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A mis compañeros de promoción de fisimat: Alfonso, Bernardo, Elisabet, Elsa,
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Abstract

In this thesis, we study some interactions between commutative algebra and additive
combinatorics. Based on recent works by Eliahou and Mazumdar [30], Elias [32], and
Colarte-Gómez, Elias and Miró-Roig [18], we associate with each finite set A ⊂ Nd

a projective toric variety X ⊂ Pn
k , where k is an infinite field and n = |A|−1. We

focus on the study of the sumsets of A and the Castelnuovo-Mumford regularity
of k[X ], the coordinate ring of X . In particular, we look at the cases when X is
a curve, a smooth variety, and a surface with a single singular point. Moreover,
when X is a curve C, we study the relation between the Betti numbers of k[C] and
its affine charts. Finally, we provide an explicit method to compute the minimal
graded free resolution ofR/I as A-module, where I ⊂ R = k[x1, . . . , xn] is a weighted
homogeneous ideal and A = k[xn−d+1, . . . , xn], whenever the variables are in Noether
position.
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Resumen

En esta tesis, estudiamos algunas interacciones entre el álgebra conmutativa y la
combinatoria aditiva. Basándonos en los recientes trabajos de Eliahou [31], Elias
[32], y Colarte-Gómez, Elias y Miró-Roig [18], a cada conjunto finito A ⊂ Nd le
asociamos una variedad tórica proyectiva X ⊂ Pn

k , donde k es un cuerpo infinito y
n = |A|−1. Nos centramos en el estudio de los conjuntos suma de A y la regularidad
de Castelnuovo-Mumford de k[X ], el anillo de coordenadas de X . En particular, nos
fijamos en los casos en que X es una curva, una variedad lisa o una superficie con
un único punto singular. Además, cuando X es una curva C, estudiamos la relación
entre los números de Betti de k[C] y sus cartas afines. Por último, proporcionamos un
método expĺıcito para construir la resolución libre minimal graduada de R/I como
A-módulo, donde I ⊂ R = k[x1, . . . , xn] es un ideal homogéneo para unos ciertos
pesos y A = k[xn−d+1, . . . , xn], suponiendo que las variables están en posición de
Noether.
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Introduction

“Let no one ignorant of algebra enter here.”
Adapted from the inscription at Plato’s Academy

Graded free resolutions were introduced by Hilbert to compute the so-called
Hilbert function of a homogeneous ideal in the polynomial ring. Using resolutions
and Hilbert’s Syzygy Theorem, one gets that the Hilbert function becomes a poly-
nomial for sufficiently large values of the input, and this polynomial contains valu-
able geometric information about the ideal. Moreover, graded free resolutions can
be used to compute other invariants such as the depth (and, equivalently, using
the Auslander-Buchsbaum formula, the projective dimension) or the Castelnuovo-
Mumford regularity.

The first result to compute graded free resolutions using Gröbner bases was ob-
tained by Buchberger, who proved that the reductions of the S-polynomials of a
Gröbner basis provide a finite generating set of the first syzygy module, i.e., the
first step in a resolution. Applying this result repeatedly (and using Gröbner bases
for modules), one can construct a graded free resolution through several Gröbner
bases computations. Later, Schreyer introduced a monomial order for which the
generating set of the syzygy module is indeed a Gröbner basis, and hence, one only
needs one Gröbner basis computation to construct a graded free resolution (that
may not be minimal), the so-called Schreyer resolution.

The study of graded Betti numbers has attracted a lot of attention and is a clas-
sical problem in commutative algebra, since they encode the numerical information
in any minimal graded free resolution of I, and hence they are enough to compute
the Hilbert function and other invariants. However, the Hilbert function does not
determine the Betti numbers. For instance, Eisenbud proves in his book [27] that
the Hilbert function of the coordinate ring of seven points in general position in
P 3 does not depend on the relative position of the points. But the Betti numbers
depend on whether the points lie on a curve of degree 3 or not.
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2 INTRODUCTION

On the other hand, given G an abelian semigroup with identity and a finite set
A ⊂ G, additive combinatorics studies the sets of sums of elements in A and their
cardinality. For all s ∈ Z>0, the s-fold iterated sumset of A is defined as the set
of sums of s elements in A, with the convention 0A := {0}. In 1992, Khovanskii
proved in [57] that the function N → N, s 7→ |sA| is asymptotically polynomial.
This is the same situation that appears in the study of the Hilbert function. Indeed,
Khovanskii’s proof is based on the existence of the Hilbert polynomial of a certain
finitely generated graded module. This is the first interaction between the two fields,
commutative algebra and additive combinatorics.

Khovanskii’s theorem has recently attracted the attention of some researchers.
In 2022, Eliahou and Mazumdar gave a new proof of this result in [30]. In their
proof, they associate with A a standard graded k-algebra R(A), whose Hilbert func-
tion is s 7→ |sA|. A geometric counterpart when S = Nd can be found in the paper
[18] by Colarte-Gómez, Elias and Miró-Roig. The special case d = 1 is treated in
the paper [32] by Elias. In [18] and [32], the authors associate with A a certain
projective toric variety.

The main objective of the thesis is to exploit this relation to obtain new results
on the Betti numbers and the Castelnuovo-Mumford regularity of projective toric
varieties and, on the other hand, to obtain and improve known results in additive
combinatorics. We treat the following four topics:

• Betti numbers of projective and affine monomial curves (Chapter 2).

• Structure theorems for sumsets in additive combinatorics (Chapter 3).

• Castelnuovo-Mumford regularity of simplicial projective toric curves and sur-
faces, and its relation to sumsets (Chapter 4).

• Short resolution of a weighted homogeneous ideal (Chapter 5).

In Chapter 1, we introduce the background and notation necessary for the rest
of the thesis. We start with an introduction to numerical and affine semigroups in
Section 1.1. In Section 1.2 we study free resolutions; in Section 1.3, we introduce
toric ideals and toric varieties, the basic objects in this thesis. Finally, in Section 1.4
we explain the relation between commutative algebra and additive combinatorics.
Although it is an introductory chapter, this chapter contains two novel results: The-
orem 1.51, which gives a precise relation between the Castelnuovo-Mumford regu-
larity and the regularity of the Hilbert function in terms of some Betti numbers;
and Proposition 1.78, which provides the specific form of the parametrization of a
simplicial projective toric surface with a single singular point.
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In Chapter 2, we study the Betti numbers of projective and affine monomial
curves. Consider a set A = {a0 = 0 < a1 < · · · < an−1 < an = D} ⊂ N such
that gcd(a1, . . . , an) = 1, and let ai = (D − ai, ai) ∈ N2 for all i = 0, . . . , n and
A = {a0, . . . , an}. Fix an infinite field k and let C ⊂ Pn

k be the projective mono-
mial curve determined by A. One of the two affine charts of C is C1 ⊂ An

k , the
affine monomial curve determined by A1 = {a1, . . . , an}. Let k[C] and k[C1] be the
coordinate rings of C and C1, respectively. In Section 2.1, we define the Apéry set
and posets of the semigroups S = ⟨A⟩ and S1 = ⟨A1⟩, and we characterize the
Cohen-Macaulayness of k[C] in terms of the Apéry poset of S. The main result of
Section 2.2 (and of this chapter) is Theorem 2.12, which provides a combinatorial
contidion on the Apéry posets of S and S1 that ensures the equality of the Betti
numbers of k[C] and k[C1]. In Propositions 2.18 and 2.23, we give two families for
which the condition in Theorem 2.12 is satisfied: arithmetic sequences and their
first projections. Using Theorem 2.12, in Theorem 2.26 we improve Vu’s bound
for the equality of the Betti numbers of k[C] and k[C1] for the shifts of A1, and in
Section 2.4, we provide a method to construct an arithmetically Gorenstein projec-
tive monomial curve C starting from a symmetric semigroup S1; see Theorem 2.32.
Finally, in Section 2.5, we study the Betti numbers of C1 for a certain class of nu-
merical semigroups defined by Kunz and Waldi. The main results in this section are
Theorem 2.49, where we characterize when the defining ideal of C1 is determinantal;
and Theorem 2.53, where we provide the Betti numbers of some of the semigroups
in the Kunz-Waldi class.

In Chapters 3 and 4, we explore the relations between additive combinatorics
and commutative algebra initiated in the papers [18, 30, 32]. In particular, in Chap-
ter 3 we show how additive combinatorics benefits from commutative algebra, and in
Chapter 4 we show how commutative algebra benefits from additive combinatorics.

Given a finite set A = {a0, . . . , an} ⊂ Nd, the s-fold iterated sumset of A is de-
fined by sA = {ai1 + · · ·+ais | 0 ≤ i1 ≤ . . . ≤ is ≤ n} for s ∈ Z>0 and 0A = {0}. In
Chapter 3, we study the structure of the sumsets of A for s≫ 0. In Section 3.1 we
consider the case d = 1. We start this section recalling the classical structure theo-
rem by Nathanson (Theorem 3.1). Fix an infinite field k and consider a set A ⊂ N
and the same projective monomial curve as in Chapter 2, C ⊂ Pn

k . Elias provided in
[32, Prop. 3.4] a characterization of the elements in the structure theorem in terms
of the curve C. In this section, we complete this characterization defining the sum-
sets regularity of A, σ(A), and expressing it in terms of the curve C in Theorem 3.7.
The rest of the section is devoted to improve the known upper bounds on σ(A).
We propose a new upper bound (3.5) and compare it with the existing ones. Using
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these results, in Section 3.2 we describe the structure of the sumsets of A. In Sec-
tion 3.3, we study the sumsets of A when d ≥ 2. Take D := max{|ai|: i = 0, . . . , n}
and consider ai = (D − |ai|, ai) ∈ Nd+1 for all i = 0, . . . , n, and A = {a0, . . . , an}.
Let X = XA ⊂ Pn

k be the projective toric variety defined by A and assume that
X is simplicial. In this context, the structure theorem by Curran and Goldmakher
[23, Thm. 1.3] provides a value s0 such that for all s ≥ s0, the sumsets sA can be
explicitly described. We improve this result in two particular cases: X smooth and
X a surface with a single singular point. In Theorem 3.26 we characterize the sets
A for which X is a smooth variety, in terms of the shape of A and also in terms of
its sumsets. We define a sumsets regularity for A and provide a tight upper bound
in Theorem 3.29. Similarly, in Theorem 3.35 we characterize the sets A for which
X is a surface with a single singular point, in terms of the shape of A and also in
terms of its sumsets. We define a sumsets regularity for A and provide an upper
bound on it in Proposition 3.40. Finally, in Theorem 3.41 we improve the previous
bound in some cases.

In Chapter 4, we study the Castelnuovo-Mumford regularity of projective mono-
mial curves and simplicial projective monomial surfaces, with a special emphasis on
the Eisenbud-Goto conjecture. In Section 4.1, we provide a combinatorial formula
to compute the Castelnuovo-Mumford regularity of k[C] in terms of the Apéry and
exceptional sets of S in Theorem 4.2. Moreover, in Theorem 4.9 we determine the
step of a minimal graded free resolution of k[C] in which the regularity is attained.
Using the combinatorial formula for the Castelnuovo-Mumford regularity of k[C],
in Theorem 4.13 we provide upper and lower bounds on it in terms of the sumsets
regularity of A. These bounds give a new combinatorial proof of the Eisenbud-Goto
conjecture for projective monomial curves (Gruson-Lazarsfeld-Peskine’s Theorem
for projective monomial curves). In Section 4.2, we study the regularity of simpli-
cial projective monomial surfaces X . In Theorem 4.25, we provide a combinatorial
formula to compute the Castelnuovo-Mumford regularity of k[X ] in terms of the
Apéry and exceptional sets of S. In the special case of surfaces with a single singu-
lar point, in Theorem 4.27 we prove that reg(k[X ]) ≤ σ(A)+ 1. Using this relation,
in Theorem 4.29 we prove the Eisenbud-Goto conjecture for X whenever the degree
of X is either minimal or maximal.

In Chapter 5, we consider a ω-homogeneous ideal I ⊂ R = k[x1, . . . , xn] for some
weight vector ω = (ω1, . . . , ωn) ∈ (Z>0)

n and assume that A = k[xn−d+1, . . . , n]
is a Noether normalization of R/I. In this context, we study the so-called short
resolution of R/I ([3, 75, 78]), i.e., the minimal graded free resolution of R/I as
A-module. In Section 5.1, we provide a general method to compute the short reso-
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lution of any R/I as before. The main results are Proposition 5.2 and Theorem 5.7,
where we provide a system of generators of the first syzygy module and prove that
it is indeed the reduced Gröbner basis for a certain monomial order that we call the
Schreyer-like order. In Section 5.2, we describe the short resolution of R/I when it is
a simplicial toric ring of dimension 3 in terms of the combinatorics of the associated
semigroup (Theorem 5.15). In Section 5.3, we provide an algorithm to compute the
short resolution for 3-dimensional simplicial toric rings. This algorithm first con-
structs a graded free resolution that may not be minimal (Algorithm 5.2), and then
minimalizes/prunes it to obtain the short one by applying Theorems 5.24 and 5.26
(Algorithm 5.3). Finally, in Section 5.4, we show an example or a simplicial toric
ring whose short resolution depends on the characteristic of the field k.

The results of this thesis have given rise to the following publications (sorted in
chronological order):

[39] P. Gimenez and M. González-Sánchez. Castelnuovo–Mumford regularity of
projective monomial curves via sumsets. Mediterr. J. Math., 20(287), 2023.
https://doi.org/10.1007/s00009-023-02482-3

[36] I. Garćıa-Marco, P. Gimenez, and M. González-Sánchez. Projective Cohen-
Macaulay monomial curves and their affine charts. Ric. Mat., pages 1–22,
2025. https://doi.org/10.1007/s11587-025-00929-1

[42] M. González-Sánchez, S. Singh, and H. Srinivasan. The Betti numbers of
Kunz-Waldi semigroups. Proc. Amer. Math. Soc., 153:4215-4224, 2025.
https://doi.org/10.1090/proc/17338

[35] I. Garćıa-Marco, P. Gimenez, and M. González-Sánchez. Computational as-
pects of the short resolution. ArXiv preprint, 2025. https://doi.org/10.

48550/arXiv.2504.12019

[41] M. González-Sánchez. ShortRes: A Sage package to compute the short reso-
lution of a weighted homogeneous ideal. GitHub Repository, 2025. Available
online: https://github.com/mgonzalezsanchez/shortRes

https://doi.org/10.1007/s00009-023-02482-3
https://doi.org/10.1007/s11587-025-00929-1
https://doi.org/10.1090/proc/17338
https://doi.org/10.48550/arXiv.2504.12019
https://doi.org/10.48550/arXiv.2504.12019
https://github.com/mgonzalezsanchez/shortRes
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Chapter 1

Preliminaries

“The theory of syzygies offers a microscope for
looking at systems of equations, and helps

to make their subtle properties visible.”
D. Eisenbud

In this chapter, we include the concepts and results that we will use in the next
chapters. Section 1.1 contains the background on semigroups, with an emphasis
on numerical and affine semigroups; Section 1.2 focuses on graded free resolutions,
Betti numbers, and Castelnuovo–Mumford regularity; Section 1.3 is a survey on
toric ideals and toric varieties; finally, in Section 1.4 we present some recent results
on the interface between Additive Combinatorics and Commutative Algebra.

1.1 Semigroups

This first section contains some concepts about numerical and affine semigroups.
For more details, we refer the reader to the books [80], [81], and [82].

A semigroup is a pair (S,+), where S is a nonempty set, and + is a binary
operation on S that is associative. When the operation + is commutative, we say
that the semigroup is abelian, and if there exists an identity element 0 ∈ S, S is
called a monoid. In this thesis, all the semigroups will be abelian monoids, and we
will call them just semigroups.

As it occurs for all algebraic structures, a subset H ⊂ S is a subsemigroup of S if
(H,+) is a semigroup, where + is the restriction of the operation in S to H. Given
a semigroup S and a subset A ⊂ S, the subsemigroup generated by A, ⟨A⟩, is the

7



8 CHAPTER 1. PRELIMINARIES

smallest subsemigroup of S containing A, that is

⟨A⟩ = {λ1a1 + · · ·+ λnan | n ∈ Z>0, λi ∈ N, ai ∈ A, 1 ≤ i ≤ n} .

A semigroup S is finitely generated if there exists a finite subset A ⊂ S such that
S = ⟨A⟩.

1.1.1 Numerical semigroups

For A ⊂ N a nonempty subset, we say that S = ⟨A⟩ is a numerical semigroup if
N \ S is finite. A system of generators of a numerical semigroup is said to be a
minimal system of generators if none of its proper subsets generates the numerical
semigroup. By [82, Thm. 2.7], every numerical semigroup has a unique minimal
system of generators, and it is finite. We denote by MSG(S) the minimal system
of generators of S. Given a nonempty finite subset A ⊂ N, ⟨A⟩ is a numerical
semigroup if and only if gcd(A) = 1 ([82, Lem. 2.1]). If S is a numerical semigroup
minimally generated by A = {a1, . . . , an}, and s ∈ S, a factorization of s is a n-tuple
λ = (λ1, . . . , λn) ∈ Nn, such that s =

∑n
i=1 λiai. The length of the factorization λ

is ℓ(λ) =
∑n

i=1 λi.

Let us now introduce some basic concepts that arise in the study of numerical
semigroups.

Definition 1.1. Let S be a numerical semigroup and MSG(S) = {a1, . . . , an} be
its minimal system of generators that we assume without loss of generality ordered
as a1 < a2 < · · · < an.

(1) The multiplicity of S is m(S) = a1 = min (S \ {0}).

(2) The embedding dimension of S is e(S) = n = |MSG(S)|.

(3) The set of gaps of S is G(S) = N \ S. It is finite and its cardinality is called
the genus of S.

(4) The Frobenius number of S is F (S) = max (N \ S), and the conductor of S is
c(S) = F (S)+1. It is the smallest element s ∈ S such that any x ≥ s belongs
to S.

(5) Given s ∈ S \ {0}, the Apéry set of S with respect to s is Ap(S, s) = {x ∈ S |
x− s /∈ S}. By default, if we do not specify the element s ∈ S, the Apéry set
of S is Ap(S) = Ap (S,m(S)).
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(6) The pseudo Frobenius set of S is PF(S) = {x ∈ Z\S | x+s ∈ S, ∀s ∈ S\{0}},
the pseudo Frobenius numbers of S are the elements in PF(S), and the type of
S is t(S) = |PF(S)|.

Given a numerical semigroup S ⊂ N, the problem of determining the Frobenius
number of S is NP-hard [79]. In the next proposition, we include two upper bounds
on the Frobenius number of S. The first one is due to Schur, while the second one
to Erdös and Graham.

Proposition 1.2 ([80, Thm. 3.1.1 and 3.1.12]). Let a1, . . . , an be positive integers
such that gcd(a1, . . . , an) = 1 and a1 < · · · < an, and consider the numerical semi-
group S = ⟨a1, . . . , an⟩. Then,

(1) F (S) ≤ (a1 − 1)(an − 1)− 1.

(2) F (S) ≤ 2an−1

⌊
an
n

⌋
− an.

For all s ∈ S, one has that F (S) = max (Ap(S, s)) − s. Moreover, Ap(S, s) ∪
{s} \ {0} generates S. In particular, Ap(S) ∪ {m(S)} \ {0} generates S, and hence
the embedding dimension of S verifies e(S) ≤ m(S).

Definition 1.3. Let S be a numerical semigroup. We say that S has maximal
embedding dimension if e(S) = m(S).

Example 1.4. Consider the numerical semigroup S = ⟨5, 9, 11⟩. The multiplicity
of S is m(S) = 5. The embedding dimension of S is e(S) = 3, since S is minimally
generated by {5, 9, 11}. The set of gaps of S is G(S) = {1, 2, 3, 4, 6, 7, 8, 12, 13, 17}.
Therefore, its genus is g(S) = 10 and its Frobenius number is F (S) = 17. The Apéry
set of S (with respect to 5) is Ap(S) = {0, 11, 22, 18, 9}. The Pseudo Frobenius set
of S is PF(S) = {13, 17}, and hence its type is t(S) = 2. All these invariants can
be computed using the package NumericalSgps [25] of GAP.

Proposition 1.5 ([82, Lem. 2.4]). Let S be a numerical semigroup and s ∈ S a
nonzero element. Then, Ap(S, s) = {w0 = 0, w1, . . . , ws−1}, where wi is the least
element of S congruent to i modulo s, for 1 ≤ i ≤ s. Hence, the Apéry set Ap(S, s)
is a complete set of residues modulo s.

In particular, the Apéry set of S with respect to s is finite for all s ∈ S. Set
m = m(S) the multiplicity of S, and denote the elements of the Apéry set as in the
previous proposition, Ap(S) = {w0 = 0, w1, . . . , wm−1}.

Definition 1.6. The Apéry coordinate vector of S is the tuple (w1, w2, . . . , wm−1).
We will also refer to this vector as the Kunz coordinates of S.
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From the definition of the Apéry set, one can easily deduce that wi+wj ≥ wi+j,
for all 1 ≤ i ≤ j ≤ m−1 such that i+ j ̸= 0, where the sum of indices is interpreted
modulo m. This is the idea that Kunz used to define the so-called Kunz cone in
[60].

Definition 1.7. For each m ∈ N, m ≥ 2, the Kunz cone Cm ⊂ Rm−1
≥0 is the cone

with defining inequalities zi + zj ≥ zi+j whenever i+ j ̸= 0, where i, j ∈ Zm \ {0},

Cm =
⋂

i,j∈Zm\{0}
i+j ̸=0

{(z1, . . . , zm−1) ∈ Rm−1
≥0 | zi + zj ≥ zi+j} .

Proposition 1.8 ([9, Prop. 2.5]). A vector z = (z1, . . . , zm−1) ∈ Rm−1
≥1 with zi ≡ i

(mod m) for all i lies in Cm if and only if z is the Apéry coordinate vector of a
numerical semigroup S. Moreover, z is in the interior of Cm if and only if S has
maximal embedding dimension.

By the previous result, we can identify a numerical semigroup with its Kunz
coordinates. By an abuse of language, for a numerical semigroup S of multiplicity
m, we will say that it lies in the interior of Cm if the Kunz coordinates of S are in
the interior of the Kunz cone Cm. Similarly, we will say that S lies in (the interior
of) a certain face of Cm if its Kunz coordinate are in (the interior of) that face of
Cm.

Example 1.9. Let m = 4. The Kunz cone C4 is defined by

C4 = {z = (z1, z2, z3) ∈ R3
≥0 | 2z1 ≥ z2, z1 + z2 ≥ z3, z2 + z3 ≥ z1, 2z3 ≥ z2} ,

and it is generated by the rays (1, 0, 1), (1, 2, 3), (1, 2, 1), and (3, 2, 1). Note that the
integer points in C4 with all their coordinates ≥ 1 correspond to all the numerical
semigroups of multiplicity 4, by Proposition 1.8.

• For S = ⟨4, 7, 9⟩, Ap(S) = {0, 9, 14, 7}, and hence its Kunz coordinates are
(9, 14, 7). Note that S lies on the face F of C4,

F = {z ∈ C4 | 2z1 ≥ z2, z1 + z2 ≥ z3, z2 + z3 ≥ z1, 2z3 = z2} .

In fact, it lies in the interior of F, since the Kunz coordinates of S satisfy the
inequalities 2z1 > z2, z1 + z2 > z3, and z2 + z3 > z1.

• For S ′ = ⟨4, 6, 7, 9⟩, Ap(S ′) = {0, 9, 6, 7} and its Kunz coordinates are (9, 6, 7).
Therefore, the semigroup S ′ lies in the interior of the Kunz cone C4, since in
this case all the inequalities are strict for (9, 6, 7). Note that S ′ has maximal
embedding dimension, as follows from Proposition 1.8.
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Let S be a numerical semigroup of multiplicity m and (w1, . . . , wm−1) be its
Kunz coordinates. We now consider a poset structure on the set Zm, based on the
relations between the elements in Ap(S) = {0, w1, . . . , wm−1}.

Definition 1.10. The Apéry poset of S is P(S) = (Zm,⪯), where i ⪯ j if and only
if wj − wi ∈ S for i, j ∈ Zm. We write i ≺· j and say j covers i if i ≺ j and there is
no k such that i ≺ k ≺ j.

The following lemma characterizes the covering relations in terms of the minimal
generators of S. This result allows us to construct the Hasse diagram of the poset
P(S).

Lemma 1.11. For all i, j ∈ Zm, i ≺· j if and only if wj−wi is a minimal generator
of S.

Proof. Being (⇐) trivial, let us prove (⇒). Let i, j ∈ Zm such that i ≺· j and write
wj = wi + α + β for some α, β ∈ S with α a minimal generator of S. Note that
wi ≺ wi + α ⪯ wj. Since wj ∈ Ap(S), then wi + α ∈ Ap(S), so wj = wi + α as j
covers i.

Example 1.12. Consider the numerical semigroups S = ⟨8, 17, 60, 69, 78⟩ and
S ′ = ⟨8, 17, 53, 62, 55⟩, whose Apéry sets are Ap(S) = {0, 17, 34, 51, 60, 69, 78, 95}
and Ap(S ′) = {0, 17, 34, 51, 68, 53, 62, 55}, respectively. The Hasse diagrams of the
Apéry posets P(S) and P(S ′) are shown in Figure 1.1.

0

1

2

3

4 5 6

7

(a) P(S)

0

1

2

3

4

5 6 7

(b) P(S ′)

Figure 1.1: Apéry posets in Example 1.12.

The following theorem characterizes when two semigroups S and S ′ lie in the
interior of the same face of the Kunz cone Cm in terms of their Apéry posets.
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Theorem 1.13 ([10, Thm. 3.10]). Let S and S ′ be two numerical semigroups of
multiplicity m. Then, S and S ′ lie on the interior of the same face of the Kunz cone
Cm if and only if P(S) = P(S ′).

Let S be a numerical semigroup and F (S) its Frobenius number. For all x ∈ S,
one has that F (S)−x /∈ S. When the other implication holds for all x, the semigroup
is called symmetric.

Definition 1.14. Let S be a numerical semigroup. We say that S is symmetric if
for all x ∈ Z, x ∈ S if and only if F (S)− x /∈ S.

Proposition 1.15 ([82, Prop. 4.4, Cor. 4.5 and 4.11]). The following conditions
are equivalent:

(a) S is symmetric.

(b) The genus of S is g(S) = F (S)+1
2

.

(c) The Pseudo Frobenius set of S is PF(S) = {F (S)}.
(d) The type of S is t(S) = 1.

1.1.2 Affine semigroups

Definition 1.16. An affine semigroup is a finitely generated subsemigroup of Nd,
for some d ≥ 1.

Remark 1.17. More generally, a semigroup S is said to be an affine semigroup
if it is isomorphic to a finitely generated subsemigroup of Nd for some d. By [81,
Thm. 3.11], S is an affine semigroup if and only if it is finitely generated, cancellative,
torsion free, and reduced:

• S is cancellative if for all a, b, c ∈ S, a+ b = a+ c⇒ b = c.

• S is torsion-free if for all a, b ∈ S, n ∈ Z>0, na = nb⇒ a = b.

• S is reduced if S ∩ (−S) = {0}.
Also, note that some authors define affine semigroups as those isomorphic to a
finitely generated subsemigroup of Zd, for some d ≥ 1; see, e.g., [11]. Here we
restrict to Nd because we are only interested in reduced affine semigroups and, by
Grillet’s theorem [81, Thm. 3.11], every reduced affine semigroup is isomorphic to
a finitely generated subsemigroup of Nd, for some d ≥ 1.

Given an affine semigroup S ⊂ Nd, one can always consider a natural partial
order ≤S in S as follows:

for s1, s2 ∈ S, s1 ≤S s2 if and only if s2 − s1 ∈ S . (1.1)
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This partial order will be useful to characterize some properties of semigroup alge-
bras (see Section 1.3) and it will appear in Chapter 2.

Definition 1.18. Given an affine semigroup S ⊂ Nd and an element s ∈ S, the
Apéry set of S with respect to s is Ap(S, s) = {x ∈ S | x−s /∈ S}. If B ⊂ S is a finite
subset, the Apéry set of S with respect to B is defined as Ap(S,B) = ∩b∈BAp(S,b).

Unlike in the case of numerical semigroups, the Apéry set Ap(S, s) is not finite
in general. Proposition 1.20 characterizes when the Apéry set of S with respect to
a finite subset is finite.

Definition 1.19. Let A = {a1, . . . , an} ⊂ Nd be a finite subset. The rational cone
spanned by A is Pos(A) := {

∑n
i=1 λiai |λi ∈ Q≥0} ⊂ Qd

≥0. The dimension of Pos(A)
is the dimension of the Q-vector space QA = {

∑n
i=1 µiai | µi ∈ Q} ⊂ Qd.

Proposition 1.20 ([38, Thm. 2.6]). Let A ⊂ Nd be a finite set of nonzero vectors,
and let S = ⟨A⟩ be the affine semigroup generated by A. If B ⊂ S is a finite subset,
then Ap(S,B) is finite if and only if Pos(B) = Pos(A).

Definition 1.21. Let A = {a1, . . . , an} ⊂ Nd, and S = ⟨A⟩ be the affine semigroup
generated by A. We say that S is simplicial when the rational cone spanned by A,
Pos(A), has dimension d and is minimally generated by d rays.

If S = ⟨A⟩ ⊂ Nd is simplicial, take {v1, . . . ,vd} ⊂ Qd
≥0 a generating set of

Pos(A). For i = 1, . . . , d, consider ei ∈ A ∩ Pos(vi) the element with the smallest
norm. We call e1, . . . , ed the extremal rays of the cone Pos(A).

Remark 1.22. (1) For d ∈ {1, 2}, every affine semigroup S ⊂ Nd is simplicial.

(2) Let S be a simplicial semigroup and E the set of extremal rays. By Proposi-
tion 1.20, the Apéry set of S with respect to E is finite. We will call Ap(S, E)
the Apéry set of S, and denote it just by Ap(S) or APS .

As mentioned before, when d = 1, the affine semigroups with finite complement
in N are called numerical semigroups. We now define an analogous concept for
d ≥ 2.

Definition 1.23. Let S be a subsemigroup of Nd. We say that S is a generalized
numerical semigroup if Nd \ S is finite.

By [17, Prop 2.3], every generalized numerical semigroup is finitely generated,
i.e., it is an affine semigroup. Moreover, in the same paper the authors characterize
generalized numerical semigroups in terms of the generators of S.
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Theorem 1.24 ([17, Thm. 2.8, Rem. 2.13]). Let d ≥ 2, A ⊂ Nd a finite subset, and
S the affine semigroup generated by A. Then S is a generalized numerical semigroup
if and only if A fulfills the following two conditions:

(1) For all j = 1, 2, . . . , d, the j-th coordinates of the elements of A generate a
numerical semigroup.

(2) For all j = 1, 2, . . . , d, if A(j) ⊂ Nd−1 is the set obtained from the elements of
A removing the j-th component, the affine semigroup ⟨A(j)⟩ is Nd−1.

Example 1.25. Let A = {(1, 0), (2, 0), (3, 0), (0, 2), (0, 3), (2, 1)}, and S ⊂ N2 the
affine semigroup generated by A. By Theorem 1.24, S is a generalized numerical
semigroup, since ⟨1, 2, 3⟩ = N is a numerical semigroup. Moreover, one can easily
prove that S = N2 \ {(0, 1), (1, 1)}.

1.2 Free resolutions, Betti numbers, and

Castelnuovo–Mumford regularity

In this section, we introduce the algebraic background on free resolutions of finitely
generated graded modules over the polynomial ring k[x1, . . ., xn]. Since we will
mainly work with free resolutions of toric ideals, we treat here the general case
of multigradings. Moreover, we introduce the Castelnuovo-Mumford regularity for
finitely generated standard graded modules. In this case, we work over the polyno-
mial ring k[x0, . . ., xn]. We refer the reader to [20], [27], [28], [58], and [69] for the
details.

We assume that the reader is familiarized with Gröbner basis for ideals and
modules. See [19, Chap. 2] and [20, Chap. 5] for an overview of Gröbner bases.

1.2.1 Free resolutions and Betti numbers

Let k be a field and R = k[x] = k[x1, . . ., xn] the polynomial ring in n variables,
n ∈ Z>0. Consider a set A = {a1, . . . , an} ⊂ Nd \ {0}, d ∈ Z>0, and denote by
S ⊂ Nd the affine semigroup generated by A. A natural way to define a grading
on R = k[x1, . . ., xn] is to assign multidegree (also called S-degree) ai to the variable
xi, |xi|S= degS(xi) = ai, 1 ≤ i ≤ n. For α = (α1, . . . , αn) ∈ Nn the multidegree or
S-degree of the monomial xα is |xα|S= degS(x

α) =
∑n

i=1 αiai ∈ S.
For every s ∈ S, let Rs denote the k-vector space spanned by the set of all

monomials xα of multidegree s. Then, R has the direct sum decomposition R =
⊕s∈SRs, where RsRs′ ⊂ Rs+s′ for all s, s

′ ∈ S. We say that R is S-graded, and we
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call this grading an S-grading or multigrading in R. The polynomials f ∈ Rs are
called homogeneous of degree s.

If necessary, we can extend this grading to Nd (resp. Zd) by setting Rs = {0}
for all s ∈ Nd \ S (resp. s ∈ Zd \ S).

When d = 1, we usually denote the degrees of the variables x1, . . . , xn by
ω1, . . . , ωn ∈ Z>0, respectively, and say that the ω-degree of the monomial xα is
|xα|ω= degω(x

α) =
∑n

i=1 αiωi. If ω1 = · · · = ωn = 1, we get the standard grading
of R. Throughout this subsection, all the results apply for multigradings, gradings
given by weights and the standard grading; and we use the word multigrading to in-
clude all cases. We treat the standard graded case in more detail in Subsection 1.2.2.

Given an R-module M , we say that M is S-graded if M = ⊕s∈SMs, where
Ms ⊂ M is an additive subgroup for all s ∈ S, such that RsMs′ ⊂ Ms+s′ for all
s, s′ ∈ S.

Example 1.26. (1) Let I ⊂ R = k[x] be an ideal. Then, I is S-graded (as an
R-module) if and only if there exist homogeneous polynomials f1, . . . , fr such
that I = ⟨f1, . . . , fr⟩. In this case, I = ⊕s∈SIs, where Is = I ∩ Rs. The
R-module R/I is also S-graded, R/I = ⊕s∈S(R/I)s, where (R/I)s = Rs/Is
for all s ∈ S.

(2) For m ∈ Z>0, consider R
m the free R-module of rank m. Then,

Rm = ⊕s∈S(R
m)s ,

where (Rm)s := (Rs)
m for all s ∈ S. This decomposition makes Rm an S-

graded module.

For all s0 ∈ S, one can define a new S-grading in R by shifting the degrees:
R(−s0) = ⊕s∈SR(−s0)s, where R(−s0)s = Rs−s0 for all s ∈ S. If m ∈ Z>0 and
s1, . . . , sm ∈ S, one can also shift the S-grading in Rm by s1, . . . , sm:

R(−s1)⊕ . . .⊕R(−sm) = ⊕s∈S (R(−s1)⊕ . . .⊕R(−sm))s ,

where (R(−s1)⊕ . . .⊕R(−sm))s = R(−s1)s ⊕ . . . ⊕ R(−sm)s for all s ∈ S. A way
of thinking of this new S-grading is as follows: if {e1, . . . , em} denotes the standard
basis of Rm, we are assigning degree si to the vector ei, i = 1, . . . ,m. Thus, for
f = (f1, . . . , fm) ∈ Rm, the degree of fiei is degS(fi) + si, and

f ∈ (R(−s1)⊕ . . .⊕R(−sm))s ⇐⇒ fi ∈ Rs−si for all i = 1, . . . ,m .
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Remark 1.27. One can show that every S-graded free R-module F of rank m has
the form F ∼= R(−s1)⊕ . . . R(−sm) for some s1, . . . , sm ∈ S; see, e.g., [27, Ex. 4.11].
Hence, if M = ⟨f1, . . . , fm⟩ is a finitely generated S-graded R-module, where fi ∈M
is homogeneous of degree si ∈ S for all i = 1, . . . ,m, then the graded epimorphism
of R-modules ψ : R(s1) ⊕ . . . ⊕ R(−sm) → M defined by ψ(ei) = fi induces an
isomorphism of S-graded R-modules M ∼= (R(−s1)⊕ . . .⊕R(−sm)) /ker(ψ).

Definition 1.28. Let M be a finitely generated S-graded R-module. A graded free
resolution of M (as R-module) is an exact sequence of S-graded R-modules and
homomorphisms of R-modules

F : . . .→ Fi
φi−→ Fi−1 → . . .→ F1

φ1−→ F0
φ0−→M → 0 (1.2)

satisfying the following properties:

• Fi = R(−si,1)⊕ . . .⊕R(−si,ri) is a free S-graded free R-module of finite rank
for all i ≥ 0.

• The morphism φi is graded for all i ≥ 0, i.e., it maps elements of degree s in
Fi to elements of degree s in Fi−1, for all s ∈ S.

The elements si,j, i ≥ 0, 1 ≤ j ≤ ri, are called the shifts of the resolution F . The
i-th syzygy module of M is φi+1(Fi+1) = ker(φi) ⊂ Fi. If for some ℓ ∈ N, Fℓ ̸= 0 and
Fr = 0 for all r > ℓ, we say that the resolution is finite of length ℓ.

To compute graded free resolutions, one can use Gröbner bases. Let F = Rm

be a free R-module, m ∈ Z>0, and M = ⟨g1, . . . ,gt⟩ an S-graded submodule of F ,
where for all i ∈ {1, . . . , t}, gi is homogeneous of S-degree si ∈ S. Set {ϵ1, . . . , ϵm}
the canonical basis of F . Assume that G = {g1, . . . ,gt} is a Gröbner basis of M
with respect to a certain monomial order > on F . By Buchberger’s criterion, for
all 1 ≤ i < j ≤ t, the S-polynomial S(gi,gj) either is 0, or reduces to 0 modulo G.
Hence, there exists an expression S(gi,gj) = Mjigi −Mijgj =

∑t
k=1 f

(ij)
k gk, where

Mji,Mij ∈ R are monomials, f
(ij)
k ∈ R for all k ∈ {1, . . . , t}, and in(f

(ij)
k gk) ≤

in(S(gi,gj)) for all k ∈ {1, . . . , t}, where in(−) denotes the leading monomial for >.
Each one of the relations

Mjigi −Mijgj −
t∑

k=1

f
(ij)
k gk = 0

provides a syzygy which can be represented as a vector τij := Mjiϵi − Mijϵj −∑t
k=1 f

(ij)
k ϵk ∈ Rt. Indeed, if τij ̸= 0, one has that τij ∈ R(−s1) ⊕ . . . ⊕ R(−st) is

homogeneous of a certain S-degree sij.
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Theorem 1.29 (Schreyer’s Theorem, [27, Thm. 15.10]). With notations as above,
suppose that g1, . . . ,gt is a Gröbner basis of M with respect to a monomial order >,
and consider the graded homomorphism of R-modules φ : R(−s1)⊕ . . .⊕R(−st)→
Rm defined by φ(ϵi) = gi, i ∈ {1, . . . , t}. Then, ker(φ) = ⟨τij | 1 ≤ i < j ≤ t⟩.
Indeed, {τij | 1 ≤ i < j ≤ t} forms a Gröbner basis of ker(φ) for the monomial
order >S on R(−s1)⊕ . . .⊕R(−st) defined by taking

Mϵi >S M
′ϵj ⇐⇒

{
in(Mgi) > in(M ′gj) for the monomial order > on Rm, or

in(Mgi) = in(M ′gj) and i < j .

Remark 1.30. The initial term of τij for the monomial order >S is in(τij) =Mjiϵi.

Repeated use of Theorem 1.29 provides a graded free resolution of M . The next
result shows how to sort the elements in the Gröbner basis to obtain a resolution
that finishes in at most n steps.

Corollary 1.31 ([27, Cor. 15.11]). With notations as in Theorem 1.29, suppose
that the gi are arranged so that whenever in(gi) and in(gj) involve the same vector
of the canonical basis of F , say in(gi) = Miϵ and in(gj) = Mjϵ with Mi,Mj ∈ R
monomials, we have

i < j ⇒Mi >LEX Mj ,

where >LEX is the lexicographic order on R with x1 > x2 > · · · > xn. If the variables
x1, . . . , xs are missing from the initial terms of the gi, then the variables x1, . . . , xs+1

are missing from the in(τij) and F/⟨g1, . . . ,gt⟩ has a resolution of length ≤ n− s.

Theorem 1.29 and Corollary 1.31 provide the so-called Schreyer’s algorithm to
compute graded free resolutions based on Gröbner bases computations when M is
a submodule of a free R-module F . This resolution is called the Schreyer resolution
and it is always of length ≤ n by Corollary 1.31.

Example 1.32 (Schreyer’s resolution). Take R = Q[x, y, z, t] and consider in R
the multigrading defined by degS(x) = (2, 3), degS(y) = (1, 4), degS(z) = (0, 5)
and degS(t) = (5, 0), where S = ⟨(2, 3), (1, 4), (0, 5), (5, 0)⟩ ⊂ N2. The ideal I =
⟨g1, g2, g3⟩, where g1 = x3 − yzt, g2 = x2y − z2t, and g3 = y2 − xz, is S-graded,
since g1, g2, g3 are homogeneous. Fix > the degree reverse lexicographic on R with
x > y > z > t, i.e., for xα,xβ ∈ R two distinct monomials,

xα > xβ ⇐⇒

{
deg(xα) > deg(xβ), or

deg(xα) = deg(xβ) and the last nonzero entry of α− β is < 0.

Observe that the elements g1, g2, g3 satisfy in(g1) > in(g2) > in(g3) for the lexico-
graphic order with x > y > z > t. Let us construct a graded free resolution of I as
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R-module. Note that g1 is homogeneous of degree (6, 9), g2 of degree (5, 10), and g3
of degree (2, 8). Set F0 := R(−(6, 9))⊕ R(−(5, 10))⊕ R(−(2, 8)), and compute the
S-polynomials between g1, g2, g3:

• S(g1, g2) = yg1−xg2 = −ztg3, and hence we have τ12 = yϵ1−xϵ2+ztϵ3, where
{ϵ1, ϵ2, ϵ3} is the canonical basis of R3. Note that τ12 ∈ F0 is homogeneous of
degree (7, 13), i.e., τ12 ∈ (F0)(7,13).

• S(g1, g3) = y2g1 − x3g3 = xzg1 − yztg3, and hence τ13 = (y2 − xz)ϵ1 + (−x3 +
yzt)ϵ3. Note that τ13 ∈ (F0)(8,17).

• S(g2, g3) = yg2 − x2g3 = zg1, and hence τ23 = −zϵ1 + yϵ2 − x2ϵ3. Note that
τ23 ∈ (F0)(6,14).

By Buchberger’s criterion, {g1, g2, g3} is a Gröbner basis of I with respect to the
degrevlex order. The initial term of the τij for the monomial order >S are in(τ12) =
yϵ1 in(τ13) = y2ϵ1, and in(τ23) = yϵ2, by Remark 1.30. We sort the τij following
Corollary 1.31; f1 = τ13, f2 = τ12 and f3 = τ23. By Theorem 1.29, the sequence

0→ R(−(8, 17))⊕R(−(7, 13))
⊕R(−(6, 14))

φ1−→ R(−(6, 9))⊕R(−(5, 10))
⊕R(−(2, 8))

φ0−→ I → 0

is exact and the morphisms φ0 and φ1 are graded, where φ0(ϵi) = gi, φ1(ϵ
′
i) = fi for

all i = 1, 2, 3, and {ϵ′1, ϵ′2, ϵ′3} is the canonical basis of R(−(8, 17))⊕ R(−(7, 13))⊕
R(−(6, 14)). Moreover, by Theorem 1.29, {f1, f2, f3} is a Gröbner basis of ker(φ0)
for the monomial order >S. Now, S(f1, f3) = S(f2, f3) = 0, and

S(f1, f2) = f1 − yf2 = xf3,

so τ ′
12 = ϵ′1 − yϵ′2 − xϵ′3. Note that τ ′

12 is homogeneous of degree (8, 17), and it
generates ker(φ1) by Theorem 1.29. Hence, one has that

F : 0→ R(−(8, 17)) φ2−→ R(−(8, 17))⊕R(−(7, 13))⊕R(−(6, 14))
φ1−→ R(−(6, 9))⊕R(−(5, 10))⊕R(−(2, 8)) φ0−→ I → 0

is a graded free resolution of I, where φ2 is defined by φ2(1) = τ ′
12. The resolution

F is finite of length 2.

By Remark 1.27, every finitely generated S-graded module M is isomorphic to
the quotient of a free R-module, and hence, the Schreyer’s resolution ofM has length
≤ n. This provides an easy proof of the graded version of Hilbert’s syzygy theorem.
Moreover, this proof is constructive and shows a method to compute a graded free
resolution of any finitely generated S-graded R-module M , providing that we know
how to compute ker(ψ) in Remark 1.27.
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Theorem 1.33 (Graded Hilbert’s syzygy theorem, [58, Thm. 4.8.4]). Every finitely
generated S-graded R-module has a graded free resolution of length at most n.

If F is a graded free resolution of M , as in (1.2), every map φi, i ∈ N, can be
represented by a matrix Φi with coefficients in k[x1, . . ., xn]. Moreover, since (1.2)
is an exact sequence, then Φi+1Φi = 0 for all i ∈ N. When there are not nonzero
constants in any of the matrices Φi, we say that the resolution is minimal. This can
be reformulated in the following way.

Definition 1.34. A graded free resolution F of M is minimal if Im(φi) ⊂ mFi−1

for all i ≥ 1, where m = ⟨x1, . . . , xn⟩.

By the graded version of Nakayama’s lemma, this condition is equivalent to say-
ing that φi maps a basis of Fi to a minimal generating set of Im(φi), for all i ≥ 1 (see
[58, p. 151]). Since one can always obtain a minimal graded free resolution (m.g.f.r.)
from a graded free resolution ([58, Thm. 4.8.6]), it follows from Theorem 1.33 that
every finitely generated S-graded R-module has a m.g.f.r. of length at most n.

Example 1.35. Consider the same R and I as in Example 1.32, and the graded
free resolution F that we computed in that example. The matrices Φi representing
the morphisms φi for i = 0, 1, 2 are

Φ0 = (g1 g2 g3) , Φ1 =

 y2 − xz y −z
0 −x y

−x3 + yzt zt −x2

 , and Φ2 =

 1
−y
−x

 .

Since the matrix Φ2 contains a nonzero constant, the resolution F is not minimal.
The 1 in Φ2 comes from the relation f1 = yf2 + xf3. To get a m.g.f.r. from F , just
note that ker(φ0) = ⟨f2, f3⟩, so one can remove the first column of Φ1. If one does
that, then ker(φ1) = 0, and the resolution ends at that point. Hence, a m.g.f.r. of
I is as follows:

0→ R(−(7, 13))⊕R(−(6, 14)) −→ R(−(6, 9))⊕R(−(5, 10))⊕R(−(2, 8)) −→ I → 0.

From a m.g.f.r. of I, one can get a m.g.f.r. of R/I

0→ R(−(7, 13))⊕R(−(6, 14)) −→ R(−(6, 9))⊕R(−(5, 10))⊕R(−(2, 8))
−→ R→ R/I → 0. (1.3)

Given a finitely generated S-graded R-module M , any two m.g.f.r. of M are
isomorphic; see, e.g., [58, Thm. 4.8.9]. Here, isomorphic means that at each step,
there is a graded isomorphism of modules between the corresponding modules in the
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two resolutions. As a consequence, one can extract some invariants of the module
M from any m.g.f.r. of M . In particular, all the m.g.f.r. of M have the same
length, and this length is the projective dimension of M , pd(M). Theorem 1.33
ensures that pd(M) ≤ n, and the Auslander-Buchsbaum formula provides the exact
relation between these two numbers.

Theorem 1.36 (Auslander-Buchsbaum formula, [13, Thm. 1.3.3]). Let M be a
finitely generated S-graded R-module. Then,

pd(M) + depth(M) = n ,

where depth(M) denotes the depth of M as R-module.

Since depth(M) ≤ dim(M), one has that pd(M) ≤ n−dim(M), and the equality
holds if and only if M is Cohen-Macaulay. Hence, the Cohen-Macaulay property of
a module can be checked in terms of its projective dimension. For a fixed dimension
d, Cohen-Macaulay modules are the ones with the shortest resolutions.

LetM be a finitely generated S-graded R-module. Consider a minimal S-graded
free resolution of M as R-module,

F : 0→ Fp
φp−→ Fp−1 → . . .→ F1

φ1−→ F0
φ0−→M → 0 . (1.4)

and write Fi = ⊕s∈SR(−s)βi,s for all i = 0, . . . , p. Note that for all i, βi,s = 0 for all
but finitely many s ∈ S, since Fi has finite rank.

