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Abstract

In this thesis, we study some interactions between commutative algebra and additive
combinatorics. Based on recent works by Eliahou and Mazumdar [30], Elias [32], and
Colarte-Gémez, Elias and Mir6-Roig [18], we associate with each finite set A C N¢
a projective toric variety X C P, where k is an infinite field and n = |A|—1. We
focus on the study of the sumsets of A and the Castelnuovo-Mumford regularity
of k[X], the coordinate ring of X'. In particular, we look at the cases when X is
a curve, a smooth variety, and a surface with a single singular point. Moreover,
when X is a curve C, we study the relation between the Betti numbers of k[C] and
its affine charts. Finally, we provide an explicit method to compute the minimal
graded free resolution of R/I as A-module, where I C R = k|xy, ..., z,] is a weighted
homogeneous ideal and A = k[z,,_q11, - .., Z,], whenever the variables are in Noether
position.
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Resumen

En esta tesis, estudiamos algunas interacciones entre el algebra conmutativa y la
combinatoria aditiva. Basdndonos en los recientes trabajos de Eliahou [31], Elias
[32], v Colarte-Gémez, Elias y Miré-Roig [18], a cada conjunto finito A C N? le
asociamos una variedad térica proyectiva X C P, donde k es un cuerpo infinito y
n = |A|—1. Nos centramos en el estudio de los conjuntos suma de A y la regularidad
de Castelnuovo-Mumford de k[X], el anillo de coordenadas de X'. En particular, nos
fijamos en los casos en que X es una curva, una variedad lisa o una superficie con
un tnico punto singular. Ademas, cuando X es una curva C, estudiamos la relacion
entre los nimeros de Betti de k[C] y sus cartas afines. Por ultimo, proporcionamos un
método explicito para construir la resolucién libre minimal graduada de R/I como
A-médulo, donde I C R = k[z1,...,x,] es un ideal homogéneo para unos ciertos
pesos v A = K[zp_441, ..., 2y, suponiendo que las variables estdn en posicién de
Noether.
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Introduction

)

“Let no one ignorant of algebra enter here.’
Adapted from the inscription at Plato’s Academy

Graded free resolutions were introduced by Hilbert to compute the so-called
Hilbert function of a homogeneous ideal in the polynomial ring. Using resolutions
and Hilbert’s Syzygy Theorem, one gets that the Hilbert function becomes a poly-
nomial for sufficiently large values of the input, and this polynomial contains valu-
able geometric information about the ideal. Moreover, graded free resolutions can
be used to compute other invariants such as the depth (and, equivalently, using
the Auslander-Buchsbaum formula, the projective dimension) or the Castelnuovo-
Mumford regularity.

The first result to compute graded free resolutions using Grobner bases was ob-
tained by Buchberger, who proved that the reductions of the S-polynomials of a
Grobner basis provide a finite generating set of the first syzygy module, i.e., the
first step in a resolution. Applying this result repeatedly (and using Grobner bases
for modules), one can construct a graded free resolution through several Grébner
bases computations. Later, Schreyer introduced a monomial order for which the
generating set of the syzygy module is indeed a Grobner basis, and hence, one only
needs one Grobner basis computation to construct a graded free resolution (that
may not be minimal), the so-called Schreyer resolution.

The study of graded Betti numbers has attracted a lot of attention and is a clas-
sical problem in commutative algebra, since they encode the numerical information
in any minimal graded free resolution of I, and hence they are enough to compute
the Hilbert function and other invariants. However, the Hilbert function does not
determine the Betti numbers. For instance, Eisenbud proves in his book [27] that
the Hilbert function of the coordinate ring of seven points in general position in
P3 does not depend on the relative position of the points. But the Betti numbers
depend on whether the points lie on a curve of degree 3 or not.
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On the other hand, given GG an abelian semigroup with identity and a finite set
A C @G, additive combinatorics studies the sets of sums of elements in A and their
cardinality. For all s € Z-q, the s-fold iterated sumset of A is defined as the set
of sums of s elements in A, with the convention 0A := {0}. In 1992, Khovanskii
proved in [57] that the function N — N, s — |sA| is asymptotically polynomial.
This is the same situation that appears in the study of the Hilbert function. Indeed,
Khovanskii’s proof is based on the existence of the Hilbert polynomial of a certain
finitely generated graded module. This is the first interaction between the two fields,
commutative algebra and additive combinatorics.

Khovanskii’s theorem has recently attracted the attention of some researchers.
In 2022, Eliahou and Mazumdar gave a new proof of this result in [30]. In their
proof, they associate with A a standard graded k-algebra R(.A), whose Hilbert func-
tion is s — [sA|. A geometric counterpart when S = N? can be found in the paper
[18] by Colarte-Gomez, Elias and Miré-Roig. The special case d = 1 is treated in
the paper [32] by Elias. In [18] and [32], the authors associate with A a certain
projective toric variety.

The main objective of the thesis is to exploit this relation to obtain new results
on the Betti numbers and the Castelnuovo-Mumford regularity of projective toric
varieties and, on the other hand, to obtain and improve known results in additive
combinatorics. We treat the following four topics:

e Betti numbers of projective and affine monomial curves (Chapter 2).
e Structure theorems for sumsets in additive combinatorics (Chapter 3).

e Castelnuovo-Mumford regularity of simplicial projective toric curves and sur-
faces, and its relation to sumsets (Chapter 4).

e Short resolution of a weighted homogeneous ideal (Chapter 5).

In Chapter 1, we introduce the background and notation necessary for the rest
of the thesis. We start with an introduction to numerical and affine semigroups in
Section 1.1. In Section 1.2 we study free resolutions; in Section 1.3, we introduce
toric ideals and toric varieties, the basic objects in this thesis. Finally, in Section 1.4
we explain the relation between commutative algebra and additive combinatorics.
Although it is an introductory chapter, this chapter contains two novel results: The-
orem 1.51, which gives a precise relation between the Castelnuovo-Mumford regu-
larity and the regularity of the Hilbert function in terms of some Betti numbers;
and Proposition 1.78, which provides the specific form of the parametrization of a
simplicial projective toric surface with a single singular point.
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In Chapter 2, we study the Betti numbers of projective and affine monomial
curves. Consider a set A = {ap = 0 < a; < -+ < ap,1 < a, = D} C N such
that ged(ay,...,a,) = 1, and let a, = (D — a;,a;) € N2 for all i = 0,...,n and
A ={a,,...,a,}. Fix an infinite field k and let C C P be the projective mono-
mial curve determined by A. One of the two affine charts of C is C; C A}, the
affine monomial curve determined by A; = {a4,...,a,}. Let k[C] and k[C;] be the
coordinate rings of C and C;, respectively. In Section 2.1, we define the Apéry set
and posets of the semigroups S = (A) and S; = (A;), and we characterize the
Cohen-Macaulayness of k[C] in terms of the Apéry poset of S. The main result of
Section 2.2 (and of this chapter) is Theorem 2.12, which provides a combinatorial
contidion on the Apéry posets of S and &; that ensures the equality of the Betti
numbers of k[C] and k[C;]. In Propositions 2.18 and 2.23, we give two families for
which the condition in Theorem 2.12 is satisfied: arithmetic sequences and their
first projections. Using Theorem 2.12, in Theorem 2.26 we improve Vu’s bound
for the equality of the Betti numbers of k|C] and k[C;] for the shifts of A;, and in
Section 2.4, we provide a method to construct an arithmetically Gorenstein projec-
tive monomial curve C starting from a symmetric semigroup Si; see Theorem 2.32.
Finally, in Section 2.5, we study the Betti numbers of C; for a certain class of nu-
merical semigroups defined by Kunz and Waldi. The main results in this section are
Theorem 2.49, where we characterize when the defining ideal of C; is determinantal;
and Theorem 2.53, where we provide the Betti numbers of some of the semigroups
in the Kunz-Waldi class.

In Chapters 3 and 4, we explore the relations between additive combinatorics
and commutative algebra initiated in the papers [18, 30, 32]. In particular, in Chap-
ter 3 we show how additive combinatorics benefits from commutative algebra, and in
Chapter 4 we show how commutative algebra benefits from additive combinatorics.

Given a finite set A = {ay,...,a,} C N% the s-fold iterated sumset of A is de-
fined by sA = {a;, +---+a;, |0<i <...<iy<n}fors e Z.oand 0A={0}. In
Chapter 3, we study the structure of the sumsets of A for s > 0. In Section 3.1 we
consider the case d = 1. We start this section recalling the classical structure theo-
rem by Nathanson (Theorem 3.1). Fix an infinite field k and consider a set A C N
and the same projective monomial curve as in Chapter 2, C C P. Elias provided in
[32, Prop. 3.4] a characterization of the elements in the structure theorem in terms
of the curve C. In this section, we complete this characterization defining the sum-
sets reqularity of A, o(A), and expressing it in terms of the curve C in Theorem 3.7.
The rest of the section is devoted to improve the known upper bounds on o(A).
We propose a new upper bound (3.5) and compare it with the existing ones. Using
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these results, in Section 3.2 we describe the structure of the sumsets of A. In Sec-
tion 3.3, we study the sumsets of A when d > 2. Take D := max{|a;|: i =0,...,n}
and consider a; = (D — |a;|,a;) € N¢™ for all i = 0,...,n, and A = {a,,...,a,}.
Let X = X4 C P be the projective toric variety defined by A and assume that
X is simplicial. In this context, the structure theorem by Curran and Goldmakher
[23, Thm. 1.3] provides a value sy such that for all s > s, the sumsets s.A can be
explicitly described. We improve this result in two particular cases: X smooth and
X a surface with a single singular point. In Theorem 3.26 we characterize the sets
A for which X is a smooth variety, in terms of the shape of A and also in terms of
its sumsets. We define a sumsets regularity for A and provide a tight upper bound
in Theorem 3.29. Similarly, in Theorem 3.35 we characterize the sets A for which
X is a surface with a single singular point, in terms of the shape of A and also in
terms of its sumsets. We define a sumsets regularity for A and provide an upper
bound on it in Proposition 3.40. Finally, in Theorem 3.41 we improve the previous
bound in some cases.

In Chapter 4, we study the Castelnuovo-Mumford regularity of projective mono-
mial curves and simplicial projective monomial surfaces, with a special emphasis on
the Eisenbud-Goto conjecture. In Section 4.1, we provide a combinatorial formula
to compute the Castelnuovo-Mumford regularity of k[C| in terms of the Apéry and
exceptional sets of § in Theorem 4.2. Moreover, in Theorem 4.9 we determine the
step of a minimal graded free resolution of k|C| in which the regularity is attained.
Using the combinatorial formula for the Castelnuovo-Mumford regularity of k[C],
in Theorem 4.13 we provide upper and lower bounds on it in terms of the sumsets
regularity of A. These bounds give a new combinatorial proof of the Eisenbud-Goto
conjecture for projective monomial curves (Gruson-Lazarsfeld-Peskine’s Theorem
for projective monomial curves). In Section 4.2, we study the regularity of simpli-
cial projective monomial surfaces X'. In Theorem 4.25, we provide a combinatorial
formula to compute the Castelnuovo-Mumford regularity of k[X] in terms of the
Apéry and exceptional sets of S. In the special case of surfaces with a single singu-
lar point, in Theorem 4.27 we prove that reg(k[X]) < o(A) + 1. Using this relation,
in Theorem 4.29 we prove the Eisenbud-Goto conjecture for X whenever the degree
of X is either minimal or maximal.

In Chapter 5, we consider a w-homogeneous ideal I C R = k[x,. .., z,] for some
weight vector w = (wq,...,w,) € (Zso)" and assume that A = k[z,—gq1,...,7]
is a Noether normalization of R/I. In this context, we study the so-called short
resolution of R/I ([3, 75, 78]), i.e., the minimal graded free resolution of R/I as
A-module. In Section 5.1, we provide a general method to compute the short reso-
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lution of any R/I as before. The main results are Proposition 5.2 and Theorem 5.7,
where we provide a system of generators of the first syzygy module and prove that
it is indeed the reduced Grobner basis for a certain monomial order that we call the
Schreyer-like order. In Section 5.2, we describe the short resolution of R/I when it is
a simplicial toric ring of dimension 3 in terms of the combinatorics of the associated
semigroup (Theorem 5.15). In Section 5.3, we provide an algorithm to compute the
short resolution for 3-dimensional simplicial toric rings. This algorithm first con-
structs a graded free resolution that may not be minimal (Algorithm 5.2), and then
minimalizes/prunes it to obtain the short one by applying Theorems 5.24 and 5.26
(Algorithm 5.3). Finally, in Section 5.4, we show an example or a simplicial toric
ring whose short resolution depends on the characteristic of the field k.

The results of this thesis have given rise to the following publications (sorted in
chronological order):

[39] P. Gimenez and M. Gonzélez-Sanchez. Castelnuovo-Mumford regularity of
projective monomial curves via sumsets. Mediterr. J. Math., 20(287), 2023.
https://doi.org/10.1007/s00009-023-02482-3

[36] 1. Garcfa-Marco, P. Gimenez, and M. Gonzalez-Sanchez. Projective Cohen-
Macaulay monomial curves and their affine charts. Ric. Mat., pages 1-22,
2025. https://doi.org/10.1007/s11587-025-00929-1

[42] M. Gonzélez-Sénchez, S. Singh, and H. Srinivasan. The Betti numbers of
Kunz-Waldi semigroups. Proc. Amer. Math. Soc., 153:4215-4224, 2025.
https://doi.org/10.1090/proc/17338

[35] 1. Garcia-Marco, P. Gimenez, and M. Gonzélez-Sédnchez. Computational as-
pects of the short resolution. ArXiv preprint, 2025. https://doi.org/10.
48550/arXiv.2504.12019

[41] M. Gonzélez-Séanchez. ShortRes: A Sage package to compute the short reso-
lution of a weighted homogeneous ideal. GitHub Repository, 2025. Available
online: https://github.com/mgonzalezsanchez/shortRes
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Chapter 1

Preliminaries

“The theory of syzygies offers a microscope for
looking at systems of equations, and helps

to make their subtle properties visible.”

D. Eisenbud

In this chapter, we include the concepts and results that we will use in the next
chapters. Section 1.1 contains the background on semigroups, with an emphasis
on numerical and affine semigroups; Section 1.2 focuses on graded free resolutions,
Betti numbers, and Castelnuovo-Mumford regularity; Section 1.3 is a survey on
toric ideals and toric varieties; finally, in Section 1.4 we present some recent results
on the interface between Additive Combinatorics and Commutative Algebra.

1.1 Semigroups

This first section contains some concepts about numerical and affine semigroups.
For more details, we refer the reader to the books [80], [81], and [82].

A semigroup is a pair (S,+), where S is a nonempty set, and + is a binary
operation on S that is associative. When the operation + is commutative, we say
that the semigroup is abelian, and if there exists an identity element 0 € S, S is
called a monoid. In this thesis, all the semigroups will be abelian monoids, and we
will call them just semigroups.

As it occurs for all algebraic structures, a subset H C S is a subsemigroup of S if

(H,+) is a semigroup, where + is the restriction of the operation in S to H. Given
a semigroup S and a subset A C S, the subsemigroup generated by A, (A), is the

7



8 CHAPTER 1. PRELIMINARIES

smallest subsemigroup of S containing A, that is
<./4> = {A1a1+---+)\nan ‘ HEZ>0,)\Z' EN,ai EA,l SZSTL}

A semigroup S is finitely generated if there exists a finite subset A C S such that
S = (A).

1.1.1 Numerical semigroups

For A C N a nonempty subset, we say that S = (A) is a numerical semigroup if
N\ S is finite. A system of generators of a numerical semigroup is said to be a
minimal system of generators if none of its proper subsets generates the numerical
semigroup. By [82, Thm. 2.7], every numerical semigroup has a unique minimal
system of generators, and it is finite. We denote by MSG(S) the minimal system
of generators of S. Given a nonempty finite subset A C N, (A) is a numerical
semigroup if and only if ged(A) =1 ([82, Lem. 2.1]). If S is a numerical semigroup
minimally generated by A = {ay,...,a,}, and s € S, a factorization of s is a n-tuple
A= (Ai,..., ) € N such that s = 7" | \ia;. The length of the factorization A

is () = 37\,

Let us now introduce some basic concepts that arise in the study of numerical
semigroups.

Definition 1.1. Let S be a numerical semigroup and MSG(S) = {ay,...,a,} be
its minimal system of generators that we assume without loss of generality ordered
as a; < ag < -+ < Qp.

(1) The multiplicity of S is m(S) = a; = min (S \ {0}).
(2) The embedding dimension of S is e(S) = n = |[MSG(S).

(3) The set of gaps of S is G(S) = N\ S. It is finite and its cardinality is called
the genus of S.

(4) The Frobenius number of S is F(S) = max (N \ §), and the conductor of S is
¢(8) = F(S) + 1. It is the smallest element s € S such that any x > s belongs
to S.

(5) Given s € S\ {0}, the Apéry set of S with respect to s is Ap(S,s) ={zr € S|
r —s ¢ S}. By default, if we do not specify the element s € S, the Apéry set
of § is Ap(S) = Ap (S, m(S)).
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(6) The pseudo Frobenius set of Sis PF(S) = {z € Z\S | x+s € S,Vs € S\{0}},
the pseudo Frobenius numbers of S are the elements in PF(S), and the type of
S is t(S) = |PF(S)|.

Given a numerical semigroup & C N, the problem of determining the Frobenius
number of S is NP-hard [79]. In the next proposition, we include two upper bounds
on the Frobenius number of S. The first one is due to Schur, while the second one
to Erdos and Graham.

Proposition 1.2 ([80, Thm. 3.1.1 and 3.1.12]). Let ay,...,a, be positive integers
such that ged(ay, ... a,) =1 and a; < -+ < a,, and consider the numerical semi-
group § = {(ay,...,a,). Then,

(1) F(S) < (a; —1)(a, — 1) — 1.
(2) F(S) < 2a,_1 2] — a,.

For all s € S, one has that F(S) = max (Ap(S,s)) —s. Moreover, Ap(S,s) U
{s} \ {0} generates S. In particular, Ap(S) U {m(S)} \ {0} generates S, and hence
the embedding dimension of S verifies e(S) < m(S).

Definition 1.3. Let & be a numerical semigroup. We say that & has mazimal
embedding dimension if e(S) = m(S).

Example 1.4. Consider the numerical semigroup & = (5,9,11). The multiplicity
of § is m(S) = 5. The embedding dimension of S is e(S) = 3, since S is minimally
generated by {5,9,11}. The set of gaps of S is G(S) = {1,2,3,4,6,7,8,12,13,17}.
Therefore, its genus is ¢(S) = 10 and its Frobenius number is F|(S) = 17. The Apéry
set of S (with respect to 5) is Ap(S) = {0,11,22,18,9}. The Pseudo Frobenius set
of § is PF(S) = {13,17}, and hence its type is t(S) = 2. All these invariants can
be computed using the package NumericalSgps [25] of GAP.

Proposition 1.5 ([82, Lem. 2.4]). Let S be a numerical semigroup and s € S a
nonzero element. Then, Ap(S,s) = {wy = 0,wn,...,ws_1}, where w; is the least
element of S congruent to i modulo s, for 1 <i < s. Hence, the Apéry set Ap(S, s)
18 a complete set of residues modulo s.

In particular, the Apéry set of S with respect to s is finite for all s € §. Set
m = m(S) the multiplicity of S, and denote the elements of the Apéry set as in the
previous proposition, Ap(S) = {wy = 0, w1, ..., Wyp_1}.

Definition 1.6. The Apéry coordinate vector of S is the tuple (wy,ws, ..., Wp_1).
We will also refer to this vector as the Kunz coordinates of S.
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From the definition of the Apéry set, one can easily deduce that w; +w; > w;;,
forall 1 <i¢ < j <m—1such that i+ j # 0, where the sum of indices is interpreted
modulo m. This is the idea that Kunz used to define the so-called Kunz cone in
[60].

Definition 1.7. For each m € N, m > 2, the Kunz cone €,, C Rgo_l is the cone
with defining inequalities z; + z; > 2,4, whenever i + j # 0, where 7, j € Z,, \ {0},

4,J€Zm \{0}
i+j#0

Proposition 1.8 ([9, Prop. 2.5]). A vector z = (2z1,..., 2m-1) € RZ7 with z; = i
(mod m) for all i lies in €, if and only if z is the Apéry coordinate vector of a
numerical semigroup S. Moreover, z is in the interior of &, if and only if S has
maximal embedding dimension.

By the previous result, we can identify a numerical semigroup with its Kunz
coordinates. By an abuse of language, for a numerical semigroup S of multiplicity
m, we will say that it lies in the interior of &, if the Kunz coordinates of & are in
the interior of the Kunz cone €,,. Similarly, we will say that S lies in (the interior
of) a certain face of €,, if its Kunz coordinate are in (the interior of) that face of
Con

Example 1.9. Let m = 4. The Kunz cone €, is defined by
€y ={z=(21,2,23) € Réo | 221 > 29, 21 + 20 > 23, 20 + 23 > 21, 223 > 2o},

and it is generated by the rays (1,0,1), (1,2,3), (1,2,1), and (3,2, 1). Note that the
integer points in €, with all their coordinates > 1 correspond to all the numerical
semigroups of multiplicity 4, by Proposition 1.8.
e For § = (4,7,9), Ap(S) = {0,9,14,7}, and hence its Kunz coordinates are
(9,14,7). Note that S lies on the face § of €y,

S={z€ €y |220 > 29, 21+ 20> 23, 20+ 23 > 21, 223 = 22} .

In fact, it lies in the interior of §, since the Kunz coordinates of S satisfy the
inequalities 221 > 29, 21 + 20 > 23, and 29 + 23 > 23.

e For &' = (4,6,7,9), Ap(S’) ={0,9,6, 7} and its Kunz coordinates are (9,6, 7).
Therefore, the semigroup S’ lies in the interior of the Kunz cone €4, since in

this case all the inequalities are strict for (9,6,7). Note that S’ has maximal
embedding dimension, as follows from Proposition 1.8.
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Let § be a numerical semigroup of multiplicity m and (ws,...,w,_1) be its
Kunz coordinates. We now consider a poset structure on the set Z,,, based on the
relations between the elements in Ap(S) = {0, w1, ..., wn-1}.

Definition 1.10. The Apéry poset of S is P(S) = (Z,, <), where ¢ < j if and only
if w; —w; € S fori,j € Z,,. We write ¢ <- j and say j covers i if ¢ < j and there is
no k such that ¢ < k < j.

The following lemma characterizes the covering relations in terms of the minimal
generators of §. This result allows us to construct the Hasse diagram of the poset

PS).

Lemma 1.11. For alli,j € Zy,, © < j if and only if w; —w; is a minimal generator

of S.

Proof. Being (<) trivial, let us prove (=). Let i,j € Z,, such that ¢ <- j and write
w; = w; + o+ B for some o, € S with a a minimal generator of S. Note that
w; < w; + o = w;. Since w; € Ap(S), then w; + a € Ap(S), so w; = w; + « as j
covers 1. [

Example 1.12. Consider the numerical semigroups & = (8,17,60,69,78) and
S’ = (8,17,53,62,55), whose Apéry sets are Ap(S) = {0,17,34,51,60,69, 78,95}
and Ap(S’) = {0,17,34,51,68,53,62,55}, respectively. The Hasse diagrams of the
Apéry posets P(S) and P(S’) are shown in Figure 1.1.

4
|
3 3
| |
2 7 2
I |
1 4 5 6 1 5 6 7
NP2 NP2
(a) P(S) (b) P(S")

Figure 1.1: Apéry posets in Example 1.12.

The following theorem characterizes when two semigroups S and &’ lie in the
interior of the same face of the Kunz cone €, in terms of their Apéry posets.
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Theorem 1.13 ([10, Thm. 3.10]). Let S and S’ be two numerical semigroups of
multiplicity m. Then, S and S’ lie on the interior of the same face of the Kunz cone
C if and only if P(S) = P(S).

Let S be a numerical semigroup and F(S) its Frobenius number. For all z € S,
one has that F'(S)—xz ¢ S. When the other implication holds for all z, the semigroup
is called symmetric.

Definition 1.14. Let S be a numerical semigroup. We say that S is symmetric if
forall z € Z, x € Sif and only if F/(S) —z ¢ S.

Proposition 1.15 ([82, Prop. 4.4, Cor. 4.5 and 4.11]). The following conditions
are equivalent:

(a) S is symmetric.

(b) The genus of S is g(S) = F(‘?H.

(¢c) The Pseudo Frobenius set of S is PF(S) = {F(S)}.
(d) The type of S is t(S) = 1.

1.1.2 Affine semigroups

Definition 1.16. An affine semigroup is a finitely generated subsemigroup of N¢,
for some d > 1.

Remark 1.17. More generally, a semigroup S is said to be an affine semigroup
if it is isomorphic to a finitely generated subsemigroup of N? for some d. By [81,
Thm. 3.11], § is an affine semigroup if and only if it is finitely generated, cancellative,
torsion free, and reduced:

e S is cancellative if for all a,b,c € S, a+b=a+c=b=c.
e S is torsion-free if for all a,b € S, n € Z~g, na =nb=a =b.
o Sis reduced it SN (=S) = {0}.

Also, note that some authors define affine semigroups as those isomorphic to a
finitely generated subsemigroup of Z?, for some d > 1; see, e.g., [11]. Here we
restrict to N¢ because we are only interested in reduced affine semigroups and, by
Grillet’s theorem [81, Thm. 3.11], every reduced affine semigroup is isomorphic to
a finitely generated subsemigroup of N¢, for some d > 1.

Given an affine semigroup S C N¢, one can always consider a natural partial
order <g in § as follows:

for s1,80 € S, s1 <ssyif and only if sy —s; € S. (1.1)
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This partial order will be useful to characterize some properties of semigroup alge-
bras (see Section 1.3) and it will appear in Chapter 2.

Definition 1.18. Given an affine semigroup S € N? and an element s € S, the
Apéry set of S with respect to sis Ap(S,s) = {x € S | x—s ¢ S}. If B C Sis a finite
subset, the Apéry set of S with respect to B is defined as Ap(S, B) = NpesAp(S, b).

Unlike in the case of numerical semigroups, the Apéry set Ap(S,s) is not finite
in general. Proposition 1.20 characterizes when the Apéry set of S with respect to
a finite subset is finite.

Definition 1.19. Let A = {a;,...,a,} C N be a finite subset. The rational cone
spanned by Ais Pos(A) == {37, Nia;| A € Qso} € Q2. The dimension of Pos(A)
is the dimension of the Q-vector space QA = {>°7 | wa; | u; € Q} C Q%

Proposition 1.20 ([38, Thm. 2.6]). Let A C N? be a finite set of nonzero vectors,
and let § = (A) be the affine semigroup generated by A. If B C S is a finite subset,
then Ap(S, B) is finite if and only if Pos(B) = Pos(A).

Definition 1.21. Let A = {aj,...,a,} C N% and S = (A) be the affine semigroup
generated by A. We say that S is simplicial when the rational cone spanned by A,
Pos(A), has dimension d and is minimally generated by d rays.

If S = (A) ¢ N is simplicial, take {vi,...,vq} C Q%, a generating set of
Pos(A). For i =1,...,d, consider e; € AN Pos(v;) the element with the smallest
norm. We call ey, ..., e4 the extremal rays of the cone Pos(.A).

Remark 1.22. (1) For d € {1,2}, every affine semigroup S C N¢ is simplicial.

(2) Let S be a simplicial semigroup and & the set of extremal rays. By Proposi-
tion 1.20, the Apéry set of S with respect to £ is finite. We will call Ap(S, E)
the Apéry set of S, and denote it just by Ap(S) or APg.

As mentioned before, when d = 1, the affine semigroups with finite complement
in N are called numerical semigroups. We now define an analogous concept for
d>2.

Definition 1.23. Let S be a subsemigroup of N¢. We say that S is a generalized
numerical semigroup if N®\ S is finite.

By [17, Prop 2.3], every generalized numerical semigroup is finitely generated,
i.e., it is an affine semigroup. Moreover, in the same paper the authors characterize
generalized numerical semigroups in terms of the generators of S.
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Theorem 1.24 ([17, Thm. 2.8, Rem. 2.13]). Letd > 2, A C N¢ a finite subset, and
S the affine semigroup generated by A. Then S is a generalized numerical semigroup
if and only if A fulfills the following two conditions:

(1) For all j = 1,2,...,d, the j-th coordinates of the elements of A generate a
numerical semigroup.

(2) Forall j=1,2,...,d, if AV C N%=! is the set obtained from the elements of
A removing the j-th component, the affine semigroup (AY) is N~

Example 1.25. Let A = {(1,0),(2,0),(3,0),(0,2),(0,3),(2,1)}, and S C N? the
affine semigroup generated by A. By Theorem 1.24, S is a generalized numerical
semigroup, since (1,2,3) = N is a numerical semigroup. Moreover, one can easily

prove that S = N\ {(0,1), (1,1)}.

1.2 Free resolutions, Betti numbers, and
Castelnuovo—Mumford regularity

In this section, we introduce the algebraic background on free resolutions of finitely
generated graded modules over the polynomial ring k[xy,...,z,]. Since we will
mainly work with free resolutions of toric ideals, we treat here the general case
of multigradings. Moreover, we introduce the Castelnuovo-Mumford regularity for
finitely generated standard graded modules. In this case, we work over the polyno-
mial ring k[zo, . .., z,]. We refer the reader to [20], [27], [28], [58], and [69] for the
details.

We assume that the reader is familiarized with Grobner basis for ideals and
modules. See [19, Chap. 2] and [20, Chap. 5] for an overview of Grébner bases.

1.2.1 Free resolutions and Betti numbers

Let k be a field and R = k(x| = k[z1,...,z,] the polynomial ring in n variables,
n € Zwg. Consider a set A = {a;,...,a,} C N4\ {0}, d € Z~¢, and denote by
S C N9 the affine semigroup generated by A. A natural way to define a grading
on R =Kk[zy,...,x,] is to assign multidegree (also called S-degree) a; to the variable
zi, |rils= degg(z;) = a;, 1 <i < n. For a = (ay,...,a,) € N* the multidegree or
S-degree of the monomial x* is [x%|s= degg(x*) =Y i, wa; € S.

For every s € S, let Rs denote the k-vector space spanned by the set of all
monomials x“ of multidegree s. Then, R has the direct sum decomposition R =
PsesRs, where RgRy C Rg, o for all s,8" € S. We say that R is S-graded, and we



1.2. FREE RESOLUTIONS, BETTI NUMBERS, AND REGULARITY 15

call this grading an S-grading or multigrading in R. The polynomials f € R are
called homogeneous of degree s.

If necessary, we can extend this grading to N? (resp. Z%) by setting Ry = {0}
for all s € N*\ S (resp. s € Z4\ S).

When d = 1, we usually denote the degrees of the variables z,...,xz, by
Wi, ...,w, € Z~g, respectively, and say that the w-degree of the monomial x* is
|x*|,= deg,(x*) = > i qw;. fw =+ =w, =1, we get the standard grading
of R. Throughout this subsection, all the results apply for multigradings, gradings
given by weights and the standard grading; and we use the word multigrading to in-
clude all cases. We treat the standard graded case in more detail in Subsection 1.2.2.

Given an R-module M, we say that M is S-graded if M = @®gesMs, where
Mg C M is an additive subgroup for all s € S, such that RsMy C Mg,y for all
s,s €8S.

Example 1.26. (1) Let I C R = k[x] be an ideal. Then, I is S-graded (as an
R-module) if and only if there exist homogeneous polynomials fi, ..., f. such
that I = (f1,..., f.). In this case, I = @gesls, where Iy = I N Rs. The
R-module R/I is also S-graded, R/I = ®ses(R/I)s, where (R/I)s = Rs/Is
foralls € S.

(2) For m € Z~g, consider R™ the free R-module of rank m. Then,
R™ = @s€S(Rm>s )

where (R™)s := (Rs)™ for all s € §. This decomposition makes R™ an S-
graded module.

For all sy € &, one can define a new S-grading in R by shifting the degrees:
R(—sp) = @sesR(—so)s, where R(—sg)s = Rs_s, for all s € S. If m € Z-y and
S1,...,8, €S, one can also shift the S-grading in R™ by s1,...,S,:

R(—=s1) @ ... ® R(—sp) = Bses (R(—s1) & ... D R(—sp))s ,

where (R(—s1)® ... ® R(—sm)), = R(—s1)s ® ... ® R(—s,,)s for all s € S. A way
of thinking of this new S-grading is as follows: if {e1, ..., e, } denotes the standard
basis of R™, we are assigning degree s; to the vector e;, ¢ = 1,...,m. Thus, for
f=(f1,..., fm) € R™, the degree of f;e; is degs(f;) + s;, and

fe(R(—s1)®... 0 R(—sp)), <= fi€ Rs_g, foralli=1,...,m.
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Remark 1.27. One can show that every S-graded free R-module F' of rank m has
the form FF = R(—s;) @ ... R(—s,,) for some s1,...,s,, € S; see, e.g., [27, Ex. 4.11].
Hence, if M = (f;,...,f,,) is a finitely generated S-graded R-module, where f; € M
is homogeneous of degree s; € § for all © = 1,...,m, then the graded epimorphism
of R-modules ¢ : R(s1) ® ... ® R(—s,) — M defined by v¥(e;) = f; induces an
isomorphism of S-graded R-modules M = (R(—s;1) & ... ® R(—s.,)) /ker(¢).

Definition 1.28. Let M be a finitely generated S-graded R-module. A graded free
resolution of M (as R-module) is an exact sequence of S-graded R-modules and
homomorphisms of R-modules

Fioo.oFESF 5. 5o 3SR M0 (1.2)

satisfying the following properties:

o F,=R(—s;1)®...®R(—s;,,) is a free S-graded free R-module of finite rank
for all 7 > 0.

e The morphism ¢; is graded for all + > 0, i.e., it maps elements of degree s in
F; to elements of degree s in F;_q, for all s € S.

The elements s; ;, i > 0, 1 < j < r;, are called the shifts of the resolution F. The
i-th syzygy module of M is @;11(Fi11) = ker(yp;) C F;. If for some ¢ € N, Fy # 0 and
F,. =0 for all » > ¢, we say that the resolution is finite of length (.

To compute graded free resolutions, one can use Grobner bases. Let F' = R™
be a free R-module, m € Zo, and M = (g;,...,g;) an S-graded submodule of F,
where for all i € {1,...,t}, g; is homogeneous of S-degree s; € S. Set {€1,...,€,}
the canonical basis of F'. Assume that G = {gi,...,g:} is a Grobner basis of M
with respect to a certain monomial order > on F. By Buchberger’s criterion, for
all 1 <7 < j <t, the S-polynomial S(g;,g;) either is 0, or reduces to 0 modulo G.
Hence, there exists an expression S(g;, g;) = Mjigi — Mijg; = S_, (” gk, where
Mﬂ,M € R are monomials, f,gij) € R for all k£ € {1,...,t}, and m(fk gk) <
in(S(gi,g;)) for all k € {1,...,t}, where in(—) denotes the leadlng monomial for >.
Each one of the relations

Mjigi - mg] Z (U gk = 0
provides a syzygy which can be represented as a vector 7;; = M;€; — M;j€; —

Sy ,gij)ek € R'. Indeed, if 7;; # 0, one has that 7;; € R(—s1) ® 69 R(— st)
homogeneous of a certain S-degree s;;.
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Theorem 1.29 (Schreyer’s Theorem, [27, Thm. 15.10]). With notations as above,
suppose that g1, . ..,8: is a Grobner basis of M with respect to a monomial order >,
and consider the graded homomorphism of R-modules ¢ : R(—s1) @ ... R(—s;) —
R™ defined by p(€;) = gi, i € {1,...,t}. Then, ker(p) = (13; | 1 < i < j < t).
Indeed, {T;; | 1 < i < j <t} forms a Grobner basis of ker(y) for the monomial
order >g on R(—s1) @ ... ® R(—s;) defined by taking

Me; 5 Me; 1n(Mg,) > ?n(M’gj) for t@e monomial order > on R™, or
in(Mg;) =in(M'g;) andi < j.

Remark 1.30. The initial term of 7;; for the monomial order >g is in(7;;) = Mj;e€;.

Repeated use of Theorem 1.29 provides a graded free resolution of M. The next
result shows how to sort the elements in the Grobner basis to obtain a resolution
that finishes in at most n steps.

Corollary 1.31 ([27, Cor. 15.11]). With notations as in Theorem 1.29, suppose
that the g; are arranged so that whenever in(g;) and in(g;) involve the same vector
of the canonical basis of F, say in(g;) = M;e and in(g;) = M;e with M;,M; € R
monomials, we have

Z<]:>MZ >LEX Mj,
where > px 1S the lexicographic order on R with x1 > x9 > --- > x,. If the variables

X1, ...,Ts are missing from the initial terms of the g;, then the variables xy, ..., Ts11
are missing from the in(7;;) and F/(g1,...,&) has a resolution of length < n — s.

Theorem 1.29 and Corollary 1.31 provide the so-called Schreyer’s algorithm to
compute graded free resolutions based on Grobner bases computations when M is
a submodule of a free R-module F'. This resolution is called the Schreyer resolution
and it is always of length < n by Corollary 1.31.

Example 1.32 (Schreyer’s resolution). Take R = Q[x,y, z,t] and consider in R
the multigrading defined by degg(z) = (2,3), degs(y) = (1,4), degs(z) = (0,5)
and degg(t) = (5,0), where S = ((2,3),(1,4),(0,5),(5,0)) C N2 The ideal I =
(g1, 92, 93), where g, = x® — yzt, go = 2%y — 2°t, and g3 = y* — xz, is S-graded,
since g1, g2, g3 are homogeneous. Fix > the degree reverse lexicographic on R with
x>y >z >t ie., for x¥,x? € R two distinct monomials,

deg(x®) > deg(x”), or

x* > x7 =
{deg(xa) = deg(x”) and the last nonzero entry of a« — B is < 0.

Observe that the elements g1, g2, g3 satisfy in(g;) > in(gs) > in(gs) for the lexico-
graphic order with x > y > z > t. Let us construct a graded free resolution of I as
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R-module. Note that g; is homogeneous of degree (6,9), g2 of degree (5,10), and g3
of degree (2,8). Set Fy := R(—(6,9)) ® R(—(5,10)) ® R(—(2,8)), and compute the
S-polynomials between g1, g2, g3:

e S(g1,92) = yg1 —xgs = —ztgs, and hence we have 75 = y€; —rey+ ztes, where
{€1, €3, €3} is the canonical basis of R®. Note that 715 € F} is homogeneous of
degree (7,13), i.e., T2 € (Fo)(7,13)-

o S(g1,93) = y?g1 — 393 = 1291 — yztgs, and hence T3 = (y*> — z2)e; + (—23 +
yzt)es. Note that T3 € (Fo)s,17)-

e S(g2,93) = yg2 — ¥%g3 = zg1, and hence T3 = —z€; + yes — v?€3. Note that
To3 € (Fo)(6,14)-

By Buchberger’s criterion, {g1, g2, 93} is a Grobner basis of I with respect to the
degrevlex order. The initial term of the 7;; for the monomial order >g are in(72) =
yer in(7i3) = y’e1, and in(7e3) = y€s, by Remark 1.30. We sort the 7;; following
Corollary 1.31; f; = 73, f5 = 75 and f3 = m3. By Theorem 1.29, the sequence

R(=(8,17)) ® R(—(7,13)) ¢, R(=(6,9)) © R(—(5,10)) o

0= OR(—(6,14)) = DR(—(2,8)) =120

is exact and the morphisms ¢q and ; are graded, where ¢y(€;) = g;, p1(€;) = £; for
all i = 1,2, 3, and {€], €,, €;} is the canonical basis of R(—(8,17)) ® R(—(7,13)) @
R(—(6,14)). Moreover, by Theorem 1.29, {f},f;,f3} is a Grobner basis of ker(yy)
for the monomial order >g. Now, S(fi,f3) = S(f2,f5) = 0, and

S<fla f2) =1 —yfy = ofs,

so 1|, = €, — ye, — xe;. Note that 7{, is homogeneous of degree (8,17), and it
generates ker(¢;) by Theorem 1.29. Hence, one has that

F:0— R(—(8,17)) 2 R(—(8,17)) & R(—(7,13)) & R(—(6,14))
4 R(—(6,9)) ® R(—(5,10)) @ R(—(2,8)) = T =0

is a graded free resolution of I, where ¢y is defined by @s(1) = 7{,. The resolution
F is finite of length 2.

By Remark 1.27, every finitely generated S-graded module M is isomorphic to
the quotient of a free R-module, and hence, the Schreyer’s resolution of M has length
< n. This provides an easy proof of the graded version of Hilbert’s syzygy theorem.
Moreover, this proof is constructive and shows a method to compute a graded free
resolution of any finitely generated S-graded R-module M, providing that we know
how to compute ker(¢)) in Remark 1.27.
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Theorem 1.33 (Graded Hilbert’s syzygy theorem, [58, Thm. 4.8.4]). Every finitely
generated S-graded R-module has a graded free resolution of length at most n.

If F is a graded free resolution of M, as in (1.2), every map ¢;, i € N, can be
represented by a matrix ®; with coefficients in k[zy, ..., z,]. Moreover, since (1.2)
is an exact sequence, then ®;,;P;, = 0 for all : € N. When there are not nonzero
constants in any of the matrices ®;, we say that the resolution is minimal. This can
be reformulated in the following way.

Definition 1.34. A graded free resolution F of M is minimal if Im(p;) C mF;_4
for all i > 1, where m = (x4, ..., xz,).

By the graded version of Nakayama’s lemma, this condition is equivalent to say-
ing that o; maps a basis of F; to a minimal generating set of Im(y;), for all i > 1 (see
[58, p. 151]). Since one can always obtain a minimal graded free resolution (m.g.f.r.)
from a graded free resolution ([58, Thm. 4.8.6]), it follows from Theorem 1.33 that
every finitely generated S-graded R-module has a m.g.f.r. of length at most n.

