and J = 100.

Table 3.5: Errors and order of convergence in Example 3 with the rational SDIRK3 method, J=100.

Explicit Semiexplicit Implicit

step size error order error order error order
5.000e-02 1.839e-06 – 6.896e-07 – 7.013e-07 –
2.500e-02 1.430e-07 3.69 3.879e-08 4.15 3.867e-08 4.18
1.250e-02 1.024e-08 3.80 2.266e-09 4.09 2.251e-09 4.10
7.692e-03 1.537e-19 3.91 3.185e-10 4.04 3.168e-10 4.04
4.545e-03 1.929e-10 3.95 3.849e-11 4.02 3.837e-11 4.01
2.632e-03 2.206e-11 3.97 4.299e-12 4.01 4.286e-12 4.01
1.563e-03 2.791e-12 3.97 5.206e-13 4.01 5.200e-13 4.02

Table 3.6: Errors and orders of convergence of Example 3 with RadauIA3, J=100.

Explicit Semiexplicit Implicit

step size error order error order error order
1.000e-01 3.976e-06 – 2.440e-07 – 2.397e-07 –
3.333e-02 1.339e-08 5.18 6.939e-10 5.34 7.826e-10 5.21
2.000e-02 1.018e-09 5.04 5.255e-11 5.05 5.815e-11 5.09
1.429e-02 1.925e-10 4.95 1.009e-11 4.91 1.092e-11 4.97
1.111e-02 5.582e-11 4.93 2.942e-12 4.90 3.135e-12 4.97
9.091e-03 2.078e-11 4.92 1.093e-12 4.93 1.154e-12 4.98
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Chapter 4

Rational methods for abstract,
initial boundary value problems
without order reduction

A boundary condition is not merely a constraint; it is part of
the problem’s identity, shaping the solution space like the
banks shape the river.

Anonymous

4.1 Introduction

In this chapter, we consider the semigroup setting introduced in [8, 64], which we briefly
describe, in order to study the time integration of abstract, linear initial boundary value
problems of the form 

u′(t) = Au(t) + f(t), t > 0,

u(0) = u0,

∂u(t) = g(t), t > 0,

(4.1)

where X and Y are two complex Banach spaces, A and ∂ are two linear operators A :
D(A) ⊂ X → X and ∂ : D(A) ⊂ X → Y , such that [A, ∂]T : D(A) → X × Y is closed
(i.e., [A, ∂]T (w) = [Aw, ∂w]T ), u0 ∈ X, f : [0,∞)→ X and g : [0,∞)→ Y . Set

D(A0) = Ker ∂ = {x ∈ D(A) : ∂x = 0 }

and let A0 : D(A0) ⊂ X → X be the restriction of A to D(A0). In the context of the
PDEs we are interested in, X is typically an Lp space, as in the previous chapters, and Y is
an appropriate Sobolev space well suited to the boundary conditions under consideration.
The operator ∂, which may or may not involve derivatives (for instance, for Neumann or
Robin boundary conditions versus Dirichlet boundary conditions), defines the boundary
conditions.

We assume the following hypothesis along the chapter:
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Hypothesis H1. A0 ∈ G(X,M,ω) that is, A0 is the infinitesimal generator of a C0
semigroup of bounded operators in X, with M ≥ 1 and ω ∈ R.

Hypothesis H2. There exists a bounded, linear operator E : Y → X, such that

Ev ∈ D(A) and ∂Ev = v, v ∈ Y,

and AE : Y → X is also bounded. In the PDE’s context, E is a linear extension operator
that, given v in the Sobolev space Y , provides an element w = Ev in the Sobolev space
D(A) such that ∂w = v. The existence of E is studied in the Extension Theory [51].

It turns out that [64], for Re(λ) > ω and v ∈ Y , the eigenvalue problem{
Au = λu,
∂u = v,

(4.2)

admits a unique solution, denoted by u = K(λ)v, that belongs to D(A). This gives rise
to bounded, linear operators K(λ) : Y → D(A), Re(λ) > ω, than can be expressed,
independently of the extension operator E, as

K(λ) = [I − (λ− A0)
−1(λ− A)]E, Re(λ) > ω. (4.3)

From this representation we readily obtain

∥K(λ)∥ ≤ ∥E∥+ |λ| ∥E∥+ ∥AE∥
Re(λ)− ω

, Re(λ) > ω.

Remark 4.1. Under Hypotheses H1 and H2, the operator [A, ∂]T : D(A) ⊂ X → X×Y is
automatically closed. This can be deduced from the existence of the boundary correction
operators K(λ) for Re(λ) > ω, defined in (4.3), which facilitate the decomposition I =
(λ−A0)

−1(λ−A) +K(λ)∂ on D(A). This identity, in turn, implies that the graph norm
of [A, ∂]T is equivalent to the norm of X on D(A), ensuring the fact that the operator is
closed. Thus, stating Hypotheses H1 and H2 suffices.

The chapter is mainly focused on the IBVPs (4.1) with data u0 ∈ D(A), f : [0,+∞)→
X continuous, and g : [0,+∞) → Y of class C1. In case this problem admits a genuine
solution u : [0,+∞)→ D(A), we can justify that,

g′(t) = ∂w′(t) = ∂(Aw(t) + f(t)), t ≥ 0. (4.4)

In particular, for t = 0, the data must satisfy the so-called natural compatibility condition

g′(0) = ∂(Au0 + f(0)), (4.5)

which is a necessary requirement in order to obtain a C1 solution of (4.1). Higher regularity
imposes additional natural compatibility conditions on the data. It has been proved
[64] that condition (4.5) is not only necessary but also sufficient; that is, under this
assumption, (4.1) admits a unique genuine solution u, and consequently, (4.4) remains
valid for all t ≥ 0. Moreover, the IBVP (4.1) is well posed [64] in the sense that the genuine
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solution u depends continuously on the initial and boundary data, namely u0 ∈ D(A),
f ∈ C([0,+∞), X), and g ∈ C1([0,+∞), Y ). Here, the L1 norm is considered for f , and
the total variation norm for g. This well-posedness allows us to extend the notion of
solution to generalized solutions of (4.1) within the framework of

X × L1
loc([0,+∞), X)×BVloc([0,+∞), Y ).

It is clear that, for Re(λ) > ω, the solution of (4.1) can be expressed as

u(t) = ũ(t) +K(λ)g(t), t ≥ 0,

where, since ∂ũ(t) = 0, t ≥ 0, and AK(λ) = λK(λ), the term ũ : [0,∞)→ X solves{
ũ′(t) = A0ũ(t) + f(t) +K(λ)(λg(t)− g′(t)), t ≥ 0,
ũ(0) = u0 −K(λ)g(0).

so that, when ω < 0, the choice λ = 0, results in the simpler IVP{
ũ′(t) = A0ũ(t) + f(t)−K(0)g′(t), t ≥ 0,
ũ(0) = u0 −K(0)g(0).

(4.6)

Alternatively, the IBVP (4.1) is reduced to an IVP by using an available extension oper-
ator E, instead of K(0), but then we must use the source term f + AEg − Eg′.

Let us notice that we can easily reduce the problem to the situation ω < 0. To this
end, we just fix α > ω and write the solution of u of the IBVP (4.1) in the form

ũ(t) = etαũα(t), t ≥ 0,

where ũα : [0,∞)→ X is the solution of the conjugate problem
ũ′α(t) = (A− αI) ũα(t) + e−tαf(t), t ≥ t0,
ũα(t0) = ũ0,
∂ũα(t) = e−tαg(t), t ≥ t0.

The infinitesimal generator of the above problem is A0 − αI, whose spectral abscissa is
ω − α < 0. This reduction simplifies the presentation and it is also interesting from the
numerical point of view. On the one side, no restriction on the used step size in required
and, on the other, the basic estimates [18] involving rational approximations are simpler
when ω ≤ 0. However, the main reason why we introduce this simplification for the
first time in this chapter is to work with the operators K(0) and simplify the evolution
equation in ũ. Thus, in the rest of the paper, we will make the simplifying assumption
that ω < 0. We will mainly focus on the time discretization of IVPs with the format
(4.6).

In Section 4.2.3 we treat the full discretization of (4.1) and, to deal with the spatial
consistency, we will introduce two Banach spaces (W, ∥.∥W ) and (H, ∥ · ∥H), continuously
embedded in X and Y , such that

W ⊂ D(A) and K(0)H ⊂ W. (4.7)
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Under these conditions, the restriction of K(0), resp. ∂, to H, resp. to W , are continuous
from H to W , resp., from W to H. In the common applications, W and H are Sobolev
spaces, with norms finer than those of X and Y . Their orders must account for the
nature of ∂, that may contain derivatives or not, and the Extension Theory is the tool to
provide the existence of an extension operator E : H → W such that ∂E = I. Once E
is obtained, shows that K(0)∂ leaves W invariant, as soon as A−1

0 (AW ) ⊂ W , that is the
usual situation.

It is important to remark that, for boundary data g : [0,+∞) → Y of class C1, the
IBVP (4.1) also makes sense in the framework of W . Actually, (4.1) admits a genuine
solution u : [0,+∞) → W if, and only if, the natural compatibility condition (4.5) is
satisfied, in which case (4.4) remains valid. In fact, if we set W0 = W ∩Ker(∂), endowed
with norm ∥ ·∥W0 induced by ∥ ·∥W , (4.6) is a standard, non-homogeneous, linear problem
in W0. Besides, for t ≥ 0, it is clear that

∥u(t)∥W0 ≤ ∥w(t)∥W + ∥K(0)g(t)∥ ≤ ∥w(t)∥W + ∥K(0)∂∥W→W∥w(t)∥W , (4.8)

an important estimate when considering the spatial discretization. Notice also that this
estimate implies that the restriction of SA0(t), ≥ 0, to W0, form a C0-semigroup on W0,
whose infinitesimal generator is the restriction of A0 to W0.