Definition 1.37. The i-th multigraded (or S-graded) Betti number of M in degree
s is the number βi,s(M) = βi,s of summands R(−s) in Fi. The i-th Betti number of
M is the rank of the free module Fi, βi(M) = βi =

∑
s∈S βi,s. The Betti sequence of

M is (β0, β1, . . . , βp).
Moreover, if M is a Cohen-Macaulay module, the (Cohen-Macaulay) type of M

is type(M) = βp. We say that M is Gorenstein if it is Cohen-Macaulay of type 1.

Usually, we will apply the results of this section to the finitely generated R-
module M = R/I, where I ⊂ R is a homogeneous ideal. In particular, if X ⊂ An

k
is an affine algebraic variety and I = I(X ) is its vanishing ideal, we will work with
the coordinate ring of X , k[X ] = R/I. We will say that X is arithmetically Cohen-
Macaulay (resp. Gorenstein) if k[X ] is Cohen-Macaulay (resp. Gorenstein). The
same applies to projective varieties.

Remark 1.38. As in the standard graded case, the i-th multigraded Betti number
of M in multidegree s can also be computed, by [69, Lem. 1.32], as the vector space
dimension

βi,s(M) = dimk
(
TorRi (M, k)s

)
,
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where Tor denotes the Tor functor (see, e.g., [83, Chap. 6 and 7] for a reference).
To understand this formula note that if M1,M2 are two S-graded R-modules, then
M1 ⊗M2 = ⊕s∈S(M1 ⊗M2)s, where for all s ∈ S, (M1 ⊗M2)s is generated by all
elements f1 ⊗ f2 such that f1 ∈Ms1 and f2 ∈Ms2 , with s1 + s2 = s.

Example 1.39. Consider R and I as in Example 1.32. From the m.g.f.r (1.3),
the multigraded Betti numbers of R/I are β0,(0,0) = 1, β1,(6,9) = 1, β1,(5,10) = 1,
β1,(2,8) = 1, β2,(7,13) = 1, β2,(6,14) = 1, and βi,s = 0 otherwise. Then, the Betti
sequence of R/I is (1, 3, 2), and pd(R/I) = 2.

Definition 1.40. Let M be a finitely generated S-graded R-module. The (multi-
graded) Hilbert function of M is the map HFM : S → N given by

HFM(s) = dimkMs ,

where dimkMs denotes the dimension of Ms as a k-vector space (which is finite for
all s ∈ S). The (multigraded) Hilbert series of M is

HSM(t) =
∑
s∈S

HFM(s) · ts ∈ ZJt1, . . . , tdK ,

where ts = ts11 . . . tsdd .

It is easy to prove that the Hilbert series of R (as R-module) can be written as
a rational function,

HSR(t) =
1

(1− ta1) . . . (1− tan)
;

see, e.g., [69, Lem. 8.16] for a proof. Moreover, if s ∈ S, then HSR(−s)(t) =
ts

(1−ta1 )...(1−tan )
. As a consequence, we get that if F = R(−s1) ⊕ . . . ⊕ R(−sm) for

some s1, . . . , sm ∈ S, then

HSF (t) =
ts1 + · · ·+ tsm

(1− ta1) . . . (1− tan)
. (1.5)

A proof of this result can be found in [69, Thm. 8.20].

Proposition 1.41 ([69, Lem. 8.19]). Let M be a finitely generated S-graded R-
module, and consider a graded free resolution F of M ,

F : 0→ Fr
φp−→ . . .→ F1

φ1−→ F0
φ0−→M → 0 .

The multigraded Hilbert function and series of M can be computed as

HFM =
r∑
j=0

(−1)j HFFj
, and HSM =

r∑
j=0

(−1)jHSFj
.
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Combining Proposition 1.41 and Equation (1.5), one can compute the Hilbert
function and series of any finitely generated S-graded R-module M . Indeed, if p
denotes the projective dimension of M and βi,s are its multigraded Betti numbers,
then

HSM(t) =

∑p
i=0

∑
s∈S(−1)iβi,sts

(1− ta1) . . . (1− tan)
. (1.6)

Example 1.42. Consider R and I as in Example 1.32. By Equation (1.6) and the
minimal graded free resolution (1.3), the multigraded Hilbert series of R/I is

HSR/I(t1, t2) =
1− t61t92 − t51t102 − t21t82 + t71t

13
2 + t161 t

14
2

(1− t21t32)(1− t1t42)(1− t52)(1− t51)
.

1.2.2 The standard graded case: the Castelnuovo–Mumford
regularity

Consider the polynomial ring R = k[x0, . . ., xn], endowed with the standard grad-
ing (i.e., deg(xi) = 1, for all i = 0, . . . , n). Let M be a finitely generated graded
R-module. All the results of Subsection 1.2.1 apply here.

Let 0→ Fp → . . .→ F1 → F0 →M → 0 be a minimal graded free resolution of
M , where Fi = ⊕jR(−j)βi,j for all i = 0, . . . , p.

Definition 1.43. Let M be a finitely generated (standard) graded R-module. The
Castelnuovo–Mumford regularity of M is

reg(M) = max{j − i | βi,j ̸= 0} .

Note that βi,j = 0 if i > p or j − i > reg(M). Moreover, if βi,j = 0 for all j ≤ j0,
then βi+1,j = 0 for all j ≤ j0+1, by the minimality of the resolution (see Def. 1.34).
Hence, the graded Betti numbers βi,j = βi,j(M) are usually presented in a table,
called the Betti table or Betti diagram of M . In this table, the entry corresponding
to the i-th column and the j-th row is βi,i+j:

0 1 . . . p
0 β0,0 β1,1 . . . βp,p
1 β0,1 β1,2 . . . βp,p+1
...

...
...

. . .
...

reg β0,reg β1,reg+1 . . . βp,reg+p
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In the table above, reg = reg(M) is the Castelnuovo-Mumford regularity of M ,
and p = pd(M) is its projective dimension.

Note that the Castelnuovo-Mumford regularity of M is the label of the last
nonzero row of the Betti table. From Remark 1.38, it follows that reg(M) =
maxi{bi(M) − i}, where bi(M) = max{µ | TorRi (M, k)µ ̸= 0} if TorRi (M, k) ̸= 0
and bi(M) = −∞ otherwise.

By [85, Thm. 3.11], the regularity is always determined by the tail of a minimal
graded free resolution. In other words, Definition 1.43 can be simplified as

reg(M) = max {j − i | βi,j ̸= 0, n+ 1− dim(M) ≤ i ≤ n+ 1− depth(M), j ≥ 0} .
(1.7)

As a consequence, when M is Cohen-Macaulay, the regularity is always attained at
the last step of a m.g.f.r., a general and well-known fact.

Example 1.44. Take R = Q[x, y, z, t], with the standard grading, and I = ⟨g1, g2,
g3⟩, where g1 = x3−yzt, g2 = x2y−z2t, and g3 = y2−xz the ideal in Example 1.32,
which is homogeneous for the standard grading. With the same computations as in
Examples 1.32 and 1.35, one can compute a m.g.f.r. of R/I:

R(−4)⊕R(−4)→ R(−3)⊕R(−3)⊕R(−2)→ R→ R/I → 0,

where the maps are the same as in (1.3). The Betti diagram of R/I is

0 1 2

------------------------

0: 1 - -

1: - 1 -

2: - 2 2

------------------------

total: 1 3 2

The Castelnuovo-Mumford regularity of R/I is reg(R/I) = 2.

There is an equivalent definition of the Castelnuovo-Mumford regularity in terms
of the local cohomology modules of M . Let m = ⟨x0, . . . , xn⟩ be the homogeneous
maximal ideal of R, called the irredundant ideal, and set H0

m(M) := {z ∈ M | ∃ℓ ∈
N with zmℓ = 0}. For every positive integer i, H i

m(−) is defined as the i-th right
derived functor of H0

m(−).
Grothendieck’s theorem states that H i

m(M) = 0 for i > dim(M) and i <
depth(M), and H i

m(M) does not vanish for i = dim(M) and i = depth(M). For
all i ∈ N, denote end (H i

m(M)) = max{µ | H i
m(M)µ ̸= 0} if H i

m(M) ̸= 0, and
end (H i

m(M)) = −∞, otherwise.
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Theorem 1.45 ([16, Cor. 2.2]). Let M be a finitely generated graded R-module.
Then, the Castelnuovo-Mumford regularity of M is

reg(M) = max
{
end

(
H i

m(M)
)
+ i | depth(M) ≤ i ≤ dim(M)

}
.

Moreover,

max{j | βn+1−depth(M),j ̸= 0} = end
(
Hdepth(M)

m (M)
)
+ n+ 1 .

Unlike the projective dimension, which is upper bounded by n, the Castelnuovo-
Mumford regularity of M cannot be bounded in general in a simple way. Hence, it
has been a topic of research for many years, and has been object of many conjectures.
Probably, the most famous one is the Eisenbud-Goto conjecture (see [29]), which was
thought to be true for many years (1984-2017), until McCullough and Peeva provided
in [68] a family of counterexamples to this long-standing conjecture. However, the
conjecture remains still open in some interesting cases, such as simplicial projective
toric ideals (see Section 1.3).

Conjecture 1.46 (Eisenbud-Goto, [29]). Suppose that k is an algebraically closed
field. Let R = k[x0, . . ., xn] and I ⊂ R be a homogeneous prime ideal such that
I ⊂ ⟨x1, . . . , xn⟩2. Then,

reg(R/I) ≤ deg(R/I)− codim(I) ,

where deg(R/I) is the multiplicity of R/I (also called the degree of R/I, see Re-
mark 1.49), and codim(I) = n + 1 − dim(R/I) is the codimension (also called
height) of I.

Although the conjecture was proved to be false in general, it is known that the
conjecture holds in some cases and is still believed to hold for the ideals I defin-
ing “nice” projective varieties. For example, it is true for arithmetically Cohen-
Macaulay varieties, arithmetically Buchsbaum varieties [88], projective curves [46],
smooth surfaces [63], smooth threefolds in P 5 [55] and toric varieties of codimension
two [77]. When it comes to projective toric varieties, the conjecture is known to be
true for simplicial smooth toric varieties [48]. In fact, the authors gave a bound that
improves Eisenbud-Goto’s one in that case. For toric varieties of dimension 1, there
is a combinatorial proof for Eisenbud-Goto conjecture [73].

Now, consider the Hilbert function of M . Combining Proposition 1.41 and the
fact HFR(−j)(s) =

(
s−j+n
n

)
, one has that

HFM(s) =
∑

i,j|βij ̸=0

(−1)iβij
(
s− j + n

n

)
(1.8)
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for all s ∈ N. If one considers the polynomial

HPM(t) =
∑

i,j|βij ̸=0

(−1)iβij
(t− j + n)(t− j + n− 1) . . . (t− j + 1)

n!
∈ Q[t] ,

then it is clear that HFM(s) = HPM(s) for all s ∈ N such that s− j + n ≥ 0 for all
j. Hence, we have proved the following.

Theorem 1.47 ([20, Chap. 6, Prop. 4.7]). Let R = k[x0, . . ., xn] and M be a finitely
generated graded R-module. Then, there exists a (unique) polynomial HPM(t) ∈
Q[t], such that

HPM(s) = HFM(s)

for all s ∈ N sufficiently large.

Definition 1.48. In the conditions of the previous theorem, the polynomial HPM
is called the Hilbert polynomial of M , and the minimum s ∈ N such that HPM(s′) =
HFM(s′) for all s′ ≥ s is called the regularity of the Hilbert function of M . We
denote it by r(M).

By Equation (1.6), the Hilbert series of M can be written as

HSM(t) =

∑
i,j|βi,j ̸=0(−1)iβi,jtj

(1− t)n+1
.

Let q be the maximal power such that (1 − t)q divides the numerator of HSM(t).
Then, one can write

HSM(t) =
h(t)

(1− t)n+1−q ,

where h(t) ∈ Z[t] is called the h-polynomial of M . By [76, Thm. 16.7(1)], n +
1 − q = dim(M) is the Krull dimension of M . The multiplicity of M is defined as
e(M) = h(1).

Remark 1.49. Let M be a finitely generated graded R-module. The multiplicity
and dimension of M can also be read from the Hilbert polynomial of M as follows:

• The degree of the polynomial HPM is d − 1, where d = dim(M) is the Krull
dimension of M , by [13, Thm. 4.1.3] .

• The leading term of HPM is e
(d−1)!

td−1, where e = e(M) is the multiplicity of

M , by [76, Thm. 16.7(2)].

When I ⊂ R is a homogeneous ideal and M = R/I, we will also refer to the
multiplicity of R/I as the degree of R/I, or the degree of the algebraic set V (I) ⊂ Pn

k .
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Let M be a finitely generated graded R-module. We want to relate precisely the
Castelnuovo-Mumford and the Hilbert function regularity ofM in terms of the Betti
numbers of M , βij. If we set reg := reg(M) the Castelnuovo-Mumford regularity of
M , then for all s ∈ N

HFM(s) =
n+1∑
i=0

reg∑
j=0

(−1)iβi,i+j
(
s− (i+ j) + n

n

)
, and

HPM(s) =
1

n!

n+1∑
i=0

reg∑
j=0

(−1)iβi,i+j
n∏
ℓ=1

(s− (i+ j) + ℓ) .

Taking into account the roots of the polynomial
∏n

ℓ=1 (s− (i+ j) + ℓ), it is easy to
prove that HFM(s) = HPM(s) for all s ≥ reg + 1, that is

r(M) ≤ reg(M) + 1 . (1.9)

To determine precisely the difference δ between the two regularities, δ := reg(M)−
r(M), we need to evaluate the difference HPM(reg + 1− λ)−HFM(reg + 1− λ) for
1 ≤ λ ≤ reg + 1. For λ ≥ 1 and k ≥ 0, set

A
(λ)
k :=

(
reg + 1 + n− (λ+ 1)− k

n

)
, and

B
(λ)
k :=

1

n!

n∏
ℓ=1

(reg + 1− λ− k + ℓ) .

Using these notations, for all λ, 1 ≤ λ ≤ reg + 1, we can write

HFM(reg + 1− λ)− HPM(reg + 1− λ) =
n+1∑
i=0

reg∑
j=0

(−1)iβi,i+j
(
A

(λ)
i+j −B

(λ)
i+j

)
=

reg+n+1∑
i+j=0

(−1)iβi,i+j
(
A

(λ)
i+j −B

(λ)
i+j

)
. (1.10)

The following lemma establishes when A
(λ)
k and B

(λ)
k coincide.

Lemma 1.50. Consider λ ≥ 1 and k, such that 0 ≤ k ≤ reg + n+ 2− λ.

(1) If 0 ≤ k ≤ reg − λ+ 1, then A
(λ)
k = B

(λ)
k ̸= 0.

(2) If reg − λ+ 2 ≤ k ≤ reg + n− λ+ 1, then A
(λ)
k = B

(λ)
k = 0.

(3) If k = reg + n+ 2− λ, then A(λ)
k = 0 and B

(λ)
k = (−1)n.
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Proof. If k ≤ reg− λ+ 1, then reg + n+ 1− λ− k ≥ n, so A
(λ)
k = B

(λ)
k ̸= 0 and (1)

follows. Otherwise, A
(λ)
k = 0 and we distinguish two cases. If k ≤ reg + n − λ + 1,

then 1 ≤ k + λ − reg − 1 ≤ n, and hence, B
(λ)
k = 0 and (2) follows. Finally, if

k = reg + n+ 2− λ, then

B
(λ)
reg+n+2−λ =

1

n!

n∏
ℓ=1

(ℓ− n− 1) = (−1)n,

and we are done.

By Lemma 1.50 (3) and Equation (1.10), HFM(reg)− HPM(reg) = βn+1,reg+n+1

so if βn+1,reg+n+1 ̸= 0, one gets that r(M) = reg(M) + 1, i.e., δ = −1. And the
reciprocal statement also holds. This is a particular case of the following result that
relates precisely δ to some of the Betti numbers.

Theorem 1.51. Let M be a finitely generated graded module over k[x0, . . ., xn],
and denote by δ the difference between the Castelnuovo-Mumford regularity and the
regularity of the Hilbert function of M , i.e., δ := reg(M) − r(M) (δ ≥ −1). Then,
δ = λ − 2, where λ ≥ 1 is the least integer, such that

∑
i(−1)iβi,reg(M)+n+2−λ ̸= 0,

where the βij are the graded Betti numbers of M .

Proof. The case λ = 1 is proved just before the proposition, so assume that λ ≥ 2.
Since, for all µ = 1, 2, . . . , λ − 1,

∑
i(−1)iβi,reg+n+2−µ = 0, by Equation (1.10) one

gets that HPM(s) = HFM(s) for all s ≥ reg − λ + 2, i.e., r(M) ≤ reg(M) − λ + 2.
Moreover, by applying Lemma 1.50 (3) to Equation (1.10), we obtain that

HFM(reg − λ+ 1)− HPM(reg − λ+ 1) =
∑
i

(−1)i+1βi,reg+n+2−λB
(λ)
reg+n+2−λ

=
∑
i

(−1)n+i+1βi,reg+n+2−λ ̸= 0 ,

and hence r(M) = reg(M)− λ+ 2.

Remark 1.52. (1) If we focus on the secondary diagonals of the Betti diagram
starting from the bottom right of the table, the number λ in the previous
theorem is the label of the first diagonal, such that the alternating sum of the
Betti numbers on this diagonal is not 0; see Table 1.1.

(2) If p denotes the projective dimension of the module M , the previous result
implies that βp,reg(M)+p ̸= 0, i.e., the regularity is attained at the last step
of a m.g.f.r. of M , if and only if λ = n − p + 2, i.e., δ = n − p. This
occurs, in particular, whenever M is a Cohen-Macaulay module, so, in this
case, reg(M)−r(M) = n−p which is a well-known fact; see, e.g., [28, Cor. 4.8].
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j/i 0 1 . . . p− 1 p p+ 1 . . . n+ 1

0 1 β1,1 . . . βp−1,p−1 βp,p 0 . . . 0

1 − β1,2 . . . βp−1,p βp,p+1 0 . . . 0

...
...

...
. . .

...
...

...
. . .

...

reg − 1 − β1,reg . . . βp−1,reg+p−2 βp,reg+p−1 0 . . . 0

reg − β1,reg+1 . . . βp−1,reg+p−1 βp,reg+p 0 . . . 0

λ = n− p+ 3 λ = n− p+ 2 λ = 1

Table 1.1: Betti diagram in Remark 1.52 (1).

(3) If depth(M) ≥ 1, i.e., p ≤ n (by Theorem 1.36), then r(M) ≤ reg(M).

(4) Let λ ≥ 1 be the least integer such that
∑

i(−1)iβi,reg(M)+n+2−λ ̸= 0. By
Equation (1.6) and Theorem 1.51, the degree of the numerator in the Hilbert
series of M (before simplifying) is reg(M) + n + 2 − λ = r(M) + 2. Hence,
r(M)− 1 is the difference of the degrees of the polynomials in the numerator
and denominator of the Hilbert series of M .

Example 1.53. Take R and I ⊂ R as in Example 1.44. By (1.8), the Hilbert
function of R/I is given by

HFR/I(s) =

(
s+ 3

3

)
−
(
s+ 1

3

)
−
(
s

3

)
+

(
s− 1

3

)
,

for all s ∈ N, and the Hilbert polynomial of R/I is HPR/I(t) = 1
2
t2 − 7

2
t. By

Theorem 1.51, reg(R/I) − r(R/I) = 1, and hence r(R/I) = 1, i.e., HFR/I(s) =
HPR/I(s) for all s ≥ 1 and HFR/I(0) ̸= HPR/I(0).

1.3 Toric ideals and toric varieties

In this section, we introduce toric ideals and toric varieties since they will play an
important role in this thesis. Toric varieties appear in the literature in several dif-
ferent ways; see [21, Chap. 1-2]. For us, a toric variety will be the zero set of a toric
ideal.

Let k be a field, k[x] := k[x1, . . ., xn] and k[t] := k[t1, . . ., td] two polynomial
rings over k. Given A = {a1, . . . , an} ⊂ Nd a set of nonzero vectors, each element
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ai = (ai1, . . . , aid) ∈ Nd corresponds to the monomial tai = tai11 . . . taidd in k[t1, . . ., td].
Set SA ⊂ Nd the affine semigroup generated by A.

Definition 1.54. The toric ideal determined by A, IA, is the kernel of the homo-
morphism of k-algebras φA : k[x] → k[t] defined by φ(xi) = tai . The toric ring
determined by A is k[x]/IA.

The image of φA is the semigroup algebra of SA, k[SA] = Im(φA), and the
surjective homomorphism φA endows k[SA] with a structure of k[x]-module. Note
that this structure of k[x]-module depends not only on the semigroup SA, but also
on the generating set A that we have fixed for SA.

If necessary, we can assume that δ(A) := gcd ({aij | 1 ≤ i ≤ n, 1 ≤ j ≤ d}) = 1.
If this is not the case, consider the set A′ = 1

δ(A)
A, since one has that IA′ = IA and

δ(A′) = 1.

Remark 1.55. Given a set A = {a1, . . . , an} ⊂ Nd of nonzero vectors, one can
compute the toric ideal IA as follows. Consider the ideal LA = ⟨x1−ta1 , . . . , xn−tan⟩
of k[x, t] = k[x1, . . . , xn, t1, . . . , td]. By [1, Thm. 2.3.4], the toric ideal IA = LA ∩
k[x1, . . ., xn]. Hence, if G is a Gröbner basis of LA for an elimination monomial order
> in k[x, t] such that tj > xi for all 1 ≤ i ≤ n, 1 ≤ j ≤ d, then G ∩k[x] is a Gröbner
basis of IA. In particular, G ∩ k[x] generates IA.

Although the described algorithm is theoretically feasible, sometimes it is not
the best for computations. We refer the reader to [8] and [52] for other algorithms
that exploit the structure of toric ideals to compute IA. These algorithms mainly
use lattices and saturation.

The toric ideal IA is prime and, if one sets the SA-degree of a monomial xα ∈
k[x1, . . ., xn] as |xα|SA := α1a1 + · · · + αnan ∈ SA, it is SA-homogeneous, i.e., IA is
homogeneous for the grading induced by |xα|SA . Indeed, by [89, Cor. 4.3], IA is the
binomial ideal

IA = ⟨xα − xβ : |xα|SA= |xβ|SA ⟩ .

Moreover, if one considers ωi =
∑d

j=1 aij, i = 1, . . . , n, and sets degω(xi) = ωi, the
ideal IA is also ω-homogeneous for the weight vector ω = (ω1, . . . , ωn) ∈ Zn>0.

Note that for both gradings, the homomorphism of k[x]-modules φA : k[x]→ k[t]
defined by xi 7→ tai is graded, and hence k[SA] and the toric ring k[x1, . . ., xn]/IA
are isomorphic as graded k[x]-modules.

Example 1.56. Consider A = {a1 = (2, 3), a2 = (1, 4), a3 = (0, 5), a4 = (5, 0)} ⊂
N2, and let IA ⊂ Q[x1, x2, x3, x4] be the toric ideal determined by A. By Re-
mark 1.55,

IA = ⟨x1 − t21t32, x2 − t1t42, x3 − t52, x4 − t51⟩ ∩Q[x1, x2, x3, x4] .
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Note that IA is the ideal from Example 1.32 (after relabeling the variables). One has
that IA is homogeneous for the SA-grading induced by |xi|SA= ai, i = 1, . . . , 4, where
SA = ⟨A⟩. Moreover, IA is ω-homogeneous for the weight vector ω = (5, 5, 5, 5),
and hence, it is also homogeneous for the standard grading.

The next proposition characterizes when the toric ideal IA is homogeneous for the
standard grading, i.e., homogeneous when one sets deg(xi) = 1 for all i = 1, . . . , n.

Proposition 1.57 ([89, Lem. 4.14]). Let A = {a1, . . . , an} ⊂ Nd, and IA be the
toric ideal determined by A. Then, IA is homogeneous (for the standard grading) if
and only if there exists a vector v ∈ Qd, such that ai · v =

∑n
j=1 aijvj = 1 for all

i = 1, . . . , n.

Note that, by the previous result, one has that the toric ideal IA is homogeneous
if and only if A is contained in a hyperplane H of Qd not passing through the origin,
H = {(z1, . . . , zd) ∈ Qd |

∑d
i=1 viwi = 1}, for some v = (v1, . . . , vn) ∈ Qn, v ̸= 0.

By [89, Lem. 4.2], the Krull dimension of R/IA, dim(R/IA), equals the dimension
of the cone Pos(A), i.e., the dimension of the Q-vector space QA. If this dimension
is d′ < d, one can easily show that there exists a set A′ = {a′

1, . . . , a
′
n} ⊂ Nd′ such

that IA = IA′ . Hence, without loss of generality, we will always assume that the
cone Pos(A) has dimension d, and dim(R/IA) = d if A ⊂ Nd.

Definition 1.58. (1) Given an ideal I ⊂ k[x1, . . ., xn] of height n−d, we say that
I is a toric ideal if there exists a finite set A ⊂ Nd such that I = IA.

(2) The toric ideal IA is simplicial if the affine semigroup SA is simplicial.

Example 1.59. Let A = {a1 = (0, 5), a2 = (1, 3), a3 = (2, 1)} ⊂ N2, and k = Q.
The toric ideal determined by A is simplicial, since every affine semigroup in N2

is simplicial, and, by Proposition 1.57, it is homogeneous for the standard grading,
because ai · (25 ,

1
5
) = 1 for i = 1, 2, 3. One has that

IA = ⟨x1 − t52, x2 − t1t32, x3 − t21t2⟩ ∩Q[x1, x2, x3] = ⟨x22 − x1x3⟩ .

Note that IA is also homogeneous for the multigrading given by deg(xi) = ai since,
for this grading, f is homogeneous of degree degSA

(f) = (2, 6). Moreover, IA is
ω-homogeneous for the weight vector ω = (5, 4, 3).
Note that if B = {(2, 0), (1, 1), (0, 2)} ⊂ N2, one has that IB = IA.

Simplicial toric ideals can always be seen as the toric ideal determined by a set
A ⊂ Nd whose cone Pos(A) = Nd, and all the extremal rays of the cone are of the
same length.
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Proposition 1.60 ([48, Sect. 2]). Let I ⊂ k[x1, . . ., xn] be an ideal. Then, I is a
simplicial toric ideal if and only if there exists a set A = {a1, . . . , an} ⊂ Nd such
that I = IA and {Dϵ1, . . . , Dϵd} ⊂ A, where {ϵ1, . . . , ϵd} is the canonical basis of
Nd, and D ∈ Z>0.

Proof. Being (⇐) straightforward, let us prove (⇒). Let I ⊂ k[x] be a simplicial
toric ideal, and B = {b1, . . . ,bn} ⊂ Nd a set of nonzero vectors such that I = IB.
By hypothesis, ⟨B⟩ is simplicial, and hence we can suppose without loss of generality
that Pos(B) is minimally generated by {b1, . . . ,bd}. Let M be the d × d matrix
whose i-th column is bi, and M∗ the adjoint of M . Note that det(M) ̸= 0 since
the vectors b1, . . . ,bd are linearly independent; indeed, we can assume det(M) > 0.
Then, M∗M = det(M)Id, where Id is the d × d identity matrix. Consider the set
A = {a1, . . . , an}, where ai = M∗ · bi for all i = 1, . . . , n. Then, ai = det(M)ϵi for
i = 1, . . . , d, one can easily check that A ⊂ Nd, and I = IA since the matrix M is
invertible.

For general toric ideals I = IA ⊂ k[x], it is known that binomial generat-
ing sets and Gröbner bases of IA (see, e.g., [89]) and also several Betti numbers
of k[SA] ∼= k[x]/IA (see [12, Thm. 1.3]) are independent of k. Nevertheless, the
Gorenstein, Cohen-Macaulay and Buchsbaum properties of k[SA] depend on the
characteristic of k (see [51], [94] and [50], respectively). This situation changes in
the context of simplicial semigroup rings, since the Gorenstein, Cohen-Macaulay,
and Buchsbaum properties can be entirely described in terms of the combinatorics
of the semigroup SA and, as a consequence, they do not depend on k (see [43], [87]
and [37], respectively). We present here the combinatorial characterization of the
Cohen-Macaulay and Gorenstein properties for simplicial toric rings.

Let A = {a1, . . . , an} ⊂ Nd be a set of nonzero vectors, and suppose that the
semigroup SA = ⟨A⟩ is simplicial. Denote by E = {e1, . . . , ed} ⊂ A the set of ex-
tremal rays of the cone Pos(A).

For d = 1, the semigroup algebra k[SA] is always Cohen-Macaulay, because
dim (k[SA]) = depth(k[SA]) = 1 in this case.

Proposition 1.61 ([15, Lem. 2.6], [59]). Let A = {a1, . . . , an} ⊂ N such that
gcd(a1, . . . , an) = 1, and denote by SA the numerical semigroup generated by A.

(1) The semigroup algebra k[SA] is Cohen-Macaulay, and its Cohen-Macaulay type
is equal to the type of SA,

type (k[SA]) = t(SA) = |PF(SA)| .
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(2) k[SA] is Gorenstein if and only if the semigroup SA is symmetric.

For d ≥ 2, one can check if k[SA] has the Cohen-Macaulay property in terms of
the semigroup SA, by the following result due to Goto, Suzuki, and Watanabe.

Theorem 1.62 ([43, Thm. 2.6]). The simplicial semigroup algebra k[SA] is Cohen-
Macaulay if and only if for all s ∈ Nd

if s+ ei ∈ SA and s+ ej ∈ SA for some 1 ≤ i < j ≤ d, then s ∈ SA .

When k[SA] is Cohen-Macaulay, one can compute its type by counting the num-
ber of maximal elements in the Apéry set APSA = Ap (SA, E) for the natural order
≤SA defined in (1.1). Hence, one can characterize combinatorially the Gorenstein
property.

Theorem 1.63 ([53, Prop. 3.3], [14]). Suppose that k[SA] is Cohen-Macaulay.
Then, its type is the number of maximal elements in the Apéry set APSA for the
order ≤SA. Hence, k[SA] is Gorenstein if and only if the poset (APSA ,≤SA) has a
unique maximal element.

Now, we introduce the geometric counterpart of toric ideals: the toric sets and
toric varieties.

Definition 1.64. Let A = {a1, . . . , an} ⊂ Nd be a set of nonzero vectors.

(1) The toric set determined by A is the set ΓA ⊂ An
k defined parametrically by

ΓA = {(ua111 . . . ua1dd , . . . , uan1
1 . . . uand

d ) ∈ An
k | u1, . . . , un ∈ k} .

(2) The affine toric variety determined by A, also called affine monomial variety,
is the zero set of the toric ideal IA, XA = V (IA) ⊂ An

k . We say that the toric
variety XA is simplicial if IA is simplicial.

(3) We say that XA is an affine toric curve (resp. surface) or an affine monomial
curve (resp. surface) if the dimension of XA is 1 (resp. 2).

Remark 1.65. It is clear that ΓA ⊂ XA, where XA = V (IA). A natural question
one can ask is when the Zariski closure of ΓA is equal to XA. By [96, Cor. 8.4.13],
if k is infinite, then the defining ideal of ΓA is I(ΓA) = IA, and XA = ΓA is the
Zariski closure of ΓA. Hence, the vanishing ideal of XA is the toric ideal IA, and the
coordinate ring of XA is k[XA] = k[x1, . . ., xn]/IA.

Under certain additional hypotheses, the toric set ΓA is equal to the toric variety
XA. This is the case of the simplicial toric varieties when k is algebraically closed and
one chooses an appropriate parametrization of XA, or when A = {a1, . . . , an} ⊂ N
and gcd(a1, . . . , an) = 1 (for any field).
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Proposition 1.66 ([56, Cor. 2], [34, Prop. 2.1.4]). Let k be an algebraically closed
field. If A ⊂ Nd is a finite set of nonzero vectors such that {ω1ϵ1, . . . , ωdϵd} ⊂ A,
where {ϵ1, . . . , ϵd} is the canonical basis of Nd, then XA = ΓA.

Proposition 1.67 ([31, Lem. 3.4]). Let k be any field. If A = {a1, . . . , an} ⊂ N is
such that gcd(a1, . . . , an) = 1, then XA = ΓA.

Example 1.68. Consider A = {2, 3} ⊂ N and k = F2, the finite field with 2
elements. The toric set determined by A is ΓA = {(t2, t3) | t ∈ F2} = {(0, 0), (1, 1)}.
The toric ideal determined by A is IA = ⟨x+ t2, y+ t3⟩∩F2[x, y] = ⟨x2+y3⟩, and the
affine toric variety determined by A is XA = V (IA) = {(0, 0), (1, 1)}, which is equal
to ΓA by Proposition 1.67. However, the defining ideal of XA is I(XA) = ⟨x+y⟩ ̸= IA.
This happens because F2 is not an infinite field.

The next result characterizes when an affine toric variety XA is smooth in terms
of the semigroup SA = ⟨A⟩.

Lemma 1.69 ([34, Thm. 1.1.11]). Let k be an algebraically closed field and A =
{a1, . . . , an} ⊂ Nd a finite set of nonzero vectors. Consider the affine toric variety
XA = V (IA) ⊂ An

k determined by A. The following statements are equivalent:

(a) XA is smooth.

(b) 0 = (0, . . . , 0) ∈ An
k is a regular point of XA.

(c) The affine semigroup SA = ⟨A⟩ admits a system of generators with dim(QA)
elements.

When the toric ideal IA is homogeneous for the standard grading (i.e., when A is
contained in a hyperplane of Qd not passing through the origin, by Proposition 1.57),
the affine toric variety XA = V (IA) is a cone, i.e., it consists of lines passing through
the origin 0 ∈ An

k . Therefore, one can consider XA as a projective variety, XA ⊂ Pn−1
k

of dimension d − 1. If we are in this case, we will assume that A ⊂ Nd+1 and has
n+ 1 elements.

Definition 1.70. LetA = {a0, . . . , an} ⊂ Nd+1 be a set of nonzero vectors contained
in a hyperplane of Qd+1 not passing through the origin, and IA ⊂ k[x0, . . ., xn] the
toric ideal determined by A, which is homogeneous.

(1) The projective toric variety determined by A, also called projective monomial
variety, is the zero set of the toric ideal IA, XA = V (IA) ⊂ Pnk . We say that
the toric variety XA is simplicial if IA is simplicial.

(2) We say that XA is a projective toric curve (resp. surface) or a projective
monomial curve (resp. surface) if the Krull dimension of k[XA] is 2 (resp. 3).
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When the field k is infinite, the (homogeneous) coordinate ring of XA is k[XA] =
k[x0, . . ., xn]/IA, by Remark 1.65.

Remark 1.71. By Propositions 1.60 and 1.57, when I is a homogeneous simplicial
toric ideal, there exists a set A = {a0, . . . , an} ⊂ Nd+1 such that ai = Dϵi for
i = 0, . . . , d, and |ai|=

∑d
j=0 aij = D for all i = 0, . . . , n, for some D ∈ Z>0, where

{ϵ0, . . . , ϵd} denotes the canonical basis of Nd+1.

Suppose k is an algebraically closed field. Set A = {a0, . . . , an} ⊂ Nd+1 as above,
and XA = V (IA) ⊂ Pn

k the projective toric variety determined by A. Consider the
affine charts of XA, {XA ∩ Ui}ni=0, where Ui = Pn

k \ V (xi) ≃ An
k for all i = 0, . . . , n;

note that XA ∩Ui is an open set of XA for all i. Since XA is simplicial, one has that

XA = ∪di=0 (XA ∩ Ui) . (1.11)

Indeed, suppose that P = (p0 : · · · : pn) ∈ XA and pi /∈ Ui for all i = 0, . . . , d.
Then, p0 = · · · = pd = 0. For all j = d + 1, . . . , n, consider the binomial fj =

xDj −
∏d

k=0 x
ajk
k ∈ IA. Since fj(P ) = 0, then pj = 0 for all j = d+ 1, . . . , n, which is

impossible. This proves (1.11). For all i = 0, . . . , d and all j = d+ 1, . . . , n, denote

a
(i)
j := (aj,1, . . . , aj,i−1, aj,i+1, . . . , aj,d) ∈ Nd ,

and A(i) = {Dϵ′1, . . . , Dϵ′d, a
(i)
d+1, . . . , a

(i)
n } ⊂ Nd, where {ϵ′1, . . . , ϵ′d} is the canonical

basis of Nd. With these notations, one has that the affine chart XA ∩ Ui is homeo-
morphic to the simplicial affine toric variety Yi := V (IA(i)), for all i = 0, . . . , d.

Thus, the projective toric variety XA is smooth if and only if Yi is smooth for all
i = 0, . . . , d. The following result by Herzog characterizes simplicial projective toric
varieties which are smooth.

Theorem 1.72 ([48, Thm. 2.1]). Fix an algebraically closed field k, and let X ⊂ Pn
k

be a simplicial projective toric variety of dimension d, and denote by {ϵ0, . . . , ϵd}
the canonical basis of Nd+1.

Then, X is smooth if and only if there exist a number D ∈ Z>0 and a set
A = {a0, . . . , an} ⊂ Nd+1, such that |ai|= D for all i = 0, . . . , n,

{ϵi + (D − 1)ϵj | 0 ≤ i, j ≤ d} ⊂ A ,

and X = XA.

The degree of simplicial projective toric varieties can be computed using the
following result.
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Theorem 1.73 ([74, Thm. 2.13, Thm. 4.5]). Let XA be a simplicial projective toric
variety, where A = {a0, . . . , an} ⊂ Nd+1, |ai|= D ∈ Z>0 for all i = 0, . . . , n and
ai = Dϵi for i = 0, . . . , d, where {ϵ0, . . . , ϵd} is the canonical basis of Nd+1. The
degree of the projective variety XA can be computed as

deg(XA) =
(d+ 1)! ·vol (conv (A ∪ {0}))

θd+1

=
Dd+1

θd+1

,

where

• vol (conv (A ∪ {0})) denotes the volume of the convex hull of A∪{0} ⊂ Rd+1,
and

• θd+1 is the greatest common divisor of the (d + 1) × (d + 1) minors of the
(d+ 1)× (n+ 1) matrix MA, whose columns are the vectors a0, . . . , an.

Example 1.74. Let D ∈ Z>0 be a positive integer and k = C. Consider A the set
whose elements are the column vectors of the matrix MA:

MA =

D 0 0 D − 1 D − 1 1 0 1 0
0 D 0 1 0 D − 1 D − 1 0 1
0 0 D 0 1 0 1 D − 1 D − 1

 .

By Theorem 1.72, the projective toric surface determined by A, XA ⊂ P 8
C is smooth.

Let ∆3 be the g.c.d. of the 3 × 3 minors of MA. Since the sum of the rows of

A is D, then D divides ∆3. Moreover, since
∣∣∣ 0 0 1
D D−1 D−1
0 1 0

∣∣∣ = D, then ∆3 = D.

On the other hand, conv (A ∪ {0}) is the simplex with vertices (0, 0, 0), (D, 0, 0),
(0, D, 0), (0, 0, D), and hence it has volume D3

3!
. Therefore, by Theorem 1.73, the

degree of the surface XA is deg(XA) = D2.

To finish this section, we recall some properties of projective monomial curves,
and characterize simplicial projective monomial surfaces with exactly one singular
point. These surfaces will appear in Chapters 3 and 4.

Projective monomial curves

Consider an integer D > 0 and a sequence a0 = 0 < a1 < · · · < an = D of
relatively prime integers, i.e., gcd(a1, . . . , an) = 1. Set A = {a0, a1, . . . , an} and
A = {a0, . . . , an} ⊂ N2, where ai = (D − ai, ai) for all i = 0, . . . , n. Let C be the
projective monomial curve determined by A, and denote k[C] = k[x0, . . ., xn]/IA. If
k is infinite, k[C] is the homogeneous coordinate ring of C.

Proposition 1.75 (Folklore, see, e.g., [32]). Let C be a projective monomial curve
as above.
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(1) C ⊂ Pn
k is a projective curve of degree D, i.e., the multiplicity of the two-

dimensional ring k[x0, . . ., xn]/IA is D.

(2) C has at most two singular points, which are P1 = (1 : 0 · · · : 0) ∈ Pn
k and

P2 = (0 : · · · : 0 : 1) ∈ Pn
k . P1 is non-singular if and only if a1 = 1, and P2 is

non-singular if and only if D − an−1 = 1.

(3) If δ(C, Pi) denotes the singularity order of Pi, i = 1, 2, then δ(C, P1) = |N \S1|
and δ(C, P2) = |N \ S2|, where S1 = ⟨a1, . . . , an⟩ and S2 = ⟨D − a0, . . . , D −
an−1⟩.

(4) The arithmetic genus of C is pa(C) = 1 − δ(C, P1) − δ(C, P2). Therefore, the
Hilbert polynomial of C is HPk[C](t) = Dt + 1 − δ(C, P1) − δ(C, P2), and the
regularity of the Hilbert function of k[C] is

r(k[C]) = min{s ∈ N : HFk[C](s
′ + 1)− HFk[C](s

′) = D,∀s′ ≥ s} .

The Castelnuovo-Mumford regularity of k[C] satisfies the Eisenbud-Goto conjec-
ture; see Theorem 1.76 (1). This was proved by Gruson, Lazarsfeld and Peskine in
[46]. Indeed, their result is more general, and they proved it before Eisenbud-Goto
conjecture was stated. Later, L’Vovsky provided another bound on the Castelnuovo-
Mumford regularity of k[C]; see Theorem 1.76 (2).

Theorem 1.76 ([46], [22, Prop. 3.1], [67, Prop. 5.5]). Let A = {a0 = 0 < a1 < · · · <
an = D} ⊂ N be such that gcd(a1, . . . , an) = 1, and set A = {a0, . . . , an} ⊂ N2,
where ai = (D − ai, ai) for all i. Consider C = CA the projective monomial curve
determined by A, and k[C] = k[x0, . . . , xn]/IA. We have the following bounds for
the Castelnuovo-Mumford regularity of k[C].

(1) reg(k[C]) ≤ D − n + 1. Moreover, reg(k[C]) = D − n + 1 if and only if A or
D −A belongs to one of the following two families:

• A = [0, D] \ {a}, for some a, such that 1 ≤ a ≤ D − 1;

• A = [0, 1] ⊔ [a+ 1, D], for some a, such that 2 ≤ a ≤ D − 2.

(2) reg(k[C]) ≤ max1≤1<j≤n{(ai − ai−1) + (aj − aj−1)} − 1.

Example 1.77 (Macaulay’s curve). Set k = C and let C be the projective monomial
curve determined by A = {(4, 0), (3, 1), (1, 3), (0, 4)}. By Proposition 1.75, C is
smooth and its Hilbert polynomial is HPk[C](t) = 4t+1. The Castelnuovo-Mumford
regularity of k[C] is reg(k[C]) = 2, by Theorem 1.76 (1).

In the next proposition, we characterize the simplicial projective surfaces with
exactly one singular point.
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Projective monomial surfaces with a single singular point

Proposition 1.78. Let k be an algebraically closed field and A = {a0, . . . , an} ⊂ N3

a set of nonzero vectors, ai = (ai0, ai1, ai2) for all i, and set {ϵ0, ϵ1, ϵ2} the canonical
basis of N3. Suppose that a0 = Dϵ0, a1 = Dϵ1, a2 = Dϵ2, and |ai|= D for all
i = 0, . . . , n, for some D ∈ Z>0, and denote by X = V (IA) ⊂ Pn

k the simplicial
projective toric variety determined by A.

(1) If X has exactly one single singular point, that point is P0 = (1 : 0 : · · · : 0),
P1 = (0 : 1 : 0 : · · · : 0), or P2 = (0 : 0 : 1 : 0 · · · : 0).

(2) If the only singular point of X is P0, then n ≥ 4 and

{(0, D − 1, 1), (0, 1, D − 1), (e,D − e, 0), (e, 0, D − e)} ⊂ A ,

where e ∈ Z>0 is a divisor of D that divides ai0 for all i ∈ {0, . . . , n}, and if
e = 1 then either (D − 1, 1, 0) /∈ A or (D − 1, 0, 1) /∈ A.
Conversely, if X = XA with A ⊂ N3 as before, then X has a single singular
point, P0.

Remark 1.79. In part (2) of the previous proposition we distinguish two different
behaviors.

(i) e < D: In this case, (e,D − e, 0) ̸= (e, 0, D − e), and n ≥ 6.

(ii) e = D: In this case, (e,D − e, 0) = (e, 0, D − e) = (D, 0, 0) and for all ai ∈
A, such that ai ̸= (D, 0, 0), one has that ai0 = 0. Hence, A = {Dϵ0} ∪
({0} × A′), and {(D, 0), (D − 1, 1), (1, D − 1), (0, D)} ⊂ A′. Observe that
IA′ ⊂ k[x1, . . . , xn] is the defining ideal of a smooth projective monomial curve,
and IA = IA′ .k[x0, . . . , xn] is the extension of IA′ . Therefore, the resolutions
of k[x0, . . . , xn]/IA and k[x1, . . . , xn]/IA′ are identical. This observation will
be useful in Chapter 4.

Proof of Prop. 1.78. For i ∈ {0, 1, 2}, let Yi be the i-th affine chart of X , i.e. Yi =
V (IA(i)), where A(i) ⊂ N2 is the set defined in the paragraph before Theorem 1.72.
If there are two affine charts that are not smooth, then X has at least two singular
points by Lemma 1.69 (b). Thus, there is only one singular affine chart. Again, by
Lemma 1.69 (b), the singular affine chart is Yk if and only if the only singular point
is Pk, for k = 0, 1, 2. This proves (1).

Assume now that X has a single singular point, and it is P0. Moreover, suppose
that gcd ({aij | 0 ≤ i ≤ n, 0 ≤ j ≤ 2}) = 1. For all 0 ≤ i, j ≤ 2, i ̸= j, let λij :=
min{k ∈ Z>0 | (D−k)ϵi+kϵj ∈ A}. We have to show that λ12 = λ21 = 1, λ10 = λ20,
and λ10 divides ai0 for all 0 ≤ i ≤ n.
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Since Y1 is smooth, by Lemma 1.69 (c) one has that {(λ10, 0), (0, λ12)} is the
minimal generating set of ⟨A(1)⟩. Hence, λ12 divides ai2 for all 0 ≤ i ≤ n. In
particular, λ12 | D and λ12 | D−λ21, so λ12 | λ21. A similar argument with Y2 shows
that λ21 | ai1 for all 0 ≤ i ≤ n. Hence, λ12 | aij for all 0 ≤ i ≤ n, 1 ≤ j ≤ 2. Since
λ12 | D and ai0 = D − ai1 − ai2 for all i, then λ12 | aij for all 0 ≤ i ≤ n, 0 ≤ j ≤ 2.
Therefore, λ12 = 1.

Working with Y2, one gets that λ21 | λ12, and hence λ21 = 1. Analogously, one
has that λ10 | ai0 and λ20 | ai0 for all 0 ≤ i ≤ n. In particular, λ10 | λ20 and
λ20 | λ10, so λ10 = λ20. Since λ10 | D, then there exists e ∈ Z>0 a divisor of D
such that λ10 = λ20 = e and e | ai0 for all i = 0, . . . , n. Hence, we have proved
{(0, D − 1, 1), (0, 1, D − 1), (e,D − e, 0), (e, 0, D − e)} ⊂ A and e divides ai0 for all
i. Finally, if e = 1, note that if (D − 1, 1, 0) ∈ A and (D − 1, 0, 1) ∈ A, then X is
smooth by Theorem 1.72.

Conversely, assume that {(0, D− 1, 1), (0, 1, D− 1), (e,D− e, 0), (e, 0, D− e)} ⊂
A. By Lemma 1.69 (c), the affine charts Y1 and Y2 are smooth, since ⟨A(1)⟩ =
⟨A(2)⟩ = ⟨(e, 0), (0, 1)⟩. Moreover, Y0 is the affine toric surface determined by A(0),
and {(D, 0), (0, D), (D − 1, 1), (1, D − 1), (D − e, 0), (0, D − e)} ⊂ A(0). A direct
computation shows that (0, . . . , 0) ∈ Y0 is the only singular point of Y0. Hence, X
has a single singular point, which is P0 = (1 : 0 : · · · : 0).

(D, 0, 0)

(0, 0, D)

(0, D, 0)

A

(0, 1, D − 1)

(0, D − 1, 1)

(e,D − e, 0)

(e, 0, D − e)

Figure 1.2: Shape of a set A in Proposition 1.78 if e ̸= D.
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1.4 Sumsets and commutative algebra

This last section contains some basic results on additive combinatorics and its con-
nection with commutative algebra. For more results on additive combinatorics, see
[71] and [91].

Let S be a semigroup (abelian with identity) and A,B ⊂ S finite nonempty
subsets, the sumset A+ B is defined as

A+ B = {a+ b | a ∈ A, b ∈ B} .

Similarly, if A1, . . . ,As are s finite nonempty subsets of S, s ≥ 1, one can define

A1 + . . .+As = {a1 + · · ·+ as | ai ∈ Ai, 1 ≤ i ≤ s} .

The most interesting case is Ai = A for all i. In this case, we denote the set
A1 + · · ·+As by sA,

sA = {a1 + . . .+ as | ai ∈ A, 1 ≤ i ≤ s}, s ∈ Z>0; and

0A = {0} .

Definition 1.80. Let S be a semigroup and A ⊂ S a finite nonempty subset. For
all s ∈ N, the set sA is called the s-fold iterated sumset of A.