Example 1.35. Consider the same R and [ as in Example 1.32, and the graded
free resolution F that we computed in that example. The matrices ®; representing
the morphisms ¢; for i =0, 1,2 are

y2 — Xz Y —Zz 1
Qo= (91 92 93), P1= 0 - Y ,and ¢y = | —y
—x3 4 yzt zt —x? —x

Since the matrix ®, contains a nonzero constant, the resolution F is not minimal.
The 1 in ®, comes from the relation f; = yfy + xf3. To get a m.g.f.r. from F, just
note that ker(pg) = (f2,f3), so one can remove the first column of ®;. If one does
that, then ker(¢1) = 0, and the resolution ends at that point. Hence, a m.g.f.r. of
I is as follows:

0— R(—(7,13)) ® R(—(6,14)) — R(—(6,9)) ® R(—(5,10)) ® R(—(2,8)) — I — 0.
From a m.g.f.r. of I, one can get a m.g.f.r. of R/

0= R(—(7,13)) ® R(—(6,14)) = R(=(6,9)) & R(—(5,10)) ® R(—(2,8))
— R— R/I —0. (1.3)
Given a finitely generated S-graded R-module M, any two m.g.f.r. of M are

isomorphic; see, e.g., [58, Thm. 4.8.9]. Here, isomorphic means that at each step,
there is a graded isomorphism of modules between the corresponding modules in the
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two resolutions. As a consequence, one can extract some invariants of the module
M from any m.g.fr. of M. In particular, all the m.g.f.r. of M have the same
length, and this length is the projective dimension of M, pd(M). Theorem 1.33
ensures that pd(M) < n, and the Auslander-Buchsbaum formula provides the exact
relation between these two numbers.

Theorem 1.36 (Auslander-Buchsbaum formula, [13, Thm. 1.3.3]). Let M be a
finitely generated S-graded R-module. Then,

pd(M) + depth(M) =n,
where depth(M) denotes the depth of M as R-module.

Since depth(M) < dim(M ), one has that pd(M) < n—dim(M ), and the equality
holds if and only if M is Cohen-Macaulay. Hence, the Cohen-Macaulay property of
a module can be checked in terms of its projective dimension. For a fixed dimension
d, Cohen-Macaulay modules are the ones with the shortest resolutions.

Let M be a finitely generated S-graded R-module. Consider a minimal S-graded
free resolution of M as R-module,

FO0-E2%E . RS R2SM-0. (1.4)

and write F; = @gcsR(—s)?%= for all i = 0,...,p. Note that for all 4, Bis = 0 for all
but finitely many s € §, since F; has finite rank.

Definition 1.37. The i-th multigraded (or S-graded) Betti number of M in degree
s is the number f; (M) = B; s of summands R(—s) in F;. The i-th Betti number of
M is the rank of the free module F;, 3;(M) = 3; = > .5 Bis- The Betti sequence of
M is (Bo, b1, .-+, Bp)-

Moreover, if M is a Cohen-Macaulay module, the (Cohen-Macaulay) type of M
is type(M) = f,. We say that M is Gorenstein if it is Cohen-Macaulay of type 1.

Usually, we will apply the results of this section to the finitely generated R-
module M = R/I, where I C R is a homogeneous ideal. In particular, if X C A}
is an affine algebraic variety and I = I(X) is its vanishing ideal, we will work with
the coordinate ring of X, k[X] = R/I. We will say that X is arithmetically Cohen-
Macaulay (resp. Gorenstein) if k[X] is Cohen-Macaulay (resp. Gorenstein). The
same applies to projective varieties.

Remark 1.38. As in the standard graded case, the i-th multigraded Betti number
of M in multidegree s can also be computed, by [69, Lem. 1.32], as the vector space
dimension

Bis(M) = dimy, (Tor}* (M, k)s) ,
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where Tor denotes the Tor functor (see, e.g., [83, Chap. 6 and 7| for a reference).
To understand this formula note that if My, M, are two S-graded R-modules, then
M; @ My = @ges(My @ Ms)s, where for all s € S, (M; ® Ms)s is generated by all
elements f; ® fo such that f; € Mg, and fo € Ms,, with s; + sy =s.

Example 1.39. Consider R and I as in Example 1.32. From the m.g.f.r (1.3),
the multigraded Betti numbers of R/I are ﬁ07(070) = 1, 61,(6,9) = ]., 617(5710) = 1,
Brig = 1, Borisy = 1, Baeiay = 1, and B;s = 0 otherwise. Then, the Betti
sequence of R/I is (1,3,2), and pd(R/I) = 2.

Definition 1.40. Let M be a finitely generated S-graded R-module. The (multi-
graded) Hilbert function of M is the map HF,; : § — N given by

HFM(S) = dlmk MS s

where dimy Mg denotes the dimension of My as a k-vector space (which is finite for
all s € §). The (multigraded) Hilbert series of M is

HSy(t) = Y HFpy(s) - t° € Z[ta, ... 1],

seS
where t° = #]' ...t}

It is easy to prove that the Hilbert series of R (as R-module) can be written as
a rational function,
1
(1—tar).. . (1—tan)’
see, e.g., [69, Lem. 8.16] for a proof. Moreover, if s € S, then HSp_g(t) =
W As a consequence, we get that if F' = R(—s;) @ ... & R(—s,,) for
some Si,...,S, €S, then

HSp(t) =

t51_|_..._|_tsm
(1—ta). .. (1—tan)’

A proof of this result can be found in [69, Thm. 8.20].

HSp(t) = (1.5)

Proposition 1.41 ([69, Lem. 8.19]). Let M be a finitely generated S-graded R-
module, and consider a graded free resolution F of M,

F0oEFE2 R3S FR2M-o0.

The multigraded Hilbert function and series of M can be computed as

T T

HFy =Y (—1YHFp, , and HSy =Y (—1)'HSp, .

j7=0 7=0



22 CHAPTER 1. PRELIMINARIES

Combining Proposition 1.41 and Equation (1.5), one can compute the Hilbert
function and series of any finitely generated S-graded R-module M. Indeed, if p
denotes the projective dimension of M and ;s are its multigraded Betti numbers,

then ‘
J?:0 Zses<_1)lﬁi75ts
(1—ta). .. (1—tan)

HSp(t) = (1.6)

Example 1.42. Consider R and [ as in Example 1.32. By Equation (1.6) and the
minimal graded free resolution (1.3), the multigraded Hilbert series of R/I is

1 — 1019 — 19650 — 1345 + t75° + 153"
(1= #8)(1 = tit3) (L = 1) (1 — )

HSg/i(t1,t2) =

1.2.2 The standard graded case: the Castelnuovo—Mumford
regularity

Consider the polynomial ring R = klzo, ..., x,], endowed with the standard grad-
ing (i.e., deg(z;) = 1, for all i = 0,...,n). Let M be a finitely generated graded
R-module. All the results of Subsection 1.2.1 apply here.

Let 0 = F, — ... = Fy = Fy = M — 0 be a minimal graded free resolution of
M, where F; = @;R(—j)% for all i = 0,...,p.

Definition 1.43. Let M be a finitely generated (standard) graded R-module. The
Castelnuovo—Mumford reqularity of M is

reg(M) = max{j — i | B, # 0}

Note that §;; = 01if ¢ > p or j —i > reg(M). Moreover, if 3; ; = 0 for all j < jo,
then 8,41, = 0 for all j < jo+ 1, by the minimality of the resolution (see Def. 1.34).
Hence, the graded Betti numbers 3;; = §; ;(M) are usually presented in a table,
called the Betti table or Betti diagram of M. In this table, the entry corresponding
to the i-th column and the j-th row is 3;;4;:

0 1 e P
0 60,0 61,1 s 5p,p

1 60,1 51,2 cee ﬁp,p-i—l

reg 60,reg Bl,rngrl cee Bp,rngrp
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In the table above, reg = reg(M) is the Castelnuovo-Mumford regularity of M,
and p = pd(M) is its projective dimension.

Note that the Castelnuovo-Mumford regularity of M is the label of the last
nonzero row of the Betti table. From Remark 1.38, it follows that reg(M) =
max;{b;(M) — i}, where b;(M) = max{u | Tor;'(M,k), # 0} if Tor['(M,k) # 0
and b;(M) = —oo otherwise.

By [85, Thm. 3.11], the regularity is always determined by the tail of a minimal
graded free resolution. In other words, Definition 1.43 can be simplified as

reg(M) =max{j—i|f;; #0,n+1—dim(M) <i<n+1—depth(M), j >0} .

(1.7)
As a consequence, when M is Cohen-Macaulay, the regularity is always attained at
the last step of a m.g.f.r., a general and well-known fact.

Example 1.44. Take R = Q|z, y, z, t], with the standard grading, and I = (g1, g,
gs3), where g, = 23 —yzt, go = 2%y —2°t, and g3 = y* — xz the ideal in Example 1.32,
which is homogeneous for the standard grading. With the same computations as in
Examples 1.32 and 1.35, one can compute a m.g.f.r. of R/I:

R(—4)® R(—4) - R(-3)® R(-3) ® R(-2) - R — R/I — 0,

where the maps are the same as in (1.3). The Betti diagram of R/ is

0 1 2
0: - -

1: - 1

2: - 2
total: 1 3 2

The Castelnuovo-Mumford regularity of R/I is reg(R/I) = 2.

There is an equivalent definition of the Castelnuovo-Mumford regularity in terms
of the local cohomology modules of M. Let m = (xg,...,x,) be the homogeneous
maximal ideal of R, called the irredundant ideal, and set H)(M) ={z¢€ M | I €
N with zm* = 0}. For every positive integer i, Hi(—) is defined as the i-th right
derived functor of H2(-).

Grothendieck’s theorem states that H. (M) = 0 for ¢ > dim(M) and i <
depth(M), and H.(M) does not vanish for i = dim(M) and i = depth(M). For
all i € N, denote end (H.(M)) = max{p | Hy(M), # 0} if H,(M) # 0, and
end (H. (M)) = —oo, otherwise.
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Theorem 1.45 ([16, Cor. 2.2]). Let M be a finitely generated graded R-module.
Then, the Castelnuovo-Mumford reqularity of M 1is

reg(M) = max {end (H;,(M)) + i | depth(M) < i < dim(M)} .
Moreover,
max{j | But1—deptn(ar),; # 0} = end (HaP" M (M)) +n+1.

Unlike the projective dimension, which is upper bounded by n, the Castelnuovo-
Mumford regularity of M cannot be bounded in general in a simple way. Hence, it
has been a topic of research for many years, and has been object of many conjectures.
Probably, the most famous one is the Eisenbud-Goto conjecture (see [29]), which was
thought to be true for many years (1984-2017), until McCullough and Peeva provided
in [68] a family of counterexamples to this long-standing conjecture. However, the
conjecture remains still open in some interesting cases, such as simplicial projective
toric ideals (see Section 1.3).

Conjecture 1.46 (Eisenbud-Goto, [29]). Suppose that k is an algebraically closed
field. Let R = K[xog,...,z,] and I C R be a homogeneous prime ideal such that
IC{xy,...,z,)% Then,

reg(R/I) < deg(R/I) — codim(I),

where deg(R/I) is the multiplicity of R/I (also called the degree of R/I, see Re-
mark 1.49), and codim(I) = n + 1 — dim(R/I) is the codimension (also called
height) of I.

Although the conjecture was proved to be false in general, it is known that the
conjecture holds in some cases and is still believed to hold for the ideals I defin-
ing “nice” projective varieties. For example, it is true for arithmetically Cohen-
Macaulay varieties, arithmetically Buchsbaum varieties [88], projective curves [46],
smooth surfaces [63], smooth threefolds in P® [55] and toric varieties of codimension
two [77]. When it comes to projective toric varieties, the conjecture is known to be
true for simplicial smooth toric varieties [48]. In fact, the authors gave a bound that
improves Eisenbud-Goto’s one in that case. For toric varieties of dimension 1, there
is a combinatorial proof for Eisenbud-Goto conjecture [73].

Now, consider the Hilbert function of M. Combining Proposition 1.41 and the
fact HFg(_j)(s) = (*2*™"), one has that

() = 30 (177" (18)

o n
i,5|Bi;#0
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for all s € N. If one considers the polynomial

t—g+n)t—j+n—-1)...(t—j+1)
n!

HPy(t) = > (=1)'8;

1,418 70

c Q[t],

then it is clear that HF;(s) = HPy(s) for all s € N such that s — j +n > 0 for all
j. Hence, we have proved the following.

Theorem 1.47 ([20, Chap. 6, Prop. 4.7]). Let R = Kk|zo, ..., x,] and M be a finitely
generated graded R-module. Then, there exists a (unique) polynomial HPy(t) €
Q[t], such that

for all s € N sufficiently large.
Definition 1.48. In the conditions of the previous theorem, the polynomial HP,,
is called the Hilbert polynomial of M, and the minimum s € N such that HP,(s") =

HF )/ (s") for all s > s is called the regularity of the Hilbert function of M. We
denote it by r(M).

By Equation (1.6), the Hilbert series of M can be written as

D i j18s 20— 1) Bigt?

HSu(t) = =2

Let ¢ be the maximal power such that (1 — ¢)¢ divides the numerator of HSy(?).
Then, one can write

h(?)
where h(t) € Z[t] is called the h-polynomial of M. By [76, Thm. 16.7(1)], n +
1 — ¢ = dim(M) is the Krull dimension of M. The multiplicity of M is defined as
e(M) = h(1).

HS 1 (t) =

Remark 1.49. Let M be a finitely generated graded R-module. The multiplicity
and dimension of M can also be read from the Hilbert polynomial of M as follows:

e The degree of the polynomial HP ), is d — 1, where d = dim(M) is the Krull
dimension of M, by [13, Thm. 4.1.3] .

e

( d_l)!td_l, where e = e(M) is the multiplicity of

e The leading term of HP,, is
M, by [76, Thm. 16.7(2)].

When I C R is a homogeneous ideal and M = R/I, we will also refer to the
multiplicity of R/I as the degree of R/1, or the degree of the algebraic set V(I) C P}.
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Let M be a finitely generated graded R-module. We want to relate precisely the
Castelnuovo-Mumford and the Hilbert function regularity of M in terms of the Betti
numbers of M, f3;;. If we set reg := reg(M) the Castelnuovo-Mumford regularity of
M, then for all s € N

n+1 reg . .
s—((+3)+n
HFM E E Bz H—j( ( TL]) ) ) and

=0 7=0
n+1 reg n
HP (s 'ZZ ) Biari [[(s = G+4)+0).
i=0 j=0 (=1

Taking into account the roots of the polynomial [[,_, (s — (i + j) + £), it is easy to
prove that HF y/(s) = HPp(s) for all s > reg + 1, that is

r(M) <reg(M)+1. (1.9)

To determine precisely the difference 6 between the two regularities, 0 := reg(M) —
r(M), we need to evaluate the difference HPp/(reg +1 — X) — HF/(reg + 1 — \) for
1< A<reg+1. For A\ > 1 and k > 0, set

A,(j) o (reg+1+n—(>\+1)—k)7 and

B n
1 n
BY :n—H reg+1—-A—k+Y0).

Using these notations, for all A, 1 < A < reg + 1, we can write

n+1 reg

HFyr(reg + 1 - A) = HPy(reg + 1= A) = > > (~1)' 8105 (42 - BY))
=0 7=0
reg+n-+1

= D (-)'Biiw (Aﬁfj BfiD (1.10)

i+j=0
The following lemma establishes when Ag‘) and B,(CA) coincide.
Lemma 1.50. Consider A > 1 and k, such that 0 < k <reg+mn-+2— \.
(1) If 0 < k <reg— A+ 1, then A,(C’\) :BI(C)‘) # 0.
(2) Ifreg—A+2<k<reg+n—\+1, then Ag‘) :B,i)‘) =0.
(3) If k =reg+n+2— X, then A,(j) =0 and B,(C’\) = (=1



1.2. FREE RESOLUTIONS, BETTI NUMBERS, AND REGULARITY 27

Proof. If k <reg— A+ 1,thenreg+n+1—X—k >n,so A;j‘) :B,(C’\) # 0 and (1)
follows. Otherwise, A M — 0 and we distinguish two cases. If k <reg+n—\+1,

then 1 < k+ A —reg — 1 < n, and hence, B = 0 and (2) follows. Finally, if
k=reg+n+2— A, then

Br(eg+n+2 AT H —n—1)=(-1)",

and we are done. O

By Lemma 1.50 (3) and Equation (1.10), HF y;(reg) — HP ys(reg) = Bt regtn+1
0 if But1regint1 # 0, one gets that r(M) = reg(M) + 1, ie., 6 = —1. And the
reciprocal statement also holds. This is a particular case of the following result that
relates precisely 0 to some of the Betti numbers.

Theorem 1.51. Let M be a finitely generated graded module over k|xo, ..., x,],
and denote by § the difference between the Castelnuovo-Mumford reqularity and the
reqularity of the Hilbert function of M, i.e., § = reg(M) —1r(M) (6 > —1). Then,
§ = X\ —2, where X > 1 is the least integer, such that Y ;(—=1)"B; reg(a)+nt2-x # 0,
where the ;; are the graded Betti numbers of M.

Proof. The case A = 1 is proved just before the proposition, so assume that \ > 2.
Since, for all p=1,2,..., A =1, > .(=1)"Biregtnt2—n = 0, by Equation (1.10) one
gets that HP/(s) = HF y(s) for all s > reg — A + 2, i.e., 1(M) < reg(M) — A+ 2.
Moreover, by applying Lemma 1.50 (3) to Equation (1.10), we obtain that

HFjy(reg — A+ 1) — HPyr(reg — A+ 1) = Y (1) B regrns2-2Blosnia»
= Z(_l)n+i+lﬁi,reg+n+27/\ # 0 )

and hence r(M) = reg(M) — A + 2. O

Remark 1.52. (1) If we focus on the secondary diagonals of the Betti diagram
starting from the bottom right of the table, the number A\ in the previous
theorem is the label of the first diagonal, such that the alternating sum of the
Betti numbers on this diagonal is not 0; see Table 1.1.

(2) If p denotes the projective dimension of the module M, the previous result
implies that B eg(nm)+p 7 0, i.e., the regularity is attained at the last step
of a m.gfr. of M, if and only if A = n —p+ 2, i.e, d = n — p. This
occurs, in particular, whenever M is a Cohen-Macaulay module, so, in this
case, reg(M)—r(M) = n—p which is a well-known fact; see, e.g., [28, Cor. 4.8].
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jji 0 1 p—1 D p+1 n+1
0 1 ,'}1 1 ﬁpflypfl Bp P 0 0
1 - B2 Bo-1p Bp.p+1 0 0
/
reg — 1 - ﬂl,reg cee ﬂp—l,reg+p—2 Sptreg,#»pfl 0 o 0 /
reg - ﬂl,reg+l cee ﬂp—l,reg+p—1 Bptregﬁ—p 0 e 0
A=n—p+3 A=n—p+2 A=1

Table 1.1: Betti diagram in Remark 1.52 (1).

(3) If depth(M) > 1, i.e., p < n (by Theorem 1.36), then r(M) < reg(M).

(4) Let A > 1 be the least integer such that >.(=1)"5; reg(r)+nt2-r # 0. By
Equation (1.6) and Theorem 1.51, the degree of the numerator in the Hilbert
series of M (before simplifying) is reg(M) +n +2 — X = r(M) + 2. Hence,
r(M) — 1 is the difference of the degrees of the polynomials in the numerator
and denominator of the Hilbert series of M.

Example 1.53. Take R and I C R as in Example 1.44. By (1.8), the Hilbert
function of R/I is given by

5+ 3 s+1 S s—1
HF = — —
= (5°) = (57) - () (057)
for all s € N, and the Hilbert polynomial of R/I is HPg/(t) = %tz — %t. By

Theorem 1.51, reg(R/I) — r(R/I) = 1, and hence r(R/I) = 1, i.e., HFg/i(s) =
HPR/[(S) for all s > 1 and HFR/I(()) §£ HPR/I(())

1.3 Toric ideals and toric varieties

In this section, we introduce toric ideals and toric varieties since they will play an
important role in this thesis. Toric varieties appear in the literature in several dif-
ferent ways; see [21, Chap. 1-2]. For us, a toric variety will be the zero set of a toric
ideal.

Let k be a field, k(x| = k[zy,...,z,] and k[t] = kl[t,...,ts] two polynomial
rings over k. Given A = {a;,...,a,} C N? a set of nonzero vectors, each element
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a; = (a1, .. .,a;q) € N corresponds to the monomial t% = ¢{ ... t5 in K[t1, . . ., t4)].
Set Sy C N? the affine semigroup generated by A.

Definition 1.54. The toric ideal determined by A, 14, is the kernel of the homo-
morphism of k-algebras ¢ 4 : k[x] — k[t] defined by ¢(z;) = t®. The toric ring
determined by A is k[x]/I 4.

The image of w4 is the semigroup algebra of Sy, k[S4] = Im(p4), and the
surjective homomorphism ¢4 endows k[S4] with a structure of k[x]-module. Note
that this structure of k[x|-module depends not only on the semigroup Sy, but also
on the generating set A that we have fixed for S4.

If necessary, we can assume that 6(A) = ged ({a;; |1 <i<n,1<j<d})=1.
If this is not the case, consider the set A’ = ril)A, since one has that I, = 4 and
S(A) =1.

Remark 1.55. Given a set A = {a;,...,a,} C N of nonzero vectors, one can
compute the toric ideal I 4 as follows. Consider the ideal L4 = (z1—t*,..., z,, —t?")
of k[x,t] = k[z1,...,2,,t1,...,t4]. By [1, Thm. 2.3.4], the toric ideal I, = L4 N
k[z1,...,2,]. Hence, if G is a Grobner basis of L4 for an elimination monomial order
> in k[x, t] such that ¢; > z; forall 1 <i <mn, 1 <j <d, then GNk[x] is a Grobner
basis of I4. In particular, G Nk[x] generates 4.

Although the described algorithm is theoretically feasible, sometimes it is not
the best for computations. We refer the reader to [8] and [52] for other algorithms
that exploit the structure of toric ideals to compute 4. These algorithms mainly
use lattices and saturation.

The toric ideal I4 is prime and, if one sets the S4-degree of a monomial x* €
klzy, ..., x,] as |x%¥s, = a1a; + -+ + aya, € Sy, it is S4-homogeneous, i.e., I is
homogeneous for the grading induced by |x*|s,. Indeed, by [89, Cor. 4.3], 14 is the
binomial ideal

Ta=(x"— x: |Xa‘3A: |X6|S.A ) -

Moreover, if one considers w; = Z;l:l a;;, 1 =1,...,n, and sets deg,,(x;) = w;, the
ideal 14 is also w-homogeneous for the weight vector w = (wy,...,wy) € ZZ,,.

Note that for both gradings, the homomorphism of k[x]-modules ¢ 4 : k[x] — k[t]
defined by z; — t* is graded, and hence k[S4] and the toric ring klzy, ..., z,]/Ia
are isomorphic as graded k[x]-modules.

Example 1.56. Consider A = {a; = (2,3),a2 = (1,4),a3 = (0,5),a4 = (5,0)} C
N2 and let 14 C Q[x1, 22,73, 24 be the toric ideal determined by A. By Re-
mark 1.55,

[A = <32'1 — t%t%,l’g — tlt%,l'g — tg, Ty — t?> N Q[l’l, $2,$3,$4] .
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Note that 14 is the ideal from Example 1.32 (after relabeling the variables). One has
that /4 is homogeneous for the S 4-grading induced by |z;|s,= a;, i = 1,...,4, where
S = (A). Moreover, I, is w-homogeneous for the weight vector w = (5,5,5,5),
and hence, it is also homogeneous for the standard grading.

The next proposition characterizes when the toric ideal I 4 is homogeneous for the
standard grading, i.e., homogeneous when one sets deg(z;) =1 foralli=1,... n.

Proposition 1.57 ([89, Lem. 4.14]). Let A = {a;,...,a,} C N¢ and I4 be the
toric ideal determined by A. Then, I4 is homogeneous (for the standard grading) if
and only if there exists a vector v € Q¢, such that a, - v = 2?21 a;jv; = 1 for all
1=1,...,n.

Note that, by the previous result, one has that the toric ideal I 4 is homogeneous
if and only if A is contained in a hyperplane H of Q% not passing through the origin,
H={(z,...,23) € Q| L vyw; = 1}, for some v = (vy,...,v,) € Q", v # 0.

By [89, Lem. 4.2], the Krull dimension of R/ 4, dim(R/I4), equals the dimension
of the cone Pos(A), i.e., the dimension of the Q-vector space Q.A. If this dimension
is d' < d, one can easily show that there exists a set A’ = {a},...,a’,} € N¥ such

that 14 = I4. Hence, without loss of generality, we will always assume that the
cone Pos(A) has dimension d, and dim(R/I4) = d if A C N¢.

Definition 1.58. (1) Given an ideal I C k[zy,...,z,] of height n — d, we say that
I is a toric ideal if there exists a finite set A C N? such that I = I 4.

(2) The toric ideal I 4 is simplicial if the affine semigroup S 4 is simplicial.

Example 1.59. Let A = {a; = (0,5),a, = (1,3),a3 = (2,1)} C N?, and k = Q.
The toric ideal determined by A is simplicial, since every affine semigroup in N2
is simplicial, and, by Proposition 1.57, it is homogeneous for the standard grading,
because a, - (%, %) =1 for ¢ = 1,2,3. One has that

]A == <ZE1 — tg, To — tltg, T3 — t%t2> N @[Il, $2,ZE3] == <ZE§ — 1’1.%'3> .

Note that 14 is also homogeneous for the multigrading given by deg(z;) = a; since,
for this grading, f is homogeneous of degree degs,(f) = (2,6). Moreover, I4 is
w-homogeneous for the weight vector w = (5,4, 3).

Note that if B = {(2,0),(1,1),(0,2)} C N?, one has that Iz = I 4.

Simplicial toric ideals can always be seen as the toric ideal determined by a set
A C N? whose cone Pos(A) = N9, and all the extremal rays of the cone are of the
same length.
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Proposition 1.60 ([48, Sect. 2]). Let I C Kk[z1,...,x,] be an ideal. Then, I is a
simplicial toric ideal if and only if there exists a set A = {ay,...,a,} C N% such
that I = I4 and {De€y,...,Deq} C A, where {€1,...,€4} is the canonical basis of
N?, and D € Z~,.

Proof. Being (<) straightforward, let us prove (=). Let I C k[x] be a simplicial
toric ideal, and B = {by,...,b,} C N¢ a set of nonzero vectors such that I = I.
By hypothesis, (B) is simplicial, and hence we can suppose without loss of generality
that Pos(B) is minimally generated by {bi,...,bg}. Let M be the d x d matrix
whose i-th column is b;, and M* the adjoint of M. Note that det(M) # 0 since
the vectors by, ..., by are linearly independent; indeed, we can assume det(M) > 0.
Then, M*M = det(M)I,, where I, is the d x d identity matrix. Consider the set
A={a,... ,a,}, where a; = M*-b; for all i = 1,...,n. Then, a; = det(M)e; for
i =1,...,d, one can easily check that A C N and I = I4 since the matrix M is
invertible. O

For general toric ideals I = I4 C k[x], it is known that binomial generat-
ing sets and Grobner bases of 14 (see, e.g., [89]) and also several Betti numbers
of k[S4] = k[x]/I4 (see [12, Thm. 1.3]) are independent of k. Nevertheless, the
Gorenstein, Cohen-Macaulay and Buchsbaum properties of k[S4] depend on the
characteristic of k (see [51], [94] and [50], respectively). This situation changes in
the context of simplicial semigroup rings, since the Gorenstein, Cohen-Macaulay,
and Buchsbaum properties can be entirely described in terms of the combinatorics
of the semigroup S4 and, as a consequence, they do not depend on k (see [43], [87]
and [37], respectively). We present here the combinatorial characterization of the
Cohen-Macaulay and Gorenstein properties for simplicial toric rings.

Let A = {a;,...,a,} C N¢ be a set of nonzero vectors, and suppose that the
semigroup S4 = (A) is simplicial. Denote by £ = {ey,...,es} C A the set of ex-
tremal rays of the cone Pos(A).

For d = 1, the semigroup algebra k[S4] is always Cohen-Macaulay, because
dim (k[S4]) = depth(k[S4]) = 1 in this case.

Proposition 1.61 ([15, Lem. 2.6], [59]). Let A = {ay,...,a,} C N such that
ged(ay, ..., a,) =1, and denote by Sy the numerical semigroup generated by A.

(1) The semigroup algebra k[S 4] is Cohen-Macaulay, and its Cohen-Macaulay type
15 equal to the type of Su,

type (k[Sa]) = t(Sa) = [PF(S4)|-
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(2) k[S4] is Gorenstein if and only if the semigroup S is symmetric.

For d > 2, one can check if k[S4] has the Cohen-Macaulay property in terms of
the semigroup S4, by the following result due to Goto, Suzuki, and Watanabe.

Theorem 1.62 ([43, Thm. 2.6]). The simplicial semigroup algebra k[S 4] is Cohen-
Macaulay if and only if for all s € N?

ifs+e €84 ands+e; €Sy for somel <i<j<d, thense€Sy.

When k[S 4] is Cohen-Macaulay, one can compute its type by counting the num-
ber of maximal elements in the Apéry set APs, = Ap (S4,€&) for the natural order
<s, defined in (1.1). Hence, one can characterize combinatorially the Gorenstein
property.

Theorem 1.63 ([53, Prop. 3.3], [14]). Suppose that k[S4] is Cohen-Macaulay.
Then, its type is the number of mazimal elements in the Apéry set APs, for the
order <s,. Hence, k[S4| is Gorenstein if and only if the poset (APs,,<s,) has a
unique maximal element.

Now, we introduce the geometric counterpart of toric ideals: the toric sets and
toric varieties.

Definition 1.64. Let A = {aj,...,a,} C N¢ be a set of nonzero vectors.
(1) The toric set determined by A is the set 'y C A} defined parametrically by

Pa={(uf™ . cul, oo ui™ . ouy) € Ay | wg, ... u, €k}

(2) The affine toric variety determined by A, also called affine monomial variety,
is the zero set of the toric ideal 4, X4 = V(I4) C Afl. We say that the toric
variety X4 is simplicial if 14 is simplicial.

(3) We say that X4 is an affine toric curve (resp. surface) or an affine monomial
curve (resp. surface) if the dimension of X4 is 1 (resp. 2).

Remark 1.65. It is clear that I'y C X4, where X4 = V(I4). A natural question
one can ask is when the Zariski closure of "4 is equal to X4. By [96, Cor. 8.4.13],
if k is infinite, then the defining ideal of I'4 is I(I'4) = I4, and X4 = T4 is the
Zariski closure of I' 4. Hence, the vanishing ideal of X4 is the toric ideal I 4, and the
coordinate ring of X is k|X4] = k[z1, ..., z,]/ 4.

Under certain additional hypotheses, the toric set I' 4 is equal to the toric variety
X 4. This is the case of the simplicial toric varieties when k is algebraically closed and
one chooses an appropriate parametrization of X4, or when A = {a4,...,a,} CN
and ged(ay, ..., a,) =1 (for any field).
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Proposition 1.66 ([56, Cor. 2], [34, Prop. 2.1.4]). Let k be an algebraically closed
field. If A C N? is a finite set of nonzero vectors such that {wie€, ..., weeq} C A,
where {€y, ..., €q} is the canonical basis of N, then X4 =T 4.

Proposition 1.67 ([31, Lem. 3.4]). Let k be any field. If A= {ay,...,a,} CN is
such that ged(ay, ..., a,) =1, then X4 =T 4.

Example 1.68. Consider A = {2,3} € N and k = F,, the finite field with 2
elements. The toric set determined by A is Ty = {(t*,#3) | t € Fo} = {(0,0),(1,1)}.
The toric ideal determined by A is I4 = (x+1%, y+t*) NFy[z, y] = (z?+y?), and the
affine toric variety determined by A is X4 = V(14) = {(0,0), (1,1)}, which is equal
to I' 4 by Proposition 1.67. However, the defining ideal of X 4 is [(X4) = (x+y) # L4.
This happens because Fy is not an infinite field.

The next result characterizes when an affine toric variety X4 is smooth in terms
of the semigroup Sy = (A).

Lemma 1.69 ([34, Thm. 1.1.11]). Let k be an algebraically closed field and A =
{a;,...,a,} C N¢ q finite set of nonzero vectors. Consider the affine toric variety
X4 =V (I4) C A} determined by A. The following statements are equivalent:

(a) X4 is smooth.
(b) 0=(0,...,0) € A} is a reqular point of X4.

(¢c) The affine semigroup S4 = (A) admits a system of generators with dim(Q.A)
elements.

When the toric ideal 14 is homogeneous for the standard grading (i.e., when A is
contained in a hyperplane of Q% not passing through the origin, by Proposition 1.57),
the affine toric variety X4 = V' (I4) is a cone, i.e., it consists of lines passing through
the origin 0 € Ajl. Therefore, one can consider X4 as a projective variety, X4 C IP’]]?_1
of dimension d — 1. If we are in this case, we will assume that A C N¢t! and has
n + 1 elements.

Definition 1.70. Let A = {ay, ...,a,} C N be a set of nonzero vectors contained
in a hyperplane of Q¥"! not passing through the origin, and I4 C k[z, ..., z,] the
toric ideal determined by A, which is homogeneous.

(1) The projective toric variety determined by A, also called projective monomial
variety, is the zero set of the toric ideal 14, X4 = V(I4) C P}. We say that
the toric variety X4 is simplicial if 14 is simplicial.

(2) We say that X4 is a projective toric curve (resp. surface) or a projective
monomial curve (resp. surface) if the Krull dimension of k[X 4] is 2 (resp. 3).
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When the field k is infinite, the (homogeneous) coordinate ring of X4 is k[X4] =
k[zo, ..., z,])/I4, by Remark 1.65.

Remark 1.71. By Propositions 1.60 and 1.57, when [ is a homogeneous simplicial

toric ideal, there exists a set A = {ap,...,a,} C N9l such that a; = De; for
i=0,...,d, and |a;|= Z?:o a;; =D forall i =0,...,n, for some D € Z-(, where
{€o,...,€4} denotes the canonical basis of Ne+1,

Suppose k is an algebraically closed field. Set A = {ay, ..., a,} C N as above,
and X4 = V(I4) C P the projective toric variety determined by A. Consider the
affine charts of X4, {Xa MU}, where U = PP\ V(x;) ~ A} for all i = 0,...,n;
note that X4 NU; is an open set of X4 for all 7. Since X4 is simplicial, one has that

Xy =UL, (XaNUy) . (1.11)
Indeed, suppose that P = (pg : -+ : pn) € X4 and p; ¢ U; for all i = 0,...,d.
Then, pg = -+ = pg = 0. For all j = d+ 1,...,n, consider the binomial f; =

) — HZ:O z,’" € I4. Since f;(P) =0, then p; =0 for all j =d+1,...,n, which is
impossible. This proves (1.11). For all i =0,...,d and all j =d + 1,...,n, denote

) . d
CLS?) = (aj,l, ey A1, A1y ,CLj7d) eN s
and AY = {De¢,, ..., De), agﬁl, . ,ag)} C N4, where {€},...,€,} is the canonical

basis of N¢. With these notations, one has that the affine chart X4 N4, is homeo-
morphic to the simplicial affine toric variety V; =V (I 44), for all i =0,...,d.

Thus, the projective toric variety X4 is smooth if and only if Y; is smooth for all
1t =0,...,d. The following result by Herzog characterizes simplicial projective toric
varieties which are smooth.

Theorem 1.72 ([48, Thm. 2.1]). Fiz an algebraically closed field k, and let X C P}
be a simplicial projective toric variety of dimension d, and denote by {€g,..., €4}
the canonical basis of NO+!,

Then, X is smooth if and only if there exist a number D € Z-o and a set

A={ay,...,a,} C N such that |a;|= D for alli =0,...,n,
{e.+(D—1); |0<i,j<d} CA,
and X = Xy4.

The degree of simplicial projective toric varieties can be computed using the
following result.
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Theorem 1.73 ([74, Thm. 2.13, Thm. 4.5]). Let X4 be a simplicial projective toric
variety, where A = {ayg,...,a,} C N |a;|= D € Z-y for alli = 0,...,n and
a;, = De; fori =0,...,d, where {€y,..., €} is the canonical basis of N1, The
degree of the projective variety X4 can be computed as

(d+ 1)!-vol (conv (AU {0})) Di+1

- )
0d+1 9d+1

deg(Xy) =

where

e vol (conv (AU {0})) denotes the volume of the convex hull of AU{0} C R
and

e 0441 is the greatest common divisor of the (d + 1) x (d + 1) minors of the
(d+1) x (n+ 1) matriz M4, whose columns are the vectors ay, . .., ay,.

Example 1.74. Let D € Z-( be a positive integer and k = C. Consider A the set
whose elements are the column vectors of the matrix M 4:

D 0 0 D-1 D-1 1 0 1 0
My=10 D 0 1 0 D—-1 D-1 0 1
0 0 D 0 1 0 1 D—-1 D-1

By Theorem 1.72, the projective toric surface determined by A, X4 C P& is smooth.
Let As be the g.c.d. of the 3 x 3 minors of M 4. Since the sum of the rows of

A is D, then D divides As. Moreover, since ’%D(lll D%l‘ = D, then Az = D.

On the other hand, conv (AU {0}) is the simplex with vertices (0,0,0),(D,0,0),

0,D,0),(0,0,D), and hence it has volume D—,S. Therefore, by Theorem 1.73, the
3l

degree of the surface X4 is deg(X,) = D%

To finish this section, we recall some properties of projective monomial curves,
and characterize simplicial projective monomial surfaces with exactly one singular
point. These surfaces will appear in Chapters 3 and 4.

Projective monomial curves

Consider an integer D > 0 and a sequence ag = 0 < a1 < -+ < a, = D of
relatively prime integers, i.e., ged(ay,...,a,) = 1. Set A = {ag,as,...,a,} and
A={a,y,...,a,} CN? where a, = (D — a;,q;) for all i = 0,...,n. Let C be the
projective monomial curve determined by A, and denote k[C| = k[zo, ..., z,]/I4. If
k is infinite, k[C] is the homogeneous coordinate ring of C.

Proposition 1.75 (Folklore, see, e.g., [32]). Let C be a projective monomial curve
as above.
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(1) C C P} is a projective curve of degree D, i.e., the multiplicity of the two-

dimensional ring K[xg, ..., x,]/14 is D.
(2) C has at most two singular points, which are P, = (1 : 0---: 0) € P and
P,=(0:---:0:1) € P?. P, is non-singular if and only if a; = 1, and Py is

non-singular if and only if D — a,_1 = 1.

(3) If 6(C, P;) denotes the singularity order of P;, i = 1,2, then 6(C, P;) = [N\ &
and §(C, Py) = |N\ &, where S§; = (ay,...,a,) and S = (D —ag,...,D —
Ap_1)-

(4) The arithmetic genus of C is p,(C) = 1 —0(C, Py) — 0(C, P»). Therefore, the
Hilbert polynomial of C is HPye)(t) = Dt + 1 — 6(C, P1) — §(C, ), and the
reqularity of the Hilbert function of k[C]| is

r(k[C]) = min{s € N : HFy¢|(s" + 1) — HFy¢)(s") = D, Vs’ > s}.

The Castelnuovo-Mumford regularity of k|C| satisfies the Eisenbud-Goto conjec-
ture; see Theorem 1.76 (1). This was proved by Gruson, Lazarsfeld and Peskine in
[46]. Indeed, their result is more general, and they proved it before Eisenbud-Goto
conjecture was stated. Later, L’Vovsky provided another bound on the Castelnuovo-
Mumford regularity of k|[C]; see Theorem 1.76 (2).

Theorem 1.76 ([46], [22, Prop. 3.1], [67, Prop. 5.5]). Let A ={ap=0<a; <--- <
a, = D} C N be such that ged(ay, ..., a,) = 1, and set A = {a,,...,a,} C N?,
where a; = (D — a;,a;) for all i. Consider C = C4 the projective monomial curve
determined by A, and k[C| = K[z, ...,x,]/Ia. We have the following bounds for
the Castelnuovo-Mumford regularity of k[C].

(1) reg(k[C]) < D —n+ 1. Moreover, reg(k[C]) = D —n+ 1 if and only if A or
D — A belongs to one of the following two families:

e A=1[0,D]\{a}, for some a, such that 1 < a <D —1;
e A=10,1U[a+ 1,D], for some a, such that 2 < a < D — 2.

(2) reg(k[C]) < maxi<icjen{(ai —ai1) + (a; —a;—1)} — 1.

Example 1.77 (Macaulay’s curve). Set k = C and let C be the projective monomial
curve determined by A = {(4,0),(3,1),(1,3),(0,4)}. By Proposition 1.75, C is
smooth and its Hilbert polynomial is HPy¢)(t) = 4¢ + 1. The Castelnuovo-Mumford
regularity of k[C] is reg(k[C]) = 2, by Theorem 1.76 (1).

In the next proposition, we characterize the simplicial projective surfaces with
exactly one singular point.
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Projective monomial surfaces with a single singular point

Proposition 1.78. Let k be an algebraically closed field and A = {aq, ..., a,} C N3
a set of nonzero vectors, a; = (a;o, a;1, a;2) for all i, and set {€o, €1, €2} the canonical
basis of N3. Suppose that ag = Dey, a; = Dey, ay = Dey, and |a;|= D for all
i =0,...,n, for some D € Z-q, and denote by X = V(I4) C P the simplicial
projective toric variety determined by A.

(1) If X has exactly one single singular point, that point is Pp = (1:0:---:0),
P=0:1:0:---:0), o0r ,=(0:0:1:0---:0).
(2) If the only singular point of X is Py, then n > 4 and

{(0,D—-1,1),(0,1,D —1),(e, D —e,0),(e,0,D —e)} C A,

where e € Z~q is a divisor of D that divides a;y for all i € {0,...,n}, and if
e =1 then either (D —1,1,0) ¢ A or (D —1,0,1) ¢ A.

Conversely, if X = X4 with A C N? as before, then X has a single singular
point, Fy.

Remark 1.79. In part (2) of the previous proposition we distinguish two different
behaviors.

(i) e < D: In this case, (e, D —¢,0) # (e,0,D —e), and n > 6.

(ii) e = D: In this case, (e,D —¢,0) = (e,0,D —e) = (D,0,0) and for all a; €
A, such that a; # (D,0,0), one has that a;y = 0. Hence, A = {Dey} U
({0} x A'), and {(D,0),(D —1,1),(1,D — 1),(0,D)} < A’. Observe that

Iy Ck[xy,...,x,)]is the defining ideal of a smooth projective monomial curve,
and T4 = Iy .k[xo,...,z,| is the extension of I 4. Therefore, the resolutions
of k[zo,...,x,]/14 and k[xy,...,2,]|/I4 are identical. This observation will

be useful in Chapter 4.