4.2 Derivation and analysis of the method

4.2.1 Motivation of the scheme and previous results

We repeat the process we followed to construct the scheme for linear problems in Chap-
ter 2. Given a linear and bounded operator K : Y → X, we embed the non-homogeneous
IVP (4.6) into an enlarged, homogeneous one. To this end, we consider both the semi-
group of translations on Cub([0,∞), X) and on Cub([0,∞), Y ), that are denoted by TB(t)
and TBY

(t), t ≥ 0, respectively. Accordingly, their generators are denoted by B and
BY . A direct consequence of Proposition 2.1 is that D(Bm) = Cmub([0,∞), X), D(Bm

Y ) =
Cmub([0,∞), Y ), for m ≥ 0.

Let L : D(B)→ Cub([0,∞), X) and LY : Cub([0,∞), Y )→ Y be the delta operators

Lf = f(0), f ∈ Cub([0,∞), X), LY g = g(0), g ∈ Cub([0,∞), Y ).

The product Ẑ = X × Cub([0,∞), X)× C1ub([0,∞), Y ), endowed with the norm

∥[u, f, g]T∥ = ∥u∥+ ∥f∥∞ +max{∥g∥∞, ∥BY g∥∞}, [u, f, g]T ∈ Ẑ,

is a Banach space. On the domain D(Ĝ) = D(A0) × D(B) × D(B2
Y ) ⊂ Ẑ, let us define

the operator Ĝ : D(Ĝ) ⊂ Ẑ → Ẑ by

Ĝ =

 A0 L −KLYBY

0 B 0
0 0 BY

 ,
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and consider the linear, homogeneous IVP on Ẑ{
U ′(t) = ĜU(t) t ≥ 0,

U(0) = U0 ∈ D(Ĝ).
(4.9)

Writing U(0) = [ũ0, f, g]
T , U(t) = [ũ(t), ϕ(t), ψ(t)]T ∈ Ẑ, t ≥ 0, the last two components

trivially yield

ϕ(t) = eBt(t)f = f(t+ ·), ψ(t) = eBY tg = g(t+ ·),

while the first one fits into the equation

ũ′(t) = A0ũ(t) + f(t)−Kg′(t), t ≥ 0.

These remarks show that (4.9) admits a unique genuine solution that, using the variation-

of-constant formula, can be represented as U(t) = eĜtU(0), t ≥ 0, where eĜt : Ẑ → Ẑ,
t ≥ 0, is the linear operator

eĜt =

 eA0t
∫ t

0
eA0(t−s)LeBs · ds −

∫ t

0
eA0(t−s)KLYBY eBY s · ds

0 eBs 0
0 0 eBY s

 .

Clearly,
{
eĜt
}

t≥0
is a strongly continuous semigroup on Ẑ and

∥eĜt∥ ≤M(1 + 2t). (4.10)

It will be useful to introduce the family of seminorms ||| · |||m,t in the product space
Cmub([0,∞), X) × Cmub([0,∞), X) × Cm+1

ub ([0,∞), Y ) given, for [v, ϕ, ψ]T in such a product,
by the expression

|||[v, ϕ, ψ]T |||m,t = ∥v∥m,t + ∥ϕ∥m,t + ∥ψ∥m+1,t (4.11)

(∥ · ∥m,t is defined in (2.3)).

Let us stress that, for m ≥ 1, U ∈ D(Ĝm) if and only if the map t 7→ etĜU0, t ≥ 0, be-
longs to Cub([0,+∞), X). This is equivalent to have u ∈ Cmub([0,∞), X), f ∈ Cmub([0,∞), X)
and g ∈ Cm+1

ub ([0,∞), Y ). Therefore, under such smoothness conditions on u, f and g,

the solution U of (4.9) takes values in D(Ĝm) and, since ĜmU(s) = U (m)(s), for s ≥ 0, it
turns out that

∥ĜmU(s)∥ = ∥U (m)(s)∥ ≤ |||U |||m,t, 0 ≤ s ≤ t. (4.12)

Notice that, for m ≥ 1, D(Ĝm) ⊂ D(Am
0 )× Cmub([0,∞), X)× Cm+1

ub ([0,∞), Y ), but the
equality is true only for m = 1. Actually, to guarantee that U ∈ Cmub([0,∞), X) we must
imposes several compatibility conditions on the initial data.

After introducing the notation, we follow a similar approach to that of Chapter 2 to
construct the methods; that is, we apply the rational method to the enlarged, homoge-
neous problem. Since we assume that ω < 0, the operational calculus results on Chapter 1
guarantee that the operators

r(τĜ) = r∞I +
k∑

ℓ=1

mℓ∑
j=1

rℓj(I − τwℓĜ)
−j, (4.13)
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are well defined and are uniformly bounded for τ > 0.
Given an initial value U0 ∈ Ẑ and τ > 0, the recurrence

Un+1 = r(τĜ)Un, n ≥ 1, (4.14)

defines the numerical approximation Un ∈ Ẑ to U(tn), at tn = nτ , by means of the rational
method based on r(z). Let us explore the form of r(τG).

Proposition 4.2. For Re(λ) > 0, we claim that

(I − λĜ)−j =

 (I − λA0)
−j λQ0,j(λ) −Q1,j(λ)

0 (I − λB)−j 0
0 0 (I − λBY )

−j

 ,

for j ≥ 1, where{
Q0,j(λ) =

∑j
i=1(I − λA0)

−j+i−1L(I − λB)−i,

Q1,j(λ) =
∑j

i=1(I − λA0)
−j+i−1KLY λBY (I − λBY )

−i.
(4.15)

Proof. Notice that for j = 1, let us set

(I − λĜ)−1 =

 (I − λA0)
−1 λQ0,1(λ) −Q1,1(λ)

0 (I − λB)−1 0
0 0 (I − λBY )

−1

 , j ≥ 1

for suitable operators

Q0,1(λ) = (I − λA0)
−1L(I − λB)−1, Q1,1(λ) = (I − λA0)

−1KLY λB(I − λB)−1.

By induction, using the variations-of-constant formula, it is straightforward to get the
result for j ≥ 1.

This result, used in (4.14) with λ = τwℓ, 1 ≤ ℓ ≤ k, 1 ≤ j ≤ mℓ, readily yields

r(τĜ) =

 r(τA0) E(τ) −F (τ)
0 r(τB) 0
0 0 r(τBY )

 , (4.16)

where

E(τ) = τ

k∑
ℓ=1

mℓ∑
j=1

rℓjwℓ

j∑
i=1

(I − τwℓA0)
−j+i−1L(I − τwℓB)−i, (4.17)

F (τ) =
k∑

ℓ=1

mℓ∑
j=1

rℓjwℓ

j∑
i=1

(I − τwℓA0)
−j+i−1K(0)LY τBY (I − τwℓBY )

−i. (4.18)

In summary, for a given initial datum U0 = [ũ0, f, g]
T ∈ Ẑ, the rational method (4.14)

generates approximations Un = [ũn, fn, gn]
T , n ≥ 0, with fn = r(τB)nf , gn = r(τBY )

ng
and the first components are provided by the recurrence

ũn+1 = r(τA0)ũn + E(τ)r(τB)nf − F (τ)r(τBY )
ng, n ≥ 0, (4.19)
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Thus, as in the previous chapter, one step requires solving s :=
∑k

ℓ=1mℓ linear systems
with the different operators (I − τwℓA0), 1 ≤ ℓ ≤ k, something that we can assume to be
numerically affordable within some tolerance; however, as we commented, it also requires
solving linear systems with the operators (I − τwℓB)−1 and (I − τwℓBY )

−1, a difficulty
we will avoid again by using Lemma 2.4.

4.2.2 Analysis of convergence

We are mainly interested in the consistency. In the rest of the section we will assume
that ũ ∈ Cp+1

ub ([0,∞), X), f ∈ Cp+1
ub ([0,∞), X) and g ∈ Cp+2

ub ([0,∞), Y ). Formula (1.38),

applied with n = 1, shows that for U0 ∈ D(Ĝp+1),

∥eĜτU0 − r(τĜ)U0∥ ≤ CelMτ p+1∥Ĝp+1U0∥,

where the constant Kel depends exclusively on r(z). This result, applied to eĜtnU0 ∈
D(Ĝp+1), n ≥ 0, and recalling (4.10), leads to

∥eĜtn+1U0 − r(τĜ)eĜtnU0∥ ≤ CcM
2τ p+1(1 + 2tn)∥Ĝp+1U0∥.

Recalling (4.11), we conclude that for smooth solutions, we have

∥eĜtn+1U0 − r(τG)eĜtnU0∥ ≤ CelM
2τ p+1(1 + 2tn) |||[u, f, g]T |||p+1,tn . (4.20)

Notice that the first component ρn ∈ X of the local error eĜtn+1U0− r(τĜ)eĜtnU0, n ≥ 0,
satisfies

ũ(tn+1) = r(τA0)u(tn) + E(τ)etnBf − F (τ)etnBY g + ρn, (4.21)

and (4.20) implies that

∥ρn∥ ≤ CelM
2τ p+1(1 + 2tn) |||[u, f, g]T |||p+1,tn , n ≥ 0. (4.22)

As we mentioned, the practical difficulty of the rational method (4.14) is evaluating
the different expressions L(I−τwℓB)−i and LY τBY (I−τwℓBY )

−i, 1 ≤ ℓ ≤ k, 1 ≤ i ≤ mℓ,
occurring in (4.17) and (4.18). We have already suggested a way to overcome it by using
Lemma 2.4. The evaluations of r(τB) and r(τBY ) will be substituted by that of the
operators eτB and eτBY , which are simply translations of the corresponding functions.

Given τ > 0, we start by selecting two compact sets K0 ⊂ Rp
d and K1 ⊂ Rp+1

d and
two arbitrary sequences cn ∈ K0, dn ∈ K1, n ≥ 0, with the condition that tn + τcn and
tn+τdn have non-negative components. Thus, in principle, we will have as many versions
of the method we suggest as many possible selections of the compact sets and sequences.
In Section 4.3 we discuss different choices of nodes.

