Accepted version of the article published in: Information Sciences, Volume 508, 2020, Pages 234-259
https://doi.org/10.1016/.ins.2019.08.08]1]

RDF-TR: Exploiting Structural Redundancies to boost RDF Compression™

*,Q

Antonio Hernandez-Illera™?, Miguel A. Martinez-Prieto?®, Javier D. Fernandez"*
% Department of Computer Science, University of Valladolid, Spain.
b Vienna University of Economics and Business, Austria
¢Complexity Science Hub Vienna, Vienna, Austria

Abstract

The number and volume of semantic data have grown impressively over the last decade, promoting compres-
sion as an essential tool for RDF preservation, sharing and management. In contrast to universal compressors,
RDF compression techniques are able to detect and exploit specific forms of redundancy in RDF data. Thus,
state-of-the-art RDF compressors excel at exploiting syntactic and semantic redundancies, i.e., repetitions
in the serialization format and information that can be inferred implicitly. However, little attention has been
paid to the existence of structural patterns within the RDF dataset; i.e. structural redundancy.

In this paper, we analyze structural regularities in real-world datasets, and show three schema-based
sources of redundancies that underpin the schema-relaxed nature of RDF. Then, we propose RDF-Tr
(RDF Triples Reorganizer), a preprocessing technique that discovers and removes this kind of redundancy
before the RDF dataset is effectively compressed. In particular, RDF-TR groups subjects that are described
by the same predicates, and locally re-codes the objects related to these predicates. Finally, we integrate
RDF-TR with two RDF compressors, HDT and k*-triples. Our experiments show that using RDF-TR
with these compressors improves by up to 2.3 times their original effectiveness, outperforming the most

prominent state-of-the-art techniques.

Keywords: RDF compression, Linked Data

1. Introduction

The Resource Description Framework (RDF) [29] is a logical model which describes data in the form of
triples. Each triple comprises the resource being described (referred to as subject), a property of that resource

(predicate), and the corresponding value (object). For instance, the triple (<http://example.org/Dead Man Walking>,

* A preliminary version of this paper appeared in Proc. Data Compression Conference (DCC), pages 363-372, 2015.
*Corresponding author: Departamento de Informaética, Escuela de Ingenieria Informética, Campus Miguel Delibes, Paseo
de Belén 15, Valladolid, Spain.
Email addresses: antonio.hi@gmail.com (Antonio Herndndez-Illera), migumar2@infor.uva.es (Miguel A.
Martinez-Prieto), jfernand@wu.ac.at (Javier D. Ferndndez)

Preprint submitted to Information Sciences March 21, 2020

https://doi.org/10.1016/j.ins.2019.08.081

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type http://example.org/prop/starring

(http://example.org/class/film E]ttp://example.orq/Dead Man Walking———»{ http://example.org/Sean_Penn
NS S Man_| . _renn)

http://example.org/prop/title http://example.org/prop/name

“Dead Man Walking”) “Sean Penn”

Figure 1: RDF triples modelled as a labelled directed graph.

NTriples

<http://example.org/Dead_Man_Walking> <http://example.org/prop/title> "Dead Man Walking".

<http://example.org/Sean_Penn> <http://example.org/prop/name> "Sean Penn".

<http://example.org/Dead_Man_Walking> <http://example.org/prop/starring> <http://example.org/Sean_Penn>.
<http://example.org/Dead Man_Walking> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://example.org/class/film>.

Turtle

@prefix ex: <http://example.org/> .
@prefix prop: <http://example.org/prop/> .
@prefix class: <http://example.org/class/> .

ex:Dead_Man_Walking prop:title "Dead Man Walking" ;
prop:starring ex:Sean_Penn ;
a class:film .

ex:Sean_Penn prop:name "Sean Penn" .

Figure 2: RDF triples presented in NTriples and Turtle formats.

<http://example.org/prop/title>, "Dead Man Walking") sets that the resource <http://example.org/Dead Man Walking>
has a title property with the value "Dead Man Walking".

An RDF triple can be seen as a directed graph in which the predicate labels the edge from the subject
to the object node. Thus, an RDF dataset (a set of triples) is often represented as a labelled directed graph
that links data descriptions in the form of triples. Figure [1] shows a simple RDF graph with four triples
that provide a basic description of Sean Penn and one of his films, “Dead Man Walking”. Note that RDF
restricts the types of terms that can play as subject, predicate, or object. Subject roles are always played
by International Resource Identifiers (IRIs) or local identifiers (referred to as blank nodes) used to denote
resources without explicitly naming them. Predicates are always IRIs (often described in a vocabulary or
ontology), whereas the object role can be played by both IRIs, blank nodes and also literal values (such as
"Dead Man Walking" in Figure [1)).

This flexible paradigm has attracted increasingly interest over the past few years. RDF has been adopted
as the mainstream data representation in diverse fields of knowledge and leading projectsEl such as life-

sciences (e.g. Bio2RDF), geography (e.g. Geonames), or general knowledge (e.g. Wikidata), to name but a

1Bio2RDF: http://bio2rdf.org/; Geonames: http://www.geonames.org/; Wikidata: https://www.wikidata.org; DBpe-
dia: http://www.dbpedia.org/

few. Not surprisingly, DBpedia, an RDF conversion of Wikipedia, is the largest cross-domain datasetﬂ and
the most accepted reference to assess the benefits of RDF. In fact, DBpedia is considered the nucleus for the
so-called Web of Data [3], an interconnected data-to-data cloud that grows progressively encouraged by the
Linked Open Data (LOD) initiativeﬂ

Despite its success, the RDF framework is a logical model, hence it does not restrict how data are
(phisically) serialized. The RDF Working Group of the World Wide Web Consortium (W3C) focuses on this
issue and collects several practical RDF serialization formats [45]. Serializations have evolved from the initial
verbose RDF /XML specification, to more specific, simple and compact formats, such as JSON-LD, Turtle,
NTriples, or NQuads. All these “plain” formats lead to document-centric, human-readable serializations of
RDF, which add unnecessary overheads when storing, exchanging and consuming RDF graphs in the context
of a large-scale and machine-understandable Web of Data.

Figure [2| shows the RDF representation of the previous example in two different formats, Ntriples and
Turtle. These forms of representation are equivalent and they suffer from similar verbosity and redundancy
problems, as they are both intended for human readability. Although Turtle mitigates redundancy by
grouping prefixes (with the inclusion of "eprefix" terms) and using some sort of adjacency lists, arbitrary long
IRIs, e.g. ex:Mystic River are still present in several triples, acting as subject and object in different triples
(the sources of RDF redundancies are reviewed in Section . Thus, RDF-specific compression has recently
emerged as an effective technique to detect and leverage internal redundancies in RDF data, minimizing
space requirements for storage, exchange and consumption processes [30]. In addition, RDF compression
plays an increasingly important role in other application areas, such as RDF archiving and versioning [47]
or distributed RDF stores [22], among others.