Proof of Prop. 1.78. For i € {0,1,2}, let ); be the i-th affine chart of X, i.e. ); =
V (I 4¢)), where A®  N? is the set defined in the paragraph before Theorem 1.72.
If there are two affine charts that are not smooth, then A has at least two singular
points by Lemma 1.69 (b). Thus, there is only one singular affine chart. Again, by
Lemma 1.69 (b), the singular affine chart is ) if and only if the only singular point
is Py, for k =0,1,2. This proves (1).

Assume now that X has a single singular point, and it is F. Moreover, suppose
that ged ({a;; |0<i<n,0<j<2}) =1 Forall 0 <i,j <2 iz#j, let\; =
min{k € Z-¢ | (D—k)e;+ke; € A}. We have to show that A\js = Xo1 = 1, Adjg = g,
and \g divides a;o for all 0 < i < n.
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Since ) is smooth, by Lemma 1.69 (c) one has that {(A0,0), (0, Aj2)} is the
minimal generating set of (A1), Hence, Ay divides ap for all 0 < i < n. In
particular, Az | D and Aja | D — A1, S0 A1a | Ag1. A similar argument with ), shows
that Agy | a;; for all 0 <i < n. Hence, A2 | a;; for all 0 <i <n, 1 <j < 2. Since
M2 | D and ajo = D — a;q — a;o for all ¢, then A\jp | a;; forall 0 <i<n, 0<j <2
Therefore, A5 = 1.

Working with )s, one gets that Ag; | Ajg, and hence \y; = 1. Analogously, one
has that Ao | ajo and Ay | ay for all 0 < i < n. In particular, Ajg | Ao and
Aoo | A1, SO Ajg = Ago. Since Mg | D, then there exists e € Z- a divisor of D
such that A\jg = A\yg = e and e | a; for all i = 0,...,n. Hence, we have proved
{(0,D—-1,1),(0,1,D —1),(e, D —¢,0),(e,0,D — e)} C A and e divides a;q for all
i. Finally, if e = 1, note that if (D —1,1,0) € A and (D —1,0,1) € A, then X is
smooth by Theorem 1.72.

Conversely, assume that {(0,D —1,1),(0,1,D —1),(e, D —e,0),(e,0,D —¢)} C
A. By Lemma 1.69 (c), the affine charts ), and ), are smooth, since (A1) =
(A@) = ((e,0),(0,1)). Moreover, ), is the affine toric surface determined by A,
and {(D,0),(0,D),(D —1,1),(1,D — 1),(D — ¢,0),(0,D — e)} ¢ A®. A direct
computation shows that (0,...,0) € )y is the only singular point of ). Hence, X
has a single singular point, which is Py = (1:0:---:0).

]

(0,0,D)

o (0,1,D—1)
(,0,D—¢) @

A

e (0,D—1,1)

® ® ®
(D7070) (Q,D - 670) (O,D,O)

Figure 1.2: Shape of a set A in Proposition 1.78 if e # D.
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1.4 Sumsets and commutative algebra

This last section contains some basic results on additive combinatorics and its con-
nection with commutative algebra. For more results on additive combinatorics, see
[71] and [91].

Let S be a semigroup (abelian with identity) and A, B C S finite nonempty
subsets, the sumset A + B is defined as

A+B={a+blac AbeB}.
Similarly, if A, ..., A, are s finite nonempty subsets of S, s > 1, one can define
A+ .+ A ={a1+ - +as|a € A, 1 <i<s}.

The most interesting case is A; = A for all . In this case, we denote the set
Ap 4+ A, by sA,

sA={a1+...+as|a; € A1 <i<s}, s€Zso; and
04 ={0}.

Definition 1.80. Let S be a semigroup and A C S a finite nonempty subset. For
all s € N the set sA is called the s-fold iterated sumset of A.

If S 4 denotes the subsemigroup of S generated by A, one has that S4 = U2 sA.
When the set A contains the identity 0 € S, the sumsets of A form a nested se-
quence, i.e., sA C (s+1)A for all s € N. Hence, the sequence (s.A):- is increasing
and converges to S 4.

Additive combinatorics studies the sumsets of A and their cardinality. One cen-
tral problem in additive combinatorics is the study of the function N — N defined
by s — |sA|. Khovanskii proved in 1992 that this function is asymptotically poly-
nomial.

Theorem 1.81 ([57, Thm. 1]). Let S be a semigroup and A C S be a nonempty
finite subset. Then, there exists a polynomial pa(t) € Q[t] of degree at most |A| such
that |sA|= pa(s) for all s € N sufficiently large enough.

Khovanskii’s proof relates the function s — |sA| to the Hilbert function of a
certain graded module M over the polynomial ring C|xy, ..., z,], where |A|=n+1,
and so agrees with the Hilbert polynomial of M once s > r(M), the regularity of
the Hilbert function of M. Later, Nathanson and Rusza gave a combinatorial proof
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of the same result in [72].

Khovanskii’s theorem has recently attracted the attention of some researchers.
In 2022, Eliahou and Mazumdar gave a new proof of this result in [30], which we
now present. In their proof, they associate with A a standard graded k-algebra
R(A), whose Hilbert function is s — [sA|. A geometric counterpart when S = N¢
can be found in the paper [18] by Colarte-Gémez, Elias and Miré-Roig. The special
case d = 1 is treated in the paper [32] by Elias.

Construction by Eliahou and Mazumdar

Let S be a semigroup! and A = {ag, a1, ...,a,} C S afinite set. Fix a field k and
consider the semigroup algebra k[S], which is spanned by {t* | s € S} as a k-vector
space. Let T' = k[S][w] be the polynomial ring in the variable w with coefficients
in k[S], graded via deg(t) = 0, deg(w) = 1. A basis of T" as a k-vector space is
B ={t'w" | s € S,n € N}. The grading defined on T gives it a structure of graded
k-algebra, T' = @®;enT}, where T; is the k-vector space spanned by {t*w’ | s € S}.

Consider the k-subalgebra R(A) of T' generated by {t™w,...,t*w},

R(A) = k[t®™w, ... t%w] C T.

We have that R(A) = @;enR(A);, where R(A); is the k-vector space with basis
{thw' | b € iA}. Hence, R(A) is a standard graded k-algebra and dimy(R(A);) =
liA| for all i € N. Theorem 1.81 follows then from Theorem 1.47.

Proposition 1.82 ([30, Sect. 6]). Let S be a semigroup and A = {ag,...,a,} C S
a finite set. Then, R(A) is isomorphic to K[z, ..., x,]/ker ¢ as graded k-algebras,
where ¢ : K[z, ...,x,] = R(A) is the morphism of k-algebras defined by p(x;) =
t%w, 1 =0,...,n. Moreover,

kergp = <Xa — X’8 ’ i@i = iﬁl’ and ioziai = iﬁﬂl» .
i=0 i=0 =0 1=0

When S = N¢, for some positive integer d, one can interpret R(.A) geometrically
in terms of the toric varieties introduced in Section 1.3. The case d = 1 is treated
in [32], and the case d > 2, in [18].

Tn their article, the authors only consider the case when S is a group. However, their results
can be generalized to any semigroup S.
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Sumsets of N and projective monomial curves

Let A = {ag,...,a,} C N be a finite set, and suppose ay < a; < -+ <
a,. To study the sumsets of A, we can always reduce to the case ag = 0 and
ged(aq, ..., a,) = 1. Let us show how.

Consider 6(A) = ged (a3 — ag, az — ag, ..., a, — ag). For all t = 0,...,n, denote
a; = (a; — ag)/d(A), and define

AN = Ll d), .. dl))

Then, one has that 0 = a5 < a} < -+ < @,

Ly 0 (AM) = ged(al, ..., a,) =1, and
A =ag+6(A) - AN, Therefore,

r'n

sA = {sap} US(A)-sAD)

and, in particular, |sA|= [sAWN)| for all s € N. The set AW is called the normal
form of A. When A = AW we will say that A is in normal form.

Given a set A = {ag,a1,...,a,} C N in normal form, denote D = a, and
consider the set A = {ay,a,,...,a,} C N? where a, = (D — a;,q;) € N?, for all i =
0,...,n. Fix an infinite field k and denote by C = C4 the projective monomial curve

determined by ,A. The homogeneous coordinate ring of C is k[C] = k[zo, . . ., z,]/ 4,
where [ 4 is the toric ring determined by A.

Proposition 1.83 ([32, Prop. 2.6]). The Hilbert function of K[C] satisfies |sA|=
HFye)(s) for all s € N.

Example 1.84. Consider the set A = {0,2,4,6,9} C N. Fix k = Q and let C be the
projective monomial curve determined by A = {(9,0),(7,2),(5,4),(3,6),(0,9)}. By
Proposition 1.83, |s.A|= HFy¢(s) for all s € N. If one computes the Hilbert function
(and polynomial) of k[C], one gets HFy¢)(0) = 1, HFyj(1) = 5, and HFy¢)(s) =
9s — 6 for all s > 2. Hence, |sA|=9s — 6 for all s > 2.

Sumsets of N? and projective monomial varieties

Let A = {ap,...,a,} C N? be a set of nonzero vectors, d > 2, where a; =
(@1, ... a4q) for all i = 0,...,n. Consider D = max{|a;|: ¢ =0,...,n}, and define
A={a,,...,a,} C N where a, = (D — |a;|,a:,...,a,) € NI for all 4. Fix
an infinite field k, and let X = X4 be the projective toric variety determined by .A.
The homogeneous coordinate ring of X is k[X] = k[xo, ..., z,]|/I4, where I 4 is the
toric ideal determined by A.
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For all s € N, denote H, == {(zo,...,2q4) € N1 | 29+ -+ 2z = sD}. Note that
since A C Hy, then sA C H, for all s € N. Moreover, if S = (A) is the semigroup
generated by A, then sA =S N H, for all s € N. Also, it is important to observe

that
sA={(sD —|b|,b1,...,ba) | b= (b1,...,ba) € sA} (1.12)

for all s € N. In particular, one has that |s.A|= |sA| for all s € N.

Proposition 1.85 ([18, Prop. 3.3|). The Hilbert function of k|X| satisfies |sA|=
HFy(x(s) for all s € N.

In Chapter 3, we will study more precisely the structure of the sumsets of sets
A C N? when d = 1, and when d > 2 and A has a special structure.



Chapter 2

The Betti numbers of projective
and affine monomial curves

“Everyone knows what a curve is, until he has studied
enough mathematics to become confused through

the countless number of possible exceptions.”
F. Klein

Fix an infinite field k. Consider an integer D > 0 and a sequence ay = 0 <
a; < -+ < a, = D of relatively prime integers, i.e., ged(ay,...,a,) = 1. Set
A={ay,...,a,} C N? where a, = (D — a;,a;) for all i = 0,...,n. Denote by C
the projective monomial curve C C Py determined by A, C = V(I4), where 14 is
the toric ideal determined by A. Since k is inifinite, by [96, Cor. 8.4.13], C is the
Zariski closure of

(P50 DTN DTy € PR (1 1 1)) € B Y,

and the defining ideal of C is I4. Hence, the coordinate ring of C is the two-
dimensional ring k[C] = k[zo, ..., z,|/I4. Note that k[C] is isomorphic to k[S] as
S-graded k[xy, . .., z,]-modules, k|C] = k[S], where S = S4 denotes the affine semi-
group generated by A.

The projective curve C has two affine charts, the affine monomial curves C; =
{(t9, .. t9) € AP |ty € k} and Cy = {(tD7o0 D= 407" € Ar |ty € kY,
associated with the sequences a; < --- <a,and D—a,_1 < --- < D—a; < D —ay,
respectively. The second sequence is sometimes called the dual of the first one.
Set S§; = 84, the numerical semigroup generated by A; = {ai,...,a,}. The
vanishing ideal of C; is 14, C k[zy,...,2,], and hence, its coordinate ring is the

43
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one-dimensional ring k[Cy] = k[x1, ..., x,]/14, = k[S1]. Moreover, 14 is the homog-
enization of 14, with respect to the variable xy. Similarly, denoting by S == S4,
the numerical semigroup generated by Ay = {D — a9,D — ay,...,D — a,_1},
the vanishing ideal of Cy is T4, C Kk[xg,...,x,_1], its coordinate ring is k[Co] =
klzo, ..., xn_1]/14, = k[Ss], and I 4 is the homogenization of 4, with respect to z,,.

One has that §; (k[C]) > f; (k[Cy]) for all 4, and the main goal of this chapter
is to understand when the Betti sequences of k[C] and k[C;] coincide. A necessary
condition is that k[C] is Cohen-Macaulay. Indeed, affine monomial curves are always
arithmetically Cohen-Macaulay while projective ones may be arithmetically Cohen-
Macaulay or not, and pd(k[C]) = pd(k[C;]) if and only if C is arithmetically Cohen-
Macaulay. Then, k[C] is Cohen-Macaulay if and only if the Betti sequences of k[C]
and k[C;] have the same length (and hence it is a necessary condition for the two
Betti sequences to coincide).

In the recent paper [84], the authors give a sufficient condition that ensures the
equality of the Betti numbers in terms of Grobner bases.

Theorem 2.1 ([84, Thm. 4.1]). Let G be the reduced Grébner basis of I, with
respect to the degree reverse lexicographic (degreviex) order with x1 > xo > -+ > x,.

If C is arithmetically Cohen-Macaulay and x, is involved in all non-homogeneous
binomials of G, then f; (k[C]) = B; (kK[C1]) for alli=0,...,n— 1.

We address the same problem, but with a combinatorial approach. In Section 2.1,
we recall some concepts on the Apéry sets of the semigroups & and S;, and define
the Apéry posets (Apy, <;) and (APg, <s). In Section 2.2, we provide a combinato-
rial sufficient condition for having equality between the Betti sequences of k|C] and
k[C:1] by means of the posets Ap, and APs. This is the content of Theorem 2.12,
which is the main result of this chapter. In Propositions 2.18 and 2.23, we use our
main result to provide explicit families of curves where f;(k[C]) = 5;(k[C,]) for all
i. In Section 2.3, we apply our results to study the shifted family of monomial
curves, i.e., the family of curves associated to the sequences j+a; < --- < j+ a,
parametrized by j € N. In this setting, Vu proved in [97] that the Betti numbers in
the shifted family become periodic in j for j > N for an integer N explicitly given.
A key step in his argument is to prove that for j > N one has equality between the
Betti numbers of the affine and projective curves. Using our results, we substan-
tially improve this latter bound in Theorem 2.26. In Section 2.4, we show how to
construct arithmetically Gorenstein projective curves from a symmetric numerical
semigroup (Theorem 2.32). Finally, in Section 2.5, we compute the Betti sequence
of certain affine monomial curves coming from a class of semigroups defined by Kunz
and Waldi in [61]. The main results of this section are Theorem 2.49, in which we
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characterize the semigroups in this family whose defining ideal is generated by the
2 x 2 minors of a 2 x n matrix; and Theorem 2.53, where we provide the whole Betti
sequence of some of these curves.

The results included in this chapter are part of [36] and [42].

2.1 Apéry sets and their poset structure

Fix an infinite field k. Let ag = 0 < a; < --+ < a, = D be a sequence of rel-
atively prime integers. For each i = 0,...,n, set a, = (D — a;,a;) € N2, and
consider the three sets A; = {a1,...,a,}, Ay = {D,D —ay,...,D — a,_1} and
A={ay...,a,} C N’ We denote by C C P the projective monomial curve deter-
mined by A, and by C; and Cs its affine charts, i.e., the affine monomial curves given
by A; and A, respectively. We denote the vanishing ideal of C; by I4, for i = 1,2
and the vanishing ideal of C by I4; these are the toric ideals determined by A;, As,
and A, respectively. Consider §; and Sy the numerical semigroups generated by Ay
and Ay, respectively, and S the affine semigroup generated by A.

As already mentioned, k[C;] and k[Cs] are always Cohen-Macaulay, while k[C] can
be Cohen-Macaulay or not. There are many ways to determine when a projective
monomial curve is arithmetically Cohen-Macaulay; see, e.g., [14, Cor. 4.2], [15,
Lem. 4.3, Thm. 4.6], [43, Thm. 2.6] or [49, Thm. 2.2]. We recall some of them in
Proposition 2.4, but let us previously recall the notion of Apéry set (Section 1.1),
since it is involved in some of those charaterizations. For i = 1,2, the Apéry set of
S, (with respect to D) is

Ap, ={yeSily—D ¢ S;}.

By Proposition 1.5, Ap, is a complete set of residues modulo D, i.e., Ap; = {vg =
0,v1,...,vp_1} and Apy = {ug = 0,us,...,up_1} for some positive integers u; and
v; such that u; = v; =4 (mod D) foralli=0,...,D — 1.

Definition 2.2. The Apéry set APs of S and the exceptional set Es of S are defined
as follows:

e APs={seS:s—a,¢S,s—a, ¢S}
e Es={se€S:s—a,€S,s—a,cS,s—a,—a, ¢S}

By Proposition 1.20, APg is finite, and we will see in Chapter 3 that Egs is also
finite.
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Figure 2.1: An element s € APs and an element s’ € Egs.

Lemma 2.3. Foralli=1,...,D — 1, the following claims hold:

(1) If (up—i,v;) € S, then (up_;,v;) € APg.
(2) If (up_i,v;) ¢ S, then there exist natural numbers x > up_; and y > v;, such
that (x,v;) € APs and (up—;,y) € APs.

Proof. (1) is trivial. To prove (2), take i € {1,2,...,D — 1}. Since v; € Sy, there
exists a natural number x > up_;, such that (x,v;) € S, and if we choose the smallest
x € N satisfying this property, then (x,v;) € APs. The proof of the existence of y
is analogous. O

As a consequence of the previous lemma, one has that |[APg|> D. Denote by G
the subgroup of Z? generated by S and set &' = G N (Sy x Sy).

Proposition 2.4. The following statements are equivalent:

(a) C is arithmetically Cohen-Macaulay, i.e., the ring K[C] is Cohen-Macaulay.

(b) Foralli=1,...,D—1, (up_s,v;) €S. In other words, if v € Ap,;, u € Ap,
and uw+v =0 (mod D), then (u,v) € APg.

(¢) APs ={(0,0)} U{(up—s,v;): 1 <i < D}.
(d) APs has exactly D elements.
(e) The exceptional set Es is empty.

(f) §'=S.
(9) The variable z,, does not divide any minimal generator of in(I4,), the initial
ideal of 14, for the degrevlex order in K[z1,. .., x,] with xy > -+ > x,.

Proof. The equivalences (a) < (e), (a) < (f) and (a) < (g) are well known; see, e.g.,
[15, Lem. 4.3, Thm. 4.6] and [49, Thm. 2.2]. Moreover, the implications (¢) = (b)
and (c) = (d) are trivial and (d) = (c) is a direct consequence of Lemma 2.3, so
let us prove (b) & (e) = (c).

(e) < (b): Suppose that there exists an index ¢, 1 < i < D, such that (up_;,v;) ¢ S.
By Lemma 2.3 (2), there exist x > up_; and y > v;, such that (z,v;) € APs and
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(up—i,y) € APs. Then, there exist 2/ < x and 3y < y, such that (2/,y') € Es,
so Es is not empty. Conversely, suppose that there exists (x,y) ¢ S such that
(x+ D,y) € S and (z,y + D) € S and let i be the index, 1 <i < D — 1, such that
y=i=v; (mod D)and z =D —i =wup_; (mod D). As (x,y+ D) € S, v € Ss;
and y € &1, because (z + D,y) € S, so up_; < x and v; < y. This implies that
(up—i,v;) ¢ S.

(e)+(b) = (c): Assuming that (b) holds, one gets that {(0,0)}U{(up_s,v;) : 1 <i <
D} C APg by Lemma 2.3 (1). To prove the equality, take (x,y) € APs. If y ¢ Ap;,
then y — D € &, so there exists 2/ > x, such that (z/,y — D) € S and choosing
2/ minimum with this property, one gets that (z/,y — D) € S, (¢’ — D,y) € § and
(' — D,y — D) ¢ S, a contradiction with (e). This implies that y € Ap,, and we
prove that © € Ap, using a similar argument. Thus, (z,y) = (up_s, v;) for some i,
1 <i < D, and we are done. O

Example 2.5. Let A = {0, 1,2,3,8} C N. One can check that the Apéry sets of S
and S, are Ap; = {0,1,2,3,4,5,6,7} and Ap, = {0,17,10,11,12,5,6, 7}, respec-
tively, and APs = {(0,0),(7,1), (6,2), (5,3), (12,4), (11, 5), (10,6), (17,7)}. Hence,
k[C] is Cohen-Macaulay.

Remark 2.6. If k[S] is not Cohen-Macaulay, the ring k[S’] is called the Cohen-
Macaulayfication of k[S]. This is because S # S’ by Proposition 2.4 (f) and k[S'] is
the least Cohen-Macaulay intermediate between k[S| and its field of fractions; see,
e.g., [15, Remark 4.7].

For i = 1,2, one can consider the order relation <; in §; given by y <; z <
z —y € §;. Similarly, in S one can consider the order relation <g defined by
y<sz<=z-y €S. The Apéry sets Ap, and APg inherit a poset structure
from (S;, <;) and (S, <g), respectively. We will denote these posets by (Ap;, <;)
and (Aps, SS)

Since § C Sy x &y, it follows that if (z,y) <s (2/,v), then x <y 2’ and y <4
y'. Using Proposition 2.4, one can prove that the poset structure of (APg, <g) is
completely determined by those of (Ap,, <;) and (Ap,, <2) when C is arithmetically
Cohen-Macaulay.

Proposition 2.7. IfC is arithmetically Cohen-Macaulay, then for all (z,y), (2',y") €
AP,
(z,y) <s (2',9) = z<pa’ andy <1y

Proof. As observed before stating the proposition, (=) always holds. Let us prove
(<) when C is arithmetically Cohen-Macaulay. Since (z,y), (2/,y’) € APgs, one has
that y,y" € Apy, z,2’ € Ap, by Proposition 2.4 (¢), and x4y = 2’4y = 0 (mod D).
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Assume that y <; ¢ and z <, 2/, then w =3y —y € S; and z =2’ — 2z € S,.
Moreover, w € Ap, and z € Ap,; otherwise, v ¢ Ap, and ' ¢ Ap,. Since
z4+w=12"4+y —2x—y =0 (mod D), then (z2,w) € S by Proposition 2.4 (b),
and we are done. O

Let us recall now some notions about posets that will be used in the sequel for
the posets (Apy, <1), (Ap,y, <s) and (APgs, <s).

Definition 2.8. Let (P, <) be a finite poset.

(1) For y,z € P, we say that z covers y, and denote it by y < z, if y < z and
there is no w € P such that y < w < z.

(2) We say that P is graded if there exists a function p : P — N, called rank
function, such that p(z) = p(y) + 1 whenever y <- 2.

The following result shows that the poset (APgs, <g) is always graded while
(Ap;, <1) may be graded or not. Observe that, since (Ap;,<;) has a minimum
element which is 0, whenever it is graded, the corresponding rank function is com-
pletely determined by the value of the rank function at 0 that we fix to 0. In the
following proposition, we characterize the covering relation in Ap,; and in APg, and
describe the rank functions of (APg, <gs), and of (Ap,, <;) when it is graded.

Proposition 2.9. (a.1) For all y,z € Ap,, y <1 z < z = y + a; for some
a; € MSG(Sl) \ {an}.

(a.2) Ap, is graded if and only if, for all y € Ap,, all the factorizations of y have
the same length. When it is graded, the rank function py : Ap; — N is given
by the length of the factorizations of the elements in Ap,.

(b.1) For ally = (y1,92),2 = (21,22) € APs, y <sz <= z =y + a, for some
ie{l,...,n—1}.

(b.2) APs is graded by the rank function p : APs — N defined by p(y1,y2) =
(y1+12)/D.

Proof. In (a.1) and (b.1), (<) is trivial. Let us prove (=).

(a.1) Consider y,z € Ap, such that y <; z. Since z — y € Sj, there exists o =
(a1,...,a,) € N" such that z =y + > | a;a;, and a,, = 0 because z € Ap,.
If o[> 1, then there exists j € {1,...,n—1} such that o;; # 0 and y +a; # z.
Thus, y + a; € Ap; because z € Ap,, and y <; y + a; <; 2, a contradiction
because y <1 2, so |a|= 1.
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(b.1) Consider y,z € APgs such that y <-s z. Since z —y € S, there exists a =
(0, ..., ) € N"*t such that z —y = Y j«;a;, and ag = o, = 0 because
z € APs. Again, if |o|= Z?;ll a; > 1, we can choose any «; # 0 and
get y <s y +a; <s z (one has that y + a; € APs because z € APs), a
contradiction because y <-s z.

Now (a.2) and (b.2) are direct consequences of (a.1) and (b.1), respectively. O

Remark 2.10. By Proposition 2.9 (b.2), the fiber of 1 under the rank function
pis pi(1) = {a, : 1 < i < n—1}, and hence |[p~'(1)|]= n — 1. On the other
hand, when Ap, is graded, the fiber of 1 under p; is p;*(1) = MSG(S)) \ {a,}, by
Proposition 2.9 (a.l).

Set A} = MSG(S;) \ {a,} and Apgs) = Ap, N sA] for each s € N. Since Ap,
is finite, consider N := max{s € N : Apls) # (0} € N. As a direct consequence of
Proposition 2.9 (a.2), we get a characterization of the graded property for (Ap,, <1).

Corollary 2.11. (Apy, <y) is graded if and only if ZiV:0|Ap§S)|: D.

2.2 Equality between the Betti numbers

Recall that 14, C k[xy,...,2,] and 14 C Kk[zg,...,z,| are the vanishing ideals
of C; and C, respectively. When C is arithmetically Cohen-Macaulay, pd(k[C]) =
pd(k[C,]). Moreover, by Proposition 2.4 (d), in this case, one has that |APgs|=
|Ap;|= D. The main result in this section is Theorem 2.12 where we give a sufficient
condition in terms of the poset structures of the Apéry sets Ap,; and APg for the Betti
sequences of k[C;] and k[C] to coincide. We postpone its proof after Propositions 2.14
and 2.16.

Theorem 2.12. If (APs, <s) ~ (Apy, <1), then Bi(K[C]) = Bi(k[Ci]) for all i.

Note that the converse of this result does not hold, as the following example
shows.

Example 2.13. For the sequence 1 < 2 < 4 < 8, one can check using, e.g., [24],
that both k[C,] and k[C] are complete intersections with Betti sequence (1,3,3,1).
However, the posets (Ap;, <i) and (APgs, <s) are not isomorphic since <; is a total
order on Ap,, while <g is not. More generally, for a; =1 < ay < --- < a, = D
with a; a divisor of a;4; for all ¢ € {1,...,n — 1}, one has that both k[C;] and
k[C] are complete intersections; see [4, Theorem 5.3]. Thus, both Betti sequences
are (1, ("Il), ce (";1), ce (Z:;), 1), by [92, Thm. 6]. However, again the posets
(Apy, <;) and (APg, <s) are not isomorphic since <; is a total order on Ap,, while
<g is not.
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Proposition 2.14. The following two claims are equivalent:

(a) The posets (Ap,,<1) and (APgs, <s) are isomorphic;

(b) k[C] is Cohen-Macaulay, (Ap,,<1) is graded, and {ai,...,a,—1} is contained
in the minimal system of generators of Sy.

Proof. (a) = (b): If (APs,<s) ~ (Ap;,<1), then Ap, and APs have the same
number of elements, and hence k|[C] is Cohen-Macaulay by Proposition 2.4 (d).
Moreover, since (APg, <g) is graded by Proposition 2.9 (b.2), (Ap,, <1) is graded.
Finally, |p;*(1)|= |p~(1)] so, by Remark 2.10, [MSG(S;) \ {a,}|=n — 1, and hence
{ai,...,a,_1} C MSG(S)).

(b) = (a): Ifk|[C] is Cohen-Macaulay, then |APs|= |Ap,| by Proposition 2.4 (d), and
hence the map ¢ : APs — Ap, defined by ¢(up_;,v;) =v; forall j =0,...,D —1,
is bijective. Let us prove that it is an isomorphism of posets. By Proposition 2.7, ¢
is an order-preserving map, so one just has to show that ¢! is also order-preserving.
Consider y,y" € Ap, such that y <; 3. Then, there exists ¢ € {1,...,n — 1} such
that 3y = y + a;, by Proposition 2.9 (a.1). Set (z,y) = ¢ (y) and (z/,9') = ¢~ (v/).
One has that x + D — a; > 2’ since ' € Ap, and x + D — a; € S;. Note that
p(x,y) = p1(y) (and the same holds for (2’,y")). This is because if we write (z,y) =
Z;:ll a;(D — a;, a;) for some a; € N, then y = Z;:ll a;a; provides a factorization of
y of length 37" a;, and hence p(z,y) = 321~ ; = p1(y), by Proposition 2.9 (a.2)
and (b.2). If 2’ < z+D—a;, then p1(y') = p(2’,y') < p(z,y) = p1(y), a contradiction
since y <1 y. Therefore, y + D — a; = y' and we are done. ]

Note that Ap; can be a graded poset even if (Ap;, <;) and (APg, <s) are not
isomorphic as the following example shows.

Example 2.15. For the sequence a; =5 < ay = 11 < ag = 13, the Apéry set of the
numerical semigroup S; = (ay, as, ag) is Ap, = {0,27, 15,16, 30, 5, 32, 20, 21, 22, 10,
11,25}. This Apéry set is graded with the rank function p; : S — N defined below
(see Figure 2.2):

e p1(0) =0,
® M 5) :p<11) -4
o p1(10) = pi(16) = p1(22) = 2,
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(48,307
(40,25)] (22,43)
(32,20)] (14,38)
(24,15)] (6,33)
(16,10)!
8.5
(0.0)

Figure 2.2: The posets (Ap;,<;) (in blue) and (APg,<s) (in black) for S§; =
(5,11, 13).

Moreover, since APg has 16 elements, k[C] is not Cohen-Macaulay, and hence
(Ap,, <;) and (APg, <s) are not isomorphic by Proposition 2.14.

We now relate the condition in Proposition 2.14 to the criterion in Theorem 2.1,
which uses Grobner bases.

Proposition 2.16. Consider the following two claims:

(a) (Apy, <1) is graded and {ay,...,a, 1} is contained in the minimal system of
generators of ;.

(b) The variable z,, appears in every non-homogeneous binomial of G, the reduced
Grobner basis of 14, with respect to the degree reverse lexicographic order with
Tl > Ty > > Ty

Then (b) = (a), and (a) = (b) holds if k[C] is Cohen-Macaulay.

Proof. (a) = (b) when k[C] is Cohen-Macaulay: Assume that there exists a non-
homogeneous binomial f = x* — x# € G. with in(f) = x® such that x, does
not appear in the binomial f, i.e. |a|> |f] and «, = B, = 0, and consider s =
Z?:_ll oa; = Z?;ll Bia; € S1. Let us prove that s —a, ¢ S;. If s —a, € &1, we
can write s as s = > . va; + a, for some v = (y1,...,7,) € N, and consider
the binomial ¢ = x7z,, — x” € I4,. Note that x® — x"x, # 0 since 8, = 0. As
f € G- and G is reduced, one has that x” ¢ in(I4,) and hence in(g) = x"x,.
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Therefore, X7z, € in(I4,) and, by Proposition 2.4 (g), x” € in(l4,). The remainder
of the division of x” by G- is a monomial x° such that x° ¢ in(I4,), and one has
that the binomial x* — x°x, € I, is the difference of two binomials that do not
belong to in(/4,) using again Proposition 2.4 (g), a contradiction. Thus, s —a, ¢ S
and hence s € Ap,. But s = S0 ovya; = S0 Bias € Sy with |a|> |A] so if
{ai,...,a,_1} C MSG(S)), one gets by Proposition 2.9 (a.2) that Ap, is not graded.
(b) = (a): If {ai,...,an_1} ¢ MSG(Sy), select i € {2,...,n — 1} such that a; is
not a minimal generator. Then, there exists o = (ay,...,q;_1) € N1 with |a|> 2
such that z; — [] i a:?j € I4,. Note that any set of generators of 14, contains an
element of this form. Thus, G- contains a non-homogeneous binomial that does not
involve the variable z,,, a contradiction, and hence {ay,...,a, 1} C MSG(S;).

If (Apy, <1) is not graded, by Proposition 2.9 (a.2), there exists s € Ap; which
has two factorizations of different length , ie., s = Z?;ll oa; = Z?;ll Bsa; with
|a|> |B]. Note that a,, = 3, = 0 since s € Ap,;. We can choose f = (51,..., 1)
such that |G]> 0 is the least possible value, and o = («q,...,a,_1) such that,
for this election of 3, x“ is the smallest possible monomial for the degree reverse
lexicographic order. Then f = x* — x” € I, and in(f) = x®. Since x* € in(Iy,),
there exists a binomial A = x* — x* € G- such that x* divides x®*. Let us see
that h is not homogeneous and that the variable x, is not involved in h. If h
is homogeneous, dividing x* by h, we get x* = x*x* — x*) + x> *#. Then,
s = Y (v — N+ pi)a; = Y, ua; with |a — X + p|= |a| and x> M < x2) a
contradiction with the choice of a, so h is not homogeneous. On the other hand,
since x* divides x* and a,, = 0, if z,, appears in x* — x*, it must be in the support
of x*. If we write x* = x*'z,,, then x® = x*(x* — x*) + x* ¥z and hence
s = y (i — N + pl)a; + a, which is impossible because s € Ap,. Therefore, we
have found a non-homogeneous binomial h = x* — x* € G- where the variable z,, is
not involved, a contradiction. Thus, (Ap,, <;) is graded. O

Remark 2.17. (1) In our proof of (a) = (b), we strongly use that k[C] is Cohen-
Macaulay but we could not find any non-Cohen-Macaulay example where this
implication is wrong.

(2) In general, if one considers the Apéry set of S; with respect to a;, i €
{1,...,n}, one can determine when Ap(S,a;) is graded in terms of the gen-
erators of I;. By [54, Cor. 3.10], Ap(Sy,a;) is graded if and only if there
exists a minimal set of generators of I; such that z; appears in all of its non-
homogeneous binomials.

Proof of Theorem 2.12. By Propositions 2.14 and 2.16, the Apéry posets (AP, <g)
and (Ap,, <;) are isomorphic if and only if the variable z,, appears in every non-
homogeneous binomial of G-, the reduced Grobner basis of 14, with respect to



2.2. EQUALITY BETWEEN THE BETTI NUMBERS 93

the degrevlex order with z; > xo > --- > x,. Hence, the result follows from
Theorem 2.1. O

Families of curves where the Betti sequences coincide

In Propositions 2.18 and 2.23 below, we provide sequences a; < --- < a, for which
the condition in Theorem 2.12 is satisfied.

Let us start with arithmetic sequences, i.e., sequences a; < -+ < a, such that
a; = a; + (i — 1)e for some positive integer e with ged(as,e) = 1. For this family,
we refine [84, Cor. 4.2] that considers a; > n — 1.

Proposition 2.18. Let a1 < ... < a, = D be an arithmetic sequence of relatively
prime integers, i.e., for alli =1,...,n, a; = a1+ (i—1)e for some integers a;,e > 0
such that ged(aq,e) = 1. Then, (APs, <s) ~ (Ap,,<1) if and only if a; > n — 2.
Therefore, if a; > n — 2, the Betti sequences of k[C1] and k[C| coincide.

Proof. We use Proposition 2.14 to characterize when (APg, <s) and (Ap,, <;) are
isomorphic. When a; < --- < a, is an arithmetic sequence, k[C] is always Cohen-
Macaulay by [2, Cor. 2.3]. Moreover, one can easily check that {aq,...,a,_1} C
MSG(S,) if and only if a; > n — 2. Therefore, if a; < n — 2, then (Ap,, <;) is not
isomorphic to (APg, <s). Conversely, if a; > n — 2, it is sufficient to prove that
(Apy, <y) is graded. By [66, Thm. 3.4], the Apéry set of S; is described as follows:
if, for all b € {0,...,D — 1}, ¢, and —r;, denote respectively the quotient and the
reminder of the division with negative remainder of b by n—1, i.e., ¢, = [b/(n — 1)]
and r, = g(n — 1) — b with 0 < 1, < n — 2, then

Ap, = {q@pa1 + e, 0<b< D —1}.

We claim that the grading is given by the function p; : Ap; — N defined by
p1 (@a; +1mpe) = q. Consider y,y' € Ap, such that y < ¢/, an let us prove
that p1(y') = pi(y) + 1. By Proposition 2.9 (a.l), there exist natural numbers
be{0,...,D—1}andi e {l,...,n—1} such that y = gya; + rpe and ¥/ =y +a; =
(@p+1)ar+(rp+i—1)e. Ifi > n—ry, theny' —D = ggay+(rp +i—1—(n—1))e € S,
contradicting the fact y' € Ap,;. Hence, i <n —r, — 1. Set 0’ = (g +1)(n — 1) —
(rp+i—1). As0 <r,+i—1<n—2, on the one hand one has that 0 < ¥ < D —1,
on the other ¢y = ¢, + 1 and ry = ry, + i — 1. Therefore 4y’ = qya; + rye, and hence

ny) =pi(y) + 1. O

Remark 2.19. Let a; < as < -+ < a, = D be an arithmetic sequence of relatively
prime integers. Set 1 < ¢ < n — 1 such that a; = ¢ (mod n — 1) (this number ¢ will
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appear in Lemma 2.21). By [40, Thm. 4.1], the Betti numbers of k[C,] are f; = 1
and e .
An—1 (n_€+1_j)(j_1) 1§]§n_£>
Bi=Jl\ . +9 . 1 .
J+1 (]—n+f)(j) n—0(<j<n-—1.

Note that they depend only on the remainder of a; modulo n — 1. Hence, when
a; > n — 2, the Betti numbers of k[C| are also given by the previous formula, by
Proposition 2.18.

Example 2.20. For the sequence 5 < 6 <7 < 8 <9 < 10, one has that a; =5 >
4 = n — 2. Therefore, the Apéry sets (Ap;,<;) and (APgs, <s) are isomorphic by
Proposition 2.18. The Betti sequences of k[C;]| and k[C] coincide and one can check,
using, e.g., [24], that both sequences are (1, 11,30, 35,19,4). This also follows from
Remark 2.19 and Proposition 2.18. The isomorphic posets (Ap;, <;) and (APgs, <s)
in this example are shown in Figure 2.3.

(9,11) (8,12) (7,13) (6,14)

(0,0)

Figure 2.3: The posets (Ap;,<;) (in blue) and (APg,<s) (in black) for §; =
(5,6,7,8,9,10).

The next family that we now consider are monomial curves defined by an arith-
metic sequence in which we have removed one term. In [3, Sect. 6], the authors
study the canonical projections of the projective monomial curve C defined by an

arithmetic sequence a; < -+ < a, of relatively prime integers, i.e., the curve 7,.(C)
obtained as the Zariski closure of the image of C under the r-th canonical pro-
jection m, : PP --» ]P’uz_l, (Po : o i pn) F=> (Do : *+ F Pr_1  Pra1 ot Pn)-

We know that m,.(C) is the projective monomial curve associated to the sequence
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a < < Ay < Qpgg < 00 < Ay

If one removes either the first or the last term from an arithmetic sequence, the
sequence is still arithmetic. Moreover, note that if an arithmetic sequence a; <
-+« < a, satisfies the condition a; > n — 2 in Proposition 2.18, then the arithmetic
sequence obtained by removing either the first or the last term also satisfies the
condition in Proposition 2.18 because the number of terms in the new sequence
is smaller, and its first term may have increased. Thus, we will only focus here
on sequences obtained from an arithmetic sequence a; < --- < a, by removing a,
for r € {2,...,n —1}. Set A = {a1,...,a,} \ {a,}, and consider the numerical
semigroup 81 = Sy, and its homogenization §. We characterize in Proposition 2.23
when the posets (Ap;, <;) and (APg, <s) are isomorphic. Two main ingredients in
the proof are the following two results in [3] that we recall for convenience. The first
one is a technical lemma, while the second describes the Apéry set of Sj.

Lemma 2.21 ([3, Lem. 2]). Leta; < --- < a, be an arithmetic sequence of relatively
prime integers with common difference e. Set ¢ = [(a; — 1)/(n —1)] € N and
C=a;,—q(n—1)e{l,...,n—1}. Then,

(1) (¢+e)ay + a; = apyi + qay, , for allie {1,...,n— L}, and

(2) g+e+1=min{m > 0| ma; € (ag,...,a,)}.
Lemma 2.22 ([3, Cor. 4]). Let a; < --- < a, be an arithmetic sequence of relatively
prime integers with common difference e. Denote by A the Apéry set of & =
{ay,...,an) with respect to a,, q = [(ay — 1)/(n — 1)|, and, for all p € N, set
v, = pag +ag. Genr € {2,...,n—1}, consider Ay = {as,...,a,}\{a.}, and the

semigroup Sy generated by Ay. When ay > r, the Apéry set of S with respect to a,
18 described as follows:

(1) If r =2,

(A\{v, [0<p<g+e})U{v,+a,[0<pu<qg+e}, ifn—1]a,
Apy =9 A\ {v, |0<pu<g+e—1})
U{vutan [0 < p < gte—1},

otherwise.
(2) If r € {3,...,n — 2},

Apy = (A\{a,}) U{a, + an}.
(3) If r=n—1,

_ ) A\ {an ) U{an1 + (g4 Dan}, ifn—1]ai,
Apr = { (A\{an_1}) U{an_1+qan}, otherwise.
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Proposition 2.23. Consider a; < ... < a, an arithmetic sequence of relatively
prime integers withn > 4, and taker € {2,...,n—1}. Set Ay = {a1,...,a,}\{a,},
and let §1 be the numerical semigroup generated by Ay, and S its homogenization.
Then,

a; >n—2 and a; # n, if r =2,
(APs,<s) ~ (Ap;,<i) = qar >nandr <a; —n+1, if3<r<n-2
a; >n— 2, ifr=n—1.

Consequently, if the previous condition holds, then (5;(k[C1]) = B;(k[C]), for all i.