Let us fix 1 ≤ ℓ ≤ k and 1 ≤ i ≤ mℓ. For every n ≥ 0, we solve the Vandermonde
system (2.22) corresponding to the nodes cn, resp. dn, and the rational mappings (1 −
wℓz)

−i , resp. z(1−wℓz)
−i. This yields vectors γn,ℓ,i ∈ Cp and ηn,ℓ,i ∈ Cp+1 such that, by

Lemma 2.4, satisfy

∥L(I − τwℓB)−if(tn + ·)− γT
n,ℓ,i · f(tn + τcn)∥ ≤ κτ p+1∥f (p+1)∥∞
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and

∥LY τBY (I − τwℓBY )
−ig(tn + ·)− ηT

n,ℓ,i · g(tn + τcn)∥ ≤ κτ p+2∥g(p+2)∥∞,

for some κ = κ(K0,K1) > 0, uniformly in τ > 0. These facts suggests to consider,
instead of (4.17) and (4.18), the bounded operators En(τ) : Cub([0,∞), X) → X and
Fn(τ) : Cub([0,∞), Y )→ X defined by

En(τ)f = τ

k∑
ℓ=1

mℓ∑
j=1

rℓjwℓ

j∑
i=1

(I − τwℓA0)
−j+i−1γT

n,l,i · f(tn + τcn), (4.23)

Fn(τ)g =
k∑

ℓ=1

mℓ∑
j=1

rℓjwℓ

j∑
i=1

(I − τwℓA0)
−j+i−1KηT

n,ℓ,i · g(tn + τdn). (4.24)

At this point it is clear that

τ∥E(τ)f − En(τ)f∥ ≤ κCauxMτ p+1∥f (p)∥∞, f ∈ Cpub([0,∞), X), (4.25)

and

∥F (τ)g − Fn(τ)g∥ ≤ κCauxM∥K∥τ p+1∥g(p+1)∥∞, g ∈ Cp+1
ub ([0,∞), X), (4.26)

where Caux is a constant depending only on r.
Let ũ ∈ C([0,∞), X) be the solution of (4.6) with data u0 ∈ X, f ∈ Cub([0,∞), X),

g ∈ C1ub([0,∞), Y ). We propose the recurrence

ūn+1 = r(τA0)ūn + En(τ)f(tn + ·)− Fn(τ)g(tn + ·), n ≥ 0, (4.27)

with ū0 = u0, as the numerical procedure to time integrate (4.6). This procedure avoids
the practical difficulty of solving systems like (4.14), avoids the use of r(τB) and r(τBY ),
and it only requires evaluations of f and g.

The analysis of the convergence of (4.27) is rather simple, once all these concepts have
been introduced. It is similar to that in Chapter 2, which is carried out by the classical
approach of stability and consistency. Recall (1.37), where A is to be replaced by A0

under the notation adopted in this chapter.

Lemma 4.3. Let δn ∈ X, n ≥ 0, be a sequence of perturbations and let ū∗n ∈ X, n ≥ 0,
be the solution of the perturbed recurrence

ū∗n+1 = r(τA0)ū
∗
n + En(τ)f(tn + ·)− Fn(τ)g(tn + ·) + δn n ≥ 0,

with initial value ū∗0 = u0 + δ0. Then

∥ū∗n − ūn∥ ≤ Cs(n)
n−1∑
j=0

∥δj∥, n ≥ 0.
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Proof. Since the difference ū∗n − ūn, n ≥ 0, satisfies

ū∗n+1 − ūn+1 = r(τA0)(ū
∗
n − ūn) + δn, n ≥ 0,

the proof is trivial (note that Cs(n) ≥ 1).

The local error of method, at time level n ≥ 0, is now the residual ρ̄n ∈ X satisfying

ũ(tn+1) = r(τA0)ũ(tn) + En(τ)e
tnBf − Fn(τ)e

tnBY g + ρ̄n. (4.28)

The consistency is provided by the next lemma.

Lemma 4.4. Let us assume that ũ ∈ Cp+1([0,∞), X), f ∈ Cp+1([0,∞), X) and g ∈
Cp+2([0,∞), Y ). Then the corresponding local errors ρ̄n, n ≥ 0, of the method (4.27)
satisfy

∥ρ̄n∥ ≤ Cc,nτ
p+1(1 + 2tn)|||[u, f, g]T |||p+1,tn ,

where Cc,n =M2Cel + κnMCaux(1 + ∥K∥).

Proof. We will also use the first component of the local error ρn, n ≥ 0, given in (4.21),
of the rational discretization (4.27). By subtracting (4.28) from (4.21), we obtain

ρn = ρ̄n − (E(τ)− En(τ))e
tnBf + (F (τ)− Fn(τ))e

tnBY g, n ≥ 0,

and the proof concludes by using (4.22), (4.25) and (4.26).

The convergence is now a plain consequence of the lemmas. We will assume, by
simplicity, κ̄ = supn≥0 κn < +∞. This is obvious when the sequences {cn}∞n=0 and {dn}∞n=0

are eventually constant. Set Cc = M2Cel + MCaux(1 + ∥K∥). General choices of the
auxiliary sequences can equally be considered just by using κ̄0 = κ0 and κ̄n = max0≤j≤n κn,
for n ≥ 1.

Theorem 4.5. Assume that the solution ũ of (4.6) belongs to C(p+1)([0,∞), X), that
f ∈ C(p+1)([0,∞), X) and that g ∈ C(p+2)([0,∞), Y ). Then the approximations ūn, n ≥ 1,
generated by a given version of the method (4.27) satisfy

∥ũ(tn)− ūn∥ ≤ Ccτ
ptn(1 + 2tn)|||[ũ, f, g]T |||p+1,tn .

Proof. Since ũ(tn), n ≥ 0, fits into the recurrence

ũ(tn+1) = r(τA0) + En(tn)f − Fn(τ)g + ρ̄n,

by Lemma 4.3 we have

∥ũ(tn)− ūn∥ ≤ nCs(n) max
0≤j≤n−1

∥ρ̄n∥, n ≥ 1,

and the proof concludes by using Lemma 4.4.
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Let us point out that, by the well-known Lax–Richtmyer Theorem, and since the stabil-
ity of (4.27) depends only on that of r(τA0), it turns out that the method (4.27) converges,
without any order of convergence, for data in X × L1

loc([0,+∞), X)×BVloc([0,+∞), Y ).
Concerning the IBVP (4.1), we just propose

un = K(0)g(tn) + ūn, n ≥ 0, (4.29)

where ūn ∈ X is the approximation to the solution u of the IVP (4.6) with K = K(0),
provided by the method (4.27).

Since ũ = u−K(0)g, it turns out that ũ ∈ Cp+1
ub ([0,∞), X) and that

|||[ũ, f, g]T |||p+1,t+n ≤ |||[u, f, g]T |||p+1,t+n + ∥K(0)∥∥g∥p+1,tn , (4.30)

and then Theorem 4.5 shows that, for n ≥ 0,

∥un − u(tn)∥ ≤MCcτ
ptn(1 + 2tn)

{
|||[u, f, g]T |||p+1,tn∥K(0)∥∥g∥p+1,tn

}
,

that bounds the error in terms of the smoothness of the solution u and that of f and g.

Remark 4.6. A natural choice for cn, n ≥ 0, is one fulfilling that the last p−1 components
of tn + τncn are the first p − 1 components of tn+1 + τn+1cn+1 at least for n ≥ n0, for a
certain n0 ≤ p (recall (2.39 - 2.41)). The same argument applies for dn and p of its p+ 1
components.

For instance, we can choose c0 = [0, 1, . . . , p − 1], cn = −n + c0, for 1 ≤ n ≤ n0 and
cn = cn0 , for n > n0. For dn, we can proceed in the same way for dn, just by changing
p − 1 by p. In this way, instead of the p evaluations of f and the p + 1 evaluations of
Kg per step, needed for arbitrary choices, we pass to perform just one evaluation of f
and g, for n ≥ n0. If n0 is roughly p or p + 1, the first evaluations are used for the first
steps, and globally we need one evaluation of f and g. Moreover, recalling Remark 2.5, a
good choice is to deal with sequences such that, for n ≥ n0, tn is the mean point of both
the nodes tn + τcn and tn + τdn. This requires, to use half-integer numbers and different
evaluation points for f and for Kg, and both are harmless features.

If we do not insist on using these natural choices, we will pay the price of performing
more evaluations, but we are free to choose the auxiliary nodes and improve the value of
κ.

Remark 4.7. The approach we suggest can be easily extended to deal with higher order
derivatives in the source term, that is, to consider time discretizations of problems with
the format

u′(t) = A0u(t) +
M∑
j=0

Kjf
(j)
j (t), t ≥ 0,

where Kj : Yj → X are linear, bounded operators, acting on different Banach spaces Yj,
0 ≤ j ≤ m, and the nonhomogeneous terms are mappings fj ∈ Cjub([0,∞), Yj), 0 ≤ j ≤ m.
In particular, m = 2 would be of interest in the context of wave equations.

Remark 4.8. Given a sequence of step sizes τn, n ≥ 0, fulfilling the requirements in
Proposition 2.2.3, the suggested method (4.27) becomes

ūn+1 = r(τnA0)ūn + En(τn)f(tn + ·)− Fn(τn)g(tn + ·), n ≥ 0.

and in Theorem 4.5 we must change tnτ
p by

∑n−1
j=0 τ

p+1
j in order to prove the same result.
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4.2.3 Full discretization

In this section we consider the full discretization of (4.1). We will consider the extensively
used method of lines, which consists of discretizing firstly in space and then in time.
The framework introduced here does not rely on any particular discretization. We adopt
a general spatial discretization setting, while the discussion focuses on standard finite
difference, finite element, and spectral methods. We thus arrive at the following standard
abstract framework.