If SA denotes the subsemigroup of S generated by A, one has that SA = ∪∞s=0sA.
When the set A contains the identity 0 ∈ S, the sumsets of A form a nested se-
quence, i.e., sA ⊂ (s+ 1)A for all s ∈ N. Hence, the sequence (sA)∞s=0 is increasing
and converges to SA.

Additive combinatorics studies the sumsets of A and their cardinality. One cen-
tral problem in additive combinatorics is the study of the function N → N defined
by s 7→ |sA|. Khovanskii proved in 1992 that this function is asymptotically poly-
nomial.

Theorem 1.81 ([57, Thm. 1]). Let S be a semigroup and A ⊂ S be a nonempty
finite subset. Then, there exists a polynomial pA(t) ∈ Q[t] of degree at most |A| such
that |sA|= pA(s) for all s ∈ N sufficiently large enough.

Khovanskii’s proof relates the function s 7→ |sA| to the Hilbert function of a
certain graded module M over the polynomial ring C[x0, . . . , xn], where |A|= n+1,
and so agrees with the Hilbert polynomial of M once s ≥ r(M), the regularity of
the Hilbert function of M . Later, Nathanson and Rusza gave a combinatorial proof
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of the same result in [72].

Khovanskii’s theorem has recently attracted the attention of some researchers.
In 2022, Eliahou and Mazumdar gave a new proof of this result in [30], which we
now present. In their proof, they associate with A a standard graded k-algebra
R(A), whose Hilbert function is s 7→ |sA|. A geometric counterpart when S = Nd

can be found in the paper [18] by Colarte-Gómez, Elias and Miró-Roig. The special
case d = 1 is treated in the paper [32] by Elias.

Construction by Eliahou and Mazumdar

Let S be a semigroup1 and A = {a0, a1, . . . , an} ⊂ S a finite set. Fix a field k and
consider the semigroup algebra k[S], which is spanned by {ts | s ∈ S} as a k-vector
space. Let T = k[S][w] be the polynomial ring in the variable w with coefficients
in k[S], graded via deg(t) = 0, deg(w) = 1. A basis of T as a k-vector space is
B = {tswn | s ∈ S, n ∈ N}. The grading defined on T gives it a structure of graded
k-algebra, T = ⊕i∈NTi, where Ti is the k-vector space spanned by {tswi | s ∈ S}.

Consider the k-subalgebra R(A) of T generated by {ta0w, . . . , tanw},

R(A) = k[ta0w, . . . , tanw] ⊂ T .

We have that R(A) = ⊕i∈NR(A)i, where R(A)i is the k-vector space with basis
{tbwi | b ∈ iA}. Hence, R(A) is a standard graded k-algebra and dimk(R(A)i) =
|iA| for all i ∈ N. Theorem 1.81 follows then from Theorem 1.47.

Proposition 1.82 ([30, Sect. 6]). Let S be a semigroup and A = {a0, . . . , an} ⊂ S
a finite set. Then, R(A) is isomorphic to k[x0, . . ., xn]/kerφ as graded k-algebras,
where φ : k[x0, . . ., xn] → R(A) is the morphism of k-algebras defined by φ(xi) =
taiw, i = 0, . . . , n. Moreover,

kerφ = ⟨xα − xβ |
n∑
i=0

αi =
n∑
i=0

βi, and
n∑
i=0

αiai =
n∑
i=0

βiai⟩ .

When S = Nd, for some positive integer d, one can interpret R(A) geometrically
in terms of the toric varieties introduced in Section 1.3. The case d = 1 is treated
in [32], and the case d ≥ 2, in [18].

1In their article, the authors only consider the case when S is a group. However, their results
can be generalized to any semigroup S.
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Sumsets of N and projective monomial curves

Let A = {a0, . . . , an} ⊂ N be a finite set, and suppose a0 < a1 < · · · <
an. To study the sumsets of A, we can always reduce to the case a0 = 0 and
gcd(a1, . . . , an) = 1. Let us show how.

Consider δ(A) = gcd (a1 − a0, a2 − a0, . . . , an − a0). For all i = 0, . . . , n, denote
a′i = (ai − a0)/δ(A), and define

A(N) = {a′0, a′1, . . . , a′n} .

Then, one has that 0 = a′0 < a′1 < · · · < a′n, δ
(
A(N)

)
= gcd(a′1, . . . , a

′
n) = 1, and

A = a0 + δ(A) · A(N). Therefore,

sA = {sa0} ∪ δ(A) · sA(N)

and, in particular, |sA|= |sA(N)| for all s ∈ N. The set A(N) is called the normal
form of A. When A = A(N), we will say that A is in normal form.

Given a set A = {a0, a1, . . . , an} ⊂ N in normal form, denote D = an and
consider the set A = {a0, a1, . . . , an} ⊂ N2, where ai = (D− ai, ai) ∈ N2, for all i =
0, . . . , n. Fix an infinite field k and denote by C = CA the projective monomial curve
determined by A. The homogeneous coordinate ring of C is k[C] = k[x0, . . ., xn]/IA,
where IA is the toric ring determined by A.

Proposition 1.83 ([32, Prop. 2.6]). The Hilbert function of k[C] satisfies |sA|=
HFk[C](s) for all s ∈ N.

Example 1.84. Consider the set A = {0, 2, 4, 6, 9} ⊂ N. Fix k = Q and let C be the
projective monomial curve determined by A = {(9, 0), (7, 2), (5, 4), (3, 6), (0, 9)}. By
Proposition 1.83, |sA|= HFk[C](s) for all s ∈ N. If one computes the Hilbert function
(and polynomial) of k[C], one gets HFk[C](0) = 1, HFk[C](1) = 5, and HFk[C](s) =
9s− 6 for all s ≥ 2. Hence, |sA|= 9s− 6 for all s ≥ 2.

Sumsets of Nd and projective monomial varieties

Let A = {a0, . . . , an} ⊂ Nd be a set of nonzero vectors, d ≥ 2, where ai =
(ai1, . . . , aid) for all i = 0, . . . , n. Consider D = max {|ai|: i = 0, . . . , n}, and define
A = {a0, . . . , an} ⊂ Nd+1, where ai = (D − |ai|, ai1, . . . , aid) ∈ Nd+1 for all i. Fix
an infinite field k, and let X = XA be the projective toric variety determined by A.
The homogeneous coordinate ring of X is k[X ] = k[x0, . . ., xn]/IA, where IA is the
toric ideal determined by A.
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For all s ∈ N, denote Hs := {(z0, . . . , zd) ∈ Nd+1 | z0+ · · ·+ zd = sD}. Note that
since A ⊂ H1, then sA ⊂ Hs for all s ∈ N. Moreover, if S = ⟨A⟩ is the semigroup
generated by A, then sA = S ∩ Hs for all s ∈ N. Also, it is important to observe
that

sA = {(sD − |b|, b1, . . . , bd) | b = (b1, . . . , bd) ∈ sA} (1.12)

for all s ∈ N. In particular, one has that |sA|= |sA| for all s ∈ N.

Proposition 1.85 ([18, Prop. 3.3]). The Hilbert function of k[X ] satisfies |sA|=
HFk[X ](s) for all s ∈ N.

In Chapter 3, we will study more precisely the structure of the sumsets of sets
A ⊂ Nd when d = 1, and when d ≥ 2 and A has a special structure.



Chapter 2

The Betti numbers of projective
and affine monomial curves

“Everyone knows what a curve is, until he has studied
enough mathematics to become confused through

the countless number of possible exceptions.”
F. Klein

Fix an infinite field k. Consider an integer D > 0 and a sequence a0 = 0 <
a1 < · · · < an = D of relatively prime integers, i.e., gcd(a1, . . . , an) = 1. Set
A = {a0, . . . , an} ⊂ N2, where ai = (D − ai, ai) for all i = 0, . . . , n. Denote by C
the projective monomial curve C ⊂ Pn

k determined by A, C = V (IA), where IA is
the toric ideal determined by A. Since k is inifinite, by [96, Cor. 8.4.13], C is the
Zariski closure of

{(tD−a0
0 ta01 : · · · : tD−ai

0 tai1 : · · · : tD−an
0 tan1 ) ∈ Pn

k | (t0 : t1) ∈ P 1
k},

and the defining ideal of C is IA. Hence, the coordinate ring of C is the two-
dimensional ring k[C] = k[x0, . . . , xn]/IA. Note that k[C] is isomorphic to k[S] as
S-graded k[x0, . . ., xn]-modules, k[C] ∼= k[S], where S = SA denotes the affine semi-
group generated by A.

The projective curve C has two affine charts, the affine monomial curves C1 =
{(ta11 , . . . , tan1 ) ∈ An

k | t1 ∈ k} and C2 = {(tD−a0
0 , tD−a1

0 , . . . , t
D−an−1

0 ) ∈ An
k | t0 ∈ k},

associated with the sequences a1 < · · · < an and D−an−1 < · · · < D−a1 < D−a0,
respectively. The second sequence is sometimes called the dual of the first one.
Set S1 := SA1 the numerical semigroup generated by A1 = {a1, . . . , an}. The
vanishing ideal of C1 is IA1 ⊂ k[x1, . . . , xn], and hence, its coordinate ring is the

43
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one-dimensional ring k[C1] = k[x1, . . . , xn]/IA1
∼= k[S1]. Moreover, IA is the homog-

enization of IA1 with respect to the variable x0. Similarly, denoting by S2 := SA2

the numerical semigroup generated by A2 := {D − a0, D − a1, . . . , D − an−1},
the vanishing ideal of C2 is IA2 ⊂ k[x0, . . . , xn−1], its coordinate ring is k[C2] =
k[x0, . . . , xn−1]/IA2

∼= k[S2], and IA is the homogenization of IA2 with respect to xn.

One has that βi (k[C]) ≥ βi (k[C1]) for all i, and the main goal of this chapter
is to understand when the Betti sequences of k[C] and k[C1] coincide. A necessary
condition is that k[C] is Cohen-Macaulay. Indeed, affine monomial curves are always
arithmetically Cohen-Macaulay while projective ones may be arithmetically Cohen-
Macaulay or not, and pd(k[C]) = pd(k[C1]) if and only if C is arithmetically Cohen-
Macaulay. Then, k[C] is Cohen-Macaulay if and only if the Betti sequences of k[C]
and k[C1] have the same length (and hence it is a necessary condition for the two
Betti sequences to coincide).

In the recent paper [84], the authors give a sufficient condition that ensures the
equality of the Betti numbers in terms of Gröbner bases.

Theorem 2.1 ([84, Thm. 4.1]). Let G be the reduced Gröbner basis of IA1 with
respect to the degree reverse lexicographic (degrevlex) order with x1 > x2 > · · · > xn.
If C is arithmetically Cohen-Macaulay and xn is involved in all non-homogeneous
binomials of G, then βi (k[C]) = βi (k[C1]) for all i = 0, . . . , n− 1.

We address the same problem, but with a combinatorial approach. In Section 2.1,
we recall some concepts on the Apéry sets of the semigroups S and S1, and define
the Apéry posets (Ap1,≤1) and (APS ,≤S). In Section 2.2, we provide a combinato-
rial sufficient condition for having equality between the Betti sequences of k[C] and
k[C1] by means of the posets Ap1 and APS . This is the content of Theorem 2.12,
which is the main result of this chapter. In Propositions 2.18 and 2.23, we use our
main result to provide explicit families of curves where βi(k[C]) = βi(k[C1]) for all
i. In Section 2.3, we apply our results to study the shifted family of monomial
curves, i.e., the family of curves associated to the sequences j + a1 < · · · < j + an
parametrized by j ∈ N. In this setting, Vu proved in [97] that the Betti numbers in
the shifted family become periodic in j for j > N for an integer N explicitly given.
A key step in his argument is to prove that for j > N one has equality between the
Betti numbers of the affine and projective curves. Using our results, we substan-
tially improve this latter bound in Theorem 2.26. In Section 2.4, we show how to
construct arithmetically Gorenstein projective curves from a symmetric numerical
semigroup (Theorem 2.32). Finally, in Section 2.5, we compute the Betti sequence
of certain affine monomial curves coming from a class of semigroups defined by Kunz
and Waldi in [61]. The main results of this section are Theorem 2.49, in which we



2.1. APÉRY SETS AND THEIR POSET STRUCTURE 45

characterize the semigroups in this family whose defining ideal is generated by the
2×2 minors of a 2×n matrix; and Theorem 2.53, where we provide the whole Betti
sequence of some of these curves.

The results included in this chapter are part of [36] and [42].

2.1 Apéry sets and their poset structure

Fix an infinite field k. Let a0 = 0 < a1 < · · · < an = D be a sequence of rel-
atively prime integers. For each i = 0, . . . , n, set ai := (D − ai, ai) ∈ N2, and
consider the three sets A1 = {a1, . . . , an}, A2 = {D,D − a1, . . . , D − an−1} and
A = {a0, . . . , an} ⊂ N2. We denote by C ⊂ Pn

k the projective monomial curve deter-
mined by A, and by C1 and C2 its affine charts, i.e., the affine monomial curves given
by A1 and A2, respectively. We denote the vanishing ideal of Ci by IAi

for i = 1, 2
and the vanishing ideal of C by IA; these are the toric ideals determined by A1, A2,
and A, respectively. Consider S1 and S2 the numerical semigroups generated by A1

and A2, respectively, and S the affine semigroup generated by A.

As already mentioned, k[C1] and k[C2] are always Cohen-Macaulay, while k[C] can
be Cohen-Macaulay or not. There are many ways to determine when a projective
monomial curve is arithmetically Cohen-Macaulay; see, e.g., [14, Cor. 4.2], [15,
Lem. 4.3, Thm. 4.6], [43, Thm. 2.6] or [49, Thm. 2.2]. We recall some of them in
Proposition 2.4, but let us previously recall the notion of Apéry set (Section 1.1),
since it is involved in some of those charaterizations. For i = 1, 2, the Apéry set of
Si (with respect to D) is

Api := {y ∈ Si | y −D /∈ Si} .

By Proposition 1.5, Api is a complete set of residues modulo D, i.e., Ap1 = {v0 =
0, v1, . . . , vD−1} and Ap2 = {u0 = 0, u1, . . . , uD−1} for some positive integers ui and
vi such that ui ≡ vi ≡ i (mod D) for all i = 0, . . . , D − 1.

Definition 2.2. The Apéry set APS of S and the exceptional set ES of S are defined
as follows:

• APS := {s ∈ S : s− a0 /∈ S, s− an /∈ S}.
• ES := {s ∈ S : s− a0 ∈ S, s− an ∈ S, s− a0 − an /∈ S}.

By Proposition 1.20, APS is finite, and we will see in Chapter 3 that ES is also
finite.
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s s′

Figure 2.1: An element s ∈ APS and an element s′ ∈ ES .

Lemma 2.3. For all i = 1, . . . , D − 1, the following claims hold:

(1) If (uD−i, vi) ∈ S, then (uD−i, vi) ∈ APS .

(2) If (uD−i, vi) /∈ S, then there exist natural numbers x > uD−i and y > vi, such
that (x, vi) ∈ APS and (uD−i, y) ∈ APS .

Proof. (1) is trivial. To prove (2), take i ∈ {1, 2, . . . , D − 1}. Since vi ∈ S1, there
exists a natural number x > uD−i, such that (x, vi) ∈ S, and if we choose the smallest
x ∈ N satisfying this property, then (x, vi) ∈ APS . The proof of the existence of y
is analogous.

As a consequence of the previous lemma, one has that |APS |≥ D. Denote by G
the subgroup of Z2 generated by S and set S ′ = G ∩ (S2 × S1).

Proposition 2.4. The following statements are equivalent:

(a) C is arithmetically Cohen-Macaulay, i.e., the ring k[C] is Cohen-Macaulay.

(b) For all i = 1, . . . , D − 1, (uD−i, vi) ∈ S. In other words, if v ∈ Ap1, u ∈ Ap2

and u+ v ≡ 0 (mod D), then (u, v) ∈ APS .

(c) APS = {(0, 0)} ∪ {(uD−i, vi) : 1 ≤ i < D}.
(d) APS has exactly D elements.

(e) The exceptional set ES is empty.

(f) S ′ = S.
(g) The variable xn does not divide any minimal generator of in(IA1), the initial

ideal of IA1 for the degrevlex order in k[x1, . . . , xn] with x1 > · · · > xn.

Proof. The equivalences (a)⇔ (e), (a)⇔ (f) and (a)⇔ (g) are well known; see, e.g.,
[15, Lem. 4.3, Thm. 4.6] and [49, Thm. 2.2]. Moreover, the implications (c) ⇒ (b)
and (c) ⇒ (d) are trivial and (d) ⇒ (c) is a direct consequence of Lemma 2.3, so
let us prove (b) ⇔ (e) ⇒ (c).
(e) ⇔ (b): Suppose that there exists an index i, 1 ≤ i < D, such that (uD−i, vi) /∈ S.
By Lemma 2.3 (2), there exist x > uD−i and y > vi, such that (x, vi) ∈ APS and
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(uD−i, y) ∈ APS . Then, there exist x′ ≤ x and y′ ≤ y, such that (x′, y′) ∈ ES ,
so ES is not empty. Conversely, suppose that there exists (x, y) /∈ S such that
(x+D, y) ∈ S and (x, y +D) ∈ S and let i be the index, 1 ≤ i ≤ D − 1, such that
y ≡ i ≡ vi (mod D) and x ≡ D − i ≡ uD−i (mod D). As (x, y +D) ∈ S, x ∈ S2;
and y ∈ S1, because (x + D, y) ∈ S, so uD−i ≤ x and vi ≤ y. This implies that
(uD−i, vi) /∈ S.
(e)+(b) ⇒ (c): Assuming that (b) holds, one gets that {(0, 0)}∪{(uD−i, vi) : 1 ≤ i <
D} ⊂ APS by Lemma 2.3 (1). To prove the equality, take (x, y) ∈ APS . If y /∈ Ap1,
then y − D ∈ S1, so there exists x′ > x, such that (x′, y − D) ∈ S and choosing
x′ minimum with this property, one gets that (x′, y −D) ∈ S, (x′ −D, y) ∈ S and
(x′ − D, y − D) /∈ S, a contradiction with (e). This implies that y ∈ Ap1, and we
prove that x ∈ Ap2 using a similar argument. Thus, (x, y) = (uD−i, vi) for some i,
1 ≤ i < D, and we are done.

Example 2.5. Let A = {0, 1, 2, 3, 8} ⊂ N. One can check that the Apéry sets of S1
and S2 are Ap1 = {0, 1, 2, 3, 4, 5, 6, 7} and Ap2 = {0, 17, 10, 11, 12, 5, 6, 7}, respec-
tively, and APS = {(0, 0), (7, 1), (6, 2), (5, 3), (12, 4), (11, 5), (10, 6), (17, 7)}. Hence,
k[C] is Cohen-Macaulay.

Remark 2.6. If k[S] is not Cohen-Macaulay, the ring k[S ′] is called the Cohen-
Macaulayfication of k[S]. This is because S ̸= S ′ by Proposition 2.4 (f) and k[S ′] is
the least Cohen-Macaulay intermediate between k[S] and its field of fractions; see,
e.g., [15, Remark 4.7].

For i = 1, 2, one can consider the order relation ≤i in Si given by y ≤i z ⇐⇒
z − y ∈ Si. Similarly, in S one can consider the order relation ≤S defined by
y ≤S z ⇐⇒ z − y ∈ S. The Apéry sets Api and APS inherit a poset structure
from (Si,≤i) and (S,≤S), respectively. We will denote these posets by (Api,≤i)
and (APS ,≤S).

Since S ⊂ S2 × S1, it follows that if (x, y) ≤S (x′, y′), then x ≤2 x
′ and y ≤1

y′. Using Proposition 2.4, one can prove that the poset structure of (APS ,≤S) is
completely determined by those of (Ap1,≤1) and (Ap2,≤2) when C is arithmetically
Cohen-Macaulay.

Proposition 2.7. If C is arithmetically Cohen-Macaulay, then for all (x, y), (x′, y′) ∈
APS ,

(x, y) ≤S (x′, y′) ⇐⇒ x ≤2 x
′ and y ≤1 y

′.

Proof. As observed before stating the proposition, (⇒) always holds. Let us prove
(⇐) when C is arithmetically Cohen-Macaulay. Since (x, y), (x′, y′) ∈ APS , one has
that y, y′ ∈ Ap1, x, x

′ ∈ Ap2 by Proposition 2.4 (c), and x+y ≡ x′+y′ ≡ 0 (mod D).
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Assume that y ≤1 y
′ and x ≤2 x

′, then w := y′ − y ∈ S1 and z := x′ − x ∈ S2.
Moreover, w ∈ Ap1 and z ∈ Ap2; otherwise, y′ /∈ Ap1 and x′ /∈ Ap2. Since
z + w = x′ + y′ − x − y ≡ 0 (mod D), then (z, w) ∈ S by Proposition 2.4 (b),
and we are done.

Let us recall now some notions about posets that will be used in the sequel for
the posets (Ap1,≤1), (Ap2,≤2) and (APS ,≤S).

Definition 2.8. Let (P,⪯) be a finite poset.

(1) For y, z ∈ P , we say that z covers y, and denote it by y ≺· z, if y ≺ z and
there is no w ∈ P such that y ≺ w ≺ z.

(2) We say that P is graded if there exists a function ρ : P → N, called rank
function, such that ρ(z) = ρ(y) + 1 whenever y ≺· z.

The following result shows that the poset (APS ,≤S) is always graded while
(Ap1,≤1) may be graded or not. Observe that, since (Ap1,≤1) has a minimum
element which is 0, whenever it is graded, the corresponding rank function is com-
pletely determined by the value of the rank function at 0 that we fix to 0. In the
following proposition, we characterize the covering relation in Ap1 and in APS , and
describe the rank functions of (APS ,≤S), and of (Ap1,≤1) when it is graded.

Proposition 2.9. (a.1) For all y, z ∈ Ap1, y <·1 z ⇐⇒ z = y + ai for some
ai ∈ MSG(S1) \ {an}.

(a.2) Ap1 is graded if and only if, for all y ∈ Ap1, all the factorizations of y have
the same length. When it is graded, the rank function ρ1 : Ap1 → N is given
by the length of the factorizations of the elements in Ap1.

(b.1) For all y = (y1, y2), z = (z1, z2) ∈ APS , y <·S z ⇐⇒ z = y + ai for some
i ∈ {1, . . . , n− 1}.

(b.2) APS is graded by the rank function ρ : APS → N defined by ρ(y1, y2) :=
(y1 + y2)/D.

Proof. In (a.1) and (b.1), (⇐) is trivial. Let us prove (⇒).

(a.1) Consider y, z ∈ Ap1 such that y <·1 z. Since z − y ∈ S1, there exists α =
(α1, . . . , αn) ∈ Nn such that z = y +

∑n
i=1 αiai, and αn = 0 because z ∈ Ap1.

If |α|> 1, then there exists j ∈ {1, . . . , n− 1} such that αj ̸= 0 and y+aj ̸= z.
Thus, y + aj ∈ Ap1 because z ∈ Ap1, and y <1 y + aj <1 z, a contradiction
because y <·1 z, so |α|= 1.
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(b.1) Consider y, z ∈ APS such that y <·S z. Since z − y ∈ S, there exists α =
(α0, . . . , αn) ∈ Nn+1 such that z − y =

∑n
i=0 αiai, and α0 = αn = 0 because

z ∈ APS . Again, if |α|=
∑n−1

i=1 αi > 1, we can choose any αj ̸= 0 and
get y <S y + aj <S z (one has that y + aj ∈ APS because z ∈ APS), a
contradiction because y <·S z.

Now (a.2) and (b.2) are direct consequences of (a.1) and (b.1), respectively.

Remark 2.10. By Proposition 2.9 (b.2), the fiber of 1 under the rank function
ρ is ρ−1(1) = {ai : 1 ≤ i ≤ n − 1}, and hence |ρ−1(1)|= n − 1. On the other
hand, when Ap1 is graded, the fiber of 1 under ρ1 is ρ−1

1 (1) = MSG(S1) \ {an}, by
Proposition 2.9 (a.1).

Set A′
1 := MSG(S1) \ {an} and Ap

(s)
1 := Ap1 ∩ sA′

1 for each s ∈ N. Since Ap1

is finite, consider N := max{s ∈ N : Ap
(s)
1 ̸= ∅} ∈ N. As a direct consequence of

Proposition 2.9 (a.2), we get a characterization of the graded property for (Ap1,≤1).

Corollary 2.11. (Ap1,≤1) is graded if and only if
∑N

s=0|Ap
(s)
1 |= D.

2.2 Equality between the Betti numbers

Recall that IA1 ⊂ k[x1, . . . , xn] and IA ⊂ k[x0, . . . , xn] are the vanishing ideals
of C1 and C, respectively. When C is arithmetically Cohen-Macaulay, pd(k[C]) =
pd(k[C1]). Moreover, by Proposition 2.4 (d), in this case, one has that |APS |=
|Ap1|= D. The main result in this section is Theorem 2.12 where we give a sufficient
condition in terms of the poset structures of the Apéry sets Ap1 and APS for the Betti
sequences of k[C1] and k[C] to coincide. We postpone its proof after Propositions 2.14
and 2.16.

Theorem 2.12. If (APS ,≤S) ≃ (Ap1,≤1), then βi(k[C]) = βi(k[C1]) for all i.

Note that the converse of this result does not hold, as the following example
shows.

Example 2.13. For the sequence 1 < 2 < 4 < 8, one can check using, e.g., [24],
that both k[C1] and k[C] are complete intersections with Betti sequence (1, 3, 3, 1).
However, the posets (Ap1,≤1) and (APS ,≤S) are not isomorphic since ≤1 is a total
order on Ap1, while ≤S is not. More generally, for a1 = 1 < a2 < · · · < an = D
with ai a divisor of ai+1 for all i ∈ {1, . . . , n − 1}, one has that both k[C1] and
k[C] are complete intersections; see [4, Theorem 5.3]. Thus, both Betti sequences
are (1,

(
n−1
1

)
, . . . ,

(
n−1
i

)
, . . . ,

(
n−1
n−2

)
, 1), by [92, Thm. 6]. However, again the posets

(Ap1,≤1) and (APS ,≤S) are not isomorphic since ≤1 is a total order on Ap1, while
≤S is not.
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Proposition 2.14. The following two claims are equivalent:

(a) The posets (Ap1,≤1) and (APS ,≤S) are isomorphic;

(b) k[C] is Cohen-Macaulay, (Ap1,≤1) is graded, and {a1, . . . , an−1} is contained
in the minimal system of generators of S1.

Proof. (a) ⇒ (b): If (APS ,≤S) ≃ (Ap1,≤1), then Ap1 and APS have the same
number of elements, and hence k[C] is Cohen-Macaulay by Proposition 2.4 (d).
Moreover, since (APS ,≤S) is graded by Proposition 2.9 (b.2), (Ap1,≤1) is graded.
Finally, |ρ−1

1 (1)|= |ρ−1(1)| so, by Remark 2.10, |MSG(S1) \ {an}|= n− 1, and hence
{a1, . . . , an−1} ⊂ MSG(S1).
(b) ⇒ (a): If k[C] is Cohen-Macaulay, then |APS |= |Ap1| by Proposition 2.4 (d), and
hence the map φ : APS → Ap1 defined by φ(uD−j, vj) = vj for all j = 0, . . . , D − 1,
is bijective. Let us prove that it is an isomorphism of posets. By Proposition 2.7, φ
is an order-preserving map, so one just has to show that φ−1 is also order-preserving.
Consider y, y′ ∈ Ap1 such that y <·1 y′. Then, there exists i ∈ {1, . . . , n − 1} such
that y′ = y+ai, by Proposition 2.9 (a.1). Set (x, y) = φ−1(y) and (x′, y′) = φ−1(y′).
One has that x + D − ai ≥ x′ since x′ ∈ Ap2 and x + D − ai ∈ S2. Note that
ρ(x, y) = ρ1(y) (and the same holds for (x′, y′)). This is because if we write (x, y) =∑n−1

i=1 αi(D− ai, ai) for some αi ∈ N, then y =
∑n−1

i=1 αiai provides a factorization of
y of length

∑n−1
i=1 αi, and hence ρ(x, y) =

∑n−1
i=1 αi = ρ1(y), by Proposition 2.9 (a.2)

and (b.2). If x′ < x+D−ai, then ρ1(y′) = ρ(x′, y′) ≤ ρ(x, y) = ρ1(y), a contradiction
since y <·1 y′. Therefore, y +D − ai = y′ and we are done.

Note that Ap1 can be a graded poset even if (Ap1,≤1) and (APS ,≤S) are not
isomorphic as the following example shows.

Example 2.15. For the sequence a1 = 5 < a2 = 11 < a3 = 13, the Apéry set of the
numerical semigroup S1 = ⟨a1, a2, a3⟩ is Ap1 = {0, 27, 15, 16, 30, 5, 32, 20, 21, 22, 10,
11, 25}. This Apéry set is graded with the rank function ρ1 : S1 → N defined below
(see Figure 2.2):

• ρ1(0) = 0,

• ρ1(5) = ρ(11) = 1,

• ρ1(10) = ρ1(16) = ρ1(22) = 2,

• ρ1(15) = ρ1(21) = ρ1(27) = 3,

• ρ1(20) = ρ1(32) = 4,

• ρ1(25) = 5,

• ρ1(30) = 6.
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(4,22)

(12,27)

(20,32)

(2,11)

(10,16)

(18,21)

(0,0)

(8,5)

(16,10)

(24,15)

(32,20)

(40,25)

(48,30)

(6, 33)

(14, 38)

(22, 43)

Figure 2.2: The posets (Ap1,≤1) (in blue) and (APS ,≤S) (in black) for S1 =
⟨5, 11, 13⟩.

Moreover, since APS has 16 elements, k[C] is not Cohen-Macaulay, and hence
(Ap1,≤1) and (APS ,≤S) are not isomorphic by Proposition 2.14.

We now relate the condition in Proposition 2.14 to the criterion in Theorem 2.1,
which uses Gröbner bases.

Proposition 2.16. Consider the following two claims:

(a) (Ap1,≤1) is graded and {a1, . . . , an−1} is contained in the minimal system of
generators of S1.

(b) The variable xn appears in every non-homogeneous binomial of G>, the reduced
Gröbner basis of IA1 with respect to the degree reverse lexicographic order with
x1 > x2 > · · · > xn.

Then (b) ⇒ (a), and (a) ⇒ (b) holds if k[C] is Cohen-Macaulay.

Proof. (a) ⇒ (b) when k[C] is Cohen-Macaulay: Assume that there exists a non-

homogeneous binomial f = xα − xβ ∈ G> with in(f) = xα such that xn does
not appear in the binomial f , i.e. |α|> |β| and αn = βn = 0, and consider s =∑n−1

i=1 αiai =
∑n−1

i=1 βiai ∈ S1. Let us prove that s − an /∈ S1. If s − an ∈ S1, we
can write s as s =

∑n
i=1 γiai + an for some γ = (γ1, . . . , γn) ∈ Nn, and consider

the binomial g = xγxn − xβ ∈ IA1 . Note that xβ − xγxn ̸= 0 since βn = 0. As
f ∈ G> and G> is reduced, one has that xβ /∈ in(IA1) and hence in(g) = xγxn.



52 CHAPTER 2. THE BETTI NUMBERS OF MONOMIAL CURVES

Therefore, xγxn ∈ in(IA1) and, by Proposition 2.4 (g), xγ ∈ in(IA1). The remainder
of the division of xγ by G> is a monomial xδ such that xδ /∈ in(IA1), and one has
that the binomial xβ − xδxn ∈ IA1 is the difference of two binomials that do not
belong to in(IA1) using again Proposition 2.4 (g), a contradiction. Thus, s−an /∈ S1
and hence s ∈ Ap1. But s =

∑n−1
i=1 αiai =

∑n−1
i=1 βiai ∈ S1 with |α|> |β| so if

{a1, . . . , an−1} ⊂ MSG(S1), one gets by Proposition 2.9 (a.2) that Ap1 is not graded.
(b) ⇒ (a): If {a1, . . . , an−1} ̸⊂ MSG(S1), select i ∈ {2, . . . , n − 1} such that ai is

not a minimal generator. Then, there exists α = (α1, . . . , αi−1) ∈ Ni−1 with |α|> 2
such that xi −

∏
j<i x

αj

j ∈ IA1 . Note that any set of generators of IA1 contains an
element of this form. Thus, G> contains a non-homogeneous binomial that does not
involve the variable xn, a contradiction, and hence {a1, . . . , an−1} ⊂ MSG(S1).

If (Ap1,≤1) is not graded, by Proposition 2.9 (a.2), there exists s ∈ Ap1 which
has two factorizations of different length , i.e., s =

∑n−1
i=1 αiai =

∑n−1
i=1 βiai with

|α|> |β|. Note that αn = βn = 0 since s ∈ Ap1. We can choose β = (β1, . . . , βn−1)
such that |β|> 0 is the least possible value, and α = (α1, . . . , αn−1) such that,
for this election of β, xα is the smallest possible monomial for the degree reverse
lexicographic order. Then f = xα − xβ ∈ IA1 and in(f) = xα. Since xα ∈ in(IA1),
there exists a binomial h = xλ − xµ ∈ G> such that xλ divides xα. Let us see
that h is not homogeneous and that the variable xn is not involved in h. If h
is homogeneous, dividing xα by h, we get xα = xα−λ(xλ − xµ) + xα−λ+µ. Then,
s =

∑
i(αi − λi + µi)ai =

∑
i αiai with |α − λ + µ|= |α| and xα−λ+µ < xα, a

contradiction with the choice of α, so h is not homogeneous. On the other hand,
since xλ divides xα and αn = 0, if xn appears in xλ − xµ, it must be in the support
of xµ. If we write xµ = xµ

′
xn, then xα = xα−λ(xλ − xµ) + xα−λ+µ

′
xn and hence

s =
∑

i(αi − λi + µ′
i)ai + an which is impossible because s ∈ Ap1. Therefore, we

have found a non-homogeneous binomial h = xλ−xµ ∈ G> where the variable xn is
not involved, a contradiction. Thus, (Ap1,≤1) is graded.

Remark 2.17. (1) In our proof of (a)⇒ (b), we strongly use that k[C] is Cohen-
Macaulay but we could not find any non-Cohen-Macaulay example where this
implication is wrong.

(2) In general, if one considers the Apéry set of S1 with respect to ai, i ∈
{1, . . . , n}, one can determine when Ap(S1, ai) is graded in terms of the gen-
erators of I1. By [54, Cor. 3.10], Ap(S1, ai) is graded if and only if there
exists a minimal set of generators of I1 such that xi appears in all of its non-
homogeneous binomials.

Proof of Theorem 2.12. By Propositions 2.14 and 2.16, the Apéry posets (AP,≤S)
and (Ap1,≤1) are isomorphic if and only if the variable xn appears in every non-
homogeneous binomial of G>, the reduced Gröbner basis of IA1 with respect to
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the degrevlex order with x1 > x2 > · · · > xn. Hence, the result follows from
Theorem 2.1.

Families of curves where the Betti sequences coincide

In Propositions 2.18 and 2.23 below, we provide sequences a1 < · · · < an for which
the condition in Theorem 2.12 is satisfied.

Let us start with arithmetic sequences, i.e., sequences a1 < · · · < an such that
ai = a1 + (i − 1)e for some positive integer e with gcd(a1, e) = 1. For this family,
we refine [84, Cor. 4.2] that considers a1 > n− 1.

Proposition 2.18. Let a1 < . . . < an = D be an arithmetic sequence of relatively
prime integers, i.e., for all i = 1, . . . , n, ai = a1+(i−1)e for some integers a1, e > 0
such that gcd(a1, e) = 1. Then, (APS ,≤S) ≃ (Ap1,≤1) if and only if a1 > n − 2.
Therefore, if a1 > n− 2, the Betti sequences of k[C1] and k[C] coincide.

Proof. We use Proposition 2.14 to characterize when (APS ,≤S) and (Ap1,≤1) are
isomorphic. When a1 < · · · < an is an arithmetic sequence, k[C] is always Cohen-
Macaulay by [2, Cor. 2.3]. Moreover, one can easily check that {a1, . . . , an−1} ⊂
MSG(S1) if and only if a1 > n − 2. Therefore, if a1 ≤ n − 2, then (Ap1,≤1) is not
isomorphic to (APS ,≤S). Conversely, if a1 > n − 2, it is sufficient to prove that
(Ap1,≤1) is graded. By [66, Thm. 3.4], the Apéry set of S1 is described as follows:
if, for all b ∈ {0, . . . , D − 1}, qb and −rb denote respectively the quotient and the
reminder of the division with negative remainder of b by n−1, i.e., qb = ⌈b/(n− 1)⌉
and rb = qb(n− 1)− b with 0 ≤ rb ≤ n− 2, then

Ap1 = {qba1 + rbe , 0 ≤ b ≤ D − 1} .

We claim that the grading is given by the function ρ1 : Ap1 → N defined by
ρ1 (qba1 + rbe) = qb. Consider y, y′ ∈ Ap1 such that y <·1 y′, an let us prove
that ρ1(y

′) = ρ1(y) + 1. By Proposition 2.9 (a.1), there exist natural numbers
b ∈ {0, . . . , D− 1} and i ∈ {1, . . . , n− 1} such that y = qba1 + rbe and y

′ = y+ ai =
(qb+1)a1+(rb+i−1)e. If i ≥ n−rb, then y′−D = qba1+(rb + i− 1− (n− 1)) e ∈ S1,
contradicting the fact y′ ∈ Ap1. Hence, i ≤ n − rb − 1. Set b′ := (qb + 1)(n − 1) −
(rb+ i− 1). As 0 ≤ rb+ i− 1 ≤ n− 2, on the one hand one has that 0 ≤ b′ ≤ D− 1,
on the other qb′ = qb + 1 and rb′ = rb + i− 1. Therefore y′ = qb′a1 + rb′e, and hence
ρ1(y

′) = ρ1(y) + 1.

Remark 2.19. Let a1 < a2 < · · · < an = D be an arithmetic sequence of relatively
prime integers. Set 1 ≤ ℓ ≤ n− 1 such that a1 ≡ ℓ (mod n− 1) (this number ℓ will
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appear in Lemma 2.21). By [40, Thm. 4.1], the Betti numbers of k[C1] are β0 = 1
and

βj = j

(
n− 1

j + 1

)
+

{
(n− ℓ+ 1− j)

(
n−1
j−1

)
1 ≤ j ≤ n− ℓ,

(j − n+ ℓ)
(
n−1
j

)
n− ℓ < j ≤ n− 1.

Note that they depend only on the remainder of a1 modulo n − 1. Hence, when
a1 > n − 2, the Betti numbers of k[C] are also given by the previous formula, by
Proposition 2.18.

Example 2.20. For the sequence 5 < 6 < 7 < 8 < 9 < 10, one has that a1 = 5 >
4 = n − 2. Therefore, the Apéry sets (Ap1,≤1) and (APS ,≤S) are isomorphic by
Proposition 2.18. The Betti sequences of k[C1] and k[C] coincide and one can check,
using, e.g., [24], that both sequences are (1, 11, 30, 35, 19, 4). This also follows from
Remark 2.19 and Proposition 2.18. The isomorphic posets (Ap1,≤1) and (APS ,≤S)
in this example are shown in Figure 2.3.

(0,0)

(5,5) (4,6) (3,7) (2,8) (1,9)

(6,14)(7,13)(8,12)(9,11)

Figure 2.3: The posets (Ap1,≤1) (in blue) and (APS ,≤S) (in black) for S1 =
⟨5, 6, 7, 8, 9, 10⟩.

The next family that we now consider are monomial curves defined by an arith-
metic sequence in which we have removed one term. In [3, Sect. 6], the authors
study the canonical projections of the projective monomial curve C defined by an
arithmetic sequence a1 < · · · < an of relatively prime integers, i.e., the curve πr(C)
obtained as the Zariski closure of the image of C under the r-th canonical pro-
jection πr : Pnk 99K Pn−1

k , (p0 : · · · : pn) 799K (p0 : · · · : pr−1 : pr+1 : · · · : pn).
We know that πr(C) is the projective monomial curve associated to the sequence
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a1 < · · · < ar−1 < ar+1 < · · · < an.

If one removes either the first or the last term from an arithmetic sequence, the
sequence is still arithmetic. Moreover, note that if an arithmetic sequence a1 <
· · · < an satisfies the condition a1 > n− 2 in Proposition 2.18, then the arithmetic
sequence obtained by removing either the first or the last term also satisfies the
condition in Proposition 2.18 because the number of terms in the new sequence
is smaller, and its first term may have increased. Thus, we will only focus here
on sequences obtained from an arithmetic sequence a1 < · · · < an by removing ar
for r ∈ {2, . . . , n − 1}. Set A1 := {a1, . . . , an} \ {ar}, and consider the numerical
semigroup S1 = SA1 and its homogenization S. We characterize in Proposition 2.23
when the posets (Ap1,≤1) and (APS ,≤S) are isomorphic. Two main ingredients in
the proof are the following two results in [3] that we recall for convenience. The first
one is a technical lemma, while the second describes the Apéry set of S1.

Lemma 2.21 ([3, Lem. 2]). Let a1 < · · · < an be an arithmetic sequence of relatively
prime integers with common difference e. Set q := ⌊(a1 − 1)/(n − 1)⌋ ∈ N and
ℓ := a1 − q(n− 1) ∈ {1, . . . , n− 1}. Then,

(1) (q + e)a1 + ai = aℓ+i + qan , for all i ∈ {1, . . . , n− ℓ}, and
(2) q + e+ 1 = min{m > 0 | ma1 ∈ ⟨a2, . . . , an⟩}.

Lemma 2.22 ([3, Cor. 4]). Let a1 < · · · < an be an arithmetic sequence of relatively
prime integers with common difference e. Denote by A the Apéry set of S̄1 =
⟨a1, . . . , an⟩ with respect to an, q := ⌊(a1 − 1)/(n − 1)⌋, and, for all µ ∈ N, set
vµ := µa1+a2. Given r ∈ {2, . . . , n− 1}, consider A1 = {a1, . . . , an} \ {ar}, and the
semigroup S1 generated by A1. When a1 ≥ r, the Apéry set of S1 with respect to an
is described as follows:

(1) If r = 2,

Ap1 =

(A \ {vµ | 0 ≤ µ ≤ q + e}) ∪ {vµ + an | 0 ≤ µ ≤ q + e}, if n− 1 | a1,
(A \ {vµ | 0 ≤ µ ≤ q + e− 1})

∪{vµ+an | 0 ≤ µ ≤ q+e−1}, otherwise.

(2) If r ∈ {3, . . . , n− 2},

Ap1 = (A \ {ar}) ∪ {ar + an}.

(3) If r = n− 1,

Ap1 =

{
(A \ {an−1}) ∪ {an−1 + (q + 1)an}, if n− 1 | a1,
(A \ {an−1}) ∪ {an−1 + qan}, otherwise.
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Proposition 2.23. Consider a1 < . . . < an an arithmetic sequence of relatively
prime integers with n ≥ 4, and take r ∈ {2, . . . , n−1}. Set A1 := {a1, . . . , an}\{ar},
and let S1 be the numerical semigroup generated by A1, and S its homogenization.
Then,

(APS ,≤S) ≃ (Ap1,≤1)⇐⇒


a1 > n− 2 and a1 ̸= n, if r = 2,

a1 ≥ n and r ≤ a1 − n+ 1, if 3 ≤ r ≤ n− 2,

a1 ≥ n− 2, if r = n− 1.

Consequently, if the previous condition holds, then βi(k[C1]) = βi(k[C]), for all i.

Proof. Denote by S̄1 the numerical semigroup generated by the whole arithmetic
sequence a1 < · · · < an. Again, we use Proposition 2.14 to characterize when the
posets (Ap1,≤1) and (APS ,≤S) are isomorphic. Note that {a1, . . . , an} \ {ar} ⊂
MSG(S1) if and only if

either r ̸= n− 1 and a1 > n− 2, or r = n− 1 and a1 ≥ n− 2. (2.1)

On the other hand, by [3, Cor. 5], k[C] is Cohen-Macaulay if and only if

r ≤ a1 or r = n− 1. (2.2)

Finally, by Proposition 2.9 (a.2), (Ap1,≤1) is graded if and only if

∀b ∈ Ap1, b =
∑
i/∈{r,n}

αrai =
∑
i/∈{r,n}

βiai =⇒
∑
i/∈{r,n}

αi =
∑
i/∈{r,n}

βi. (2.3)

We split the proof in three cases depending on the value of r.

• r = 2.

By (2.1), if (APS ,≤S) ≃ (Ap1,≤1), then a1 > n − 2. If a1 = n, the element
a3 + an−1 = a2 + an of Ap1 can be written as (2 + e)a1, and hence (Ap1,≤1) is not
graded by (2.3). Assume now that a1 > n − 2 and a1 ̸= n, and let us prove that
(Ap1,≤1) is graded in this case. By Lemma 2.22 (1),

Ap1 = (A \ {vµ | 0 ≤ µ ≤ t}) ∪ {vµ + an | 0 ≤ µ ≤ t},

for t ∈ {q + e− 1, q + e}. Every b ∈ A ∩ Ap1 satisfies (2.3) by Proposition 2.18, so
consider bµ := µa1 + a2 + an = µa1 + a3 + an−1 ∈ Ap1, with 0 ≤ µ ≤ t. Let us prove
that whenever bµ =

∑
i/∈{2,n} αiai, with αi ∈ N, then

∑
i/∈{2,n} αi = µ+ 2.

Using iteratively the relations ai + aj = ai−1 + aj+1 in S̄1, we get that

bµ =
∑

i/∈{2,n}

αiai = β1a1 + ϵam + βnan
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for some m, 2 ≤ m ≤ n − 1, ϵ ∈ {0, 1}, and β1, βn ∈ N such that
∑

i/∈{2,n} αi =
β1 + ϵ+ βn.

If ϵ = 0 orm ̸= 2, then a2 is not involved in the expression bµ = β1a1+ϵam+βnan,
so βn = 0 since bµ ∈ Ap1. Thus, bµ = µa1 + a2 + an = β1a1 + ϵam, and hence

(β1 − µ)a1 = a2 + an − ϵam. (2.4)

If ϵ = 0, a1 divides a2 + an = 2a1 + ne, and hence a1 divides n which is impossible
since a1 ≥ n − 1 and a1 ̸= n. Now if ϵ = 1 and m ̸= 2, (2.4) implies that
(β1 − µ)a1 = a2 + an − am = a1 + (n − m + 1)e, and hence a1 | n − m + 1,
a contradiction since a1 ≥ n − 1 > n − m + 1. Thus, ϵ = 1 and m = 2, i.e.,
bµ =

∑
i/∈{2,n} αiai = µa1 + a2 + an = β1a1 + a2 + βnan.

Note that since β1a1 + a2 cannot be transformed into
∑

i/∈{2,n} αiai using the

relations ai + aj = ai−1 + aj+1 in S̄1, we have that βn ̸= 0. Moreover, (µ− β1)a1 =
(βn−1)an and µ−β1 < q+e+1 since µ ≤ t ≤ q+e. By Lemma 2.21 (2), this implies
that µ = β1 and βn = 1, and we have shown that

∑
i/∈{2,n} αi = β1 + βn+1 = µ+2.

• 3 ≤ r ≤ n− 2.

By (2.1) and (2.2), the conditions a1 ≥ n − 1 and r ≤ a1 are necessary for
(APS ,≤S) and (Ap1,≤1) to be isomorphic, and by Lemma 2.22 (2), Ap1 = (A \ {ar})
∪ {ar + an}. Using Proposition 2.18, we get that (Ap1,≤1) is graded if and only
if all the factorizations of ar + an have the same the length, which is two since
ar + an = ar+1 + an−1.

Now, if a1 = n−1, then ar+1+an−1 = ea1+a2+ar−1, and if r > a1−n+1, then
ar+1 + an−1 = (2 + e)a1 + (r − a1 + n− 2)e = (1 + e)a1 + ar−a1+n−1. Thus, in both
cases (Ap1,≤1) is not graded. Conversely, assume that a1 ≥ n and r ≤ a1−n+1. If
ar+an = 2a1+(n+ r− 2)e can be written using more than 2 minimal generators of
S1, then there exists µ ≥ 3 (the number of minimal generators involved), andm ≥ 0,
such that ar + an = µa1 +me. Then, m ≤ n+ r − 3 and a1 divides n+ r − 2−m,
a contradiction since a1 > n+ r − 2 ≥ n+ r − 2−m.

• r = n− 1.

By (2.1) and (2.2), we only have to show in this case that if a1 ≥ n − 2, then
(Ap1,≤1) is graded, i.e., using Lemma 2.22 (3) and Proposition 2.18, that (2.3)
holds for b = an−1 + (q + 1)an when n− 1 | a1, and b = an−1 + qan otherwise.

Assume that n− 1 does not divide a1, and consider the element b = an−1 + qan
in Ap1. By Lemma 2.21 (1), there exists j ∈ {1, . . . , n − 2} such that b = (q +
e)a1 + aj, and hence we have to show that whenever b =

∑n−2
i=1 αiai with αi ∈ N,

then
∑n−2

i=1 αi = q + e + 1. As in the case r = 2, using iteratively the equalities
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ai + aj = ai−1 + aj+1 in S̄1, we get that

b =
n−2∑
i=1

αiai = β1a1 + ϵam + βnan

for somem, 2 ≤ m ≤ n−1, ϵ ∈ {0, 1}, and β1, βn ∈ N such that
∑n−2

i=1 αi = β1+ϵ+βn.