Proof. Denote by S; the numerical semigroup generated by the whole arithmetic
sequence a; < --- < a,. Again, we use Proposition 2.14 to characterize when the
posets (Ap;,<;) and (APg, <g) are isomorphic. Note that {ay,...,a,} \ {a,.} C
MSG(S,) if and only if

eitherr #n—1landa; >n—2, orr=n—1and a; > n — 2. (2.1)
On the other hand, by [3, Cor. 5], k[C] is Cohen-Macaulay if and only if
r<aorr=n-—1. (2.2)

Finally, by Proposition 2.9 (a.2), (Ap;, <;) is graded if and only if

Vb e Apy, b= Z o — Z Gia;, = Z o = Z B;. (2.3)

i¢{rn} i¢{rn} i¢{rn} i¢{rn}

We split the proof in three cases depending on the value of r.

o =2

By (2.1), if (APs, <s) ~ (Ap;,<i), then @y > n — 2. If a; = n, the element
as + a,_1 = as + a, of Ap, can be written as (2 + €)a;, and hence (Ap,, <;) is not
graded by (2.3). Assume now that a; > n — 2 and a; # n, and let us prove that
(Ap,, <4) is graded in this case. By Lemma 2.22 (1),

Ap; = (A\{v, |0 p <t U{vu+a, | 0< p <t}

fort € {¢g+e—1,q+e}. Every b € AN Ap, satisfies (2.3) by Proposition 2.18, so
consider b, = pay + as + a, = pa, + az + an,—1 € Ap,, with 0 < pp <+¢. Let us prove
that whenever b, = Zz‘¢{2,n} o;a;, with o; € N, then Zzg{m} a; =+ 2.

Using iteratively the relations a; + a; = a;—1 + a4 in S, we get that

b,u = Z Qi = Blal + ea,, + ﬁnan
i¢{2,n}
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for some m, 2 < m < n-—1, € € {0,1}, and Sy, 5, € N such that Zi¢{2,n} o =
51 + €+ 5n

If e = 0 or m # 2, then ay is not involved in the expression b, = B1a1+€a,, +Bnan,
so 3, = 0 since b, € Ap,. Thus, b, = pa; + as + a, = Bi1a1 + €a,,, and hence

(Br = pay = az + ap — €y, (2.4)

If e =0, ay divides as + a,, = 2a; + ne, and hence a; divides n which is impossible
since ag > n— 1 and a; # n. Now if ¢ = 1 and m # 2, (2.4) implies that
(b1 — way = as + a, — ay, = a3 + (n — m + 1)e, and hence a; | n —m + 1,
a contradiction since a; > n—1 > n—m+ 1. Thus, e = 1 and m = 2, i.e.,
b, = Zi¢{2,n} a;a; = pay + as + a, = Bra; + ags + Bpa,.

Note that since fia; 4+ as cannot be transformed into Zi¢ (2,0} il using the
relations a; + a; = a;_; + aj4+1 in S, we have that 5, # 0. Moreover, (u — 81)a; =
(6n—1)a, and p— 1 < g+e+1since p <t < g+e. By Lemma 2.21 (2), this implies
that yu = 81 and 3, = 1, and we have shown that Zi¢{27n} o =01+ B +1=pu+2.

e 3<r<n—2.

By (2.1) and (2.2), the conditions a; > n — 1 and r < a; are necessary for
(APgs, <s) and (Ap;, <1) to be isomorphic, and by Lemma 2.22 (2), Ap, = (A \ {a,})
U {a, + a,}. Using Proposition 2.18, we get that (Ap,,<;) is graded if and only
if all the factorizations of a, + a, have the same the length, which is two since
Ar + Qp = Qpy1 + Qp_1.

Now, if ay = n—1, then a, 1 +a,_1 = eay +as+a,_1, and if r > a; —n+1, then
ary1 +ap1 = 24+e€)ay+ (r—a +n—2)e=(1+e€)a; + ar_q,4+n—1. Thus, in both
cases (Ap;, <) is not graded. Conversely, assume that a; > nandr < ay —n+1. If
a, +a, = 2a; + (n+7r—2)e can be written using more than 2 minimal generators of
81, then there exists g > 3 (the number of minimal generators involved), and m > 0,
such that a, + a, = pa; + me. Then, m < n +r — 3 and a; divides n +r — 2 —m,
a contradiction since a; >n+r—2>n+r—2 —m.

e r=n—1.

By (2.1) and (2.2), we only have to show in this case that if a; > n — 2, then
(Apy, <y) is graded, i.e., using Lemma 2.22 (3) and Proposition 2.18, that (2.3)
holds for b = a,_1 + (¢ + 1)a,, when n — 1 | a1, and b = a,,_1 + qa,, otherwise.

Assume that n — 1 does not divide a;, and consider the element b = a,,_1 + qa,
in Ap,. By Lemma 2.21 (1), there exists j € {1,...,n — 2} such that b = (¢ +
e)a; + aj, and hence we have to show that whenever b = Z;:ﬁ a;a; with o; € N,
then Z;:f a; = g+ e+ 1. As in the case r = 2, using iteratively the equalities
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a; +a; = a;—1 + ajp1 in S, we get that

n—2

b=> aia; = fray + ety + Potin

i=1

for somem, 2 <m <n—1,¢e € {0, 1}, and 5, 8, € Nsuch that Z?;f a; = Bit+et+,.

If 8, > 0, since b € Ap,, we have that b—a,, = S1a1 +e€a,, + (8, —1)a, ¢ Si1, and
hence e =1 and m=n—1, ie., b—a, = f1a; + ap_1 + (B, — 1)a,. But this is also
equal to (81 —1)a; +as + an—2+ (B, — 1)a, so B = 0 (otherwise b —a,, € S;). Thus,
b = a,_1+ Bpa,, which cannot be transformed into Z?;lz a;a; using the relations
a; +a; = a;—1 + a4 in S;, a contradiction. This shows that 3, = 0.

Then b = Bia; + €an, = (¢ + e)a; + aj. Since {ay,...,a,_2} C MSG(S;), we
deduce that e = 1, m = j, and ; = ¢+ e. Hence, Z?:_f o =p+e+B,=q+e+1,
and we are done in this case.

When n — 1 divides a4, consider b = a,,_1 + (¢ + 1)a, in Ap,, and the relation
b= (q+ e+ 1)a; + a,_1 given by Lemma 2.21 (1), and an analogue argument
works. O

Example 2.24. For the arithmetic sequence 9 < 10 < 11 < 12 < 13, the parameters
are a; = 9, e = 1 and n = 5. By Proposition 2.18, the Betti sequences of k[C;] and
k[C] coincide. Indeed, it is (1, 10,20, 15, 4) for both curves. Now the Betti sequences
of k[m,.(Cy)] and k[, (C)] also coincide for all values of r, 1 < r < 5: they coincide for
r =1 and 5 as observed before Lemma 2.21, and for r = 2, 3,4 by Proposition 2.23.
One can check that the sequence is (1,6,8,3) for r =1, (1,5,6,2) for r = 2 and 4,
(1,8,12,5) for r = 3, and (1,4, 5,2) for r = 5.

Example 2.25. Consider the arithmetic sequence 9 < 10 < 11 < 12 < 13 < 14 <
15, whose parameters are a; = 9, e = 1 and n = 7. By Proposition 2.18, the Betti se-
quences of k[C;] and k|C] coincide, and one can check that it is (1,19, 58, 75,44, 11, 2)
for both the affine and the projective monomial curves. Using the notations in
Proposition 2.23, one has that Ap; and APg are isomorphic if and only if r €
{2, 3,6}. Hence, the Betti sequences of k[, (C1)] and k[,.(C)] coincide for those val-
ues of r by Theorem 2.12, and also for »r = 1 and 7 as observed before Lemma 2.21.
On the other hand, one can check using [24] that the Betti sequences of k|, (Cy)]
and k[, (C)] do not coincide for r € {4,5}. Table 2.1 shows the Betti sequences of
k[, (C1)] and k[m,.(C)] for all , 1 < r < 7.
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Table 2.1: Betti sequences in Example 2.25.

r k[ (C1)] k[m.(C)]

1 (1,11, 30, 35, 19, 4) (1,11, 30, 35, 19, 4)
2 (1,12,25,21,10,3) (1,12,25,21,10,3)
3 (1,13,30,29, 14, 3) (1,13, 30,29, 14, 3)
4 (1,12,27,27,14, 3) (1,12,29,29, 14, 3)
5 (1,12,25,21,10,3) (1,13,30,29, 14, 3)
6 (1,12,25,21,10,3) (1,12,25,21,10, 3)
7 (1,12,25,25,14, 3) (1,12,25,25,14, 3)

2.3 Improving Vu’s bound for the equality of the
Betti numbers

Take a sequence of nonnegative integers 0 = ¢; < --- < ¢,, not necessarily relatively
prime, and consider, for all j > 0, the shifted set of integers A{ ={a+j,...,cnt+7i},
and the semigroup S{ generated by the sequence ag =0 < a1 =¢1+j < -+ <
a, = ¢, + j. Herzog and Srinivasan conjectured that the Betti numbers of k[Sf]
eventually become periodic with period ¢,. In [97], Vu provides a proof of this
conjecture together with an explicit value N such that this periodic behavior occurs
for all j > N. One of the key steps in Vu's argument is [97, Thm. 5.7] where he
proves that, for all j > N, the Betti numbers of the affine and projective monomial
curves defined by ¢;+7 < - -+ < ¢, +j coincide. In the following theorem we provide
a smaller value of N such that this occurs.

Theorem 2.26. Let 0 = ¢; < --- < ¢, be a sequence of nonnegative integers and
set N == (¢, — 1)(2;:21 ¢i). Then, for all j > N, the affine and projective monomial
curves defined by the sequence ag =0 < ay =c1+j < --- < a, = ¢, + J have the
same Betti numbers.

Proof. Take j > N. Let gi be the reduced Grobner basis of IA{ with respect to the

degrevlex order with #; > --- > x,,, and consider f = x* — x? € gi with x* > x%.
If we show that

(i) x, does not divide x%, and

(ii) if f is not homogeneous, then x,, divides x*,
then the result follows from Theorem 2.1. Note that this result is true even if the

generators of the semigroup are not relatively prime since the defining ideal does
not change when we divide them by a common divisor.
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If x,, divides x%, then x,, does not divide x”, and hence |a|> |3|. Thus,

—_

n—

n n n—1
N=(cn =) ) <i<(lal=I8)i <Y (i = B)i+ D cici =Y iy
i=1 i=2 i=2

%

||
N

This implies that there exists i € {2,...,n — 1} such that 5; > ¢,. If we consider
B.,.Cn—c; ¢c;

the monomial x” := =" then the homogeneous binomial g = x” —x" belongs

Cn—Cj

to Iy because the homogeneous binomial x;" — z{" “x$ belongs to 15 As x,

divides x” and does not divide x”, in(g) = x” € in(I ;;), a contradiction because Gl

J
1

is reduced and f € GZ. This shows that that z,, does not divide x, and (i) is proved.

Now assume that f is not homogeneous, i.e., |a|> |5|, and that z, does not
divide x?. By (i), ,, does not divide x® either, and hence

n—1 n—1 n—1 n—1
N =(cn =1 ) <i<(lal=18) < Y (= B)j+ D aiei =Y fies.
=2 i=1 =2 =2
Thus, there exists i € {2,...,n — 1} such that 8; > ¢,. Using exactly the same
argument as before for (i), we get a contradiction, and hence (ii) is proved. O

Corollary 2.27. Let a; < --- < a, be a sequence of posilive integers, and set
M = a, + (a, — 1)1 (an — a;)). Then, for all j > M, the projective monomial
curve defined by the sequence ay < --- < a, < j 1s arithmetically Cohen-Macaulay.

Proof. Consider the sequence by = 0 < by = a, —ap_q1 < -+ < b1 = a, —
a1 < b, = a,. By Theorem 2.26, one has that the projective monomial curve
defined by I < [+ by < --- < | + b, is arithmetically Cohen-Macaulay for all
1> (b, — D)2 b)) = (a0 — )X (an — ;). To finish the proof, it suffices to
observe that the dual sequence of 0 < a1 < -+ < a, < l+a,isl < l+b; < --- <+,
and take [ +a, = J. O

2.4 Construction of Gorenstein projective mono-
mial curves

Since £;(k[C]) > max (5;(k[C1]), Bi(k[Cs])) for all 4, whenever k[C] is Gorenstein, then
so are k[C;] and k[Cs]. The converse of this statement is false; indeed, it could happen
that C; and Cy are both arithmetically Gorenstein and that C is not even arithmeti-
cally Cohen-Macaulay, as can be seen in Example 2.28 (1). Actually, even if k[C] is
Cohen-Macaulay, it may happen that k[C] is not Gorenstein, as Example 2.28 (2)
shows.
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Example 2.28. (1) The affine monomial curve C; defined by the sequence 4 <
9 < 10 is an (ideal-theoretic) complete intersection and, thus, k[C,] is Goren-
stein with Betti sequence (1,2,1). The corresponding projective monomial
curve is not arithmetically Cohen-Macaulay, indeed, the Betti sequence of

k[C] is (1,5,6,2).

(2) The affine monomial curve C; defined by the sequence 10 < 14 < 15 < 21 is
an (ideal-theoretic) complete intersection and, thus, k[C;] is Gorenstein with
Betti sequence (1,3,3,1). The corresponding projective monomial curve is

arithmetically Cohen-Macaulay but not Gorenstein, indeed, the Betti sequence
of k[C] is (1,4,5,2).

Recall from Proposition 1.61 that k[C;] is Gorenstein if and only if S is sym-
metric. In this section we show how to construct an arithmetically Gorenstein
projective monomial curve from a symmetric numerical semigroup 7. We begin
with the following result, which provides a necessary and sufficient condition for C
to be arithmetically Gorenstein and is a consequence of the results in [15].

Proposition 2.29. Let C be the projective monomial curve defined by the sequence
ap=0<a; <---<a, =D of relatively prime integers. Then, C is arithmetically
Gorenstein if and only if C is arithmetically Cohen-Macaulay, both S, and Sy are
symmetric, and D divides F(S1) + F(Ss).

Proof. (=) If C is arithmetically Gorenstein, C is arithmetically Cohen-Macaulay
and both &; and Sy are symmetric by Proposition 1.61 (2). Assume now that D
does not divide F'(S;) + F(S2). By Proposition 2.4 (c), there exist z € Sy and
y € S such that (z, F(S1) + D) and (F(Ss2) + D, y) are two different elements of
APs. Moreover, by Proposition 2.7, they are both maximal in the poset (APgs, <s),
and hence, C is not arithmetically Gorenstein by Theorem 1.63.

(<) If D divides F(S1)+F(Ss), then by Proposition 2.4 (¢), (F(S2)+D, F(S1)+D) €
APs and by Proposition 2.7, this element is the maximum of (APg, <s). Hence, C
is arithmetically Gorenstein by Theorem 1.63. [

Note that in the previous result, one cannot remove the condition of k[C] being
Cohen-Macaulay as Example 2.30 shows.

Example 2.30. For the sequence 6 < 7 < 8 < 15 < 16, one has that the numerical
semigroup §; = (6,7,8,15,16) is symmetric, and S, = N is also symmetric. More-
over, F'(§1) = 17 and F(S;) = —1, so D = 16 divides F(S;) + F(Ss). But k[C] is
not Cohen-Macaulay, so it cannot be Gorenstein either.

The following example provides a family of arithmetically Gorenstein projective
curves. This example gives some insights on Theorem 2.32, which is the main result
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of this section and shows how to construct a projective Gorenstein curve from a
symmetric numerical semigroup.

Example 2.31. If m > 3 is an odd integer, one has that
Si=(m+1)/2,....m—-1)={0,(m+1)/2,..., m—1,m+1,—}

is a symmetric numerical semigroup with F(S;) = m. Hence the ring k[C;] is
Gorenstein. The sequence 7! < ... < m — 1 defines a projective curve of degree
D =m-—1= F(5)—1. We claim that k[C|] is Gorenstein. Note that Ap, =
{foyu™t m—21Um+1,3(m—1)]U{2m —1}. Since S, = N, we have that
F(S;) = —1 and Ap, = [0, m—1]. By Proposition 2.29, it only remains to check that
k[C] is Cohen-Macaulay. By Proposition 2.4 (b), k[C] is Cohen-Macaulay because
B C 8, where B C N? is the following set with D elements:

m—+1

{(0,0)} U{(D —a,a) |

U{D—-g,D+g)|1<g<

<a<m-—2}

m+1
2

We now generalize this to any symmetric numerical semigroup 7 such that T #
N and 7 # (2,a) for some a odd or, in other words, such that 2 ¢ 7. The idea
under this construction is to consider the projective closure of the affine monomial
curve parametrized by the so-called small elements in the semigroup, that is, all the
elements in the numerical semigroup that are smaller than the Frobenius number.
The precise statement of the result is the following.

Ju{(D-1,2D+1)}.

Theorem 2.32. Let T C N be a symmetric numerical semigroup such that 2 ¢ T
and consider T N[0, F(T) — 1] ={0,a1,...,a,} with0 < ay < --- < a,. Then, the
projective monomial curve defined by the sequence a; < --- < a, is arithmetically
Gorenstein.

To prove this theorem we use the following two lemmas.

Lemma 2.33. Let T C N be a symmetric numerical semigroup and consider a; <
-+ < ay, its minimal set of generators. If 2 ¢ T, then a, < F(T).

Proof. We prove that every y € T such that y > F(7) can be written as y = 21 + 22
with 21,29 € T\ {0} and, hence, y ¢ MSG(T).

e Fory = F(T)+ 1, we take z2; = a; € T and z2 = F(T) — a; + 1. We have
that zo € T because F(T) — 2z =a; — 1 ¢ T and T is symmetric.

e Fory = F(T)+2, we take z; = a; € T and 2o = F(T) —a; +2. We have that
29 € T because F(T)—zy =a; —2 ¢ T (because a; > 2) and T is symmetric.
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o Fory=F(T)+3. If y/2 €T, we take 21 = 2o = y/2. Otherwise, we observe
that

Ly~ YN TI= (LA ATy - F(T) 1=y~ L E3_ 0

Thus, there exists 1 < i < y/2 such that ¢,y —i € T and we are done.
e For y > F(T)+ 3, we observe that

FT)+3 vy
Ly UnTI= L FTIN Ty - F(7) 1=y - T 230
Thus there exists 1 <14 < y/2 such that i,y — i € T and we are done.
O
Lemma 2.34. Let §; = (ay,...,a,) € N be a numerical semigroup with a; < --- <

an, and set a = min{b € & : a1 1 b}. If y € N satisfies that y +1i ¢ S for all
i€{0,...,a— 1} such that ay {14, then y = 0.

Proof. Since y + 1,...,y +a; — 1 ¢ &1, we deduce that a; divides y, so y € Sj.
Moreover, a — a; is not a multiple of a;, so y +a —a; ¢ S; and y+a —a; = a
(mod ay). Thus, we get that y +a — a; < a — ay, and hence y = 0. O

Proof of Theorem 2.32. Since T is symmetric and 2 ¢ T, then by Lemma 2.33 we
have that MSG(T) C {ai,...,a,}. Hence, S = T and S is symmetric. Moreover,
since 1,2 ¢ &y, then D = a,, = F(&) — 1 and a,—; = F(S1) —2. Thus S = N
and we get that F'(S2) = —1 and F(S)) + F(S2) = D. By Proposition 2.29, it
is enough to prove that C is arithmetically Cohen-Macaulay to conclude that it is
arithmetically Gorenstein.

One can easily check that Ap;, = {a € §1|0<a< D}U{g+D|g ¢ S,1<
g < D}U{2D + 1}, and Ap, = {0,1,..., D — 1}. Consider now the following set
B c N? with D elements:

B={(0,00} Uu{(D —a,a)|a€&,l <a< D}
U{(D—g,D+g)|lg¢ S1,1<g<D}U{(D—-1,2D+1)}.

By Proposition 2.4 (b), C is arithmetically Cohen-Macaulay if and only if B C S,
and in this case APs = B. Let us prove that B C S. Clearly (0,0) € S and
{(D—=a,a)|la€e&,0<a<D}={(D—aya)|l <i<n} CS, and one has to
show that (D—g¢g,D+g) € Sforallg ¢ S1,1 <g< Dand (D—1,2D+1) € S. Let
a € 81 be the minimum element in §; which is not a multiple of a;. We distinguish
between two cases.
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(1) D > g > F(S)—a=D+1—a We claim that g + 1 € &;. Other-
wise, by the symmetry of S; one has that F(S;) — g and F(S&;) —g — 1
are two consecutive elements of S; which are both smaller than a, and this
is not possible. Then, (1,D — 1), (D —g— 1,9+ 1) € § and we get that
(D—¢.D+g)=(1,D-1)+(D—-g—1,g+1)€S.

(2) 1< g<F(S1)—a=D+1—a. We claim that there exists j € {0,...,a—1}
such that both D+1—j and g — 1+ j belong to S;. Assume by contradiction
that this statement does not hold. Whenever j € {0,...,a — 1} is not a
multiple of a;, we have that j ¢ S; and, by the symmetry of Sy, F(S;) —j =
D+1—-j € & and hence g — 1+ j ¢ S;. By Lemma 2.34, this means
that ¢ = 1, a contradiction. Now, we take j € {0,...,a — 1} such that
D+1—j,g—1+j €S8 (clearly j # 0 because D + 1 = F(S;) ¢ S1). Then
(D+1—9g—j,9g—1+35),(j—1,D+1—j) €S, and hence (D —g,D + g) =
D+1-g—j,9g—1+7)+(U—-1,D+1—-j5)€S.

Finally, taking any g ¢ S;, 1 < g < D, we have that F(S;) —g=D+1—g € &;.
Thus, (D —-1,2D+1)=(D—-¢9,D+g)+(g—1,D+1—g) €S. O

Following the construction in Theorem 2.32, one gets an arithmetically Goren-
stein projective curve C. However, the Betti numbers of k[C;] and k[C] can be very
different, as the following example shows.

Example 2.35. Consider the symmetric numerical semigroup 7 = (4,9, 10). One
has that the Frobenius number of 7 is F(7) = 15 and, hence, 7 N [0,14] =
{0,4,8,9,10,12, 13,14}. By Theorem 2.32 we have that the projective monomial
curve defined by the sequence 4 < 8 < 9 < 10 < 12 < 13 < 14 is Gorenstein. A
computation with [24] shows that the Betti sequence of k[C] is (1,6, 15,20, 15,6, 1),
while the Betti sequence of k[C] is (1,15, 39,50, 39, 15,1).

2.5 The Betti numbers of Kunz—Waldi semigroups

In this last section, we compute the Betti numbers of affine monomial curves coming
from a class of numerical semigroups defined by Kunz and Waldi in [61]. This class
of semigroups has been studied later in [62] and [80].

2.5.1 Definition of the KW class

Let 3 < p < q be two relatively prime integers and consider the numerical semigroup
(p, q), which is symmetric and has Frobenius number F,, = pg — p — ¢q. Therefore,
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all the gaps of (p, q) are of the form pg — up — vq for u,v € Z~, with F,, being the
largest. If we associate with pqg — up — vq the point (u — 1,v — 1) € N2, then the
gaps of {p,q) are in one-to-one correspondence with the lattice points in N? below
the line p(U + 1) + ¢(V + 1) = pq.

Example 2.36. Consider the semigroup (p, ¢) for p = 5 and ¢ = 8. The gaps of this
semigroup are shown in Figure 2.4. Note that they are in one-to-one correspondence
with the lattice points below the line 5(U + 1) + 8(V + 1) = 40.

Vv

oU +8V =27

m}
m]

27 22 17 12 7 2 U

Figure 2.4: Gaps of the semigroup (5,8) in Example 2.36.

In their paper [61], Kunz and Waldi build numerical semigroups of the same
multiplicity p by filling in some gaps of (p, ¢) in a sistematic way, such that the type
of the resulting semigroups is one less than their embedding dimension.

Definition 2.37. Let 3 < p < ¢ be two relatively prime integers. The class of
Kunz—Waldi semigroups associated to p < q, KW (p, q), is the set of all numerical
semigroups Sy, such that (p,q) € S C (p,q,r), where

p/2 if p is even,
r=1q q/2 if ¢ is even, and
(p+q)/2 otherwise.

Proposition 2.38 ([62, Cor. 3.1, Ex. 4.6]). Let S; € KW(p,q) of embedding di-
mension n, n > 4. Then, the type of Sy is t(S1) =n — 1.
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Using the terminology of numerical semigroups, the semigroups in KW (p, q) are
obtained from (p, q) by closing only gaps from the fractional ideal r + pN + ¢N.

By [61, p. 673], the semigroups of KW (p,q) are in one-to-one correspondence
to the lattice paths, with right and downward steps, in the rectangle R C R? with
vertices (0,0), (0,p" — 1), (¢ — 1,p’ — 1), and (¢’ — 1,0), where p’ = |p/2] and
¢ = lqg/2].

Proposition 2.39 ([86, Rem. 1]). Let S; = (p,q, a1, ..., a,—2) be a numerical semi-
group of embedding dimension n, n > 3. Then, S € KW (p,q) if and only if there
exist natural numbers 0 < uy; < -+ < Up_o < q/2 and p/2 > vy > -+ > v, 9 > 0,
such that a; = pqg — u;p — viq for 1 <i <n —2.

For a semigroup S; = (p,q, a1, ..., a,—2) € KW (p,q), with a; = pg—u;p—v;q, the

corresponding lattice path in the rectangle R has vertices (u;—1,v,—1), 1 <7 < n—2,
and one has that

S1=(p,q) U{pg—up —vq|u<u;,v<w; for some 1 <i<n-—2}. (2.5)

This explains the correspondence between the lattice paths ¢ with right and down-
ward steps in R and the semigroups S; € KW (p, q).

Example 2.40. Consider the semigroup & = (5,8,9,12). One has that S; €
KW (5,8), since (5,8) C S C (4,5). Moreover, 9 = 40 — bu; — 8v; and 12 =
40 — Bug — 8y for u; = 3 < uy = 4 and v; = 2 > v, = 1. Hence, the lattice path /¢
defining S has vertices (2,1) and (3,0). This is shown in Figure 2.5.

In their paper [62], Kunz and Waldi characterize the toric ideal of any semigroup
in KW(p,q). Let S; = (p,q,a1,...,a,_2) € KW(p,q) and fix a field k. Consider
the polynomial ring R = k[z,y,z1,...,2, 2|, graded via deg(z) = p, deg(y) = ¢,
and deg(z;) = a;,i=1,...,n—2. Set Ay ={p,q,a1,...,a,_2}, and let I4, C R be
the toric ideal determined by A;.

Proposition 2.41 ([62, App. A]). The toric ideal I 4, is minimally generated by the
(g) Si-graded homogeneous binomials

fij = mimy —at Ty 1 <i<j<n—2
g =y My — T, 1<i<n—3

nm = yp—v1 _ {L‘ml’l

Mo =Y Pay g — a2

We now show how to construct the Apéry set (with respect to the multiplicity,
p) and poset of any semigroup &; € KW (p, q) from the lattice path defining S;.
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Vv

SU +8V =127

19 14

27 22 17 U

Figure 2.5: Lattice path corresponding to the semigroup (5,8,9,12) € KW (5,8) in
Example 2.40.

Proposition 2.42. Let §; = (p,q,a1,...,a,_9) € KW(p,q) be the semigroup de-
fined by the sequences uy < us < -+ < Up_9 < q/2 and p/2 > vy > vy > -+ > Vo,
and set v,_1 == 0.

(1) The Apéry set of Sy (with respect to p) is
Ap(Sl) = {)\q | 0 S )\ < P — Ul} U (U?:_f{ai -+ )\q | 0 S /\ < V; — Ui—i—l}) .

(2) Ap(Sy) is graded, i.e., for all z € Ap(Sy), all the factorizations of z have the
same length.

Proof. Let A,, be the Apéry set of the numerical semigroup (p, q), A,, = {0, q, 2q,
..., (p—1)q}. We can obtain the Apéry set Ap(S;) from A,, as follows. Recall from
Equation (2.5) that

S =(p,q) U{pq—up—vq|u<u,v<w; for some 1 <i<n-—2}.

Note that pg — up — vg = —vq (mod p), so the elements that we have to replace
in A,, are the ones congruent to —vg modulo p for 0 < v < v;. For each one of
these congruence classes, we choose the smallest element in Sy, i.e., the one with
the largest u. This corresponds to the element in the lattice path defining §; whose
second coordinate is v — 1. Therefore,

Ap(Sl) = {/\q ‘ 0< A< p— Ul} U (U?:_f’{ai + )\q | 0< A<y — ’Ui_|_1})
U{an2+Ag|0< A< v, 0}.
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By Remark 2.17 (2) and Proposition 2.41, Ap(S;) is graded since the variable z
appears in all non-homogeneous binomials of a minimal generating set of the toric
ideal 14, . ]

Using the previous result, let us show what the Apéry poset of Sy, P(S;), looks
like (see Def. 1.10). For 0 < A < p — vy set ip, the label of Aq in P(Sy), i.e.
0 < gy < p and i) = Ag¢ (mod p). Similarly, for each 1 < j < n — 2 and
0 < X\ < w; —vj41, let 45 be the label of a; + Ag in P(S;). Note that Z, = {igp |
0<A<p—v}U{ijn|1<i<n—20<A<v; —vj41}.

Proposition 2.43. Let 3 < p < q be relatively prime and S; € KW (p,q).

(1) The covering relations in P(S1) are the following. For all i, g,y ks € Ly,

- . Jo=71 and ke =k +1, or
Yk %kz‘:*{jl:o and ky =k .

Thus, the Hasse diagram of P(Sy) is as shown in Figure 2.6.

(2) The poset P(Sy) is graded for the rank function p : P(S1) — N defined by

Proof. Note that (A+1)g—Aqg = ¢, (a; + (A +1)q) —(a; + A\qg) = q, (a; + A\q) —A\q =
a;, SO 1\ < ij 41 and ig\ <-4, for all j, A by Proposition 1.11. Let us prove that
there are no more covering relations. By Propositions 2.42 (2) and 1.11, it suffices
to show that (a; + (A + 1)q) — (a; + A\q) = a; — a; + ¢ is not a minimal generator of
&1 when @ # j and A > 0. Note that a; —a; +¢ # g since i # j, and a;, —a; +q #p
because a;+q, a; € Ap(S;). Now suppose that a;—a;+q = a;, for some 1 < k < n—2,
k #1i,j. Then
(uj +up —w)p+ (v; +vp —v; +1)g = pq .

Thus, ¢ divides u; + u; — u; and since 3 — ¢/2 < uj + u — u; < ¢ — 2, then
uj +up —u; = 0, so u; > u; and hence ¢ > j. With a similar argument, one can
prove that v; = v;4+v,+1 > v;, s0 ¢ < j, a contradiction. This completes the proof of
part (1), and part (2) is a direct consequence of part (1) and Proposition 2.42 (2). [

Finally, we compute the set of Pseudo Frobenius elements for any S; € KW (p, q).

Proposition 2.44. Let §; € KW (p,q) of embedding dimension n. Then PF(S;) =
{9: =pqg— (u; + 1)p — (vip1 + 1)q | 0 < i < n—2}, where ug = v, = 0.
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p-y-1@ °

iy —yse1—1

[ . [ ]
Uy —y2—1 In—2yn_o-1
20,3

20,2

0,1

Zn—Z,U

+q +hn,72

igo =0

Figure 2.6: Hasse diagram of the Apéry poset of a semigroup S; € KW (p, q).

Proof. Set ug = v,_1 = 0 and let X = {g; = pq — (u; + D)p — (v;x1 + 1)g | 0 <
i < n —2}. Recall from Proposition 2.39 that S; = (p,q, ay, ..., a,_») is in one-to-
one correspondence to a lattice path ¢ in the rectangle R. In particular, each a;
corresponds to the point (u; — 1,v; — 1) under the line pg — p — ¢ = pU + ¢V. To
see that H = PF(S;), first note that H = {s e N\ Sy | s+p € S1,s+¢ € S1}. This
is clear from Figure 2.7. Hence, PF(S;) C H, and the equality PF(S;) = H follows
from the fact |H|=n — 1 = |PF(S1)|, by Proposition 2.38. O

Example 2.45. Consider p = 5, ¢ = 8, and the semigroup &; = (5,8,9,12) €
KW (5,8) from Example 2.40. The Apéry set of (5,8) is Ass = {0,8,16,24,32}.
By Proposition 2.42 (1), Ap(S1) = {0,8,16,9,12}. By Proposition 2.43, the Hasse
diagram of the Apéry poset P(S;) is the one shown in Figure 2.8. Finally, by
Proposition 2.44, one has that the Pseudo Frobenius set of &y is

PF(S1) = {pqg —p — 3q,pq — 4p — 2q,pq — 5p — ¢} = {11,4,7}.
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pqg—p—q=pU+qV

’U,j—l)(

X

vipr — 1 —Li(

Ui — 1 Uiq1 — 1 U

Figure 2.7: Pseudo Frobenius elements of S; € KW (p, q) correspond to the points
X.

1

Py
N

Figure 2.8: Hasse diagram of P(S;) for S; = (5,8,9,12) in Example 2.45.
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2.5.2 Betti numbers

Let S = (p,q,a1,...,a,_2) € KW(p,q) and fix a field k. Consider the polynomial
ring R =Kk[x,y,x1,..., 2T, 2|, graded via deg(z) = p, deg(y) = ¢, and deg(zx;) = a;,
i =1,...,n—2. Set Ay = {p,q,a1,...,a,_2}, and let 14, C R be the toric
ideal determined by A;. By Proposition 1.67, 14, is the defining ideal of the affine
monomial curve parametrized by A;. Hence, its coordinate ring is R/14,, and it is
isomorphic to the semigroup algebra k[S;].

We already know some of the Betti numbers of k[S;], Gy = 1, 1 = (Z) by
Proposition 2.41, and 5,1 = n — 1 by Proposition 2.38. Our goal is to obtain the
whole Betti sequence of k[S;]. To achieve this, first we characterize all Kunz—Waldi
semigroups whose defining ideals are determinantal.

Definition 2.46. Let 3 < p < ¢ be relatively prime. We define a subclass KWp(p, q)
of KW (p,q) as follows. A semigroup &1 = (p,q,a1,...,0,—2) € KW(p,q) is in
KWp(p,q) if there exist u,v € Z~q such that (n — 2)u < ¢/2, (n — 2)v < p/2, and
a; = pq — u;p — v;q, where u; = iu and v; = (n—1—d)v forall 1 <i<n—2.

The notation chosen to denote this class will be justified after Theorem 2.49,
where we prove that the semigroups in KWp(p, q) are precisely all the semigroups
in KW (p, q) with determinantal defining ideal.

Remark 2.47. Let S € KWp(p,q) for some u,v € Z~o. Note that a;1; —a; =
vqg —up for all 1 <7 < n — 3. Thus, the generators ay, as, . .., a,_s necessarily form
an arithmetic sequence with common difference vg — up. This sequence is increasing
if vg > up and decreasing otherwise.

Proposition 2.48. If S; € KWp(p, q) for some u,v,n € Zsy, then I 4, is generated
by the 2 X 2 minors of the following 2 X n matrix

B PR A
ga=n=lu gy 1 Ty Xy cc Tpez Tp_a)

Proof. Let m;; denote the determinant of the submatrix of M obtained from the -
and j-th columns, and I>(M) be the ideal generated by all the m;;. Each m;; is a
Si-homogeneous binomial and thus, is in I4,. Therefore, Io(M) C I4,. Let us prove
the other inclusion. Note that for all 1 <i <n —3, g; = —mat3; 71 = —mag, and
N2 = M2, so all of them are in I(M). To finish the proof, it suffices to show that
fij € L(M) for all 1 <i < j <n-—2. Wehave f;,, o =my3 € I)(M) and for all
1 <7 <n—3, one can check that

n—j—4

Jij=—m3j13 — Z (mk“yp’(“k)”mz,ﬁuk) + Iy p=En=i=3vy, ) e (M) .
k=0
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Moreover, for all 2 < i <n — 2,

i—2
fi,n—? = My442 + (mq_(”+k)“yk”m27i+1_k) S ]2(M) .
k=0

Finally, note that for all 2 < < j <n—3, fi; = fi—1,j+1 — Mit2,+3, and hence all
the f;; belong to Iy(M). O

Theorem 2.49. Let S; € KW (p,q) of embedding dimension n. Then the following
are equivalent:

(a) S1 € KWp(p,q).

(b) There exist positive integers u,v such that (n —2)v < p/2, (n—2)u < q/2 and
14, is generated by the 2 X 2 minors of the matriz

—(n—1
( Tpoo a® yPTD pomy e xn—3)

—(n—1)u v
ga= (=) Yy I Ty T3 -+ Tp-3 Tp-2

(c) There exist S;-homogeneous polynomials F;, G; € (x,y, 1, ..., %, _2) such that
14, is generated by the 2 X 2 minors of the matriz

P F ... F,
G Gy ... G,)°
(d) PF(S)) ={z+k,z+2k,...,z+ (n— 1)k} for some z >0 and k > 0.

When this is the case, PF(S1) = {pg—(iu+1)p—((n —i—2)v+1)¢ |0 <i < n-—2},
for the numbers u,v € Z~q defining S € KWp(p,q), and hence k = |up — vq|.

Proof. (a) = (b) is Proposition 2.48, (b) = (c) is trivial, and (c) = (d) is proved
in general for any numerical semigroup in [95, Sect. 2].

(d) = (a): By Proposition 2.44, PF(S;) = {g; = pq — (u; + 1)p — (viz1 + 1)g | 0 <
i < n— 2}, where ug = v,_; = 0. Since PF(S)) satisfies (d) by our hypothesis,
we must have that the difference between any two consecutive elements is constant.
Firstly, for any 0 <i <n — 2,

gi — i1 = pq — (ui + 1)p — (vig1 + 1)g — [pg — (uir1 + 1)p — (vig2 + 1)q]
= p(tit1 — ;) + q(Vip2 — vit1) -
Let a; = w11 — u; and 5; = v49 — v;41. Now we must have that for any 0 <1 <
j é n— 37
pa; + B = paj + qB; = plai — ) = q(B; — Bi) .
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Since p and ¢ are relatively prime, there exists ¢ € Z such that a; — o; = ¢f. But
la; — aj|= |uip1 +uj — w; —ujq|< ¢ — 2, s0 £ = 0. Thus, since u; 11 > u;, there
is some u € Zs( such that o; = a; = u. The recursive definition of a; now gives
us u; =t for 1 <@ <n—-2 Ifu> m, then u,—o = (n —2)u > ¢/2, a
contradiction. Similarly, ; = 5; = —v, for some v € Z+ since v;1o2 < v;1;. This
implies v,_o = v,v,_3 = 2v,...,v; = (n —2)v. If v > m then v; > p/2, a
contradiction.

We have shown that S; must be as in Definition 2.46. In addition, when (d) holds,
we have shown that PF(S;) = {pg— (iu+1)p—((n—i —=2)v+1)q|0<i<n-2},
which implies k& = |up — vq. O

Remark 2.50. Let 3 < p < ¢ relatively prime integers and denote p’ = |p/2], and
¢ = |q/2]. By Theorem 2.49, the cardinality of KWp(p,q) is

o £ |23 [25] -$12) 4]

n=3 n=1

and the cardinality of KW (p, q) is

£ (L)) -0 ()

n=1

Thus, the proportion of semigroups in KW (p, ¢) whose defining ideal is determinan-
tal is

KEWo(p,q)| T 5] |2
polp-a) = fgvvquqn - (p’;qL)JE J‘

Since the ideal 14, C R for any S; € KWp(p, q) is generated by the 2 x 2 minors
of a 2 x n matrix and its height is n — 1 (=n — 24 1), it is resolved by the Eagon-
Northcott complex (see [26, Thm. 2]). In particular, the Betti numbers are given by
the formula §; = z(zil) forall 1 <i <n—1. We want to expand this to compute
the Betti sequence of more KW-semigroups. One way to do this is by using the fact
that any two numerical semigroups of multiplicity p lying in the interior of the same
face of the Kunz cone €, have the same Betti sequence. This is a result of Kunz.

Theorem 2.51 ([60, Prop. 2.6], [9, Thm. 2.7]). Let A = {a; = p < az < --- <
an} CNand Ay ={a} =p <ay <--- <al,} CN such that ged(ay,...,a,) =1
and ged(al, ... al) = 1. Denote by S; and S| the numerical semigroups generated

by Ay and A, respectively. If Sy and 8] lie in the interior of the same face of the
Kunz cone €, then B;(k[S:1]) = Bi(k[S]]) for alli.



74 CHAPTER 2. THE BETTI NUMBERS OF MONOMIAL CURVES

Let &,87 € KW(p,q) be of the same embedding dimension n. Write & =
!/

(p,q,a1,...,a,_2) and S} = (p,q,d}, ..., al,_,). Further, write a; = pq — u;p — v;q and
a;=pq—up—vig, 1 <i<n—2.

Proposition 2.52. Let S§;,S] € KW (p,q). Then S and 8] belong to the interior
of the same face of the Kunz cone €, if and only if

(1) e(81) = e(S}) = n, and
(2) v =0} foralll1 <i<n-—2.

Proof. By Proposition 2.43, the Apéry poset of any semigroup S; € KW (p,q) is
completely determined by the embedding dimension of S;, e(S;) = n, and the
sequence p/2 > vy > -+ > v, 9 > 0. Thus, the result follows from Theorem 1.13.

m

As a consequence of Proposition 2.52 and Theorem 2.49, we get the following
result that provides the whole Betti sequence of k[S;] for some §; € KW (p, q).

Theorem 2.53. Let S € KW(p,q) of embedding dimension n be such that v; =
(n—i—1)v for some v € Zsq with (n—2)v < p/2. Then the Betti numbers of k[Si]

are
n
= . ,1<i<n-—1.
b Z(z+1) sr=n

Proof. Consider the semigroup S; € KWp(p, q) defined by the sequence u; = 1 <
Ug =2 < -+ < Up_og = n—2 and the sequence vy > vy > -+ > v, 9, v; = (n—1—1)v.
By Proposition 2.52, §; and 87 lie in the interior of the same face of the Kunz cone
¢,. Therefore, k[S;] and k[S]] have the same Betti sequence by Theorem 2.51,
that is, §; = i(ifl), 1 <7 < n —1 by the construction of the Eagon-Northcott
complex. O

Example 2.54. Consider the semigroup S; = (8,17,53,62,55) € KW (8,17). Note
that S; is not in KWp(8,17) as 53,62,55 are not in an arithmetic sequence, by
Remark 2.47. However, S; is in the same face of €5 as S] = (8,17,69,70,71) €
KW (8,17). Note that for both S; and S}, v; = 3, v9 = 2, v3 = 1. Hence, their Betti
sequence is (4, 15,20, 10, 1), by Theorem 2.53, and the Hasse diagram of P(S;) and
P(S;) is the one shown in Figure 2.9.