Let 0 < h ≤ h0 denote the parameter governing the spatial discretization. All the
operators that we consider are going to be linear. Associated with each h-value, we
introduce two Banach spaces Xh and Yh of finite dimension and two operators Ph : X →
Xh and Qh : Y → Yh. Their norms, as well as the norms of associated operators are,
by default, denoted by ∥ · ∥h. The norms ∥ · ∥h reflect the ones of Xh and Yh and it is
well-understood that, for w ∈ X, Phw ∈ Xh contains enough information so as to provide
an approximation of w ∈ W . The same idea is behind Qhv, for v ∈ Y . For instance, in
finite elements, Ph and Qh are L2 projectors (considered even for X = Lq, q ̸= 2) and, in
finite differences, they are sampling operators (or concentrated averages, for q < +∞).

The connection to IBVP (4.1) is given by:

(a) An onto operator ∂h : Xh → Yh. We set Xh,0 = Ker (∂h).

(b) Two operators Ah : Xh → Xh and Ah,0 : Xh,0 → Xh,0 such that Ah = Ah,0 on Xh,0.
The semigroup generated by Ah,0 on Xh,0 is denoted by SAh,0

(t), t ≥ 0.

(c) An operator Kh : Yh → Xh.

(d) An operator Ph,0 : X → Xh,0 such that

∥Ph − Ph,0∥W0→Xh
≤MP∥∂hPh∥W0→Xh

,

and another operator Kh,0 : Yh → Xh,0. If Xh ↪→ X so that Ph,0 is also defined in
Xh, a usual condition in finite elements, then one can substitute Kh,0 by Kh,0Qhg =
Ph,0(KhQhg) and it is not necessary to include a new operator.

As the notation suggests, Ah, Ah,0, ∂hPh, KhQh and Kh,0Qh try to fit with PhA, Ph,0A0,
Qh∂, PhK and Ph,0K.

The idea is that Ph,0w contains specific information to reconstruct w ∈ Ker∂. In the
standard methods, for boundary conditions other than the Dirichlet ones, it turns out
that ∂w = 0 does not imply that ∂hPhw = 0, for w ∈ Xh, this is why it is important to
introduce Ph,0.

The consistency refers to a couple of Banach spaces (W, ∥ · ∥Z), with W ⊂ D(A) and
(H, ∥ ·∥H), with H ⊂ Y that are continuously embedded in D(A) and Y and satisfy (4.7).
We set W0 = Ker (∂) ∩W , endowed with the norm ∥ · ∥W0 , that is the one induced by
∥ · ∥W .

To reflect the fact that the norm of W and H are finer that those X and Y , we must
consider new, adequate norms ∥ · ∥h,W on Xh and ∥ · ∥h,H on Yh. The spaces (Wh, ∥ · ∥h,H)
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and (Hh, ∥ · ∥Hh
) are denoted Wh and Hh, i.e., Wh = Xh and Hh = Yh, but endowed with

different norms.
Set

Lh = max{∥Ph∥h, ∥Ph,0∥h, ∥Qh∥h, ∥∂h∥Wh→Yh
, ∥Qh∥H→Hh

},

and
Mh = sup

t≥0
∥SAh,0

(t)∥.

The ideal stability hypotheses are

(S1) ML := sup0<h≤h0
Lh < +∞.

(S2) Ms := sup0<h≤h0
Mh < +∞

However, frequently Lh and, particularly, Mh exhibit a weak growth, for instance
Mh = O(| lnh|), as h→ 0+ (this is why we have singled out Mh). By simplicity, we will
assume (S.1) and (S.2), keeping in mind that the final convergence estimate is valid by
using Lh and Mh.

Consistency is expressed in terms of an infinitesimal ϵ : (0, h0] → (0,+∞) that mea-
sures the quality of the convergence. Typically ϵ(h) = C hm, for some order m > 0.
Tracing the value of all the involved constants, by following their proofs, is an impossible
task that leads to pessimistic and huge values for a general situation. In the absence of
particular properties, we just try to catch the order and later, if possible, to use other
techniques to get the leading constant for a particular problem. With this idea in mind,
we will simplify the statements and proofs by expressing the different infinitesimals in the
form O(ϵ(h)), understanding that the hidden constants are bounded by a common value,
uniformly for 0 < h ≤ h0.

Consistency assumes that for 0 < h ≤ h0:

(C1) ∥Ah,0Ph,0 − Ph,0A0∥W0→Xh
≤ O(ϵ(h)).

(C2) ∥∂hPh −Qh∂∥W→Yh
≤ O(ϵ(h)).

(C3) ∥PhK(0)−KhQh∥H→Xh
≤ O(ϵ(h)).

(C4) ∥Ph,0K(0)−Kh,0Qh∥H→Xh,0
≤ O(ϵ(h)).

Is is important to note that, while (C1) is standard for IVPs, when dealing with
IBVPs, it is natural to require that both the boundary condition and problem (4.2) can
be discretized accurately for data in the consistency class, that is (C3), and that the
solution depends continuously on the data, that is the reason of (C2). If Xh ↪→ X so that
Kh,0 can be omitted and Ph,0 is just the projection from X to Xh, then (C4) is a plain
consequence of (d) and (C3).

Let u be the solution of the IBVP (4.1). Henceforth, we suppose that the additional
conditions u ∈ C1([0,+∞),W ), f ∈ Cub([0,+∞), X) and g ∈ C1ub([0,+∞), H) and set
u = ũ + K(0)g, where ũ solves (4.6). We have already remarked that ũ, due to the
natural compatibility condition, not only takes values in W0 but is also the solution of
(4.6), that turns out to be an IVP in W0.
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Given t ≥ 0, while for K(0)g(t) the goal is to approximate PhK(0)g(t), that brings the
information to reconstruct K(0)g(t), for u(t) ∈ W0 it is rather to approximate Ph,0u(t),
that codifies the information to reconstruct u(t). With these goals in mind, we just
propose KhQhg(t) as the spatial discretization of K(0)g(t), and ũh(t), where ũh is the
solution of the IVP

ũ′h(t) = Ah,0ũh(t) + Ph,0f(t)−Kh,0Qhg
′(t)), t > 0,

ũh(0) = Ph,0u0 −Kh,0Qhg(0),
∂hũh(t) = 0, t ≥ 0,

(4.31)

as the h-disretization of u. The proposed spatial discretization of u is uh = KhQhg + ũh,
due to the consistency hypothesis (C3).

We stress that (4.31) is an IVP in Xh,0 indeed (the boundary condition is thus redun-
dant). In contrast, notice that the related problem with source term Phf(t)−PhK(0)g′(t)
results in an IVP in Xh, not in Xh,0, no matter that its solution takes values in Xh,0.

In consonance with (2.3), we set

∥w∥1,t,W = max
0≤j≤1

max
0≤s≤t

∥w(j)(s)∥W , t ≥ 0.

We are now in a position to prove the next result.

Theorem 4.9. Assume that the solution w of the IBVP (4.1) belongs to C1ub([0,+∞),W ),
f ∈ Cub([0,+∞), X) and g ∈ C1ub([0,+∞), Z). Then, the error of the full semidiscrete
approximation eh = Ph,0ũ− ũh can be estimated by

∥eh(t)∥h ≤MstO(ϵ(h)) (∥u∥0,t + ∥g∥1,t,H) , t ≥ 0. 0 < h ≤ h0. (4.32)

Proof. The stability and consistency of (4.31) are carried out by a well know approach,
based on the variation-of-constants formula. Plugging Ph,0 in (4.6) and taking the differ-
ence with (4.31) shows that the error eh = Ph,0ũ− ũuh fits into the IVP

e′h(t) = Ah,0 eh(t) + δh(t), t > 0,
eh(0) = Kh,0Qhg(0)− Ph,0K(0)g(0),
∂heh(t) = 0, t ≥ 0,

where the truncation error is

δh(t) = (Ph,0A0ũ(t)− Ah,0Ph,0ũ(t))− (Ph,0K(0)g′(t)−Kh,0Qhg
′(t)) , t > 0.

Therefore, by (C1), (C4) and the fundamental estimate (4.8), for t > 0,

∥δh(t)∥h ≤ O(ϵ(h)) (∥u∥0,t + ∥g∥1,t,H) ,

whereas

∥eh(0)∥h ≤ O(ϵ(h))∥g(0)∥H ,

Now, by taking norms in the variation-of-constant formula,

eh(t) = etAh,0eh(0) +

∫ t

0

e(t−s)Ah,0δh(s) ds, t ≥ 0,

we readily conclude that (4.32) is true.

85



Chapter 4: Rational methods for abstract, initial boundary value problems

For 0 < h ≤ h0 and tn = nτ , n ≥ 0, it is now natural to propose, as the full
approximation to u(tn), the sum

uh,n = KhQhg(tn) + ūh,n,

where ūh,n is the time approximation, at time level n, to the solution uh of the IVP{
ũ′h(t) = Ah,0ũh(t) + Ph,0f(t)−Kh,0Qhg

′(t), t > 0,
ũh(0) = Ph,0u0 −Kh,0Qhg(0),

(4.33)

provided by some version of a rational method (4.27), based on r(z). Since

∥Phu(tn)− uh,n∥h ≤ ∥(Ph − Ph,0)ũ(tn)∥h + ∥Ph,0ũ(tn)− ũh(tn)∥h + ∥ũh(tn)− ūh,n∥h
+ ∥Ph,0K(0)g(tn)−Kh,0Qhg(tn)∥h,

and combining Theorem 4.5, (d), (C2) and (C4), we get the estimate for the error of the
full discretization that we just state afterwards. Recalling Theorem 4.5, notice that the
estimate for the time discretization of (4.31) uses the norm

|||[uh,0, Phf,Qhg]
T |||p+1,t,Xh

= ∥uh,0∥h + max
0≤j≤p+1

∥Phf
(j)(s)∥h + max

0≤j≤p+2
∥Qhg

(j)(s)∥h,

that, by (S1), is bounded by ML|||[u, f, g]p+1,t|||, for t ≥ 0.