If βn > 0, since b ∈ Ap1, we have that b−an = β1a1+ ϵam+(βn−1)an /∈ S1, and
hence ϵ = 1 and m = n− 1, i.e., b− an = β1a1 + an−1 + (βn − 1)an. But this is also
equal to (β1−1)a1+a2+an−2+(βn−1)an so β1 = 0 (otherwise b−an ∈ S1). Thus,
b = an−1 + βnan, which cannot be transformed into

∑n−2
i=1 αiai using the relations

ai + aj = ai−1 + aj+1 in S̄1, a contradiction. This shows that βn = 0.

Then b = β1a1 + ϵam = (q + e)a1 + aj. Since {a1, . . . , an−2} ⊂ MSG(S1), we
deduce that ϵ = 1, m = j, and β1 = q+ e. Hence,

∑n−2
i=1 αi = β1+ ϵ+βn = q+ e+1,

and we are done in this case.

When n − 1 divides a1, consider b = an−1 + (q + 1)an in Ap1, and the relation
b = (q + e + 1)a1 + an−1 given by Lemma 2.21 (1), and an analogue argument
works.

Example 2.24. For the arithmetic sequence 9 < 10 < 11 < 12 < 13, the parameters
are a1 = 9, e = 1 and n = 5. By Proposition 2.18, the Betti sequences of k[C1] and
k[C] coincide. Indeed, it is (1, 10, 20, 15, 4) for both curves. Now the Betti sequences
of k[πr(C1)] and k[πr(C)] also coincide for all values of r, 1 ≤ r ≤ 5: they coincide for
r = 1 and 5 as observed before Lemma 2.21, and for r = 2, 3, 4 by Proposition 2.23.
One can check that the sequence is (1, 6, 8, 3) for r = 1, (1, 5, 6, 2) for r = 2 and 4,
(1, 8, 12, 5) for r = 3, and (1, 4, 5, 2) for r = 5.

Example 2.25. Consider the arithmetic sequence 9 < 10 < 11 < 12 < 13 < 14 <
15, whose parameters are a1 = 9, e = 1 and n = 7. By Proposition 2.18, the Betti se-
quences of k[C1] and k[C] coincide, and one can check that it is (1, 19, 58, 75, 44, 11, 2)
for both the affine and the projective monomial curves. Using the notations in
Proposition 2.23, one has that Ap1 and APS are isomorphic if and only if r ∈
{2, 3, 6}. Hence, the Betti sequences of k[πr(C1)] and k[πr(C)] coincide for those val-
ues of r by Theorem 2.12, and also for r = 1 and 7 as observed before Lemma 2.21.
On the other hand, one can check using [24] that the Betti sequences of k[πr(C1)]
and k[πr(C)] do not coincide for r ∈ {4, 5}. Table 2.1 shows the Betti sequences of
k[πr(C1)] and k[πr(C)] for all r, 1 ≤ r ≤ 7.
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Table 2.1: Betti sequences in Example 2.25.

r k[πr(C1)] k[πr(C)]

1 (1, 11, 30, 35, 19, 4) (1, 11, 30, 35, 19, 4)
2 (1, 12, 25, 21, 10, 3) (1, 12, 25, 21, 10, 3)
3 (1, 13, 30, 29, 14, 3) (1, 13, 30, 29, 14, 3)
4 (1, 12, 27, 27, 14, 3) (1, 12, 29, 29, 14, 3)
5 (1, 12, 25, 21, 10, 3) (1, 13, 30, 29, 14, 3)
6 (1, 12, 25, 21, 10, 3) (1, 12, 25, 21, 10, 3)
7 (1, 12, 25, 25, 14, 3) (1, 12, 25, 25, 14, 3)

2.3 Improving Vu’s bound for the equality of the

Betti numbers

Take a sequence of nonnegative integers 0 = c1 < · · · < cn, not necessarily relatively
prime, and consider, for all j > 0, the shifted set of integers Aj1 = {c1+j, . . . , cn+j},
and the semigroup Sj1 generated by the sequence a0 := 0 < a1 := c1 + j < · · · <
an := cn + j. Herzog and Srinivasan conjectured that the Betti numbers of k[Sj1 ]
eventually become periodic with period cn. In [97], Vu provides a proof of this
conjecture together with an explicit value N such that this periodic behavior occurs
for all j > N . One of the key steps in Vu’s argument is [97, Thm. 5.7] where he
proves that, for all j > N , the Betti numbers of the affine and projective monomial
curves defined by c1+j < · · · < cn+j coincide. In the following theorem we provide
a smaller value of N such that this occurs.

Theorem 2.26. Let 0 = c1 < · · · < cn be a sequence of nonnegative integers and
set N := (cn−1)(

∑n−1
i=2 ci). Then, for all j ≥ N , the affine and projective monomial

curves defined by the sequence a0 = 0 < a1 = c1 + j < · · · < an = cn + j have the
same Betti numbers.

Proof. Take j ≥ N . Let Gj> be the reduced Gröbner basis of IAj
1
with respect to the

degrevlex order with x1 > · · · > xn, and consider f = xα − xβ ∈ Gj> with xα > xβ.
If we show that

(i) xn does not divide xα, and

(ii) if f is not homogeneous, then xn divides xβ,

then the result follows from Theorem 2.1. Note that this result is true even if the
generators of the semigroup are not relatively prime since the defining ideal does
not change when we divide them by a common divisor.
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If xn divides xα, then xn does not divide xβ, and hence |α|> |β|. Thus,

N = (cn − 1)(
n−1∑
i=2

ci) ≤ j ≤ (|α|−|β|)j <
n∑
i=1

(αi − βi)j +
n∑
i=2

αici =
n−1∑
i=2

βici .

This implies that there exists i ∈ {2, . . . , n − 1} such that βi ≥ cn. If we consider

the monomial xγ :=
xβx

cn−ci
1 x

ci
n

xcni
, then the homogeneous binomial g = xβ−xγ belongs

to IAj
1
because the homogeneous binomial xcni − xcn−ci1 xcin belongs to IAj

1
. As xn

divides xγ and does not divide xβ, in(g) = xβ ∈ in(IAj
1
), a contradiction because Gj>

is reduced and f ∈ Gj>. This shows that that xn does not divide xα, and (i) is proved.

Now assume that f is not homogeneous, i.e., |α|> |β|, and that xn does not
divide xβ. By (i), xn does not divide xα either, and hence

N = (cn − 1)(
n−1∑
i=2

ci) ≤ j ≤ (|α|−|β|)j <
n−1∑
i=1

(αi − βi)j +
n−1∑
i=2

αici =
n−1∑
i=2

βici .

Thus, there exists i ∈ {2, . . . , n − 1} such that βi ≥ cn. Using exactly the same
argument as before for (i), we get a contradiction, and hence (ii) is proved.

Corollary 2.27. Let a1 < · · · < an be a sequence of positive integers, and set
M := an + (an − 1)(

∑n−1
i=1 (an − ai)). Then, for all j ≥ M , the projective monomial

curve defined by the sequence a1 < · · · < an < j is arithmetically Cohen-Macaulay.

Proof. Consider the sequence b0 := 0 < b1 := an − an−1 < · · · < bn−1 := an −
a1 < bn := an. By Theorem 2.26, one has that the projective monomial curve
defined by l < l + b1 < · · · < l + bn is arithmetically Cohen-Macaulay for all
l ≥ (bn − 1)(

∑n−1
i=1 bi) = (an − 1)(

∑n−1
i=1 (an − ai)). To finish the proof, it suffices to

observe that the dual sequence of 0 < a1 < · · · < an < l+an is l < l+b1 < · · · < l+bn
and take l + an = j.

2.4 Construction of Gorenstein projective mono-

mial curves

Since βi(k[C]) ≥ max (βi(k[C1]), βi(k[C2])) for all i, whenever k[C] is Gorenstein, then
so are k[C1] and k[C2]. The converse of this statement is false; indeed, it could happen
that C1 and C2 are both arithmetically Gorenstein and that C is not even arithmeti-
cally Cohen-Macaulay, as can be seen in Example 2.28 (1). Actually, even if k[C] is
Cohen-Macaulay, it may happen that k[C] is not Gorenstein, as Example 2.28 (2)
shows.
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Example 2.28. (1) The affine monomial curve C1 defined by the sequence 4 <
9 < 10 is an (ideal-theoretic) complete intersection and, thus, k[C1] is Goren-
stein with Betti sequence (1, 2, 1). The corresponding projective monomial
curve is not arithmetically Cohen-Macaulay, indeed, the Betti sequence of
k[C] is (1, 5, 6, 2).

(2) The affine monomial curve C1 defined by the sequence 10 < 14 < 15 < 21 is
an (ideal-theoretic) complete intersection and, thus, k[C1] is Gorenstein with
Betti sequence (1, 3, 3, 1). The corresponding projective monomial curve is
arithmetically Cohen-Macaulay but not Gorenstein, indeed, the Betti sequence
of k[C] is (1, 4, 5, 2).

Recall from Proposition 1.61 that k[C1] is Gorenstein if and only if S1 is sym-
metric. In this section we show how to construct an arithmetically Gorenstein
projective monomial curve from a symmetric numerical semigroup T . We begin
with the following result, which provides a necessary and sufficient condition for C
to be arithmetically Gorenstein and is a consequence of the results in [15].

Proposition 2.29. Let C be the projective monomial curve defined by the sequence
a0 = 0 < a1 < · · · < an = D of relatively prime integers. Then, C is arithmetically
Gorenstein if and only if C is arithmetically Cohen-Macaulay, both S1 and S2 are
symmetric, and D divides F (S1) + F (S2).

Proof. (⇒) If C is arithmetically Gorenstein, C is arithmetically Cohen-Macaulay
and both S1 and S2 are symmetric by Proposition 1.61 (2). Assume now that D
does not divide F (S1) + F (S2). By Proposition 2.4 (c), there exist x ∈ S2 and
y ∈ S1 such that (x, F (S1) + D) and (F (S2) + D, y) are two different elements of
APS . Moreover, by Proposition 2.7, they are both maximal in the poset (APS ,≤S),
and hence, C is not arithmetically Gorenstein by Theorem 1.63.
(⇐) IfD divides F (S1)+F (S2), then by Proposition 2.4 (c), (F (S2)+D,F (S1)+D) ∈
APS and by Proposition 2.7, this element is the maximum of (APS ,≤S). Hence, C
is arithmetically Gorenstein by Theorem 1.63.

Note that in the previous result, one cannot remove the condition of k[C] being
Cohen-Macaulay as Example 2.30 shows.

Example 2.30. For the sequence 6 < 7 < 8 < 15 < 16, one has that the numerical
semigroup S1 = ⟨6, 7, 8, 15, 16⟩ is symmetric, and S2 = N is also symmetric. More-
over, F (S1) = 17 and F (S2) = −1, so D = 16 divides F (S1) + F (S2). But k[C] is
not Cohen-Macaulay, so it cannot be Gorenstein either.

The following example provides a family of arithmetically Gorenstein projective
curves. This example gives some insights on Theorem 2.32, which is the main result
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of this section and shows how to construct a projective Gorenstein curve from a
symmetric numerical semigroup.

Example 2.31. If m > 3 is an odd integer, one has that

S1 = ⟨(m+ 1)/2, . . . ,m− 1⟩ = {0, (m+ 1)/2, . . . ,m− 1,m+ 1,→}

is a symmetric numerical semigroup with F (S1) = m. Hence the ring k[C1] is
Gorenstein. The sequence m+1

2
< · · · < m − 1 defines a projective curve of degree

D = m − 1 = F (S1) − 1. We claim that k[C] is Gorenstein. Note that Ap1 =
{0} ∪ [m+1

2
,m − 2] ∪ [m + 1, 3

2
(m − 1)] ∪ {2m − 1}. Since S2 = N, we have that

F (S2) = −1 and Ap2 = [0,m−1]. By Proposition 2.29, it only remains to check that
k[C] is Cohen-Macaulay. By Proposition 2.4 (b), k[C] is Cohen-Macaulay because
B ⊂ S, where B ⊂ N2 is the following set with D elements:

{(0, 0)} ∪ {(D − a, a) | m+ 1

2
≤ a ≤ m− 2}

∪ {(D − g,D + g) | 1 < g <
m+ 1

2
} ∪ {(D − 1, 2D + 1)} .

We now generalize this to any symmetric numerical semigroup T such that T ̸=
N and T ̸= ⟨2, a⟩ for some a odd or, in other words, such that 2 /∈ T . The idea
under this construction is to consider the projective closure of the affine monomial
curve parametrized by the so-called small elements in the semigroup, that is, all the
elements in the numerical semigroup that are smaller than the Frobenius number.
The precise statement of the result is the following.

Theorem 2.32. Let T ⊆ N be a symmetric numerical semigroup such that 2 /∈ T
and consider T ∩ [0, F (T )− 1] = {0, a1, . . . , an} with 0 < a1 < · · · < an. Then, the
projective monomial curve defined by the sequence a1 < · · · < an is arithmetically
Gorenstein.

To prove this theorem we use the following two lemmas.

Lemma 2.33. Let T ⊂ N be a symmetric numerical semigroup and consider a1 <
· · · < an its minimal set of generators. If 2 /∈ T , then an < F (T ).

Proof. We prove that every y ∈ T such that y > F (T ) can be written as y = z1+z2
with z1, z2 ∈ T \ {0} and, hence, y /∈ MSG(T ).

• For y = F (T ) + 1, we take z1 = a1 ∈ T and z2 = F (T ) − a1 + 1. We have
that z2 ∈ T because F (T )− z2 = a1 − 1 /∈ T and T is symmetric.

• For y = F (T )+2, we take z1 = a1 ∈ T and z2 = F (T )−a1+2. We have that
z2 ∈ T because F (T )− z2 = a1− 2 /∈ T (because a1 > 2) and T is symmetric.
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• For y = F (T ) + 3. If y/2 ∈ T , we take z1 = z2 = y/2. Otherwise, we observe
that

|[1, y − 1] ∩ T |= |[1, F (T )] ∩ T |+y − F (T )− 1 = y − F (T ) + 3

2
=
y

2
.

Thus, there exists 1 ≤ i < y/2 such that i, y − i ∈ T and we are done.

• For y > F (T ) + 3, we observe that

|[1, y − 1] ∩ T |= |[1, F (T )] ∩ T |+y − F (T )− 1 = y − F (T ) + 3

2
>
y

2
.

Thus there exists 1 ≤ i ≤ y/2 such that i, y − i ∈ T and we are done.

Lemma 2.34. Let S1 = ⟨a1, . . . , an⟩ ⊊ N be a numerical semigroup with a1 < · · · <
an, and set a := min{b ∈ S1 : a1 ∤ b}. If y ∈ N satisfies that y + i /∈ S for all
i ∈ {0, . . . , a− 1} such that a1 ∤ i, then y = 0.

Proof. Since y + 1, . . . , y + a1 − 1 /∈ S1, we deduce that a1 divides y, so y ∈ S1.
Moreover, a − a1 is not a multiple of a1, so y + a − a1 /∈ S1 and y + a − a1 ≡ a
(mod a1). Thus, we get that y + a− a1 ≤ a− a1, and hence y = 0.

Proof of Theorem 2.32. Since T is symmetric and 2 /∈ T , then by Lemma 2.33 we
have that MSG(T ) ⊂ {a1, . . . , an}. Hence, S1 = T and S1 is symmetric. Moreover,
since 1, 2 /∈ S1, then D = an = F (S1) − 1 and an−1 = F (S1) − 2. Thus S2 = N
and we get that F (S2) = −1 and F (S1) + F (S2) = D. By Proposition 2.29, it
is enough to prove that C is arithmetically Cohen-Macaulay to conclude that it is
arithmetically Gorenstein.

One can easily check that Ap1 = {a ∈ S1 | 0 ≤ a < D} ∪ {g + D | g /∈ S1, 1 <
g < D} ∪ {2D + 1}, and Ap2 = {0, 1, . . . , D − 1}. Consider now the following set
B ⊂ N2 with D elements:

B = {(0, 0)} ∪ {(D − a, a) | a ∈ S1, 1 < a < D}
∪ {(D − g,D + g) | g /∈ S1, 1 < g < D} ∪ {(D − 1, 2D + 1)} .

By Proposition 2.4 (b), C is arithmetically Cohen-Macaulay if and only if B ⊂ S,
and in this case APS = B. Let us prove that B ⊂ S. Clearly (0, 0) ∈ S and
{(D − a, a) | a ∈ S1, 0 < a < D} = {(D − ai, ai) | 1 ≤ i < n} ⊂ S, and one has to
show that (D−g,D+g) ∈ S for all g /∈ S1, 1 < g < D and (D−1, 2D+1) ∈ S. Let
a ∈ S1 be the minimum element in S1 which is not a multiple of a1. We distinguish
between two cases.
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(1) D > g > F (S1) − a = D + 1 − a. We claim that g + 1 ∈ S1. Other-
wise, by the symmetry of S1 one has that F (S1) − g and F (S1) − g − 1
are two consecutive elements of S1 which are both smaller than a, and this
is not possible. Then, (1, D − 1), (D − g − 1, g + 1) ∈ S and we get that
(D − g,D + g) = (1, D − 1) + (D − g − 1, g + 1) ∈ S.

(2) 1 < g ≤ F (S1)− a = D+ 1− a. We claim that there exists j ∈ {0, . . . , a− 1}
such that both D+1− j and g− 1+ j belong to S1. Assume by contradiction
that this statement does not hold. Whenever j ∈ {0, . . . , a − 1} is not a
multiple of a1, we have that j /∈ S1 and, by the symmetry of S1, F (S1)− j =
D + 1 − j ∈ S1 and hence g − 1 + j /∈ S1. By Lemma 2.34, this means
that g = 1, a contradiction. Now, we take j ∈ {0, . . . , a − 1} such that
D + 1− j, g − 1 + j ∈ S1 (clearly j ̸= 0 because D + 1 = F (S1) /∈ S1). Then
(D + 1− g − j, g − 1 + j), (j − 1, D + 1− j) ∈ S, and hence (D− g,D + g) =
(D + 1− g − j, g − 1 + j) + (j − 1, D + 1− j) ∈ S.

Finally, taking any g /∈ S1, 1 < g < D, we have that F (S1) − g = D + 1 − g ∈ S1.
Thus, (D − 1, 2D + 1) = (D − g,D + g) + (g − 1, D + 1− g) ∈ S.

Following the construction in Theorem 2.32, one gets an arithmetically Goren-
stein projective curve C. However, the Betti numbers of k[C1] and k[C] can be very
different, as the following example shows.

Example 2.35. Consider the symmetric numerical semigroup T = ⟨4, 9, 10⟩. One
has that the Frobenius number of T is F (T ) = 15 and, hence, T ∩ [0, 14] =
{0, 4, 8, 9, 10, 12, 13, 14}. By Theorem 2.32 we have that the projective monomial
curve defined by the sequence 4 < 8 < 9 < 10 < 12 < 13 < 14 is Gorenstein. A
computation with [24] shows that the Betti sequence of k[C1] is (1, 6, 15, 20, 15, 6, 1),
while the Betti sequence of k[C] is (1, 15, 39, 50, 39, 15, 1).

2.5 The Betti numbers of Kunz–Waldi semigroups

In this last section, we compute the Betti numbers of affine monomial curves coming
from a class of numerical semigroups defined by Kunz and Waldi in [61]. This class
of semigroups has been studied later in [62] and [86].

2.5.1 Definition of the KW class

Let 3 ≤ p < q be two relatively prime integers and consider the numerical semigroup
⟨p, q⟩, which is symmetric and has Frobenius number Fpq = pq − p − q. Therefore,
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all the gaps of ⟨p, q⟩ are of the form pq − up− vq for u, v ∈ Z>0, with Fpq being the
largest. If we associate with pq − up − vq the point (u − 1, v − 1) ∈ N2, then the
gaps of ⟨p, q⟩ are in one-to-one correspondence with the lattice points in N2 below
the line p(U + 1) + q(V + 1) = pq.

Example 2.36. Consider the semigroup ⟨p, q⟩ for p = 5 and q = 8. The gaps of this
semigroup are shown in Figure 2.4. Note that they are in one-to-one correspondence
with the lattice points below the line 5(U + 1) + 8(V + 1) = 40.

27 22 17 12 7 2

19 14 9 4

11 6 1

3

5U + 8V = 27

U

V

Figure 2.4: Gaps of the semigroup ⟨5, 8⟩ in Example 2.36.

In their paper [61], Kunz and Waldi build numerical semigroups of the same
multiplicity p by filling in some gaps of ⟨p, q⟩ in a sistematic way, such that the type
of the resulting semigroups is one less than their embedding dimension.

Definition 2.37. Let 3 ≤ p < q be two relatively prime integers. The class of
Kunz–Waldi semigroups associated to p < q, KW (p, q), is the set of all numerical
semigroups S1, such that ⟨p, q⟩ ⊊ S1 ⊂ ⟨p, q, r⟩, where

r =


p/2 if p is even,
q/2 if q is even, and
(p+ q)/2 otherwise.

Proposition 2.38 ([62, Cor. 3.1, Ex. 4.6]). Let S1 ∈ KW (p, q) of embedding di-
mension n, n ≥ 4. Then, the type of S1 is t(S1) = n− 1.
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Using the terminology of numerical semigroups, the semigroups in KW (p, q) are
obtained from ⟨p, q⟩ by closing only gaps from the fractional ideal r + pN+ qN.

By [61, p. 673], the semigroups of KW (p, q) are in one-to-one correspondence
to the lattice paths, with right and downward steps, in the rectangle R ⊂ R2 with
vertices (0, 0), (0, p′ − 1), (q′ − 1, p′ − 1), and (q′ − 1, 0), where p′ = ⌊p/2⌋ and
q′ = ⌊q/2⌋.

Proposition 2.39 ([86, Rem. 1]). Let S1 = ⟨p, q, a1, . . . , an−2⟩ be a numerical semi-
group of embedding dimension n, n ≥ 3. Then, S1 ∈ KW (p, q) if and only if there
exist natural numbers 0 < u1 < · · · < un−2 ≤ q/2 and p/2 ≥ v1 > · · · > vn−2 > 0,
such that ai = pq − uip− viq for 1 ≤ i ≤ n− 2.

For a semigroup S1 = ⟨p, q, a1, . . . , an−2⟩ ∈ KW (p, q), with ai = pq−uip−viq, the
corresponding lattice path in the rectangleR has vertices (ui−1, vi−1), 1 ≤ i ≤ n−2,
and one has that

S1 = ⟨p, q⟩ ∪ {pq − up− vq | u ≤ ui, v ≤ vi for some 1 ≤ i ≤ n− 2} . (2.5)

This explains the correspondence between the lattice paths ℓ with right and down-
ward steps in R and the semigroups S1 ∈ KW (p, q).

Example 2.40. Consider the semigroup S1 = ⟨5, 8, 9, 12⟩. One has that S1 ∈
KW (5, 8), since ⟨5, 8⟩ ⊊ S1 ⊂ ⟨4, 5⟩. Moreover, 9 = 40 − 5u1 − 8v1 and 12 =
40− 5u2 − 8v2 for u1 = 3 < u2 = 4 and v1 = 2 > v2 = 1. Hence, the lattice path ℓ
defining S has vertices (2, 1) and (3, 0). This is shown in Figure 2.5.

In their paper [62], Kunz and Waldi characterize the toric ideal of any semigroup
in KW (p, q). Let S1 = ⟨p, q, a1, . . . , an−2⟩ ∈ KW (p, q) and fix a field k. Consider
the polynomial ring R := k[x, y, x1, . . . , xn−2], graded via deg(x) = p, deg(y) = q,
and deg(xi) = ai, i = 1, . . . , n− 2. Set A1 = {p, q, a1, . . . , an−2}, and let IA1 ⊂ R be
the toric ideal determined by A1.

Proposition 2.41 ([62, App. A]). The toric ideal IA1 is minimally generated by the(
n
2

)
S1-graded homogeneous binomials

fij = xixj − xq−ui−ujyp−vi−vj , 1 ≤ i ≤ j ≤ n− 2

gi = yvi−vi+1xi − xui+1−uixi+1, 1 ≤ i ≤ n− 3

η1 = yp−v1 − xu1x1
η2 = yvn−2xn−2 − xq−un−2 .

We now show how to construct the Apéry set (with respect to the multiplicity,
p) and poset of any semigroup S1 ∈ KW (p, q) from the lattice path defining S1.
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27 22 17 12 7 2

19 14 9 4

11 6 1

3

5U + 8V = 27

U

V

R

ℓ

Figure 2.5: Lattice path corresponding to the semigroup ⟨5, 8, 9, 12⟩ ∈ KW (5, 8) in
Example 2.40.

Proposition 2.42. Let S1 = ⟨p, q, a1, . . . , an−2⟩ ∈ KW (p, q) be the semigroup de-
fined by the sequences u1 < u2 < · · · < un−2 ≤ q/2 and p/2 ≥ v1 > v2 > · · · > vn−2,
and set vn−1 := 0.

(1) The Apéry set of S1 (with respect to p) is

Ap(S1) = {λq | 0 ≤ λ < p− v1} ∪
(
∪n−2
i=1 {ai + λq | 0 ≤ λ < vi − vi+1}

)
.

(2) Ap(S1) is graded, i.e., for all z ∈ Ap(S1), all the factorizations of z have the
same length.

Proof. Let Apq be the Apéry set of the numerical semigroup ⟨p, q⟩, Apq = {0, q, 2q,
. . . , (p−1)q}. We can obtain the Apéry set Ap(S1) from Apq as follows. Recall from
Equation (2.5) that

S1 = ⟨p, q⟩ ∪ {pq − up− vq | u ≤ ui, v ≤ vi for some 1 ≤ i ≤ n− 2} .

Note that pq − up − vq ≡ −vq (mod p), so the elements that we have to replace
in Apq are the ones congruent to −vq modulo p for 0 < v ≤ v1. For each one of
these congruence classes, we choose the smallest element in S1, i.e., the one with
the largest u. This corresponds to the element in the lattice path defining S1 whose
second coordinate is v − 1. Therefore,

Ap(S1) = {λq | 0 ≤ λ < p− v1} ∪
(
∪n−3
i=1 {ai + λq | 0 ≤ λ < vi − vi+1}

)
∪ {an−2 + λq | 0 ≤ λ < vn−2} .
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By Remark 2.17 (2) and Proposition 2.41, Ap(S1) is graded since the variable x
appears in all non-homogeneous binomials of a minimal generating set of the toric
ideal IA1 .

Using the previous result, let us show what the Apéry poset of S1, P(S1), looks
like (see Def. 1.10). For 0 ≤ λ < p − v1 set i0,λ the label of λq in P(S1), i.e.
0 ≤ i0,λ < p and i0,λ ≡ λq (mod p). Similarly, for each 1 ≤ j ≤ n − 2 and
0 ≤ λ < vj − vj+1, let ij,λ be the label of aj + λq in P(S1). Note that Zp = {i0,λ |
0 ≤ λ < p− v1} ∪ {ij,λ | 1 ≤ j ≤ n− 2, 0 ≤ λ < vj − vj+1}.

Proposition 2.43. Let 3 ≤ p < q be relatively prime and S1 ∈ KW (p, q).

(1) The covering relations in P(S1) are the following. For all ij1,k1 , ij2,k2 ∈ Zp,

ij1,k1 ≺· ij2,k2 ⇔
{
j2 = j1 and k2 = k1 + 1, or
j1 = 0 and k2 = k1 .

Thus, the Hasse diagram of P(S1) is as shown in Figure 2.6.

(2) The poset P(S1) is graded for the rank function ρ : P(S1) → N defined by
ρ(ij,k) = j + k.

Proof. Note that (λ+1)q−λq = q, (aj + (λ+ 1)q)−(aj + λq) = q, (aj + λq)−λq =
aj, so ij,λ ≺· ij,λ+1 and i0,λ ≺· ij,λ for all j, λ by Proposition 1.11. Let us prove that
there are no more covering relations. By Propositions 2.42 (2) and 1.11, it suffices
to show that (ai + (λ+ 1)q)− (aj + λq) = ai − aj + q is not a minimal generator of
S1 when i ̸= j and λ ≥ 0. Note that ai − aj + q ̸= q since i ̸= j, and ai − aj + q ̸= p
because ai+q, aj ∈ Ap(S1). Now suppose that ai−aj+q = ak for some 1 ≤ k ≤ n−2,
k ̸= i, j. Then

(uj + uk − ui)p+ (vj + vk − vi + 1)q = pq .

Thus, q divides uj + uk − ui and since 3 − q/2 ≤ uj + uk − ui ≤ q − 2, then
uj + uk − ui = 0, so ui > uj and hence i > j. With a similar argument, one can
prove that vi = vj+vk+1 > vj, so i < j, a contradiction. This completes the proof of
part (1), and part (2) is a direct consequence of part (1) and Proposition 2.42 (2).

Finally, we compute the set of Pseudo Frobenius elements for any S1 ∈ KW (p, q).

Proposition 2.44. Let S1 ∈ KW (p, q) of embedding dimension n. Then PF(S1) =
{gi := pq − (ui + 1)p− (vi+1 + 1)q | 0 ≤ i ≤ n− 2}, where u0 = vn−1 = 0.
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i0,0 = 0

i0,1

i0,2

i0,3

i0,p−y1−1

i1,0 ij,0 in−2,0

i1,1

i1,y1−y2−1

ij,1

ij,yj−yj+1−1

in−2,1

in−2,yn−2−1

+q +h1 +hj +hn−2

Figure 2.6: Hasse diagram of the Apéry poset of a semigroup S1 ∈ KW (p, q).

Proof. Set u0 = vn−1 = 0 and let H = {gi := pq − (ui + 1)p − (vi+1 + 1)q | 0 ≤
i ≤ n − 2}. Recall from Proposition 2.39 that S1 = ⟨p, q, a1, ..., an−2⟩ is in one-to-
one correspondence to a lattice path ℓ in the rectangle R. In particular, each ai
corresponds to the point (ui − 1, vi − 1) under the line pq − p − q = pU + qV . To
see that H = PF(S1), first note that H = {s ∈ N \ S1 | s+ p ∈ S1, s+ q ∈ S1}. This
is clear from Figure 2.7. Hence, PF(S1) ⊂ H, and the equality PF(S1) = H follows
from the fact |H|= n− 1 = |PF(S1)|, by Proposition 2.38.

Example 2.45. Consider p = 5, q = 8, and the semigroup S1 = ⟨5, 8, 9, 12⟩ ∈
KW (5, 8) from Example 2.40. The Apéry set of ⟨5, 8⟩ is A58 = {0, 8, 16, 24, 32}.
By Proposition 2.42 (1), Ap(S1) = {0, 8, 16, 9, 12}. By Proposition 2.43, the Hasse
diagram of the Apéry poset P(S1) is the one shown in Figure 2.8. Finally, by
Proposition 2.44, one has that the Pseudo Frobenius set of S1 is

PF(S1) = {pq − p− 3q, pq − 4p− 2q, pq − 5p− q} = {11, 4, 7} .
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pq − p− q = pU + qV

R

V

U

vi − 1

vi+1 − 1

ui − 1 ui+1 − 1

Figure 2.7: Pseudo Frobenius elements of S1 ∈ KW (p, q) correspond to the points
×.

0

3

1

2 4

Figure 2.8: Hasse diagram of P(S1) for S1 = ⟨5, 8, 9, 12⟩ in Example 2.45.
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2.5.2 Betti numbers

Let S1 = ⟨p, q, a1, . . . , an−2⟩ ∈ KW (p, q) and fix a field k. Consider the polynomial
ring R = k[x, y, x1, . . . , xn−2], graded via deg(x) = p, deg(y) = q, and deg(xi) = ai,
i = 1, . . . , n − 2. Set A1 = {p, q, a1, . . . , an−2}, and let IA1 ⊂ R be the toric
ideal determined by A1. By Proposition 1.67, IA1 is the defining ideal of the affine
monomial curve parametrized by A1. Hence, its coordinate ring is R/IA1 , and it is
isomorphic to the semigroup algebra k[S1].

We already know some of the Betti numbers of k[S1], β0 = 1, β1 =
(
n
2

)
by

Proposition 2.41, and βn−1 = n − 1 by Proposition 2.38. Our goal is to obtain the
whole Betti sequence of k[S1]. To achieve this, first we characterize all Kunz–Waldi
semigroups whose defining ideals are determinantal.

Definition 2.46. Let 3 ≤ p < q be relatively prime. We define a subclassKWD(p, q)
of KW (p, q) as follows. A semigroup S1 = ⟨p, q, a1, . . . , an−2⟩ ∈ KW (p, q) is in
KWD(p, q) if there exist u, v ∈ Z>0 such that (n− 2)u ≤ q/2, (n− 2)v ≤ p/2, and
ai = pq − uip− viq, where ui = iu and vi = (n− 1− i)v for all 1 ≤ i ≤ n− 2.

The notation chosen to denote this class will be justified after Theorem 2.49,
where we prove that the semigroups in KWD(p, q) are precisely all the semigroups
in KW (p, q) with determinantal defining ideal.

Remark 2.47. Let S1 ∈ KWD(p, q) for some u, v ∈ Z>0. Note that ai+1 − ai =
vq − up for all 1 ≤ i ≤ n− 3. Thus, the generators a1, a2, . . . , an−2 necessarily form
an arithmetic sequence with common difference vq−up. This sequence is increasing
if vq > up and decreasing otherwise.

Proposition 2.48. If S1 ∈ KWD(p, q) for some u, v, n ∈ Z>0, then IA1 is generated
by the 2× 2 minors of the following 2× n matrix

M =

(
xn−2 xu yp−(n−1)v x1 x2 · · · xn−4 xn−3

xq−(n−1)u yv x1 x2 x3 · · · xn−3 xn−2

)
.

Proof. Let mij denote the determinant of the submatrix of M obtained from the i-
and j-th columns, and I2(M) be the ideal generated by all the mij. Each mij is a
S1-homogeneous binomial and thus, is in IA1 . Therefore, I2(M) ⊂ IA1 . Let us prove
the other inclusion. Note that for all 1 ≤ i ≤ n− 3, gi = −m2,i+3; η1 = −m23, and
η2 = m12, so all of them are in I2(M). To finish the proof, it suffices to show that
fij ∈ I2(M) for all 1 ≤ i ≤ j ≤ n − 2. We have f1,n−2 = m13 ∈ I2(M) and for all
1 ≤ j ≤ n− 3, one can check that

f1,j = −m3,j+3 −
n−j−4∑
k=0

(
xkuyp−(n+k)vm2,j+4+k

)
+ x(n−j−3)uyp−(2n−j−3)vm12 ∈ I2(M) .
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Moreover, for all 2 ≤ i ≤ n− 2,

fi,n−2 = m1,i+2 +
i−2∑
k=0

(
xq−(n+k)uykvm2,i+1−k

)
∈ I2(M) .

Finally, note that for all 2 ≤ i ≤ j ≤ n− 3, fi,j = fi−1,j+1 −mi+2,j+3, and hence all
the fij belong to I2(M).

Theorem 2.49. Let S1 ∈ KW (p, q) of embedding dimension n. Then the following
are equivalent:

(a) S1 ∈ KWD(p, q).

(b) There exist positive integers u, v such that (n− 2)v ≤ p/2, (n− 2)u ≤ q/2 and
IA1 is generated by the 2× 2 minors of the matrix(

xn−2 xu yp−(n−1)v x1 x2 · · · xn−4 xn−3

xq−(n−1)u yv x1 x2 x3 · · · xn−3 xn−2

)
.

(c) There exist S1-homogeneous polynomials Fi, Gi ∈ ⟨x, y, x1, . . . , xn−2⟩ such that
IA1 is generated by the 2× 2 minors of the matrix(

F1 F2 . . . Fn
G1 G2 . . . Gn

)
.

(d) PF(S1) = {z + k, z + 2k, . . . , z + (n− 1)k} for some z ≥ 0 and k > 0.

When this is the case, PF(S1) = {pq−(iu+1)p−((n− i− 2)v + 1) q | 0 ≤ i ≤ n−2},
for the numbers u, v ∈ Z>0 defining S1 ∈ KWD(p, q), and hence k = |up− vq|.

Proof. (a) ⇒ (b) is Proposition 2.48, (b) ⇒ (c) is trivial, and (c) ⇒ (d) is proved
in general for any numerical semigroup in [95, Sect. 2].
(d) ⇒ (a): By Proposition 2.44, PF (S1) = {gi := pq − (ui + 1)p− (vi+1 + 1)q | 0 ≤
i ≤ n − 2}, where u0 = vn−1 = 0. Since PF(S1) satisfies (d) by our hypothesis,
we must have that the difference between any two consecutive elements is constant.
Firstly, for any 0 ≤ i ≤ n− 2,

gi − gi+1 = pq − (ui + 1)p− (vi+1 + 1)q − [pq − (ui+1 + 1)p− (vi+2 + 1)q]

= p(ui+1 − ui) + q(vi+2 − vi+1) .

Let αi = ui+1 − ui and βi = vi+2 − vi+1. Now we must have that for any 0 ≤ i <
j ≤ n− 3,

pαi + qβi = pαj + qβj =⇒ p(αi − αj) = q(βj − βi) .
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Since p and q are relatively prime, there exists ℓ ∈ Z such that αi − αj = qℓ. But
|αi − αj|= |ui+1 + uj − ui − uj+1|≤ q − 2, so ℓ = 0. Thus, since ui+1 > ui, there
is some u ∈ Z>0 such that αi = αj = u. The recursive definition of αi now gives
us ui = iu for 1 ≤ i ≤ n − 2. If u > q

2(n−2)
, then un−2 = (n − 2)u > q/2, a

contradiction. Similarly, βi = βj = −v, for some v ∈ Z>0 since vi+2 < vi+1. This
implies vn−2 = v, vn−3 = 2v, ..., v1 = (n − 2)v. If v > p

2(n−2)
then v1 > p/2, a

contradiction.
We have shown that S1 must be as in Definition 2.46. In addition, when (d) holds,

we have shown that PF(S1) = {pq− (iu+1)p− ((n− i− 2)v + 1) q | 0 ≤ i ≤ n−2},
which implies k = |up− vq|.

Remark 2.50. Let 3 ≤ p < q relatively prime integers and denote p′ = ⌊p/2⌋, and
q′ = ⌊q/2⌋. By Theorem 2.49, the cardinality of KWD(p, q) is

|KWD(p, q)|=
p′+2∑
n=3

⌊
p′

n− 2

⌋⌊
q′

n− 2

⌋
=

p′∑
n=1

⌊
p′

n

⌋⌊
q′

n

⌋
,

and the cardinality of KW (p, q) is

|KW (p, q)|=
p′+2∑
n=3

(
p′

n− 2

)(
q′

n− 2

)
=

p′∑
n=1

(
p′

n

)(
q′

n

)
=

(
p′ + q′

p′

)
− 1 .

Thus, the proportion of semigroups in KW (p, q) whose defining ideal is determinan-
tal is

ρD(p, q) :=
|KWD(p, q)|
|KW (p, q)|

=

∑p′

n=1

⌊
p′

n

⌋ ⌊
q′

n

⌋
(
p′+q′

p′

)
− 1

.

Since the ideal IA1 ⊂ R for any S1 ∈ KWD(p, q) is generated by the 2×2 minors
of a 2× n matrix and its height is n− 1 (= n− 2 + 1), it is resolved by the Eagon-
Northcott complex (see [26, Thm. 2]). In particular, the Betti numbers are given by
the formula βi = i

(
n
i+1

)
for all 1 ≤ i ≤ n − 1. We want to expand this to compute

the Betti sequence of more KW-semigroups. One way to do this is by using the fact
that any two numerical semigroups of multiplicity p lying in the interior of the same
face of the Kunz cone Cp have the same Betti sequence. This is a result of Kunz.

Theorem 2.51 ([60, Prop. 2.6], [9, Thm. 2.7]). Let A1 = {a1 = p < a2 < · · · <
an} ⊂ N and A′

1 = {a′1 = p < a′2 < · · · < a′m} ⊂ N such that gcd(a1, . . . , an) = 1
and gcd(a′1, . . . , a

′
m) = 1. Denote by S1 and S ′

1 the numerical semigroups generated
by A1 and A′

1, respectively. If S1 and S ′
1 lie in the interior of the same face of the

Kunz cone Cp, then βi(k[S1]) = βi(k[S ′
1]) for all i.
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Let S1,S ′
1 ∈ KW (p, q) be of the same embedding dimension n. Write S1 =

⟨p, q, a1, ..., an−2⟩ and S ′
1 = ⟨p, q, a′1, ..., a′n−2⟩. Further, write ai = pq− uip− viq and

a′i = pq − u′ip− v′iq, 1 ≤ i ≤ n− 2.

Proposition 2.52. Let S1,S ′
1 ∈ KW (p, q). Then S1 and S ′

1 belong to the interior
of the same face of the Kunz cone Cp if and only if

(1) e(S1) = e(S ′
1) = n, and

(2) vi = v′i for all 1 ≤ i ≤ n− 2.

Proof. By Proposition 2.43, the Apéry poset of any semigroup S1 ∈ KW (p, q) is
completely determined by the embedding dimension of S1, e(S1) = n, and the
sequence p/2 ≥ v1 > · · · > vn−2 > 0. Thus, the result follows from Theorem 1.13.

As a consequence of Proposition 2.52 and Theorem 2.49, we get the following
result that provides the whole Betti sequence of k[S1] for some S1 ∈ KW (p, q).

Theorem 2.53. Let S1 ∈ KW (p, q) of embedding dimension n be such that vi =
(n− i− 1)v for some v ∈ Z>0 with (n− 2)v ≤ p/2. Then the Betti numbers of k[S1]
are

βi = i

(
n

i+ 1

)
, 1 ≤ i ≤ n− 1 .

Proof. Consider the semigroup S ′
1 ∈ KWD(p, q) defined by the sequence u1 = 1 <

u2 = 2 < · · · < un−2 = n−2 and the sequence v1 > v2 > · · · > vn−2, vi = (n−1−i)v.
By Proposition 2.52, S1 and S ′

1 lie in the interior of the same face of the Kunz cone
Cp. Therefore, k[S1] and k[S ′

1] have the same Betti sequence by Theorem 2.51,
that is, βi = i

(
n
i+1

)
, 1 ≤ i ≤ n − 1 by the construction of the Eagon-Northcott

complex.

Example 2.54. Consider the semigroup S1 = ⟨8, 17, 53, 62, 55⟩ ∈ KW (8, 17). Note
that S1 is not in KWD(8, 17) as 53, 62, 55 are not in an arithmetic sequence, by
Remark 2.47. However, S1 is in the same face of C8 as S ′

1 = ⟨8, 17, 69, 70, 71⟩ ∈
KW (8, 17). Note that for both S1 and S ′

1, v1 = 3, v2 = 2, v3 = 1. Hence, their Betti
sequence is (4, 15, 20, 10, 1), by Theorem 2.53, and the Hasse diagram of P(S1) and
P(S ′

1) is the one shown in Figure 2.9.

Remark 2.55. By Theorem 2.53, the number of numerical semigroups in the
class KW (p, q) whose Betti numbers are βi = i

(
n
i+1

)
, 1 ≤ i ≤ n − 1, is at least∑p′

n=1

⌊
p′

n

⌋ (
q′

n

)
, where p′ = ⌊p/2⌋ and q′ = ⌊q/2⌋.
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Figure 2.9: Hasse diagram of P(S1) and P(S ′
1) in Example 2.54.

It is interesting to note that even if S1 ∈ KW (p, q) does not satisfy the hypothesis
of Theorem 2.53, the conclusion still seems to hold. In particular, if the v1, ..., vn−2

are not in an arithmetic sequence, is it still true that βi = i
(
n
i+1

)
for 1 ≤ i ≤ n− 1?

We give an example to support a positive answer:

Example 2.56. Consider S1 = ⟨8, 17, 36, 45, 63⟩ ∈ KW (8, 17) \KWD(8, 17). The
Betti sequence of k[S1] is (4, 15, 20, 10, 1), and yet, S1 is not even in the same face
as some S ′

1 ∈ KWD(8, 17).
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Chapter 3

The structure of the sumsets

“... the art of combinations is mastered through algebra.”
W. von Tschirnhaus

Let A = {a0, . . . , an} ⊂ Nd be a finite set, n, d ∈ Z>0. Additive combinatorics
studies the sumsets ofA and their cardinality. When d = 1, the part of additive com-
binatorics that studies the sumsets of A is called additive number theory. As stated
in Section 1.4, to study the sumsets of such a set A, one can always assume that it
is in normal form, i.e., A = {a0 = 0 < a1 < · · · < an = D}, and gcd(a1, . . . , an) = 1.
Associated with A, one has the set A = {a0, . . . , an} ⊂ N2, where ai = (D − ai, ai)
for all i = 0, . . . , n, and we call A the homogenization of A. Also, fixed an infinite
field k, we consider the projective monomial curve C = CA ⊂ Pn

k determined by A.

In Section 3.1, we study the structure of the sumsets of A, (sA)∞s=0, starting with
the so-called structure theorem by Nathanson (Theorem 3.1). In Proposition 3.4,
we recall the characterization of the elements that appear in the structure theorem
in terms of the curve C, given by Elias. We define the sumsets regularity of A,
σ(A), as the least integer such that, for all larger integers, the decomposition in
the structure theorem holds, and in Theorem 3.7 we show how to interpret it in
terms of the curve C. Several upper bounds on σ(A) that appear in the literature
are recalled. Indeed, we provide a new proof of Granville-Walker’s bound using the
characterization for σ(A) and a bound on the Castelnuovo-Mumford regularity of
the coordinate ring of C. Moreover, we provide a new upper bound on σ(A) in
(3.5) and compare it with the other known bounds, showing that it improves them
in most cases. In Section 3.2, we analyze the structure of the sumsets of A, and
observe that the sumsets regularity of A defined in the previous section could also
be called the sumsets regularity of A. We recall the definition of the Apéry and
exceptional sets of S given in Chapter 2 and give a relation on the size of these sets

77
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and the size of the sumsets of A (or A) in Proposition 3.19.

When d ≥ 2, consider D = max{|ai|: i = 0, . . . , n} and A = {a0, . . . , an}, where
ai = (D − |ai|, ai) ∈ Nd+1 for all i = 0, . . . , n. We call A the homogenization of A.
Fix an algebraically closed field k and consider the projective toric variety deter-
mined by A, X = XA ⊂ Pn

k . Whenever X is simplicial, in Theorem 3.24 we recall
a structure theorem for the sumsets of A. In Section 3.3, we make the structure
theorem more explicit in two particular cases, when X is smooth and when it is a
surface with exactly a single singular point. In Subsection 3.3.1 we treat the smooth
case, giving the structure of the sumsets of A in Proposition 3.25 and Theorem 3.26.
We define the sumsets regularity and provide a better upper bound on the sumsets
regularity in Theorem 3.29. In Subsection 3.3.2 we perform a similar study for sur-
faces with a single singular point. We study the structure of the sumsets of A in
Proposition 3.34 and Theorem 3.35. Then, we define the sumsets regularity and
give an upper bound on it in Theorem 3.41.

Most of the results included in Section 3.1 are part of [39].

3.1 Structure theorem in N
Let A = {a0, a1, . . . , an} ⊂ N be a finite set. Recall from Section 1.4 that, to study
the sumsets of A, one can always assume that A is in normal form, i.e., a0 = 0 and
gcd(a1, . . . , an) = 1. In this section, we study the structure of the sumsets of A.
From now on, A = {a0 = 0 < a1 < · · · < an =: D} ⊂ N will be a set in normal
form. Note that, if n = 1, then A = {0, 1}, and hence sA = [0, s] for all s ∈ N.
Therefore, throughout this section, we will assume n ≥ 2.

In 1972, Nathanson proved the so-called structure theorem, one of the main
results in additive number theory, which shows that the sumsets sA always have a
fixed structure, for s sufficiently large.

Theorem 3.1 (Structure Theorem, [70], [71, Thm. 1.1]). If A = {a0 = 0 < a1 <
· · · < an = D} ⊂ N is a finite set in normal form, n ≥ 1, then there exist integers
c1, c2 ∈ N and finite subsets Ci ⊂ [0, ci − 2], i = 1, 2, such that

sA = C1 ⊔ [c1, sD − c2] ⊔ (sD − C2) (3.1)

for all s ≥ max{1, sN0 }, where sN0 := (n− 1)(D − 1)D.

Nathanson proved the theorem by induction on s ≥ sN0 , and his proof is con-
structive in the sense that the numbers c1, c2 ∈ N and the sets C1, C2 ⊂ N can be
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read on the sumset sN0 A. But there is no nice interpretation of these elements in
terms of the set A.

Remark 3.2. In the conditions of Theorem 3.1, one has that that c1 = 0⇔ a1 = 1,
and c2 = 0 ⇔ D − an−1 = 1. Moreover, if D − A := {D − a | a ∈ A} = A, then
c1 = c2 and C1 = C2. This can be directly proved, but it can also be obtained as an
easy consequence of Proposition 3.4.