In this scenario, HDT [I7], also within the W3C scope [16], represents one of the first and more standard-
ized binary formats for RDF data. The HDT format results in a very compact RDF serialization, enabling
significant savings in storage and speeding up data exchange (i.e., less bits over the wire). HDT minimizes
the repetition of potentially large strings using the so-called HDT Dictionary, which assigns a numerical ID
to each term in the dataset. Then, the graph structure of the dataset is managed as a graph of term IDs,
in the HDT Triples component. While efficient encoding of string dictionaries is a challenge beyond RDF
compression [32], triples encoding is an open and active research area. In particular, HDT uses a straight-
forward configuration and encodes the triples as a forest of trees, one per different subject, using bit and
(compact) integer sequences. In turn, the k2-triples [I] technique elaborates on the encoding of the triples
and reports excellent compression ratios by representing triples as a set of (compressed) adjacency matrices,

one per different predicate. These compressors, though, disregard specific sources of structural redundancies

2The latest DBpedia version comprises more than 13 billion triples from 128 different languages.
Shttp://linkeddata.org/

underlying RDF, i.e., common patterns emerging while describing a subject. Note that, although RDF is
a flexible, schema-relaxed model, data represented in RDF come with different levels of structuredness [12],
from structured data (e.g. converted from a relational database) to unstructured data (e.g. from Wikipedia).

In this paper, we analyze common patterns related to the use of predicates and objects in real-world
RDF datasets, and show three structural sources of redundancy (introduced in Section [4) underlying the
schema-relaxed nature of RDF. This knowledge is then used to describe and implement a new preprocessor:
RDF-TR (RDF Triples Reorganizer), which reorganizes triples to improve their effective encoding. Then,
we practically show the application of the technique for the aforementioned HDT and k2-triples compressors,
renamed HDT++ and k?-triples++ respectively. Our evaluation using real-world RDF datasets shows that
the improved compressors outperform their original effectiveness up to 2.3 times, and speed up decompression
time up to 3.4 times in HDT and 2.4 times in the case of k2-triples.

The rest of the paper is organized as follows. Section[2describes the three different sources of redundancy
underlying RDF datasets and summarizes the current state of the art for RDF compression. Section [3]
provides background on data compression and compact data structures. Section [4| presents the concrete
foundations and sources of redundancy addressed by RDF-TR. The RDF-TR reorganization algorithm is
fully detailed in Section [5] together with the configuration of compact data structures required to implement
it and how the original triples can be decoded. Sections [6] and [7] illustrate the integration of RDF-TR
with existing RDF compressors. In particular, we introduce HDT++ and k?-triples++, the variants of
HDT and k2-triples that compress the “reorganized triples” . Section [8| conducts an exhaustive empirical
evaluation of RDF-TR with different real-world datasets, comparing HDT++ and k?-triples++ to their

original counterparts. Finally, Section [J] concludes and devises future lines of research.

2. Preliminaries and State of the Art

The adoption of RDF as the main model to represent information in the Web of Data, and the development
of ambitious projects such as Linked Open Data, has fostered its use in emerging areas such as Knowledge
Graphs [T, Smart Cities or the Web Of Things, and critical sectors such as healthcare and biomedecine [25].
For instance, Bio2RDF consists of around 11 billion triples generated from 35 important biomedical data
sources, such as DrugBank, PharmGKB and KEGG. Such ever-increasing dataset sizes present scalability
challenges [14] and require efficient mechanisms to represent and consume RDF data.

In this context, RDF compression has emerged as an active research and development field over the past
years [30]. Although universal compressors (e.g., gzip, bzip2, etc) leverage highly verbose RDF serializations,
their effectiveness is far from optimal. In general, universal compressors are not able to detect and exploit
all types of redundancy underlying RDF data. We first review these sources of redundancy and then analyze

state-of-the-art RDF compressors.

2.1. Sources of RDF redundancies

RDF redundancies are categorized at the semantic, symbolic and syntactic level [40]. An RDF graph
has semantic redundancy when the information it contains can be represented with fewer triples. Semantic
compressors are able to detect this type of redundancy and eliminate extra triples from the original dataset
[21]. Then, using inference techniques, the original dataset can be recreated, or at least, a semantically
equivalent graph can be obtained. Pure semantic compressors are not so effective by themselves, hence they
are often combined with symbolic and/or syntactic compressors.

Symbolic compression involves removing unnecessary repetitions of symbols in a dataset. This is achieved
by encoding each element of the RDF graph (URIs, blank nodes and literals) with a corresponding integer
identifier (ID), whose value is stored in a dictionary. In turn, these dictionaries provide at least two primitive
operations to translate RDF terms to IDs, and vice versa. Note that RDF dictionaries reach non-negligible
sizes and, in practice, they must also be compressed [33]. A survey on compressed string dictionaries
[32] shows that URI dictionaries can be highly compressed (up to 5% of their original size), while literal
dictionaries need more space due to their more heterogeneous composition. In both cases, translation queries
can be resolved efficiently (e.g., in 1 — 2us per operation in a standard setup [32]).

Syntactic redundancy depends on the RDF graph serialization and also on the underlying graph structure.
The simplest RDF syntaxes, such as NTriples [5], write all triples to serialize this subgraph, e.g., one per
line. That is, the same subject value would be repeated n times in the resulting file. This drawback can be
addressed by simply grouping triples by subject, i.e., considering that the subject structure is described as an
adjacency list of (predicate,object) pairs. RDF syntaxes, such as Turtle [6], make similar decisions to obtain
more compact serializations. RDF compression at this level is traditionally achieved by serializations that
firstly reorganize the structure of the graph in order to leverage such redundancies. In addition, serializations
can use compact data structures (a brief background is provided in Section [3)) to achieve higher levels of

compression [30].

2.2. RDF Compression

The current state of the art comprises a rich and diverse set of compressors for RDF data. These
are mainly lossless compressors (because they preserve the original information in the dataset), yet lossy
compressors are also emerging [24]. We focus on the former and classify them into physical and logical
compressors if they mainly focus on symbolic/syntactic or semantic redundancy respectively. Techniques

performing at both physical and logical levels are referred to as hybrid compressors.