Theorem 4.10. Assume that the solution u of the IBVP (4.1) belongs to the space
C1([0,+∞),W )∩Cp+1([0,+∞), X), f ∈ Cp+1

ub ([0,+∞), X) and g ∈ Cp+2
ub ([0,+∞), H). Let

0 < h ≤ h0, τ > 0 and n ≥ 0. Then, the error of the full discretization can be estimated
by

∥Phu(tn)− uh,n∥h ≤ ERTn(τ) + ERSn(h),

where
ERTn(τ) = Ccτ

ptn(1 + 2tn)
(
|||[u, f, g]T |||p+1,tn + ∥K(0)∥∥g∥p+1,tn

)
,

and
ERSn(h) = tnMsMLO(ϵ(h))∥w∥1,t,W .

Again by the Lax–Richtmyer theorem, it can be proved that the proposed full dis-
cretization of (4.1) converges for data u0 ∈ X, f ∈ Cub([0,+∞), X) and g : [0,+∞)→ Z
of finite total variation.

4.3 Numerical experiments

The aim of this section is to corroborate the results of the previous ones. For that, we
consider the domain Ω = (0, 1) × (0, 1) ⊂ R2 and we integrate the following parabolic
initial boundary value problem with Dirichlet boundary conditions

ut(t, x, y) = ∆u(t, x, y)− sin(x+ y + t)

+ 2 cos(x+ y + t), (x, y) ∈ Ω, t ∈ (0, T ),

u(0, x, y) = cos(x+ y), (x, y) ∈ Ω,

u(t, x, y) = cos(x+ y + t), (x, y) ∈ ∂Ω, t ∈ (0, T ),

(4.34)
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for some T > 0.This problem has the form of (4.1) and satisfies (4.5), so the function

u(t, x, y) = cos(x+ y + t), (x, y) ∈ Ω, t ∈ (0, T )

is a genuine solution of (4.1) which in fact has as high regularity as required for any of the

theorems of the previous section. We notice that for X = L2(Ω), Y = H
3
2 (∂Ω), A = ∆,

D(A) = H2(Ω) and A0 = A|ker(∂) is the infinitesimal generator of an analytic semigroup

of negative type, such that D(A0) = H2(Ω) ∩ H1
0 (Ω) [66]. We also notice that f and g

have as much regularity as required in Theorems 4.5 and 4.10.
For the spatial discretization, we consider h = 1/J for a certain integer J and a

uniform grid (xi, yj) = (ih, jh) for 0 ≤ i, j ≤ J . We denote by

Ω̊h = {(xi, yj) = (ih, jh) : 0 < i, j < J} , ∂Ωh = Ω \ Ω̊h

the set of the interior and boundary nodes of the grid. This naturally leads to Xh =
R(J+1)2 , endowed with the discrete L2 norm, and Yh = R4J stands for the boundary values
of such a matrix, so that ∂h : Xh → Yh sends a matrix uh ∈ Xh into the vector containing
its boundary values. Then, Xh,0 = ker ∂h is isomorphic to R(J−1)2 . In such a case, Ph

will be the sampling on the nodes of the grid when applied to a C1-function and, for any
function in L2(Ω), as C1(Ω) is dense in L2(Ω), it corresponds to the limit in the discrete
L2-norm. The same applies for Qh and the projection on the nodes of the boundary of
the grid, in such a way that Qh∂u = ∂hPhu for every u ∈ X, so the consistency condition
(C2) is automatically satisfied. For the sake of simplicity, we denote by Uh = Phu and
U∂ = ∂hPhu for every u ∈ X, and Gh = Qhg for g ∈ Y .

In order to discretize the operator A we use the well-known 4th-order nine-point
formula for the Laplacian [74]. It is well known that for any elliptic problem of the form

Au = f, ∂w = g, (4.35)

with f ∈ X and g ∈ Y , a solution u ∈ W = H6(Ω) is discretized in Ω̊ by

Ãh,0Uh + C̃hGh =MhFh + D̃hF∂ +O(h4), (4.36)

where Ãh,0 and Mh are the (J − 1)× (J − 1) tridiagonal block-matrices

Ãh,0 =
1

h2


−10

3
I + 2

3
T 2

3
I + 1

6
T 0 . . . 0

2
3
I + 1

6
T −10

3
I + 2

3
T

. . .
...

0
. . . . . . . . . 0

...
. . . . . . I

0 . . . 0 2
3
I + 1

6
T −10

3
I + 2

3
T

 ,

Mh =
1

12


8I + T I 0 . . . 0

I 8I + T
. . .

...

0
. . . . . . . . . 0

...
. . . . . . I

0 . . . 0 I 8I + T

 ,
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with I the identity matrix and

T =


0 1 0 . . . 0

1 0 1
...

0
. . . . . . . . .

...
...

. . . . . . 1
0 . . . 0 1 0

 ,

and where C̃h and D̃h respectively correspond to the lacking coefficients in Ãh,0 and Mh

associated to the nodes on the boundary. To fit this setting in our abstract framework,
we need to consider

Ah,0 =M−1Ãh,0, Ch =M−1
h C̃h, Dh =M−1

h D̃h.

We emphasize that the multiplication by M−1
h is only a theoretical device to embed

this problem into our abstract framework. In practice, such multiplications are never
performed: neither the explicit computation of M−1

h nor the solution of systems with
matrix Mh is required. On the one hand, by Gerschgorin theorem, the eigenvalues of Mh

are in (1/3, 1), so those of M−1
h are in (1, 3) and its discrete L2-norm is bounded by 3.

Since h2Ãh,0 = (4I + T ) ⊗ (4I + T )/6 − 6I and the eigenvalues of T are 2 cos(2πjh) for
j = 1, . . . , J − 1, the eigenvalues of h2Ãh,0 are

(4 + 2 cos(2πjh))2/6− 6 = −4

3
π2j2h2 +O(h4) = O(h2), for j = 1, . . . , J − 1.

Since Ãh,0 andMh commute, they can be diagonalized in the same set of eigenvectors and
so the eigenvalues of the symmetric matrix Ah,0 are negative. Thus, the corresponding
exponentials are bounded and (S2) is true.

Now, we are in position to define the operators Ph,0, Kh,0, that are not only the
projection on the interior points of the grid, but it also contains some information on the
nodes of the boundary, as they come from the nine-point formula. We set

Ph,0u =

{
Uh +M−1

h D̃hU∂ in Ω̊h,

0 in ∂Ωh,
(4.37)

Then, the consistency condition (C1) comes from the consistency of the elliptic discretiza-
tion (4.36). For u ∈ W0 and f as in (4.35), notice that in Ω̊h

Ah,0Ph,0u =M−1
h Ãh,0Uh,

Ph,0A0u = Ph,0f = Fh +M−1
h D̃hF∂,

so (4.36) and the bound ∥M−1
h ∥h ≤ 3 leads to condition (C1) in the form

∥Ah,0Ph,0u− Ph,0A0u∥ = O(h4).

To conclude, we must explain how to define Kh and Kh,0 when using the nine-point
formula. Since for g ∈ Y , K(0)g is the solution of the problem

AK(0)g = 0, ∂K(0)g = g,
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the discretization (4.36) naturally leads to

PhK(0)g = −Ã−1
h,0C̃h(Qhg) +O(h4),

and we define

Kh(Qhg) =

{
−Ã−1

h,0C̃hGh in Ω̊h,

Gh in ∂Ωh,
(4.38)

so that condition (C3) is automatically satisfied in H = H11/2(Ω). We also define Kh,0 in
an analogous way to (4.37), by

Kh,0(Qhg) =

{
KhGh +M−1DGh in Ω̊h,

0 in ∂Ωh.
(4.39)

The fulfilment of the consistency condition (C4) reduces, in view of the definitions of
Ph,0 and Kh,0, almost directly to the fulfilment of condition (C3). As anticipated when
introducing the operators in the abstract setting, the definition of Kh,0 is practically
identical to that of Ph,0, and hence (C4) is an almost redundant condition. Nevertheless,
it must be additionally assumed in the case of finite differences. Observe, for example, that
it makes no sense to speak of Ph,0Gh, even though the operators are formally identical.

We have already checked that this spatial discretization fits the abstract framework
presented in Section 4.2.3. Before presenting the numerical results, notice that, for in-
stance, for u ∈ W , τ > 0, in the grid Ω̊ it is true that

(I − τAh,0)
−1Ph,0u = (Mh − τÃh,0)

−1
(
MhUh + D̃hU∂

)
,

Thus, we avoid computing the inverses of Mh, working instead with the corresponding
matrix-vector products. This is advantageous since Mh is a sparse matrix. The vector to
which (Mh − τÃh,0)

−1 is applied can be computed efficiently by arranging the values of
Phu in a matrix that mirrors the structure of Ω̄h, as it is simply a linear combination of
the entries of Phu with weights 8/12 and 1/12.

Furthermore, the resulting system can be solved efficiently using the conjugate gradient
method, since both Mh and Ãh,0 are sparse, and the products with (Mh − τÃh,0) can be
implemented straightforwardly.

We integrate the semidiscretized version of (4.34) with the 3-stages SDIRK and 3-
stages Gauss methods, already described in Chapter 2.