Example 3.3. (1) Consider A = {0, 1, 3, 4}. It is straightforward to show that
2A = [0, 8], 3A = [0, 12] and, in general, sA = [0, 4s] for all s ∈ N, s ≥ 2. The
elements that appear in the structure theorem are c1 = c2 = 0, C1 = C2 = ∅,
and sN0 = 24.

(2) Consider A = {0, 2, 3, 5}. A direct computation shows that 2A = {0} ⊔
[2, 8] ⊔ {10}, 3A = {0} ⊔ [2, 13] ⊔ {15}. Indeed, one can prove that sA =
{0} ⊔ [2, 5s − 2] ⊔ {5s}, for all s ∈ N, s ≥ 1. The elements that appear in
Theorem 3.1 are c1 = c2 = 2, C1 = C2 = {0}, and sN0 = 40.

Consider the homogenization of A, A = {a0, . . . , an} ⊂ N2, where ai = (D −
ai, ai) for all i = 0, . . . , n. Fix an infinite field k, and let C = CA ⊂ Pn

k be the
projective monomial curved determined by A. The coordinate ring of C is k[C] =
k[x0, . . ., xn]/IA, where IA is the toric ideal determined by A. By Proposition 1.83,
one has that |sA|= HFk[C](s) for all s ∈ N.

The elements in the structure theorem have recently been characterized in [32,
Prop. 3.4] in terms of the curve C and some of its invariants. Recall by Proposi-
tion 1.75 that C has at most two singular points, P1 = (1 : 0 : · · · : 0) ∈ Pn

k and
P2 = (0 : · · · : 0 : 1) ∈ Pn

k . Moreover, if δ(C, P ) denotes the singularity order of P ,
then δ(C, P1) = |N\S1| and δ(C, P2) = |N\S2|, where S1 and S2 denote the numeri-
cal semigroups generated by A1 = {a1, . . . , an} and A2 = {D−an−1, . . . , D−a1, D},
respectively. By Proposition 1.75 (4), one gets that for all s ≥ r(k[C]),

|sA|= HFk[C](s) = sD + 1− δ(C, P1)− δ(C, P2) , (3.2)

where r(k[C]) denotes the regularity of the Hilbert function of k[C] (see Defini-
tion 1.48).

Proposition 3.4 ([32, Prop. 3.4]). Following notations in Theorem 3.1, for i = 1, 2,
the following claims hold:

(1) ci is the conductor of Si;
(2) Ci = Si ∩ [0, ci − 2]; and

(3) δ(C, Pi) = ci − |Ci|.
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Proof. Let us prove the result for i = 1. Since 0 ∈ A, the sumsets of A form a
nested sequence, i.e., sA ⊂ (s + 1)A for all s ∈ N. Hence, the sequence (sA)∞s=0

converges to ∪∞
s=0sA = S1. By Theorem 3.1, we can write

sA = C1 ⊔ [c1, sD − c2] ⊔ (sD − C2)

for all s ≥ sN0 , where Ci ⊂ [0, ci − 2] for i = 1, 2. Since D > 0, lims→∞(sD −
c2) = ∞, and hence [c1, sD − c2] converges to [c1,∞) when s → ∞. Therefore,
S1 = C1 ⊔ [c1,∞). From this expression, it is clear that c1 is the conductor of S1,
and C1 = S1 ∩ [0, c1 − 2]. Finally, by Proposition 1.75 (3), one has that

δ(C, Pi) = |N \ S1|= (c1 − 1)− |C1|+1 = c1 − |C1| .

For i = 2, apply the previous reasoning to the setA∗ = D−A = {D−a | a ∈ A}.

Using Proposition 3.4, one can interpret (and compute) the elements that appear
in the structure theorem in terms of the curve C. However, as we have seen in
Example 3.3, the number sN0 such that the structure theorem holds for all s ≥ sN0
is far from being tight. With this in mind, we give the following definition.

Definition 3.5. The least integer σ, such that the decomposition (3.1) in Theo-
rem 3.1 holds for all s ≥ σ, will be called the sumsets regularity of A and we will
denote it by σ(A), or simply σ if there is no confusion.

Theorem 3.1 provides an upper bound on σ(A) that is generally far from its real
value: σ(A) ≤ (n − 1)(D − 1)D = sN0 . After Nathanson’s proof, other proofs of
Theorem 3.1 have been published, [98, 44, 45]. In these articles, the authors give
the following improved upper bounds on σ(A):

• [98, Thm. 2] (Wu, Chen, Chen; 2011) σ(A) ≤
(∑n−1

i=2 ai
)
+D − n =: sWCC

0 .

• [44, Thm. 1] (Granville, Shakan; 2020) σ(A) ≤ 2⌊D
2
⌋ =: sGS0 .

• [45, Thm. 1] (Granville, Walker; 2021) σ(A) ≤ D − n+ 1 =: sGW0 .

Note that in [98, 44, 45], the union in Equation (3.1) is not shown to be disjoint,
but this is shown in [65] for sGW0 and, as sWCC

0 > sGW0 and sGS0 > sGW0 if n ≥ 3, the
above claims hold for n ≥ 3. For n = 2, one has that sWCC

0 < sGW0 ≤ sGS0 , but the
above inequalities hold (see Example 3.8).

Besides giving a great upper bound on σ(A), Granville and Walker also charac-
terize the sets A for which this bound is attained.

Theorem 3.6 ([45, Thm. 2]). Let n ∈ N, n ≥ 2, and A = {a0 = 0 < a1 < · · · <
an = D} ⊂ N be a set in normal form. Then, σ(A) ≤ D − n + 1. Moreover, the
equality holds if and only if either A or D − A belongs to one of the following two
families:
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• A = [0, D] \ {a}, for some a, such that 2 ≤ a ≤ D − 2;

• A = [0, 1] ⊔ [a+ 1, D], for some a, such that 2 ≤ a ≤ D − 2.

Note for any A belonging to one of the two families in Theorem 3.6, the mono-
mial curve C is smooth, by Proposition 1.75 (2).

We now give a characterization of σ, the sumsets regularity of A, in terms of the
curve C and its invariants. This result concludes the characterization of the elements
in the structure theorem given in Proposition 3.4.

Theorem 3.7. The least integer σ, such that the decomposition (3.1) in Theorem 3.1
holds for all s ≥ σ, i.e., the sumsets regularity of A, is

σ = max

{
r(k[C]),

⌈
c1 + c2
D

⌉}
,

where r(k[C]) is the regularity of the Hilbert function of k[C] and ci is the conductor
of the numerical semigroup Si for i = 1, 2.

Proof. If s ∈ N is such that sD−c2 < c1, then [c1, sD−c2] = ∅. Hence, σ ≥ ⌈ c1+c2D
⌉.

Moreover, for all s ≥ 0, HFk[C](s) = |sA| by Proposition 1.83, and if s ≥ σ, then

HFk[C](s) = |sA|= sD + 1− (c1 − |C1|+c2 − |C2|)
= sD + 1− δ(C, P1)− δ(C, P2) = HPk[C](s)

(3.3)

by Proposition 3.4, so σ ≥ r(k[C]). Therefore, σ ≥ max
{
r(k[C]), ⌈ c1+c2

D
⌉
}
. Con-

versely, for s ≥ max
{
r(k[C]), ⌈ c1+c2

D
⌉
}
, one has that (3.3) is satisfied by applying

(3.2). Moreover, since sD − c2 ≥ c1, one has that

sA = (sA ∩ C1) ⊔ (sA ∩ [c1, sD − c2]) ⊔ (sA ∩ (sD − C2))

⊂ C1 ⊔ [c1, sD − c2] ⊔ (sD − C2) .

Since both sets sA and C1 ⊔ [c1, sD − c2] ⊔ (sD − C2) are finite and have the same
cardinality, they are equal, so max

{
r(k[C]), ⌈ c1+c2

D
⌉
}
≥ σ and the resut follows.

Example 3.8. Take a,D ∈ Z>0 such that a < D and gcd(a,D) = 1, and consider
A = {0, a,D}. Set S1 = ⟨a,D⟩ and S2 = ⟨D − a,D⟩. Then, the elements that
appear in Theorem 3.1 are c1 = (a − 1)(D − 1), c2 = (D − a − 1)(D − 1) and
C1 = S1 ∩ [0, c1 − 2], C2 = S2 ∩ [0, c2 − 2], by Proposition 3.4. Moreover, we have
that ⌈ c1+c2

D
⌉ = D − 2 and r(k[C]) = reg(k[C])− 1 ≤ D − 2, by Remark 1.52 (2) and

Theorem 1.76 (1), since k[C] is Cohen-Macaulay in this case. Hence, the sumsets
regularity of A is σ(A) = D − 2, by Theorem 3.7.
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Given a set A ⊂ N in normal form, it is not easy to know in advance whether
σ = r(k[C]) or σ = ⌈ c1+c2

D
⌉. However, in some cases it is, as Proposition 3.9 shows.

Proposition 3.9. (1) If C is smooth, then σ = r(k[C]) ≥ ⌈ c1+c2
D
⌉ = 0.

(2) If C is arithmetically Cohen-Macaulay, then σ = ⌈ c1+c2
D
⌉ ≥ r(k[C]).

Proof. If C is smooth, then c1 = c2 = 0 and (1) follows. Now, for s = ⌈ c1+c2
D
⌉, the

sumset sA decomposes as the union of three disjoint subsets

sA = (sA ∩ C1) ⊔ (sA ∩ [c1, sD − c2]) ⊔ (sA ∩ (sD − C2)) .

If either sA ∩ C1 ̸= C1, or sA ∩ [c1, sD − c2] ̸= [c1, sD − c2], or sA ∩ (sD − C2) ̸=
(sD − C2), then ES ̸= ∅, where S ⊂ N2 is the affine semigroup generated by A
and ES is as in Definition 2.2. Thus, if C is arithmetically Cohen-Macaulay, by
applying Proposition 2.4 (e), one gets that sA = C1 ⊔ [c1, sD− c2]⊔ (sD − C2) and
(2) follows.

As a direct consequence of Proposition 3.9, we recover the well-known fact that
for any n ≥ 3, the rational normal curve, i.e., the curve C given by A = [0, n], is
the only projective monomial curve in Pn

k which is both smooth and arithmetically
Cohen-Macaulay.

Example 3.10. (1) If A = [0, D] \ {a} for some 2 ≤ a ≤ D− 2, then c1 = c2 = 0
and σ = 2 by Theorem 3.6. In this example, σ = r(k[C]) > ⌈ c1+c2

D
⌉.

(2) For A = {0, 2, 5, 6, 9}, one has c1 = 4, c2 = 6 and r(k[C]) = 1, so σ = ⌈ c1+c2
D
⌉ =

2 > r(k[C]).

In Proposition 3.4 and Theorem 3.7, we have characterized all the elements
that appear in the structure theorem in terms of the projective monomial curve
C. Applying these results, we can recover the bound on σ given by Granville and
Walker, sGW0 , using known bounds on ⌈ c1+c2

D
⌉ and r(k[C]).

Lemma 3.11. Let A = {a0 = 0 < a1 < · · · < an = D} ⊂ N be a set in normal
form. If S1 is the semigroup generated by A1 = {a1, . . . , an}, S2 is the semigroup
generated by A2 = {D − an−1, . . . , D − a1, D}, and ci is the conductor of Si for
i = 1, 2, then ⌈

c1 + c2
D

⌉
≤ D − n .

Proof. By Proposition 1.2 (2), c1 ≤ (a1− 1)(D− 1) and c2 ≤ (D−an−1− 1)(D− 1).
Therefore,

c1 + c2 ≤ (a1 +D − an−1 − 2)(D − 1) ≤ (D − n)(D − 1)



3.1. STRUCTURE THEOREM IN N 83

because an−1 ≥ a1 + n − 2. Thus, the result follows dividing by D in the previous
equation.

Using the known fact r(k[C]) ≤ reg(k[C]) (Remark 1.52 (3)), the bound σ ≤ sGW0

follows from Theorem 3.7, Lemma 3.11, and Theorem 1.76 (1).
In their article [45], Granville and Walker give a whole new proof for the existence

of the elements in the structure theorem, obtaining the improved bound σ ≤ sGW0 .
Note that we have obtained the same result using Theorem 3.1, the formula for σ
in Theorem 3.7, and appropriate bounds on c1, c2, and r(k[C]). Now, we apply the
same idea to obtain a new bound on σ that improves sGW0 .

A new bound on the sumsets regularity

By combining the Erdös-Graham bound on the condutor of a numerical semigroup
(Proposition 1.2 (2)) and the bound on the Castelnuovo-Mumford regularity of a
projective monomial curve given by L’vovsky (Theorem 1.76 (2)), we obtain the
following new bound on the sumsets regularity. This bound is different from the
already known bounds sN0 , s

WCC
0 , sGS0 , sGW0 .

Proposition 3.12. If A = {a0 = 0 < a1 < · · · < an = D} ⊂ N is a finite set in
normal form, set

• sEG0 :=

⌈
2

(⌊
D

n

⌋
(1 +

an−1 − a1
D

)− 1 +
1

D

)⌉
, and

• sL0 := max1≤i<j≤n {(ai − ai−1) + (aj − aj−1)} − 1.

Then, the smallest integer σ such that the decomposition (3.1) in Theorem 3.1 holds
for all s ≥ σ, i.e., the sumsets regularity of A, satisfies

σ ≤ max{sEG0 , sL0 } .

Proof. By Proposition 1.2 (2), one has that c1 ≤ 2an−1⌊Dn ⌋ − D + 1 and c2 ≤
2(D − a1)⌊Dn ⌋ −D + 1. Combining these two bounds, one gets that ⌈ c1+c2

D
⌉ ≤ sEG0 .

On the other hand, by Remark 1.52 (3) and Theorem 1.76 (2), one has that r(k[C]) ≤
reg(k[C]) ≤ sL0 . Hence, the upper bound follows from Theorem 3.1.

Example 3.13. (1) Consider the set A = {0, 2, 5, 6, 9} from Example 3.10 (2),
and recall that σ = 2 in this case. The previously known bounds on σ are
sN0 = 216, sWCC

0 = 16, sGS0 = 8 and sGW0 = 6. The new bound given in
Proposition 3.12 is 5, since sEG0 = 4 and sL0 = 5. Although the bound is not
sharp in this case, it is better than the other known bounds on σ.
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(2) For A = {0, 1, 5, 6}, one has that A is one of the families in Theorem 3.6.
Hence, σ = sGW0 = 4. On the other hand, sL0 = 4 and sEG0 = 5. Hence, the
upper bound on the sumsets regularity given in Proposition 3.12 is σ ≤ 5,
which in this case is worse than sGW0 .

When a1 = 1 and an−1 = D − 1, it can happen that sGW0 < max{sEG0 , sL0 }, as
Example 3.13 (2) shows. If a1 ̸= 1 or an−1 ̸= D − 1, and n ≥ 6, then sEG0 < sGW0 .
We prove this in Proposition 3.14, and we compare the bounds sGW0 and sL0 in
Proposition 3.15.

Proposition 3.14. Let A = {a0 = 0 < a1 < · · · < an = D} ⊂ N be a finite set in
normal form. If a1 ̸= 1 or an−1 ̸= D − 1, then sEG0 ≤ D − n+ 1 = sGW0 , where

sEG0 =

⌈
2

(⌊
D

n

⌋(
1 +

an−1 − a1
D

)
− 1 +

1

D

)⌉
.

Indeed, if n ≥ 6 and both a1 ̸= 1 and an−1 ̸= D − 1, then sEG0 < sGW0 .

Proof. If a1 ̸= 1 or an−1 ̸= D−1, then an−1−a1 ≤ D−3 and D ≥ n+1. Therefore,

2

(⌊
D

n

⌋(
1 +

an−1 − a1
D

)
− 1 +

1

D

)
≤ 2

(
D

n

(
1 +

D − 3

D

)
− 1 +

1

D

)
= 2

(
2
D

n
− 3

n
− 1 +

1

D

)
,

and the rightmost part of the previous equation is ≤ D − n + 1 if and only if
(n− 4)D2 + (6 + 3n− n2)D− 2n ≥ 0. The largest root of this degree-2 polynomial
in D is

α(n) =
n2 − 3n− 6 +

√
(6 + 3n− n2)2 + 4(n− 4)2n

2(n− 4)
,

and one has that α(n) ≤ n+1 for all n ∈ N, since the real function x 7→ α(x)−(x+1)
is negative for all x ≥ 0. Therefore, (n − 4)D2 + (6 + 3n − n2)D − 2n ≥ 0 for all
D ≥ n+ 1. We have proved

2

(⌊
D

n

⌋(
1 +

an−1 − a1
D

)
− 1 +

1

D

)
≤ D − n+ 1 ,

and hence sEG0 ≤ D − n+ 1.
Assume now that a1 ̸= 1, an−1 ̸= D − 1 and n ≥ 6. Hence, D ≥ n + 2. If

D = n + 2, then A = {0} ⊔ [2, n] ⊔ {n + 2}, and one has that sGW0 = 3 and
sEG0 = ⌈2 − 6

n+2
⌉ ≤ 2. Suppose D ≥ n + 3. Using the same argument as before,
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now we have to check the inequality 2
(
2D
n
− 4

n
− 1 + 1

D

)
≤ D − n, and it holds if

and only if (n− 4)D2 + (8 + 2n− n2)D − 2n ≥ 0. The largest root of this degree-2
polynomial is

β(n) =
n2 − 2n− 8 +

√
(8 + 2n− n2)2 + 4(n− 4)2n

2(n− 4)
,

and one can show that β(n) ≤ n + 3 for all n ≥ 6. Hence, (n − 4)D2 + (8 + 2n −
n2)D − 2n ≥ 0 for all D ≥ n+ 3, so sEG0 ≤ D − n in this case.

On the other hand, one always has that sL0 ≤ D−n+1, and we can also determine
when the strict inequality holds. For a set A = {a0 = 0 < a1 < · · · < an = D} ⊂ N
in normal form, set β0 := 0, αℓ+1 := D, and write

A = [β0, α1] ⊔ [β1, α2] ⊔ . . . ⊔ [βℓ−1, αl] ⊔ [βℓ, αℓ+1] , (3.4)

with ℓ ≥ 0, αi+1 − βi ≥ 0 for all i ∈ {0, . . . , ℓ} and if ℓ ≥ 1, then βi − αi ≥ 2 for all
i ∈ {1, . . . , ℓ}. Note that this way of writing A is unique.

Proposition 3.15. Let A = {a0 = 0 < a1 < · · · < an = D} ⊂ N be a set in
normal form. Then, sL0 ≤ sGW0 . Indeed, if one writes A as in Equation (3.4), then
sL0 = sGW0 if 0 ≤ ℓ ≤ 2, and sL0 < sGW0 if ℓ ≥ 3.

Proof. WriteA = [β0, α1]⊔[β1, α2]⊔. . .⊔[βℓ−1, αl]⊔[βℓ, αℓ+1] with ℓ ≥ 0, αi+1−βi ≥ 0
for all i ∈ {0, . . . , ℓ} and if ℓ ≥ 1, then βi − αi ≥ 2 for all i ∈ {1, . . . , ℓ}.
If ℓ = 0, then A = [0, D], and sL0 = sGW0 = 1. If ℓ1 = 1, then sL0 = sGW0 = β1 − α1,
and if ℓ = 2, then sL0 = sGW0 = (β1 − α1) + (β2 − α2)− 1.
Assume ℓ ≥ 3, and let 1 ≤ j < k ≤ ℓ be such that sL0 = (βj − αj) + (βk − αk)− 1.
On the other hand,

sGW0 = D − n+ 1 = D − |A|+2 = D −

(
ℓ∑
i=0

(αi+1 − βi + 1)

)
+ 2

= D −

(
D −

ℓ∑
i=1

(βi − αi) + ℓ+ 1

)
+ 2 =

ℓ∑
i=1

(βi − αi)− ℓ+ 1

= (βj − αj) + (βk − αk) +
∑
1≤i≤ℓ
i̸=j,k

(βi − αi)− ℓ+ 1

≥ (βj − αj) + (βk − αk) + 2(ℓ− 2)− ℓ+ 1

≥ (βj − αj) + (βk − αk) = sL0 + 1 .

Therefore, we have proved that sL0 ≤ sGW0 , and the inequality is strict if and only if
ℓ ≥ 3.
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With Propositions 3.14 and 3.15 in mind, we propose the following bound on the
sumsets regularity of A,

s∗0 :=

{
sL0 if a1 = 1 and an−1 = D − 1,

max{sL0 , sEG0 } otherwise,
(3.5)

where sL0 = max1≤i<j≤n {(ai − ai−1) + (aj − aj−1)} − 1 and

sEG0 =

⌈
2

(⌊
D

n

⌋
(1 +

an−1 − a1
D

)− 1 +
1

D

)⌉
.

According to the previous results and Proposition 3.12, one has that σ(A) ≤ s∗0 ≤
sGW0 . Indeed, if n ≥ 6, a1 ̸= 1, an−1 ̸= n− 1, and ℓ ≥ 3, then σ(A) ≤ s∗0 < sGW0 .

To conclude this section, we present a precise statement of the structure theorem,
which summarizes the majority of the results in this section.

Theorem 3.16 (Refined Structure Theorem). Let A = {a0 = 0 < a1 < · · · < an =
D} ⊂ N be a finite set in normal form. Denote by S1 the numerical semigroup
generated by A1 = {a1, . . . , an} and by S2 the numerical semigroup generated by
A2 = {D − an−1, . . . , D − a1, D}. For i = 1, 2, set ci the conductor of Si and
Ci = Si ∩ [0, ci − 2]. Then,

sA = C1 ⊔ [c1, sD − c2] ⊔ (sD − C2)

for all s ≥ σ = max{⌈ c1+c2
D
⌉, r(k[C])}, where r(k[C]) is the regularity of the Hilbert

function of the projective monomial curve C determined by A. Moreover, σ ≤ s∗0,
where s∗0 is the number defined in Equation (3.5).

3.2 Homogeneous sets in N2

Let A = {a0 = 0 < a1 < · · · < an = D} ⊂ N be a set in normal form. As already
observed, associated with A, one has the set

A = {a0, a1, . . . , an} ⊂ N2 ,

where ai = (D− ai, ai) for all i = 0, . . . , n. A semigroup S in N2 generated by a set
A of this form will be said to be homogeneous of degree D.

It is straightforward to verify that the sumsets of A are completely determined
by those of A, since, for each s ∈ N,

sA = {(sD − y, y) : y ∈ sA} .
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In particular, for any s ∈ N, |sA|= |sA|. Furthermore, the affine semigroup S
generated by A satisfies that S = ⊔∞s=0sA. Note that each sA lies on the “line”
Ls := {(x, y) ∈ N2 : x+ y = sD}.

We can apply the structure theorem from the previous section to expand our
understanding of the sumsets of A and the semigroup S. By Theorem 3.1 and
Proposition 3.4, we have that for all s ≥ σ(A), the sumsets regularity of A, sA
consists of a central interval and, outside that interval, a copy of the non-trivial part
of the semigroups S1 and S2, i.e., for all s ≥ σ(A),

sA = {(sD − i, i) : i ∈ S1 ∩ [0, c1 − 2]} ⊔ {(sD − i, i) : i ∈ [c1, sD − c2]}
⊔ {(i, sD − i) : i ∈ S2 ∩ [0, c2 − 2]}. (3.6)

Furthermore, σ(A) is the least integer such that this decomposition is satisfied for
all s ≥ σ(A). More precisely, for s ≥ σ(A), when we go from sA to (s+ 1)A, gaps
coming from S1 move to the right while gaps coming from S2 move up, and there
are no other gaps in (s+1)A than the ones coming from sA, as shown in Figure 3.1.
And σ(A) is the least integer such that this occurs. For this reason, the sumsets
regularity of A, σ(A), could also be called the sumsets regularity of A, and denoted
by σ(A). If no confusion arises, from now on, we will simply denote this number by
σ, i.e., σ = σ(A) = σ(A).

Example 3.17. Take D ∈ N, D ≥ 4, and consider A = {0, 1, D − 1, D}. The
homogenization of A is A = {(D, 0), (D−1, 1), (1, D−1), (0, D)}. By Theorem 3.1,
Proposition 3.4, and Theorem 3.6, sA = [0, sD] for all s ≥ D − 2. Indeed, the
sumsets regularity of A is σ(A) = D − 2. Hence, one has that sA = {(sD − i, i) |
i ∈ [0, sD]} = Ls for all s ≥ D − 2.

Recall from Section 2.1 the definition of the Apéry APS and the exceptional set
ES of S (Definition 2.2):

• APS := {s ∈ S : s− a0 /∈ S, s− an /∈ S}, and
• ES := {s ∈ S : s− a0 ∈ S, s− an ∈ S, s− a0 − an /∈ S}.

Moreover, for each s ∈ N, set APs := APS ∩ Ls = APS ∩ sA and Es := ES ∩ Ls =
ES ∩ sA. Figure 3.2 shows what points in ES and APS look like when one draws
the semigroup S taking into account the levels determined by the sumsets of A.

Remark 3.18. As a consequence of Theorem 3.1 and, more precisely, Equation (3.6),
one gets that, if σ is the sumsets regularity of A, then

∀s ≥ σ + 2, APs = Es = ∅ .
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Central
interval

Non-trivial
part of S2

Non-trivial
part of S1

sA (s+ 1)A

Figure 3.1: Structure of the sumsets of A. For s ≥ σ, we distinguish three disjoint
areas: the central interval and the copies of the non-trivial parts of S1 and S2.

(x, y)

Ls−2 Ls−1

Ls

(x′, y′)

Ls−2 Ls−1

Ls

Figure 3.2: An element (x, y) in APs and an element (x′, y′) in Es.
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In particular, this shows that APS and ES are finite sets.

Now, we focus on the distribution of the elements (x, y) in APS and ES on the
levels given by the sumsets of A (or A).

Proposition 3.19. For all s ∈ N, one has that

|APs|−|Es|= |sA|−2|(s− 1)A|+|(s− 2)A| .

Proof. Let us count the number of elements in APs for all s ∈ N. Note that |AP0|=
1 = |0A| and |AP1|= |A|−2 = |A|−2|0A|. Since E0 = E1 = ∅ and sA = ∅ if s < 0,
the formula holds for s ≤ 1. Now, consider s ≥ 2. For each element s ∈ (s − 1)A,
neither s+a0 nor s+an belongs to APs. Thus, every element in (s−1)A provides two
elements in sA that do not belong to APs and any other element in sA belongs to
APs. However, we are counting some of those elements twice, precisely the s ∈ sA,
such that s − a0 ∈ (s − 1)A and s − an ∈ (s − 1)A. Now, for such an element s,
either s − a0 − an /∈ (s − 2)A, and hence, s ∈ Es, or (x, y) − a0 − an ∈ (s − 2)A.
This provides the following formula:

|APs|= |sA|−2|(s− 1)A|+(|(s− 2)A|+|Es|) ,

and the result follows.

Remark 3.20. As a consequence of the previous theorem and Remark 3.18, we
obtain that |APS |= |ES |+D, since

|APS | =
σ+1∑
s=0

|APs|=
σ+1∑
s=0

(|sA|−2|(s− 1)A|+|(s− 2)A|) +
σ+1∑
s=0

|Es|

= (|(σ + 1)A|−|σA|) + |ES |= |ES |+D ,

where we have that |(σ + 1)A|−|σA|= D since σ ≥ r(k[C]) by Theorem 3.7. In
particular, |APS |≥ D, and we recover that (d) ⇔ (e) in Proposition 2.4.

Corollary 3.21. If C is arithmetically Cohen-Macaulay, then the sequence (|sA|−
|(s− 1)A|)∞s=0 ⊂ N is increasing (and it stabilizes at D).

Proof. For each s ∈ N, we observe that

|sA|−|(s− 1)A|=
s∑
j=0

(|jA|−2|(j − 1)A|+|(j − 2)A|) =
s∑
j=0

|APj| ,

by Proposition 3.19, and the result follows.
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Remark 3.22. The result in Corollary 3.21 holds in a more general setting. For a
graded (or local) k-algebra R of Krull dimension two, the differences between two
consecutive elements in the sequence (HFR(s)−HFR(s− 1))∞s=0 are the coefficients
of its h-polynomial (the polynomial in the numerator of its Hilbert series) that are
known to be non-negative when R is Cohen-Macaulay [87]. Thus, the sequence
(HFR(s)− HFR(s− 1))∞s=0 is increasing.

Note that if one removes the Cohen-Macaulay hypothesis, then the result in
Corollary 3.21 may be wrong, as the first example below shows. However, this
property does not characterize arithmetically Cohen-Macaulay curves, as the second
example shows.

Example 3.23. (1) For A = {0, 1, 3, 11, 13}, (|sA|−|(s− 1)A|)∞s=0 = (1, 4, 9, 14,
17, 15, 13, 13, . . . ) is not increasing, and hence, k[C] is not Cohen-Macaulay by
Corollary 3.21.

(2) [6, Ex. 4.3] For A = {0, 5, 9, 11, 20}, (|sA|−|(s− 1)A|)∞s=0 = (1, 4, 9, 15, 20, 20,
. . . ) is increasing, but k[C] is not Cohen-Macaulay.

3.3 Higher dimension. The simplicial case

Consider a finite set A = {a0, a1, . . . , an} ⊂ Nd, d ≥ 2, with ai = (ai1, . . . , aid)
for i ∈ {0, . . . , n}, and set D = max{|ai|: i = 0, . . . , n}. For all i = 0, . . . , n, set
ai = (D−|ai|, ai), and consider A = {a0, . . . , an} ⊂ Nn+1. Let k be an algebraically
closed field, and X = XA ⊂ Pn

k be the projective toric variety determined by A. We
assume that X is simplicial. Hence, by Remark 1.71, we can assume, without loss of
generality, that {Dϵ0, . . . , Dϵd} ⊂ A, where {ϵ0, . . . , ϵd} denotes the canonical basis
of Nd+1. Note that this is equivalent to saying that A = {a0, . . . , an} ⊂ Nd has the
following properties:

• 0 = (0, . . . , 0) ∈ A;

• for all i = 1, . . . , d, e′i := Dϵ′i ∈ A, where {ϵ′1, . . . , ϵ′d} denotes the canonical
basis of Nd; and

• for all i = 0, . . . , n, |ai|=
∑d

j=1 aij ≤ D.

The following result describes the structure of the sumsets of such a set A ⊂
Nd. Granville and Shakan first obtained this result in [44], but later Curran and
Goldmakher provided a bound on s for which the result holds.
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Theorem 3.24 ([23, Thm. 1.3], [44, Thm. 2]). Let A ⊂ Nd be a finite set such that
A−A generates Zd additively, 0 ∈ A, e′i ∈ A for all i ∈ {1, . . . , d}, and |a|≤ D for
all a ∈ A. For all i ∈ {1, . . . , d}, set

Ti(A) := ⟨A − e′i⟩ ⊂ Zd ,

the subsemigroup of Zd generated by A − e′i. Then, for all s ∈ N such that s ≥
(d+ 1)Dd − 2− 2d, one has that

sA = ⟨A⟩ ∩

(
d⋂
i=1

(se′i + Ti(A))

)
.

In this section, our aim is to provide a more explicit formulation of Theorem 3.24
for certain classes of setsA, together with improved bounds for s such that this result
holds. More specifically, we are interested in the sets A such that the simplicial
projective toric variety X = XA is smooth (Subsection 3.3.1), or it is a surface with
a single singular point (Subsection 3.3.2).

3.3.1 The smooth case

Let A = {a0, . . . , an} ⊂ Nd be a finite set, and suppose that A defines a smooth
simplicial projective toric variety X = XA ⊂ Pn

k . Hence, without loss of generality,
we can assume that A ⊂ Nd+1 satisfies the conditions of Theorem 1.72. This is
equivalent to saying that A has the following properties:

• 0 = (0, . . . , 0) ∈ A;

• for all i ∈ {0, . . . , n}, |ai|≤ D;

• for all i ∈ {1, . . . , d}, ϵ′i ∈ A and (D − 1)ϵ′i ∈ A; and

• for all 1 ≤ i ≤ j ≤ d, ϵ′i + (D − 1)ϵ′j ∈ A;
where {ϵ′1, . . . , ϵ′d} denotes the canonical basis of Nd. For all i = 1, . . . , d, set
e′i := Dϵ′i.

For all s ∈ N, denote ∆s := {(y1, . . . , yd) ∈ Nd | y1 + · · · + yd ≤ sD}. Note that
for all s ≥ 1, ∆s is the set of lattice points of a simplex. Moreover, one has that
sA ⊂ ∆s for all s ∈ N. In this context, Theorem 3.24 can be rewritten as follows.

Proposition 3.25. Let A ⊂ Nd be a finite set as above. Then, sA = ∆s for all
s ∈ N, s ≥ (d+ 1)Dd − 2− 2d.
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Proof. Let us compute the elements that appear in Theorem 3.24. Since {ϵ′1, . . . ,
ϵ′d} ⊂ A, then ⟨A⟩ = Nd. Take i ∈ {1, . . . , d} and let us describe the set Ti(A).
Consider the following subset A(i) of A

A(i) = {(D − 1)ϵ′i} ∪ {ϵ′j + (D − 1)ϵ′i | 1 ≤ j ≤ d} ⊂ A,

and set Bi := A(i) − Dϵ′i. One has that Bi = {−ϵ′i} ∪ {ϵ′j − ϵ′i | 1 ≤ j ≤ d}. The
semigroup generated by Bi is given by the lattice points in the cone with rays ϵ′j−ϵ′i,
j ̸= i, and −ϵ′i, and it can be written as

⟨Bi⟩ = {(y1, . . . , yd) ∈ Zd | yi ≤ 0, yj ≥ 0,∀j ̸= i, y1 + · · ·+ yd ≤ 0}.

Since Bi ⊂ A−Dϵ′i and A−Dϵ′i ⊂ ⟨Bi⟩, then Ti(A) = ⟨A−Dϵ′i⟩ = ⟨Bi⟩. Therefore,

se′i + Ti(A) = {(y1, . . . , yd) ∈ Zd | yi ≤ sD, yj ≥ 0,∀j ̸= i, y1 + · · ·+ yd ≤ sD},

and hence,

d⋂
i=1

(Ti(A) + se′i) = {(y1, . . . , yd) ∈ Zd | yi ≥ 0,∀i, y1 + · · ·+ yd ≤ sD} = ∆s .

By Theorem 3.24, sA = Nd ∩∆s = ∆s for all s ≥ (d+ 1)Dd − 2− 2d.

Theorem 3.26. Let A = {a0, a1, . . . , an} ⊂ Nd be a finite set such that {0,
e′1, . . . , e

′
d} ⊂ A and |ai|≤ D for all i ∈ {0, . . . , n}. Consider A = {a0, . . . , an} ⊂

Nd+1 the homogenization of A, where ai = (D − |ai|, ai) for all i ∈ {0, . . . , n}. If k
is an algebraically closed field, then the following conditions are equivalent:

(a) The simplicial projective toric variety defined by A, X = XA ⊂ Pn
k is smooth.

(b) {ϵi + (D − 1)ϵj | 0 ≤ i, j ≤ d} ⊂ A, where {ϵ0, . . . , ϵd} is the canonical basis
of Nd+1.

(c) {0, ϵ′i, (D − 1)ϵ′i, ϵ
′
i + (D − 1)ϵ′j | 1 ≤ i, j ≤ d} ⊂ A, where {ϵ′1, . . . , ϵ′d} is the

canonical basis of Nd.

(d) There exists s0 ∈ N such that sA = ∆s for all s ≥ s0.

Proof. The equivalence (a) ⇔ (b) is Proposition 1.78, (b) ⇔ (c) is direct from the
construction of A, and the implication (c) ⇒ (d) is Proposition 3.25. Let us prove
(d) ⇒ (c). First, if sA = ∆s for all s ≫ 0, then ⟨A⟩ = ∪∞

s=0sA = Nd. For all
i = 1, . . . , d, set Ti(A) = ⟨A − e′i⟩. By Theorem 3.24 and (d), we have that for all
s≫ 0,

sA =
d⋂
i=1

(se′i + Ti(A)) .
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Thus, for all i, one must have

Ti(A) = {(y1, . . . , yd) ∈ Zd | yi ≤ 0, yj ≥ 0,∀j ̸= i, y1 + · · ·+ yd ≤ 0}. (3.7)

The inclusion ⊂ is clear. To show the reverse inclusion, suppose that there exists a
point y = (y1, . . . , yd) in the right-hand size of the equation that does not belong to
Ti(A). Then y+se′i /∈ sA for all s ≥ max{s0, (|y1|+ · · ·+ |yd|) /D}, a contradiction,
and hence the equality in (3.7) holds. To conclude, note that (3.7) is equivalent to
{(D − 1)ϵ′i} ∪ {ϵ′j + (D − 1)ϵ′i | 1 ≤ j ≤ d} ⊂ A. Therefore, A is as in (c).

Example 3.27. Consider A = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (1, 2),
(2, 1)} ⊂ N2. By Proposition 3.25, one has that sA = ∆s = {(x, y) ∈ N2 | x + y ≤
3s} for all s ∈ N, s ≥ 19. However, one can check that the equality sA = ∆s holds
for all s ≥ 2.

As Example 3.27 shows, the bound s ≥ (d + 1)Dd − 2 − 2d in Proposition 3.25
is usually far from being tight. This observation motivates the following definition.

Definition 3.28. Let A ⊂ Nd be a set satisfying Theorem 3.26 (c). The sumsets
regularity of A is defined as σ(A) = min{s ∈ N | s′A = ∆s′ , ∀s′ ≥ s}.

Theorem 3.29. Let A ⊂ Nd be a set satisfying Theorem 3.26 (c). Then, the sumsets
regularity of A is σ(A) ≤ d(D − 2).

Proof. Note that it is sufficient to prove that sA = ∆s for s = d(D − 2), since it
implies sA = ∆s for all s ≥ d(D− 2). We prove d(D− 2)A = ∆d(D−2) by induction
on d ≥ 1. For d = 1, the result follows from Example 3.17. Suppose that the result
holds for d − 1, and let us prove it for d. Take y = (y1, . . . , yd) ∈ Nd, such that
|y|≤ d(D − 2)D, and let us show that y ∈ d(D − 2)A.
Case 1: If |y|≤ (d − 1)(D − 2)D, there exists an index j, 1 ≤ j ≤ d, such that
yj ≤ (D−2)D. We write y = y(j)+yj, where y

(j) = (y1, . . . , yj−1, 0, yj+1, . . . , yd) and
yj = yjϵ

′
j. Since yj ≤ (D−2)D, then yj ∈ (D−2){0, 1, D−1, D}, by Example 3.17,

so yj ∈ (D − 2)A. On the other hand, by the inductive hypothesis, one has that
y(j) ∈ (d − 1)(D − 2)A, by considering (y1, . . . , yj−1, yj+1, . . . , yd) ∈ Nd−1. Hence,
y = y(j) + yj ∈ d(D − 2)A.
Case 2: Suppose now |y|> (d − 1)(D − 2)D. We distinguish between two cases.
First, let us prove the following claim.
Claim: If |y|= (d− 1)(D − 2)D, then y ∈ (d− 1)(D − 2)A.
Proof of the claim: If d = 1, the result is clear, so assume d ≥ 2. Let π : Nd → Nd−1

be the projection π(z1, . . . , zd) = (z2, . . . , zd), and consider π(y) ∈ Nd−1. Set Ã :=
π ({a ∈ A : |a|= D}) ⊂ Nd−1, and note that Ã satisfies Theorem 3.26 (c). Since
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|π(y)|≤ (d− 1)(D− 2)D, then by the inductive hypothesis π(y) ∈ (d− 1)(D− 2)Ã.
Thus, homogenizing with respect to the first coordinate, one gets that

y = ((d− 1)(D − 2)D − |π(y)|, y2, . . . , yd) ∈ (d− 1)(D − 2)A,

and this concludes the proof of the claim
Case 2.1: Suppose |y|= (d − 1)(D − 2)D + λD − µ for some 1 ≤ λ ≤ D − 2 and
0 ≤ µ ≤ λ. Take b1, . . . ,bµ ∈ A with |bi|= D − 1 for all i, and c1, . . . , cλ−µ ∈ A
with |cj|= D for all j, such that z = y −

∑µ
i=1 bi −

∑λ−µ
j=1 cj ∈ Nd. Then, |z|=

(d− 1)(D− 2)D, and hence z ∈ (d− 1)(D− 2)A by the previous claim. Therefore,
y ∈ sA for s = (d− 1)(D − 2) + µ+ (λ− µ) ≤ d(D − 2), so y ∈ d(D − 2)A.
Case 2.2: Suppose |y|= (d − 1)(D − 2)D + λD − µ for some 1 ≤ λ ≤ D − 2 and
λ < µ ≤ D − 1. Take b1, . . . ,bD−µ ∈ A with |bi|= 1 for all i, and c1, . . . , cλ−1 ∈ A
with |cj|= D for all j, such that z = y −

∑D−µ
i=1 bi −

∑λ−1
j=1 cj ∈ Nd. Then, |z|=

(d− 1)(D− 2)D, and hence z ∈ (d− 1)(D− 2)A by the previous claim. Therefore,
y ∈ sA for s = (d− 1)(D − 2) +D − µ+ λ− 1 ≤ d(D − 2), since −µ+ λ ≤ −1, so
y ∈ d(D − 2)A.

The bound on σ(A) obtained in Theorem 3.29 is sharp, as the following result
shows.

Corollary 3.30. Let A = {0, ϵ′i, (D − 1)ϵ′i, ϵ
′
i + (D − 1)ϵ′j | 1 ≤ i, j ≤ d} ⊂ Nd,

where {ϵ′1, . . . , ϵ′d} is the canonical basis of Nd. Then, σ(A) = d(D − 2).

Proof. By Theorem 3.29, σ(A) ≤ d(D − 2). Moreover, note that (D − 2, D −
2, . . . , D−2) /∈ (d(D − 2)− 1)A, since the only way of writing it as a sum of nonzero
elements in A is (D − 2, . . . , D − 2) =

∑d
i=1(D − 2)ϵ′i. Then, (D − 2, . . . , D − 2) /∈

∆d(D−2)−1. Thus, σ(A) = d(D − 2).

3.3.2 Surfaces with one singular point

Let A = {a0, . . . , an} ⊂ N2 be a finite set. Fix an algebraically closed field k, and
suppose that its homogenization A = {a0, . . . , an} ⊂ N3 defines a simplicial projec-
tive monomial surface with a single singular point. Proposition 1.78 characterizes
such sets A. Hence,

{(0, 0), (D, 0), (0, D), (D − 1, 1), (1, D − 1), (D − e, 0), (0, D − e)} ⊂ A, (3.8)

where ai1 + ai2 ≤ D, 1 ≤ e ≤ D is a divisor of D that divides ai1 + ai2 for all
i ∈ {0, . . . , n}; and if e = 1, then either (1, 0) /∈ A or (0, 1) /∈ A.
We denote Z2

e := {(x, y) ∈ Z2 | e divides x + y} and N2
e := Z2

e ∩ N2. Clearly,
⟨A⟩ ⊂ N2

e, out next goal is to prove that N2
e \ ⟨A⟩ is finite. Set e′1 := (D, 0) and

e′2 := (0, D).
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Remark 3.31. If e = D, we can write A = {(0, 0)}∪A′, where A′ ⊂ N is a set that
defines a smooth projective monomial curve, and A′ is the homogenization of A′.
From the expression A = {(0, 0)} ∪ A′, it follows that for all s ∈ N, sA = ∪si=0iA′.
By Theorem 3.29, one has that sA′ = {(x, y) ∈ N2 : x+ y = sD}, for all s ≥ D− 2.
Therefore, for all (x, y) ∈ N2 such that x+ y ≥ (D − 2)D and x+ y ≡ 0 (mod D),
(x, y) ∈ sA for all s ≥ x+y

D
.

Lemma 3.32. Assume 1 ≤ e < D. If (x, y) ∈ N2
e and x+y ≥ D

(
D + D

e
− 4
)
, then

(x, y) ∈ sA for all s ∈ N, s ≥ x+y
D

, and, in particular, (x, y) ∈ ⟨A⟩.

Proof. Assume that x + y ≥ D
(
D + D

e
− 4
)
. Let λ ∈ N, λ ≤ D/e − 1 such that

x + y ≡ −λe (mod D), and λ1, λ2 ∈ N such that λ1 + λ2 = λ, x ≥ λ1(D − e), and
y ≥ λ2(D− e). Set (x′, y′) = (x, y)− λ1(D− e, 0)− λ2(0, D− e). Then (x′, y′) ∈ N2

satisfies x′ + y′ ≡ 0 (mod D) and x′ + y′ = x + y − λ(D − e). If λ = 0, then
x′+y′ = x+y ≥ D(D+D

e
−4) ≥ (D−2)D; and if λ ≥ 1, then x+y ≥ D(D+D

e
−4)+e

and hence x′ + y′ = x + y − λ(D − e) ≥ (D − 2)D. Thus, (x′, y′) can be written
using the elements (0, D), (1, D − 1), (D − 1, 1), (D, 0) in A, by Example 3.17, so
(x, y) ∈ ⟨A⟩. We have proved that (x, y) =

∑
i µi(xi, yi)+λ1(D−e, 0)+λ2(0, D−e)

for some µi ∈ N, where xi + yi = D for all i and λ1, λ2 ∈ N are as before. Then,
(x, y) ∈ (

∑
i µi + λ)A. Take s ∈ N such that s ≥ x+y

D
and let us prove that∑

i µi + λ ≤ s. Since sD ≥ x + y = (
∑

i µi)D + λ(D − e) = (
∑

i µi + λ)D − λe,
then ∑

i

µi + λ ≤ s+ λ
e

D
≤ s+

(
D

e
− 1

)
e

D
< s+ 1 .

Thus,
∑

i µi + λ ≤ s, and hence (x, y) ∈ sA.

Proposition 3.33. The semigroup ⟨A⟩ is contained in N2
e, and |N2

e \ ⟨A⟩|<∞.

Proof. For all (x, y) ∈ A, x + y is a multiple of e. Thus, ⟨A⟩ ⊂ N2
e. If e = D, the

result follows from Remark 3.31. For 1 ≤ e < D, the result follows from Lemma
3.32.

Set H := N2
e \ ⟨A⟩. By Proposition 3.33, H is a finite set. Moreover, H ̸= ∅

if e = 1, since in this case either (1, 0) /∈ A or (0, 1) /∈ A. For all s ∈ N, denote
Ts,e = {(x, y) ∈ N2

e | x + y ≤ sD}. One has that A ⊂ T1,e, and sA ⊂ Ts,e for all
s ∈ N. Moreover, if 1 ≤ e < D, then H ⊂ TD+D/e−4,e by Lemma 3.32.

Proposition 3.34. There exists s0 ∈ N such that, for all s ≥ s0, sA = Ts,e \ H.

Proof. If e = D, the result follows from Remark 3.31. Suppose that 1 ≤ e < D.
Then, the result follows from Lemma 3.32.
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Indeed, the condition sA = Ts,e \ H for all s≫ 0 characterizes the sets A ⊂ N2

of the form (3.8), as the following result shows.

Theorem 3.35. Let A = {a0, a1, . . . , an} ⊂ N2 be a finite set, ai = (ai1, ai2), such
that {(0, 0), (D, 0), (0, D)} ⊂ A and |ai|= ai1 + ai2 ≤ D for all i ∈ {0, . . . , n}.
Consider A = {a0, . . . , an} ⊂ N3 the homogenization of A, where ai = (D − ai1 −
ai2, ai1, ai2) for all i ∈ {0, . . . , n}. If k is an algebraically closed field, then the
following conditions are equivalent:

(a) The simplicial projective toric surface determined by A, X = XA ⊂ Pn
k , has a

single singular point, and it is (1 : 0 : 0 : · · · : 0).
(b) A contains {e0, e1, e2, (0, D − 1, 1), (0, 1, D − 1), (e,D − e, 0), (e, 0, D − e)},

where ei = Dϵi, {ϵ0, ϵ1, ϵ2} is the canonical basis of N3, 1 ≤ e ≤ D is a
divisor of D that divides ai0 for all i ∈ {0, . . . , n}, and if e = 1 then either
(D − 1, 1, 0) /∈ A or (D − 1, 0, 1) /∈ A.

(c) A contains {(0, 0), (D, 0), (0, D), (D − 1, 1), (1, D − 1), (D − e, 0), (0, D − e)},
where 1 ≤ e ≤ D is a divisor of D that divides ai1 + ai2 for all i ∈ {0, . . . , n},
and if e = 1 then either (1, 0) /∈ A or (0, 1) /∈ A.

(d) There exist a finite set H ⊂ N2
e, with H ̸= ∅ if e = 1, and a number s0 ∈ N

such that sA = Ts,e \ H for all s ≥ s0.

Proof. The equivalence (a) ⇔ (b) is Proposition 1.78, (b) ⇔ (c) is direct from the
construction of A, and the implication (c) ⇒ (d) is Proposition 3.34. Let us prove
(d) ⇒ (c). Take s ≥ s0 such that H ⊂ Ts−1,e. Since (sD − 1, 1) ∈ sA, then
(D − 1, 1) ∈ A. Moreover, since (sD − e, 0) ∈ sA, then (D − e, 0) ∈ A. Similarly,
one can show that (1, D − 1) ∈ A and (0, D − e) ∈ A, and (c) follows.