Physical compressors. These techniques adapt traditional concepts from data compression to the particu-
lar case of RDF . On the one hand, they capture and remove symbolic redundancy from RDF terms by using

compressed string dictionaries [32]. As explained above, this decision enables the original RDF graph to be

processed as an ID-graph, in which IDs refer to the corresponding terms in the dictionary. On the other hand,
different graph encodings have been proposed to compress the resulting ID-graph. Although this approach
is widely implemented, there are some physical compressors which tune it from different perspectives.
HDT [I7] pioneers this family of RDF compressors and proposes a simple but effective encoding using
three main components: i) the Header provides descriptive metadata about the dataset; ii) the Dictionary
maps RDF terms to IDs; and iii) the Triples component encodes the underlying graph. The Header is used
for dataset discovery and processing, but it is not relevant for compression purposes. We focus on the other

two components:

e The Dictionary processes RDF terms according to the role they play in the dataset (subjects, predicates,
or objects), but organizes them into four disjoint partitions: one for each role, and a fourth one
comprising terms which play both subject and object roles. This organization was originally introduced
in [2] and allows subject-object terms to be encoded only once. It is a relevant improvement if one
considers that, in real-world datasets, up to 60% of the terms are in fact subject-object terms [33].
Let us refer to |SO|,|S|,]|O], and |P| as the number of different subjects-objects, total subjects, total
objects, and total predicates in the dataset, respectively. Then, term-ID mappings are performed as
follows: [1,]SO]] for subjects-objects, [|SO| + 1, |S|] for exclusive subjects, [|SO| + 1,|0]] for exclusive
objects, and |P| for predicates. Each dictionary partition is encoded (by default) using the prefix-
based Front-Coding compression [32], which ensures very efficient dictionary operations and excellent
compression ratios for IRIs. In contrast, this differential encoding is not so effective for literals, hence
HDT also provides a self-indexed dictionary for literals [33], which saves space storage at the price of less
efficient retrieval operations. Both types of dictionaries can be parameterized to optimize space/time

tradeoffs.

e The Triples component encodes the resulting ID-graph as a set of |S| adjacency lists, one per different
subject in the dataset. Each list is modelled as a 3-level tree where the corresponding subject is
represented at the root; the middle level sorts all predicate IDs related to the subject; while the leaves
organize all object IDs related to each (subject, predicate) pair. These trees are encoded using two
integer sequences for predicates and objects (subjects are represented implicitly) and two additional
bitsequences to represent the shape of the trees. More details about the HDT Triples component can

be found in Section [6.1]

HDT has been widely adopted by the Semantic Web community because of its simplicity, its compression

levels and its performance for data retrieval operations. It is worth noting that HDT is successfully deployed

in client-side query processors, such as Triple Pattern Fragmentsﬂ [50] and SAGEﬂ [35], indexing/reasoning
systems like HDT-FoQ [3I] or WaterFowl [I1], or recommender systems [I9] among others. However, its
encoding of the graph topology is quite simple and further compression could be achieved. This is addressed
by k2-triples [1], a compressor that organizes RDF terms in the same four partitions used by HDT, but
performs a more effective ID-graph encoding. In particular, k2-triples implements a predicate-based parti-
tioning of the ID-graph and obtains | P| unlabelled graphs. Each of these predicate-graphs is independently
encoded as a binary matrix M,,, where M, [i, j] = 1 means that the subject ¢ and the object j are related by
the predicate p, and 0 otherwise. These adjacency matrices, which tend to be sparse, are compressed using
the (universal) k*-trees technique [9], reporting the best compression ratios in the current state of the art of
RDF compressors. More details about k2-triples are provided in Section

Two other physical compressors have been published more recently, RDFCSA [§] and OFR [46]. Their
contribution is quite different. On the one hand, RDFCSA excels in data retrieval at the cost of larger space
requirements, hence it does not outperform the best RDF compressors in the state of the art. RDFCSA first
performs the same dictionary transformation explained above. Then, it uses Sadakane’s CSA (Compressed
Suffiz Array) [42] to encode the ID-graph. In comparison to those RDF compressors providing efficient
triple retrieval, RDFCSA competes with HDT in effectiveness, but it does not reach compression ratios
reported by k2-triples. On the other hand, OFR is a two-stage compressor that mainly focuses on reducing
storage requirements, disregarding triples retrieval needs. In the first stage, OFR also isolates terms and
triples. Terms are organized into a structure of six sub-dictionaries, first performing partitions by subject,
predicate, and object, and then building dictionaries for each different class of term inside them. These
dictionaries are run-length and delta compressed [43]. Regarding triples, they are sorted by (object,subject)
value and also run-length and delta encoding to exploit multiple object occurrences and the non-decreasing
order of the consecutive subjects. Dictionary and triples outputs are then re-compressed during the second
stage. The authors consider two universal compressors (zip and 7zip) to remove all remaining redundancy
after OFR reorganization. Compression ratios reported by OFR, combined with zip and 7zip, outperform
that achieved by HDT+zip and HDT+7zip. Despite of this achievement, these numbers are not enough
to compare whether a standalone OFR, (with no universal compression afterwards) improves HDT, or the
techniques previously explained.

Finally, gRePair [28] extends the RePair algorithm to cater for graphs, including RDF graphs. In short,
gRePair builds a grammar with the relationships in the graph and replaces the original graph by another
with the rules of the corresponding grammar. gRePair is effective in very specific scenarios, i.e., when the

graph has very few predicates and where there is a large number of repetitions in subject-predicate or object-

4nttp://linkeddatafragments.org/
Shttp://sage.univ-nantes.fr/

predicate relationships. In addition, gRePair has not been compared with specific RDF compressors, but
with the interleaved k2-tree method, which is comparable to k2-triples. In such scenarios, gRePair obtains the
best compression, up to 10 times w.r.t the k2-tree, in a graph with a single rdf :type predicate. In contrast,
when the number of predicates increases, the advantage over the k2-tree decreases, and no evaluation is

provided with large and complete real-world datasets.

Logical compressors. These compressors propose different strategies to detect redundant triples (those
that could be inferred) and to obtain the canonical subgraphs, which are finally encoded. Initial approaches
[21, B4] consider the notion of lean subgraph. This concept refers to the smallest instance of the original
graph which preserves the ground part of the graph (non-blank nodes and edges connecting them), and
maps redundant blank nodes to labels already existing in the graph or to other blank nodes. Ianone et
al. [2I] conclude that the number of triples removed by a lean subgraph greatly depends on the graph
features, but a reasonable lower limit is two triples removed] per blank node. Meier [34] states that semantic
redundancy is still possible in lean graphs because some of their triples can be derived from others. The
author introduces a user-specific redundancy elimination technique based on Datalog-like rules. In short, this
approach understands rules in a generative way; i.e., r(X,Y) — ¢(Y, X) means that ¢(Y, X) are generated
from r(X,Y). Thus, if r(a,b) exists in the dataset, it is not necessary to store t(b,a), because it can be
inferred. Despite its theoretical contribution, this technique is only well-suited when user-defined rules are
explicitly specified. The work of Pichler et al. [41] goes a step further and studies how rules, constraints, and
queries influence graph minimization. Although it provides a relevant complexity analysis, it does not report
any practical results. In fact, Joshi et al. [23] note that this approach is application dependent, hindering
their adoption for compressing the ever growing RDF datasets.