Integration with SDIRK3

Problem (4.34) is firstly integrated in time by the 3-stages SDIRK Runge–Kutta method
by using the standard method of lines: discretizing firstly in space with the nine-point
formula for the Laplacian and then in time. More precisely, the SDIRK3 method is applied
to {

U ′
h(t) = Ah,0Uh(t) + ChGh(t) + Fh(t) +Dh(F∂(t)− Ġh(t)),

Uh(0) = Phu0.
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Chapter 4: Rational methods for abstract, initial boundary value problems

We notice that the fact that Dh ̸= 0 with this spatial discretization implies that we still
require ġ, which is something which we try to avoid. For other spatial discretizations for
which Dh ≡ 0 that would not be necessary, but the accuracy in space would be smaller.
We implement SDIRK so that no matrix product with Ãh,0 is necessary (which would be
unstable for small h). In this case, we write the complete formulas for the integration for
the sake of clarity. We calculate

K1,n,h = −1

γ
Un,h + (Mh − τγÃh,0)

−1[
1

γ
MhUn,h + τ(C̃hGh(tn) +MhFh(tn)

+D̃h(F∂(tn)− Ġh(tn)))],

K2,n,h = −1

γ
(Un,h + a21K1,n,h)

+(Mh − τγÃh,0)
−1[

1

γ
Mh(Un,h + a21K1,n,h) + τ(C̃hGh(tn + c2τ)

+MhFh(tn + c2τ) + D̃h(F∂(tn + c2τ)− Ġh(tn + c2τ)))]

K3,n,h = −1

γ
(Un,h + a31K1,n,h + a32K2,n,h)

+(Mh − τγÃh,0)
−1[

1

γ
Mh(Un,h + a31K1,n,h + a32K2,n,h) + τ(C̃hGh(tn + c3τ)

+MhFh(tn + c3τ) + D̃h(F∂(tn + c3τ)− Ġh(tn + c3τ)))]

Un+1,h = Un,h + b1K1,n,h + b2K2,n,h + b3K3,n,h,

where γ, c2, c3, a21, a31, a32, b1, b2, b3 are the corresponding coefficients of the Butcher
tableau. We notice that three linear systems with sparse matrices (Mh− τγÃh,0) must be
solved per step, as well as three evaluations of f , the same for g and ġ. We have integrated
till time T = 1/2 with N = 200 so that the error in space is negligible and the linear
systems have been solved with the iterative gradient conjugate method with tol = 10−14.
The results on the global error turn up in the second column of Table 4.1. We notice
that the order of convergence 2.25 expected by [8] is obtained. The global order behaves
as the local one, instead of one less, when r∞ ̸= 1 [38, 60] due to a summation-by-parts
argument, which in parabolic problems explains this fact. The local order can be seen to
also behave as O(τ 2+1/4), as Table 4.2 shows.

Table 4.1: Global errors and order of convergence with SDIRK3 method and suggested rational SDIRK3
methods.

Runge–Kutta Rational Explicit Rational Implicit

step size error order error order error order
1.000e-01 2.379e-04 – 8.721e-07 – 1.797e-07 –
5.000e-02 5.083e-05 2.23 6.656e-08 3.71 8.792e-09 4.35
2.500e-02 1.083e-05 2.23 4.025e-09 3.98 4.874e-10 4.17
1.250e-02 2.254e-06 2.26 2.555e-10 4.04 3.386e-11 3.85
6.250e-03 4.672e-07 2.27 1.569e-11 4.03 2.667e-12 3.67
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Table 4.2: Local errors at t = τ and local order of convergence with SDIRK3 method and suggested
rational SDIRK3 methods.

Runge–Kutta Rational Explicit Rational Implicit

step size error order error order error order
1.000e-01 3.964e-04 – 1.308e-06 – 4.727e-08 –
5.000e-02 8.315e-05 2.25 5.195e-08 4.65 2.223e-09 4.41
2.500e-02 1.734e-05 2.26 2.024e-09 4.68 8.524e-11 4.70
1.667e-02 6.921e-06 2.27 2.981e-10 4.72 1.239e-11 4.76

On the other hand, we have integrated the same problem with the suggested technique
in this paper. We have considered two possibilities for the nodes cn and dn in (4.27), which
we will denote by explicit and implicit method because of the difference in cn for n ≥ 3:

c0 = [0, 1, 2, 3] d0 = [0, 1, 2, 3, 4]

c1 = [−1, 0, 1, 2] d1 = [−1, 0, 1, 2, 3]
c2 = [−2,−1, 0, 1] d2 = [−2,−1, 0, 1, 2]

n ≥ 3 cn = [−3,−2,−1, 0] dn = [−3,−2,−1, 0, 1] explicit method

cn = [−2,−1, 0, 1] dn = [−3,−2,−1, 0, 1] implicit method (4.40)

Notice that, as p = 4, cn ∈ R4 while dn ∈ R5. There are many other possibilities but
we have chosen these among the ones which just imply at most one function evaluation
of f and g per step. Recall the stability function of the SDIRK3 method in (2.45). In
such a way, k = 1, m1 = 3 and w1 = γ in (1.25). Then, Lemma 2.4 can be applied to

H11(z) =
1

1− zγ
= 1 + γz + γ2z2 + γ3z3 +O(z4),

H12(z) =
1

(1− zγ)2
= 1 + 2γz + 3γ2z2 + 4γ3z3 +O(z4),

H13(z) =
1

(1− zγ)3
= 1 + 3γz + 6γ2z2 + 10γ3z3 +O(z4),

I11(z) =
z

1− zγ
= z + γz2 + γ2z3 + γ3z4 +O(z5),

I12(z) =
z

(1− zγ)2
= z + 2γz2 + 3γ2z3 + 4γ3z4 +O(z5),

I13(z) =
z

(1− zγ)3
= z + 3γz2 + 6γ2z3 + 10γ3z4 +O(z5),

giving rise to the coefficients γn
1,i ∈ R4 and ηn

1,i ∈ R5 for i = 1, 2, 3, which turn up in
(4.27). What is finally implemented with our spatial discretization in order to use sparse
matrices is

ūh,0 = Phu0 + Ã−1
h,0C̃hg(t0), (4.41)
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and then, recursively, trying to minimize calculations,

K1 = (Mh − τγÃh,0)
−1[MhXh,n − γηn

11

T
(−MhÃ

−1
h,0C̃h +Dh)Gh(tn + τdn)

+τγγn
11

T (MhPh + D̃h∂)f(tn + τcn)],

K2 = (Mh − τγÃh,0)
−1[MhK1 − γηn

12
T (−MhÃ

−1
h,0C̃h +Dh)Gh(tn + τdn)

+τγγn
12

T (MhPh + D̃h∂)Fh(tn + τcn)],

K3 = (Mh − τγÃh,0)
−1[MhK2 − γηn

13
T (−MhÃ

−1
h,0C̃h +Dh)Gh(tn + τdn)

+τγγn
13

T (MhPh + D̃h∂)Fh(tn + τcn)],

ūh,n+1 = (1− 1

γ
)ūh,n + r11K1 + r12K2 + r13K3,

and, for any tn in which we want to approximate the solution of (4.1), we take

uh,n =

{
ūh,n − Ã−1

h,0C̃hg(tn) in Ω̊h,

G(tn) in ∂Ωh,
(4.42)

Then, at each step we just solve three linear systems with matrix (Mh − τγÃh,0) and
another one with matrix Ãh,0 to calculate Ã−1

h,0C̃hg(tn), which can be reused whenever
necessary, in the same way that happens with the evaluation of f and g at each step.
Table 3.1 shows the global error for several step sizes for both the explicit and implicit
rational implementation suggested in this paper. It can be observed that, in both cases,
the order is very near 4, which is the classical order of the method, as Theorem 4.5
predicts. On the other hand, the local order corresponding to the error after the first step
when using cn and dn in the last lines of (4.40) approaches 5 as τ diminishes, as Table
4.2 shows and as predicted by Lemma 4.4.

Comparing the errors for a fixed step size, we observe that even for the larger time-
step τ = 0.1, the errors are much smaller with the rational approach proposed in this
paper than with the Runge–Kutta method applied through the standard method of lines.
Since order reduction is also avoided, this difference becomes even more significant as
τ decreases. Moreover, at least for this problem, the error for the same step size is
considerably smaller with the implicit choice of c than with the explicit one.

We also provide a comparison in terms of CPU time among the three methods. In
particular, Figure 4.2 shows the global error against CPU time. We can observe that, for
a fixed step size, the CPU time required (at least for the shorter time step sizes) by the
Runge–Kutta method is about three-quarters of that required by the rational method.
This is explained by the fact that most of the computational cost comes from solving
linear systems and, as already mentioned, the rational method requires solving four linear
systems per step instead of three for Runge–Kutta.

When the step size is smaller, it appears that the conjugate-gradient method used to
solve some of the linear systems requires less time, and therefore the fact that only one
function evaluation of f per step is needed (instead of three) makes the rational methods
more favourable. In any case, for this problem and a fixed CPU time, the difference in
accuracy is about two orders of magnitude for larger time step sizes between the Runge–
Kutta method and the explicit rational method, and about four orders of magnitude for
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Figure 4.1. Error against time steps when integrating problem (4.34) with SDIRK3 method
and suggested rational SDIRK3 methods.
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Figure 4.2. Error against CPU time when integrating problem (4.34) with SDIRK3 method
and suggested rational SDIRK3 methods.
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the smaller step sizes. Furthermore, if the implicit rational method is considered, the
error is roughly eight times smaller than with the explicit one.

Integration with Gauss3

We also take as time integrator the 3-stages Gauss method. When using it to integrate
(4.34) with u0 in (4.34), order 3.25 for the global error would be expected in general
according to [8]. However, in the same way as for SDIRK3 method, a summation by
parts argument applies because the problem is parabolic and the global order is one order
higher, i.e. 4.25, as it can be approximately observed in the second column of Table 4.3
when integrating till time T = 1, where the same values of N and tol as for SDIRK3
have been considered for the spatial discretization and the iterative solution of the linear
systems. We recall the stability function of the Gauss3 method (2.44). Using this, the
implementation of the Runge–Kutta method means solving, at each step, three linear
systems with matrices (Mh − τwℓÃh,0) as well as the three evaluations of f(tn + cjτ),
g(tn + cjτ) and ġ(tn + cjτ) for j = 1, 2, 3.

Table 4.3: Errors and order of convergence with Gauss3 method and the suggested rational Gauss3
methods.