Definition 3.36. Let A ⊂ N2
e be a set as in (3.8). The sumsets regularity of A,

σ(A), is the smallest number s0 ∈ N such that H ⊂ Ts0,e and sA = Ts,e \ H for all
s ≥ s0, i.e.

σ(A) = min{s0 ∈ N | H ⊂ Ts0,e, and sA = Ts,e \ H, ∀s ≥ s0} .

When there is no confusion, we will denote it just by σ = σ(A).

Remark 3.37. (1) If one allows e = 1 and {(1, 0), (0, 1)} ⊂ A in the previous
definition, then we are under the hypothesis of Subsection 3.3.1. Note that in
this case H = ∅ and Definitions 3.28 and 3.36 coincide for such a set A.

(2) For all s ≥ σ, (s+ 1)A \ sA = Ts+1,e \ Ts,e. In fact, it is easy to show that

σ = min{s0 ∈ N | (s+ 1)A \ sA = Ts+1,e \ Ts,e, ∀s ≥ s0} .
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(3) If e = D, we can write A = {(0, 0)} ∪ A′ as in Remark 3.31. From the fact
sA = ∪si=0iA′ for all s ∈ N, it follows that σ(A) = σ(A′), where σ(A′) denotes
the sumsets regularity of A′. By Theorem 3.6, σ(A′) ≤ D−|A′|+2 = D−n+2,
and hence σ(A) ≤ D − n+ 2.

Example 3.38. (1) Let D ∈ Z>0 and 1 < e ≤ D a divisor of D. For A =
{(x, y) ∈ N2

e | x + y ≤ D}, one has that sA = Ts,e for all s ∈ N, and hence
σ(A) = 0.

(2) For A = {(0, 0), (3, 0), (0, 3), (2, 1), (2, 1), (2, 0), (0, 2)}, one has that ⟨A⟩ is a
generalized numerical semigroup, by Theorem 1.24, and H = N2 \ ⟨A⟩ =
{(1, 0), (0, 1), (1, 1), (1, 3), (3, 1)}. Hence, H ⊂ T2,1. Moreover, one can check
that sA = Ts,1 \ H for all s ≥ 2. Thus, σ(A) = 2.

The next proposition provides a method for finding bounds on the sumsets reg-
ularity, σ(A), which will be useful in the rest of the chapter.

Proposition 3.39. Let A ⊂ N2
e be a set as in (3.8). Suppose that there exist positive

integers ν, sν such that for all (x, y) ∈ N2
e,

(i) if (x, y) ∈ ⟨A⟩ and x+ y < ν ·D, then (x, y) ∈ sνA,

(ii) if x+ y ≥ ν ·D, then (x, y) ∈ sA for all s ≥ ⌈x+y
D
⌉.

Then, the sumsets regularity of A satisfies σ(A) ≤ max{sν , ν}.

Proof. Let s ∈ N such that s ≥ max{sν , ν}. By the above hypotheses, for all
(x, y) ∈ ⟨A⟩ such that x + y ≤ sD, one has that (x, y) ∈ sA. Moreover, by (ii)
N2
e \ ⟨A⟩ ⊂ Ts,e. Therefore, σ(A) ≤ s, and the result follows.

Applying the previous result and Lemma 3.32, we obtain a bound on σ(A).

Proposition 3.40. Let A ⊂ N2
e be a set as in (3.8). Then, the sumsets regularity

of A, σ(A), satisfies

σ(A) ≤
{ D

e

(
D + D

e
− 4
)

if 1 ≤ e < D

D − 2 if e = D.

Proof. If e = D, the result follows from Remark 3.37 (3). Suppose 1 ≤ e < D.
By Lemma 3.32, for all (x, y) ∈ N2

e such that x + y ≥ D(D + D
e
− 4), one has that

(x, y) ∈ sA for all s ≥ ⌈x+y
D
⌉. Take (x, y) ∈ ⟨A⟩ such that x+y ≤ D(D+ D

e
−4), and

write (x, y) =
∑n

i=0 µiai for some µi ∈ N. Then, (x, y) ∈ sA for all s ≥
∑

i µi and, on



98 CHAPTER 3. THE STRUCTURE OF THE SUMSETS

the other hand, x+y =
∑

i µi|ai|≥ (
∑

i µi) e. Hence,
∑

i µi ≤
x+y
e
≤ D

e

(
D + D

e
− 4
)
,

so (x, y) ∈ sA for s = D
e

(
D + D

e
− 4
)
. By Proposition 3.39, one has that

σ(A) ≤ max

{
D

e

(
D +

D

e
− 4

)
, D +

D

e
− 4

}
=
D

e

(
D +

D

e
− 4

)
,

and this concludes the proof.

In the special case e = 1, we can improve it even more, as shown in the following
theorem.

Theorem 3.41. Let A = {a0 = (0, 0), a1 = (D, 0), a2 = (0, D), a3 = (D−1, 1), a4 =
(1, D−1), a5 = (D−1, 0), a6 = (0, D−1), a7, . . . , an} ⊂ N2 such that 0 < ai1+ai2 ≤
D for all 7 ≤ i ≤ n, and assume that either (1, 0) /∈ A, or (0, 1) /∈ A. Then, the
sumsets regularity of A satisfies σ(A) ≤ D2 − n+ 1 = D2 − |A|+2.

Proof of Theorem 3.41

Before proving the theorem, we include some results on the sumsets of the
skeleton of A, the set A0 := {a0, . . . , a6}, i.e., A0 = {(0, 0), (D, 0), (0, D), (D −
1, 0), (0, D−1), (1, D−1), (D−1, 1)}. Set T00 := {(0, 0)} and, for all i, j ∈ N, i ≥ 1,
0 ≤ j ≤ i,

Tij := {(x, y) ∈ N2 | x ≥ j(D − 1), y ≥ (i− j)(D − 1), x+ y ≤ iD} .

Figure 3.3 shows what Tij looks like.

Remark 3.42. (1) The sumset 0A0 = T00 and A0 = T00 ∪ (T10 ∪ T11).
(2) For all i ∈ N and j ∈ {0, . . . , i}, Tij + T10 = Ti+1,j, and Tij + T11 = Ti+1,j+1.

Proposition 3.43. For all s ∈ N, the (s+ 1)-fold sumset of A0 is given by

(s+ 1)A0 = sA0 ∪

(
s+1⋃
j=0

Ts+1,j

)
.

Proof. For s = 0, the formula is the one in Remark 3.42 (1). For s ≥ 1, apply
induction on s, note that (s + 1)A0 = sA0 + A0, and then the result follows from
Remark 3.42 (2).

Corollary 3.44. For all s ∈ N, sA0 = ∪si=0 ∪ij=0 Tij, and ⟨A0⟩ = ∪∞
s=0 ∪sj=0 Tsj.

Proposition 3.45. Let (x, y) ∈ ⟨A0⟩ and s ∈ N such that x + y ≤ sD. Then,
(x, y) ∈ sA0.
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y = (i− j)(D − 1)

x = j(D − 1)

x+ y = iD

A = (j(D − 1), (i− j)(D − 1))

C = (j(D − 1), iD − j(D − 1))

B = (i+ j(D − 1), (i− j)(D − 1))

A B

C

Figure 3.3: Tij consists of the lattice points of the triangle defined above.

Proof. By Corollary 3.44, there exist indices i, j such that (x, y) ∈ Tij. If s ≥ i,
then (x, y) ∈ Tij ⊂ iA0 ⊂ sA0 by Corollary 3.44. Suppose that s < i and let us
prove that there exists j′ ≤ s < i such that (x, y) ∈ Tsj′ , and hence (x, y) ∈ sA0 by
Corollary 3.44.
If j ≤ s, since (x, y) ∈ Tij, then x ≥ j(D − 1), y ≥ (i− j)(D − 1) ≥ (s− j)(D − 1),
and x+ y ≤ sD. Thus, (x, y) ∈ Tsj ⊂ sA0.
If j > s, let us prove that (x, y) ∈ Ts,j−(i−s). First, note that 0 ≤ j − (i − s) ≤ s
since j ≤ i and (i− 1)D ≤ sD. Moreover, x ≥ j(D− 1) ≥ (j − (i− s)) (D− 1), y ≥
(s− (j − (i− s))) (D− 1) and x+ y ≤ sD. Therefore, (x, y) ∈ Ts,j−(i−s) ⊂ sA0.

As a consequence, we get that the sumsets of A0 are filled in a nice way. This is
the content of the following result, which is straightforward from Proposition 3.45.

Corollary 3.46. Let (x, y) ∈ N2 and s ∈ N such that x + y ≤ sD. Then, (x, y) ∈
⟨A0⟩ if and only if (x, y) ∈ sA0.

Remark 3.47. By Proposition 3.45 and Corollary 3.46, the definition of the sumsets
regularity of A0 reduces to σ(A0) = min{s ∈ N | H ⊂ Ts,1}, where H = N2 \ ⟨A0⟩.
Taking into account the definition of the triangles Tij and Corollary 3.44, it is easy
to show that H ⊂ T2(D−2),1, but H ̸⊂ T2D−3,1, and hence σ(A0) = 2(D − 2).

Now, let us consider a set A ⊂ N2 such that ai1 + ai2 ≤ D for all i and A0 ⊂ A.
The following result shows that if there is an element (x0, y0) ∈ A with x0 + y0 =
m > 0, then we can improve Lemma 3.32.
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Proposition 3.48. Let A = {a0, . . . , an} ⊂ N2 be a finite set such that ai1+ai2 ≤ D
for all i = 0, . . . , n and A0 ⊂ A. Suppose that there exists (x0, y0) ∈ A with
m := x0 + y0 > 0. Then, for all (x, y) ∈ N2 such that x + y ≥ (D + m − 3)D,
one has that (x, y) ∈ ⟨A⟩. Indeed, if s = ⌈x+y

D
⌉, then (x, y) ∈ (s + λ − 1)A, where

λ = min{λ′ ∈ N | x+ y − λ′m ≤ (s− 1)D}.
As a consequence, if (x, y) ∈ N2 and (D +m− 3)D ≤ x+ y ≤ 2(D − 2)D, then

(x, y) ∈ 2(D − 2)A.

Proof. Let (x, y) ∈ N2 such that x+ y ≥ (D +m− 3)D. If x+ y = (D +m− 3)D,
the result is straightforward, so assume x+ y > (D +m− 3)D. Moreover, suppose
that (x, y) /∈ ⟨A0⟩, otherwise (x, y) is trivially in ⟨A⟩ and (x, y) ∈ sA for s = ⌈x+y

D
⌉,

by Proposition 3.45. Since (x, y) /∈ ⟨A0⟩, by Proposition 3.43 if we take j such that
j(D − 1) ≤ x < (j + 1)(D − 1), then (x, y) /∈ Ts,j for s = ⌈x+y

D
⌉, and hence y <

(s−j)(D−1). Note that s ≥ D+m−2, since we are assuming x+y > (D+m−3)D.
Let λ ∈ N be

λ = min{λ′ ∈ N | x+ y − λ′m ≤ (s− 1)D},
and let us show that (x, y) − λ(x0, y0) ∈ Ts−1,j, which implies that (x, y) ∈ ⟨A⟩.
That is, we have to show that x − λx0 ≥ j(D − 1), y − λy0 ≥ (s − 1 − j)(D − 1)
and x+ y− λm ≤ (s− 1)D. Since x+ y− λm > (s− 1)D−m by the election of λ,
y < (s− j)(D − 1), x < (j + 1)(D − 1) and s ≥ D +m− 2, we get

x− λx0 ≥ (s− 1)D −m− y + λy0 + 1

≥ (s− 1)D −m+ ((j − s)(D − 1) + 1) + λy0 + 1

≥ j(D − 1) + (s−D −m+ 2 + λy0) ≥ j(D − 1) , and

y − λy0 ≥ (s− 1)D −m− x+ λx0 + 1

≥ (s− 1)D −m− (j + 1)(D − 1) + 1 + λx0 + 1

≥ (s− 1− j)(D − 1) + (s−D −m+ 2 + λx0) ≥ (s− 1− j)(D − 1) ,

as desired. Thus, we have shown (x, y) − λ(x0, y0) ∈ Ts−1,j, and hence (x, y) ∈
(s− 1 + λ)A.

Finally, note that λ ≤ x+y−(s−1)D
m

≤ (j+1)(D−1)+(s−j)(D−1)−2−(s−1)D =
2D − 3− s, and the last statement follows directly from this fact.

We are now in conditions to prove Theorem 3.41. Let A = {a0 = (0, 0), a1 =
(D, 0), a2 = (0, D), a3 = (D − 1, 1), a4 = (1, D − 1), a5 = (D − 1, 0), a6 = (0, D −
1), a7, . . . , an} ⊂ N2 such that 0 < ai1 + ai2 ≤ D for all 7 ≤ i ≤ n, and assume
(0, 1) /∈ A. Every element (x, y) ∈ ⟨A⟩ can be written as

(x, y) =
∑

1≤i+j≤d

αij(i, j) (3.9)
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for some αij ∈ N, where αij = 0 if (i, j) /∈ A. In particular, α01 = 0. We can always
assume that αij ≤ D−2 for all i, j such that i+j ≤ D−2 since (D−1, 0), (0, D−1) ∈
A. Using (3.9), one has that (x, y) ∈ sA for s =

∑
i,j αij.

For all 0 ≤ i ≤ D, consider A⟨i⟩ := {(x, y) ∈ A | x + y = i}. One has
A = ⊔Di=0A⟨i⟩, and hence |A|=

∑D
i=0|A⟨i⟩|. In the proof of the theorem, we will use

the following bound on the size of A:

|A|≤ 1 + |A⟨1⟩|+|A⟨2⟩|+(4 + 5 + · · ·+ (D + 1))

= |A⟨1⟩|+|A⟨2⟩|+D
2 + 3D

2
− 4 . (3.10)

Equivalently, one has that n = |A|−1 ≤ |A⟨1⟩|+|A⟨2⟩|+D2+3D
2
− 5.

We split the proof of Theorem 3.41 into several cases. For each case, we find
positive constants ν, sν as in Proposition 3.39 and apply that result together with
Lemma 3.32 and Proposition 3.48 (if necessary). To make the proof lighter, we
include a lemma for each case.

Proof of Theorem 3.41. If D = 3 or D = 4, we check the result on a computer.
There are 4 possibilities for A when D = 3, and 128 possibilities when D = 4. For
each value of D and n, we compute σ(A) for all A with |A|= n+1. Table 3.1 shows
the maximum value of σ(A) for such sets A, and the bound D2 − n + 1. Assume
D ≥ 5.

Case 1: Suppose (1, 0) ∈ A. By Equation (3.10), it suffices to show that σ(A) ≤
D2−3D

2
+ 5 − |A⟨2⟩|. By Lemma 3.32, for all (x, y) ∈ N2 with x + y ≥ 2(D − 2)D

one has that (x, y) ∈ sA for all s ≥ x+y
D

. Moreover, by Proposition 3.48, for all
(x, y) ∈ N2 with (D − 2)D ≤ x + y ≤ 2(D − 2)D one has that (x, y) ∈ 2(D − 2)A.

Note that 2(D− 2) ≤ D2−3D
2

+5 since D2− 7D+18 =
(
D − 7

2

)2
+ 23

4
≥ 0 for all D.

Case 1.1: If A⟨2⟩ = ∅, for all (x, y) ∈ ⟨A⟩ with x + y ≤ (D − 2)D one has that
(x, y) ∈ sA for some s ≤ D2−4

3
by Lemma 3.49. Since we are assuming D ≥ 5, then

2(D − 2) ≤ D2−4
3

, and hence σ(A) ≤ D2−4
3

by Proposition 3.39. Finally, note that
D2−4

3
≤ D2−3D

2
+5, which is true since D2−9D+38 =

(
D − 9

2

)2
+ 71

4
≥ 0. Therefore,

we conclude σ(A) ≤ D2−3D
2

+ 5 ≤ D2 − |A|+2 in this case.

Case 1.2: Assume A⟨2⟩ ̸= ∅. By Lemma 3.50, for all (x, y) ∈ ⟨A⟩ such that x+ y ≤
(D−2)D one has that (x, y) ∈ sA for some s ≤ (D−2)D

3
+Σ0−|A⟨2⟩|, for the number

Σ0 defined in that lemma. By Proposition 3.39 and the facts in Case 1, it suffices to
show that (D−2)D

3
+Σ0 − |A⟨2⟩|≤ D2−3D

2
+ 5− |A⟨2⟩|, which is equivalent to showing
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D n = |A|−1 max(σ(A)) D2 − n+ 1

3
6 2 4
7 1 3
8 1 2

4

6 4 11
7 4 10
8 3 9
9 3 8
10 3 7
11 2 6
12 2 5
13 1 4

Table 3.1: Maximum value of σ(A) for each D ∈ {3, 4} and n = |A|−1, with A as
in Theorem 3.41. This table is part of the proof of Theorem 3.41.

that Σ0 ≤ D2−5D
6

+ 5. For D ≥ 10,

Σ0 = D − 1 ≤ D2 − 5D

6
+ 5⇔

(
D − 11

2

)2

+
23

4
≥ 0 ,

and hence the desired inequality holds. For 5 ≤ D < 10, it is immediate to see
that it is also true using the different definitions of Σ0. Therefore, we conclude
σ(A) ≤ D2 − |A|+2.

Case 2: Assume (1, 0) /∈ A and let m > 1 be minimum such that A⟨m⟩ ̸= ∅.
Case 2.1: Suppose m ≥ 3. Note that the size of A satisfies

|A|≤ 1 + (m+ 1) + · · ·+ (D + 1) =
D(D + 3)

2
− m(m+ 1)

2
+ 2 .

Hence, it suffices to show that σ(A) ≤ D2−3D
2

+ m2+m
2

. By Proposition 3.48, for all
(x, y) ∈ N2 with (D+m−3)D ≤ x+y ≤ 2(D−2)D one has that (x, y) ∈ 2(D−2)A.
By Lemma 3.51, if (x, y) ∈ ⟨A⟩ is such that x+ y ≤ (D+m−3)D, then (x, y) ∈ sA
for some s ≤ (D+m−3)D

m
. Since 2(D − 2) ≤ D2−3D

2
, then by Proposition 3.39, it

suffices to show that (D+m−3)D
m

≤ D2−3D
2

+ m2+m
2

. This is equivalent to showing that(
1

2
− 1

m

)
D2 +

(
3

m
− 5

2

)
D +

m2 +m

2
≥ 0 .
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Since we are assuming m ≥ 3, the discriminant of this degree-2 polynomial in the
variable D is(

3

m
− 5

2

)2

− 4

(
1

2
− 1

m

)
m2 +m

2
≤ 9

4
− (m+ 1)(m− 2) =

17

4
−m(m− 1) < 0 ,

for all m ≥ 3, and hence the polynomial is nonnegative for all D. Thus, (D+m−3)D
m

≤
D2−3D

2
+ m2+m

2
, as we wanted to show.

Case 2.2: Assume m = 2, i.e., A⟨2⟩ ̸= ∅. By Equation (3.10), it suffices to show
that σ(A) ≤ D2−3D

2
+ 6 − |A⟨2⟩|. By Proposition 3.48, for all (x, y) ∈ N2 with

(D − 1)D ≤ x+ y ≤ 2(D − 2)D one has that (x, y) ∈ 2(D − 2)A. By Lemma 3.52,
for all (x, y) ∈ ⟨A⟩ such that x + y ≤ (D − 1)D one has that (x, y) ∈ sA for

some s ≤ (D−1)D
3

+ Σ′
0 − |A⟨2⟩|, where Σ′

0 is the number defined in that lemma. By

Proposition 3.39, it suffices to show that (D−1)D
3

+ Σ′
0 − |A⟨2⟩|≤ D2−3D

2
+ 6− |A⟨2⟩|,

which is equivalent to Σ′
0 ≤ D2−7D

6
+ 6. For D ≥ 10,

Σ′
0 =

D

2
+ 1 ≤ D2 − 7D

6
+ 6⇔ (D − 5)2 + 5 ≥ 0 ,

so the desired inequality holds. For 5 ≤ D < 10, it is immediate to see that it is
also true by using that Σ′

0 =
D+8
3

, and this concludes the proof.

Lemma 3.49 (Case 1.1). Assume (1, 0) ∈ A and A⟨2⟩ = ∅. If (x, y) ∈ ⟨A⟩ is such
that x+ y ≤ (D − 2)D, then (x, y) ∈ sA for some s ≤ D2−4

3
.

Proof. Write (x, y) as in (3.9). Then x + y ≥ α10 + 3
∑

i+j≥3 αij, so
∑

i+j≥3 αij ≤
x+y
3
− α10

3
. Thus, the number of summands in (3.9) is∑

i,j

αij = α10 +
∑
i+j≥3

αij ≤
x+ y

3
+

2

3
α10 ≤

D(D − 2)

3
+

2

3
(D − 2) =

D2 − 4

3
,

so (x, y) ∈ sA for some s ≤ D2−4
3

.

Lemma 3.50 (Case 1.2). Assume (1, 0) ∈ A, A⟨2⟩ ̸= ∅, and take (x, y) ∈ ⟨A⟩. Then
there exist αij ∈ N such that (x, y) =

∑
i,j αij(i, j) and

Σ :=
2

3
α10 +

1

3
(α20 + α11 + α02) + |A⟨2⟩|≤ Σ0 :=


D
3
+ 10

3
if D < 6 ,

5
6
D + 2

3
if 6 ≤ D < 10 ,

D − 1 if D ≥ 10 .

Hence, if x+ y ≤ (D − 2)D, then (x, y) ∈ sA for some s ≤ (D−2)D
3

+ Σ0 − |A⟨2⟩|.
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Proof. Observe that (2, 0) = 2(1, 0), 2(1, 1) = (2, 0)+(0, 2), and ⌊D
2
⌋(2, 0) ∈ {(D, 0),

(D − 1, 0)} (it is (D, 0) when D is even and (D − 1, 0) when D is odd), and the
same holds for (0, 2). Using these relations and αij ≤ D− 2 when necessary, we can
always assume that the coefficients αij in the writing of (x, y) satisfy the following
conditions:

• If |A⟨2⟩|= 3, we can assume α10 ≤ 1, α11 ≤ 1, and α20, α02 ≤ ⌊D2 ⌋ − 1. Thus,
Σ ≤ 2

3
+ 1

3

[
1 + 2

(
D
2
− 1
)]

+ 3 = D
3
+ 10

3
.

• If A⟨2⟩ = {(2, 0), (1, 1)}, we can assume α10 ≤ 1, and hence Σ ≤ 2
3
+ 1

3

(
D
2
− 1+

D − 2) + 2 = D
2
+ 5

3
.

• If A⟨2⟩ = {(2, 0), (0, 2)}, we can assume α10 ≤ 1, and hence Σ ≤ 2
3
+ 1

3
·

2
(
D
2
− 1
)
+ 2 = D

3
+ 2.

• If A⟨2⟩ = {(1, 1), (0, 2)}, we can assume α11 ≤ 1 (using the relation 2(1, 1) =
2(1, 0) + (0, 2)), and hence Σ ≤ 2

3
(D − 2) + 1

3

(
1 + D

2
− 1
)
+ 2 = 5

6
D + 2

3
.

• If |A⟨2⟩|= 1, then Σ ≤ 2
3
(D − 2) + 1

3
(D − 2) + 1 = D − 1.

Therefore,

Σ ≤ max

{
D

3
+

10

3
,
D

2
+

5

3
,
5

6
D +

2

3
, D − 1

}
=


D
3
+ 10

3
if D < 6 ,

5
6
D + 2

3
if 6 ≤ D < 10 ,

D − 1 if D ≥ 10 .

Finally, if x+ y ≤ (D − 2)D and we write (x, y) as in (3.9), then

x+ y ≥ α10 + 2 (α20 + α11 + α02) + 3
∑
i+j≥3

αij ,

and from this expression we deduce that the number of summands in (3.9) is∑
ij

αij ≤
(D − 2)D

3
+ Σ0 − |A⟨2⟩| ,

and the lemma follows.

Lemma 3.51 (Case 2.1). Assume A⟨1⟩ = ∅ and let m ≥ 2 be minimum such that
A⟨m⟩ ̸= ∅. If (x, y) ∈ ⟨A⟩ is such that x + y ≤ (D +m− 3)D, then (x, y) ∈ sA for

some s ≤ (D+m−3)D
m

.

Proof. Write (x, y) as in (3.9). Then x + y ≥
(∑

i,j αij

)
m, and hence the number

of summands in (3.9) is
∑

i,j αij ≤
x+y
m
≤ (D+m−3)D

m
.
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Lemma 3.52 (Case 2.2). Assume A⟨1⟩ = ∅, A⟨2⟩ ̸= ∅, and take (x, y) ∈ ⟨A⟩. Then
there exist αij ∈ N such that (x, y) =

∑
i,j αij(i, j) and

Σ′ :=
1

3
(α20 + α11 + α02) + |A⟨2⟩|≤ Σ′

0 :=

{
D
3
+ 8

3
if D < 10 ,

D
2
+ 1 if D ≥ 10 .

Hence, if x+ y ≤ (D − 1)D, then (x, y) ∈ sA for some s ≤ (D−1)D
3

+ Σ′
0 − |A⟨2⟩|.

Proof. Using the same relations as in the proof of Lemma 3.50, we can always assume
that the coefficients αij in the writing of (x, y) satisfy the following conditions:

• If |A⟨2⟩|= 3, we can assume α11 ≤ 1, and α20, α02 ≤ ⌊D2 ⌋ − 1. Thus, Σ′ ≤
1
3

[
1 + 2

(
D
2
− 1
)]

+ 3 = D
3
+ 8

3
.

• IfA⟨2⟩ = {(2, 0), (1, 1)} orA⟨2⟩ = {(1, 1), (0, 2)}, then Σ′ ≤ 1
3

(
D
2
− 1 +D − 2

)
+

2 = D
2
+ 1.

• If A⟨2⟩ = {(2, 0), (0, 2)}, then Σ′ ≤ 1
3
2
(
D
2
− 1
)
+ 2 = D

3
+ 4

3
.

• If |A⟨2⟩|= 1, then Σ′ ≤ 1
3
(D − 2) + 1 = D

3
+ 1

3
.

Therefore,

Σ′ ≤ max

{
D

3
+

8

3
,
D

2
+ 1

}
=

{
D
3
+ 8

3
if D < 10 ,

D
2
+ 1 if D ≥ 10 .

To finish the proof, we can use the same argument as in the proof of Lemma 3.50
taking into account that in this case α10 = 0 and x+ y ≤ (D − 1)D.
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Chapter 4

Regularity of simplicial projective
toric varieties

“The Castelnuovo–Mumford regularity, or simply
regularity, of an ideal is an important measure

of how complicated the ideal is.”
D. Eisenbud

In this chapter, we study the Castelnuovo-Mumford regularity of simplicial pro-
jective toric curves and surfaces. Moreover, we relate it to the sumsets theory in
additive combinatorics, giving a proof of the Eisenbud-Goto Conjecture (Conj. 1.46)
in some particular cases.

Let A = {a0, . . . , an} ⊂ Nd be a finite set, n, d ∈ Z>0. When d = 1, assume that
A is in normal form, i.e., a0 = 0 < a1 < · · · < an and gcd(a1, . . . , an) = 1. Associ-
ated with A, one has the set A = {a0, . . . , an} ⊂ N2, where ai = (D − ai, ai) for all
i = 0, . . . , n. Fix an infinite field k and consider the projective monomial curve deter-
mined byA, C = CA ⊂ Pn

k . The coordinate ring of C is k[C] = k[x0, . . ., xn]/IA, where
IA is the toric ideal determined by A. In Section 4.1, we study the Castelnuovo-
Mumford regularity of k[C]. The main result of Subsection 4.1.1 is Theorem 4.2,
where we provide a combinatorial formula for the Castelnuovo-Mumford regular-
ity of k[C] in terms of the Apéry and the exceptional sets of the affine semigroup
S = ⟨A⟩. Moreover, in Theorem 4.9 ,we determine the step in a minimal graded free
resolution (m.g.f.r.) of k[C] in which the regularity is attained. In Subsection 4.1.2,
we provide upper and lower bounds on the regularity of k[C] in terms of the sumsets
regularity of A (Theorem 4.13), and use this relation to give a combinatorial proof
of the Eisenbud-Goto conjecture for projective monomial curves.

107
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When d ≥ 2, consider D = max{|ai|=
∑d

j=1 aij : i = 0, . . . , n} and A =

{a0, . . . , an}, where ai = (D − |ai|, ai) ∈ Nd+1 for all i = 0, . . . , n. Fix an alge-
braically closed field k and consider the projective toric variety determined by A,
X = XA ⊂ Pn

k . We suppose that X is simplicial. The coordinate ring of X is
k[X ] = k[x0, . . ., xn]/IA, where IA is the toric ideal determined by A. When X
is smooth, one can assume that A satisfies Theorem 1.72. The regularity of k[X ]
has been already studied by Herzog and Hibi. In [48, Thm. 2.1], they proved that
reg(k[X ]) ≤ d(D−2). Hence, the Eisenbud-Goto conjecture holds for simplicial and
smooth projective toric varieties ([48, Cor. 2.2]), so the next step is to consider sim-
plicial projective toric varieties with a single singular point. In Section 4.2, we study
the Castelnuovo-Mumford regularity of simplicial projective monomial surfaces. In
Subsection 4.2.1, the main result is Theorem 4.25, where we provide a combinatorial
formula to compute the regularity of k[X ] in terms of some special subsets of the
affine semigroup S = ⟨A⟩ ⊂ N3. This result holds for any simplicial projective toric
surface. In Subsection 4.2.2, we focus on the surfaces with a single singular point.
For this subclass, we give a relation between the Castelnuovo-Mumford regularity
of k[X ] and the sumsets regularity of A in Theorem 4.27. This result, together with
Theorem 3.41, provides a proof of the Eisenbud-Goto conjecture for the simplicial
projective monomial surfaces with a single singular point whose degree is either
maximal or minimal.

The results included in Section 4.1 are part of [39].

4.1 Projective monomial curves

Let A = {a0 = 0 < a1 < · · · < an = D} ⊂ N be a set in normal form, i.e.,
gcd(a1, . . . , an) = 1. Consider the homogenization of A, A = {a0, . . . , an} ⊂ N2,
where ai = (D − ai, ai) for all i = 0, . . . , n. Fix an infinite field k and consider the
projective monomial curve determined by A, C = CA ⊂ Pn

k . The coordinate ring of
C is k[C] = k[x0, . . ., xn]/IA, where IA is the toric ideal determined by A.

Consider the numerical semigroups S1 = ⟨a1, . . . , an⟩ and S2 = ⟨D−an−1, . . . , D−
a1, D⟩, and the affine semigroup S = ⟨A⟩ ⊂ N2. Recall the definition of the Apéry
and the exceptional sets of S (Definition 2.2):

• APS = {s ∈ S : s− a0 /∈ S, s− an /∈ S}, and
• ES = {s ∈ S : s− a0 ∈ S, s− an ∈ S, s− a0 − an /∈ S}.
In Subsection 4.1.1, we provide a combinatorial formula to compute reg(k[C]) in

terms of the elements in the Apéry and the exceptional sets of S. In Subsection 4.1.2,
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we use this formula to relate reg(k[C]) to the sumsets regularity of A. This relation
provides a nice combinatorial proof of the Eisenbud-Goto conjecture for projective
monomial curves.

4.1.1 Formula for the regularity

To express reg(k[C]) in terms of APS and ES , we introduce the following notations.
For all s ∈ N, set Ls := {(x, y) ∈ N2 | x + y ≤ sD}. If F ⊂ S is a finite set; for all
s ∈ N, define Fs := F ∩ Ls = F ∩ sA, and m(F ) := max{s ∈ N | Fs ̸= ∅}, with the
convention m(F ) = −∞ if F = ∅.

Remark 4.1. Since APS and ES are finite by Remark 3.18, one can consider the
numbers m (APS) ∈ N and m (ES) ∈ N ∪ {−∞}.

(1) One has that m (ES) ≤ σ and m (APS) ≤ σ + 1, where σ = σ(A) is the
sumsets regularity of A (see Def. 3.5).

(2) Both m (ES) and m (APS) can be expressed in terms of the sumsets of A as
follows:

• m (APS) = max({s ∈ N : ∃α ∈ sA, such that α /∈ (s− 1)A and α−D /∈
(s− 1)A}).

• m (ES) = max({s ∈ N : ∃α ∈ (s − 1)A, such that α − D ∈ (s − 1)A \
(s− 2)A}), and

The following result gives a combinatorial way for computing the Castelnuovo-
Mumford regularity of k[C].

Theorem 4.2. The Castelnuovo-Mumford regularity of the projective monomial
curve C is

reg(k[C]) = max{m (APS) ,m (ES)− 1} .

To prove this result, let us recall some known facts on the local cohomology
modules of the coordinate ring of C, k[C]. As observed in Section 1.3, k[C] ∼=
k[S] as (standard) graded k[x0, . . ., xn]-modules. By Grothendieck’s theorem, since
dim(k[S]) = 1 and depth(k[S]) ∈ {1, 2}, then for k[S] there are at most two non-
trivial local cohomology modules, H1

m (k[S]) and H2
m (k[S]), where m = ⟨x0, . . . , xn⟩

is the maximal homogeneous ideal of k[x0, . . ., xn]. Furthermore, these two modules
are completely characterized in terms of the semigroup S.

Lemma 4.3 ([47, Lem. 2.2]). Let G ⊂ Z2 be the group generated by S and S ′ =
G ∩ (S2 × S1).
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(1) H1
m (k[S]) ∼= k[S ′ \ S], and

(2) H2
m (k[S]) ∼= k [G ∩ ((Z \ S2)× (Z \ S1))],

where the symbol ∼= means that there exists an isomorphism of Z-graded modules.

When C is arithmetically Cohen-Macaulay, S ′ = S by Proposition 2.4 (f), so
H1

m (k[S]) = 0 as we already know. By Theorem 1.45, one has that

reg(k[S]) = max{end
(
H1

m (k[S])
)
+ 1, end

(
H2

m (k[S])
)
+ 2} . (4.1)

The proof of Theorem 4.2 will then be a consequence of the following two lemmas
that relate the local cohomology modules H1

m (k[S]) and H2
m (k[S]) to the numbers

m (ES) and m (APS). Note that the relation m (ES) = end (H1
m (k[S]))+2 stated in

Lemma 4.4 also holds when C is arithmetically Cohen-Macaulay, since both numbers
are −∞ in this case.

Lemma 4.4. If S ′ ̸= S, i.e., if C is not arithmetically Cohen-Macaulay, then

max{s : Es+2 ̸= ∅} = max{s : (S ′ \ S) ∩ Ls ̸= ∅} .

Therefore, m (ES) = end (H1
m (k[S])) + 2.

Proof. If C is not arithmetically Cohen-Macaulay, then the exceptional set ES ̸= ∅
by Proposition 2.4 (e). Set E ′

S := {(x, y) ∈ N2 : (x, y)+ a0+ an ∈ ES} and, for each
s ∈ N, E ′

s := E ′
S ∩Ls. Note that (x, y) ∈ E ′

s if and only if (x, y) + a0 + an ∈ Es+2 so
max{s : Es+2 ̸= ∅} = max{s : E ′

s ̸= ∅}. Let us consider an element (x, y) ∈ E ′
S . It

is clear that (x, y) ∈ S ′ \ S, since (x, y) = (x +D, y) − (D, 0) ∈ G, where G is the
group generated by S. Therefore, E ′

S ⊂ S ′ \ S and we get that max{s : E ′
s ̸= ∅} ≤

max{s : (S ′ \ S) ∩ Ls ̸= ∅}.
Conversely, let (x, y) ∈ (S ′ \ S) ∩ Ls be an element such that s is maximum.

Then, (x, y) + a0 ∈ S and (x, y) + an ∈ S, and hence, (x, y) ∈ E ′
s. Therefore,

max{s : E ′
s ̸= ∅} ≥ max{s : (S ′ \ S) ∩ Ls ̸= ∅} and the equality max{s : Es+2 ̸=

∅} = max{s : (S ′ \ S) ∩ Ls ̸= ∅} follows. By Lemma 4.3 (1), it implies that
m (ES) = end (H1

m (k[S])) + 2.

Observe that in the previous proof, we show that E ′
S ⊂ S ′ \ S. Equality, which

would be a stronger result than the one stated in Lemma 4.4, is wrong in general.
Using the example given in [47, Ex. 3.2], we show that those two sets may be
different.

Example 4.5. For A = {0, 1, 2, 5, 13, 14, 16, 17}, the curve C is smooth. Thus,
S1 = S2 = N and G = Z2, and hence, S ′ = G ∩ N2 = N2. Since (9, 8) ∈ S ′ \ S but
(9, 8) /∈ E ′

S , because (26, 8) /∈ S, one has that the inclusion E ′
S ⊂ S ′ \ S is strict.
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We now want to relate m (APS) to end (H2
m (k[S])). Let (x, y) ∈ G∩ ((Z \ S2)×

(Z \ S1))∩Ls be an element with s maximal. Since x /∈ S2 and y /∈ S1, one has that
(x, y +D) /∈ S and (x +D, y) /∈ S. There are two possibilities, either (x +D, y +
D) ∈ S or (x +D, y +D) /∈ S, and let us check that in both cases, the inequality
(4.2) below holds. In the first case, note that (x + D, y + D) ∈ APS ∩ Ls+2, so
max{s : APs+2 ̸= ∅} ≥ max{s : G∩ ((Z \ S2)× (Z \ S1))∩Ls ̸= ∅} and (4.2) follows
from Lemma 4.3 (2). In the second case, using the notations in Proposition 2.4,
there exists an index i, 0 ≤ i ≤ D − 1, such that x ≡ uD−i (mod D) and y ≡ vi
(mod D). Then, uD−i ≥ x + D and vi ≥ y + D and since (x + D, y + D) /∈ S, by
Lemma 2.3, there exist natural numbers x′ ≥ x+D and y′ ≥ y+D, being at least one
of these two inequalities strict, such that (x′, y′) ∈ APS . Observe that (x′, y′) ∈ Ls′
for s′ ≥ s+3, so max{s : APs+2 ̸= ∅} > max{s : G∩ ((Z \ S2)× (Z \ S1))∩Ls ̸= ∅}
in this case. In both cases, one has that

m (APS) ≥ end
(
H2

m (k[S])
)
+ 2 . (4.2)

Adding an additional hypothesis, one gets equality in (4.2) as the following lemma
shows.

Lemma 4.6. If end (H2
m (k[S])) + 2 > end (H1

m (k[S])) + 1 = m (ES)− 1, then

max{s : APs+2 ̸= ∅} = max{s : G ∩ ((Z \ S2)× (Z \ S1)) ∩ Ls ̸= ∅}.

Therefore, in this case, one has that m (APS) = end (H2
m (k[S])) + 2.

Proof. Let (x, y) ∈ APs+2 be an element such that s is maximal and consider the
element (x−D, y−D). If (x−D, y−D) /∈ G∩((Z \ S2)× (Z \ S1)), one can assume
without loss of generality that y−D /∈ S1. Then, there exists x′ ≥ x+D such that
(x′, y−D) ∈ S, so (x′, y) ∈ Es′ for some s′ ≥ s+3. Therefore, end (H1

m (k[S]))+1 =
m (ES)−1 ≥ m (APS) by Lemma 4.4, and using (4.2) we get that end (H1

m (k[S]))+
1 ≥ end (H2

m (k[S])) + 2, which is in contradiction with the hypothesis in the state-
ment of the lemma. Thus, (x−D, y−D) ∈ G∩((Z \ S2)× (Z \ S1))∩Ls, and hence,
end (H2

m (k[S])) + 2 ≥ m (APS) by Lemma 4.3 (2). Using (4.2), we are done.

Note that if one removes the hypothesis end (H2
m (k[S]))+ 2 > end (H1

m (k[S]))+
1 = m (ES)− 1 in Lemma 4.6, the result may be wrong. To illustrate this fact, we
use the example in [47, Ex. 3.2].

Example 4.7. For A = {0, 1, 2, 5, 13, 14, 16, 17}, as observed in Example 4.5, S1 =
S2 = N and G = Z2. Therefore, end (H2

m (k[S])) = 0 by Lemma 4.3 (2), but
(43, 8) ∈ AP3 so m (APS) ̸= end (H2

m (k[S])) + 2.
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Proof of Theorem 4.2. If m (ES) − 1 ≥ m (APS), then by Lemma 4.4 one has that
m (ES)−1 = end (H1

m (k[S]))+1, and hence end (H1
m (k[S]))+1 ≥ end (H2

m (k[S]))+2,
because otherwise, by Lemma 4.6, one would have that m (APS) > m (ES) − 1, a
contradiction. Thus, the equality reg(k[C]) = m (ES)−1 follows from Equation (4.1).
Assume now that m (APS) > m (ES)−1, and consider an element (x, y) ∈ APs with
s = m (APS). Since s > m (ES)−1, then (x, y)−a0−an ∈ G∩((Z \ S2)× (Z \ S1))∩
Ls−2 and hence

end
(
H2

m (k[S])
)
+ 2 ≥ s = m (APS) > m (ES)− 1 = end

(
H1

m (k[S])
)
+ 1,

where the first inequality follows from Lemma 4.3 (2) and the last equality from
Lemma 4.4. Therefore, end (H2

m (k[S])) + 2 > end (H1
m (k[S])) + 1 and the equality

reg(k[C]) = m (APS) follows from Lemma 4.6 and Equation (4.1).

Note that there exist curves such that the maximum in Theorem 4.2 is equal
to m (ES) − 1 and not equal to m (APS), and vice versa. For instance, if C is
arithmetically Cohen-Macaulay, then m (APS) > m (ES) − 1 = −∞. However,
there also exist non-arithmetically Cohen-Macaulay curves such that m (APS) >
m (ES)− 1.

Example 4.8. (1) For A = {0, 1, 3, 11, 13}, m (ES) = 6 and m (APS) = 4, so
C is not arithmetically Cohen-Macaulay, and reg(k[C]) = 5 = m (ES) − 1 >
m (APS).

(2) [6, Ex. 4.3]. For A = {0, 5, 9, 11, 20}, m (ES) = 5 and m (APS) = 5, so C is not
arithmetically Cohen-Macaulay, and reg(k[C]) = 5 = m (APS) > m (ES)− 1.

Recall that, as stated in (1.7), the regularity is always determined by the tail
of a m.g.f.r.. Since in our case 1 ≤ depth(k[C]) ≤ 2, one has that the regularity is
attained at one of the two last steps of a m.g.f.r. If k[C] is Cohen-Macaulay, then the
regularity is always attained at the last step. In the non Cohen-Macaulay case, our
next result characterizes when the regularity is attained at the last step, in terms
of the formula given in Theorem 4.2 and of the difference δ = reg(k[C]) − r(k[C]),
where r(k[C]) is the regularity of the Hilbert polynomial of k[C].

Theorem 4.9. If C is not arithmetically Cohen-Macaulay, the following are equiv-
alent:

(a) The Castelnuovo-Mumford regularity of k[C] is attained at the last step of a
m.g.f.r.

(b) reg(k[C]) = m (ES)− 1, i.e., m (ES)− 1 ≥ m (APS).

(c) reg(k[C]) = r(k[C]), i.e., δ = 0.
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Proof. The equivalence (a) ⇔ (c) is a direct consequence of Theorem 1.51, as ob-
served in Remark 1.52 (2). Therefore, we only have to prove (a) ⇔ (b). By

Theorem 1.45, max{j | βn+1−depth(M),j ̸= 0} = end
(
H

depth(M)
m (M)

)
+ n + 1. If

k[C] is not Cohen-Macaulay, then by Theorem 4.2, its proof, and Lemma 4.4, one
has that reg(k[C]) = m (ES) if and only if end (H1

m (k[S])) + 1 = m (ES) − 1 ≥
end (H2

m (k[S])) + 2, i.e., if and only if the Castelnuovo-Mumford regularity is at-
tained at the last step of a m.g.f.r. of k[C], by (4.1) and the previous observation.
This proves the equivalence between (a) and (b).

Example 4.10. Different values of δ = reg(k[C])− r(k[C]) and different shapes for
the Betti diagram of k[C] are obtained in the following four examples of monomial
curves in P 4

k .

(1) For A = {0, 1, 3, 11, 13}, δ = 0 and reg(k[C]) is attained at the last step of a
m.g.f.r.

0 1 2 3 4

------------------------------------

0: 1 - - - -

1: - 1 - - -

2: - 2 2 - -

3: - 2 2 - -

4: - 3 8 5 -

5: - - 2 4 2

------------------------------------

total: 1 8 14 9 2

(2) For A = {0, 2, 5, 6, 9}, δ = 1 and reg(k[C]) is attained at the last step of a
m.g.f.r.

0 1 2 3

------------------------------

0: 1 - - -

1: - 1 - -

2: - 7 12 5

------------------------------

total: 1 8 12 5



114 CHAPTER 4. REGULARITY OF PROJECTIVE TORIC VARIETIES

(3) For A = {0, 6, 9, 13, 22}, δ = 1 and reg(k[C]) is not attained at the last step of
a m.g.f.r.

0 1 2 3 4

------------------------------------

0: 1 - - - -

1: - 1 - - -

2: - 1 - - -

3: - - 1 - -

4: - 5 9 5 1

5: - - 2 2 -

------------------------------------

total: 1 7 12 7 1

(4) For A = {0, 5, 9, 11, 20}, δ = 2 and reg(k[C]) is not attained at the last step of
a m.g.f.r.

0 1 2 3 4

------------------------------------

0: 1 - - - -

1: - 1 - - -

2: - 1 - - -

3: - 1 1 - -

4: - 3 9 5 1

5: - - - 1 -

------------------------------------

total: 1 6 10 6 1

In the case of projective monomial curves C ⊂ P 3
k , one can be more precise, since

their codimension is 2.

Proposition 4.11. Let A = {a0 = 0 < a1 < a2 < a3 = D} ⊂ N be a set in normal
form and consider the associated monomial curve C ⊂ P 3

k .

(1) The Castelnuovo-Mumford regularity is attained at the last step of a m.g.f.r.
of k[C].

(2) Setting δ := reg(k[C])− r(k[C]), one has that 0 ≤ δ ≤ 1. More precisely,

δ = 0⇔ k[C] is not Cohen-Macaulay⇔ reg(k[C]) = m (ES)− 1 ≥ m (APS) ,

δ = 1⇔ k[C] is Cohen-Macaulay⇔ reg(k[CA]) = m (APS) > m (ES)− 1.

Proof. Part (1) is a particular case of [7, Cor. 2.13]. By Theorem 1.51 and Re-
mark 1.52 (2), this implies that either δ = 0 if C is not arithmetically Cohen-
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Macaulay, or δ = 1 if C is arithmetically Cohen Macaulay. Part (2) then follows
from Theorem 4.9.

4.1.2 Relations with the sumsets regularity

The Castelnuovo-Mumford regularity of k[C] can be upper and lower bounded in
terms of σ = σ(A), the sumsets regularity of A. These bounds will be given in
Theorem 4.13 where we distinguish two cases depending on the value of σ in Theo-
rem 3.7. Let us first prove a lemma that will be needed in the proof. For i = 1, 2,
set ci the conductor of Si, and F (Si) the Frobenius number of Si.

Lemma 4.12. Set N := ⌈ c1+c2
D
⌉. Then, reg(k[C]) ≥ ⌈N

2
⌉+ 1.

Proof. One has that F (S1) + D ∈ Ap1 and consider x ∈ Ap2, such that F (S1) +
D+x ≡ 0 (mod D). Note that x ̸= 0. By Lemma 2.3, there are two options: either
(x, F (S1) +D) ∈ APS , or there exists x′ ≥ x, such that (x′, F (S1) +D) ∈ APS . In
both cases, there exists x ≥ 1, such that (x, F (S1) + D) ∈ APS and, analogously,
there exists y ≥ 1, such that (F (S2) +D, y) ∈ APS . By Theorem 4.2,

reg(k[C]) ≥ max

{
F (S1) +D + x

D
,
F (S2) +D + y

D

}
≥ 1

2

F (S1) + F (S2) + 2

D
+ 1

=
c1 + c2
2D

+ 1.

Thus, reg(k[C]) ≥ ⌈ c1+c2
2D
⌉+ 1 = ⌈N

2
⌉+ 1.

Theorem 4.13. We have the following bounds on the Castelnuovo-Mumford regu-
larity of k[C]:

(1) If σ = r(k[C]) ≥ ⌈ c1+c2
D
⌉, then σ ≤ reg(k[C]) ≤ σ + 1.

(2) If σ = ⌈ c1+c2
D
⌉ > r(k[C]), then ⌈σ

2
⌉+ 1 ≤ reg(k[C]) ≤ σ + 1.

Proof. In both cases, the upper bound is a consequence of Theorem 4.2 and Re-
mark 4.1 (1). If σ = r(k[C]) ≥ ⌈ c1+c2

D
⌉, then we apply the known fact r(k[C]) ≤

reg(k[C]) from Remark 1.52 (3), and in the other case, the lower bound is the one
given in Lemma 4.12.