The rule-based (RB) compression method [23] is one of the first approaches reporting effectiveness num-
bers. It uses mining techniques to detect two types of frequent patterns which are then used as generative
rules to remove all triples that can be inferred from such patterns. On the one hand, intra-property patterns
encompass groups of objects which are commonly used for subject description through a particular predicate.
On the other hand, inter-property patterns group pairs of predicate-object values related to many subjects.
Once the patterns are discovered, RB splits the dataset into two disjoint sets of triples: i) the dormant set
preserves (in an uncompressed way) those triples to which no inference rule can be applied, and ii) the active
set differentially encodes all triples to which rules are applied for inferring new triples. While intra-property
patterns are not so effective, inter-property allows up to 50% of the original triples to be removed. However,
it has no a significant effect on compression ratios by itself, and RB must be combined with HDT to compete
with physical compressors.

The use of frequent patterns does not capture all semantic associations in the dataset [49], so effectiveness

can be improved if more expressive rules are considered. The technique proposed in [49] introduces a mining

algorithm focused on Horn rules. A Horn rule can be simply expressed as B = H, where B = BiAByA... B,
is the body and H is the head. Both B; and H are of the form (?s pred 7o), where pred is any predicate
relating a subject and an object (which can be bounded or left as variables). An instantiation of the rule
is considered invalid when a set of triples matches the body rule, but the expected heading triple does not
exist in the dataset. On the contrary, a valid instantiation occurs when the corresponding heading triple is in
the dataset. Once these Horn Rules are detected, all triples matching the head parts are discarded and the
remaining triples are encoded by following the RB strategy. In this case, the active set contains all triples
used in the body rules, and the dormant set comprises triples which do not match any rule. It is worth noting
that the latter set also contains conflicting triples. That is, triples that are part of an invalid instantiation
of a rule and a valid instantiation of another rule. This Horn rule-based compressor outperforms RB in
compression ratio at the price of less efficient compression/decompression processes.

More recently, Guang et al. [I8] proposed a new rule-based compressor that uses OWL2RL rules [36] to
remove redundant triples. First, it analyzes subject-object entities to discover common subgraph patterns.
These entity description patterns (EDPs) are quite similar to the predicate families that we previously pro-
posed in our seminal paper [20] (further detailed in Section. That is, for a given entity e, the corresponding
EDP comprises i) all predicates p; such that (e,p;,0.) exists in the dataset, and (optionally) ii) the class
value v if the triple (e,rdf:type,v) is also present. Additionally, an EDP contains all predicates p; such
that (s,,p;,e). The original dataset can be transformed into a set of EDPs by grouping entities which are
described by the same EDP. Each group is then independently processed and OWL2RL rules are matched
with p; and p; predicates in the EDP. An EDPRule is added when the EDP satisfies a particular rule, and
its inferred triples are removed. Finally, the remaining s, and o, values are also encoded in the context
of their EDP. The authors do not provide compression ratios, but report that their approach detects up to

32.77% of redundant triples. In quantitative terms, this result does not improve the previous compressors.

Hybrid compressors. These compressors combine the best of both worlds. On the one hand, they detect
and remove syntactic/symbolic redundancy at the serialization level. On the other hand, they consider
different strategies to compact the graph by deleting semantic redundancy at the logical level. Although this
form of compressors has barely been researched until now, interesting insights are provided in [39] 48].

The graph-pattern based (GPB) compressor [39] was published concurrently with our seminal paper [20],
and has some common points with our current approach, as explained in the following sections. GPB
converts the original dataset into a sequence of entity description blocks (EDBs), which group all triples that
share the same subject. Each EDB is described by the set of predicates related to the subject and all types
assigned to them. EDBs are then grouped into entity description patterns (EDPs) which comprise all EDBs
with the same description. The current notion of EDP is similar to that explained above. That is, an EDP

is a subgraph pattern that describes the structure of predicates and type values for a subset of subjects in

the dataset. Each EDP is encoded as a pair which comprises the corresponding pattern and all instances
matching therrﬁ This serialization is called Level 0 method (LV0). GPB introduces a merge operator that
joins EDBs by their relations. This strategy is referred to as the Level 1 method (LV1). Finally, the Level 2
method (LV2) recursively joins EDBs merged in previous stages. Experimental results show that GPB-LV2
is able to detect and remove many more triples than RB, reporting better compression ratios. It is clear
evidence that GPB performs better at the logical level. Regarding its effectiveness at the physical level,
the paper does not compare GPB results to those achieved by other compressors. However, the authors
emphasize the potential improvements of GPB due to its ability to remove syntactic redundancy.

Finally, RDF2NormRDF [48] is an RDF normalization approach, which cleans and eliminates redun-
dancies from RDF datasets as a means of converging into a canonical representation. Thus, it is not a
compressor by itself. At the logical level, it removes edge and node duplication by applying particular trans-
formation rules. From a critical point of view, this problem is partially addressed by physical compressors
when removing duplicate triples and assigning unique IDs to literals used in more than one triple. However,
physical compressors do not deal with blank nodes particularities, preserving their inner redundancy. At
the physical level, RDF2NormRDF introduces additional rules to deal with namespace issues and to provide
consistent statement orders. It also normalizes how types and language tags are effectively encoded. The
normalization process implemented by RDF2NormRDF does not detect more logical /physical redundancy
than HDT, but it outperforms HDT for an experimental setup that only comprises small datasets. Besides
its compression achievements, RDF2NormRDF outputs normalized datasets that verify all desired quality

properties (completeness, minimality, compliance and consistency).

3. Data Compression and Coding

Data compression consists of reducing the number of bits required to encode data [43]. In this paper,
we only focus on lossless compression (i.e., techniques that are able to reconstruct the original data from its
compressed representation), and particularly, on the encoding of integer numbers. In the following, we first
review the concept of Variable-Length codes (VLCs) [44], and we summarize state-of-the-art encodings of
integer sequences. We then introduce the innovative concept of compact data structures [37] and delve into
more details of functional bitsequences. Finally, we review compact data structures for graphs, which are

then used in our approach.

3.1. Variable-Length Codes

Some prominent RDF compressors (such as HDT [I7]) first transform the RDF dataset into a dictionary

of terms and a graph of IDs, before applying additional compression techniques. This allows symbolic

6Instances are encoded as IDs based on their MD5 hashes.

10

and syntactic redundancy to be detected and removed independently, improving the overall compression
effectiveness. Focusing on the ID-graph, its adjacency information is first modelled in the form of lists or
matrices, and then these structures are encoded.

Variable-Length codes (VLCs) [44] are often used to encode adjacency information, represented in the
form of integer IDs. Given an alphabet of integers A = {1,2,...,0}, a VLC maps each value into a variable-
length sequence of bits. Thus, VLCs consist of short and long codewords, i.e., compression is optimized when
the most frequent integers are encoded with the shortest codewords. Note that VLCs assign the shortest
codewords to the initial elements of the alphabet, hence IDs often need to be rearranged to meet this premise.