Runge–Kutta Rational Explicit Rational Implicit

step size error order error order error order
1.000e-01 6.117e-06 – 2.276e-08 – 1.712e-09 –
6.667e-02 1.105e-06 4.22 2.029e-09 5.96 1.291e-10 6.38
5.000e-02 3.131e-07 4.38 3.576e-10 6.03 2.100e-11 6.31
4.000e-02 1.225e-07 4.20 9.245e-11 6.06 5.408e-12 6.08
3.333e-02 5.508e-08 4.39 3.059e-11 6.07 1.819e-12 5.98

On the other hand, we have taken the suggested rational method (4.27) based on this
Gauss method, by considering cn and dn in a similar way to (4.40), but now with cn ∈ R6

and dn ∈ R7. Moreover, the coefficients γn
l,1 and ηn

l,1 are found as Lemma 2.4 states for

Hl1(z) =
1

1− wℓz
=

5∑
j=0

wj
ℓz

j +O(z6),

Il,1(z) =
z

1− wℓz
=

5∑
j=0

wj
ℓz

j+1 +O(z7), l = 1, 2, 3.

The final formulas for the implementation of both explicit and implicit methods by using
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Figure 4.3. Error against time steps when integrating problem (4.34) with Gauss3 method
and suggested rational Gauss3 methods.

the nine-point formula in space are then

ūh,n+1 = −ūh,n
+r11(Mh − τw1Ãh,0)

−1[MhXh,n − w1η
n
11

T (−MhÃ
−1
h,0C̃h + D̃h)Gh(tn + τdn)

+τw1γ
n
11

T (MhPh + D̃h∂)Fh(tn + τcn)]

+r21(Mh − τw2Ãh,0)
−1[MhXh,n − w2η

n
21

T (−MhÃ
−1
h,0C̃h + D̃h)Gh(tn + τdn)

+τw2γ
n
21

T (MhPh + D̃h∂)Fh(tn + τcn)]

+r31(Mh − τw3η
n
31

T Ãh,0)
−1[MhXh,n − w3(−MhÃ

−1
h,0C̃h + D̃h)g(tn + τdn)

+τw3γ
n
31

T (MhPh + D̃h∂)Fh(tn + τcn)],

once ūh,0 is calculated through (4.41) and, whenever the approximation to u in (4.34) is
required, (4.42) is considered. Then, in the same way as for the suggested rational SDIRK
methods, three linear systems with matrix (Mh − τwℓÃh,0) must be solved at each step
and, by keeping the calculation from one step to the other, just one more linear system
must be solved with matrix Ãh,0, as well as just one function evaluation of f and g.

The global errors which are obtained with the rational methods can be observed in
Table 4.3, where it is clear that no order reduction is observed, i.e. the errors diminish
like O(τ 6). Moreover, the size of the errors is much smaller than with the Runge–Kutta
method, even for the biggest value of τ . As for the comparison in efficiency, Figure 4.4
shows that, for a fixed time step size, the suggested rational methods are more expensive
than the Runge–Kutta in an approximate proportion of 4 to 3, which is natural because
of the number of linear systems to be solved at each step. However, as the errors are so
small with the rational methods, with a fixed CPU time, the size of the errors with the
explicit rational method is still two orders of magnitude smaller than with the Runge–
Kutta method and, with the implicit rational method, even three orders of magnitude
smaller. Moreover, the comparison is more favourable for rational methods when the time
step size is small.
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Figure 4.4. Error against CPU time when integrating problem (4.34) with Gauss3 method
and suggested rational Gauss3 methods.

4.4 Semilinear problems with boundary conditions

After introducing the rational methods in Chapter 2, we extended them in two directions:
to semilinear problems (3.1) in Chapter 3, and to initial boundary value problems (4.1)
in Chapter 4. These two developments are somewhat independent, in the sense that the
results in each case are built upon the framework established in Chapter 2.

The final section of this dissertation is devoted to synthesizing these results to address
semilinear IBVPs of the form

u′(t) = Au(t) + f(t, u(t)), 0 < t < T,

u(0) = u0,

∂u(t) = g(t), 0 < t < T,

(4.43)

where X and Y are two complex Banach spaces, A and ∂ are two linear operators
A : D(A) ⊂ X → X and ∂ : D(A) ⊂ X → Y . For a certain α ≥ 0, u0 ∈ Xα,
f : [0,∞)×Xα → X and g : [0,∞)→ Y . Set

D(A0) = Ker ∂ = {x ∈ D(A) : ∂x = 0 }

and let A0 : D(A0) ⊂ X → X be the restriction of A to D(A0). Since the convergence
analysis of the method for these problems does not require fundamentally new techniques,
and it is essentially a combination of the previous results, it is more convenient to sum-
marize it in this section rather than dedicating an entire chapter to this problem.

We start recalling the hypotheses we need for this setting.

Hypothesis H1.

� If α = 0, A0 ∈ G(X,M,ω), that is, A0 is the infinitesimal generator of a C0 semigroup
of bounded operators in X, with M ≥ 1 and ω ∈ R. .

96



4.4 Semilinear problems with boundary conditions

� If α > 0, A0 ∈ G(X,M,ω, θ) that is, A0 is the infinitesimal generator of an analytic
semigroup of bounded operators in X, with M ≥ 1, ω ∈ R and 0 < θ < π/2.

Hypothesis H2.

� If α = 0 and
{
etA0

}
t≥0

is a C0 semigroup, we assume that f : [0, T ] × X → X is
locally Lipschitz continuous. Thus, there exists a real number L such that

∥f(t, ξ)− f(t, η)∥ ≤ L∥ξ − η∥

for all t ∈ [0, T ] and max (∥ξ∥, ∥η∥) ≤ R.

� If α > 0 and
{
etA0

}
t≥0

is analytic,we assume that f : [0, T ] × Xα → X is locally
Lipschitz. Thus, there exists a real number L such that

∥f(t, ξ)− f(t, η)∥ ≤ L∥ξ − η∥α

for all t ∈ [0, T ] and max (∥ξ∥α, ∥η∥α) ≤ R.

Hypothesis H3.

• If α = 0, we assume that r is A-acceptable.

• If α > 0 and A ∈ G (X,M,ω, θ), we assume that r is strongly A(ϑ)-acceptable
with ϑ > θ.

Hypothesis H4. There exists a bounded, linear operator E : Y → X, such that

Ev ∈ D(A) and ∂Ev = v, v ∈ Y,

and AE : Y → X is also bounded.

Under these hypotheses, we can assume that there exists a function u : [0, T ] → Xα

satisfying (4.43). For the reasons explained at the beginning of this chapter, we assume,
without loss of generality, that ω < 0 and we will work with the extension operator
K = K(0). As in the beginning of Chapter 4, the solution of (4.43) can be written as

u(t) = ũ(t) +K(0)g(t), (4.44)

where, since ∂ũ(t) = 0, t ≥ 0, and AK(0) = 0, the function ũ : [0, T ]→ Xα solves{
ũ′(t) = A0ũ(t) + f(t, ũ(t) +Kg(t))−Kg′(t), 0 < t < T,
ũ(0) = ũ0 := u0 −Kg(0).

(4.45)

Notice that u0 −Kg(0) ∈ Xα whenever u0 ∈ Xα, since Kg(0) ∈ D(A) ⊂ Xα. Moreover,
the function f̃ : [0, T ]×Xα → X defined by

f̃(t, v) = f(t, v +Kg(t))

satisfies Hypothesis H2 whenever f does. We follow the same strategy as in Section 3.2.3:
first, we analyze the integration of the linear version of the method in the norm of Xα,
and then we apply Gronwall’s lemma together with the Lipschitz property to establish
the convergence of the nonlinear case. For this purpose, we require an adaptation of
Lemma 3.3 to the setting with boundary values.
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Lemma 4.11. Let α ∈ (0, 1), A ∈ G(X,M,ω, θ) and F (τ), Fn(τ) be the operators defined
in (4.18) and (4.24), respectively. For 0 ≤ β ≤ α, it is true that

∥F (τ)w∥β ≤ K τ−β∥w∥∞, for v ∈ Cub ([0,∞), Y ) , (4.46)

∥Fn(τ)w∥β ≤ K τ−β∥w∥Xp , forw ∈ Y p, (4.47)

where ∥ · ∥Y p corresponds to the maximum of the norm of each component in Y .

We define a function h : [0, T ] → X by h(t) = f(t, ũ(t) + Kg(t)) and consider the
integration of the problem{

v′(t) = A0v(t) + h(t)−Kg′(t), 0 < t < T,
v(0) = ũ0,

which has ũ as solution, with a certain time step τ > 0 and the scheme

vn+1 = r(τA0)vn + τEn(τ)h(tn + τcn)− Fn(τ)g(tn + τcn), n ≥ 0 (4.48)

We need to adapt the seminorms to take into account the space Xα. Set, for a function
v ∈ Cmub([0,∞), Xα), m ≥ 0 and 0 ≤ t ≤ ∞,

∥h∥m,t,α = max
0≤j≤m

sup
0≤s≤t

∥h(j)(s)∥α. (4.49)

Then, in the product space Cmub([0,∞), Xα)×Cmub([0,∞), X)×Cm+1
ub ([0,∞), Y ) we consider

||| · |||m,t,α given, for [v, ϕ, ψ]T in such a product, by the expression

|||[v, ϕ, ψ]T |||m,t,α = ∥v∥m,t,α + ∥ϕ∥m,t + ∥ψ∥m+1,t (4.50)

Theorem 4.12. Let ũ : [0, T ] → Xα be the solution of (4.45) to be approximated on
the interval [0, T ]. Assume also that ũ ∈ Cp+1 ([0, T ], Xα), h ∈ Cp+1 ([0, T ], X) and that
g ∈ Cp+2([0,∞), Y ). If vn is the numerical approximation to ũ(tn) given by (4.48) with
constant step size 0 < τ = T/N < τ0, there exists a constant K depending on M , T and
α such that

∥ũ(tn)− vn∥α ≤ K τ p|||[ũ, h, g]T |||p+1,tn,α, 0 ≤ n ≤ N. (4.51)

Proof. The proof is similar to that in Theorem 3.6 but additionally taking into account
the regularisation estimates (4.46), (4.47).