Remark 2.55. By Theorem 2.53, the number of numerical semigroups in the

class KW (p,q) whose Betti numbers are f3; = i(ifl), 1 <i<n-—1,is at least

2 |E] (1), whete pf = |p/2) and ¢ = [q/2].
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Figure 2.9: Hasse diagram of P(S;) and P(S]) in Example 2.54.

It is interesting to note that even if S; € KW (p, ¢) does not satisfy the hypothesis
of Theorem 2.53, the conclusion still seems to hold. In particular, if the vy, ..., v, o
are not in an arithmetic sequence, is it still true that 5; = z(ljl) for1<i<n-—17
We give an example to support a positive answer:

Example 2.56. Consider S; = (8,17, 36,45,63) € KW (8,17) \ KWp(8,17). The
Betti sequence of k[S;] is (4,15,20,10, 1), and yet, S; is not even in the same face
as some S; € KWp(8,17).



76 CHAPTER 2. THE BETTI NUMBERS OF MONOMIAL CURVES



Chapter 3

The structure of the sumsets

“... the art of combinations is mastered through algebra.”
W. von Tschirnhaus

Let A = {ag,...,a,} C N¢ be a finite set, n,d € Z-,. Additive combinatorics
studies the sumsets of A and their cardinality. When d = 1, the part of additive com-
binatorics that studies the sumsets of A is called additive number theory. As stated
in Section 1.4, to study the sumsets of such a set A, one can always assume that it

is in normal form, i.e., A ={ap=0<a; <--- < a, = D}, and ged(ay, ...,a,) = 1.
Associated with A, one has the set A = {a,,...,a,} C N? where a, = (D — a;,q;)
for all i = 0,...,n, and we call A the homogenization of A. Also, fixed an infinite

field k, we consider the projective monomial curve C = C4 C P}’ determined by A.

In Section 3.1, we study the structure of the sumsets of A, (sA),,, starting with
the so-called structure theorem by Nathanson (Theorem 3.1). In Proposition 3.4,
we recall the characterization of the elements that appear in the structure theorem
in terms of the curve C, given by Elias. We define the sumsets regularity of A,
o(A), as the least integer such that, for all larger integers, the decomposition in
the structure theorem holds, and in Theorem 3.7 we show how to interpret it in
terms of the curve C. Several upper bounds on o(A) that appear in the literature
are recalled. Indeed, we provide a new proof of Granville-Walker’s bound using the
characterization for o(.A4) and a bound on the Castelnuovo-Mumford regularity of
the coordinate ring of C. Moreover, we provide a new upper bound on ¢(A) in
(3.5) and compare it with the other known bounds, showing that it improves them
in most cases. In Section 3.2, we analyze the structure of the sumsets of A, and
observe that the sumsets regularity of A defined in the previous section could also
be called the sumsets regularity of A. We recall the definition of the Apéry and
exceptional sets of S given in Chapter 2 and give a relation on the size of these sets

7
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and the size of the sumsets of A (or A) in Proposition 3.19.

When d > 2, consider D = max{|a;|:i=0,...,n} and A = {a,,...,a,}, where
a, = (D — |a;|,a;) € N for all i = 0,...,n. We call A the homogenization of A.
Fix an algebraically closed field k and consider the projective toric variety deter-
mined by A, X = X4 C P. Whenever X' is simplicial, in Theorem 3.24 we recall
a structure theorem for the sumsets of A. In Section 3.3, we make the structure
theorem more explicit in two particular cases, when X is smooth and when it is a
surface with exactly a single singular point. In Subsection 3.3.1 we treat the smooth
case, giving the structure of the sumsets of A in Proposition 3.25 and Theorem 3.26.
We define the sumsets regularity and provide a better upper bound on the sumsets
regularity in Theorem 3.29. In Subsection 3.3.2 we perform a similar study for sur-
faces with a single singular point. We study the structure of the sumsets of A in
Proposition 3.34 and Theorem 3.35. Then, we define the sumsets regularity and
give an upper bound on it in Theorem 3.41.

Most of the results included in Section 3.1 are part of [39)].

3.1 Structure theorem in N

Let A = {ag,as,...,a,} C N be a finite set. Recall from Section 1.4 that, to study
the sumsets of A, one can always assume that A is in normal form, i.e., ag = 0 and
ged(aq, ..., a,) = 1. In this section, we study the structure of the sumsets of A.
From now on, A = {ap =0< a; < --- < a, = D} C N will be a set in normal
form. Note that, if n = 1, then A = {0, 1}, and hence sA = [0, s] for all s € N.
Therefore, throughout this section, we will assume n > 2.

In 1972, Nathanson proved the so-called structure theorem, one of the main
results in additive number theory, which shows that the sumsets s A always have a
fixed structure, for s sufficiently large.

Theorem 3.1 (Structure Theorem, [70], [71, Thm. 1.1]). If A = {ag =0 < a; <
- < a, = D} C Nis a finite set in normal form, n > 1, then there exist integers
c1, 02 € N and finite subsets C; C [0,¢; — 2], i = 1,2, such that

sA=C1U|er, 8D — o] U (sD — Cs) (3.1)
for all s > max{1,s}, where s} = (n—1)(D —1)D.

Nathanson proved the theorem by induction on s > s, and his proof is con-
structive in the sense that the numbers ¢i, ¢ € N and the sets C7,Cy C N can be
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read on the sumset s)Y.A. But there is no nice interpretation of these elements in
terms of the set A.

Remark 3.2. In the conditions of Theorem 3.1, one has that that ¢; = 0 < a1 = 1,
and ¢co =0« D —a,_; = 1. Moreover, if D — A :={D —a|a € A} = A, then
c1 = ¢ and C7 = (5. This can be directly proved, but it can also be obtained as an
easy consequence of Proposition 3.4.

Example 3.3. (1) Consider A = {0,1,3,4}. It is straightforward to show that
2A =[0,8], 34 = [0,12] and, in general, s.A = [0,4s] for all s € N, s > 2. The
elements that appear in the structure theorem are ¢; = ¢, = 0, C; = Cy = 0,
and s = 24.

(2) Consider A = {0,2,3,5}. A direct computation shows that 24 = {0} U
[2,8] L {10}, 3A = {0} U [2,13] U {15}. Indeed, one can prove that sA =
{0} U [2,5s — 2] U {bs}, for all s € N, s > 1. The elements that appear in
Theorem 3.1 are ¢; = ¢y = 2, C; = Cy = {0}, and s}y = 40.

Consider the homogenization of A, A = {a,,...,a,} C N? where a, = (D —
a;,a;) for all i = 0,...,n. Fix an infinite field k, and let C = C4 C P be the
projective monomial curved determined by A. The coordinate ring of C is k[C] =
k[zo, ..., x,)/Ia, where 14 is the toric ideal determined by A. By Proposition 1.83,
one has that |s.A|= HFy(s) for all s € N.

The elements in the structure theorem have recently been characterized in [32,
Prop. 3.4] in terms of the curve C and some of its invariants. Recall by Proposi-
tion 1.75 that C has at most two singular points, P, = (1 : 0 : --- : 0) € P and
P,=(0:---:0:1) € P?. Moreover, if 6(C, P) denotes the singularity order of P,
then 0(C, P;) = IN\ S| and §(C, P,) = I[N\ Ss|, where S; and S, denote the numeri-
cal semigroups generated by A; = {ay,...,a,} and Ay = {D—a,_1,...,D—ay, D},
respectively. By Proposition 1.75 (4), one gets that for all s > r(k[C]),

|sAl= HFy(s) = sD + 1 — 6(C, P1) — 6(C, Py), (3.2)

where r(k[C]) denotes the regularity of the Hilbert function of k[C] (see Defini-
tion 1.48).

Proposition 3.4 ([32, Prop. 3.4]). Following notations in Theorem 3.1, fori = 1,2,
the following claims hold:

(1) ¢; is the conductor of S;;

(2) C; =8;,n1[0,¢; —2]; and

(3) 6(C, Fi) = ¢; — |Gyl
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Proof. Let us prove the result for ¢ = 1. Since 0 € A, the sumsets of A form a
nested sequence, i.e., sA C (s+ 1)A for all s € N. Hence, the sequence (sA);_,
converges to U s A = S;. By Theorem 3.1, we can write

sA=CyU|ecr, 8D — o) U (sD — Cy)

for all s > s), where C; C [0,¢; — 2| for i = 1,2. Since D > 0, limy oo (sD —
¢2) = oo, and hence [c1,sD — ¢y converges to [c;,00) when s — oo. Therefore,
S; = C1 U ler,00). From this expression, it is clear that ¢; is the conductor of S,
and C; = & N[0, ¢; — 2]. Finally, by Proposition 1.75 (3), one has that

§(C,P;) =N\ Si|=(c1 — 1) — |C1]|4+1 = ¢1 — |CY4].
For i = 2, apply the previous reasoning to the set 4* = D— A ={D—a|a€ A}. O

Using Proposition 3.4, one can interpret (and compute) the elements that appear
in the structure theorem in terms of the curve C. However, as we have seen in
Example 3.3, the number s’ such that the structure theorem holds for all s > s
is far from being tight. With this in mind, we give the following definition.

Definition 3.5. The least integer o, such that the decomposition (3.1) in Theo-
rem 3.1 holds for all s > o, will be called the sumsets reqularity of A and we will
denote it by o(A), or simply o if there is no confusion.

Theorem 3.1 provides an upper bound on ¢(.A) that is generally far from its real
value: o(A) < (n—1)(D —1)D = s)’. After Nathanson’s proof, other proofs of
Theorem 3.1 have been published, [98, 44, 45]. In these articles, the authors give
the following improved upper bounds on o(.A):

e [98, Thm. 2] (Wu, Chen, Chen; 2011) o(A) < (Z?:_Ql a;) + D —n=:s§°C.

e [44, Thm. 1] (Granville, Shakan; 2020) o(A) < 2| 2] =: s§*.

e [45, Thm. 1] (Granville, Walker; 2021) o(A) < D —n + 1 =: s§".

Note that in [98, 44, 45], the union in Equation (3.1) is not shown to be disjoint,
but this is shown in [65] for s§" and, as s}/ “¢ > s§" and s§ > s§"W if n > 3, the

above claims hold for n > 3. For n = 2, one has that s}/ ¢“ < s§" < s§5, but the
above inequalities hold (see Example 3.8).

Besides giving a great upper bound on o(A), Granville and Walker also charac-
terize the sets A for which this bound is attained.

Theorem 3.6 ([45, Thm. 2]). Letn € N, n > 2, and A={ay=0<a; <--- <
a, = D} C N be a set in normal form. Then, c(A) < D —n + 1. Moreover, the
equality holds if and only if either A or D — A belongs to one of the following two
families:
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o A=10,D]\ {a}, for some a, such that2 < a < D —2;
e A=10,1]U[a+ 1, D], for some a, such that 2 < a < D — 2.

Note for any A belonging to one of the two families in Theorem 3.6, the mono-
mial curve C is smooth, by Proposition 1.75 (2).

We now give a characterization of o, the sumsets regularity of A, in terms of the
curve C and its invariants. This result concludes the characterization of the elements
in the structure theorem given in Proposition 3.4.

Theorem 3.7. The least integer o, such that the decomposition (3.1) in Theorem 3.1
holds for all s > o, i.e., the sumsets reqularity of A, is

o =max {ritcl)., | 252 |

where r(K[C]) is the regularity of the Hilbert function of k[C] and ¢; is the conductor
of the numerical semigroup S; for i =1,2.

Proof. 1f s € N is such that sD — ¢y < ¢1, then [¢1, sD —c¢3] = (). Hence, o > f%}
Moreover, for all s > 0, HFy¢)(s) = |s.A| by Proposition 1.83, and if s > o, then

HFk[C](S) = ‘SA’: sD + 1-— (Cl — ‘01’—{—02 — |02|)

:SD+1—(5(C7P1)—5(C,P2) :Hpk[c}(S) (33)

by Proposition 3.4, so ¢ > r(k[C]). Therefore, ¢ > max {r(k[C]), [252]}. Con-
versely, for s > max {r(k[C]), [95%2]}, one has that (3.3) is satisfied by applying
(3.2). Moreover, since sD — ¢y > ¢q, one has that

sA=(sANC) U (sAN]c1,sD — co]) U (s AN (sD — Cy))
C Cl LJ [Cl,SD - 02} U (SD - Cg) .

Since both sets sA and Cy U [e1, sD — ¢o] U (sD — Cy) are finite and have the same
cardinality, they are equal, so max {r(k[C]), [9£2]} > o and the resut follows. [

Example 3.8. Take a, D € Z- such that a < D and ged(a, D) = 1, and consider
A = {0,a,D}. Set & = (a,D) and So = (D — a, D). Then, the elements that
appear in Theorem 3.1 are ¢; = (a — 1)(D — 1), ce = (D —a — 1)(D — 1) and
Ci1 =8 N[0,c; —2], Co = SN [0,c — 2], by Proposition 3.4. Moreover, we have
that [952] = D — 2 and r(k[C]) = reg(k[C]) — 1 < D — 2, by Remark 1.52 (2) and
Theorem 1.76 (1), since k[C] is Cohen-Macaulay in this case. Hence, the sumsets
regularity of A is 0(A) = D — 2, by Theorem 3.7.
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Given a set A C N in normal form, it is not easy to know in advance whether
o =r(k[C]) or 0 = [4£52]. However, in some cases it is, as Proposition 3.9 shows.

Proposition 3.9. (1) If C is smooth, then o = r(k[C]) > [95%2] = 0.
(2) If C is arithmetically Cohen-Macaulay, then o = [952] > r(k[C]).

Proof. If C is smooth, then ¢; = ¢; = 0 and (1) follows. Now, for s = [952], the
sumset s A decomposes as the union of three disjoint subsets

sA=(sANCy) U (sANc1,sD —co]) U (sAN (sD — Cy)) .

If either sANCy # Cy, or sAN [¢1,8D — o] # [c1,8D — ¢35, or sAN (sD — Cy) #
(sD — Cy), then Es # @, where S C N? is the affine semigroup generated by A
and FEs is as in Definition 2.2. Thus, if C is arithmetically Cohen-Macaulay, by
applying Proposition 2.4 (e), one gets that s.A = Cy U ¢y, sD — co] U (sD — Cy) and
(2) follows. O

As a direct consequence of Proposition 3.9, we recover the well-known fact that
for any n > 3, the rational normal curve, i.e., the curve C given by A = [0,n], is
the only projective monomial curve in P’ which is both smooth and arithmetically
Cohen-Macaulay.

Example 3.10. (1) If A=10,D]\ {a} for some 2 <a <D —2,thenc¢; =c2 =0
and o = 2 by Theorem 3.6. In this example, o = r(k[C]) > [95%2].

(2) For A ={0,2,5,6,9}, one has ¢; = 4, ¢; = 6 and r(k[C]) = 1,s0 0 = [9£52] =
2 > r(Kk[C]).

In Proposition 3.4 and Theorem 3.7, we have characterized all the elements
that appear in the structure theorem in terms of the projective monomial curve

C. Applying these results, we can recover the bound on ¢ given by Granville and
Walker, s§", using known bounds on [<£2] and r(k[C]).

Lemma 3.11. Let A ={apy =0<a; < --- < a, = D} C N be a set in normal
form. If Sy is the semigroup generated by Ay = {ai,...,a,}, Sz is the semigroup
generated by As = {D — ap_1,...,D — a1, D}, and ¢; is the conductor of S; for
1=1,2, then

’701+02—‘<D_n

Proof. By Proposition 1.2 (2), ¢; < (a3 —1)(D—1) and ¢ < (D —a,—1 —1)(D—1).
Therefore,

at+c<(ag+D—a,1—2)(D—-1)<(D—-n)(D-1)
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because a,_1 > a; +n — 2. Thus, the result follows dividing by D in the previous
equation. ]

Using the known fact r(k[C]) < reg(k[C]) (Remark 1.52 (3)), the bound o < s§™
follows from Theorem 3.7, Lemma 3.11, and Theorem 1.76 (1).

In their article [45], Granville and Walker give a whole new proof for the existence
of the elements in the structure theorem, obtaining the improved bound o < s§W.
Note that we have obtained the same result using Theorem 3.1, the formula for o
in Theorem 3.7, and appropriate bounds on ¢;, ¢o, and r(k[C]). Now, we apply the
same idea to obtain a new bound on ¢ that improves s§™

A new bound on the sumsets regularity

By combining the Erdos-Graham bound on the condutor of a numerical semigroup
(Proposition 1.2 (2)) and the bound on the Castelnuovo-Mumford regularity of a
projective monomial curve given by L’vovsky (Theorem 1.76 (2)), we obtain the
following new bound on the sumsets regularity. This bound is different from the

N WCC GS GW
already known bounds sy, sy “%, s5”, s5"" .

Proposition 3.12. If A= {ag=0<a; < --- < a, = D} C N is a finite set in
normal form, set

o 550 [Q(EJ (1+%)—1+%ﬂ, and

° sé = maXi<i<j<n {(az - ai—l) + (aj - aj—1>} — L

Then, the smallest integer o such that the decomposition (3.1) in Theorem 3.1 holds
for all s > o, i.e., the sumsets reqularity of A, satisfies

o < max{sy“, s§}.

Proof. By Proposition 1.2 (2), one has that ¢; < 2a,-1|2] — D +1 and ¢, <
2(D — a1)|2] — D + 1. Combining these two bounds, one gets that [9£2] < sf¢.
On the other hand, by Remark 1.52 (3) and Theorem 1.76 (2), one has that r(k[C]) <
reg(k[C]) < sf. Hence, the upper bound follows from Theorem 3.1. O

Example 3.13. (1) Consider the set A = {0,2,5,6,9} from Example 3.10 (2),
and recall that ¢ = 2 in this case. The previously known bounds on o are
si = 216, siV¢¢ = 16, s§° = 8 and s§" = 6. The new bound given in
Proposition 3.12 is 5, since s§“ = 4 and s} = 5. Although the bound is not
sharp in this case, it is better than the other known bounds on o.
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(2) For A = {0,1,5,6}, one has that A is one of the families in Theorem 3.6.
Hence, o = s§" = 4. On the other hand, si = 4 and s§“ = 5. Hence, the
upper bound on the sumsets regularity given in Proposition 3.12 is ¢ < 5,
which in this case is worse than s§".

When a; = 1 and a,_; = D — 1, it can happen that s§" < max{sF% sk}, as
Example 3.13 (2) shows. If a; # 1 or a, 1 # D — 1, and n > 6, then s5¥¢ < s§".
We prove this in Proposition 3.14, and we compare the bounds s§" and s in
Proposition 3.15.

Proposition 3.14. Let A={ap=0<a; <--- <a, = D} CN be a finite set in
normal form. If ay # 1 or a,_1 # D — 1, then séEG <D-n+1= SOGW, where

() 252) o)

Indeed, if n > 6 and both a1 # 1 and a,_1 # D — 1, then SOEG < S(C];W.

Proof. Ifay #1ora, 1 # D—1, thena, 1—a; < D—3and D > n+ 1. Therefore,

(o) ep) =2 (00 57) )

D 3 1
_o(2Z 2 4=
(n n +D>’

and the rightmost part of the previous equation is < D — n + 1 if and only if
(n —4)D? + (6 + 3n — n?)D — 2n > 0. The largest root of this degree-2 polynomial
in D is

n*—3n—6+4+/(6+3n—n2)2+4(n—4)2n
2(n —4) ’
and one has that a(n) < n+1 for all n € N, since the real function z — a(z)—(z+1)

is negative for all # > 0. Therefore, (n — 4)D? + (6 + 3n — n*)D — 2n > 0 for all
D >n+ 1. We have proved

D Ap—1 — A1 1
2({|—|(1+————— || -1+ =) <D - 1

and hence sF¢ < D —n + 1.
Assume now that a; # 1, a,_1 # D —1 and n > 6. Hence, D > n + 2. If

D = n+2, then A = {0} U [2,n] U {n + 2}, and one has that s§" = 3 and

sb¢ =12 — n%ﬂ < 2. Suppose D > n + 3. Using the same argument as before,

a(n) =
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now we have to check the inequality 2 (2% — % -1+ %) < D — n, and it holds if
and only if (n — 4)D? + (8 + 2n — n?)D — 2n > 0. The largest root of this degree-2
polynomial is

n? —2n— 8+ /(8 +2n —n2)2+4(n —4)2n

and one can show that (n) < n+ 3 for all n > 6. Hence, (n —4)D? + (8 + 2n —
n?)D —2n >0 for all D > n + 3, so s < D —n in this case. O

On the other hand, one always has that s§ < D—n+1, and we can also determine
when the strict inequality holds. For aset A ={ap=0<a; <---<a, =D} CN
in normal form, set By := 0, ayyq = D, and write

A = [Bo, ca] U [Br, ] U U [Be—1, cu] U [Be, aupya] (3.4)

with £ >0, a1 — f; > 0 for all i € {0,...,¢} and if £ > 1, then ; — a; > 2 for all
i€ {1,...,0}. Note that this way of writing A is unique.

Proposition 3.15. Let A = {ap = 0 < a1 < -+ < a, = D} C N be a set in
normal form Then, st < s§W. Indeed, if one writes A as in Equation (3.4), then
sb=s§W if 0 <0 <2, and sk < s§W if € > 3.

Proof. Write A = [By, a1 ]U[B1, ao]U. . .U[Be_1, ay]U[Be, cpy1] with £ > 0, a1 —5; > 0
for all i € {0,...,¢} and if £ > 1, thenﬂi—ai >2forallie{1,...,0}.

If ¢ =0, then A = [ D], and sf = s§W :1.If€1:1,then80:sgw B — ar,
and if £ = 2, then s = s§" = (81 — 1) + (B2 — ) — 1.

Assume ¢ > 3, and let 1 < j < k < ¢ be such that s§ = (8; — a;) + (B — i) — 1.
On the other hand,

l
ssW=D—-n+1=D—|A+2=D — <Z(0¢i+1—5¢+1)>+2

=0
¢ ¢
=D — <D—Z(5i—ai)+€—l—1> +2:Z(6i—&i)—€+l
i=1 i=1
:<5 Oé) k—Oék—i-Z —€—|—1
1<i<t
ik

(B; — o)+ (Br — ) +2(0 —2) — £+ 1
(B; — ;) + (B —on) = s + 1.

< SGW

>
>

Therefore, we have proved that s and the inequality is strict if and only if
(> 3. O
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With Propositions 3.14 and 3.15 in mind, we propose the following bound on the
sumsets regularity of A,

*

80 =

{sé ifap=1land a,_1 =D —1, (3.5)

max{st, sF“}  otherwise,

where sf = max;<;j<, {(a; —a;_1) + (a; —a;_1)} — 1 and

SEC = [2({% (1+%)—1+%ﬂ.

According to the previous results and Proposition 3.12, one has that o(A) < s§ <
s§W. Indeed, if n > 6, a1 # 1, ap_1 #n — 1, and £ > 3, then o(A) < sf < s§W.

To conclude this section, we present a precise statement of the structure theorem,
which summarizes the majority of the results in this section.

Theorem 3.16 (Refined Structure Theorem). Let A= {ap=0<a; <--- < a, =
D} C N be a finite set in normal form. Denote by Sy the numerical semigroup
generated by Ay = {ai,...,a,} and by Sy the numerical semigroup generated by
Ay = {D —a,1,...,D —ay,D}. Fori = 1,2, set ¢; the conductor of S; and
C; =8 N1[0,¢; —2]. Then,

sA=C1U|er, 8D — o] U (sD — Cs)

for all s > 0 = max{[9£52] r(k[C])}, where r(K[C]) is the regularity of the Hilbert
function of the projective monomial curve C determined by A. Moreover, o < s§,
where sj is the number defined in Equation (3.5).

3.2 Homogeneous sets in N?

Let A={ay=0<a; <---<a, =D} CN be a set in normal form. As already
observed, associated with A, one has the set

A: {g())glv"wgn} C N27

where a, = (D — a;,a;) for all i = 0,...,n. A semigroup S in N? generated by a set
A of this form will be said to be homogeneous of degree D.

It is straightforward to verify that the sumsets of A are completely determined
by those of A, since, for each s € N,

sA={(sD —y,y) :y € sA}.
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In particular, for any s € N, |sA|= [sA|. Furthermore, the affine semigroup S
generated by A satisfies that & = U2 ;s.A. Note that each sA lies on the “line”
Ly ={(z,y) e N*: 2 +y = sD}.

We can apply the structure theorem from the previous section to expand our
understanding of the sumsets of A and the semigroup §. By Theorem 3.1 and
Proposition 3.4, we have that for all s > o(A), the sumsets regularity of A, sA
consists of a central interval and, outside that interval, a copy of the non-trivial part
of the semigroups S§; and Sy, i.e., for all s > o(A),

SA={(sD —1i,i): i €S N[0,c; — 2]} U{(sD —i,i) : i € [c1,8D — o]}
U{(i,sD—i): 1€ S N[0,ca—2]}. (3.6)

Furthermore, o(A) is the least integer such that this decomposition is satisfied for
all s > o(A). More precisely, for s > o(A), when we go from sA to (s + 1)A4, gaps
coming from &7 move to the right while gaps coming from S; move up, and there
are no other gaps in (s+1).4 than the ones coming from sA, as shown in Figure 3.1.
And o(A) is the least integer such that this occurs. For this reason, the sumsets
regularity of A, o(A), could also be called the sumsets regularity of A, and denoted
by o(A). If no confusion arises, from now on, we will simply denote this number by

o,ie,o0=0(A)=0c(A).

Example 3.17. Take D € N, D > 4, and consider A = {0,1,D — 1, D}. The
homogenization of A is A = {(D,0), (D —1,1),(1,D—1),(0,D)}. By Theorem 3.1,
Proposition 3.4, and Theorem 3.6, sA = [0,sD] for all s > D — 2. Indeed, the
sumsets regularity of A is 0(A) = D — 2. Hence, one has that sA = {(sD —i,1) |
i€]0,sD]} = L for all s > D — 2.

Recall from Section 2.1 the definition of the Apéry APs and the exceptional set
Es of § (Definition 2.2):

e APs ={seS:s—a, ¢S,s—a, ¢S}, and

e Es={se€S:s—a,€S,s—a,cS,s—a,—a, ¢S}

Moreover, for each s € N, set AP, := APsN L, =APsNsAand E, = EsNL, =
EsNsA. Figure 3.2 shows what points in Es and APgs look like when one draws
the semigroup S taking into account the levels determined by the sumsets of A.

Remark 3.18. As a consequence of Theorem 3.1 and, more precisely, Equation (3.6),
one gets that, if ¢ is the sumsets regularity of A, then

Vs>o0+2 AP, =FE,=10.
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Non—trivial\
part of Sy

Central
interval

Non—triviak

part of Sy N N

sA (s+1)A

Figure 3.1: Structure of the sumsets of A. For s > o, we distinguish three disjoint
areas: the central interval and the copies of the non-trivial parts of S; and Ss.

Figure 3.2: An element (z,y) in AP; and an element (z/,y') in E.
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In particular, this shows that APs and Eg are finite sets.

Now, we focus on the distribution of the elements (z,y) in APs and Es on the
levels given by the sumsets of A (or A).

Proposition 3.19. For all s € N, one has that
|AP || Ey|= [sA[=2[(s — 1) Al+|(s — 2) A].

Proof. Let us count the number of elements in AP, for all s € N. Note that |APy|=
1 =10A4| and |[AP,|= |A|-2 = | A|—2|0A|. Since Ey = E; = 0 and s A =0 if s < 0,
the formula holds for s < 1. Now, consider s > 2. For each element s € (s — 1)A,
neither s+a, nor s+a,, belongs to AP,. Thus, every element in (s—1).4 provides two
elements in sA that do not belong to AP, and any other element in sA belongs to
AP,. However, we are counting some of those elements twice, precisely the s € sA,
such that s —a, € (s —1)A4 and s — a, € (s —1)A. Now, for such an element s,
either s —a, —a, ¢ (s — 2)A, and hence, s € E;, or (z,y) —a, — a, € (s —2)A.
This provides the following formula:

|AP|= [sA[=2[(s — DA[+ (|(s — 2)A|+|ES]) ,
and the result follows. O

Remark 3.20. As a consequence of the previous theorem and Remark 3.18, we
obtain that |[APgs|= |Es|+D, since

o+1 o+l o+l
|APs| = Z\AP =D (sAl=2[(s = DAJ+|(s = 2)A) + )| E|
s=0 s=0
= (\(0+ ) Al=|c Al) + |Es|= |Es|+D,

where we have that |(¢ + 1)A|—|ocA|= D since ¢ > r(k[C]) by Theorem 3.7. In
particular, |[APg|> D, and we recover that (d) < (e) in Proposition 2.4.

Corollary 3.21. If C is arithmetically Cohen-Macaulay, then the sequence (|sA|—
|(s = 1)A])2, C N is increasing (and it stabilizes at D).

Proof. For each s € N, we observe that

s

[sA[=|(s = A= Y (IJAI=21( = DA+ - 2)A4)) ZIAP E

J=0

by Proposition 3.19, and the result follows. O
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Remark 3.22. The result in Corollary 3.21 holds in a more general setting. For a
graded (or local) k-algebra R of Krull dimension two, the differences between two
consecutive elements in the sequence (HFg(s) — HFg(s — 1)), are the coefficients
of its h-polynomial (the polynomial in the numerator of its Hilbert series) that are
known to be non-negative when R is Cohen-Macaulay [87]. Thus, the sequence
(HFg(s) — HFg(s — 1)), is increasing.

Note that if one removes the Cohen-Macaulay hypothesis, then the result in
Corollary 3.21 may be wrong, as the first example below shows. However, this
property does not characterize arithmetically Cohen-Macaulay curves, as the second
example shows.

Example 3.23. (1) For A = {0,1,3,11,13}, (]sA|—-|(s —1)A|), = (1,4,9, 14,
17,15,13, 13,...) is not increasing, and hence, k[C]| is not Cohen-Macaulay by
Corollary 3.21.

(2) [6, Ex. 4.3 For A= {0,5,9,11,20}, (|s.A|—|(s — 1).A)>, = (1,4,9, 15,20, 20,
.. ) is increasing, but k[C] is not Cohen-Macaulay.

3.3 Higher dimension. The simplicial case

Consider a finite set A = {ag,a,...,a,} C N4 d > 2, with a, = (a1, ..., 0q)
for i € {0,...,n}, and set D = max{|a;|: ¢ = 0,...,n}. For alli =0,...,n, set
a, = (D —a;|, a;), and consider A = {a,...,a,} C N""!. Let k be an algebraically
closed field, and X = X4 C P} be the projective toric variety determined by A. We
assume that X is simplicial. Hence, by Remark 1.71, we can assume, without loss of
generality, that {Deq, ..., Des} C A, where {€o, ..., €4} denotes the canonical basis
of N¥*1. Note that this is equivalent to saying that A = {ay,...,a,} C N¢ has the
following properties:

e 0=(0,...,0) € A4

o foralli=1,...,d, e = De, € A, where {€],...,€,} denotes the canonical
basis of N?; and

o foralli=0,...,n, |a]=3"

j=1 Q5 S D.

The following result describes the structure of the sumsets of such a set A C
N¢. Granville and Shakan first obtained this result in [44], but later Curran and
Goldmakher provided a bound on s for which the result holds.
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Theorem 3.24 ([23, Thm. 1.3], [44, Thm. 2]). Let A C N? be a finite set such that
A — A generates Z¢ additively, 0 € A, €, € A for alli € {1,...,d}, and |a|< D for
alla € A. Forallie {1,...,d}, set

Ti(A) = (A —e)) C Z°,

the subsemigroup of Z¢ generated by A — €,. Then, for all s € N such that s >
(d+1)D? — 2 —2d, one has that

sA= (AN (ﬂ (se) + E(A))) .

i=1

In this section, our aim is to provide a more explicit formulation of Theorem 3.24
for certain classes of sets A, together with improved bounds for s such that this result
holds. More specifically, we are interested in the sets A such that the simplicial
projective toric variety X = X4 is smooth (Subsection 3.3.1), or it is a surface with
a single singular point (Subsection 3.3.2).

3.3.1 The smooth case

Let A = {ap,...,a,} C N¢ be a finite set, and suppose that A defines a smooth
simplicial projective toric variety X = X4 C P)'. Hence, without loss of generality,
we can assume that A C N1 satisfies the conditions of Theorem 1.72. This is
equivalent to saying that A has the following properties:

e 0=(0,...,0) € A
e foralli e {0,...,n}, |a;)|< D;
e foralliec {l,...,d}, €, € Aand (D — 1)€; € A; and
o forall 1 <i<j<d €+ (D—1)€ €A
where {€],...,€,} denotes the canonical basis of N%. For all i = 1,...,d, set

/. /
e, = De;.

For all s € N, denote A, := {(y1,...,94) € N | y; + -+ +y4 < sD}. Note that
for all s > 1, A, is the set of lattice points of a simplex. Moreover, one has that
sA C A, for all s € N. In this context, Theorem 3.24 can be rewritten as follows.

Proposition 3.25. Let A C N? be a finite set as above. Then, sA = A, for all
sEN, s> (d+1)D*—2—2d.
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Proof. Let us compute the elements that appear in Theorem 3.24. Since {¢€], ...,
€} C A, then (A) = N¢. Take i € {1,...,d} and let us describe the set T;(A).
Consider the following subset A(7) of A

A = {(D - )} U{e, + (D~ 1) [ 1< j <d} C A

and set B; = A(i) — De;. One has that B; = {—€;} U{€; —¢€; | 1 < j < d}. The
semigroup generated by B is given by the lattice points in the cone with rays €; — €/,
j #1i, and —e;, and it can be written as

(Bi) = {1, ya) €Z7 [y < 0,55 > 0,Vj # i,y + -+ +ya < O}
Since B; C A— D¢, and A— D¢, C (B;), then T;(A) = (A— D¢,y = (B;). Therefore,
Se;+E<A):{(y177yd) EZd|yl§3D7 yjzoyv]#% y1++yd§3D}7

and hence,
d
(N (T:(A) +s€)) = {(v1,--,ya) €Z | yi > 0,Vi, yy + - +ya < 5D} = A,
=1

By Theorem 3.24, sA =N!NA, = A, for all s > (d + 1)D? — 2 — 2d. O

Theorem 3.26. Let A = {ag,a;,...,a,} C N¢ be a finite set such that {0,
e,...,e)} C Aand |a|< D foralli € {0,...,n}. Consider A ={a,,...,a,} C
N4 the homogenization of A, where a, = (D — |a;|,a;) for all i € {0,...,n}. Ifk
is an algebraically closed field, then the following conditions are equivalent:

(a) The simplicial projective toric variety defined by A, X = X4 C P is smooth.

(b) {e;+ (D —1)¢; | 0 <i,5 <d} C A, where {e€g,..., €4} is the canonical basis
Of Né+1.

(c) {0,€;, (D —1)e;,e; + (D —1)€; | 1 < i,j < d} C A, where {€},...,€,} is the
canonical basis of N?.

(d) There exists so € N such that sA = Ay for all s > s.

Proof. The equivalence (a) < (b) is Proposition 1.78, (b) < (c) is direct from the
construction of A, and the implication (¢) = (d) is Proposition 3.25. Let us prove
(d) = (c). First, if sA = A, for all s > 0, then (4) = UX sA = N% For all
i=1,...,d, set T;(A) = (A —¢€}). By Theorem 3.24 and (d), we have that for all
5> 0,

d
sA = ﬂ(se; +Ti(A)).
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Thus, for all 7, one must have

Ti(A) ={(y1,- - ya) €27 |y <0,y; 2 0Vj # iy +---+ya <0} (3.7)
The inclusion C is clear. To show the reverse inclusion, suppose that there exists a
point y = (y1, ..., yq) in the right-hand size of the equation that does not belong to
T;(A). Then y+ se; ¢ sA for all s > max{so, (Jy1|+ -+ |ya|) /D}, a contradiction,
and hence the equality in (3.7) holds. To conclude, note that (3.7) is equivalent to
{(D-1e}U{e;+ (D —1)e | 1 < j < d} C A Therefore, Ais as in (c). O

Example 3.27. Consider A = {(0,0),(1,0),(2,0),(3,0),(0,1),(0,2),(0,3),(1,2),
(2,1)} € N2. By Proposition 3.25, one has that sA = A, = {(z,y) e N> | 2 +y <
3s} for all s € N, s > 19. However, one can check that the equality s.A = Ay holds
for all s > 2.

As Example 3.27 shows, the bound s > (d + 1)D? — 2 — 2d in Proposition 3.25
is usually far from being tight. This observation motivates the following definition.

Definition 3.28. Let A C N¢ be a set satisfying Theorem 3.26 (c). The sumsets
reqularity of A is defined as 0(A) = min{s € N | s A = Ay, Vs’ > s}.

Theorem 3.29. Let A C N be a set satisfying Theorem 3.26 (c). Then, the sumsets
reqularity of A is o(A) < d(D — 2).

Proof. Note that it is sufficient to prove that sA = A, for s = d(D — 2), since it
implies sA = A, for all s > d(D —2). We prove d(D — 2)A = Agp_2) by induction
on d > 1. For d = 1, the result follows from Example 3.17. Suppose that the result
holds for d — 1, and let us prove it for d. Take y = (y1,...,%4) € N¢, such that
ly|< d(D — 2)D, and let us show that y € d(D — 2).A.

Case 1: If |y|< (d — 1)(D — 2)D, there exists an index j, 1 < j < d, such that
y; < (D—2)D. We writey = yW+y,, where yV) = (y1,...,9;1,0,Yj11, - - .,ya) and
y; = y;€;. Since y; < (D —2)D, then y; € (D—2){0,1,D—1, D}, by Example 3.17,
soy; € (D —2)A. On the other hand, by the inductive hypothesis, one has that
y¥ € (d — 1)(D — 2).A, by considering (y1,...,Yj—1,Yj+1,---,ya) € N9~ Hence,
y=yY +y; €d(D-2)A.

Case 2: Suppose now |y|> (d — 1)(D — 2)D. We distinguish between two cases.
First, let us prove the following claim.

Claim: If |y|= (d — 1)(D — 2)D, then y € (d — 1)(D — 2).A.

Proof of the claim: If d = 1, the result is clear, so assume d > 2. Let 7 : N — N¢-!
be the projection 7(21,...,23) = (22,...,24), and consider 7(y) € N?~1. Set A=
m({a€ A:|a|=D}) ¢ N“' and note that A satisfies Theorem 3.26 (c). Since
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|7(y)|< (d—1)(D —2)D, then by the inductive hypothesis 7(y) € (d—1)(D —2).A.
Thus, homogenizing with respect to the first coordinate, one gets that

y=(d—1)(D-=2)D —|n(y)|,y2,---,va) € (d—1)(D —2)A,

and this concludes the proof of the claim

Case 2.1: Suppose |y|= (d — 1)(D — 2)D + AD — u for some 1 < A < D — 2 and
0 < u <A Take by,...,b, € A with |b;|= D —1 for all ¢, and cy,...,cr_, € A
with |c;j|= D for all j, such that z =y — > % b, — Z;\;f c; € N Then, |z|=
(d—1)(D —2)D, and hence z € (d — 1)(D — 2).A by the previous claim. Therefore,
vesAfors=(d—1)(D—-2)+pu+A—p) <dD—-2),s0y €d(D—2)A.

Case 2.2: Suppose |y|= (d = 1)(D — 2)D + AD — u for some 1 < A < D — 2 and
A<p<D-—1. Take by,...,bp_, € Awith |b;|=1 for all ¢, and ¢;,...,c\.1 € A
with |c;|= D for all j, such that z = y — >.7 " b, — Zj;ll c; € N Then, |z|=
(d—1)(D —2)D, and hence z € (d — 1)(D — 2).A by the previous claim. Therefore,
yesAfors=(d—-1)(D—-2)+D —pu+X—1<d(D —2),since —pu+ A < —1, s0
y € d(D —2)A. O

The bound on o(.A) obtained in Theorem 3.29 is sharp, as the following result
shows.

Corollary 3.30. Let A = {0,€, (D — 1)€j, €, + (D —1)e; | 1 < i,j < d} C N%,

where {€,, ..., €} is the canonical basis of N%©. Then, o(A) = d(D — 2).

Proof. By Theorem 3.29, o(A) < d(D — 2). Moreover, note that (D — 2, D —
2,...,D—=2) ¢ (d(D — 2) — 1) A, since the only way of writing it as a sum of nonzero
elements in Ais (D —2,...,D —2) :Zle(D—z)eg. Then, (D —2,...,D —2) ¢
Ayp-2-1. Thus, o(A) = d(D — 2). O

3.3.2 Surfaces with one singular point

Let A = {ay,...,a,} C N? be a finite set. Fix an algebraically closed field k, and
suppose that its homogenization A = {a,,...,a,} C N3 defines a simplicial projec-
tive monomial surface with a single singular point. Proposition 1.78 characterizes
such sets A. Hence,

{(0,0),(D,0),(0,D),(D —1,1),(1,D —1),(D —¢,0),(0,D —e)} C A,  (3.8)

where a;1 + a;0 < D, 1 < e < D is a divisor of D that divides a;; + a;o for all
i €{0,...,n}; and if e = 1, then either (1,0) ¢ A or (0,1) ¢ A.

We denote Z? = {(z,y) € Z* | e divides z + y} and N? := Z? N N2, Clearly,
(A) C N? out next goal is to prove that N? \ (A) is finite. Set €] := (D,0) and
e, = (0,D).
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Remark 3.31. If e = D, we can write A = {(0,0)}UA’, where A" C N is a set that
defines a smooth projective monomial curve, and A’ is the homogenization of A’.
From the expression A = {(0,0)} U A’, it follows that for all s € N, sA = U{_ji. A’
By Theorem 3.29, one has that sA" = {(x,y) € N*: z+y =sD}, forall s > D — 2.
Therefore, for all (z,y) € N? such that x +y > (D —2)D and z +y =0 (mod D),
(z,y) € sA for all s > =5,

Lemma 3.32. Assume 1 <e < D. If (z,y) e N2 andx+y > D (D + 2 —4), then
(z,y) € sA for all s € N, s > Z¥ and, in particular, (z,y) € (A).