Different forms of variable-length compression have been proposed in the state of the art [44]. In the
following, we focus on the so-called Elias codes [13], which are practically used in the implementation of our
approach. The gamma code: 7 is the simplest one and encodes any positive integer n in binary, preceded
by |logy(n)| 0-bits. For instance, the binary encoding of 17 is 10001 and [log,(17)] = 4, so ¥(17) =
000010001. 7 uses 1 + 2|log,(n)] bits to encode an integer n. In contrast to 7, the Elias delta code: ¢ only
uses 1 + [logy(n)] + 2|logy(1 + [logy(n)])] bits to represent n. In this case, the delta code concatenates
~v(|logs(n)| + 1), followed by the binary representation of the number excluding the first 1-bit (since it is
implicit); e.g., to encode 17, its gamma representation is first obtained: ~y(|log,(17)] +1) = ~v(4+1) =
~(5) =00101, and then the binary encoding of 17 is added (without the first 1-bit): 001010001.

3.2. Encoding of Integer Sequences

Although VLCs can be directly used to compress individual integer IDs from the ID-graph, they disregard
potential common regularities in adjacency lists. It is worth noting that adjacency lists are often sequences
of increasing IDs, which introduces an additional redundancy.

Let us suppose that we want to encode the adjacency list L={1000, 1004, 1012, 1019, 1021} using
Elias gamma. In this case, each ID can be directly compressed as v(1000),~(1004), etc. Thus, the length
of the corresponding codewords will be proportional to the corresponding ID value. In this case, 21-bit
codewords are necessary to encode each ID, so encoding the whole list takes 105 bits.

Gap-encoding is often used to compress posting lists in Information Retrieval systems, before using VLCs.
Gap-encoding leverages that gaps between consecutive IDs in the list are short, so each ID can be rewritten
as the difference to its predecessor; i.e., L'[i] = L[i] — L[¢ — 1]. This also applies to the case of adjacency
lists. Assuming that the first element is always encoded “as is”, the previous list example can be encoded
as L={1000, 4, 8, 7, 2}. Thus, encoding the first ID takes 21 bits, but the remaining values are encoded
using 5, 7, 7, and 3 bits, respectively. Gap-encoding is effective in terms of space saving, but it introduces
additional costs for decoding purposes. Note that to obtain the ¢ —th ID of the list, the i — 1 previous values

must be decoded. In practice, gap-compressed sequences are sampled and absolute values are preserved

11

every k positions. Thus, in the worst case, only k — 1 values are decoded until the desired value can be

obtained.

3.8. Compact Data Structures

Compact data structures are memory-efficient structures that arrange different types of data in a reduced
space, and retain querying capabilities over the compressed representation [37]. All these approaches are

built on top of functional bitsequences,B[1,n], that provide three main operations:
e access(B,1) returns BJi], for any 1 <1i < n.

e rank,(B, %) counts the number of occurrences of the bit v (i.e. v ={0,1}) in B[1,4], for any 1 < i < n.

Note that rank,(B,0) = 0.

e select,(B,) returns the position of the j — th occurrence of the bit v (i.e. v ={0,1}) in B, for any
j > 0. Note that select,(B,0) =0 and select,(B,j) =n+ 1if j > rank,(B,n).

Bitsequences must be enhanced to ensure an efficient performance for these operations. On the one hand,
plain approaches store the bitsequence as a bit array of n elements, and add additional structures on top
of it to ensure competitive time resolution. In our approach, we use the structure proposed by [10], which
answers select in time O(1) and pays a space overhead < 0.2n bits (note that RDF-TR algorithms do not
use rank, and access can be directly performed on the bit array in constant time). On the other hand,
compressed approaches [37] exploit different forms of bit redundancy to encode the bitsequence in compressed
space while answering the previous operations efficiently. None of the approaches introduced in this paper
use this class of bitsequences.

Different innovative compact data structures have been proposed on top of bitsequences and their efficient

operations, implementing trees, graphs, or grids, among others [37].

3.4. Encoding of Graphs

Given the scope of this paper and the graph-based RDF model, we hereinafter focus on compact data
structures for directed graphs. A directed graph G = (V, FE) is composed of a set of vertices V and a set
of edges E C V x V, being n = |V| and e = |E|. Typically, these structures should provide the following

operations [37]:
e adj(G,v,u) returns if the edge (v,u) € E.
e neigh(G,v) returns the list of direct neighbors of v; i.e., {u, (v,u) € E}.

e rneigh(G,v) returns the list of reverse neighbors of v; i.e., {u, (u,v) € E}.

12

e outdegree(G,v) returns the number of direct neighbors of v; i.e., [neigh(G,v)].

e indegree(G,v) returns the number of reverse neighbors of v; i.e., |[rneigh(G,v)|.

In the following, we distinguish between compact data structures encoding direct graphs as adjacency
lists or adjacency matrices. To illustrate these approaches, we consider a directed graph composed of n = 6

vertices and a set of e = 10 edges: E = {(1,2),(1,3),(2,4),(3,2),(3,4),(3,5),(4,5), (4,6),(5,6), (6,1)}.

Adjacency Lists. The simplest compact data structure regards the graph as a sequence of adjacency lists,
each one listing the direct neighbors of each vertex. For instance, HDT [I7] uses adjacency list encoding as
part of its Bitmap Triples component.

Typically, an adjacency list structure, AL, concatenates all adjacency lists into a single sequence, S, and
a bitsequence, B, which is used to mark the last element of each list. This configuration is shown in Figure
representing the previous example. In this case, six adjacency lists (one per vertex) are concatenated,
hence six bits are activated in B (positions 2, 3, 6, 8, 9, and 10). Thus, the list for vertex 1 is encoded in

S[1,2], the list for vertex 2 in S[3], vertex 3 in S[4, 6], and so on.

.| BEB0B0BE00E
B O11 0010111

1 2 3 4 5 6 7 8 9 10
.

Vi V2 V3 Va Vs Ve

Figure 3: Example of adjacency list encoding.

Adjacency list encoding encompasses an integer sequence, S, and a functional bitsequence, B. Note
that S can be compressed as explained in Section [3.2] or can preserve IDs in plain form, i.e., each ID is
encoded using [logy(n)] bits. In turn, plain or compressed approaches can also be used to implement B
and its operations [37]. Regardless of the particular implementation, adjacency list encoding allows the
aforementioned adj, neigh, and outdegree operations to be efficiently performed, as detailed below. In
contrast, this organization results inefficient in operations on reverse neighbors unless the transposed graph
is encoded, doubling the required space [37].