We consider the nodes cn = [−p + 1, . . . , 0] ∈ Zp or cn = [−p + 2, . . . , 1] ∈ Zp.
It happens again that the first choice requires the use of the previous values Un =
[un−p+1, . . . , un] to compute un+1, so it is explicit; whereas the second choice requires
Un = [un−p+2, . . . , un+1], and an implicit scheme turns up. We are free to choose any
nodes dn ∈ Rp for the boundary conditions. Then the proposed scheme to integrate
(4.43) is

un+1 = K(0)g(tn+1) + r (τA) (un −K(0)g(t)) + τEn(τ)f (tn + τcn,Un)

− Fn(τ)K(0)g(tn + τdn), (4.52)
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for n ≥ p−1. The motivation to define (4.52) may be clear taking intro account formulas
(2.29), (3.10), (4.27), (4.44). Recall that starting values un, for 0 < n < p − 1 must be
provided. This can be done using the scheme (4.52) following the theory in Section 3.2.4.
We conclude by stating the final result that brings this doctoral thesis to its culmination.

Theorem 4.13. For 0 ≤ α < 1, let u : [0, T ] → Xα be the solution of (4.43) to be
approximated in the interval [0, T ]. Let us assume hypotheses H1, H2, H3 and H4 and
also that u ∈ Cp+1 ([0, T ], Xα), h ∈ Cp+1 ([0, T ], X) and g ∈ Cp+2 ([0, T ], X). If un is the
numerical approximation to u(tn) given by (4.52) with constant step size 0 < τ = T/N <
τ0, and u0, · · · , up−1 ∈ Xα are starting values satisfying

∥u(tn)− un∥α ≤ C0 τ
p, 0 ≤ n ≤ p− 1, (4.53)

then, there exists a constant K > 0 depending on T , α and the nodes {cn}N−1
n=0 , {dn}N−1

n=0

such that

∥u(tn)− un∥α ≤ K Cs(n) τ
p |||[u, h, g]T |||p+1,tnα, 0 ≤ n ≤ N. (4.54)
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Figure 4.5. Error in the discrete norm associated to ∥ · ∥H1(0,1) for the problem (4.55) with
two different time integrators and J = 100.

We conclude the chapter with an example that illustrates the order of convergence
predicted by Theorem 4.13. We use a version of the method (4.52) to integrate the
parabolic PDE

ut = uxx + u2 + f(t), 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.5,

u(0, x) = 3x− x2, 0 ≤ x ≤ 1,

u(t, 0) = 1− exp(−π2t), u(t, 1) = 1 + exp(−π2t), 0 ≤ t ≤ 0.5,

(4.55)
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where f : [0, 1]→ X is such that

u(x, t) = 1 + (2x− 1) exp(−π2t) + (x− x2) exp(t)

is the solution of the equation. The problem fits our framework setting X = L2[0, 1],
A = d2/dx2 with D(A) = H2[0, 1]. We take α = 1/2, so that according to (1.52),
Xα = H1[0, 1] and ∥ · ∥α = ∥ · ∥H1(0,1). Notice that the source term satisfies the Lipschitz
condition, since the Sobolev embedding (1.51) guarantees that H1[0, 1] ↪→ L∞[0, 1]. This
is also true for every α > 1/4. To deal with the boundary conditions, we take Y = R2,
∂u = [u(0), u(1)], which makes sense for every u ∈ D(A), and then D(A0) = D(A) ∩
ker ∂ = H2[0, 1] ∩H1

0 [0, 1].
We choose the version of (4.52) which is based on the stability rational functions of

the previously described 3-stage SDIRK and 3-stage RadauIA methods. As nodes, we
take cn = [−p + 1, . . . , 0] ∈ Zp or cn = [−p + 2, . . . , 1] ∈ Zp with the various possible
implementations described in Section 3.3 and the equispaced nodes for the boundary
conditions, like in (4.40).

For the spatial discretization, we discretize A with the second order central differences
on the uniform grid xi = ih, for i = 1, . . . , N , with h = 1/(N + 1), leading to the matrix
(2.51). The corresponding systems are solved using Thomas algorithm together with an
LU-factorization version.

Table 4.4: Errors and orders of convergence with the rational SDIRK3 method (4.52) integrating
problem (4.55).

Explicit Semiexplicit Implicit

step size error order error order error order
2.500e-02 1.725e-04 – 1.321e-05 – 1.631e-05 –
1.250e-02 8.176e-06 4.40 5.407e-07 4.61 6.229e-07 4.71
6.250e-03 4.417e-07 4.21 2.662e-08 4.34 2.913e-08 4.42
3.125e-03 2.575e-08 4.10 1.589e-09 4.07 1.671e-09 4.12
1.563e-03 1.560e-09 4.04 1.026e-10 3.95 1.050e-10 3.99

Table 4.5: Errors and orders of convergence with the rational Gauss3 method 4.52 integrating problem
(4.55).

Explicit Semiexplicit Implicit

step size error order error order error order
2.500e-02 4.914e-05 – 3.388e-06 – 4.136e-06 –
1.250e-02 1.057e-06 5.54 6.824e-08 5.63 7.781e-08 5.73
6.250e-03 2.740e-08 5.27 1.668e-09 5.35 1.809e-09 5.43
3.125e-03 7.806e-10 5.13 4.537e-11 5.20 4.751e-11 5.25
1.563e-03 2.320e-11 5.07 1.563e-12 4.86 1.627e-12 4.87

The results are reported in Tables 4.4 and 4.5, which display good agreement with
the predictions of Theorem 4.13. In both cases, it can be observed that the first iteration
provided by the semi-explicit mode reduces the error by an additional order of convergence.
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However, the subsequent corrections carried out by the implicit mode do not produce any
further improvement in accuracy. Nevertheless, it is worth emphasizing that, as we have
already seen in Section 3.3, the implicit mode may still be of practical interest in situations
where the nonlinear term exhibits a stiff character.
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Conclusions

The results presented in this thesis fulfil the objective set at the beginning, namely, the
development of a series of rational methods that integrate abstract evolution problems
while achieving the optimal order of convergence. These methods possess properties that
make them particularly attractive for practical applications. On the one hand, they
are efficient, requiring the solution of the same number of linear systems per step as a
Runge–Kutta method when integrating an initial value problem. On the other hand, they
exhibit favourable numerical stability properties, as they avoid numerical differentiation
of the data, a common requirement in methods designed to avoid the order reduction.The
numerical experiments demonstrate that, for a fixed step size, the reduction in error
relative to Runge–Kutta methods is significant. Moreover, since the number of linear
systems to be solved remains the same while the number of function evaluations can be
substantially reduced, the proposed methods emerge as a highly efficient computational
tool.

The core of the work is in Chapter 2, where the functional analysis framework we use is
introduced, the main properties are proved, and the rational methods for nonhomogeneous
linear problems are established. As this is the chapter in which they are introduced, special
attention is paid to their practical implementation, as well as to the consequences of the
possible choices of nodes at which the source term f is evaluated. These insights into the
effects of the nodes guide the development of the subsequent chapters.

In Chapter 3 we extend the methods to deal with semilinear problems. Although
the framework is rather more complicated, the ideas to extend the methods are simple.
The computational aspect reveals interesting results with the possible implementations,
showing advantages in different cases depending on the stiffness of the source term and
the system matrix. This line of research remains open. For example, one could investigate
ideas similar to Lagrangian methods to attempt evaluating the source term at intermediate
points, or explore the possibility of taking multiple steps implicitly, as it is done with the
starting values.

Finally, we extend the methods to integrate initial boundary value problems in Chap-
ter 4. We also synthesize these results with those of semilinear problems to consider both
features at the same time. The numerical experiments of this chapter are of special in-
terest. On the one hand, they treat the kind of problems that appear in most realistic
applications. On the other, we work with a more sophisticated spatial discretization with
a mass matrix similar to those in finite elements. This feature shows that our methods
are versatile and can be used in realistic computations that require complex geometries.

Moreover, we have developed a new framework to analyze the full discretization of
the methods, that is, to take into account the error due to the spatial discretization.
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The framework turns out to be very general and cover standard methods such as finite
differences, finite elements and spectral methods.

There are some lines of research that remain open after this work. A first possibility
is to pursue this line of theoretical research further, extending the methods to a wider
class of problems. Firstly, one can consider linear nonautonomous equations of the type

u′(t) = A(t)u(t) + f(t), 0 < t ≤ T, u(0) = u0,

where, for every t ∈ [0, T ], the linear operator A(t) : D(A(t)) ⊂ X 7→ X is sectorial,
and the function t 7→ A(t) has certain degree of smoothness. Secondly, fully nonlinear
equations in a open set O ⊂ X of the form

u′(t) = F (t, u(t)), 0 < t ≤ T, u(0) = u0,

can be considered within this framework. For a detailed study of these problems, see the
references [53, 66].

From another perspective, other common topics in numerical analysis where the phe-
nomenon of order reduction arises could also be studied using this approach. To mention
a few examples, alternating direction methods, the design of splitting methods, or prob-
lems involving convolution quadrature appear to be promising areas in which the proposed
techniques could provide new insights and improvements.

Finally, the favourable features of the developed methods—such as their efficiency,
stability, compatibility with spatial discretizations involving mass matrices, and the pos-
sibility of implementing them with variable step sizes—make them well suited for appli-
cations in more realistic computational settings. A relevant example is the use of IMEX
(implicit-explicit) methods, which are designed to handle stiff components separately and
fit naturally with the time integrators proposed in this thesis. This strategy is particularly
effective for solving reaction-advection-diffusion equations and fluid mechanics problems,
such as the Navier–Stokes equations.
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