Proof. Assume that v +y > D (D+ % —4). Let A € N, A < D/e — 1 such that
r+y = —Xe (mod D), and Ay, Ay € N such that \; + Xy = A\, 2 > A\ (D —e), and
y > Xo(D —e). Set (2,y) = (z,y) — )\1(D —¢,0) —X2(0, D —¢). Then (2/,y') € N?
satisfies ' + 4 = 0 (mod D) and 2’ + 4y =z +y — A(D —e). If A = 0, then
'ty = :c+y > D(D+——4) (D—2)D; and if A > 1, then :v—i—y > D(D+——4)+e
and hence 2’ +y =x+y —ND —e) > (D — 2)D. Thus, (2/,y) can be written
using the elements (O,D), (1,D — 1) (D —-1,1),(D,0) in A, by Example 3.17, so
(x,y) € (A). We have proved that (z,y) = ZZ wi(zi, yi) + A (D —e,0)+ X2(0, D —e)
for some u; € N, where x; + y; = D for all ¢ and \;, \y € N are as before. Then,
(z,y) € OC;mi+A) A Take s € N such that s > Z5¥ and let us prove that
Yoiti+A<s Since sD>ax+y= Q) D+ND —e€)= (D, i +A)D — Ae,
then
Zﬂi+)\§s+)\% <s+ (2—1> % <s+1.

e
Thus, >, tt; + A < s, and hence (z,y) € sA. O
Proposition 3.33. The semigroup (A) is contained in N2, and |N? \ (A)|< oo,

Proof. For all (z,y) € A, x + vy is a multiple of e. Thus, (A) C N2. If e = D, the
result follows from Remark 3.31. For 1 < e < D, the result follows from Lemma
3.32. 0

Set H = N2\ (A). By Proposition 3.33, H is a finite set. Moreover, H # ()
if e = 1, since in this case either (1,0) ¢ A or (0,1) ¢ A. For all s € N, denote
Tee = {(z,y) € N? | z +y < sD}. One has that A C Ty, and sA C T, for all
s € N. Moreover, if 1 < e < D, then H C Tpipje—a, by Lemma 3.32.

Proposition 3.34. There exists so € N such that, for all s > sg, sA=Ts. \ H.

Proof. 1If e = D, the result follows from Remark 3.31. Suppose that 1 < e < D.
Then, the result follows from Lemma 3.32. O]
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Indeed, the condition s.A = T; .\ H for all s > 0 characterizes the sets A C N?
of the form (3.8), as the following result shows.

Theorem 3.35. Let A = {ag,ay,...,a,} C N? be a finite set, a; = (a;1, a;2), such
that {(0,0),(D,0),(0,D)} C A and |a;|= an + ae < D for all i € {0,...,n}.
Consider A = {a,,...,a,} C N the homogenization of A, where a; = (D — a;; —
Ao, i1, @) for all i € {0,...,n}. If k is an algebraically closed field, then the
following conditions are equivalent:

(a) The simplicial projective toric surface determined by A, X = X4 C P, has a
single singular point, and it is (1:0:0:---:0).

(b) A contains {eg,e1,es, (0,D — 1,1),(0,1,D — 1),(e,D — ¢e,0),(e,0,D — €)},
where e; = De;, {€g,€1,€} is the canonical basis of N°, 1 < e < D s a
divisor of D that divides a;o for all i € {0,...,n}, and if e = 1 then either
(D—-1,1,0)¢ A or (D—1,0,1) ¢ A.

(C) A contains {(07 0)7 (D7 0)7 (07 D)7 (D -1, 1)a (17 D — 1)7 (D -6 O)a (07 D — 6)},
where 1 < e < D is a diwvisor of D that divides a; + azo for alli € {0,...,n},
and if e = 1 then either (1,0) ¢ A or (0,1) ¢ A.

(d) There exist a finite set H C N2, with H # 0 if e = 1, and a number sy € N
such that sA="Ts. \ H for all s > s;.

Proof. The equivalence (a) < (b) is Proposition 1.78, (b) < (c) is direct from the
construction of 4, and the implication (¢) = (d) is Proposition 3.34. Let us prove
(d) = (c). Take s > sy such that X C T;_1.. Since (sD — 1,1) € sA, then
(D —1,1) € A. Moreover, since (sD —¢,0) € sA, then (D —¢,0) € A. Similarly,
one can show that (1,D —1) € Aand (0,D —e) € A, and (c) follows. O

Definition 3.36. Let A C N? be a set as in (3.8). The sumsets reqularity of A,
o(A), is the smallest number sy € N such that H C T, and sA = T, \ H for all
s > Sg, 1.e.

o(A) =min{sg € N|H C Tgye, and sA=T; .\ H,Vs > s} .
When there is no confusion, we will denote it just by o = o(.A).

Remark 3.37. (1) If one allows e = 1 and {(1,0),(0,1)} C A in the previous
definition, then we are under the hypothesis of Subsection 3.3.1. Note that in
this case H = () and Definitions 3.28 and 3.36 coincide for such a set A.

(2) Forall s >0, (s+1)A\ sA="Ter1e \ Tse. In fact, it is easy to show that

o=min{sp € N| (s + 1) A\ sA = Toi1e \ Tse,Vs > s0}.
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(3) If e = D, we can write A = {(0,0)} U A" as in Remark 3.31. From the fact
sA = Ui_giA' for all s € N, it follows that o(A) = o(A’), where o(A’) denotes
the sumsets regularity of A’. By Theorem 3.6, 0(A") < D—|A'|+2 = D—n+2,
and hence o(A) <D —n+2.

Example 3.38. (1) Let D € Z-y and 1 < e < D a divisor of D. For A =
{(z,y) € N? | x + y < D}, one has that sA = T, for all s € N, and hence
g(A) =0.

(2) For A = {(0,0),(3,0),(0,3),(2,1),(2,1),(2,0),(0,2)}, one has that (A) is a
generalized numerical semigroup, by Theorem 1.24, and H = N2\ (A) =
{(1,0),(0,1),(1,1),(1,3),(3,1)}. Hence, H C T21. Moreover, one can check
that s.A = T;1 \ H for all s > 2. Thus, o(A) = 2.

The next proposition provides a method for finding bounds on the sumsets reg-
ularity, o(A), which will be useful in the rest of the chapter.

Proposition 3.39. Let A C N? be a set as in (3.8). Suppose that there exist positive
integers v, s, such that for all (z,y) € N?,

(i) if (z,y) € (A) and x +y < v - D, then (z,y) € s,A,

(it) if t+y >v-D, then (z,y) € sA for all s > [Z54].
Then, the sumsets regularity of A satisfies o(A) < max{s,,v}.

Proof. Let s € N such that s > max{s,,v}. By the above hypotheses, for all
(x,y) € (A) such that x +y < sD, one has that (z,y) € sA. Moreover, by (ii)
N2\ (A) C T;.. Therefore, o(A) < s, and the result follows. O

Applying the previous result and Lemma 3.32, we obtain a bound on o(.A).

Proposition 3.40. Let A C N? be a set as in (3.8). Then, the sumsets reqularity
of A, 0(A), satisfies

D(D+L-4) if 1<e<D
U(A)S{D—z if e=D.

Proof. If e = D, the result follows from Remark 3.37 (3). Suppose 1 < e < D.
By Lemma 3.32, for all (z,y) € N? such that  +y > D(D + £ — 4), one has that
(z,y) € sAforall s > [*¥]. Take (z,y) € (A) such that z+y < D(D+2 —4), and
write (z,y) = >, 18, for some p; € N. Then, (z,y) € sAforall s > > y; and, on
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the other hand, z+y = >, puila;|> (3, ) e. Hence, Y-, p; < L < 2 (D + 2 — 4),

e

so (z,y) € sA for s = % (D + % — 4). By Proposition 3.39, one has that

0(«4>§max{2 <D+2—4),D+2—4}:2(D+2_4) :
€ e

e e e
and this concludes the proof. O

In the special case e = 1, we can improve it even more, as shown in the following
theorem.

Theorem 3.41. Let A = {ay = (0,0),a; = (D,0),a, = (0, D),a3 = (D—1,1),a4 =
(1, D—l),a5 = (D—l,O),aG = (O,D—l),a7, R ,an} C N2 such that 0 < a1 +ap <
D for all 7 < i < n, and assume that either (1,0) ¢ A, or (0,1) ¢ A. Then, the
sumsets reqularity of A satisfies 0(A) < D* —n+1 = D?* — | A|+2.

Proof of Theorem 3.41

Before proving the theorem, we include some results on the sumsets of the
skeleton of A, the set Ay = {ao,...,a5}, i.e., Ay = {(0,0),(D,0),(0,D),(D —
1,0),(0,D—1),(1,D—1),(D—1,1)}. Set Ty := {(0,0)} and, forall i,5 € N, ¢ > 1,
0<y=<t1,

Ty ={(z,y) eN* 2= j(D—1),y 2 (i—j)(D - 1), 2 +y < iD}.
Figure 3.3 shows what T;; looks like.
Remark 3.42. (1) The sumset OAO = TOO and Ao = TOO U (Tl[) U Tll)-
(2) For all ¢ eN and ] € {0, N ,i}, T%j + T10 = ,I;_HJ', and T;j + TH = ,I;-H,j-&-l‘

Proposition 3.43. For all s € N, the (s + 1)-fold sumset of Ay is given by

s+1
(S + 1)./40 = S.A,O U <U TS+17J'> .

j=0

Proof. For s = 0, the formula is the one in Remark 3.42 (1). For s > 1, apply
induction on s, note that (s + 1).A4y = sAg + Ag, and then the result follows from
Remark 3.42 (2). O

Corollary 3.44. For all s € N, s A, = Ui, Ué-:o Tij, and (Ao) = U2y Uiy Ty

Proposition 3.45. Let (z,y) € (Ay) and s € N such that x +y < sD. Then,
(x,y) € sAp.
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z=j(D-1) = ((D=1),(i—5)(D-1))

A
B=(i+jD-1),3G-j)(D-1)
C=((D—-1),iD—j(D-1))

y=(—-5(D-1) j
A

Figure 3.3: Tj; consists of the lattice points of the triangle defined above.

x+y=1D

Proof. By Corollary 3.44, there exist indices ¢,j such that (z,y) € T;;. If s > 4,
then (x,y) € T;; C iAy C sAy by Corollary 3.44. Suppose that s < i and let us
prove that there exists j/ < s < ¢ such that (z,y) € Ty;/, and hence (z,y) € sAg by
Corollary 3.44.

If j <s,since (z,y) € T;j, thenx > j(D —1),y > (i —j)(D—1) > (s — j)(D — 1),
and x +y < sD. Thus, (z,y) € Ty; C sA,.

If j > s, let us prove that (z,y) € T ;_(i—s. First, note that 0 < j — (i —s) < s
since j <iand (i —1)D < sD. Moreover, x > j(D—1)> (j — (i —s))(D—1),y >
(s=(—(—s9)))(D—-1)and x4y < sD. Therefore, (z,y) € Ty j_(i—s) C sAy. O

As a consequence, we get that the sumsets of Ay are filled in a nice way. This is
the content of the following result, which is straightforward from Proposition 3.45.

Corollary 3.46. Let (x,y) € N? and s € N such that x +y < sD. Then, (z,y) €
(Ao) if and only if (z,y) € sAy.

Remark 3.47. By Proposition 3.45 and Corollary 3.46, the definition of the sumsets
regularity of Ay reduces to o(Ag) = min{s € N | H C T;1}, where H = N? \ (A).
Taking into account the definition of the triangles T;; and Corollary 3.44, it is easy
to show that H C Typ-2),1, but H ¢ Top_31, and hence o(Ay) = 2(D — 2).

Now, let us consider a set A4 C N? such that a;; + a;2 < D for all i and Ay C A.
The following result shows that if there is an element (z¢,yo) € A with zo + yo =
m > 0, then we can improve Lemma 3.32.
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Proposition 3.48. Let A = {ay,...,a,} C N? be a finite set such that a;;+az < D
for all i = 0,...,n and Ay C A. Suppose that there exists (xg,yo) € A with
m = xo+ yo > 0. Then, for all (z,y) € N? such that x +y > (D + m — 3)D,
one has that (z,y) € (A). Indeed, if s = [Z5¢], then (z,y) € (s + A — 1).A, where
A=min{N eN|z+y—Nm<(s—1)D}.

As a consequence, if (x,y) € N*> and (D +m —3)D <z +y < 2(D —2)D, then
(x,y) € 2(D — 2)A.

Proof. Let (z,y) € N* such that  +y > (D+m —3)D. If s +y = (D +m — 3)D,
the result is straightforward, so assume = +y > (D + m — 3)D. Moreover, suppose
that (z,y) ¢ (Ao), otherwise (z,y) is trivially in (A) and (z,y) € sA for s = [£54],
by Proposition 3.45. Since (z,y) ¢ (Ap), by Proposition 3.43 if we take j such that
j(D—1) <z < (j+1)(D—1), then (z,y) ¢ T,; for s = [*}¢], and hence y <
(s—j)(D—1). Note that s > D+m—2, since we are assuming x+y > (D+m—3)D.
Let A € N be
A=min{\N eN|z+y—ANm<(s—1)D},

and let us show that (z,y) — A(zo,y0) € Ts—1;, which implies that (z,y) € (A).
That is, we have to show that x — Axg > j(D — 1),y — Ayp > (s =1 — j)(D — 1)
and x +y —Am < (s —1)D. Since z +y — Am > (s — 1)D — m by the election of A,
y<(s—j)(D-=1),z<(j+1)(D—-1)and s > D+ m — 2, we get

=g > (s—1)D—m—y+ Ayp+1
>(s—1)D—m+((j—s)(D—1)+1)+ Ay +1
>jD—-1)+(s—D—-—m+2+ Ayy) > j(D—1), and
y—Ayo > (s—1)D—m—z+ Axg+1
>(s—1)D-m—(j+1)(D—-1)+1+4+ Az +1
>

(s=1—4)(D=1)+(s—D—-—m+2+Axg) >(s—1—75)(D—-1),

as desired. Thus, we have shown (z,y) — A(xo,v0) € Ts—1,, and hence (z,y) €
(s —1+ M)A
Finally, note that A < w+y—(+1)D <(G+H)(D-1)+(s—j)(D—-1)—2—(s—1)D =

2D — 3 — s, and the last statement follows directly from this fact. m

We are now in conditions to prove Theorem 3.41. Let A = {ay = (0,0),a; =
(D,0),a; = (0,D),a3 = (D — 1,1),a4 = (1,D — 1),a5 = (D — 1,0),a6 = (0,D —
1),ar,.. an} C N? such that 0 < a; +a; < D for all 7 < i < n, and assume
(0,1) §é .A Every element (x,y) € (A) can be written as

1<i+j<d
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for some «;; € N, where «;; = 0if (7, ) ¢ A. In particular, ag; = 0. We can always
assume that a;; < D—2 for all 4, j such that i4+j < D—2since (D—1,0),(0,D—1) €
A. Using (3.9), one has that (z,y) € sA for s =3, S ;.

For all 0 < i < D, consider A% = {(z,y) € A | x4+ vy = i}. One has
A =UP AP and hence |A|l= S22 |A®|. In the proof of the theorem, we will use
the following bound on the size of A:

A 1+ [AVHAP |+ (4454 + (D + 1))
D?+3D

_ "A<1>‘+|A<2>|+T —4. (3.10)

Equivalently, one has that n = [A|-1 < [A®M |+ A4 22430 _ 5

We split the proof of Theorem 3.41 into several cases. For each case, we find
positive constants v, s, as in Proposition 3.39 and apply that result together with
Lemma 3.32 and Proposition 3.48 (if necessary). To make the proof lighter, we
include a lemma for each case.

Proof of Theorem 3.41. It D = 3 or D = 4, we check the result on a computer.
There are 4 possibilities for A when D = 3, and 128 possibilities when D = 4. For
each value of D and n, we compute o(A) for all A with | A|=n+ 1. Table 3.1 shows
the maximum value of (A) for such sets A, and the bound D* — n + 1. Assume
D > 5.

Case 1: Suppose (1,0) € A. By Equation (3.10), it suffices to show that o(A) <
D3D 4 5 | A®)|. By Lemma 3.32, for all (z,y) € N? with o +y > 2(D —2)D
one has that (x,y) € sA for all s > %. Moreover, by Proposition 3.48, for all
(z,y) € N* with (D —2)D < x4y < 2(D — 2)D one has that (z,y) € 2(D — 2)A.

Note that 2(D —2) < 22282 4 5 since D> —7D +18 = (D — I)*+ 2 > 0 for all D.

Case 1.1: If A = 0, for all (x,y) € (A) with z +y < (D — 2)D one has that
(x,y) € sA for some s < % by Lemma 3.49. Since we are assuming D > 5, then
2(D—2) < %, and hence o(A) < D23_4 by Proposition 3.39. Finally, note that
% < DQ_%+5, which is true since D*—9D+38 = (D — §)2+% > (. Therefore,
we conclude o(A) < D:i +5 < D? — |A]+2 in this case.

Case 1.2: Assume A? # ). By Lemma 3.50, for all (z,y) € (A) such that x +y <
(D —2)D one has that (z,y) € sA for some s < % + %o — | A®|, for the number
Yo defined in that lemma. By Proposition 3.39 and the facts in Case 1, it suffices to
show that % + % — |A?|< 1)22;3D + 5 — | A@|, which is equivalent to showing
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D | n=|A-1 max(c(A) D?*—n+1
6 2 4

3 7 1 3
8 1 2
6 4 11
7 4 10
8 3 9
9 3 8

4 10 3 7
11 2 6
12 2 )
13 1 4

Table 3.1: Maximum value of o(.A) for each D € {3,4} and n = |A|-1, with A as
in Theorem 3.41. This table is part of the proof of Theorem 3.41.

that X < D2g5D + 5. For D > 10,

D? 5D 11\% 23
ZO:D—1§T+5¢><D—?> +5 20,

and hence the desired inequality holds. For 5 < D < 10, it is immediate to see
that it is also true using the different definitions of ;. Therefore, we conclude
o(A) < D* — |A|+2.
Case 2: Assume (1,0) ¢ A and let m > 1 be minimum such that A™ # (.
Case 2.1: Suppose m > 3. Note that the size of A satisfies

D(D+3) m(m+1)

AI<T+(m+1)+---+(D+1) = 5 5 T2

Hence, it suffices to show that o(A) < 2 2;3D + m22+ . By Proposition 3.48, for all
(z,y) € N> with (D+m—3)D < x+y < 2(D—2)D one has that (x,y) € 2(D—2).A.
By Lemma 3.51, if (z,y) € (A) is such that z +y < (D+m —3)D, then (z,y) € sA
for some s < W. Since 2(D — 2) < D2-3D  then by Proposition 3.39, it

2
- < === + 757 This is equivalent to showing that

1 1 3 5 m? +m
— — | D? ~—_Z\|D > (.
(2 m) +(m 2> * 2 =0

suffices to show that
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Since we are assuming m > 3, the discriminant of this degree-2 polynomial in the
variable D is

3 5\’ 1 1\m’+m _9 17
2 2) (- = <Z_ D(m—2) = — — —1
(m 2) (2 m) 5 =1 (m+1)(m —2) 1 m(m—1) <0,

for all m > 3, and hence the polynomial is nonnegative for all D. Thus, W <

D?-3D m2+m
2 + 2

Case 2.2: Assume m = 2, ie., A? # (). By Equation (3.10), it suffices to show
that o(A) < D2;23D + 6 — |A?|. By Proposition 3.48, for all (z,y) € N? with
(D—-1)D <z +y<2(D—2)D one has that (z,y) € 2(D — 2)A. By Lemma 3.52,
for all (z,y) € (A) such that x +y < (D — 1)D one has that (z,y) € sA for
some s < M + 34 — |A@|, where % is the number defined in that lemma. By
Proposition 3 39, it suffices to show that ) + 35 — A< DQ% +6 — |A?,
which is equivalent to Xf, < % + 6. For D > 10,

, as we wanted to show.

D D? —-7D
zg:5+1§ T+6<:>(1)—5)“’+5zo,
so the desired inequality holds. For 5 < D < 10, it is immediate to see that it is
also true by using that X = %, and this concludes the proof. O]

Lemma 3.49 (Case 1.1). Assume (1,0) € A and A® = 0. If (z,y) € (A) is such
that x +y < (D — 2)D, then (x,y) € sA for some s < D23_4

Proof. Write (z,y) as in (3.9). Then x +y > aio + 3>, j53Qij, 80 D, sz ay; <

¥ — a0 Thus, the number of summands in (3.9) is

Ty 2 D(D-2) 2
Zaij:alﬂ‘l"zazjg 3 +§a10§T+§
] i+j5>3

so (z,y) € sA for some s < %. O

Lemma 3.50 (Case 1.2). Assume (1,0) € A, A® =0, and take (z,y) € (A). Then
there exist a;; € N such that (z,y) = 3, ; ai;(i,j) and

b4 W jf D<o,
2 1
= 3410 + 3 (ago + ann + apg) + AP < 50 = %D % if 6<D <10,
D—1 if D>10.
Hence, if x +y < (D — 2)D, then (z,y) € sA for some s < 222 2)D + 3 — | A2
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Proof. Observe that (2,0) = 2(1,0), 2(1,1) = (2,0)+(0,2), and [£](2,0) € {(D,0),
(D —1,0)} (it is (D,0) when D is even and (D — 1,0) when D is odd), and the
same holds for (0,2). Using these relations and «;; < D — 2 when necessary, we can
always assume that the coefficients «;; in the writing of (z,y) satisfy the following
conditions:

o If [A®|= 3, we can assume a9 < 1, ag; < 1, and g, gy < L%J — 1. Thus,

S<iyifn+2(2-1]+3=2+1
o If A® ={(2,0),(1,1)}, we can assume ajp < 1, and hence & < 2+1 (£ — 1+
D5
o If A = {(2,0),(0,2)}, we can assume ajp < 1, and hence & < 24 1.
2(2-1)+2=2+2

3
o If A? = {(1,1),(0,2)}, we can assume a;; < 1 (using the relation 2(1,1) =
0

o If [A®|=1,then < 2(D—-2)+1(D-2)+1=D—1.

Therefore,

]

+2 if D<6,
D+2 if 6<D<10,
-1 if D>10.

I

10D 55 2 B
3 372 36 3 N

D
ZSmax{——I— +-,-D+-,D—-1

S

Finally, if v +y < (D — 2)D and we write (z,y) as in (3.9), then

m+y2a10+2(a20+a11+a02)+3 Z Oéij,
i+j5>3

and from this expression we deduce that the number of summands in (3.9) is

D—-2)D
Za¢j§%+20—|,4<2>|,
is

and the lemma follows. O]

Lemma 3.51 (Case 2.1). Assume AY = 0 and let m > 2 be minimum such that

Al L If (x,y) € (A) is such that x +y < (D +m — 3)D, then (x,y) € sA for

some s < LPtm=3)D
—_— m .

Proof. Write (z,y) as in (3.9). Then x +y > <Z” aij> m, and hence the number
oty o (D+m=3)D -

m .

of summands in (3.9) is >, s o <
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Lemma 3.52 (Case 2.2). Assume AY =0, A? £ 0, and take (z,y) € (A). Then
there exist a;; € N such that (z,y) = >_, ; ai;(i, j) and

D
1 =

Y= g (Oégo + o1 + O[(]Q) + |A<2>|§ ¥ = { ;
2

Hence, if t +y < (D — 1)D, then (x,y) € sA for some s < % + 35 — |A@].

Proof. Using the same relations as in the proof of Lemma 3.50, we can always assume
that the coefficients oy; in the writing of (z,y) satisfy the following conditions:

o If |[A?|= 3, we can assume a;; < 1, and agg, gy < L%j — 1. Thus, ¥ <
IN+2(2-1)]+3=2+2%.

o If AP ={(2,0),(1,1)} or A® = {(1,1),(0,2)}, then X' < 1 (2 =14+ D — 2)+
2=241.

o If A® ={(2,0),(0,2)}, then ¥’ < i2(2 -1)+2=241

o If [A®|=1,then X' < Y(D-2)+1=2+1

Therefore,
D 8D L% if D<10,
E'gmax{——}——,——i—l}:
3 32 %—1—1 if D>10.

To finish the proof, we can use the same argument as in the proof of Lemma 3.50
taking into account that in this case a;p =0and z +y < (D — 1)D. O
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Chapter 4

Regularity of simplicial projective
toric varieties

“The Castelnuovo—Mumford regularity, or simply
reqularity, of an ideal is an important measure
of how complicated the ideal is.”

D. Eisenbud

In this chapter, we study the Castelnuovo-Mumford regularity of simplicial pro-
jective toric curves and surfaces. Moreover, we relate it to the sumsets theory in
additive combinatorics, giving a proof of the Eisenbud-Goto Conjecture (Conj. 1.46)
in some particular cases.

Let A= {ay,...,a,} C N be a finite set, n,d € Z,. When d = 1, assume that

A is in normal form, i.e., ap =0 < ay < --- < a, and ged(ay,...,a,) = 1. Associ-
ated with A, one has the set A = {a,,...,a,} C N? where a, = (D — a;, a;) for all
t =0,...,n. Fix an infinite field k and consider the projective monomial curve deter-

mined by A, C = C4 C P. The coordinate ring of C is k|C| = k[zo, . . ., z,,] /L 4, where
14 is the toric ideal determined by .A. In Section 4.1, we study the Castelnuovo-
Mumford regularity of k[C]. The main result of Subsection 4.1.1 is Theorem 4.2,
where we provide a combinatorial formula for the Castelnuovo-Mumford regular-
ity of k[C] in terms of the Apéry and the exceptional sets of the affine semigroup
S = (A). Moreover, in Theorem 4.9 ,we determine the step in a minimal graded free
resolution (m.g.f.r.) of k[C| in which the regularity is attained. In Subsection 4.1.2,
we provide upper and lower bounds on the regularity of k[C] in terms of the sumsets
regularity of A (Theorem 4.13), and use this relation to give a combinatorial proof
of the Eisenbud-Goto conjecture for projective monomial curves.

107
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When d > 2, consider D = max{|a;|= ijl a; 1 =0,...,n} and A =
{a,,...,a,}, where a, = (D — |a;|,a;) € N1 for all i = 0,...,n. Fix an alge-
braically closed field k and consider the projective toric variety determined by A,
X = Xy C P?. We suppose that X is simplicial. The coordinate ring of X is
k[X] = k[zo,...,2,]/14, where I4 is the toric ideal determined by .A. When X
is smooth, one can assume that A satisfies Theorem 1.72. The regularity of k[X]
has been already studied by Herzog and Hibi. In [48, Thm. 2.1], they proved that
reg(k[X]) < d(D —2). Hence, the Eisenbud-Goto conjecture holds for simplicial and
smooth projective toric varieties ([48, Cor. 2.2]), so the next step is to consider sim-
plicial projective toric varieties with a single singular point. In Section 4.2, we study
the Castelnuovo-Mumford regularity of simplicial projective monomial surfaces. In
Subsection 4.2.1, the main result is Theorem 4.25, where we provide a combinatorial
formula to compute the regularity of k[X] in terms of some special subsets of the
affine semigroup S = (A) C N3. This result holds for any simplicial projective toric
surface. In Subsection 4.2.2, we focus on the surfaces with a single singular point.
For this subclass, we give a relation between the Castelnuovo-Mumford regularity
of k[X] and the sumsets regularity of A in Theorem 4.27. This result, together with
Theorem 3.41, provides a proof of the Eisenbud-Goto conjecture for the simplicial
projective monomial surfaces with a single singular point whose degree is either
maximal or minimal.

The results included in Section 4.1 are part of [39].

4.1 Projective monomial curves

Let A ={ag =0<a; < -+ < a, =D} C N be a set in normal form, i.e.,
ged(ay, ..., a,) = 1. Consider the homogenization of A, A = {a,,...,a,} C N?
where a, = (D — a;,q;) for all i = 0,...,n. Fix an infinite field k and consider the

projective monomial curve determined by A, C = C4 C PJ*. The coordinate ring of
C is k[C] = Kk[xo, . .., xn]/L4, where I 4 is the toric ideal determined by .A.

Consider the numerical semigroups §; = (ay, ..., a,) and Sy = (D—a,_1,...,D—
a1, D), and the affine semigroup & = (A) C N?. Recall the definition of the Apéry
and the exceptional sets of S (Definition 2.2):

e APs={seS:s—a,¢S,s—a, ¢S}, and
e Es={se€S:s—a,€S,s—a,cS,s—a,—a, ¢S}

In Subsection 4.1.1, we provide a combinatorial formula to compute reg(k[C]) in
terms of the elements in the Apéry and the exceptional sets of S. In Subsection 4.1.2,
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we use this formula to relate reg(k[C]) to the sumsets regularity of .A. This relation
provides a nice combinatorial proof of the Eisenbud-Goto conjecture for projective
monomial curves.

4.1.1 Formula for the regularity

To express reg(k[C]) in terms of APg and Es, we introduce the following notations.
For all s € N, set L, = {(z,y) e N? |z +y < sD}. If F C S is a finite set; for all
s € N, define F, .= FN L, = FNsA, and m(F) := max{s € N | F, # (0}, with the
convention m(F) = —oo if F = ().

Remark 4.1. Since APs and Es are finite by Remark 3.18, one can consider the
numbers m (APg) € N and m (Es) € NU{—o0o}.

(1) One has that m (Es) < ¢ and m (APs) < o + 1, where 0 = o(A) is the
sumsets regularity of A (see Def. 3.5).

(2) Both m (Es) and m (APg) can be expressed in terms of the sumsets of A as
follows:

e m(APs) = max({s € N:da € sA, such that « ¢ (s —1)Aand a — D ¢
(s = 1)A}).

e m(Es) = max({s € N: Ja € (s — 1)A, such that « — D € (s — 1) A\
(s —2)A}), and

The following result gives a combinatorial way for computing the Castelnuovo-
Mumford regularity of k[C].

Theorem 4.2. The Castelnuovo-Mumford regularity of the projective monomial
curve C s

reg(k[C]) = max{m (APs),m (Es) — 1}.

To prove this result, let us recall some known facts on the local cohomology
modules of the coordinate ring of C, k[C]. As observed in Section 1.3, k[C] =
k[S] as (standard) graded kl[z, ..., x,]-modules. By Grothendieck’s theorem, since
dim(k[S]) = 1 and depth(k[S]) € {1,2}, then for k[S] there are at most two non-
trivial local cohomology modules, H} (k[S]) and H2 (k[S]), where m = (zq, ..., x,)
is the maximal homogeneous ideal of k|xo, . . ., z,]. Furthermore, these two modules
are completely characterized in terms of the semigroup S.

Lemma 4.3 ([47, Lem. 2.2]). Let G C Z* be the group generated by S and S' =
GnN (82 X Sl)
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(1) HL(k[S]) 2 k[S'\ S], and
(2) Hy (k[S]) = Kk[GN((Z\S) x (Z\ S))],

where the symbol = means that there exists an isomorphism of Z-graded modules.

When C is arithmetically Cohen-Macaulay, &’ = S by Proposition 2.4 (f), so
H} (k[S]) = 0 as we already know. By Theorem 1.45, one has that

reg(k[S]) = max{end (H,, (k[S])) + 1,end (H_, (k[S])) + 2}. (4.1)

The proof of Theorem 4.2 will then be a consequence of the following two lemmas
that relate the local cohomology modules H) (k[S]) and HZ (k[S]) to the numbers
m (Es) and m (APs). Note that the relation m (Es) = end (H}, (k[S])) + 2 stated in
Lemma 4.4 also holds when C is arithmetically Cohen-Macaulay, since both numbers
are —oo in this case.

Lemma 4.4. If ' # S, i.e., if C is not arithmetically Cohen-Macaulay, then
max{s: Fg o # 0} =max{s: (S'\S)NL; #0}.
Therefore, m (Es) = end (H}, (k[S])) + 2.

Proof. Tf C is not arithmetically Cohen-Macaulay, then the exceptional set Eg # ()
by Proposition 2.4 (e). Set B = {(x,y) € N? : (z,y) +a,+a, € Es} and, for each
s €N, El .= E5N L. Note that (z,y) € E. if and only if (x,y) +a,+a, € Esi2 s0
max{s : Esyo # 0} = max{s : E/ # (}}. Let us consider an element (z,y) € Es. It
is clear that (z,y) € &'\ S, since (z,y) = (x + D,y) — (D,0) € G, where G is the
group generated by S. Therefore, E5 C &'\ S and we get that max{s: E, # 0} <
max{s: (S"\ S)N Ls # 0}.

Conversely, let (z,y) € (S§'\S) N L be an element such that s is maximum.
Then, (z,y) +a, € S and (z,y) +a, € S, and hence, (z,y) € E.. Therefore,
max{s : E # 0} > max{s : (5’ \ ) N Ly # 0} and the equality max{s : Eso #
0} = max{s : (S"\ S)N Ly # 0} follows. By Lemma 4.3 (1), it implies that
m (Es) = end (H) (K[S])) + 2. O

Observe that in the previous proof, we show that E5 C &'\ S. Equality, which
would be a stronger result than the one stated in Lemma 4.4, is wrong in general.
Using the example given in [47, Ex. 3.2], we show that those two sets may be
different.

Example 4.5. For A = {0,1,2,5,13,14,16,17}, the curve C is smooth. Thus,
81 =8 =Nand G =Z? and hence, S’ = GNN? = N2 Since (9,8) € &'\ S but
(9,8) ¢ Ef, because (26,8) ¢ S, one has that the inclusion E5 C 8"\ S is strict.
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We now want to relate m (APs) to end (H2 (k[S])). Let (z,y) € GN((Z \ Sz)%
(Z\ 81))N Ls be an element with s maximal. Since x ¢ Sy and y ¢ Sy, one has that
(x,y+ D) ¢ S and (z + D,y) ¢ S. There are two possibilities, either (z + D,y +
D)e Sor (x+ D,y+ D) ¢ S, and let us check that in both cases, the inequality
(4.2) below holds. In the first case, note that (r + D,y + D) € APs N Lgyo, so
max{s: APs19 # 0} > max{s: GN((Z\ S2) X (Z\ &1))NLs # 0} and (4.2) follows
from Lemma 4.3 (2). In the second case, using the notations in Proposition 2.4,
there exists an index i, 0 < i < D — 1, such that z = up_; (mod D) and y = v;
(mod D). Then, up_; > x+ D and v; > y + D and since (x + D,y + D) ¢ S, by
Lemma 2.3, there exist natural numbers 2’ > x+D and ¢/ > y+ D, being at least one
of these two inequalities strict, such that (z’,y') € APs. Observe that (2/,y') € Ly
for s > s+43, so max{s : APg.o # 0} > max{s: GN((Z\ S2) x (Z\ S&1))N Ls # (I}
in this case. In both cases, one has that

m (APs) > end (HZ ([S])) + 2. (4.2)

Adding an additional hypothesis, one gets equality in (4.2) as the following lemma
shows.

Lemma 4.6. If end (H2 (k[S])) +2 > end (H) (K[S])) + 1 =m (Es) — 1, then
max{s: APs s # 0} =max{s: GN((Z\ &) x (Z\ S1)) N Ly # 0}.
Therefore, in this case, one has that m (APgs) = end (H2 (k[S])) + 2.

Proof. Let (z,y) € AP, 5 be an element such that s is maximal and consider the
element (rt—D,y—D). If (x—D,y—D) ¢ GN((Z\ S2) x (Z\ S1)), one can assume
without loss of generality that y — D ¢ S;. Then, there exists ' > x + D such that
(2',y—D) € S, s0 (2/,y) € Ey for some s’ > s+ 3. Therefore, end (H}, (k[S]))+1 =
m (Es)—1> m(APg) by Lemma 4.4, and using (4.2) we get that end (H}, (k[S])) +
1 > end (HZ (k[S])) + 2, which is in contradiction with the hypothesis in the state-
ment of the lemma. Thus, (t—D,y—D) € GN((Z\ S2) x (Z \ &1))NLs, and hence,
end (H2 (k[S])) +2 > m (APgs) by Lemma 4.3 (2). Using (4.2), we are done. O

Note that if one removes the hypothesis end (H2 (k[S])) +2 > end (H} (k[S])) +
1 =m(Es) — 1 in Lemma 4.6, the result may be wrong. To illustrate this fact, we
use the example in [47, Ex. 3.2].

Example 4.7. For A ={0,1,2,5,13,14,16, 17}, as observed in Example 4.5, §; =
Sy = N and G = Z* Therefore, end (H2 (k[S])) = 0 by Lemma 4.3 (2), but
(43,8) € AP3 so m (APs) # end (H2 (k[S])) + 2.
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Proof of Theorem 4.2. If m (Es) — 1 > m (APg), then by Lemma 4.4 one has that
m (Es)—1 = end (H} (k[S]))+1, and hence end (H_, (k[S]))+1 > end (H2 (k[S]))+2,
because otherwise, by Lemma 4.6, one would have that m (APgs) > m (Es) — 1, a
contradiction. Thus, the equality reg(k[C]) = m (Es)—1 follows from Equation (4.1).
Assume now that m (APs) > m (Es)— 1, and consider an element (z,y) € AP, with
s =m (APgs). Since s > m (Es)—1, then (z,y)—a,—a, € GN((Z\ S2) x (Z\ S1))N
L._5 and hence

end (Hg (k[S])) +2 > s =m (APs) > m(Es) — 1 = end (Hy, (k[S])) + 1,

where the first inequality follows from Lemma 4.3 (2) and the last equality from
Lemma 4.4. Therefore, end (H2 (k[S])) + 2 > end (H,, (k[S])) + 1 and the equality
reg(k[C]) = m (APgs) follows from Lemma 4.6 and Equation (4.1). O

Note that there exist curves such that the maximum in Theorem 4.2 is equal
to m(Es) — 1 and not equal to m (APg), and vice versa. For instance, if C is
arithmetically Cohen-Macaulay, then m (APs) > m(Es) — 1 = —oo. However,
there also exist non-arithmetically Cohen-Macaulay curves such that m (APg) >
m (ES) — 1.

Example 4.8. (1) For A = {0,1,3,11,13}, m(Es) = 6 and m (APs) = 4, so
C is not arithmetically Cohen-Macaulay, and reg(k[C]) =5 = m (Es) — 1 >

(2) [6, Ex. 4.3]. For A ={0,5,9,11,20}, m (Es) = 5 and m (APgs) = 5, so C is not
arithmetically Cohen-Macaulay, and reg(k[C]) =5 = m (APs) > m (Es) — 1.

Recall that, as stated in (1.7), the regularity is always determined by the tail
of a m.g.fr.. Since in our case 1 < depth(k[C]) < 2, one has that the regularity is
attained at one of the two last steps of a m.g.f.r. If k[C| is Cohen-Macaulay, then the
regularity is always attained at the last step. In the non Cohen-Macaulay case, our
next result characterizes when the regularity is attained at the last step, in terms
of the formula given in Theorem 4.2 and of the difference 6 = reg(k[C]) — r(k[C]),
where r(k[C]) is the regularity of the Hilbert polynomial of k|[C].

Theorem 4.9. If C is not arithmetically Cohen-Macaulay, the following are equiv-
alent:

(a) The Castelnuovo-Mumford regularity of K[C] is attained at the last step of a
m.g.f.r.

(b) reg(k[C]) = m (Es) — 1, i.e., m(Es) —1 > m (APs).

(c) reg(k[C]) = r(K[C]), i.e., 6 = 0.
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Proof. The equivalence (a) < (c) is a direct consequence of Theorem 1.51, as ob-
served in Remark 1.52 (2). Therefore, we only have to prove (a) < (b). By
Theorem 1.45, max{j | Bnti—depth(m),; 7# 0} = end (Hﬁepth(M)(M)> +n+1. If
k[C] is not Cohen-Macaulay, then by Theorem 4.2, its proof, and Lemma 4.4, one
has that reg(k[C]) = m (Es) if and only if end (H} (k[S])) +1 = m(Es) — 1 >
end (H2 (k[S])) + 2, i.e., if and only if the Castelnuovo-Mumford regularity is at-

tained at the last step of a m.g.f.r. of k[C], by (4.1) and the previous observation.
This proves the equivalence between (a) and (b). O

Example 4.10. Different values of § = reg(k[C]) — r(k[C]) and different shapes for
the Betti diagram of k[C| are obtained in the following four examples of monomial
curves in P

(1) For A =1{0,1,3,11,13}, § = 0 and reg(k|C]) is attained at the last step of a

m.g.f.r.
0 1 2 3 4
0: - - - -
1: - 1 - - -
2: - 2 2 - -
3: - 2 2 - -
4: - 3 8 5
5: - - 2 4
total 1 8 14 9 2

m.g.f.r.
0 1 2 3
0: - - -
1: - -
2: - 12
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(3) For A ={0,6,9,13,22}, § = 1 and reg(k[C]) is not attained at the last step of

a m.g.fr.
0 1 2 3 4
0: - - - -
1: - 1 - -
2: - 1 - - -
3: - - 1 - -
4: - 5 9 5
5: - - 2 2 -
total 1 7 12 7 1

a m.g.f.r
0 1 2 3 4
0: - - - -
1: - 1 - -
2: - 1 - - -
3: - 1 1 - -
4: - 3 9 5
5: - - - 1 -
total 1 6 10 6 1

In the case of projective monomial curves C C P2, one can be more precise, since
their codimension is 2.

Proposition 4.11. Let A ={ay=0<a; < as < a3 =D} CN be a set in normal
form and consider the associated monomial curve C C P?.

(1) The Castelnuovo-Mumford reqularity is attained at the last step of a m.g.f.r.
of k[C].

(2) Setting 0 = reg(k[C]) — r(Kk[C]), one has that 0 < 6 < 1. More precisely,
d =0 < K[C] is not Cohen-Macaulay < reg(k[C]) = m (Es) —1 > m (APgs),
d =1 < Kk[C] is Cohen-Macaulay < reg(k[C4]) = m (APs) > m (Es) — 1.