Example 4.14. To illustrate that all the upper and lower bounds in Theorem 4.13
are sharp, the values of r(k[C]), ⌈ c1+c2

D
⌉, σ and reg(k[C]) in four different examples

are displayed in Table 4.1.
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Table 4.1: Examples where the bounds in Theorem 4.13 are attainted.

A r(k[C]) ⌈ c1+c2
D
⌉ σ reg(k[C])

{0, 1, 3, 11, 13} 5 1 5 5
{0, 1, 3, 5, 6, 12} 1 1 1 2
{0, 4, 5, 9, 16} 2 3 3 3
{0, 5, 9, 11, 20} 3 4 4 5

The following result is more precise than the one stated in Theorem 4.13 in a
particular case. It gives, in this case, the precise relationship between the three
regularities, in the sense of Castelnuovo-Mumford, of the Hilbert function, and of
the sumsets.

Proposition 4.15. If C is arithmetically Cohen-Macaulay and (F (S2)+D,F (S1)+
D) ∈ APS , then

σ =

⌈
c1 + c2
D

⌉
, r(k[C]) = σ, and reg(k[C]) = σ + 1 .

Proof. Since (F (S2) +D,F (S1) +D) ∈ APS , then (F (S2) +D,F (S1) +D) ∈ APs
for s = m (APS) and, as C is arithmetically Cohen-Macaulay, reg(k[C]) = m (APS)
by Theorem 4.2. Thus,

reg(k[C]) = F (S1) +D + F (S2) +D

D
=
F (S1) + F (S2)

D
+ 2 .

On the other hand,⌈
c1 + c2
D

⌉
=

⌈
F (S1) + F (S2)

D
+

2

D

⌉
=
F (S1) + F (S2)

D
+ 1 ,

so reg(k[C]) = ⌈ c1+c2
D
⌉ + 1, and r(k[C]) = ⌈ c1+c2

D
⌉, since reg(k[C]) = r(k[C]) + 1

whenever C is arithmetically Cohen-Macaulay, by Remark 1.52 (2). Finally, σ =
⌈ c1+c2

D
⌉ by Theorem 3.7.

Remark 4.16. Note that, by Lemma 2.3, the condition (F (S2) +D,F (S1) +D) ∈
APS is equivalent to (F (S2) +D,F (S1) +D) ∈ S.

Corollary 4.17. If C is arithmetically Gorenstein, then

σ =

⌈
c1 + c2
D

⌉
, r(k[C]) = σ, and reg(k[C]) = σ + 1 .
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Proof. If C is arithmetically Gorenstein, then (F (S2)+D,F (S1)+D) ∈ APS by the
proof of Proposition 2.29, and the result follows from Proposition 4.15.

In particular, by the proof of Theorem 2.32 and Corollary 4.17, it follows that
the Castelnuovo-Mumford regularity of k[C] is reg(k[C]) = 3 for all the Gorenstein
curves that we constructed in Example 2.31 and Theorem 2.32.

Example 4.18. For A = {0, 1, 2, 3, 8}, k[C] is Cohen-Macaulay, as shown in Ex-
ample 2.5, and (F (S2) + D,F (S1) + D) = (17, 7) ∈ APS . By Proposition 4.15,
σ = r(k[C]) = ⌈ c1+c2

D
⌉ = 3, and reg(k[C]) = σ + 1 = 4.

Using the previous results, we can give a new proof for the bound obtained by
J. Elias in [32] for arithmetically Cohen-Macaulay curves. First, recall a result of F.
Lev that we will use in the proof.

Lemma 4.19 ([64, Thm. 1]). Let A = {a0 = 0 < a1 < · · · < an = D} ⊂ N be a set
in normal form. Then, for all s ≥ 2 one has that

|sA|≥ |(s− 1)A|+min (D, s(n− 1) + 1) .

Proposition 4.20 ([32, Thm. 4.7]). If A = {a0 = 0 < a1 < · · · < an = D} ⊂ N is
a set in normal form, such that C is arithmetically Cohen-Macaulay, then

reg(k[C]) ≤
⌈
D − 1

n− 1

⌉
.

Proof. Set s0 := ⌈D−1
n−1
⌉. By Corollary 3.21, the sequence (|sA|−|(s− 1)A|)s∈N is

increasing and its limit is D. Indeed, as observed in the proof of this corollary,
|sA|−|(s − 1)A|=

∑s
j=0|APj| for all s ∈ N. On the other hand, |APS |= D by

Proposition 2.4 (d) and, by Lemma 4.19, |sA|−|(s− 1)A|≥ D if s ≥ s0. Therefore,
|APs|= 0 for all s > s0, and hence, reg(k[C]) ≤ s0, by Theorem 4.2.

As a consequence of Theorem 4.13, one gets a sufficient condition for σ to be
equal to ⌈ c1+c2

D
⌉ in Theorem 3.7. The condition is expressed in terms of the differ-

ence between the Castelnuovo-Mumford regularity and the regularity of the Hilbert
function of k[C].

Corollary 4.21. If δ = reg(k[C])− r(k[C]) ≥ 2, then σ = ⌈ c1+c2
D
⌉ > r(k[C]).

Proof. If σ = r(k[C]) ≥ ⌈ c1+c2
D
⌉, then σ ≤ reg(k[C]) ≤ σ + 1 by Theorem 4.13, so

δ ≤ 1.
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A combinatorial proof of the Gruson-Lazarsfeld-Peskine theorem (i.e.,
the Eisenbud-Goto conjecture)

Recall from Theorem 1.76 (1) that reg(k[C]) ≤ D − n + 1. Using the results
of this section and Granville-Walker’s bound on the sumsets regularity of A (σ ≤
sGW0 = D − n + 1) we can give an easy proof of the above bound. We distinguish
three cases:

(1) If neither A nor D−A belongs to the two families listed in Theorem 3.6, then
σ ≤ D − n, and reg(k[C]) ≤ D − n+ 1 follows from Theorem 4.13.

(2) If A = [0, D] \ {a} for some a ∈ [2, D − 2], then σ = 2 and reg(k[C]) = 2 as
well by Theorem 4.2, and hence reg(k[C]) ≤ D− n+ 1 holds for such a set A,
since in this case n = D − 1.

(3) If A = [0, 1]⊔ [a+1, D] for some a ∈ [2, D−2], then sA = [0, sD] for all s ≥ a
and a /∈ (a − 1)A. Therefore, σ = a and reg(k[C]) = a by Theorem 4.2, so
reg(k[C]) ≤ D− n+ 1 also follows from the bound σ ≤ sGW0 in this case. One
gets the same conclusion if D−A = [0, 1]⊔ [a+ 1, D] for some a ∈ [2, D− 2].

4.2 Projective monomial surfaces

Consider A = {a0, . . . , an} ⊂ N2 a finite set such that |ai|= ai1 + ai2 ≤ D for all
ai ∈ A. Denote A = {a0, . . . , an}, where ai = (ai0, ai1, ai2), ai0 = D − ai1 − ai2, for
all i = 0, . . . , n.

Fix an infinite field k and consider X = XA ⊂ Pn
k the projective monomial sur-

face determined by A. We assume that X is simplicial, i.e., {e0, e1, e2} ⊂ A, where
ei := Dϵi for i = 0, 1, 2 and {ϵ0, ϵ1, ϵ2} is the canonical basis of N3. The coordinate
ring of X is k[X ] = k[x0, . . ., xn]/IA, where IA is the toric ideal determined by A.

In Subsection 4.2.1, we provide a combinatorial formula to compute reg(k[X ]) in
terms of the elements in the Apéry and the exceptional sets of S. In Subsection 4.2.2,
we use this formula to relate reg(k[X ]) with the sumsets regularity of A. This
relation provides a nice combinatorial proof of the Eisenbud-Goto conjecture for
some of the projective monomial surfaces with a single singular point.

4.2.1 Formula for the regularity

Let S ⊂ N3 be the affine semigroup generated by A, S = ⟨A⟩. By hypothesis, S is
simplicial, and the extremal rays of the cone Pos(A) are {e0, e1, e2}. Recall that, in
this case, the Apéry set of S is defined as APS = {s ∈ S | s− ei /∈ S, ∀i = 0, 1, 2},
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and it is finite by Remark 1.22 (2). We define now four special subsets of S that
will be involved in the combinatorial formula for reg(k[X ]).

Definition 4.22. The exceptional sets of S are:

• E3,1
S = {s ∈ S | s− ej ∈ S,∀j; s− (ei0 + ei1) ∈ S, s− (ei0 + ei2) /∈ S, s− (ei1 +

ei2) /∈ S, for a permutation (i0, i1, i2) of (0, 1, 2)};
• E2,0

S = {s ∈ S | s − ei0 ∈ S, s − ei1 ∈ S, s − ei2 /∈ S; s − (ei0 + ei1) /∈
S, for a permutation (i0, i1, i2) of (0, 1, 2)};

• E3,0
S = {s ∈ S | s− ei ∈ S,∀i; s− (ei + ej) /∈ S,∀i ̸= j};

• E3,3
S = {s ∈ S | s−ei ∈ S,∀i; s− (ei+ej) ∈ S, ∀i ̸= j; and s− (e0+e1+e2) /∈
S}.

Figure 4.1 shows how elements in the Apéry and the exceptional sets of S look like.

In the notation Ea,b
S below, a is the number of indices i, 0 ≤ i ≤ 2, such that

s − ei ∈ S and b is the number of pairs (i, j) of indices, 0 ≤ i < j ≤ 2, such that
s − ei − ej ∈ S (according to this notation, the Apéry set defined before would be
E0,0

S ). Note that 0 ≤ b ≤ a ≤ 3. In Chapter 5 (more precisely, in Section 5.2), we
will justify why the exceptional sets are finite.

Since A is contained in the plane {(x, y, z) ∈ N3 : x+ y + z = D}, for all s ≥ 0,
the s-fold sumset of A is also contained in a plane,

sA ⊂ {(x, y, z) ∈ N3 : x+ y + z = sD} .

For every s ∈ N, set Hs := {(x, y, z) ∈ N3 : x+ y+ z = sD}, and for every subset F
of S, set Fs := F ∩Hs. Moreover, if F ⊂ S is a finite subset, we define the number
m(F ) by

m(F ) := max{s ∈ N : Fs ̸= ∅} ,

with the convention m(F ) = −∞ if F = ∅.
In the case of the Apéry set of S, instead of writing (APS)s, we just write APs,

and so we do with the exceptional sets. Using these notations, one can prove an
analogous result to Proposition 3.19 for simplicial projective monomial surfaces.

Proposition 4.23. For all s ∈ N,

|APs|= (|sA|−3|(s− 1)A|+3|(s− 2)A|−|(s− 3)A|)+ |E3,1
s |+|E2,0

s |+2|E3,0
s |−|E3,3

s | .

The proof of Proposition 4.23 will be a direct consequence of Theorem 5.15 and
Proposition 5.9 (b). We will prove both results in Chapter 5.
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e0

e1

e2

s

(a) Element s ∈ APS .

s s s

(b) Elements s ∈ E3,1
S .

s s s

(c) Elements s ∈ E2,0
S .

s

(d) Element s ∈ E3,0
S .

s

(e) Element s ∈ E3,3
S .

Figure 4.1: Points in APS and the exceptional sets E3,1
S , E2,0

S , E3,0
S , and E3,3

S . Filled
circles represent elements in S, while empty squares represent elements outside S.
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Remark 4.24. Take (x, y, z) ∈ S and set s = x+y+z
D
∈ N. One can characterize

when (x, y, z) is in the Apéry set or in a exceptional set of S in terms of the element
(y, z) ∈ sA and the sumsets (s− 1)A, (s− 2)A and (s− 3)A. For instance, one has
that

(x, y, z) ∈ APS ⇔


(y, z), (y −D, z), (y, z −D) /∈ (s− 1)A,
(y −D, z), (y, z −D), (y −D, z −D) /∈ (s− 2)A, and
(y −D, z −D) /∈ (s− 3)A.

This is shown in Figure 4.2a. The analogous characterizations of the exceptional
sets are shown in Figures 4.2b-4.2e. Note that there are two other variants of 4.2b
and 4.2c corresponding to the possible permutations in the definition of E3,1

S and
E2,0

S .

The following result shows how to compute the Castelnuovo-Mumford regularity
of k[X ] in terms of the Apéry and the exceptional sets of S. This result will be a
direct consequence of Theorem 5.15 from Chapter 5.

Theorem 4.25. The Castelnuovo-Mumford regularity of the simplicial projective
toric surface X is given by the formula

reg(k[X ]) = max
{
m(APS),m(E3,1

S )− 1,m(E2,0
S )− 1,m(E3,0

S )− 1,m(E3,3
S )− 2

}
.

The following example shows different sets A ⊂ N2 for which the maximum in
Theorem 4.25 is attained in the different terms that appear in the formula.

Example 4.26. (1) For A = {(0, 0), (4, 0), (0, 4), (3, 0)}, one has that m(APS) =
4 and m(E3,1

S ) = m(E2,0
S ) = m(E3,0

S ) = m(E3,3
S ) = −∞. Hence, reg(k[X ]) =

m(APS) = 4.

(2) ForA = {(0, 0), (5, 0), (0, 5), (3, 1), (0, 2), (0, 1), (4, 0)}, one has thatm(APS) =
4, m(E3,1

S ) = 6, m(E2,0
S ) = 5, and m(E3,0

S ) = m(E3,3
S ) = −∞. Hence,

reg(k[X ]) = m(E3,1
S )− 1 = 5.

(3) ForA = {(0, 0), (13, 0), (0, 13), (12, 1), (10, 3), (2, 11)},m(APS) = 4,m(E2,0
S ) =

6, and m(E3,1
S ) = m(E3,0

S ) = m(E3,3
S ) = −∞. Hence, reg(k[X ]) = m(E2,0

S ) −
1 = 5.

4.2.2 Surfaces with one singular point, sumsets, and the
Eisenbud-Goto conjecture

Suppose that A contains {e0, e1, e2, (0, D−1, 1), (0, 1, D−1), (e,D− e, 0), (e, 0, D−
e)}, where 1 ≤ e ≤ D is a divisor of D that divides ai0 for all i ∈ {0, . . . , n}, and if
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(s− 3)A (s− 2)A (s− 1)A sA (y, z)

(a) An element (y, z) ∈ sA such that (x, y, z) ∈ APs.

(y, z)(s− 3)A (s− 2)A (s− 1)A sA

(b) An element (y, z) ∈ sA such that (x, y, z) ∈ E3,1
s .

(s− 3)A (s− 2)A (s− 1)A sA (y, z)

(c) An element (y, z) ∈ sA such that (x, y, z) ∈ E2,0
s .

(y, z)(s− 3)A (s− 2)A (s− 1)A sA

(d) An element (y, z) ∈ sA such that (x, y, z) ∈ E3,0
s .

(y, z)(s− 3)A (s− 2)A (s− 1)A sA

(e) An element (y, z) ∈ sA such that (x, y, z) ∈ E3,3
s .

Figure 4.2: Characterization of the elements in APS and the exceptional sets in
terms of the sumsets of A (Remark 4.24).
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e = 1 then either (D− 1, 1, 0) /∈ A or (D− 1, 0, 1) /∈ A. By Theorem 3.35, if k is an
algebraically closed field, the previous assumptions are equivalent to saying that X
has a single singular point.

For all s ∈ N, denote Ts,e := {(x, y) ∈ N2
e | x+ y ≤ sD}. The following theorem

shows that the Castelnuovo-Mumford regularity of k[X ] is upper bounded by the
sumsets regularity of A.

Theorem 4.27. Assume that X = XA ⊂ Pn
k is either smooth or has a single singular

point. Then, the Castelnuovo-Mumford regularity of k[X ] and the sumsets regularity
of A are related by the formula

reg(k[X ]) ≤ σ(A) + 1 .

Proof. Set σ = σ(A) the sumsets regularity of A. By Theorem 4.25, we know that

reg(k[X ]) = max
{
m(APS),m(E3,1

S )− 1,m(E2,0
S )− 1,m(E3,0

S )− 1,m(E3,3
S )− 2

}
.

We are going to show (i) m(APS) ≤ σ+1, (ii) m(E3,1
S ) ≤ σ+2, (iii) m(E2,0

S ) ≤ σ+
2, (iv)m(E3,0

S ) ≤ σ+2, and (v)m(E3,3
S ) ≤ σ+3. Thus, we conclude reg(k[X ]) ≤ σ+1

by Theorem 4.25.

(i) Let (x, y, z) ∈ APS and set s = (x+y+z)/D. Then (y, z) is as in Figure 4.2a.
Assume by contradiction that s > σ+1. Since s−2 ≥ σ and (y, z) ∈ sA\ (s−
1)A, then (y, z) ∈ Ts,e\Ts−1,e by Remark 3.37 (2). Thus, (y−D, z), (y, z−D) ∈
Ts−1,e \ Ts−2,e ⊂ (s − 1)A, a contradiction with (x, y, z) ∈ APS . Therefore,
s ≤ σ + 1 and hence m(APS) ≤ σ + 1.

(ii) Let (x, y, z) ∈ E3,1
S and set s = (x + y + z)/D. Let us prove that s ≥ σ + 2.

Suppose that (x, y, z)− e0 − e1 ∈ S, i.e. the permutation in the definition of
E3,1

S is the identity. Then (y, z) is a as in Figure 4.2b. Assume by contradiction
that s > σ+2. Since s−3 ≥ σ and (y−D, z), (y, z−D) ∈ (s−1)A\ (s−2)A,
both elements are in Ts−1,e \ Ts−2,e by Remark 3.37 (2). Thus (y, z) /∈ Ts−1,e,
so (y, z) /∈ (s− 1)A, a contradiction. The proof in the other two situations is
analogous. Therefore, m(E3,1

S ) ≤ σ + 2.

(iii) Let (x, y, z) ∈ E2,0
S and set s = (x+y+z)/D. Let us prove s ≥ σ+2. Suppose

(x, y, z)− e2 /∈ S, i.e. the permutation in the definition of E2,0
S is the identity.

Then (y, z) is as in Figure 4.2c. Assume by contradiction that s > σ + 2.
Reasoning as in (ii), one has that (y−D, z), (y, z−D) ∈ Ts−1,e \ Ts−2,e. Thus,
(y−D, z−D) ∈ Ts−2,e\Ts−3,e ⊂ (s−2)A, by Remark 3.37 (2), a contradiction.
Hence, s ≤ σ + 2. The proof in the other two situations is analogous, so we
have proved that m(E2,0

S ) ≤ σ + 2.
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(iv) Let (x, y, z) ∈ E3,0
S and set s = (x + y + z)/D. Then (y, z) is as in Figure

4.2d. Let us prove s ≥ σ + 2. Assume by contradiction that s ≥ σ + 2. As
in (ii), one has that (y − D, z), (y, z − D) ∈ Ts−1,e \ Ts−2,e, so (y, z) /∈ Ts−1,e.
Hence, (y, z) /∈ (s − 1)A, a contradiction. Therefore, s ≤ σ + 2, and hence
m(E3,0

S ) ≤ σ + 2.

(v) Let (x, y, z) ∈ E3,3
S and set s = (x+ y+ z)/D. Then (y, z) is as in Figure 4.2e.

Let us prove s ≥ σ + 3. Assume by contradiction that s > σ + 3. Since (y −
D, z−D) ∈ (s−2)A\(s−3)A, then (y−D, z−D) /∈ Ts−3,e by Remark 3.37 (2).
Thus, (y − D, z), (y, z − D) /∈ Ts−2,e, a contradiction. Therefore, s ≤ σ + 3,
and hence m(E3,3

S ) ≤ σ + 3.

To finish this chapter, we explore the Eisenbud-Goto conjecture for simplicial
projective monomial surfaces with a single singular point. In the following result,
we compute their degree.

Proposition 4.28. Suppose that {e0, e1, e2, (0, D − 1, 1), (0, 1, D − 1), (e,D − e, 0),
(e, 0, D − e)} ⊂ A, where 1 ≤ e ≤ D is a divisor of D that divides ai0 for all
i = 0, . . . , n, and let X = XA be the projective monomial surface determined by A.
Then, the degree of X is deg(X ) = D2

e
.

Proof. Consider the matrix M of size 3 × (n + 1) whose columns are the elements
of A. By Theorem 1.73, the degree of the toric variety X is deg(X ) = D3/θ3,
where θ3 is the g.c.d. of the 3 × 3 minors of the matrix M . Since the first row
of M is a multiple of e and the sum of all its columns is D, then D · e divides θ3.

Moreover,
∣∣∣ e 0 0
D−e D D−1
0 0 1

∣∣∣ = e · D, which shows θ3 = D · e. Thus, deg(X ) = D2

e
, by

Theorem 1.73.

Therefore, the Eisenbud-Goto conjecture (Conjecture 1.46) for projective mono-
mial surfaces with a single singular point can be written as

reg(k[X ]) ≤ D2

e
− n+ 2, (4.3)

where n = |A|−1.

Theorem 4.29. Let X ⊂ Pn
k be a simplicial projective monomial surface whose

degree is either minimal or maximal. Then, k[X ] satisfies the Eisenbud-Goto con-
jecture.
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Proof. By Theorem 3.35, there exists a set A = {a0, . . . , an} ⊂ N2, ai = (ai1, ai2),
such that ai1 + ai2 ≤ D, {(0, 0), (D, 0), (0, D)} ⊂ A, for some D > 0, 1 ≤ e ≤ D a
divisor of D such that e | ai1 + ai2 for all i, and if e = 1, then either (1, 0) /∈ A or
(0, 1) /∈ A; with X = XA. By Proposition 4.28, the degree of X is deg(X ) = D2

e
.

Note that it is maximal when e = 1, and it is minimal when e = D.
If e = 1, then the sumsets regularity of A satisfies σ(A) ≤ D2 − n + 1, by

Theorem 3.41. Thus, Equation (4.3) from Theorem 4.27.
If e = D, by Remark 1.79 (ii) one has that the rings k[X ] and k[x1, . . . , xn]/IA′

have the same minimal graded free resolution, where IA′ is the defining ideal of a
smooth projective monomial curve C ′. Since C ′ satisfies the Eisenbud-Goto conjec-
ture, as we proved in Subsection 4.1.2, then k[C] satisfies Equation (4.3).
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Chapter 5

Effective computation of the short
resolution

“Building a resolution consists of repeatedly
solving systems of polynomial equations.”

I. Peeva

Let k be an arbitrary field, R = k[x1, . . ., xn] a polynomial ring over k, and
I ⊂ R a ω-homogeneous ideal for some weight vector ω = (ω1, . . . , ωn) ∈ (Z>0)

n,
i.e., I is homogeneous for the grading on R induced by degω(xi) = ωi. We denote by
d := dim(R/I) the Krull dimension of R/I and assume that A := k[xn−d+1, . . . , xn]
is a Noether normalization of R/I, that is, A ↪→ R/I is an integral ring extension.
When this occurs, we will say that the variables are in Noether position. In this
setting, R/I is a finitely generated graded A-module, so it has a finite minimal
graded free resolution as A-module. This resolution has been referred to in the
literature as the short resolution [75, 78] or Noether resolution [3] of R/I. We
denote it by

F : 0→ ⊕v∈BpA(−sp,v)
ψp−→ . . .

ψ1−→ ⊕v∈B0A(−s0,v)
ψ0−→ R/I → 0 , (5.1)

where its length p = pdA(R/I) is the projective dimension of R/I as A-module, and
for all i ∈ {0, . . . , p}, Bi ⊂ R are finite sets of monomials, and si,v are nonnegative
integers.

The relation between the lengths of the short resolution of R/I and of its usual
minimal graded free resolution as R-module is given by pdR(R/I) = pdA(R/I) +
n − d. This follows from the Auslander-Buchsbaum formula and the fact that
depthA(R/I) = depthR(R/I); see, e.g. [13, Ex. 1.2.26(b)]. Hence, the short res-
olution is shorter than the usual minimal graded free resolution, and it contains

127
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valuable combinatorial, algebraic and geometric information about R/I. For ex-
ample, since (5.1) is a graded free resolution of R/I, one gets that the (weighted)
Hilbert series of R/I can be expressed as:

HSR/I(t) =

∑p
i=0

∑
v∈Bi

(−1)i tsi,v

(1− t)d
,

and its numerator, h(t) =
∑p

i=0

∑
v∈Bi

(−1)i tsi,v , satisfies that h(1) =
∑p

i=0(−1)i|Bi|
is e(R/I), the multiplicity of R/I. Moreover, when I is homogeneous with respect
to the standard grading, as a consequence of the Independence Theorem for local
cohomology (see, e.g., [90, Sect. 1]), the Castelnuovo-Mumford regularity of R/I,
reg(R/I), can be computed using the short resolution:

reg(R/I) = max{si,v − i | 0 ≤ i ≤ p, v ∈ Bi} .

In [3], the authors describe how to compute short resolutions in some cases. The
first step of the short resolution is given by [3, Prop. 1] that we recall in Propo-
sition 5.1. This result provides the whole short resolution when R/I is Cohen-
Macaulay. If R/I is not Cohen-Macaulay, the resolution has at least one more step.
When dim(R/I) = 1 and depth(R/I) = 0, the second (and last) step of the short
resolution is given in [3, Prop. 3]. Moreover, when dim(R/I) = 2 and xn is not a zero
divisor on R/I, the whole short resolution is given in [3, Prop. 4]. In the first section,
we study the short resolution in any dimension, and we also drop the assumption
that xn is a nonzero divisor on R/I. We will only assume that I is homogeneous for
some grading ω ∈ (Z>0)

n, and that A ↪→ R/I is a Noether normalization. Note that
this last assumption is not restrictive if I is homogeneous for the standard grading
and k is infinite since linear changes of coordinates preserve homogeneity for the
standard grading, and A is a Noether normalization of R/I after a generic linear
change of coordinates; see [5, Lem. 4.1] for a Noether position test, and [6, App. A]
for smaller changes of coordinates.

Our main results in the first section are Proposition 5.2 and Theorem 5.7. In
Proposition 5.2, using the monomial generators of R/I as A-module given in [3,
Prop. 1], we describe a generating set (that may not be minimal) of its module of
syzygies, a submodule of a free A-module. This presentation of the A-module R/I
by generators and relations allows to obtain its minimal graded free resolution by
means of standard A-module computations. This gives the first way of contruct-
ing the short resolution of R/I (Algorithm 5.1). Another way to obtain the short
resolution is as follows. In Theorem 5.7, we prove that the generating set given in
Proposition 5.2 is, indeed, the reduced Gröbner basis of the syzygy submodule for a
Schreyer-like monomial order, and hence we can build a graded free resolution (that
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does not need to be minimal) of R/I as A-module by an iterative application of
Schreyer’s Theorem (Theorem 1.29).

A case in which our results apply nicely is that of toric rings. Let I ⊂ R be a
simplicial toric ideal of height n−d (i.e., dim(R/I) = d). By Proposition 1.60, there
exists a setA = {a1, . . . , an} ⊂ Nd such that I = IA and {Dϵ1, . . . , Dϵd} ⊂ A, where
{ϵ1, . . . , ϵd} is the canonical basis of Nd and D ∈ Z>0. Hence, we can always assume
that the extremal rays of the rational cone spanned by A are {e1, . . . , ed}, with ei :=
Dϵi, i = 1, . . . , d. By [33, Prop. 1.1.12], one has that A = k[xn−d+1, . . . , xn] ↪→ R/I
is a Noether normalization if and only if {e1, . . . , ed} are the last d elements of A.
Hence, without loss of generality, we will assume that an−d+i = ei for i = 1, . . . , d.
We focus on the simplicial toric rings of dimension 3.

In Section 5.2, we describe their short resolution and their Hilbert series and
function in terms of the combinatorics of the associated semigroup translating some
results of [78] and [75]. In the standard-graded homogeneous case, we provide for-
mulas for the Castelnuovo-Mumford regularity of the toric ring. In Section 5.3, we
devise an algorithm to compute the short resolution for 3-dimensional simplicial
toric rings. This algorithm first constructs a non-minimal graded free resolution
as A-module following Section 5.1 (Algorithm 5.2), and then minimalizes/prunes it
to obtain the short one by applying Theorems 5.24 and 5.26 (Algorithm 5.3). The
whole algorithm involves the computation of the reduced Gröbner bases of IA and
IA + ⟨xn−2⟩, and the division of some monomials by those bases.

In Section 5.4, we provide an example of a simplicial semigroup whose toric ring
has different projective dimensions, both as A-module and as R-module, depending
on the characteristic of the field k. Hence, both the usual and the short resolution
depend on the characteristic of k. To our knowledge, this is the first example in
which this phenomenon is observed.

The results included in this chapter are part of the preprint [35], and the al-
gorithms have been implemented in SageMath and are available in the GitHub
repository [41].

5.1 Contruction of the short resolution via Gröb-

ner bases

Let ω = (ω1, . . . , ωn) ∈ (Z>0)
n be a weight vector, k an arbitrary field and R =

k[x1, . . ., xn]. Consider I ⊂ R a ω-homogeneous ideal, i.e., a homogeneous ideal
with respect to the grading induced by degω(xi) = ωi for all i ∈ {1, . . . , n}. Take
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d := dim(R/I) and assume that A = k[xn−d+1, . . . , xn] is a Noether normalization of
R/I. In this section we study the short resolution of R/I, i.e., the minimal graded
free resolution of R/I as A-module:

F : 0→ ⊕v∈BpA(−sp,v)
ψp−→ . . .

ψ1−→ ⊕v∈B0A(−s0,v)
ψ0−→ R/I → 0 , (5.2)

where p = pdA(R/I), and for all i ∈ {0, . . . , p}, Bi ⊂ R is a finite set and si,v are
nonnegative integers. In our description, the sets Bi will consist of monomials and
si,v = degω(v) will be the ω-degree of the monomial v ∈ Bi. Note that the sets Bi
might not be unique, but their degrees are.

Consider the ω-graded reverse lexicographic order >ω in R, i.e., the monomial
order defined as follows: xα >ω xβ if and only if

• degω(x
α) > degω(x

β), or

• degω(x
α) = degω(x

β) and the last nonzero entry of α− β ∈ Zn is negative.

For every polynomial f ∈ R, let in(f) denote the initial term of f with respect to >ω

(we include the coefficient in the initial term). Given an ideal J ⊂ R, in(J) denotes
the initial ideal of J with respect to >ω, and G the reduced Gröbner basis of I with
respect to >ω. Since I is ω-homogeneous, G consists of ω-homogeneous polynomials.

With these notations, the first step of the short resolution of R/I is given by the
following result:

Proposition 5.1 ([3, Prop. 1]). Let B0 ⊂ R be the set of monomials that do not
belong to in(I) + ⟨xn−d+1, . . . , xn⟩. Then,

{u+ I | u ∈ B0}

is a minimal set of generators of R/I as A-module. The ω-graded A-module ho-
momorphism ψ0 : ⊕v∈B0A (− degω(v)) → R/I is defined by ψ0(ϵu) = u + I, where
{ϵu | u ∈ B0} denotes the canonical basis of ⊕v∈B0A (− degω(v)), and hence the
shifts at the first step of the short resolution (5.2) are the ω-degrees of the elements
u ∈ B0.

This result provides the whole short resolution when R/I is a free A-module,
i.e., when the projective dimension of R/I as A-module is 0, which is equivalent to
R/I being Cohen-Macaulay. In Gröbner basis terms, this is also equivalent to the
fact that variables xn−d+1, . . . , xn do not divide any minimal generator of in(I); see,
e.g., [5, Thm. 2.1] or [3, Prop. 2].
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When R/I is not free, the resolution has at least one more step. In this case, we
will describe the relations between the generators of R/I given in Proposition 5.1,
i.e., provide a finite set of generators H of ker(ψ0), which may not be minimal. This
gives a presentation of R/I as A-module: R/I is isomorphic to the quotient of a
free A-module by the submodule generated by H, and the short resolution of R/I
can then be obtained by standard A-module computations (see Section 1.2).

Let χ : R → R be the evaluation morphism defined by χ(xi) = xi for i ∈
{1, . . . , n−d} and χ(xj) = 1 for j ∈ {n−d+1, . . . , n}, and set J := χ (in(I)) .R, the
extension of the ideal in(I) by the ring homomorphism χ. Now, for every monomial
u ∈ B0 ∩ J , consider the ideal Iu defined by

Iu := (in(I) : u) ∩ k[xn−d+1, . . . , xn] .

Since Iu is a monomial ideal, it has a unique minimal monomial generating set
denoted by G(Iu), and let B′

1 be the following set of monomials:

B′
1 = {u ·M | u ∈ B0 ∩ J,M ∈ G(Iu)}. (5.3)

Each monomial xα ∈ B′
1 can be written uniquely as xα = u ·Mα, where u = χ(xα) ∈

B0 ∩ J and Mα ∈ G(Iu). Let rα be the remainder of the division of xα by G,
the reduced Gröbner basis of I with respect to >ω. Since every monomial in the
expression of rα does not belong to in(I), one can uniquely write rα =

∑
v∈B0

fα,vv
with fα,v ∈ A. Using these notations, for all xα ∈ B′

1 set

hα :=Mα · ϵu −
∑
v∈B0

fα,v · ϵv ∈ ⊕v∈B0A (− degω(v)) , (5.4)

where {ϵv | v ∈ B0} denotes the canonical basis of ⊕v∈B0A (− degω(v)).

Since ψ0(hα) = (xα − rα) + I = 0 for all xα ∈ B′
1, one has that ⟨hα | xα ∈ B′

1⟩ ⊂
ker(ψ0). The next result shows that this inclusion is indeed an equality.

Proposition 5.2. The kernel of the A-module homomorphism ψ0 is

ker(ψ0) = ⟨hα | xα ∈ B′
1⟩ .

Proof. Consider ψ̄0 : ⊕v∈B0A (− degw(v)) → R the A-module homomorphism de-
fined by ψ̄0(ϵv) = v, for all v ∈ B0. Take g ∈ ker(ψ0), and let us prove that
g ∈ ⟨hα | xα ∈ B′

1⟩. We write g =
∑

v∈B0
gvϵv with gv ∈ A for all v ∈ B0. Since

g ∈ ker(ψ0), then g
′ = ψ̄0(g) =

∑
v∈B0

gv ·v ∈ I and its initial term is in(g′) = c·w·Mγ

for some c ∈ k \ {0}, w ∈ B0 and a monomial Mγ ∈ A. In fact, w ∈ B0 ∩ J and
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Mγ ∈ Iw = (in(I) : w)∩A. Hence, there exists xα =Mαw ∈ B′
1 such thatMα divides

Mγ. Let us consider g1 = g − cMγ

Mα
hα ∈ ker(ψ0). If g1 = 0, then g ∈ ⟨hα | xα ∈ B′

1⟩.
Otherwise, one has that 0 ̸= in

(
ψ̄0(g1)

)
< in

(
ψ̄0(g)

)
and we iterate this process.

The result then follows by induction because >ω is a well ordering.

Proposition 5.2 provides a system of generators of ker(ψ0). As a consequence,
we get the next step of a non-necessarily minimal graded free resolution of R/I as
A-module.

Corollary 5.3. Consider the morphism of A-modules

ψ′
1 : ⊕xα∈B′

1
A (− degω(x

α))→ ⊕v∈B0A (− degω(v))

ϵα 7→ hα

where {ϵα | xα ∈ B′
1} is the canonical basis of ⊕xα∈B′

1
A (− degω(x

α)). Then,
Im(ψ′

1) = Ker(ψ0).

Since R/I and ⊕v∈B0A (− degω(v)) /ker(ψ0) are isomorphic as graded A-modules,
their minimal graded free resolutions coincide up to isomorphism. Thus, one can
compute the short resolution by applying standard A-module computations to the
submodule ker(ψ0) = ⟨hα | xα ∈ B′

1⟩ ⊂ ⊕v∈B0A(− degω(v)). The whole process to
obtain the short resolution of R/I is shown in Algorithm 5.1. It has been imple-
mented in the function shortRes of [41].

Example 5.4. Set R = Q[x1, x2, x3, x4, x5], let > be the degree reverse lexicographic
order in R, and consider IC ⊂ R, the defining ideal of the projective monomial curve
determined by A = {(1, 6), (2, 5), (6, 1), (7, 0), (0, 7)}, i.e.,

IA = ⟨x1 − t1t62, x2 − t21t52, x3 − t61t2, x4 − t71, x5 − t72⟩ ∩Q[x1, x2, x3, x4, x5] .

Let L be the zero-dimensional ideal L = ⟨x21−x2x3, x32−x4x25, x1x2, x23, x24−x25, x2x5,
x45⟩, and consider the ideal I = IA∩L. One has that I is homogeneous, dim(R/I) =
dim(R/IA) = 2, and variables are in Noether position, i.e., A = Q[x4, x5] ↪→ R/I
is a Noether normalization. Moreover, x5 is a zero divisor on R/I because f =
x2x

2
3 − x24x5 /∈ I while fx5 ∈ I, so we are not under the hypotheses of [3, Prop. 4].

By Proposition 5.1, a minimal system of generators of R/I as A-module is {u+ I |
u ∈ B0} for

B0 = {u1 = x43, u2 = x33, u3 = x2x
2
3, u4 = x1x

2
3, u5 = x23, u6 = x2x3, u7 = x1x3,

u8 = x3, u9 = x32, u10 = x1x
2
2, u11 = x22, u12 = x1x2, u13 = x2, u14 = x21,

u15 = x1, u16 = 1} .
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Algorithm 5.1 Computation of the short resolution.

Input: I ⊂ R a weighted homogeneous ideal with variables in Noether position
Output: Short resolution of R/I

1: G ← reduced Gröbner basis of I for >ω.
2: B0 ← k-basis of in(I) + ⟨xn−d+1, . . . , xn⟩ for >ω.
3: J ← χ (in(I)) .R, where χ : R→ R is defined by χ(xi) = xi for i ∈ {1, . . . , n−d},

and χ(xj) = 1 for j ∈ {n− d+ 1, . . . , n}.
4: Iu ← (in(I) : u) ∩ A, ∀u ∈ B0 ∩ J .
5: G(Iu)← minimal monomial generating set of Iu, ∀u ∈ B0 ∩ J .
6: B′

1 ← {u ·M | u ∈ B0 ∩ J,M ∈ G(Iu)}.
7: rα ← remainder of xα by G, ∀xα ∈ B′

1.
8: For all xα ∈ B′

1, write xα =Mαu and rα =
∑

v∈B0
fα,vv.

9: hα ←Mαϵu −
∑

v∈B0
fα,vϵv, ∀xα ∈ B′

1.
10: ker(ψ0)← ⟨hα | xα ∈ B′

1⟩.
11: Compute the m.g.f.r. of ker(ψ0).

If χ : R→ R is the ring homomorphism defined by χ(x1) = x1, χ(x2) = x2, χ(x3) =
x3, and χ(x4) = χ(x5) = 1, then J = χ (in(I)) .R = ⟨x53, x21, x1x2, x22, x1x3, x2x3⟩,
and hence B0 ∩ J = {u3, u4, u6, u7, u9, u10, u11, u12, u14}, and Iu3 = Iu4 = ⟨x4, x5⟩,
Iu6 = ⟨x24, x25⟩, Iu7 = ⟨x45, x4x25, x24⟩, Iu9 = ⟨x25, x4⟩, Iu10 = ⟨x4⟩, Iu11 = ⟨x24⟩, Iu12 =
⟨x34⟩, and Iu14 = ⟨x24, x5⟩. Thus, the set B′

1 defined in (5.3) is

B′
1 = {x2x23x4, x2x23x5, x1x23x4, x1x23x5, x2x3x24, x2x3x25, x1x3x45, x1x3x4x25, x1x3x24,

x32x
2
5, x

3
2x4, x1x

2
2x4, x

2
2x

2
4, x1x2x

3
4, x

2
1x

2
4, x

2
1x5}.

Take the first element in B′
1, x

α = x2x
2
3x4 = x4u3, and compute the remainder rα of

its division by the reduced Gröbner basis of I with respect to >, rα = x34x5 =
x34x5u16. The corresponding element as in (5.4) is hα = x4ϵ3 − x34x5ϵ16 where
{ϵ1, . . . , ϵ16} is the canonical basis of ⊕16

i=1A (− deg(ui)). Doing the same for each
monomial in B′

1, one gets 16 elements that generate the submodule ker(ψ0) of the
free module ⊕16

i=1A (− deg(ui)), and computing the minimal graded free resolution of
this submodule, one gets the short resolution of R/I. Using the function shortRes

of [41], one gets directly the Betti table of the short resolution:
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0 1 2

------------------------

0: 1 - -

1: 3 - -

2: 6 1 -

3: 5 11 2

4: 1 2 2

5: - - 1

------------------------

total: 16 14 5

Observe that in this example the set of 16 generators of ker(ψ0) given by Proposi-
tion 5.2 is not minimal since the Betti table shows that ker(ψ0) is minimally gener-
ated by 14 elements. We will come back to this example later in Example 5.8.

Interestingly, the system of generators provided in Proposition 5.2 is, in fact, a
Gröbner basis for a monomial order in ⊕v∈B0A(− degω(v)) that we now introduce.
This can be used to provide another method for computing a graded free resolution
of R/I as A-module, applying Theorem 1.29 repeatedly.

Definition 5.5. Consider the monomial order >SL in ⊕v∈B0A(− degω(v)) defined
as follows: for all M,M ′ ∈ A monomials and u, v ∈ B0,

Mϵu >SL M
′ϵv ⇐⇒ u ·M >ω v ·M ′ .

We call this monomial order the Schreyer-like order in ⊕v∈B0A (− degω(v)).

If ψ̄0 is the homomorphism of A-modules introduced in the proof of Proposi-
tion 5.2, ψ̄0 : ⊕v∈B0A (− degω(v))→ R, ϵv 7→ v, it is injective and maps monomials
to monomials, and

Mϵu >SL M
′ϵv ⇐⇒ ψ̄0(M) >ω ψ̄0(M

′) .

This equivalent description of >SL proves that it is a monomial order and justifies
its name.

Remark 5.6. For each xα ∈ B′
1, the initial term of hα = Mα · ϵu −

∑
v∈B0

fα,v · ϵv
for the Schreyer-like monomial order >SL is in(hα) =Mα · ϵu.

Theorem 5.7. The set H = {hα | xα ∈ B′
1} is the reduced Gröbner basis of ker(ψ0)

for the Schreyer-like order >SL.
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Proof. By Proposition 5.2, ker(ψ0) = ⟨H⟩. By Buchberger’s criterion, H is a
Gröbner basis if and only if, for all hα,hβ ∈ H, the S-polynomial S(hα,hβ) re-
duces to zero modulo H. One has that S(hα,hβ) = 0 whenever in(hα) and in(hβ)
are multiples of different elements in the canonical basis {ϵv | v ∈ B0}. Let hα,hβ be
two elements inH whose initial terms are multiples of the same element in the canon-
ical basis. By Remark 5.6, there exist monomials u ∈ B0 and Mα,Mβ ∈ A, such
that in(hα) = Mαϵu and in(hβ) = Mβϵu. Set h′α = uMα − rα and h′β = uMβ − rβ,
where rα and rβ are the remainder of the division of xα = uMα and xβ = uMβ by
G (the reduced Gröbner basis of I for >ω), respectively. Let M = lcm(Mα,Mβ) be
the least common multiple of Mα and Mβ. Then, the S-polynomial of hα and hβ is

Sα,β = S(hα,hβ) =
M

Mα

hα −
M

Mβ

hβ .

If S(hα,hβ) = 0, we are done. Otherwise, note that ψ0(Sα,β) = 0, so ψ̄0(Sα,β) ∈ I,
and hence in

(
ψ̄0(Sα,β)

)
∈ in(I). Thus, there exist c ∈ k, w ∈ B0∩J and a monomial

Mµ ∈ A such that in
(
ψ̄0(Sα,β)

)
= c · w ·Mµ. Therefore, Mµ ∈ Iw, and there exists

a monomial Mγ ∈ G(Iw) that divides Mµ. Let hγ ∈ H be the element whose initial

term is in(hγ) = Mγϵw. Consider S ′
α,β = Sα,β − c · Mµ

Mγ
hγ. If S ′

α,β = 0, we are

done. Otherwise, one has that ψ̄0(S
′
α,β) ∈ I and 0 ̸= in

(
ψ̄0(S

′
α,β)
)
<ω in

(
ψ̄0(Sα,β)

)
.

We can iterate this process and conclude that Sα,β reduces to zero modulo H by
induction because >ω is a well order. This shows that H is a Gröbner basis of
ker(ψ0) for >SL.

Moreover, since xα ∤ xβ and xβ ∤ xα for all xα ̸= xβ in B′
1, H is minimal. Finally,

for each xα ∈ B′
1, every monomial appearing in rα (the remainder of the division

of xα by G), does not belong to in(I). Therefore, each monomial that appears in∑
v∈B0

fα,v · ϵv does not belong to ⟨in(hβ) | hβ ∈ H⟩ = in (ker(ψ0)), and we are
done.

Since H is a Gröbner basis of ker(ψ0), the reductions of the S-polynomials Sαβ
provide a generating set for the next syzygy module. This generating set is indeed
a Gröbner basis by Schreyer’s Theorem (Theorem 1.29). The order used here is
the Schreyer order induced in ⊕xα∈B′

1
A (− degω(x

α)) by our Schreyer-like order in
⊕v∈B0A(− degω(v)). Applying repeatedly Schreyer’s Theorem, we obtain the co-
called Schreyer resolution that may not be minimal. Moreover, if we sort at each
step the elements of the Gröbner basis as in Corollary 1.31, one variable disappears
from the initial terms of the elements in the Gröbner basis at each step. Mimicking
the proof of Hilbert’s Syzygies Theorem that uses iteratedly Schreyer’s Theorem,
we obtain a ω-graded free resolution of R/I as A-module that may not be minimal
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but has at most d steps,

F ′ : 0→ ⊕v∈B′
p′
A(− degω(v))

ψ′
p′−→ . . .

ψ′
1−→ ⊕v∈B0A(− degω(v))

ψ0−→ R/I → 0 , (5.5)

where d ≥ p′ ≥ p and B′
i ⊂ R is a set of monomials for all i. Minimalizing this

resolution, a short resolution of R/I as in (5.2) is obtained with Bi ⊂ B′
i.

We now illustrate with an example how to build and minimalize Schreyer’s reso-
lution. We will see later in Section 5.3 how to explicitly obtain the short resolution
(5.2) from Schereyer’s resolution (5.5) when R/I is a simplicial toric ring of dimen-
sion 3.

Example 5.8. Consider the ideal I ⊂ R = Q[x1, x2, x3, x4, x5] in Example 5.4. We
have already determined B0 and B′

1, and we now sort the elements in B′
1 as follows:

B′
1 = {v1 = x2x

2
3x4, v2 = x2x

2
3x5, v3 = x1x

2
3x4, v4 = x1x

2
3x5, v5 = x2x3x

2
4, v6 = x2x3x

2
5,

v7 = x1x3x
2
4, v8 = x1x3x4x

2
5, v9 = x1x3x

4
5, v10 = x32x4, v11 = x32x

2
5, v12 = x1x

2
2x4,

v13 = x22x
2
4, v14 = x1x2x

3
4, v15 = x21x

2
4, v16 = x21x5} .

The 16 generators of ker(ψ0) given by Proposition 5.2 are

h1 = x4ϵ3 − x34x5ϵ16, h2 = x5ϵ3 − x24x25ϵ16, h3 = x4ϵ4 − x5ϵ9 − x24x5ϵ8 + x35ϵ8,
h4 = x5ϵ4 − x4x25ϵ8, h5 = x24ϵ6 − x34ϵ15, h6 = x25ϵ6 − x4x25ϵ15,
h7 = x24ϵ7 − x34x5ϵ16 − x25ϵ7 + x4x

3
5ϵ16 h8 = x4x

2
5ϵ7 − x24x35ϵ16,

h9 = x45ϵ7 − x4x55ϵ16, h10 = x4ϵ9 − x4x25ϵ8, h11 = x25ϵ9 − x45ϵ8,
h12 = x4ϵ10 − x25ϵ5, h13 = x24ϵ11 − x5ϵ2, h14 = x34ϵ12 − x5ϵ1,
h15 = x24ϵ14 − x24x5ϵ13, h16 = x5ϵ14 − x25ϵ13 ,

where {ϵ1, . . . , ϵ16} denotes the canonical basis of ⊕16
i=1A (− deg(ui)).

By Theorem 5.7, H = {h1, . . . ,h16} is the reduced Gröbner basis of ker(ψ0)
for our Schreyer-like order >SL. Moreover, in the above list, the first term of each
element is its initial term, by Remark 5.6. Note that we have sorted h1, . . . ,h16

(and, accordingly, v1, . . . , v16 in B′
1) in such a way that, if for some i < j, the initial

terms of hi and hj are multiples of the same element of the canonical basis, say
in(hi) = Mi · ϵu and in(hj) = Mj · ϵu for some u ∈ B0 and two monomials Mi and
Mj in A = Q[x4, x5], then Mi > Mj for the lexicographic order > with x4 > x5, i.e.,

if Mi = xai4 x
bi
5 and Mj = x

aj
4 x

bj
5 , ai > aj. This guarantees that x4 will not appear in

the leading terms of the generators of the next syzygy module obtained by applying
Schreyer’s Theorem, and hence we will be done.