The resolution of adj, neigh, and outdegree on vertex v first requires the limits of its adjacency list
to be computed. The getListLimits function, in Algorithm |1} shows how the left and right limits can be
obtained using select operations. For instance, getListLimits (AL, 3) obtains the limits of the adjacency
list of vertex 3, which is encoded from begin = select;(AL.B,2) + 1 =4, to end = selecti(AL.B,3) = 6.

Then, each operation proceeds as follows:

13

Algorithm 1: getListLimits(AL,v) Algorithm 2: adj(AL,v,u)

1 begin < select1(AL.B,v —1)+1; 1 (begin,end) < getListLimits(AL,v);

2 end + selecti(AL.B,v); 2 pos < binarySearch(AL.S[begin|, AL.S[end],u);
3 return (begin, end); 3 return pos;

Algorithm 3: neigh(G,v) Algorithm 4: out(G,v)

1 (begin,end) < getListLimits(AL,v); 1 (begin,end) < getListLimits(AL,v);

2 neighbors < [AL.S[begin] ... AL.S[end]]; 2 return end — begin + 1;

3 return neighbors;

e adj(G,v,u) looks for the vertex u in S[begin, end] using a binary search (see Algorithm. If (v,u) € E,
the operation returns its (local) position in the corresponding adjacency list of v, or —1 otherwise. For
instance, in adj(AL, 3,4), i.e., checking the existence of the edge (3,4), the value 4 is binary searched
in B[4,6]. Thus, adj(AL,3,4) = 2, because 4 is found in the second element of the corresponding

adjacency list of vertex 3. It is trivial to convert the result to a boolean output.

e neigh(G,v) returns an array that includes all values in S[begin, end) (see Algorithm. In our example,

neigh(AL,3) returns values in B[4,6] = {2,4,5}.

e outdegree(G,v) returns end—begin+1 (see Algorithm. In the previous example, outdegree(AL, 3) =
6—-44+1=3.

Note that this encoding also provides direct access to any element of an adjacency list. This functionality
is commonly invoked as neigh(G, v)[j]. It returns the j-th direct neighbor of v, which is located at S[begin+
j—1]; e.g., neigh(AL, 3)[2] = 4, because S[5] = 4.

Finally, it is worth noting that this encoding assumes that all lists have at least one element. Otherwise,
if empty lists are allowed, a slight modification must be introduced. In this case, 1-bits still mark the end
of the lists, but all elements in a list are now explicitly encoded with 0-bits. For instance, the bitsequence
B’ =[011001] encodes three adjacency lists: the first one contains one element, the second list is empty, and
the third list has two elements. It also causes a slight modification in the getListLimits(v) function, which
now obtains the left limit as pos; =selecti(v — 1) — (v — 1), and the right one as: pos, =selecty(v) — v.

Note that if pos, = pos;, the corresponding list is empty. In this case, neigh(G,v) = 0.

Adjacency Matrices. A nalve approach to encode adjacency matrices is using a vector of vectors. As shown
in Figure [for our previous example, this approach uses a main vector V', of size n, where each cell stores a
pointer to a secondary vector L; (1 <4 < n), which encodes the neighbors of each vertex in the graph. This

structure is preferable to the previous one when the average outdegrees are large, because pointers demand

14

V2

V3

Va

Vs

Ve

Figure 4: Example of adjacency matrix encoding using a vector of vectors.

fewer bits than the bitsequence. In addition, the independent encoding of each list L; makes it possible to
use more effective techniques to compress the IDs in each list.
Similarly to the previous structure, this approach resolves adj, neigh, and outdegree very efficiently,

but it is not a good choice for applications that require operations on reverse neighbors. In particular:
e adj(G,v,u) binary searches u in the vector L.
e The result of neigh(G,v) is the vector L, itself.
e outdegree(G,v) is easily obtained as the length of L,,.

More sophisticated techniques exploit the sparseness and/or clustering features of adjacency matrices to
reach high compression ratios. In this respect, the k2-tree [9] approach is one of the most-used compact data
structures for compressing directed graphs.

A k2-tree models a graph G(V, E) as a binary matrix M of size m x m, where m is the minimum power
of k that is greater than n. Thus, M[i,j] = 1 iff the edge (i,j) € E. M is recursively subdivided into k?
submatrices, which are (conceptually) organized in a tree and encoded using a bitsequence T: 1-bit means
that the corresponding submatrix has at least one non-empty cell, being 0 otherwise. The last level of the
tree encodes matrix cell values using another bitsequence L, where 1-bits mean that the corresponding cells
encode an existing edge in G.

Figure [5| illustrates the resulting k?-tree for our graph example. It is modelled as an 8 x 8 matrix (note
that the two right-most columns and the two bottom rows are filled with zeroes to reach the required matrix
size, even though they do not encode any existing vertex). The conceptual tree is depicted on the right side,
and the resulting bitsequences T and L are shown below. Note that only 7" and L are actually encoded.

A k2-tree structure can be efficiently navigated by rows (directed neighbor operations) or by columns
(reverse neighbor operations) using rank and select on the bitsequences (see [9] for more details). Besides
it supports the adj operation, and different forms of range-based queries. Thus, the k2-tree is a fully
functional data structure for graph encoding that also ensures high compression ratio scenarios, including

RDF compression [I].

15

1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 o

‘ 1)1 AN N A ;"
5 1 0100 1010 0100 0100 1011 0010 0010
s |1

T11111111001010001000
LO1001010010001001011001000110

Figure 5: Example of matrix encoding using a k2-tree.

4. RDF-TR Foundations

RDF is described as a schema-relaxed model in which data with different degrees of structure can be
integrated. However, this flexibility is a double-edged sword. At the logical level, RDF is an effective way
to address data variety and allows structured and semi-structured data to be mixed in a single representa-
tion. Conversely, this lack of a fixed schema prevents RDF compressors from assuming particular subgraph
structures when, in fact, RDF data present many schema-based features. As previously explained, this is a
source of redundancy that introduces significant overheads in RDF serializations.

RDF-TR foundations are drawn from structural/semantic RDF features and focus on improving com-
pression effectiveness. These features are related to the practical use of predicates and objects in real-world

RDF datasets.

4.1. Predicates

The set of predicates used to describe a subject may vary greatly within a dataset. For instance, let us
suppose that an RDF dataset represents information about cinema. The set of predicates used to describe
people (name, age, nationality, etc.) are different from those used to categorize a movie (title, director,
duration, etc.) and both coexist in the same dataset. Moreover, resources can be modelled with different
levels of detail (semi-structured descriptions): some people can be described using their name and age, others
through their name and nationality, etc.

It is nonetheless true that, given the descriptive character of RDF, there exist predicate repetitions
when describing resources of the same nature (e.g., among people). Although the number of predicate
combinations (referred to as predicate families) used for subject descriptions theoretically grows with the
number of predicates, the number of such combinations is bounded, even in datasets with a light schema

[15]. In the following, we formalize the concept of predicate family based on the notion of predicate lists [I5].