Proof. Part (1) is a particular case of [7, Cor. 2.13]. By Theorem 1.51 and Re-
mark 1.52 (2), this implies that either 6 = 0 if C is not arithmetically Cohen-



4.1. PROJECTIVE MONOMIAL CURVES 115

Macaulay, or § = 1 if C is arithmetically Cohen Macaulay. Part (2) then follows
from Theorem 4.9. O

4.1.2 Relations with the sumsets regularity

The Castelnuovo-Mumford regularity of k[C] can be upper and lower bounded in
terms of ¢ = o(A), the sumsets regularity of A. These bounds will be given in
Theorem 4.13 where we distinguish two cases depending on the value of ¢ in Theo-
rem 3.7. Let us first prove a lemma that will be needed in the proof. For ¢ = 1,2,
set ¢; the conductor of §;, and F(S;) the Frobenius number of S;.

Lemma 4.12. Set N := [9£2]. Then, reg(k[C]) > [5] + 1.

Proof. One has that F(S;) + D € Ap, and consider € Ap,, such that F(S;) +
D+x =0 (mod D). Note that x # 0. By Lemma 2.3, there are two options: either
(z, F(S1) + D) € APg, or there exists 2’ > x, such that (z/, F(S1) + D) € APs. In
both cases, there exists © > 1, such that (x, F(S;) + D) € APs and, analogously,
there exists y > 1, such that (F'(S;) + D,y) € APs. By Theorem 4.2,

reg(K[C]) > maX{F(Sl) ;D+x | F(S,) ;D+y} . %F(Sl) +g(32) t2
TG
Y + 1.
Thus, reg(k[C]) > [2F2] +1=[5] + 1. u

Theorem 4.13. We have the following bounds on the Castelnuovo-Mumford regu-
larity of k[C]:

(1) If o = x(k[C]) > [252], then o < reg(k[C]) < o+ 1.
(2) If o = [952] > r(K[C]), then [$] + 1 < reg(k[C]) < o+ 1.

Proof. In both cases, the upper bound is a consequence of Theorem 4.2 and Re-
mark 4.1 (1). If ¢ = r(k[C]) > [9$%], then we apply the known fact r(k[C]) <
reg(k[C]) from Remark 1.52 (3), and in the other case, the lower bound is the one
given in Lemma 4.12. [

Example 4.14. To illustrate that all the upper and lower bounds in Theorem 4.13
are sharp, the values of r(k[C]), [25%], o and reg(k[C]) in four different examples
are displayed in Table 4.1.
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Table 4.1: Examples where the bounds in Theorem 4.13 are attainted.

A r(k[C]) [952] o reg(k[C])
{0,1,3,11,13} 5 1 5 5
{0,1,3,5,6,12} 1 11 2
{0,4,5,9,16} 2 3 3 3
{0,5,9,11,20} 3 4 4 5

The following result is more precise than the one stated in Theorem 4.13 in a
particular case. It gives, in this case, the precise relationship between the three
regularities, in the sense of Castelnuovo-Mumford, of the Hilbert function, and of
the sumsets.

Proposition 4.15. If C is arithmetically Cohen-Macaulay and (F(Ss)+ D, F(S1)+
D) € APg, then

’761 + C2

D —‘ , t(k[C]) = 0, and reg(K[C]) =0 + 1.

PT’OOf. Since (F(SQ) + D, F(81> + D) c APS, then (F(Sg) + D, F(Sl) + D) € AP,
for s = m (APgs) and, as C is arithmetically Cohen-Macaulay, reg(k[C]) = m (APgs)
by Theorem 4.2. Thus,

_FE)+D+F(S)+ D F(S)+ F(S,)

reg(k[C) = - LIS .

On the other hand,

[cl +02" _ {F(SQ%—F(SZ) ) 2} _ F(S) + F(S)

D D D D

+1,

so reg(k[C]) = [252] + 1, and r(k[C]) = [952], since reg(k[C]) = r(k[C]) + 1
whenever C is arithmetically Cohen-Macaulay, by Remark 1.52 (2). Finally, 0 =
[9£2] by Theorem 3.7. O

Remark 4.16. Note that, by Lemma 2.3, the condition (F(S2) + D, F(S1)+ D) €
APgs is equivalent to (F\(S3) + D, F(S1) + D) € S.

Corollary 4.17. If C is arithmetically Gorenstein, then

’7614—62
g =

5 —‘ , 1(k[C]) = 0, and reg(k[C]) =0 + 1.
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Proof. 1f C is arithmetically Gorenstein, then (F(S2)+ D, F'(S1)+ D) € APs by the
proof of Proposition 2.29, and the result follows from Proposition 4.15. n

In particular, by the proof of Theorem 2.32 and Corollary 4.17, it follows that
the Castelnuovo-Mumford regularity of k[C] is reg(k|[C]) = 3 for all the Gorenstein
curves that we constructed in Example 2.31 and Theorem 2.32.

Example 4.18. For A = {0,1,2,3,8}, k[C] is Cohen-Macaulay, as shown in Ex-
ample 2.5, and (F(Sy) + D, F(S1) + D) = (17,7) € APs. By Proposition 4.15,
o =r1(k[C]) = [95%2] =3, and reg(k[C]) =0 + 1 = 4.

Using the previous results, we can give a new proof for the bound obtained by
J. Elias in [32] for arithmetically Cohen-Macaulay curves. First, recall a result of F.
Lev that we will use in the proof.

Lemma 4.19 ([64, Thm. 1]). Let A={ag=0<a; <---<a, =D} CN be a set
in normal form. Then, for all s > 2 one has that

|sA|> |(s — 1)A|+min (D, s(n — 1)+ 1).

Proposition 4.20 ([32, Thm. 4.7)). If A={ap=0<a; <---<a, =D} CNis
a set in normal form, such that C is arithmetically Cohen-Macaulay, then

reg(K[C]) < [D - ﬂ |

n—1
Proof. Set sy = [£=1]. By Corollary 3.21, the sequence (|sA|—|(s — 1)A|),cy is
increasing and its limit is D. Indeed, as observed in the proof of this corollary,
sAl=[(s = 1)A]= > _o|AP;| for all s € N. On the other hand, [APs|= D by
Proposition 2.4 (d) and, by Lemma 4.19, |sA|—|(s — 1).A|> D if s > sy. Therefore,
|AP,|= 0 for all s > sg, and hence, reg(k[C]) < sq, by Theorem 4.2. O

As a consequence of Theorem 4.13, one gets a sufficient condition for ¢ to be
equal to [952] in Theorem 3.7. The condition is expressed in terms of the differ-
ence between the Castelnuovo-Mumford regularity and the regularity of the Hilbert
function of k[C].

Corollary 4.21. If 6 = reg(k[C]) — r(k[C]) > 2, then 0 = [952] > r(Kk[C]).

Proof. If o = r(k[C]) > [9£52], then o < reg(k[C]) < o + 1 by Theorem 4.13, so
0<1. ]
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A combinatorial proof of the Gruson-Lazarsfeld-Peskine theorem (i.e.,
the Eisenbud-Goto conjecture)

Recall from Theorem 1.76 (1) that reg(k[C]) < D — n + 1. Using the results
of this section and Granville-Walker’s bound on the sumsets regularity of A (o <
s§W = D —n+ 1) we can give an easy proof of the above bound. We distinguish

three cases:

(1) If neither A nor D — A belongs to the two families listed in Theorem 3.6, then
0 < D —n, and reg(k[C]) < D — n + 1 follows from Theorem 4.13.

(2) If A=1[0,D]\ {a} for some a € [2,D — 2], then 0 = 2 and reg(k[C]) = 2 as
well by Theorem 4.2, and hence reg(k[C]) < D —n+ 1 holds for such a set A,
since in this case n = D — 1.

(3) If A=10,1]U]a+1, D] for some a € [2, D — 2], then s.A = [0,sD] for all s > a
and a ¢ (a — 1)A. Therefore, 0 = a and reg(k[C]) = a by Theorem 4.2, so
reg(k[C]) < D —n + 1 also follows from the bound o < s§" in this case. One
gets the same conclusion if D — A = [0,1] U [a + 1, D] for some a € [2,D — 2].

4.2 Projective monomial surfaces

Consider A = {ag,...,a,} C N? a finite set such that |a;|= a;; + a;z < D for all
a; € A. Denote A = {a,,...,a,}, where a, = (a0, a1, as2), a0 = D — a;; — a2, for
all7=0,...,n.

Fix an infinite field k and consider X = X4 C [P} the projective monomial sur-
face determined by A. We assume that X is simplicial, i.e., {eg, e1,e3} C A, where
e; = De; for i = 0,1,2 and {€, €, €2} is the canonical basis of N3. The coordinate
ring of X is k[X] = k[xo, ..., x,]/14, where I 4 is the toric ideal determined by .A.

In Subsection 4.2.1, we provide a combinatorial formula to compute reg(k[X]) in
terms of the elements in the Apéry and the exceptional sets of S. In Subsection 4.2.2,
we use this formula to relate reg(k[X]) with the sumsets regularity of A. This
relation provides a nice combinatorial proof of the Eisenbud-Goto conjecture for
some of the projective monomial surfaces with a single singular point.

4.2.1 Formula for the regularity

Let S € N3 be the affine semigroup generated by A, S = (A). By hypothesis, S is
simplicial, and the extremal rays of the cone Pos(A) are {eg, e1,e,}. Recall that, in
this case, the Apéry set of S is defined as APs = {s €S |s—e; ¢ S,Vi=0,1,2},
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and it is finite by Remark 1.22 (2). We define now four special subsets of S that
will be involved in the combinatorial formula for reg(k[X]).

Definition 4.22. The exceptional sets of S are:

e E¥'={scS|s—e; €8 Vj;s—(e,+e,) €S, s—(e,+e,) ¢S, s— (e +
e;,) ¢ S, for a permutation (ig,i1,42) of (0,1,2)};

e B2’ ={scS|s—e,cSs—e, €Ss—e, ¢ S;s— (e +e,) ¢
S, for a permutation (4o, i1,172) of (0,1,2)};

e B’ ={scS|s—e €S Vi;s—(e;+e¢)¢S,Vi#j};

e B’ ={scS|s—e €S,Vi;s—(e+e;) €S,Vi#j;and s—(eg+e; +ey) ¢
St

Figure 4.1 shows how elements in the Apéry and the exceptional sets of S look like.

In the notation Eg’b below, a is the number of indices 7, 0 < ¢ < 2, such that
s —e; € § and b is the number of pairs (i, j) of indices, 0 < i < j < 2, such that
s —e; —e; € S (according to this notation, the Apéry set defined before would be
Eg’o). Note that 0 < b < a < 3. In Chapter 5 (more precisely, in Section 5.2), we
will justify why the exceptional sets are finite.

Since A is contained in the plane {(z,y,2) € N> : z +y + 2z = D}, for all s > 0,
the s-fold sumset of A is also contained in a plane,

sAC{(r,y,2) EN’ 12 +y+2z=sD}.

For every s € N, set H, .= {(x,y,2) € N¥: z+y+2 = sD}, and for every subset F
of S, set F, := F'N H,. Moreover, if I' C § is a finite subset, we define the number
m(F) by

m(F) = max{s € N: Fy # 0},

with the convention m(F) = —oo if F' = 0.

In the case of the Apéry set of S, instead of writing (APgs)s, we just write AP,
and so we do with the exceptional sets. Using these notations, one can prove an
analogous result to Proposition 3.19 for simplicial projective monomial surfaces.

Proposition 4.23. For all s € N,
[AP,|= ([sAl=3[(s — 1)A[+3|(s — 2)Al=[(s = 3)A]) + | B} [+ EZ | +2| EZ° = | EJ7) .

The proof of Proposition 4.23 will be a direct consequence of Theorem 5.15 and
Proposition 5.9 (b). We will prove both results in Chapter 5.
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(d) Element s € Eg’o. (e) Element s € E§’3.

Figure 4.1: Points in APs and the exceptional sets Ef;i’l, E;,o7 Efé’o, and Efé’g. Filled
circles represent elements in S, while empty squares represent elements outside S.
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Remark 4.24. Take (z,y,z) € S and set s = % € N. One can characterize
when (x,y, z) is in the Apéry set or in a exceptional set of S in terms of the element
(y,2) € sA and the sumsets (s — 1).A, (s —2).A and (s — 3).A. For instance, one has

that

(y,Z),(y—D,Z),(y,Z—D) ¢ (3_1)“4’
(iB,y,Z)EAP3<:> (y—D,Z),(y,Z—D),(y—D,Z—D)¢
(y—D,z—D) ¢ (s—3)A.

(s —2)A, and

This is shown in Figure 4.2a. The analogous characterizations of the exceptional
sets are shown in Figures 4.2b-4.2e. Note that there are two other variants of 4.2b

and 4.2c¢ corresponding to the possible permutations in the definition of Eg’l and
EZ°.

The following result shows how to compute the Castelnuovo-Mumford regularity
of k[X] in terms of the Apéry and the exceptional sets of S. This result will be a
direct consequence of Theorem 5.15 from Chapter 5.

Theorem 4.25. The Castelnuovo-Mumford regularity of the simplicial projective
toric surface X is given by the formula

reg(k[X]) = max {m(APS), m(Egl) — 1,m(E§’O) — 1,m(Eg’0) — 1,m(Ef)§’3) — 2} )

The following example shows different sets A C N? for which the maximum in
Theorem 4.25 is attained in the different terms that appear in the formula.

Example 4.26. (1) For A = {(0,0),(4,0),(0,4),(3,0)}, one has that m(APg)
4 and m(E2") = m(EZ°) = m(E2") = m(ES®) = —oco. Hence, reg(k[X]) =

4,0)}, one has that m(APgs) =

= m(Ef;?’) = —oo. Hence,

-1
(3) For A= {(0,0),(13,0),(0,13),(12,1), (10,3), (2,11)}, m(APs) = 4, m(E%°) =
6, and m(Ey") = m(EZ") = m(Eg’?’) = —o0. Hence, reg(k[X]) = m(EZ") —

4.2.2 Surfaces with one singular point, sumsets, and the
Eisenbud-Goto conjecture

Suppose that A contains {eg, e, e, (0,D—1,1),(0,1,D—1), (e, D —e,0),(e,0,D —
e)}, where 1 < e < D is a divisor of D that divides a;o for all i € {0,...,n}, and if
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(y, 2)

sA

(s—2)A (s—1)A

(s—3)A

(a) An element (y, z) € sA such that (z,y,2) € AP,.

(y,2)

sA

(s —2)A (s—1)A

(s —3)A

3,1
S

(b) An element (y, z) € s.A such that (z,y,2) € E

(y, 2)

sA

(s—2)A (s—1)A

(s—3)A

2,0
.

—
(c) An element (y, z) € sA such that (z,y,2) € E

(s—2)A (s—1)A

(s—3)A

—
3,0
S

—
(d) An element (y, z) € s.A such that (z,y,2) € EY’

(y,2)

sA

(s —2)A (s—1)A

(s—3)A

(e) An element (y, z) € sA such that (z,y,z) € E2°.

Figure 4.2: Characterization of the elements in APs and the exceptional sets in

terms of the sumsets of A (Remark 4.24).
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e = 1 then either (D —1,1,0) ¢ Aor (D—1,0,1) ¢ A. By Theorem 3.35, if k is an
algebraically closed field, the previous assumptions are equivalent to saying that X
has a single singular point.

For all s € N, denote T, = {(z,y) € N* | x + y < sD}. The following theorem
shows that the Castelnuovo-Mumford regularity of k[X] is upper bounded by the
sumsets regularity of A.

Theorem 4.27. Assume that X = X4 C P is either smooth or has a single singular
point. Then, the Castelnuovo-Mumford reqularity of k|X| and the sumsets reqularity
of A are related by the formula

reg(k[X]) < o(A)+ 1.
Proof. Set 0 = 0(.A) the sumsets regularity of A. By Theorem 4.25, we know that
reg(k[X]) = max {m(APS), m(Egl) — 1,m(E§’O) — 1,m(E§’O) — 1,m(E§’3) — 2} )

We are going to show (i) m(APs) < o + 1, (i) m(Ey") < o 42, (iil) m(EZ") < o +
2, (iv) m(E2") < 0+2, and (v) m(E%®) < 643. Thus, we conclude reg(k[X]) < o+1
by Theorem 4.25.

(i) Let (z,y,2) € APs and set s = (z+y+2)/D. Then (y, z) is as in Figure 4.2a.
Assume by contradiction that s > o+ 1. Since s—2 > ¢ and (y, 2) € sA\ (s—
1)A, then (y, 2) € Tse\Ts-1. by Remark 3.37 (2). Thus, (y—D, 2), (y,2—D) €
To-te \ Ts—2e C (s — 1)A, a contradiction with (z,y,z) € APs. Therefore,
s < o+ 1 and hence m(APg) <o + 1.

(ii) Let (z,y,2) € E2" and set s = (v +y + 2)/D. Let us prove that s > o + 2.
Suppose that (z,y,z) — ey — e; € S, i.e. the permutation in the definition of
Eg’l is the identity. Then (y, z) is a as in Figure 4.2b. Assume by contradiction
that s > 0+2. Since s—3 > o and (y— D, 2),(y,z—D) € (s—1)A\ (s —2) A,
both elements are in T;_1, \ Ts—2. by Remark 3.37 (2). Thus (y,2) ¢ Ts—1.,
so (y,2) ¢ (s —1).A, a contradiction. The proof in the other two situations is
analogous. Therefore, m(E%") < o + 2.

(i) Let (z,y,2) € E2® and set s = (x+y+2)/D. Let us prove s > o+ 2. Suppose
(x,y,2) —eq & S, i.e. the permutation in the definition of E;,o is the identity.
Then (y,z) is as in Figure 4.2c. Assume by contradiction that s > o + 2.
Reasoning as in (ii), one has that (y — D, z), (y,2 — D) € Ts_1.¢ \ Ts—2.. Thus,
(y—D,z—D) € Ts_9\Ts—3. C (s—2).A, by Remark 3.37 (2), a contradiction.
Hence, s < 0 + 2. The proof in the other two situations is analogous, so we
have proved that m(E3°) < o + 2.
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(iv) Let (2,y,2) € E2” and set s = (v +y + 2)/D. Then (y,2) is as in Figure
4.2d. Let us prove s > o + 2. Assume by contradiction that s > o + 2. As
in (ii), one has that (y — D, 2),(y,z2 — D) € Te—1e \ Ts—2.¢, 50 (Y, 2) & To-1e-
Hence, (y,z) ¢ (s — 1)A, a contradiction. Therefore, s < o + 2, and hence
m(E3") <o+ 2.

(v) Let (z,y,2) € Ef;”3 and set s = (x+y+2)/D. Then (y, 2) is as in Figure 4.2e.
Let us prove s > o + 3. Assume by contradiction that s > o 4 3. Since (y —
D,z—D) € (s—2)A\(s—3)A, then (y— D, z—D) ¢ T,_3. by Remark 3.37 (2).
Thus, (y — D, 2), (y,z — D) ¢ Ts_a., a contradiction. Therefore, s < o + 3,
and hence m(E3%) < o + 3.

]

To finish this chapter, we explore the Eisenbud-Goto conjecture for simplicial
projective monomial surfaces with a single singular point. In the following result,
we compute their degree.

Proposition 4.28. Suppose that {egy, e, e, (0,D —1,1),(0,1,D —1),(e, D —¢,0),
(e,0,D —e)} C A, where 1 < e < D is a divisor of D that divides a;y for all
i =0,...,n, and let X = X4 be the projective monomial surface determined by A.
Then, the degree of X is deg(X) = %2.
Proof. Consider the matrix M of size 3 X (n + 1) whose columns are the elements
of A. By Theorem 1.73, the degree of the toric variety X is deg(X) = D?/0s,
where 03 is the g.c.d. of the 3 x 3 minors of the matrix M. Since the first row
of M is a multiple of e and the sum of all its columns is D, then D - e divides 65.

Moreover, )DZ—@ 1% D(l)—l} = ¢ - D, which shows 03 = D - e. Thus, deg(X) = D2 by

e’

Theorem 1.73. [

Therefore, the Eisenbud-Goto conjecture (Conjecture 1.46) for projective mono-
mial surfaces with a single singular point can be written as

reg(k[X]) < D?Q —n+2, (4.3)

where n = |A|—1.

Theorem 4.29. Let X C P be a simplicial projective monomial surface whose
degree is either minimal or mazimal. Then, k[X| satisfies the Eisenbud-Goto con-
jecture.
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Proof. By Theorem 3.35, there exists a set A = {ag,...,a,} C N2 a; = (a;1, az),
such that a;; + a2 < D, {(0,0),(D,0),(0,D)} C A, for some D >0,1<e <D a
divisor of D such that e | a;; + a; for all 4, and if e = 1, then either (1,0) ¢ A or
(0,1) ¢ A; with X = X4. By Proposition 4.28, the degree of X is deg(X) = %2.
Note that it is maximal when e = 1, and it is minimal when e = D.

If ¢ = 1, then the sumsets regularity of A satisfies o(A) < D* —n + 1, by
Theorem 3.41. Thus, Equation (4.3) from Theorem 4.27.

If e = D, by Remark 1.79 (ii) one has that the rings k[X] and k([z1,...,2,]/I4
have the same minimal graded free resolution, where I 4 is the defining ideal of a
smooth projective monomial curve C’. Since C’ satisfies the Eisenbud-Goto conjec-
ture, as we proved in Subsection 4.1.2, then k[C]| satisfies Equation (4.3). O
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Chapter 5

Effective computation of the short
resolution

“Building a resolution consists of repeatedly
solving systems of polynomial equations.”
I. Peeva

Let k be an arbitrary field, R = k[z,...,2,] a polynomial ring over k, and
I C R a w-homogeneous ideal for some weight vector w = (wq,...,w,) € (Zso)",
i.e., I is homogeneous for the grading on R induced by deg,(z;) = w;. We denote by
d = dim(R/I) the Krull dimension of R/l and assume that A = k[z,_411,..., 2]
is a Noether normalization of R/I, that is, A — R/I is an integral ring extension.
When this occurs, we will say that the variables are in Noether position. In this
setting, R/I is a finitely generated graded A-module, so it has a finite minimal
graded free resolution as A-module. This resolution has been referred to in the
literature as the short resolution [75, 78] or Noether resolution [3] of R/I. We
denote it by

F 0= Boen, Al=5p0) 5 . Buep Al—s00) 2 R/T =0,  (5.1)
where its length p = pd 4(R/I) is the projective dimension of R/I as A-module, and
for all ¢ € {0,...,p}, B; C R are finite sets of monomials, and s;, are nonnegative
integers.

The relation between the lengths of the short resolution of R/I and of its usual
minimal graded free resolution as R-module is given by pdz(R/I) = pd4(R/I) +
n — d. This follows from the Auslander-Buchsbaum formula and the fact that
depth,(R/I) = depthy(R/I); see, e.g. [13, Ex. 1.2.26(b)]. Hence, the short res-
olution is shorter than the usual minimal graded free resolution, and it contains

127
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valuable combinatorial, algebraic and geometric information about R/I. For ex-
ample, since (5.1) is a graded free resolution of R/I, one gets that the (weighted)
Hilbert series of R/I can be expressed as:

?:0 ZvGBi (_1)1 goi
(1 —1¢) ’

and its numerator, h(t) = Y7 (3" g (—1)" v, satisfies that h(1) = Y7 ((—1)"| By
is e(R/I), the multiplicity of R/I. Moreover, when [ is homogeneous with respect
to the standard grading, as a consequence of the Independence Theorem for local
cohomology (see, e.g., [90, Sect. 1]), the Castelnuovo-Mumford regularity of R/I,
reg(R/I), can be computed using the short resolution:

HSR/[(t) =

reg(R/I) = max{s;, —1 |0 <i<p,veb}.

In [3], the authors describe how to compute short resolutions in some cases. The
first step of the short resolution is given by [3, Prop. 1] that we recall in Propo-
sition 5.1. This result provides the whole short resolution when R/I is Cohen-
Macaulay. If R/I is not Cohen-Macaulay, the resolution has at least one more step.
When dim(R/I) = 1 and depth(R/I) = 0, the second (and last) step of the short
resolution is given in [3, Prop. 3]. Moreover, when dim(R/I) = 2 and x,, is not a zero
divisor on R/I, the whole short resolution is given in [3, Prop. 4]. In the first section,
we study the short resolution in any dimension, and we also drop the assumption
that x,, is a nonzero divisor on R/I. We will only assume that I is homogeneous for
some grading w € (Z-()", and that A < R/I is a Noether normalization. Note that
this last assumption is not restrictive if I is homogeneous for the standard grading
and k is infinite since linear changes of coordinates preserve homogeneity for the
standard grading, and A is a Noether normalization of R/I after a generic linear
change of coordinates; see [5, Lem. 4.1] for a Noether position test, and [6, App. A]
for smaller changes of coordinates.

Our main results in the first section are Proposition 5.2 and Theorem 5.7. In
Proposition 5.2, using the monomial generators of R/I as A-module given in [3,
Prop. 1], we describe a generating set (that may not be minimal) of its module of
syzygies, a submodule of a free A-module. This presentation of the A-module R/
by generators and relations allows to obtain its minimal graded free resolution by
means of standard A-module computations. This gives the first way of contruct-
ing the short resolution of R/I (Algorithm 5.1). Another way to obtain the short
resolution is as follows. In Theorem 5.7, we prove that the generating set given in
Proposition 5.2 is, indeed, the reduced Grobner basis of the syzygy submodule for a
Schreyer-like monomial order, and hence we can build a graded free resolution (that
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does not need to be minimal) of R/I as A-module by an iterative application of
Schreyer’s Theorem (Theorem 1.29).

A case in which our results apply nicely is that of toric rings. Let I C R be a
simplicial toric ideal of height n—d (i.e., dim(R/I) = d). By Proposition 1.60, there
exists aset A = {a;,...,a,} C N?suchthat [ = I 4 and {De,, ..., Des} C A, where
{€1,...,€q} is the canonical basis of N and D € Z-,. Hence, we can always assume
that the extremal rays of the rational cone spanned by A are {ey,...,e4}, with e; :=
De;, i =1,...,d. By [33, Prop. 1.1.12], one has that A = Kk[z,_4+1,...,2,] — R/I
is a Noether normalization if and only if {ey,...,e,} are the last d elements of A.
Hence, without loss of generality, we will assume that a,,_4.; = e€; fort=1,...,d.
We focus on the simplicial toric rings of dimension 3.

In Section 5.2, we describe their short resolution and their Hilbert series and
function in terms of the combinatorics of the associated semigroup translating some
results of [78] and [75]. In the standard-graded homogeneous case, we provide for-
mulas for the Castelnuovo-Mumford regularity of the toric ring. In Section 5.3, we
devise an algorithm to compute the short resolution for 3-dimensional simplicial
toric rings. This algorithm first constructs a non-minimal graded free resolution
as A-module following Section 5.1 (Algorithm 5.2), and then minimalizes/prunes it
to obtain the short one by applying Theorems 5.24 and 5.26 (Algorithm 5.3). The
whole algorithm involves the computation of the reduced Grobner bases of 4 and
T4+ (z,—2), and the division of some monomials by those bases.

In Section 5.4, we provide an example of a simplicial semigroup whose toric ring
has different projective dimensions, both as A-module and as R-module, depending
on the characteristic of the field k. Hence, both the usual and the short resolution
depend on the characteristic of k. To our knowledge, this is the first example in
which this phenomenon is observed.

The results included in this chapter are part of the preprint [35], and the al-
gorithms have been implemented in SageMath and are available in the GitHub
repository [41].

5.1 Contruction of the short resolution via Grob-
ner bases
Let w = (w1,...,wpn) € (Zso)" be a weight vector, k an arbitrary field and R =

k[z1,...,2,]). Consider I C R a w-homogeneous ideal, i.e., a homogeneous ideal
with respect to the grading induced by deg,(z;) = w; for all ¢ € {1,...,n}. Take
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d = dim(R/I) and assume that A = k[x,_441, ..., 2] is a Noether normalization of
R/I. In this section we study the short resolution of R/I, i.e., the minimal graded
free resolution of R/I as A-module:
by 1 Yo
F 10 = Due, A(=5pw) — .. — DoeByA(—500) — R/T =0, (5.2)
where p = pd4(R/I), and for all i € {0,...,p}, B; C R is a finite set and s,, are
nonnegative integers. In our description, the sets B; will consist of monomials and

sin = deg,(v) will be the w-degree of the monomial v € B;. Note that the sets B;
might not be unique, but their degrees are.

Consider the w-graded reverse lexicographic order >, in R, i.e., the monomial
order defined as follows: x* >, x” if and only if

o deg, (x) > deg, (x"), or
e deg (x%) = deg_(x”) and the last nonzero entry of a — 3 € Z" is negative.

For every polynomial f € R, let in(f) denote the initial term of f with respect to >,
(we include the coefficient in the initial term). Given an ideal J C R, in(J) denotes
the initial ideal of J with respect to >, and G the reduced Grobner basis of I with
respect to >,. Since [ is w-homogeneous, G consists of w-homogeneous polynomials.

With these notations, the first step of the short resolution of R/I is given by the
following result:

Proposition 5.1 ([3, Prop. 1]). Let By C R be the set of monomials that do not
belong to in(I) + (xp—gi1,...,2n). Then,

{u+1|uebBy}

is a minimal set of generators of R/I as A-module. The w-graded A-module ho-
momorphism gy : Byep, A (—deg,(v)) — R/I is defined by o(€,) = u + I, where
{€, | u € By} denotes the canonical basis of @yep,A(—deg,(v)), and hence the
shifts at the first step of the short resolution (5.2) are the w-degrees of the elements
u € By.

This result provides the whole short resolution when R/I is a free A-module,
i.e., when the projective dimension of R/I as A-module is 0, which is equivalent to
R/I being Cohen-Macaulay. In Grébner basis terms, this is also equivalent to the
fact that variables x,,_q.1,...,x, do not divide any minimal generator of in(7/); see,
e.g., [5, Thm. 2.1] or [3, Prop. 2.
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When R/I is not free, the resolution has at least one more step. In this case, we
will describe the relations between the generators of R/I given in Proposition 5.1,
i.e., provide a finite set of generators H of ker(ty), which may not be minimal. This
gives a presentation of R/I as A-module: R/I is isomorphic to the quotient of a
free A-module by the submodule generated by H, and the short resolution of R/I
can then be obtained by standard A-module computations (see Section 1.2).

Let x : R — R be the evaluation morphism defined by x(z;) = z; for i €
{1,...,n—d} and x(z;) = 1for j € {n—d+1,...,n}, and set J = x (in(1)) .R, the
extension of the ideal in(/) by the ring homomorphism x. Now, for every monomial
u € By N J, consider the ideal I,, defined by

I, = (in(1) : u) NKk[zp—ai1, .-, Tn) -

Since [I,, is a monomial ideal, it has a unique minimal monomial generating set
denoted by G(I,), and let B] be the following set of monomials:

By={u-M|ueBynJ MeG(,)} (5.3)

Each monomial x* € B can be written uniquely as x* = u- M, where u = x(x%) €
ByNJ and M, € G(I,). Let r, be the remainder of the division of x* by G,
the reduced Grobner basis of I with respect to >,. Since every monomial in the
expression of r, does not belong to in(/), one can uniquely write r, = ZveBO fawv
with f,, € A. Using these notations, for all x* € B} set

h, =M, €, — Z Jow - € € Buep, A (—deg,(v)), (5.4)
vEBY
where {€, | v € By} denotes the canonical basis of @,ep,A (— deg,,(v)).
Since 1p(hy) = (x* —r,) + I = 0 for all x* € B}, one has that (h, | x* € B}) C
ker(¢p). The next result shows that this inclusion is indeed an equality.

Proposition 5.2. The kernel of the A-module homomorphism g is
ker(¢g) = (h, | x* € BY) .

Proof. Consider g : @yep, A (—deg, (v)) — R the A-module homomorphism de-
fined by ¥o(e,) = v, for all v € By. Take g € ker(vy), and let us prove that
g € (hy | x* € By). We write g = > g gv€, With g, € A for all v € By. Since
g € ker(3y), then ¢’ = 1y(g) = > ven, Jv'v € I and its initial term is in(g') = c-w- M,
for some ¢ € k\ {0}, w € By and a monomial M, € A. In fact, w € By N J and
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M, € I, = (in(/) : w)NA. Hence, there exists x* = M,w € B} such that M, divides
M.,. Let us consider g; = g — c%ha € ker(¢). If gy =0, then g € (h, | x* € B}).
Otherwise, one has that 0 # in (Yo(g1)) < in (¢o(g)) and we iterate this process.
The result then follows by induction because >, is a well ordering. [

Proposition 5.2 provides a system of generators of ker(y). As a consequence,

we get the next step of a non-necessarily minimal graded free resolution of R/I as
A-module.

Corollary 5.3. Consider the morphism of A-modules

wll : EBXD‘EBQA (_ degw(xa>> — EBUEBOA (_ degw(v))
€, — h,

where {€, | x* € By} is the canonical basis of ®yeep A (—deg,(x¥)). Then,
Im(y1) = Ker ().

Since R/I and ®,ep,A (— deg,,(v)) /ker(ip) are isomorphic as graded A-modules,
their minimal graded free resolutions coincide up to isomorphism. Thus, one can
compute the short resolution by applying standard A-module computations to the
submodule ker(g) = (h, | x* € B}) C @yep, A(—deg,,(v)). The whole process to
obtain the short resolution of R/I is shown in Algorithm 5.1. It has been imple-
mented in the function shortRes of [11].

Example 5.4. Set R = Q[x1, x, 73, T4, 5], let > be the degree reverse lexicographic
order in R, and consider Iz C R, the defining ideal of the projective monomial curve
determined by A = {(1,6), (2,5). (6,1),(7,0),(0,7)}, i.e.

[A = <ZL'1 - tltgv Lo — t%tgny - tflit27$4 - tIv X5 — t;> N @[‘Tlv X2, .1'3,.174,1'5] .

Let L be the zero-dimensional ideal L = (2% — w3, 5 — 2422, 1129, 23, 25 — 22, 2915,
z2), and consider the ideal I = I,N L. One has that I is homogeneous, dim(R/I) =
dim(R/I4) = 2, and variables are in Noether position, i.e., A = Q[z4,z5] — R/I
is a Noether normalization. Moreover, x5 is a zero divisor on R/I because f =
173 — wixs ¢ I while fzs € I, so we are not under the hypotheses of [3, Prop. 4].
By Proposition 5.1, a minimal system of generators of R/I as A-module is {u + I |
u € By} for

4 3 2 2 2
By = {Ul = T3, Uz = T3, U3 = T2T3, Uy = LT3, U5 = T3, U = T2T3, U7 = LT3,
_ _ .3 _ 2 _ .2 _ _ _ .2

Ug = T3, Ug = Lo, U1g = L1L9, U1l = Lo, U12 = T1T2, U13 = T2, U14 = Ty,

Uy = T1,U16 = 1}-
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Algorithm 5.1 Computation of the short resolution.

Input: I C R a weighted homogeneous ideal with variables in Noether position
Output: Short resolution of R/I

1: G + reduced Grobner basis of I for >,.

2: By + k-basis of in(I) + (z,_g11, ..., T,) for >,.

J < x (in(/)) .R, where x : R — Risdefined by x(z;) = z; fori € {1,...,n—d},
and x(z;) =1forje{n—d+1,...,n}.

I, < (in() :u)NA, Yu e Byn J.

G(I,) < minimal monomial generating set of I, Yu € By N J.
By« A{u-M|ueBynJ, MeG(,)}

ro < remainder of x* by G, Vx* € B].

For all x* € By, write x* = Myu and 7 = Y g fau?-

h, < M€, — ) e, fan€o, VX € By.

10: ker(¢g) < (h, | x* € BY).

11: Compute the m.g.f.r. of ker(ty).

w

If x : R — R is the ring homomorphism defined by x(z1) = x1, x(22) = =2, x(x3)
x3, and x(z4) = x(x5) = 1, then J = x (in({)).R = (x3, 2%, 179, 23, v123, T2 T3
and hence By N J = {ug, ug, ug, ur, Uy, U0, U1, U12, U4}, and I, = L, = (T4, 25
L, = <$421,.1'§>, L, = (xé,mx%,xi% L, = <x§7$4>7 L = <x4>> Ly, = <x421>> Ly, =
(x3), and I,,,, = (2%, 15). Thus, the set B] defined in (5.3) is

ui4

)
)

Bll = {[L’Q$§l‘4, $21’§ZL‘5, 1’11‘§$4, ZL‘1$§£L‘5, $21‘3$i, 1‘23731‘52), J?ll'gwg, £L'1$3£L'4ZL'§, 1'11’31'?1,
THTZ, TIT4, T1TITy, T3TT, T1ToTs, T, T1T5 ).

Take the first element in B}, x* = zox3x4 = z4u3, and compute the remainder r, of
its division by the reduced Grobner basis of I with respect to >, r, = z3w5 =
r3xsus. The corresponding element as in (5.4) is h, = x4€3 — z3w5€16 Where
{€1,..., €16} is the canonical basis of @8 A (—deg(u;)). Doing the same for each
monomial in Bj, one gets 16 elements that generate the submodule ker(¢) of the
free module #;%, A (— deg(u;)), and computing the minimal graded free resolution of
this submodule, one gets the short resolution of R/I. Using the function shortRes
of [41], one gets directly the Betti table of the short resolution:
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0 1 2

0: 1 - -

1: 3 - -

2: 6 1 -

3: 5 11 2

4. 1 2 2

5: - - 1
total 16 14 5

Observe that in this example the set of 16 generators of ker(ty) given by Proposi-
tion 5.2 is not minimal since the Betti table shows that ker(ty) is minimally gener-
ated by 14 elements. We will come back to this example later in Example 5.8.

Interestingly, the system of generators provided in Proposition 5.2 is, in fact, a
Grobner basis for a monomial order in @,ep,A(—deg,(v)) that we now introduce.
This can be used to provide another method for computing a graded free resolution
of R/I as A-module, applying Theorem 1.29 repeatedly.

Definition 5.5. Consider the monomial order >gj, in @,ep,A(— deg,(v)) defined
as follows: for all M, M’" € A monomials and u,v € By,

Me, >g1, Me, <= u-M >, v- M.
We call this monomial order the Schreyer-like order in @,ep, A (— deg,,(v)).

If is the homomorphism of A-modules introduced in the proof of Proposi-
tion 5.2, ¢y : Spep, A (—deg,(v)) — R, €, — v, it is injective and maps monomials
to monomials, and

Me, >s1, M'e, <= (M) >, tho(M').

This equivalent description of >gp, proves that it is a monomial order and justifies
its name.

Remark 5.6. For each x“ € B/, the initial term of h, = M, - €, — ZUGBO fow - €
for the Schreyer-like monomial order >gy, is in(h,) = M, - €,.

Theorem 5.7. The set H = {h,, | x* € B}} is the reduced Grébner basis of ker(v)
for the Schreyer-like order >gr,.
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Proof. By Proposition 5.2, ker(¢y) = (H). By Buchberger’s criterion, H is a
Grobner basis if and only if, for all h,,hs € H, the S-polynomial S(h,, hg) re-
duces to zero modulo H. One has that S(h,,hz) = 0 whenever in(h,) and in(hg)
are multiples of different elements in the canonical basis {€, | v € By}. Let h,, hg be
two elements in H whose initial terms are multiples of the same element in the canon-
ical basis. By Remark 5.6, there exist monomials © € By and M,, Mz € A, such
that in(h,) = M,€, and in(hg) = Mge,. Set h!, = uM, —r, and hy = uMpg — rg,
where 7, and rg are the remainder of the division of x* = uM,, and x° = uMjp by
G (the reduced Grobner basis of I for >,), respectively. Let M = lem(M,, Mgz) be
the least common multiple of M, and Mjz. Then, the S-polynomial of h, and hg is

M M
Sa”g - S(ha” hg) - Mha - Ehﬁ .

If S(h,, hg) = 0, we are done. Otherwise, note that ¥(Sa.5) = 0, 50 ¥(Sa ) € 1,
and hence in (¢g(Sa,3)) € in(I). Thus, there exist ¢ € k, w € ByNJ and a monomial
M, € A such that in (QZ()(Saﬁ)) =c-w- M,. Therefore, M, € I,, and there exists
a monomial M, € G(I,) that divides M,,. Let h, € H be the element whose initial
term is in(h,) = M,e,. Consider S}, ; = Sap — ¢ - %hw If S, 5 = 0, we are
done. Otherwise, one has that ) € 1 and 0 # in (4o h5)) <win (¥0(Sa,0))-
We can iterate this process and conclude that S, s reduces to zero modulo ‘H by
induction because >, is a well order. This shows that H is a Grobner basis of
ker(v)g) for >gr..

Moreover, since x* f x? and x? { x® for all x* # x” in B}, H is minimal. Finally,
for each x* € By, every monomial appearing in r, (the remainder of the division
of x* by G), does not belong to in(/). Therefore, each monomial that appears in
> veBy fow - € does not belong to (in(hg) | hy € H) = in (ker(¢))), and we are
done. ]

Since H is a Grobner basis of ker(i)y), the reductions of the S-polynomials S,z
provide a generating set for the next syzygy module. This generating set is indeed
a Grobner basis by Schreyer’s Theorem (Theorem 1.29). The order used here is
the Schreyer order induced in @yeep A (—deg,(x*)) by our Schreyer-like order in
Duvep, A(— deg,(v)). Applying repeatedly Schreyer’s Theorem, we obtain the co-
called Schreyer resolution that may not be minimal. Moreover, if we sort at each
step the elements of the Grobner basis as in Corollary 1.31, one variable disappears
from the initial terms of the elements in the Grobner basis at each step. Mimicking
the proof of Hilbert’s Syzygies Theorem that uses iteratedly Schreyer’s Theorem,
we obtain a w-graded free resolution of R/I as A-module that may not be minimal
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but has at most d steps,

P, 4
F'0 = Buem, Al deg, (v)) > . 2 Suen A(— deg, (v)) 2 R/T -0, (5.5)

where d > p’ > p and B C R is a set of monomials for all <. Minimalizing this
resolution, a short resolution of R/I as in (5.2) is obtained with B; C B].

We now illustrate with an example how to build and minimalize Schreyer’s reso-
lution. We will see later in Section 5.3 how to explicitly obtain the short resolution
(5.2) from Schereyer’s resolution (5.5) when R/I is a simplicial toric ring of dimen-
sion 3.