The reductions of the S-polynomials S(hi,hj) for all 1 ≤ i < j ≤ 16, provide a
Gröbner basis of the next syzygy module for the induced Schreyer order. Since the
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only S-polynomials that have to be computed and reduced by H are the S(hi,hj)
such that the initial terms of hi and hj are multiples of the same element in the
canonical basis, one just has to focus on S(h1,h2), S(h3,h4), S(h5,h6), S(h7,h8),
S(h7,h9), S(h8,h9), S(h10,h11) and S(h15,h16). Note that the leading term of the
syzygy corresponding to the reduction of S(h7,h9) is a multiple of the one coming
from S(h7,h8), and hence the syzygy coming from S(h7,h9) will be discarded when
the Gröbner basis is minimalized. Thus, we do not need to compute it, and by
reducing the other seven S-polynomials, we get that the set of monomials B′

2 is

B′
2 = {w1 = x2x

2
3x4x5, w2 = x1x

2
3x4x5, w3 = x2x3x

2
4x

2
5, w4 = x1x3x

2
4x

2
5,

w5 = x1x3x4x
4
5, w6 = x32x4x

2
5, w7 = x21x

2
4x5} .

Hence, a graded free resolution of R/I as A-module is

0→ ⊕v∈B′
2
A(− deg(v))

ψ′
2−→ ⊕v∈B′

1
A(− deg(v))

ψ′
1−→ ⊕v∈B0A(− deg(v))

ψ0−→ R/I → 0 ,

where the matrix of ψ0 is
(
u1 + I u2 + I . . . u16 + I

)
, the matrix of ψ′

1 is
the square matrix

(
h1 h2 . . . h16

)
, and the matrix of ψ′

2 is given by the re-
ductions of the S-polynomials S(h1,h2), S(h3,h4), S(h5,h6), S(h7,h8), S(h8,h9),
S(h10,h11), and S(h15,h16). Since there are nonzero constants in the reduction of
the second and fourth S-polynomials,

S(h3,h4) = x5h3 − x4h4 = −x25ϵ9 + x45ϵ8 = −h11 ,

S(h7,h8) = x25h7 − x4h8 = −x45ϵ7 + x4x
5
5ϵ16 = −h9 ,

the above resolution is not minimal. Making it minimal, we get the short resolution
of R/I as in (5.2) for B1 = B′

1 \ {v9, v11} and B2 = B′
2 \ {w2, w4}. Reordering, at

each step, the generators (and hence the rows and columns of the matrices defining
the morphisms), the short resolution of R/I shows as

0→ A(−5)2 ⊕ A(−6)2 ⊕ A(−7) ψ2−→ A(−3)⊕ A(−4)11 ⊕ A(−5)2
ψ1−→ A⊕ A(−1)3 ⊕ A(−2)6 ⊕ A(−3)5 ⊕ A(−4) ψ0−→ R/I → 0 ,

and the Betti table is the same as the one given in Example 5.4.

Since the Hilbert series of R/I can be determined using any graded free resolution
of R/I, we can use the Schreyer resolution (5.5) to compute it, and we get

HSR/I(t) =

∑p′

i=0

∑
v∈B′

i
(−1)i tdegω(v)

(1− t)d
, (5.6)
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by Equation (1.6). As d = dim(R/I), the numerator does not vanish at t = 1
and the expression of the Hilbert series cannot be simplified. As a consequence,
one can compute the Hilbert-Samuel multiplicity of R/I (which is the degree of the
projective algebraic variety defined by I whenever I is homogeneous) from the size
of the sets B′

i.

Proposition 5.9. Denote by e(R/I) the (Hilbert-Samuel) multiplicity of R/I. Then,

(a) e(R/I) =
∑p′

i=0(−1)i|B′
i|.

(b) For all s ∈ N,

d∑
k=0

(−1)k
(
d

k

)
HFR/I(s− k) =

p′∑
i=0

(−1)i|(B′
i)s| ,

where (B′
i)s := {v ∈ B′

i | degω(v) = s}.

Proof. Evaluating the numerator of the Hilbert series (5.6) in t = 1, we obtain (a).
For (b), note that

(1− t)dHSR/I(t) =
p′∑
i=0

∑
v∈B′

i

(−1)i tdegω(v)

and compare the coefficient of ts in both sides of the equality.

Although the Schreyer resolution (5.5) is not minimal in general, there are cases
in which it is known to be: when R/I is Cohen-Macaulay ([3, Prop. 1]), when
dim(R/I) = 1 ([3, Prop. 3]), or when dim(R/I) = 2 and xn is not a zero divisor
of R/I ([3, Prop. 4]). The following straightforward result provides another case in
which it is minimal.

Proposition 5.10. If, for all u ∈ B0 ∩ J , the monomial ideal Iu = (in(I) : u) ∩ A
is principal, then

0→ ⊕v∈B′
1
A(− degω(v))

ψ′
1−→ ⊕v∈B0A(− degω(v))

ψ0−→ R/I → 0

is the short resolution of R/I, i.e., it is the minimal graded free resolution of R/I
as A-module. In particular, depth(R/I) = d− 1.

The condition in the previous result is not necessary and one can have that
depth(R/I) = d − 1 when Iu is not principal for some u ∈ B0 ∩ J as the following
example shows.
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Example 5.11. Consider R = Q[x1, . . . , x7], A = Q[x5, x6, x7], and R/I, the
3-dimensional simplicial toric ring determined by A = {(1, 3, 5), (5, 1, 5), (3, 5, 3),
(5, 5, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2)}, i.e.,

I = ⟨x1−t1t32t53, x2−t51t2t53, x3−t31t52t33, x4−t51t52t3, x5−t21, x6−t22, x7−t23⟩∩Q[x1, . . . , x7] .

Variables are in Noether position, and I is ω-homogeneous for ω = (9, 11, 11, 11, 2,
2, 2). One can check, using for example [93], that B0 = {x4, x3, x2, x1, 1}, B0 ∩
J = {x3, x2, x1}, Ix3 = ⟨x5⟩, Ix2 = ⟨x26⟩ and Ix1 = ⟨x25, x5x6⟩. Hence, B′

1 =
{x3x5, x2x26, x1x25, x1x5x6} and B′

2 = {x1x25x6}. However, the ω-graded short res-
olution of R/I, which can be computed using the function shortRes of [41], is

0→ A(−13)3 → A⊕ A(−9)⊕ A(−11)3 → R/I → 0 ,

so |B1|= 3 and |B2|= 0. Therefore, pdA(R/I) = 1 and depth(R/I) = d−1, although
Ix1 is not principal.

5.2 Simplicial toric rings of dimension 3: a com-

binatorial description of the short resolution

Let A = {a1, . . . , an} ⊂ Nd be a finite set of nonzero vectors, S = ⟨A⟩ ⊂ Nd

the affine semigroup generated by A, and IA ⊂ R := k[x1, . . ., xn] the toric ideal
determined by A. We suppose that the toric ideal IA is simplicial and hence, by
Proposition 1.60, we can assume without loss of generality that there exists D ∈ Z>0

such that an−d+i = Dϵi for all i = 1, . . . , d where {ϵ1, . . . , ϵd} denotes the canonical
basis of Nd. Set ei := Dϵi for all i ∈ {1, . . . , d} and denote by E = {e1, . . . , ed} the
set of extremal rays of the rational cone spanned by A. Under these hypothesis, one
has that A := k[xn−d+1, . . . , xn] ↪→ R/IA is a Noether normalization.

The simplicial semigroup ring k[S] is an S-graded k-algebra isomorphic to R/IA
(as S-graded k[x1, . . ., xn]-modules). We study here the multigraded short resolution
of k[S] with respect to the multigrading |xi|S= degS(xi) = ai ∈ S; namely,

F : 0→ ⊕s∈SpA(−s)
ψp−→ . . .

ψ1−→ ⊕s∈S0A(−s)
ψ0−→ k[S]→ 0 , (5.7)

where Si ⊂ S is a multiset for all i ∈ {0, . . . , p}. Note that this multigrading is
a refinement of the grading given by the weight vector ω = (ω1, . . . , ωn), where
ωi = |ai|=

∑d
j=1 aij ∈ Z>0 for all i ∈ {1, . . . , n}. Hence, IA is ω-homogeneous and

the results of Section 5.1 apply here. As in that section, we fix the ω-graded reverse



140 CHAPTER 5. THE SHORT RESOLUTION

lexicographic order >ω in R.

Our goal here is to describe the resolution (5.7) in terms of the combinatorics of
the semigroup S when d = 3, i.e., when the Krull dimension of k[S] is 3. We start
by recalling from [3] the first step of the resolution for any d ≥ 1. We will later
describe the multisets S1,S2 ⊂ S that appear in the short resolution (5.7) of k[S].
This is a combinatorial transcription of results in [78] and [75] that will be useful in
Section 5.3.

Definition 5.12. Let S be a simplicial semigroup and denote by E = {e1, . . . , ed}
the set of extremal rays of the rational cone spanned by A. The Apéry set of S is

APS := {s ∈ S : s− ei /∈ S for all i = 1, . . . , d} .

Proposition 5.13 ([3, Prop. 5]). The set S0 in the short resolution (5.7) is APS , the
Apéry set of S. The S-graded A-module homomorphism ψ0 : ⊕s∈S0A(−s)→ k[S] is
defined by ψ0(ϵs) = ts, where {ϵs | s ∈ S0} is the canonical basis of ⊕s∈S0A(−s).

To compute the multidegrees in the next steps of the resolution, we consider, for
every s ∈ S, the abstract simplicial complex Ts defined by

Ts :=

{
F ⊂ E : s−

∑
e∈F

e ∈ S

}
.

In [78, Prop. 2.1] and [75, Prop. 5.1], the authors prove that the number of syzy-
gies of multidegree s at the (i+ 1)-th step of the minimal S-graded resolution (5.7)
is dimk H̃i(Ts), where H̃i(−) denotes the i-th reduced homology k-vector space of Ts.

If s ∈ S is such that s−
∑

e∈E e ∈ S, then Ts is a simplex and dimk H̃i(Ts) = 0
for all i ∈ Z. Hence, such an element s ∈ S does not belong to any of the multisets
Si in (5.7). We are thus interested in the elements s ∈ S such that s−

∑
e∈E e /∈ S,

which we will classify. We recall now the definition of the exceptional sets given in
Section 4.2, adapting the notations to the setting we have now.

Definition 5.14. Let S ⊂ N3 be a simplicial semigroup. We define the following
subsets of S, which we call the exceptional sets of S:

• E3,1
S = {s ∈ S | s− ej ∈ S,∀j; s− (ei1 + ei2) ∈ S, s− (ei1 + ei3) /∈ S, s− (ei2 +

ei3) /∈ S, for a permutation (i1, i2, i3) of (1, 2, 3)};
• E2,0

S = {s ∈ S | s − ei1 ∈ S, s − ei2 ∈ S, s − ei3 /∈ S; s − (ei1 + ei2) /∈
S, for a permutation (i1, i2, i3) of (1, 2, 3)};
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• E3,0
S = {s ∈ S | s− ei ∈ S,∀i; s− (ei + ej) /∈ S, ∀i ̸= j};

• E3,3
S = {s ∈ S | s−ei ∈ S,∀i; s− (ei+ej) ∈ S, ∀i ̸= j; and s− (e1+e2+e3) /∈
S}.

Figure 5.1 shows how elements in the Apéry and the exceptional sets of S look
like. In those figures, filled circles represent elements in S, while empty squares
represent elements outside S.

ei1

ei2

ei3

(a) Element in APS . (b) Element in E3,1
S .

(c) Element in E2,0
S . (d) Element in E3,0

S . (e) Element in E3,3
S .

Figure 5.1: Points in APS and the exceptional sets E3,1
S , E2,0

S , E3,0
S , and E3,3

S . Filled
circles represent elements in S, while empty squares represent elements outside S.

Theorem 5.15. If k[S] is a simplicial semigroup ring of Krull dimension d = 3,
the multisets S0,S1,S2 ⊂ S that appear in the short resolution (5.7) are

S0 = APS , S1 = E3,1
S ∪ E

2,0
S ∪ E

3,0
S ∪ E

3,0
S , S2 = E3,3

S .

Proof. We already know that S0 = APS . For any other s ∈ S, the simplicial complex
Ts is one of those in Table 5.1, whose homologies are straightforward to compute.
Then, the result follows from [78, Prop. 2.1] and [75, Prop. 5.1]

Remark 5.16. As a consequence of Theorem 5.15, the sets APS , E
3,1
S , E2,0

S , E3,0
S ,

and E3,3
S are finite subsets of S.

The Apéry and exceptional sets of S determine the multigraded Hilbert series of
k[S], as the following result shows.
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E3,1
S E2,0

S E3,0
S E3,3

S Other configurations

i1 i2

i3

i1 i2 i1 i2

i3

i1 i2

i3

i1 i1 i2 i1 i2

i3

i1 i2

i3

Table 5.1: Possible configurations of elements s ∈ S and the associated simplicial
complexes Ts.

Corollary 5.17. Let k[S] be a simplicial semigroup ring of Krull dimension 3. The
multigraded Hilbert series of k[S] is:

HSk[S](t) =

∑
s∈APS

ts −
∑

s∈E3,1
S

ts −
∑

s∈E2,0
S

ts − 2
∑

s∈E3,0
S

ts +
∑

s∈E3,3
S

ts

(1− tωn−2

1 )(1− tωn−1

2 )(1− tωn
3 )

,

where ωn−2 = |e1|, ωn−1 = |e2| and ωn = |e3|.

Proof. The multigraded Hilbert series of k[S] is given by

HSk[S](t) =
∑

s=(s1,s2,s3)∈S

ts11 t
s2
2 t

s3
3 =

∑
s∈S0

ts −
∑

s∈S1
ts +

∑
s∈S2

ts

(1− tωn−2

1 )(1− tωn−1

2 )(1− tωn
3 )

,

and the result follows from Theorem 5.15.

As already observed at the beginning of this section, the ideal IA is ω-homogeneous
for the weight vector ω = (ω1, . . . , ωn), where ωi = |ai| for i ∈ {1, . . . , n}. Therefore,
the short resolution of k[S] with respect to this grading can be obtained from the
multigraded one in a simple way as follows:

F : 0→ ⊕s∈S2A(−|s|)
ψ2−→ ⊕s∈S1A(−|s|)

ψ1−→ ⊕s∈S0A(−|s|)
ψ0−→ k[S]→ 0 .

Moreover, the weighted Hilbert series of k[S] is obtained from the multigraded one
by the transformation ta11 t

a2
2 t

a3
3 7→ ta1+a2+a3 .

When IA is a (standard graded) homogeneous ideal, by Remark 1.71, without
loss of generality we can assume that there exists D ∈ Z>0 such that |ai|= D for
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all i = 1, . . . , n. Thus, the short resolution of k[XA] with respect to the standard
grading is

F : 0→ ⊕s∈S2A(−|s|/D)
ψ2−→ ⊕s∈S1A(−|s|/D)

ψ1−→ ⊕s∈S0A(−|s|/D)
ψ0−→ R/IA → 0 ,

and hence, the Castelnuovo-Mumford regularity of R/IA is

reg(k[XA]) = max

({
|s|
D

: s ∈ S0
}
∪
{
|s|
D
− 1 : s ∈ S1

}
∪
{
|s|
D
− 2 : s ∈ S2

})
(5.8)

and the Hilbert series of k[XA] is obtained from the multigraded Hilbert series by
applying the transformation ta11 t

a2
2 t

a3
3 7→ t(a1+a2+a3)/D. Then, the formula for the

regularity of a simplicial projective monomial surface in Theorem 4.25 follows from
Equation (5.8) and Theorem 5.15. Moreover, Proposition 4.23 follows from Propo-
sition 5.9 (b), Theorem 5.15, and the short resolution F above.

5.3 Pruning algorithm for simplicial toric rings of

dimension 3

Consider now, as in Section 5.2, the toric ideal IA defined by A = {a1, . . . , an} ⊂ N3,
the generating set of a simplicial semigroup S, and assume without loss of generality
that the last three generators are the extremal rays of the rational cone spanned by
A. Setting R := k[x1, . . ., xn] and I := IA, one has that R/I is a simplicial toric ring
of dimension 3. Moreover, for A := k[xn−2, xn−1, xn] and ω := (ω1, . . . , ωn) ∈ Nn

with ωi = |ai| for all i, 1 ≤ i ≤ n, one has that I is ω-homogeneous and A is a
Noether normalization of R/I, so the results in Section 5.1 apply. Our aim in this
section is to build the Schreyer resolution and explicitly prune it in order to build
directly the short resolution of R/I in this case.

Let G be the reduced Gröbner basis of I with respect to >ω, the ω-graded reverse
lexicographic order. It is known that the elements in G are binomials. Take B0 the
set of monomials not belonging to in(I) + ⟨xn−2, xn−1, xn⟩. Consider χ : R→ R the
evaluation morphism defined by χ(xi) = xi for i ∈ {1, . . . , n − 3} and χ(xj) = 1
for j ∈ {n − 2, n − 1, n}, and set J the extension of in(I) by χ. Now, for every
u ∈ B0 ∩ J , G(Iu) denotes the minimal monomial generating set of

Iu := (in(I) : u) ∩ k[xn−2, xn−1, xn] .

Since the generators of in(I) do not involve the variable xn because the ideal I is
prime and >ω is a reverse lexicographic order, every element in G(Iu) is a monomial



144 CHAPTER 5. THE SHORT RESOLUTION

of the form xan−2x
b
n−1 with a, b ∈ N. Denote ℓu := |G(Iu)| and write G(Iu) =

{M(u,1), . . . ,M(u,ℓu)}, where the elements of G(Iu) are sorted lexicographically, i.e.,
M(u,1) > · · · > M(u,ℓu) with respect to the lexicographic order xn > xn−1 > xn−2.
Now consider the set of monomials

B′
1 = {uM(u,i) | u ∈ B0 ∩ J, 1 ≤ i ≤ ℓu}.

For each xα = uM(u,i) ∈ B′
1, where u ∈ B0 ∩ J and M(u,i) = xan−2x

b
n−1 ∈ G(Iu),

take rα the remainder of the division of xα by G. Since G consists of binomi-
als and M(u,i) ∈ G(Iu), then rα = xa

′
n−2x

b′
n−1x

c′
n v for some a′, b′, c′ ∈ N such that

gcd(M(u,i), x
a′
n−2x

b′
n−1) = 1 and some v ∈ B0. By Theorem 5.7, the set

H = {h(u,i) :=M(u,i) · ϵu − xa
′

n−2x
b′

n−1x
c′

n−1 · ϵv | u ∈ B0 ∩ J, 1 ≤ i ≤ ℓu}

is the reduced Gröbner basis for the Schreyer-like monomial order >SL in Defini-
tion 5.5, and in

(
h(u,i)

)
= M(u,i) · ϵu by Remark 5.6. Applying Schreyer’s Theorem

(Theorem 1.29), one gets that the syzygies of H are obtained by reducing the S-
polynomials of all pairs of elements in H by H. Note that only S-polynomials of
the form S(h(u,i),h(u,j)) with u ∈ B0∩J and 1 ≤ i < j ≤ ℓu must be considered and
reduced since the other S-polynomials are zero. Furthermore, since the monomials
M(u,i) only involve variables xn−2 and xn−1 and have been lexicographically sorted,
M(u,1) > . . . > M(u,ℓu), we only need to consider the reductions of the S-polynomials
S(h(u,i),h(u,i+1)) with u ∈ B0 ∩ J and 1 ≤ i < ℓu since the other ones will be dis-
carded when the resulting Gröbner basis of the syzygy module is made minimal.
This implies that the initial terms of the resulting syzygies are pure powers of xn−2

located in different copies of A, and hence the module of syzygies of H obtained
by applying Schreyer’s Theorem is free. The Schreyer resolution of R/I has thus at
most two steps, and it shows as follows:

0→ ⊕v∈B′
2
A(− degω(v))

ψ′
2−→ ⊕v∈B′

1
A(− degω(v))

ψ′
1−→ ⊕v∈B0A(− degω(v))

ψ0−→ R/I → 0 . (5.9)

Algorithm 5.2 below takes advantage of the previous discussion and builds B0,
B′
1, and B′

2, the sets of monomials in R involved in the above resolution. It is worth
pointing out that this algorithm involves only a Gröbner basis computation and
Gröbner-free manipulations with monomial ideals. It has been implemented in the
function schreyerResDim3 of [41].

As Examples 5.11 and 5.18 show, even when R/I is a 3-dimensional simplicial
toric ring, the resolution (5.9) might not be minimal.
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Algorithm 5.2 Computation of the sets B′
i for a simplicial toric ring of dim. 3.

Input: I ⊂ R = k[x1, . . ., xn] a simplicial toric ideal of dimension 3 with variables
in Noether position.
Output: The sets of monomials B0,B′

1,B′
2 ⊂ R involved in the Schreyer resolution

(5.9) of R/I as A-module, A = k[xn−2, xn−1, xn].

1: B0 ← monomial k-basis of R/in(I)+⟨xn−2, xn−1, xn⟩ for the degrevlex order >ω.
2: J ← χ (in(I)) .R, where χ : R→ R is defined by χ(xi) = xi for i ∈ {1, . . . , n−3},

and χ(xn−2) = χ(xn−1) = χ(xn) = 1.
3: Iu ← (in(I) : u) ∩ A, ∀u ∈ B0 ∩ J .
4: G(Iu)← minimal generating set of Iu, ∀u ∈ B0∩J ; G(Iu) = {M(u,1), . . . ,M(u,ℓu)}

ordered lexicographically with xn > xn−1 > xn−2.
5: B′

1 ← {u ·M(u,i) | u ∈ B0 ∩ J, 1 ≤ i ≤ ℓu}.
6: Lu ← {lcm(M(u,i),M(u,i+1)) | 1 ≤ i < ℓu}, ∀u ∈ B0 ∩ J such that ℓu ≥ 2.
7: B′

2 ← {u ·M | u ∈ B0 ∩ J, ℓu ≥ 2, and M ∈ Lu}.

Example 5.18. Set R := Q[x1, . . . , x6], and let I be the toric ideal determined by
A = {(7, 2, 3), (1, 8, 3), (3, 8, 1), (12, 0, 0), (0, 12, 0), (0, 0, 12)}. One has that I is a
homogeneous toric ideal and A = Q[x4, x5, x6] is a Noether normalization of R/I,
hence R/I is a 3-dimensional simplicial toric ring. Applying Algorithm 5.2 we obtain
that |B0|= 204, |B′

1|= 174 and |B′
2|= 42. However, the Betti diagram of the short

resolution, obtained by using the function shortRes of [41], is the following:

0 1 2

------------------------

0: 1 - -

1: 3 - -

2: 6 1 -

3: 10 3 -

4: 15 6 -

5: 21 10 -

6: 26 15 -

7: 29 20 -

8: 32 26 1

9: 29 26 2

10: 20 19 2

11: 9 9 1

12: 2 2 -

13: 1 1 -

------------------------

total: 204 138 6
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Our next aim is thus to minimalize Schreyer’s resolution (5.9) using the results
from Section 5.2. We will show how to obtain subsets B1 ⊂ B′

1 and B2 ⊂ B′
2,

such that B1 and B2 provide the actual shifts that appear in the short resolution
of R/I. We will refer to this process as pruning the resolution. Note that, by
Proposition 5.9 (a),

e(R/I) = |B0|−|B1|+|B2|= |B0|−|B′
1|+|B′

2|

and, in particular, |B′
1 \ B1|= |B′

2 \ B2|.

In the process of pruning the resolution, we will use the following result several
times.

Proposition 5.19. Let S = ⟨a1, . . . , an⟩ ⊂ Nd be an affine semigroup and b, c ∈ S.
Write b =

∑n
i=1 βiai and c =

∑n
i=1 γiai with βi, γi ∈ N and consider the monomials

xβ := xβ11 · · · xβnn and xγ := xγ11 · · · xγnn ∈ k[x1, . . . , xn]. Then, b− c ∈ S if and only
if xβ ∈ IA + ⟨xγ⟩.

Proof. We know that R/IA and k[S] are isomorphic as graded k-algebras, and denote
by φ̃ the corresponding graded isomorphism. Now, consider the ideal ⟨tc⟩ of k[S],
and the canonical projection map π : k[S] → k[S]/⟨tc⟩. Since φ̃(xγ) = tc, we have
that ker(π ◦ φ̃) = (IA + ⟨xγ⟩)/IA. Thus, by the third isomorphism theorem, there is
a graded isomorphism of k-algebras

Ψ : k[x]/(IA + ⟨xγ⟩) −→ k[S]/⟨tc⟩.

Moreover, k[S]/⟨tc⟩ has a unique monomial basis, which is {td |d ∈ S and d−c /∈
S}. Finally, observe that the image of a monomial by Ψ is a monomial, and hence

xβ ∈ IA + ⟨xγ⟩ ⇐⇒ Ψ(xβ) = 0⇐⇒ b− c ∈ S,

and we are done.

To achieve our goal, consider the subset C ⊂ B′
1 defined by C = {v · xbn−1 ∈ B′

1 |
v ∈ B0 and b ≥ 2}. The following result shows that the elements in B′

1 \ B1 belong
to C.

Lemma 5.20. B′
1 \ B1 ⊂ C.

Proof. Consider xα ∈ B′
1 \ B1 and denote by hα the corresponding element of H.

Since xα /∈ B1, there exist u ∈ B0 ∩ J and 1 ≤ i < ℓu such that there appears
a nonzero constant multiplying hα in the reduction of S(h(u,i),h(u,i+1)) by H. If
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h(u,i) = xa1n−2x
b1
n−1ϵu − xc1n ϵv and h(u,i+1) = xa2n−2x

b2
n−1ϵu − xc2n ϵw, for some v, w ∈ B0,

ai, bi, ci ∈ N (i = 1, 2) with c1, c2 ≥ 1, a1 < a2, and b1 > b2, then

S(h(u,i),h(u,i+1)) = xa2−a1n−2 h(u,i)−xb1−b2n−1 h(u,i+1) = xn
(
xb1−b2n−1 xc2−1

n ϵw − xa2−a1n−2 xc1−1
n ϵv

)
.

Hence, the reduction of S(h(u,i),h(u,i+1)) by H does not involve nonzero constants.

Therefore, h(u,i) = xa1n−2ϵu − xb1n−1ϵv, and h(u,i+1) = xa2n−2x
b2
n−1ϵu − xcnϵw, for some

v, w ∈ B0 and a1, a2, b1, b2, c ∈ N with a1, b1, b2, c ≥ 1, a2 < a1 and b1 + b2 = b ≥ 2.
Hence,

S(h(u,i),h(u,i+1)) = xb2n−1h(u,i) − xa−a
′

n−2 h(u,i+1) = −xbn−1ϵv + xn

(
xa−a

′

n−2 x
c−1
n ϵw

)
,

and since there appears a nonzero constant in the reduction of S(h(u,i),h(u,i+1)), one
has that xbn−1 ∈ G(Iv), where Iv = (in(I) : v) ∩ A. Thus, xα = vxbn−1 ∈ C.

Remark 5.21. As a direct consequence of the previous result, if C = ∅, then
B′
1 = B1, B′

2 = B2, and hence the Schreyer resolution (5.9) is already minimal.

The inclusion B′
1 \ B1 ⊂ C can be strict or not. In fact, if C ̸= ∅, both cases

B′
1 = B1 and B′

1 \ B1 = C can happen, as the following examples show.

Example 5.22. In this example, computations are performed over the field Q.

(1) Set A := {(1, 0, 3), (3, 0, 1), (0, 1, 3), (3, 1, 0), (0, 3, 1), (1, 3, 0), (4, 0, 0), (0, 4, 0),
(0, 0, 4)}, and let I be the toric ideal determined by A. Applying Algo-
rithm 5.2, one gets that |B0|= 28, |B′

1|= 18, and |B′
2|= 6. In this case, B1 = B′

1

although |C|= 3 since the Betti diagram of the short resolution given by Al-
gorithm 5.1 is

0 1 2

------------------------

0: 1 - -

1: 6 - -

2: 12 3 -

3: 6 6 -

4: 3 9 6

------------------------

total: 28 18 6

(2) If A is the set in Example 5.18, |B′
1|= 174, |B1|= 138 and |C|= 36, so B′

1\B1 =
C.
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For each xβ ∈ C, denote by rβ the remainder of xβ by the reduced Gröbner basis
of I for the ω-graded reverse lexicographic order >ω in R. Since xn−1 divides xβ,
then rβ is a multiple of xn. Consider the partition C = C1 ⊔ C2, where

C1 = {xβ ∈ C | rβ = wxan−2x
c
n, for some a, c ≥ 1, w ∈ B0} , and

C2 = {xβ ∈ C | rβ = wxcn, for some c ≥ 1, w ∈ B0} .

We now show that one can decide whether a monomial xβ ∈ C is in B1 or not just
by looking at its S-degree. More precisely, it suffices to check if |xβ|S=

∑n
i=1 βiai

appears as a shift in the first step of the short resolution, and this happens if and
only if |xβ|S∈ E3,1

S ∪E
2,0
S ∪E

3,0
S by Theorem 5.15. In Theorem 5.24, we characterize

when the latter holds in terms of some monomials that may belong to the ideal
IA + ⟨xn−2⟩ or not. We will use the following easy lemma. As in Section 5.2, set
ei := Dϵi for all i ∈ {1, 2, 3} and E := {e1, e2, e3}, where {ϵ1, ϵ2, ϵ3} is the canonical
basis of N3.

Lemma 5.23. Let xβ = vxbn−1 ∈ C and set s = |xβ|S .

(1) If xβ ∈ C1, then

s− ei ∈ S,∀i = 1, 2, 3; s− (e1 + e3) ∈ S; and s− (e2 + e3) /∈ S .

(2) If xβ ∈ C2, then

s− e2 ∈ S; s− e3 ∈ S; and s− (e2 + e3) /∈ S .

s

(a) Situation in Lemma 5.23 (1).

s

(b) Situation in Lemma 5.23 (2).

Figure 5.2

Proof. Let us prove (1). If xβ = vxbn−1 ∈ C1, there exist a monomial w ∈ B0 and
natural numbers a, c ≥ 1 such that vxbn−1−wxan−2x

c
n ∈ IA. From this fact, it follows

that s − ei ∈ S for i = 1, 2, 3, and s − (e1 + e3) ∈ S. Suppose by contradiction
that s− (e2 + e3) ∈ S. Then, there exists a monomial M ∈ k[x1, . . . , xn] such that
vxbn−1 −Mxn−1xn ∈ IA. Since IA is prime, then vxb−1

n−1 − Mxn ∈ IA, and hence
vxb−1

n−1 ∈ in(IA), which contradicts with the minimality of xbn−1 ∈ G(Iv). The proof
of (2) is analogous.
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Theorem 5.24. Let xβ = vxbn−1 ∈ C.

(1) If xβ ∈ C1, then

vxbn−1 ∈ B1 ⇐⇒ vxb−1
n−1 /∈ IA + ⟨xn−2⟩ .

(2) If xβ ∈ C2, denote by wxcn the remainder of xβ by G. Then,

vxbn−1 ∈ B1 ⇐⇒ vxb−1
n−1 /∈ IA + ⟨xn−2⟩ or wxc−1

n /∈ IA + ⟨xn−2⟩ .

Therefore,

B1 = (B′
1 \ C) ∪ {vxbn−1 ∈ C1 | vxb−1

n−1 /∈ IA + ⟨xn−2⟩}
∪ {vxbn−1 ∈ C2 | vxb−1

n−1 /∈ IA + ⟨xn−2⟩ or wxc−1
n /∈ IA + ⟨xn−2⟩} .

Proof. By Theorem 5.15, we know that the multiset of S-degrees appearing in the
first step of the short resolution is

S1 = E3,1
S ∪ E

2,0
S ∪ E

3,0
S ∪ E

3,0
S ;

we observe that in S1 the elements of E3,1
S ∪E

2,0
S have multiplicity 1, and the elements

of E3,0
S have multiplicity two. We know that S1 is a (multi)subset of

S ′
1 := {|xα|S |xα ∈ B′

1 \ C} ∪ {|xα|S |xα ∈ C}.

Claim: Whenever s ∈ S1, its multiplicities in S1 and in S ′
1 coincide.

Proof of the claim: By Lemma 5.20, we know that {|xα|S |xα ∈ B′
1 \ C} is a

(multi)subset of S1. Hence, to derive the claim it suffices to prove that:

(i) distinct elements of C have distinct S-degrees, and
(ii) whenever an element of B′

1 \ C and an element of C have the same S-degree,
then this S-degree belongs to E3,0

S and has multiplicity exactly two in S ′
1.

To prove (i), consider two elements in C with the same S-degree, namely, xα =
uxbn−1 and xβ = u′xb

′
n−1 and assume that b ≥ b′. Then it follows that f = uxb−b

′

n−1−u′ ∈
IA, so f = 0, and hence u = u′ and b = b′.

To prove (ii), consider xα ∈ B′
1 \ C and xβ ∈ C with s := |xα|S= |xβ|S . We

write xβ = uxbn−1, b ≥ 2, xα = u′xa
′
n−2x

b′
n−1, a

′ + b′ ≥ 1. Suppose first that xβ ∈ C1,

i.e., rβ = vxan−2x
c
n for some a, c ∈ Z>0. If a′ ≥ 1, then u′xa

′−1
n−2 x

b′
n−1 − vxa−1

n−2x
c
n ∈ IA,

so u′xa
′−1
n−2 x

b′
n−1 ∈ in(IA), and hence xa

′−1
n−2 x

b′
n−1 ∈ Iu′ , contradicting the minimality of

xa
′
n−2x

b′
n−1 ∈ G(Iu′). Therefore, a′ = 0, so |uxbn−1|S= |u′xb

′
n−1|S , which implies that
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u = u′ and b = b′, a contradiction. Hence, xβ ∈ C2, i.e., rβ = vxcn, for some c ∈ Z>0.
Now, let us see that s ∈ E3,0

S . If b′ ≥ 1, then uxb−1
n−1 − u′xa

′
n−2x

b′−1
n−1 ∈ IA is a nonzero

binomial and neither uxb−1
n−1 nor u′xa

′
n−2x

b′−1
n−1 belongs to in(IA), which is impossible.

This proves that b′ = 0. Since, s = |u′xa′n−2|S= |uxbn−1|S= |vxcn|S∈ S1, then either

s ∈ E3,1
S or s ∈ E3,0

S . Suppose s ∈ E3,1
S . Then there exist w ∈ B0, a′′, b′′, c′′ ∈ N with

at least two of them nonzero, such that s = |wxa′′n−2x
b′′
n−1x

c′′
n |S . Combining this with

s = |u′xa′n−2|S (if a′′ ̸= 0) or s = |uxbn−1|S (if b′′ ̸= 0), we get a contradiction. Hence,

s ∈ E3,0
S . Finally, let us see that there does not exist xγ ∈ B′

1 \ C, xγ ̸= xα, such
that |xγ|S= s. Let xγ = u′′xa

′′
n−2x

b′′
n−1 ∈ B′

1 \ C, xγ ̸= xα, such that |xγ|S= s. Then,
a′′, b′′ ∈ Z>0, or a

′′ ∈ Z>0 and b′′ = 0, or a′′ = 0 and b′′ = 1. Proceeding as before
each of these three cases leads to a contradiction. Therefore, the claim is proved.

As a consequence of the Claim, one has a criterion to detect if an element of B′
1

belongs to B1 or not. More precisely, let xα ∈ B′
1, then:

xα ∈ B1 ⇐⇒ |xα|S∈ S1 .

We now use this criterion to prove (1) and (2).
Let xβ = vxbn−1 ∈ C1 and set s = |xβ|S . By Lemma 5.23 (1), one has that

xβ ∈ B1 if and only if s − (e1 + e2) /∈ S. Then, by Proposition 5.19, one has that
s− (e1 + e2) ∈ S if and only if vxb−1

n−1 ∈ IA + ⟨xn−2⟩.
Let xβ = vxbn−1 ∈ C2 and set s = |xβ|S and rβ = wxcn the remainder of xβ by

the reduced Gröbner basis of IA. By Lemma 5.23 (2), one has that xβ ∈ B1 if and
only if s− (e1 + e2) /∈ S or s− (e1 + e3) /∈ S. Hence, the result follows again from
Proposition 5.19.

The last claim in the theorem is a direct consequence of (1) and (2).

In Theorem 5.24, we have obtained a test to decide algebraically if a monomial
xβ ∈ C ⊂ B′

1 is in B1 or not, and hence we can obtain the set B1. To apply
this criterion, one only has to test the membership of some monomials to the ideal
IA + ⟨xn−2⟩. Now, we do something similar to obtain the set B2 ⊂ B′

2.

Lemma 5.25. Let xα ∈ B′
2 \ B2, and set s = |xα|S , then

s−ei ∈ S,∀i = 1, 2, 3; s−(e1+e2) ∈ S; s−(e1+e3) ∈ S; and s−(e1+e2+e3) /∈ S .

Proof. If a monomial xα ∈ B′
2 is not in B2, then it comes from a S-polynomial

S(h,h′), h,h′ ∈ H, such that there appears a nonzero constant in the reduction of
S(h,h′) by the Gröbner basis {hα | xα ∈ B′

1}. The syzygies h,h′ have expressions
h = xan−2ϵu−xbn−1ϵv, and h′ = xa

′
n−2x

b′
n−1ϵu−xcnϵw, for some u, v, w ∈ B0, a, b, b′, c ≥

1 and a′ ∈ N, with a′ < a, as in the proof of Lemma 5.20. Therefore, xα =
u · lcm(xan−2, x

a′
n−2x

b′
n−1) = u · xan−2x

b′
n−1, and we note that

|uxan−2x
b′

n−1|S= |vxb+b
′

n−1 |S= |wxa−a
′

n−2 x
c
n|S .
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From the previous equalities, we deduce that s − ei ∈ S for all i = 1, 2, 3, s −
(e1 + e2) ∈ S, and s − (e1 + e3) ∈ S. Let us prove that s − (e1 + e2 + e3) /∈ S.
Assume by contradiction that s− (e1 + e2 + e3) ∈ S. Then, there exist a monomial
M ∈ k[x1, . . . , xn], such that uxan−2x

b′
n−1 − xn−2xn−1xnM ∈ IA, so uxa−1

n−2x
b′−1
n−1 −

xnM ∈ IA. Therefore, there exist natural numbers a′′ ≤ a − 1 and b′′ ≤ b′ − 1
such that xa

′′
n−2x

b′′
n−1 ∈ G(Iu). Since xa

′
n−2x

b′
n−1 ∈ G(Iu) and b′′ < b′, then a′′ > a′.

Hence, lcm
(
xa

′′
n−2x

b′′
n−1, x

a′
n−2x

b′
n−1

)
= xa

′′
n−2x

b′
n−1, which is a proper divisor of xan−2x

b′
n−1,

a contradiction with xα = uxan−2x
b′
n−1 ∈ B′

2.

s

Figure 5.3: Situation in Lemma 5.25.

Theorem 5.26. For all xα = uxan−2x
b
n−1 ∈ B′

2,

xα ∈ B2 ⇐⇒ uxan−2x
b−1
n−1 ∈ IA + ⟨xn⟩ .

Therefore,
B2 = {uxan−2x

b
n−1 ∈ B′

2 | uxan−2x
b−1
n−1 ∈ IA + ⟨xn⟩} .

Proof. By Theorem 5.15, we know that the multiset of S-degrees appearing in the
second step of the short resolution is S2 = E3,3

S , and every element appears with
mutiplicity 1. We know that S2 is a (multi)subset of

S ′
2 := {|xα|S |xα ∈ B′

2}.

Claim: Distinct elements of B′
2 have distinct S-degrees.

Proof of the claim. Take xα = uxan−2x
b
n−1 ∈ B′

2 and xβ = u′xa
′
n−2x

b′
n−1 ∈ B′

2,
a, a′, b, b′ ∈ Z>0, such that |xα|S= |xβ|S . Then, uxan−2x

b
n−1 − u′xa

′
n−2x

b′
n−1 ∈ IA.

If u = u′, then a = a′ and b = b′, and hence xα = xβ. Now suppose u ̸= u′. In
this case, uxan−2x

b−1
n−1 − u′xa

′
n−2x

b′−1
n−1 ∈ IA. Assume without loss of generality that its

initial term is uxan−2x
b−1
n−1 ∈ in(IA), so x

a
n−2x

b−1
n−1 ∈ Iu, contradicting the minimality

of xan−2x
b
n−1 ∈ G(Iu). Hence, the Claim follows.

As a consequence of the Claim, one has a criterion the detect if an element of
B′
2 belongs to B2 or not. More precisely, let xα ∈ B′

2, then:

xα ∈ B2 ⇐⇒ |xα|S∈ S2 = E3,3
S
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By Lemma 5.25, one has that for all xα ∈ B′
2,

|xα|S∈ E3,3
S ⇐⇒ |x

α|S−(e2 + e3) ∈ S .

Therefore, the result follows from Proposition 5.19.

Algorithm 5.3 Pruning algorithm for a simplicial toric ring of dimension 3.

Input: I ⊂ R = k[x1, . . ., xn] a simplicial toric ideal of dimension 3 with variables
in Noether position
Output: The sets of monomials B0,B1,B2 ⊂ R that appear in the short resolution
of R/I.

1: G ← reduced Gröbner basis of I for the ω-graded reverse lexicographic order.
2: B0,B′

1,B′
2 ← sets obtained in Algorithm 5.2.

3: C ← {v · xbn−1 ∈ B′
1 | v ∈ B0 and b ≥ 2}.

4: rα ← remainder of xα by G, ∀xα ∈ B′
1.

5: C1 ← {xα ∈ C | xn−2 divides rα}.
6: C2 ← {xα ∈ C | xn−2 does not divide rα}.
7: B1 ← (B′

1 \ C) ∪ {xα ∈ C1 | xα

xn−1
/∈ I + ⟨xn−2⟩} ∪ {xα ∈ C2 | xα

xn−1
/∈ I +

⟨xn−2⟩ or rα
xn

/∈ I + ⟨xn−2⟩}.
8: B2 ← {xα ∈ B′

2 | xα

xn−1
∈ I + ⟨xn⟩}.

Using Theorem 5.24 and Theorem 5.26, one can obtain the set B2 ⊂ B′
2 in

the short resolution. The whole pruning algorithm (for B′
1 and B′

2) is summarized
in Algorithm 5.3. It is worth pointing out that this algorithm requires only the
computation the Grob̈ner basis G of I with respect to the ω-graded reverse lexico-
graphic order, to compute the remainders of several monomials modulo G, and to
test membership of several monomials to the ideal I + ⟨xn−2⟩. Algorithm 5.3 has
been implemented in the function pruningDim3 of [41].

The pruning algorithm presented in this section does not work if the ideal I is
not toric. If I is not prime, it can happen that pdA(R/I) = 3, so the resolution
has one more step and even Algorithm 5.2 fails. If I is prime but not binomial,
Example 5.27 shows that Algorithm 5.3 can fail.

Example 5.27. Set R := Q[x1, . . . , x7], and let I ⊂ R be the ideal

I = ⟨x1 + t21t
2
2 − t31t3, x2 − t31t2, x3 − t32t3, x4 − t2t33, x5 − t31, x6 − t32, x7 − t33⟩ ∩R .
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The ideal I is prime, dim(R/I) = 3, and the variables are in Noether position.
However, I is not binomial, so it is not toric. Applying the results of Section 5.1, we
obtain |B0|= 28, |B′

1|= 16 and |B′
2|= 4. Moreover, this resolution is minimal since

its Betti diagram, obtained by using the function shortRes of [41], is

0 1 2

------------------------

0: 1 - -

1: 4 - -

2: 9 2 -

3: 13 12 3

4: 1 2 1

------------------------

total: 28 16 4

However, when applying Algorithm 5.3 to the sets B0, B′
1 and B′

2, one gets B1 = B′
1

and |B′
2 \ B2|= 1, so the algorithm fails in this case.

5.4 Dependence on the characteristic of k
In this last section, we present an example of a simplicial toric ring R/IA whose
minimal graded free resolution depends on the characteristic of k. Let A ⊂ N6 be
the set defined by the column vectors of the following matrix

3 3 3 3 3 1 1 1 1 1 2 0 0 0 0 0
3 3 1 1 1 3 3 3 1 1 0 2 0 0 0 0
3 1 3 1 1 3 1 1 3 3 0 0 2 0 0 0
1 1 3 3 1 1 3 3 3 1 0 0 0 2 0 0
1 1 1 3 3 3 3 1 1 3 0 0 0 0 2 0
1 3 1 1 3 1 1 3 3 3 0 0 0 0 0 2

 ,

and consider the toric ideal I ⊂ R = k[x1, . . . , x16] determined by A. Set A =
k[x11, . . . , x16]. Then, IA is ω-homogeneous for ω = (6, . . . , 6, 1, . . . , 1) and A is a
Noether normalization of R/I.

We compute the short resolution of R/I when k is a field of characteristic 0 and
when its characteristic is 2 using the function shortRes of [41]. This example shows
that the short resolution of a simplicial toric ideal may depend on the characteristic
of k. Moreover the projective dimension as A-module is different for both charac-
teristics, pdA(R/I) = 2 when char(k) = 0, while pdA(R/I) = 3 when char(k) = 2.
Since pdR(R/I) = pdA(R/I) + n − d = pdA(R/I) + 10, the resolution of R/I as
R-module also depends on the characteristic of k. We could not compute the whole
resolution but the second step already shows that the resolution depends on the
characteristic of k.
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Betti diagram of the resolution of R/I as A-module:

char(k) = 0

0 1 2

------------------------

0: 1 - -

1: - - -

2: - - -

3: - - -

4: - - -

5: - - -

6: 10 15 6

------------------------

total: 11 15 6

char(k) = 2

0 1 2 3

------------------------------

0: 1 - - -

1: - - - -

2: - - - -

3: - - - -

4: - - - -

5: - - - -

6: 10 15 6 1

7: - - 1 -

------------------------------

total: 11 15 7 1

Beginning of the Betti diagram of the resolution as R-module:

char(k) = 0

0 1 2

------------------------

0: 1 - -

1: - - -

2: - - -

3: - - -

4: - - -

5: - - -

6: - 15 6

7: - - -

8: - - -

9: - - -

10: - - -

11: - 55 150

12: - - -

13: - - -

14: - - -

15: - - -

16: - - 330

------------------------

total: 1 70 486

char(k) = 2

0 1 2

------------------------

0: 1 - -

1: - - -

2: - - -

3: - - -

4: - - -

5: - - -

6: - 15 6

7: - - 1

8: - - -

9: - - -

10: - - -

11: - 55 150

12: - - -

13: - - -

14: - - -

15: - - -

16: - - 330

------------------------

total: 1 70 487



Conclusions

In this thesis, we have addressed the study of several problems in the interface
between commutative algebra and additive combinatorics, exploring the bridge es-
tablished in the recent articles [18, 30, 32].

In Chapter 2, we have studied the equality of the Betti numbers of a projective
monomial curve and one of its affine charts. In Theorem 2.12, we provide a sufficient
condition in terms of the Apéry posets of the semigroups defined by the projective
and the affine monomial curves.

In Chapter 3, we have studied the problem of determining the structure of the
sumsets in additive combinatorics. To this end, we have applied some techniques
from commutative algebra. We have given a complete understanding of the struc-
ture theorem for the sumsets of sets of integers, see Theorem 3.16. Furthermore,
we have made the structure theorem in higher dimensions more explicit in some
cases, providing upper bounds on the sumsets regularity that improve the ones in
the literature; see Theorems 3.26 and 3.29 for the smooth case, and Theorems 3.35
and 3.41 for the case of surfaces with a single singular point.

In Chapter 4, we have provided combinatorial formulas for the Castelnuovo-
Mumford regularity of projective monomial curves (Theorem 4.2) and simplicial
projective monomial surfaces (Theorem 4.25). Moreover, we have established a re-
lation between the Castelnuovo-Mumford regularity and the sumsets regularity in
Theorems 4.13 and 4.27. This has allowed us to give a proof of the Eisenbud-Goto
conjecture for projective monomial curves and simplicial projective monomial sur-
faces with a single singular point.

Finally, in Chapter 5, we have provided a Schreyer-like method to compute the
short resolution of any weighted homogeneous ideal whenever the variables are in
Noether position, which follows from Theorem 5.7 (Algorithm 5.1). Moreover, we
have designed an algorithm for simplicial toric rings of dimension 3 that first con-
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structs a non-minimal graded free resolution (Algorithm 5.2) and then minimalizes
it to obtain the short resolution (Algorithm 5.3).

In view of the results of Chapters 3 and 4, we believe that these results can be
extended to any simplicial projective monomial surface. We are therefore currently
working on this extension to prove the Eisenbud-Goto conjecture for simplicial pro-
jective monomial surfaces.
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projective monomial curves associated to generalized arithmetic sequences. J.
Symb. Comput., 81:1–19, 2017. https://doi.org/10.1016/j.jsc.2016.11.

001.
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Mumford y otros invariantes de álgebras graduadas de dimensión dos. PhD
thesis, Universidad de La Laguna, 2018. https://portalciencia.ull.es/

documentos/5e31703e2999523690ffef0c.
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