Definition 1 (Predicate Family). Let G be an RDF graph, and Sq, P, O¢ be the sets of subjects, pred-
icates and objects in G. We define the predicate family Fs as the set of predicates (labels) related to the

16

@prefix ex: <http://example.org/>

@prefix prop: <http://example.org/prop/>) §
@prefix class: <http://example.org/class/> ‘: “Morgan Freeman” :‘
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> ~— -

lprop:name

~. prop:name N p . rdf:type
“Tim Robbins” J————{ ex:Tim Robbins) (_ex:Morgan_Freeman)
Tprop:director
g) ~ rdf:type . prop:starring - - B . rdf:type -
i class:film :<—yp\ex:DeadiMan)Jalklngi—»x ex:Sean_Penn —»i class:actor)

Iprop:title Tprop:name

) - o . (' “Sean Penn”
(_“Dead Man Walking” /)

Families Subgraph 1 Subgraph 2 ‘

F1 {rdf:type, prop:name}) B § [lesssastes ~ ‘ ex:Dead Man_Walking
(ex:Morgan Freeman)-< /
= ~ ‘ “Morgan Freeman” _ -
F2 | (prop:director, prop:name} e § -

Subgraph 3 ‘

(ex:T im_Robbins

‘ “Tim Robbins”

F3 {rdf:type, prop:starring, prop:title} P

. | class:actor

ex:Sean_Penn N W "
- 7| “sean Penn

T -—. ‘ class:movie

‘ {:ex:Dead_Man_Walking\]< ex:Sean_Penn

—_ ‘ “Dead Man Walking”

Figure 6: Example of an RDF graph and its predicate families.

subject s € Sg. That is, the set of predicates Fs = {p | 3z € Og,p € Pg,(s,p,2) € G}. We denote as Fg,
or just I, the set of different predicate families in G. That is, Fg = {F,,x € Sg}, hence the number of

predicate families in the graph G is |Fg| (or just |F|).

The predicate family concept is equivalent to the Characteristic set definition introduced by Neumann et
al. [38], and it is used to split the graph into subgraphs, each one containing all subjects described with the
same set of predicates. Once the subjects are grouped, their predicate structure can be implicitly encoded
attending to their corresponding predicate family.

Figure [f] illustrates the use of predicate families for a given RDF excerpt about films, which extends
our previous example in Figure In this example, we find three different families: F; ={rdf:type,
prop:name}; Fp ={prop:director, prop:name}; and F3 ={rdf:type, prop:starring,prop:title}, so subject
descriptions can be split into three disjoint subgraphs which implicitly encode the corresponding predicate
structures. For instance, the objects {class:actor, ‘‘Morgan Freeman’’} describe the corresponsing subject
<http://example.org/Morgan Freeman> within the scope of the first subgraph. Thus, we can infer that the
subject and the given objects are linked through the predicates of the first family (rdf:type, and prop:name).

All this sets the basis of our first foundation, which guides the design of our proposal:

Foundation 1. A predicate family models a subgraph pattern that comprises all predicates to describe a set

17

© Families Subgraph 1 Subgraph 2
i

F1 | (rdf:type,prop:name}) T) [class:actor e - N ‘ ex:Dead Man Walking

&=) : (:Tim_Robbi) < N
(_ex:Morgan_Freeman ""‘\I “Morgan Freeman” \ Emsudig obbins) ‘ “Tim Robbins”

FZ {prop:director, prop:name} S N — N
1 F3 {rdf:type, prop:starring, prop:title} [. Subgraph 3 i
| ex:Sean Penn \)\ og = . |

- / ean Penn p
i I I — ‘ class:movie i
! {f’ex:DeadﬁManj\lalking\]«’ ex:Sean_Penn !
' ﬂ —_—_ ‘ “Dead Man Walking” '
' Families Subgraph 1 Subgraph 2 ‘
i
{prop:name} {class:actor} T . .) == (. .
F1 V cscoitomer_peecmsn :_} Morgan Freeman ¢ ox:Tin Robbins \‘J ex:Dead Man_Walking
- g ~ - ~ | “Tim Robbins”
FZ {prop:director, prop:name} J—
ex:Sean_Penn \)—} “Sean Penn”
F3 {prop:starring,prop:title} | {class:movie} g

Subgraph 3
- ‘ ex:Sean_Penn

(ex:Dead_Man_Walking)-<
\ex:Dead_Man_Walking) | “Dead Man Walking”

Figure 7: Integration of rdf:type values in predicate families.

of subjects. Then, the original RDF graph can be split into as many subgraphs as predicate families (|F|),
ensuring that all subjects in a subgraph are described with the same predicates. In this way, each subject
can be described as the family it belongs to and a sequence of objects (for each predicate of the family).
Note that the corresponding predicates will be inferred from its predicate family. This decision will improve
compression effectiveness because predicate occurrences are no longer encoded for each subject, but only as
part of the corresponding families. In practice, the number of predicate families will be much lower than the

number of subjects: |F| << |S].

The second RDF-TRr foundation focuses on removing redundancy in the use of rdf:type. This predicate
provides the class of the subject being described. Although rdf:type is not mandatory, it is widely used in
practice to categorize the information in the dataset. Consequently, the rdf:type predicate typically occurs
in many triples.

In our previous example, both subjects in the first subgraph belongs to class:actor. It seems reasonable
that subjects of the same class are described with the same predicates, i.e., the same predicate family. Thus,
it is not necessary for the class value to be encoded for each subject in the subgraph, but to relate this value

to the predicate family that describes the corresponding subgraph.

Definition 2 (Typed Predicate Family). Let t be the rdf:type predicate, F! the predicate family F
where we remove rdf:type, that is F! = {p | 32 € Og,p € Pg,p # t,(s,p,2z) € G}, and Cs all the class
values that define a subject, Cs = {o | (s,t,0) € G}. Formally speaking, the predicate families enriched
with rdf :type values, F. can be defined as F! = (F!,Cs). That is, a typed predicate family is a pair with a

18

predicate family and class values, such that there exists at least one subject in that predicate family described
with the given class value(s). Note that subjects can be potentially described with the same predicate family,
but different class values (e.g., a director and an actor could be described with the same predicates). In this
case, a predicate family can result in different typed predicate families, one for each different combination of
class values related to its subjects. Note that we consider the particular case where Cs =0 (no class values)
or F! =0 (i.e., the original family Fs only has rdf:type). Therefore, the total set of predicate families in a
dataset, F', is defined as F' = {F!|s € Sg}.