Example 5.8. Consider the ideal I C R = Q|x1, z2, x3, x4, x5] in Example 5.4. We
have already determined By and B}, and we now sort the elements in B] as follows:

/ 2 2 2 2 2 2

Bl = {'Ul = XoT3T4,V2 = T3T3x5,V3 = L1TL3L4, V4 = T1X3T5, Vs = To2X3Ty, Vg = L2T3T5,
2 2 4 3 3,.2 2

V7 = T1T3Ty, V8 = T1X3X4T5, Vg = X1X3T5, V10 = Lodg, V11 = Loy, V12 = T1ToT4,

2.2 3 2,2 2
V13 = Ty, V14 = T1X2Ty, V15 = T Ty, V16 = I1$5} .

The 16 generators of ker(v) given by Proposition 5.2 are

h1 — Ty4€3 — $3I5616, h2 — I5€3 — xix%elﬁ, h3 — Ty4€4 — T5€9 — ZL&I5€8 + 1'268,
h4 — Tr€4 — I4l’§68, h5 = l’iﬁﬁ — ZL‘i615, h6 = IL‘%GG — ZE4J}§615,

h; = 2ie; — vivseis — vier + vyriess hg = zy22€; — TiTe€q,

hg = z5€7 — wa3€16,  hig = T4€9 — v473€s, hy = 2269 — T3€8,

hiy = 24610 — $§65, h3 = 1221611 — T5€2, hyy = xiﬁu — T5€q,

.2 2 _ 2
h;; = Ty €14 — TyT5€13, hig = z5€14 — T5€13 ,

where {€1, ..., €16} denotes the canonical basis of ®;%, A (— deg(u;)).

By Theorem 5.7, H = {hy,...,hjs} is the reduced Grébner basis of ker(vy)
for our Schreyer-like order >g;,. Moreover, in the above list, the first term of each
element is its initial term, by Remark 5.6. Note that we have sorted hy,... hyg
(and, accordingly, vy, ..., v in B) in such a way that, if for some i < j, the initial
terms of h; and h; are multiples of the same element of the canonical basis, say
in(h;) = M; - €, and in(h;) = M; - €, for some u € By and two monomials M; and
M; in A = Q[z4, x5], then M; > M; for the lexicographic order > with x4 > x5, i.e.,
if M; = 252l and M; =z’ x? , a; > a;. This guarantees that =4 will not appear in
the leading terms of the generators of the next syzygy module obtained by applying
Schreyer’s Theorem, and hence we will be done.

The reductions of the S-polynomials S(h;, h;) for all 1 <i < j < 16, provide a
Grobner basis of the next syzygy module for the induced Schreyer order. Since the
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only S-polynomials that have to be computed and reduced by H are the S(h;, h;)
such that the initial terms of h; and h; are multiples of the same element in the
canonical basis, one just has to focus on S(hy, hy), S(hs, hy), S(hs, hg), S(h7, hg),
S(hz,hy), S(hs, hg), S(hyg, hi;) and S(hys, hig). Note that the leading term of the
syzygy corresponding to the reduction of S(hy, hg) is a multiple of the one coming
from S(h7, hg), and hence the syzygy coming from S(hz, hg) will be discarded when
the Grobner basis is minimalized. Thus, we do not need to compute it, and by
reducing the other seven S-polynomials, we get that the set of monomials B is

/ 2 2 2.2 2,2
BQ == {w1 = X2T3T4T5, W2 = T1X3X4T5, W3 = L2L3TyT5, Wy = T1X3T 4T,

— 4 _ 3, 02 _ 2.2
W5 = T1T3T4T5, We = THT4T5, Wy = TIT1T5 ) .

Hence, a graded free resolution of R/l as A-module is

) Ll
0= Dyer, A(— deg(v)) 5 Byep; A(— deg(v)) = Bues, A(— deg(v) 2 R/T -0,

where the matrix of v, is ( w+1I wu+1 ... wg+1 ), the matrix of ¢ is
the square matrix ( h; hy, ... hg ), and the matrix of v, is given by the re-
ductions of the S-polynomials S(hy, hy), S(hs, hy), S(hs, hg), S(hz, hg), S(hs, hyg),
S(hip, hy1), and S(hys, hig). Since there are nonzero constants in the reduction of
the second and fourth S-polynomials,

S(hs, hy) = 25hy — zv4hy = —azgeg + xéeg = —hy,

S(h% h8) = $§h7 - ZE4h8 = —$§67 + x4x2616 = _h9 ,

the above resolution is not minimal. Making it minimal, we get the short resolution
of R/I as in (5.2) for By = B} \ {vg,v11} and By = B} \ {wy, ws}. Reordering, at
each step, the generators (and hence the rows and columns of the matrices defining
the morphisms), the short resolution of R/I shows as

0= A(=5)2® A(—6)2 @ A(=T) 2 A(=3) ® A(—4)" @ A(—5)?
D Ae A(-1)P B A(—2)5 @ A(=3)° & A(—4) X R/T — 0,
and the Betti table is the same as the one given in Example 5.4.

Since the Hilbert series of R/I can be determined using any graded free resolution
of R/I, we can use the Schreyer resolution (5.5) to compute it, and we get

o sy (—1)" 14
(1—#) ’
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by Equation (1.6). As d = dim(R/I), the numerator does not vanish at ¢ = 1
and the expression of the Hilbert series cannot be simplified. As a consequence,
one can compute the Hilbert-Samuel multiplicity of R/I (which is the degree of the
projective algebraic variety defined by I whenever I is homogeneous) from the size
of the sets B;.

Proposition 5.9. Denote by e(R/I) the (Hilbert-Samuel) multiplicity of R/I. Then,

() e(R/T) = S0 (=1)'|B].
(b) For allsGN,

S0 ) Fass = ) = (-1 B,

k=0
where (B})s = {v € B; | deg,,(v) = s}.

Proof. Evaluating the numerator of the Hilbert series (5.6) in ¢t = 1, we obtain (a).
For (b), note that

(]_ — t HSR/] Z Z tdogw(v

=0 veB;
and compare the coefficient of ¢ in both sides of the equality. m

Although the Schreyer resolution (5.5) is not minimal in general, there are cases
in which it is known to be: when R/I is Cohen-Macaulay ([3, Prop. 1]), when
dim(R/I) = 1 ([3, Prop. 3]), or when dim(R/I) = 2 and z,, is not a zero divisor
of R/I ([3, Prop. 4]). The following straightforward result provides another case in
which it is minimal.

Proposition 5.10. If, for all uw € By N J, the monomial ideal I, = (in(I) : u) N A
1s principal, then

0 = Buen A(—deg,, (1)) 2 Dyen, A(— deg, (v)) 2% R/T — 0

is the short resolution of R/I, i.e., it is the minimal graded free resolution of R/I
as A-module. In particular, depth(R/I) = d — 1.

The condition in the previous result is not necessary and one can have that
depth(R/I) = d — 1 when [, is not principal for some u € By N J as the following
example shows.
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Example 5.11. Consider R = Q[x1,...,27], A = Qlxs, 26, 27], and R/I, the
3-dimensional simplicial toric ring determined by A = {(1,3,5),(5,1,5), (3,5, 3),
(5,5,1), (2,0,0), (0,2,0),(0,0,2)}, i.e.,

I = (v —tt5ts, mo—t5tot), w3 —titots, 1y —totots, x5 —15, 16 —13, 17 —13)NQ[z1, . . ., 27] .

Variables are in Noether position, and I is w-homogeneous for w = (9,11, 11,11, 2,
2,2). One can check, using for example [93], that By = {4, x3, 22, 21,1}, By N
J = {xz,v9, 21}, Iy = (x5), I, = (22) and I,, = (2% z5z6). Hence, B =
{z35, Tox?, w122 112506} and By = {r1xix6}. However, the w-graded short res-
olution of R/I, which can be computed using the function shortRes of [41], is

0— A(-13) - A A(-9) ® A(-11)> = R/I — 0,

so |Bi|= 3 and |By|= 0. Therefore, pd4(R/I) = 1 and depth(R/I) = d—1, although

I, is not principal.

5.2 Simplicial toric rings of dimension 3: a com-
binatorial description of the short resolution

Let A = {ai,...,a,} C N? be a finite set of nonzero vectors, S = (A) C N¢
the affine semigroup generated by A, and I4 C R = k|[xy,...,z,] the toric ideal
determined by A. We suppose that the toric ideal I4 is simplicial and hence, by
Proposition 1.60, we can assume without loss of generality that there exists D € Z~
such that a,,_qy; = De; for all i =1,... d where {€,..., €4} denotes the canonical
basis of N%. Set e; := De; for all i € {1,...,d} and denote by £ = {ey,...,es} the
set of extremal rays of the rational cone spanned by A. Under these hypothesis, one
has that A :=k[z,_411,..., 2, < R/I4 is a Noether normalization.

The simplicial semigroup ring k[S] is an S-graded k-algebra isomorphic to R/I 4
(as S-graded k[x1, . . ., z,]-modules). We study here the multigraded short resolution
of k[S] with respect to the multigrading |z;|s= degg(x;) = a; € S; namely,

F 0o Bees, Al—s) B g g A(—s) 2 Kk[S] >0, (5.7)

where §; C S is a multiset for all i € {0,...,p}. Note that this multigrading is
a refinement of the grading given by the weight vector w = (wy,...,w,), where
w; = |a;|= Z;lzl a;j € Zso for all ¢ € {1,...,n}. Hence, 14 is w-homogeneous and
the results of Section 5.1 apply here. As in that section, we fix the w-graded reverse
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lexicographic order >, in R.

Our goal here is to describe the resolution (5.7) in terms of the combinatorics of
the semigroup & when d = 3, i.e., when the Krull dimension of k[S] is 3. We start
by recalling from [3] the first step of the resolution for any d > 1. We will later
describe the multisets S;, o C S that appear in the short resolution (5.7) of k[S].
This is a combinatorial transcription of results in [78] and [75] that will be useful in
Section 5.3.

Definition 5.12. Let S be a simplicial semigroup and denote by & = {e1,...,e4}
the set of extremal rays of the rational cone spanned by A. The Apéry set of S is

APs={seS:s—e ¢Sforalli=1,...,d}.

Proposition 5.13 ([3, Prop. 5]). The set Sy in the short resolution (5.7) is APg, the
Apéry set of S. The S-graded A-module homomorphism g : Gses, A(—s) — k[S] is
defined by 1o(€s) = t°, where {€s | s € Sp} is the canonical basis of Gses, A(—s).

To compute the multidegrees in the next steps of the resolution, we consider, for
every s € §, the abstract simplicial complex T defined by

TS::{]—"CE:S—ZeGS}.

ecF

In [78, Prop. 2.1] and [75, Prop. 5.1], the authors prove that the number of syzy-
gies of multidegree s at the (i + 1)-th step of the minimal S-graded resolution (5.7)
is dimy H;(Ty), where H;(—) denotes the i-th reduced homology k-vector space of Tj.

If s€ Sissuch that s — Y . e €S, then T is a simplex and dimy ﬁ[i(Ts) =0
for all ¢ € Z. Hence, such an element s € S does not belong to any of the multisets
S; in (5.7). We are thus interested in the elements s € S such that s — " _.e ¢ S,
which we will classify. We recall now the definition of the exceptional sets given in
Section 4.2, adapting the notations to the setting we have now.

Definition 5.14. Let S C N3 be a simplicial semigroup. We define the following
subsets of &, which we call the exceptional sets of S:
e E¥'={scS|s—e; €S Vj;s— (e, +e,) €S,s— (e, +ey,) ¢S, s—(e,+
e;,) ¢ S, for a permutation (i1,14,143) of (1,2,3)};
e F2' ={scS|s—e, €Ss—e,cSs—e, ¢ S;s— (e +ey,) ¢
S, for a permutation (iy,is,143) of (1,2,3)};



5.2. SIMPLICIAL TORIC RINGS OF DIMENSION 3 141

« By’ ={s€S|s—e €8 Viss—(e;+e,) ¢ SVi £ j}

o B}’ ={scS|s—e €S Vis—(e+e;) €S,Vi#j;and s—(e; +e;y+e3) ¢
S}

Figure 5.1 shows how elements in the Apéry and the exceptional sets of S look
like. In those figures, filled circles represent elements in S, while empty squares
represent elements outside S.

(a) Element in APg. (b) Element in Eg’l,

(c) Element in E‘Qg’o. (d) Element in Eg’o. (e) Element in Eg’3.

Figure 5.1: Points in APs and the exceptional sets Ef);’l, EE’O, Eg’o, and Ef;’s. Filled
circles represent elements in &, while empty squares represent elements outside S.

Theorem 5.15. If k[S] is a simplicial semigroup ring of Krull dimension d = 3,
the multisets Sy, S1,Sa C S that appear in the short resolution (5.7) are

So=APs, Si=ESUEXUENUEY, S =ES.

Proof. We already know that So = APs. For any other s € §, the simplicial complex
Ty is one of those in Table 5.1, whose homologies are straightforward to compute.
Then, the result follows from [78, Prop. 2.1] and [75, Prop. 5.1] ]

Remark 5.16. As a consequence of Theorem 5.15, the sets APg, Eg’l, Eg’o, Eg’o,
and E* are finite subsets of S.

The Apéry and exceptional sets of S determine the multigraded Hilbert series of
k[S], as the following result shows.
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3,1 2,0 3,0 3,3 .
Eg Ey Ey Eg ‘ Other configurations
) ‘ I L e .’ i il |
[ 1 y 1 1 b H [ 1 1
| | | | | | | |
- - - P Lﬁ Lr -
i3 i3 i3 i3 i3
T P PR P PR A PR i N P S N P A SN )

Table 5.1: Possible configurations of elements s € S and the associated simplicial
complexes T§.

Corollary 5.17. Let k[S] be a simplicial semigroup ring of Krull dimension 3. The
multigraded Hilbert series of k[S] is:

ZSEAPS v ZSEEg’l t* - ZSEE?O t7—2 ZseEg’O 2+ XzseEz’3 v

HSys)(t) = (1=t =t (1 —tm) 7

where wy,_o = |e1|, w,_1 = |es| and w, = |es|.

Proof. The multigraded Hilbert series of k[S] is given by

HSug(t) = S ety — 2scso b Vs, U e,
. T [ N (D

s=(s1,52,53)€S

and the result follows from Theorem 5.15. OJ

As already observed at the beginning of this section, the ideal I 4 is w-homogeneous
for the weight vector w = (w1, ...,w,), where w; = |a;| for ¢ € {1,...,n}. Therefore,
the short resolution of k[S] with respect to this grading can be obtained from the
multigraded one in a simple way as follows:

F 0= Bees, A(—[8]) 2 Bocs, A(=s]) 2 Bocs, A(—|s|) 2 Kk[S] = 0.

Moreover, the weighted Hilbert series of k[S] is obtained from the multigraded one
by the transformation ¢7'¢52¢5> —» @1 92%as,

When 14 is a (standard graded) homogeneous ideal, by Remark 1.71, without
loss of generality we can assume that there exists D € Z-q such that |a;|= D for
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all i = 1,...,n. Thus, the short resolution of k[X 4] with respect to the standard
grading is

F 10> Gees, A(—[s]/D) 2 o5, A(=s|/D) 2 @ees, A(—[s|/D) *> R/14 0,

and hence, the Castelnuovo-Mumford regularity of R/14 is

reg(k[X4]) = max ({%ZSES()}U{%—l:sesl}U{%—QSSGSQ}>
(5.8)

and the Hilbert series of k[X4] is obtained from the multigraded Hilbert series by
applying the transformation ¢9't32¢5% +» t(@1+a2+as)/D Then the formula for the
regularity of a simplicial projective monomial surface in Theorem 4.25 follows from
Equation (5.8) and Theorem 5.15. Moreover, Proposition 4.23 follows from Propo-
sition 5.9 (b), Theorem 5.15, and the short resolution F above.

5.3 Pruning algorithm for simplicial toric rings of
dimension 3

Consider now, as in Section 5.2, the toric ideal I 4 defined by A = {ay,...,a,} C N,
the generating set of a simplicial semigroup S, and assume without loss of generality
that the last three generators are the extremal rays of the rational cone spanned by
A. Setting R = k[z1,...,x,] and I := I 4, one has that R/I is a simplicial toric ring
of dimension 3. Moreover, for A = k[z, 9,2, 1,2, and w = (wy,...,w,) € N*
with w; = |a;| for all i, 1 < ¢ < n, one has that I is w-homogeneous and A is a
Noether normalization of R/I, so the results in Section 5.1 apply. Our aim in this
section is to build the Schreyer resolution and explicitly prune it in order to build
directly the short resolution of R/I in this case.

Let G be the reduced Grobner basis of I with respect to >,, the w-graded reverse
lexicographic order. It is known that the elements in G are binomials. Take B, the
set of monomials not belonging to in(/) + (x,_2, T—1, ). Consider x : R — R the
evaluation morphism defined by x(z;) = x; for ¢ € {1,...,n — 3} and x(z;) =1
for j € {n —2,n — 1,n}, and set J the extension of in(I) by x. Now, for every
u € ByNJ, G(1,) denotes the minimal monomial generating set of

I, = (in(I) : u) NK[zp_2, Tp_1, ] .

Since the generators of in(/) do not involve the variable z,, because the ideal [ is
prime and >, is a reverse lexicographic order, every element in G(I,,) is a monomial
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of the form z¢ ,x% | with a,b € N. Denote ¢, = |G(I,)| and write G(I,) =
{M@1ys - . Mg, }, where the elements of G(1,) are sorted lexicographically, i.e.,
My > -+ > M,y with respect to the lexicographic order z,, > x,_1 > z,_».

Now consider the set of monomials
B, = {uM | u € ByNJ,1<i<{,}.

For each x* = uM,; € B}, where u € By N J and M, = 2% .25 | € G(I,),
take r, the remainder of the division of x* by G. Since G consists of binomi-
als and M, € G(I,), then r, = 2% ,2% 2%v for some a’,b/,¢ € N such that

ged( My, 2%_oah_1) =1 and some v € By. By Theorem 5.7, the set

H = {hw, = Mu - €, — $Z/_2xg_1x;/_1 € lueByNJ1<i</l,}
is the reduced Grobner basis for the Schreyer-like monomial order >gp, in Defini-
tion 5.5, and in (h(uﬂ-)) = My, - €, by Remark 5.6. Applying Schreyer’s Theorem
(Theorem 1.29), one gets that the syzygies of H are obtained by reducing the S-
polynomials of all pairs of elements in H by H. Note that only S-polynomials of
the form S(h, ), ;) with v € BN J and 1 <@ < j < £, must be considered and
reduced since the other S-polynomials are zero. Furthermore, since the monomials
M,y only involve variables x,_ and x,_; and have been lexicographically sorted,
M1y > ... > My,), we only need to consider the reductions of the S-polynomials
S(huiy, hitny) with u € By NJ and 1 <4 </, since the other ones will be dis-
carded when the resulting Grobner basis of the syzygy module is made minimal.
This implies that the initial terms of the resulting syzygies are pure powers of x,_»
located in different copies of A, and hence the module of syzygies of H obtained
by applying Schreyer’s Theorem is free. The Schreyer resolution of R/I has thus at
most two steps, and it shows as follows:

¢I
0— @UEBIQA(_ degw(”)) - @’vGB’lA(_ degw(v))
Dy Byen, A(— deg,,(v)) 2 R/T — 0. (5.9)

Algorithm 5.2 below takes advantage of the previous discussion and builds By,
B}, and Bj, the sets of monomials in R involved in the above resolution. It is worth
pointing out that this algorithm involves only a Grobner basis computation and
Grobner-free manipulations with monomial ideals. It has been implemented in the
function schreyerResDim3 of [41].

As Examples 5.11 and 5.18 show, even when R/I is a 3-dimensional simplicial
toric ring, the resolution (5.9) might not be minimal.
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Algorithm 5.2 Computation of the sets B. for a simplicial toric ring of dim. 3.

Input: I C R =Kk|[zy,...,x,] a simplicial toric ideal of dimension 3 with variables
in Noether position.

Output: The sets of monomials By, B}, B, C R involved in the Schreyer resolution
(5.9) of R/I as A-module, A = Kk[z,,_o, Ty_1, Ty

1: By « monomial k-basis of R/in(I)+ (z,_o,x,_1,x,) for the degrevlex order >,,.

2: J < x (in(1)) .R, where x : R — R is defined by x(z;) = z; fori € {1,...,n—3},
and X("L‘n—2> = X(xn—l) = X(mn) =1

3 I, < (in(I) :u) N A, Yu € Byn J.

4: G(I,) < minimal generating set of I,,, Vu € ByNJ; G(1.) = { M), - - M}
ordered lexicographically with x, > x, 1 > z, _».

5. By %{U'M(u’i) lue BynNJ,1<i</l,}

6: L, + {ICIH(M(UJ), M(u7i+1)) | 1< < gu}, Yu € By N J such that £, > 2.

7. By« {u-M|ueByNJLl,>2 and M € L,}.

Example 5.18. Set R := Q[z1,...,x¢], and let I be the toric ideal determined by
A = {(7,2,3),(1,8,3),(3,8,1),(12,0,0), (0,12,0),(0,0,12)}. One has that I is a
homogeneous toric ideal and A = Q[xy4, x5, 26| is a Noether normalization of R/I,
hence R/I is a 3-dimensional simplicial toric ring. Applying Algorithm 5.2 we obtain
that |By|= 204, |B}|= 174 and |Bj|= 42. However, the Betti diagram of the short
resolution, obtained by using the function shortRes of [41], is the following:

0 1 2

0: 1 - -

1: 3 - -

2: 6 1 -

3: 10 3 -

4: 15 6 -

5: 21 10 -

6: 26 15 -

7: 29 20 -

8: 32 26 1

9: 29 26 2

10: 20 19 2
11: 9 9 1
12: 2 2 -
13: 1 1 -
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Our next aim is thus to minimalize Schreyer’s resolution (5.9) using the results
from Section 5.2. We will show how to obtain subsets By C B and By C B,
such that B; and B, provide the actual shifts that appear in the short resolution
of R/I. We will refer to this process as pruning the resolution. Note that, by
Proposition 5.9 (a),

e(R/1) = |Bo|=|Bi|+|Ba|= |Bo|=|By|+|Bs|
and, in particular, |[B} \ Bi|= |B5 \ Ba.

In the process of pruning the resolution, we will use the following result several
times.

Proposition 5.19. Let S = {(ay,...,a,) C N¢ be an affine semigroup and b,c € S.
Write b = Z:.L:l BGi;a; and ¢ = Z?:l via; with B;,v; € N and consider the monomials
xP =g aPr and X7 = 2] -2 € Kla, ..., x,]. Then, b—c € 8 if and only

if xP € Iy + (x7).

Proof. We know that R/I 4 and k[S] are isomorphic as graded k-algebras, and denote
by ¢ the corresponding graded isomorphism. Now, consider the ideal (t¢) of k[S],
and the canonical projection map 7 : k[S] — k[S]/(t°). Since ¢(x?) = t¢, we have
that ker(mo @) = (a4 + (x7))/L4. Thus, by the third isomorphism theorem, there is
a graded isomorphism of k-algebras

U k[x]/(Ta + (x7)) — Kk[S]/(t%).

Moreover, k[S]/(t¢) has a unique monomial basis, which is {t?|d € Sandd—c ¢
S}. Finally, observe that the image of a monomial by ¥ is a monomial, and hence

X e+ (x) = Ix)=0=b-ccS,
and we are done. O

To achieve our goal, consider the subset C' C B} defined by C' = {v-2b_, € Bj |
v € By and b > 2}. The following result shows that the elements in B] \ By belong
to C.

Lemma 5.20. B{\ B, C C.

Proof. Consider x* € B} \ B; and denote by h, the corresponding element of H.
Since x* ¢ By, there exist u € ByNJ and 1 < i < ¢, such that there appears
a nonzero constant multiplying h, in the reduction of S(h¢,;), hw 1)) by H. If
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a1 by 1 ) _ a2 bo co
h, ) = 2, 7, €, — x;t€, and h(, ;1) = 2,2 ,7,° 1€, — T}2€,, for some v, w € By,

ai,bi,ci eN (Z = 1,2) with C1,Co > 1, a1 < asg, and by > bQ, then

) ) __ _.a2—aj N b1—bo ) o bi—ba co—1 _ a2—a1 -1
S(h(uﬂ),h(uﬂ_,_l)) =Ty 9 h(uﬂ) Tp_1 h(u,z+1) = Ty (l’nfl Z, €Ew Typ_o T, Ev) .

Hence, the reduction of S(h,), he,it1)) by H does not involve nonzero constants.
Therefore, h, ;) = ' €, — le_lev, and h, ;1) = xf_ga:ff_leu — 2% €,, for some
v,w € By and a1, as, by, by, ¢ € N with ay,b1,bs,¢ > 1, ay < a1 and by + by = b > 2.

Hence,
_ L be a—a’ _ b a—a’ .c—1
S(h(wi)’ h(u7i+1)) = xnflh(u,i) — Tp_2 h(u,i-i-l) = =T, 1€ T Tp <xn72 o €w> )

and since there appears a nonzero constant in the reduction of S(h, ), h,i+1)), one
has that 2% | € G(I,), where I, = (in(/) : v) N A. Thus, x* = vz’ _, € C. O

n

Remark 5.21. As a direct consequence of the previous result, if C' = (), then
B} = By, B, = Bsy, and hence the Schreyer resolution (5.9) is already minimal.

The inclusion B \ By C C can be strict or not. In fact, if C' # ), both cases
B} = By and B} \ B; = C can happen, as the following examples show.

Example 5.22. In this example, computations are performed over the field Q.

(1) Set A = {(1,0,3),(3,0,1),(0,1,3),(3,1,0),(0,3,1), (1,3,0), (4,0,0), (0,4, 0),
(0,0,4)}, and let I be the toric ideal determined by .A. Applying Algo-
rithm 5.2, one gets that |By|= 28, |Bj|= 18, and |Bj|= 6. In this case, B; = B
although |C|= 3 since the Betti diagram of the short resolution given by Al-
gorithm 5.1 is

(2) If Ais the set in Example 5.18, |B}|= 174, |B;|= 138 and |C|= 36, so B\ B; =
C.
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For each x” € C, denote by rg the remainder of x” by the reduced Grébner basis
of I for the w-graded reverse lexicographic order >, in R. Since z,_; divides x°,
then rg is a multiple of z,,. Consider the partition C' = C} U Cs, where

Cy=1{x" € C|rg =wa_,a¢, for some a,c > 1,w € By}, and
Cy = {x" € C|rs=wst, for some ¢ > 1,w € By}.

We now show that one can decide whether a monomial x? € C'is in B; or not just
by looking at its S-degree. More precisely, it suffices to check if [x°|s= Y"1 | Bia
appears as a shift in the first step of the short resolution, and this happens if and
only if |x%|sc E¥'UEZ°UEY’ by Theorem 5.15. In Theorem 5.24, we characterize
when the latter holds in terms of some monomials that may belong to the ideal
T4+ (xy—2) or not. We will use the following easy lemma. As in Section 5.2, set
e; = De; for all i € {1,2,3} and € = {ey, ey, €3}, where {€1, €2, €3} is the canonical
basis of N3.

Lemma 5.23. Let x% = vat | € C and set s = |xP|s.
(1) If x5 € Cy, then
s—e €S,Vi=1,23;s—(e;+e3) €S;and s—(ex+e3) ¢ S.
(2) If x® € Cs, then
s—ecS;s—e3eS;and s—(ex+e3)¢S.

(a) Situation in Lemma 5.23 (1). (b) Situation in Lemma 5.23 (2).

Figure 5.2

Proof. Let us prove (1). If x° = va? | € C}, there exist a monomial w € By and
natural numbers a, ¢ > 1 such that vab_| —wz® ,2¢ € 4. From this fact, it follows
that s —e; € S for i = 1,2,3, and s — (e; + e3) € S. Suppose by contradiction

that s — (ey + e3) € S. Then, there exists a monomial M € k[xq,...,z,] such that

vl | — Mz, 17, € I4. Since I is prime, then vxfl__ll — Mz, € I4, and hence
vab~t € in(Iy), which contradicts with the minimality of 2° , € G(I,). The proof
of (2) is analogous. O
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Theorem 5.24. Let x? = va?

(1) If x% € Cy, then

vl € By = vl & T4+ (1, ).

(2) If x° € Cy, denote by wal the remainder of x* by G. Then,

vt € By <= vl & T+ (w, ) orwzth ¢ Ly + (1, 0) .
Therefore,

B =B \C)U{vab € Cy|val™ & T4+ (2, 0)}
U{vzy_y € Cy |vap™h & Ta+ (wn-2) or way, ' & La+ (wn2)} .

Proof. By Theorem 5.15, we know that the multiset of S-degrees appearing in the
first step of the short resolution is

Si=Ey'UEUES U ES;

we observe that in S; the elements of Eg’l UEE’O have multiplicity 1, and the elements
of E2” have multiplicity two. We know that S is a (multi)subset of

p=A{Ixs [x" € B\ O U{[x"]s [x" € C}.

Claim: Whenever s € Sy, its multiplicities in &; and in S coincide.
Proof of the claim: By Lemma 5.20, we know that {|x%|s|x* € By \ C} is a
(multi)subset of S;. Hence, to derive the claim it suffices to prove that:

(i) distinct elements of C' have distinct S-degrees, and

(ii) whenever an element of B} \ C' and an element of C' have the same S-degree,
then this S-degree belongs to Eg’o and has multiplicity exactly two in Sj.

To prove (i), consider two elements in C' with the same S-degree, namely, x
uz® | and x? = u/z¥ | and assume that b > . Then it follows that f = ua’~ —u’ €
I4,s0 f=0, and henceu—u and b =10

To prove (ii) consider x* € B’ \ C and x’ € C with s = |x%s= |x’|s. We

write x¥ = uab |, b> 2 x* =w'a? ¥ | d +V > 1. Suppose first that x% € C,

n—1» n—1»
ie. rg—vxn ,x¢ for some a CEZ>0 If o/ > 1, then w29 ta¥ | — oz lat € Iy,

n—1
so u'z? | €in(I4), and hence 2% }2¥ | € I, contradicting the minimality of

x ,a¥ € G(Iy). Therefore, a’ = 0, so |uz?_,|s= |u'z¥_,|s, which implies that
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u=1u'and b =V, a contradiction. Hence, x° € Cy, i.e., 15 = va¢, for some ¢ € Z~y.
Now, let us see that s € Eg°. If o > 1, then ua?™t —w/z¥ ,2¥~} € I, is a nonzero
binomial and neither uaz?~t nor w/z%_,z¥~}! belongs to in(14), which is impossible.
This proves that b = 0. Since, s = |u/z% ,|s= |uz’_,|s= |va’|s€ Si, then either
s € Eg’l ors € Ef;i’o. Suppose s € Efé’l. Then there exist w € By, a”,b", " € N with
at least two of them nonzero, such that s = |wz® ,a¥"  2¢"|s. Combining this with
s = |[u'z¥ ,|s (if a” # 0) or s = |uxl_,|s (if b # 0), we get a contradiction. Hence,
s € E2°. Finally, let us see that there does not exist x? € B} \ C, x” # x*, such
that [x7|s=s. Let x¥ = u"2%" ,a%" | € B} \ C, x7 # x°, such that |x”|s=s. Then,
a” b € Zwq, or " € Zg and b” = 0, or a”” = 0 and V" = 1. Proceeding as before
each of these three cases leads to a contradiction. Therefore, the claim is proved.
As a consequence of the Claim, one has a criterion to detect if an element of B

belongs to By or not. More precisely, let x* € B, then:
x* € By < |x%|s€ S .

We now use this criterion to prove (1) and (2).

Let x° = vab_| € C) and set s = |x’|s. By Lemma 5.23 (1), one has that
x? € By if and only if s — (e; + e;) ¢ S. Then, by Proposition 5.19, one has that
s — (e; +ey) € Sif and only if va?™} € T4+ (2, 5).

Let x° = va? | € Cy and set s = [x%|s and r3 = wx¢ the remainder of x? by
the reduced Grobner basis of I4. By Lemma 5.23 (2), one has that x* € B if and
only if s — (e; +e2) ¢ S or s — (e; +e3) ¢ S. Hence, the result follows again from
Proposition 5.19.

The last claim in the theorem is a direct consequence of (1) and (2). O

In Theorem 5.24, we have obtained a test to decide algebraically if a monomial
x? € C C B] is in B; or not, and hence we can obtain the set B;. To apply
this criterion, one only has to test the membership of some monomials to the ideal
T4+ (x,—2). Now, we do something similar to obtain the set By C ).

Lemma 5.25. Let x* € B\ By, and set s = |x%|s, then
s—e, €S,Vi=1,2,3;s—(ej+ey) €S;s—(e;+e3) € S;and s—(e;+ey+e3) ¢ S.

Proof. If a monomial x* € B) is not in By, then it comes from a S-polynomial
S(h,h’), h,h’' € H, such that there appears a nonzero constant in the reduction of
S(h,h’) by the Grobner basis {h,, | x* € B}}. The syzygies h,h’ have expressions
h=12 ,e,— 2% €, and ' = 2% ,2¥ €, —1€,, for some u,v,w € By, a,b, b, c >
1 and @' € N, with ¢’ < a, as in the proof of Lemma 5.20. Therefore, x* =
w - lem(z® o al 4

¢ ot o) ) =u-xl_ox, ;, and we note that

Juas_yzh i ls= |vayt]s= wrg g ag]s
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From the previous equalities, we deduce that s —e; € S for all © = 1,2,3, s —
(e1 +e) € S,and s — (e; +e3) € S. Let us prove that s — (e; + ey +e3) ¢ S.

Assume by contradiction that s — (e; + e; + e3) € S. Then, there exist a monomial
a—1,b—1

M € Kk[xy,...,2,], such that uz® 2% | — 2, oz, 12, M € I4, so ux® ba? "} —

x,M € I4. Therefore, there exist natural numbers ¢’ < a —1 and V" < ¥V —
such that " ,2¥" | € G(I,). Since 2% ,2¥ | € G(I,) and V' < ¥, then a” > d'.

a// b// G// b/ o / b b
Hence, lcm( (A AR g 1) x8 x4, which is a proper divisor of ¢ _,z._,

a contradiction with x® = uz?_,2¥ | € Bj. O

Figure 5.3: Situation in Lemma 5.25.

Theorem 5.26. For all x* = ux® ,a° | € B,
X € By = ux® a7l € Iy + ().

Therefore,

b

BQ - {UZEn 2Tp_1 € B, | U.Tn 21: 1 € ].A + <xn>} :

Proof. By Theorem 5.15, we know that the multiset of S-degrees appearing in the
second step of the short resolution is Sy = Eg’?’, and every element appears with
mutiplicity 1. We know that S, is a (multi)subset of

= {Ix"]s |x" € By}

Claim: Distinct elements of Bl have distinct S-degrees.

Proof of the claim. Take x* = ux? .2’ |, € B, and x° = uxnl .70 € B,

a,a’,bb € Z>0, such that |x%/s= |x®|s. Then, uz® ,ab | — /2% 2% | € I,

If w =4/, then a = d and b = b’ and hence x® = x?. Now suppose u # u'. In
b—1 b —

this case, uz®_,x~t —w'z® a7l € I, Assume without loss of generality that its
initial term is ua? 2’} € in(I4), so x%_,a’~t € I,, contradicting the minimality
of z¢ ,xb | € G(I,). Hence, the Claim follows.

As a consequence of the Claim, one has a criterion the detect if an element of

B!, belongs to By or not. More precisely, let x* € B}, then:

n—1 nl

X" € By = [xVs€ Sy = E2°
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By Lemma 5.25, one has that for all x* € B},
x%|s€ E2® <= |x"|s—(es+e3) €S.

Therefore, the result follows from Proposition 5.19. m

Algorithm 5.3 Pruning algorithm for a simplicial toric ring of dimension 3.

Input: I C R =Kz, ...,z,] a simplicial toric ideal of dimension 3 with variables
in Noether position

Output: The sets of monomials By, By, By C R that appear in the short resolution
of R/I.

: G + reduced Grobner basis of I for the w-graded reverse lexicographic order.

: By, By, B) < sets obtained in Algorithm 5.2.

C+{v-ab  €B|veByand b>2}.

. To < remainder of x* by G, Vx® € B].

0 O « {x* € C'| x,_2 divides 1, }.

: Oy + {x* € C'| x,,_5 does not divide r,}.

: By +— (BI\C)Uu{x* € C | x:: ¢ I+ (x, 0} U{x* € Cy |
(w0 a) ot = ¢ T+ (m, 3)}.

8 By {x*€By| 2= €1+ (z,)}.

Tn—1

e = T N N

@

= ¢ I+

Tp—1

Using Theorem 5.24 and Theorem 5.26, one can obtain the set By C B in
the short resolution. The whole pruning algorithm (for B and B}) is summarized
in Algorithm 5.3. It is worth pointing out that this algorithm requires only the
computation the Grobner basis G of I with respect to the w-graded reverse lexico-
graphic order, to compute the remainders of several monomials modulo G, and to
test membership of several monomials to the ideal I + (z,,—2). Algorithm 5.3 has
been implemented in the function pruningDim3 of [41].

The pruning algorithm presented in this section does not work if the ideal I is
not toric. If I is not prime, it can happen that pd,(R/I) = 3, so the resolution
has one more step and even Algorithm 5.2 fails. If I is prime but not binomial,
Example 5.27 shows that Algorithm 5.3 can fail.

Example 5.27. Set R = Q[z1,...,x7], and let I C R be the ideal

I = (x) + 6315 — t3t3, 29 — 1o, 13 — tats, x4 — tots, x5 — 15, 26 — ta, 27 — t3) N R
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The ideal [ is prime, dim(R/I) = 3, and the variables are in Noether position.
However, [ is not binomial, so it is not toric. Applying the results of Section 5.1, we
obtain |By|= 28, |Bj|= 16 and |B}|= 4. Moreover, this resolution is minimal since
its Betti diagram, obtained by using the function shortRes of [41], is

0 1 2

0: 1 - -

1: 4 - -

2: 9 2 -

3: 13 12 3

4: 1 2 1
total 28 16 4

However, when applying Algorithm 5.3 to the sets By, B} and B, one gets By = B
and | B} \ Bs|= 1, so the algorithm fails in this case.

5.4 Dependence on the characteristic of k

In this last section, we present an example of a simplicial toric ring R/I4 whose
minimal graded free resolution depends on the characteristic of k. Let A C N° be
the set defined by the column vectors of the following matrix

33333111 112¢0000O0
331 1133311020000
3131131133 002¢0¢00O0
1133113331000 2¢00 ’
1113333 113000020
131 131133300000 2
and consider the toric ideal I C R = k[zy,...,x16] determined by A. Set A =
k[z11,...,216). Then, I is w-homogeneous for w = (6,...,6,1,...,1) and A is a

Noether normalization of R/I.

We compute the short resolution of R/I when k is a field of characteristic 0 and
when its characteristic is 2 using the function shortRes of [41]. This example shows
that the short resolution of a simplicial toric ideal may depend on the characteristic
of k. Moreover the projective dimension as A-module is different for both charac-
teristics, pd4(R/I) = 2 when char(k) = 0, while pd,(R/I) = 3 when char(k) = 2.
Since pdr(R/I) = pdy(R/I) +n —d = pd4(R/I) + 10, the resolution of R/I as
R-module also depends on the characteristic of k. We could not compute the whole
resolution but the second step already shows that the resolution depends on the
characteristic of k.
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Betti diagram of the resolution of R/I as A-module:

char(k) =0 char(k) = 2
0 1 2 3
0 1 2 e
———————————————————————— 0: 1 - - -
0 1 - - 1: - - - -
1 - - - 2: - - - -
2 - - - 3: - - - -
3 - - - a: - - - -
4 - - - 5: - - - -
5 - - - 6: 10 15 6 1
6 10 15 6 7: - - 1 -
total 11 15 6 total 11 15 7 1

char(k) =0 char(k) = 2

0 1 2 0 1 2
0 1 - - 0: 1 - -
1 - = = 1: - = -
2 - - - 2: - - -
3 - - - 3: - - -
4 - - - 4: - - -
5 - - - 5: - - -
6 - 15 6 6: - 15 6
7 - - - 7 - - 1
8 - - - 8: - - -
9 - - - 9: - - -
10 - - - 10: - - -
11 - 55 150 11 - 55 150
12 - = = 12: = = -
13 - - - 13: - - -
14 - - - 14 - - -
15 - - - 15: - - -
16 - - 330 16: - - 330



Conclusions

In this thesis, we have addressed the study of several problems in the interface
between commutative algebra and additive combinatorics, exploring the bridge es-
tablished in the recent articles [18, 30, 32].

In Chapter 2, we have studied the equality of the Betti numbers of a projective
monomial curve and one of its affine charts. In Theorem 2.12, we provide a sufficient
condition in terms of the Apéry posets of the semigroups defined by the projective
and the affine monomial curves.

In Chapter 3, we have studied the problem of determining the structure of the
sumsets in additive combinatorics. To this end, we have applied some techniques
from commutative algebra. We have given a complete understanding of the struc-
ture theorem for the sumsets of sets of integers, see Theorem 3.16. Furthermore,
we have made the structure theorem in higher dimensions more explicit in some
cases, providing upper bounds on the sumsets regularity that improve the ones in
the literature; see Theorems 3.26 and 3.29 for the smooth case, and Theorems 3.35
and 3.41 for the case of surfaces with a single singular point.

In Chapter 4, we have provided combinatorial formulas for the Castelnuovo-
Mumford regularity of projective monomial curves (Theorem 4.2) and simplicial
projective monomial surfaces (Theorem 4.25). Moreover, we have established a re-
lation between the Castelnuovo-Mumford regularity and the sumsets regularity in
Theorems 4.13 and 4.27. This has allowed us to give a proof of the Eisenbud-Goto
conjecture for projective monomial curves and simplicial projective monomial sur-
faces with a single singular point.

Finally, in Chapter 5, we have provided a Schreyer-like method to compute the
short resolution of any weighted homogeneous ideal whenever the variables are in
Noether position, which follows from Theorem 5.7 (Algorithm 5.1). Moreover, we
have designed an algorithm for simplicial toric rings of dimension 3 that first con-

155



156 CONCLUSIONS

structs a non-minimal graded free resolution (Algorithm 5.2) and then minimalizes
it to obtain the short resolution (Algorithm 5.3).

In view of the results of Chapters 3 and 4, we believe that these results can be
extended to any simplicial projective monomial surface. We are therefore currently
working on this extension to prove the Eisenbud-Goto conjecture for simplicial pro-
jective monomial surfaces.
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