Figure[7]shows the resulting subgraph configuration when rdf : type values are encoded as part of the predicate
family. All class values are removed from the corresponding subject descriptions and are now linked to
predicate families. For instance, the subject <http://example.org/Morgan Freeman>, within the first subgraph,
is explicitly described as {‘‘Morgan Freeman’’}, while the {class:actor} value can be inferred from the first

predicate family. This establishes the principles of the second foundation of RDF-TR.

Foundation 2. Enriching predicate families with rdf:type values allows the final serialization to discard all
RDF triples involving such predicate. Thus, this decision favors compression effectiveness by considering the
large number of triples using rdf :type in real-world datasets. For simplicity, we hereinafter use “predicate
families” (F) to refer to predicate families enriched with rdf :type values (F'). We also consider that families
are repeated among subjects, hence we hereinafter refer to the different predicate families, Fy, Fy, - F,,

where z is the number of different families in the dataset.

4.2. Objects

Schema-based redundancies are often referred to the predicates used to describe subjects, but one can
also find regularities in objects. RDF generally allows any predicate to be connected with any object (except
for range restrictions in the definition of some predicates), but object values tend to be tightly bound to a
limited number of predicates. In other words, predicate values come from a limited and well-defined range.
For example, as previously explained, it would be uncommon to find ¢ ‘clint@eastwood.org’’ as a value for
a film duration, or ‘‘Dead Man Walking’’ as the family name of a person. In fact, it is usual that object
values are related to a single predicate [15].

From a structural perspective, this fact implies that in-links of a given object are often labelled with the

same predicate, which constitutes the principle of the third foundation of RDF-TR.

Foundation 3. The potentially large universe of object values can be divided in |P| barely overlapping ranges
that can be managed independently. This allows objects to be locally identified within the scope of each
predicate (and not globally as is usual). Thus, local object identifiers can be encoded using fewer bits (than

those used when objects are globally identified), which improves compression effectiveness.

19

Sl Pl Ol' Sl Pl 08' Sl P3 olO Sl PS 014 Sl P7 09
SZ P4 Ol' SZ PS 014' S2 P6 Oll

Sy P, Os. S5 Py 0,,. Sy P, Os. S, Py O

S, P, Os. S, P, 0,. S, P, 0.

S; P, O,. S; P, 0,. Sy P,0,,. S, P, 0,.

Sg P, Og. Sz Py O;. Sy Py O,. Sg P, 0.

S, P, Og. S, P, 05. S, P, O,.

Figure 8: RDF triples used for illustrating the RDF-TR algorithm.

5. RDF-Tr

RDF-TR is a preprocessing technique that reorganizes RDF triples to detect and remove redundancy at
various levels. It proposes a multi-step algorithm that implements particular decisions addressing the three
foundations introduced in the previous section.

In the following, we explain all these transformations (shortened to T1 to T5) on a generic example

presented in Figure 8| This excerpt uses the Turtle [6] serialization, with the following remarks:

e Turtle triples are used in Figure hence (subject, predicate, object) terms are separated by whitespaces,

and triples end with a dot (°.”).

e For the sake of simplicity, no concrete values are used for subject, predicate and object terms. We
will refer indistinctly to S; (similar for P; and O;) as the i'* subject, or the subject with ID 4. It is
worth noting that RDF-TR requires the “special” rdf:type predicate to be identified with the higher
predicate ID (P7, in this example).

e Finally, we consider an inner precedence relationship between subjects, predicates and objects. That

is, S; < S; it i < jyi,5 € [1,]S]] (similarly for P; and O; in ranges [1,|P|] and [1,|O]], respectively).

In general, we assume that triples are sorted by (subject, predicate, object), otherwise an initial transfor-

mation (referred to as TO0) is needed.

TO. Subject-based reorganization. This initial step groups together all triples describing the same
subject. As shown in Figure [J] this decision enables the RDF graph to be re-encoded as a forest of trees,
where each subject is the root of a tree that includes all the triples in which the subject is involved. That
is, triples are organized as a series of predicate-object lists (one per subject). For instance, S; has adjacency
lists rooted by P;, P53, Ps, and P;. The same four predicates are used by lists of S3 and Sg, so the first,
the third, and the sixth subjects are described using the same predicate structure. Note that red dotted
lines are used, in the figure, to show triples labelled with the rdf:type predicate, as they will have a special

treatment (see Section [5.2)).

20

/ PSPPI PP PvIPIPPPPP!

01/(0s/ (00 (0w (2] (01 (0w (0n (0 (0x (08 (01 (s (0101 [0 (01 (0n (0 (0 (05 (0w (0n) (v 0w 01,

Figure 9: RDF triples organized as a forest of trees.

S) Sz\‘ /Ss) /Sa\‘ Ss\‘ Ss\‘ S7)

< o o Z > < .
T L) T I 1 T L
Po) (P (P () (P)(Po) (Pu) (ps) (Ps)ipis (Pr) (Pe)(o) () (Pe) (Pe) (Po)(Ps)(Ps)iPri(Pi)(Pe)(Ps)
INOSS0009S$$ 9SS IVRSSSSSPRI
100 0 o (0 0 01 01 03 04 0 (o 04 0 0 0% (04 0% 4 0w (0 (01 (0] 4 (0 o

0 0o 0o 0o 1 o0 1 0 o 0 0
Mapo|1|4|5|6|8|7|13|16|3|10|12|1|2|14|15|1_1\
1 2 374 i L 12 S
P1 P2 P3 P Ps Pé

Figure 10: Object re-mapping (note that local object IDs are assigned according to the global object ID order).

5.1. Object-based transformation

Based on the results of Ferndndez et al [I5], a particular object in an RDF dataset is often tied to a
certain predicate. Under this premise, we will perform the first transformation (T1) at object level. Object
identifiers will be re-coded to predicate-local IDs, as using local identifiers takes up less space than global

ones (see Foundation 3).

T1. Object re-mapping. We re-map objects related to the same predicate with a new sequential identifier.
These new local-IDs will be assigned in global-ID order. That is, we sort all objects of a given predicate by
their (original) IDs in the dictionary, and we then assign the position of each object as its local-ID. Definition

3 formalizes this concept.

Definition 3 (Local Object ID). Formally, we define O} |P;, a local object of predicate P;, as OF|P; =
P;[i] : P = {0y ...01};5 € [1,|P|],{k,1} € [1,|0|],k < --- < I. We abuse the notation to refer to a local

Object ID as O}, where the concrete predicate can be inferred from the context.

For instance, in our previous excerpt, P3 is used in 3 triples {(S;,P3,010), (S3,P5,012), (S¢,P3,03)}.
Thus, taking into account the global order of objects, OF in Ps refers to O3z, O3 to O1p, and O3 to O13. The
same process is carried out for each predicate until all triples are rewritten with the new object identifiers.
Figure shows the output of this first transformation. Note that objects related to predicate rdf:type
remain unchanged, since these triples will be treated separately (see T3 in Section .

This transformation requires the introduction of an additional object mapping structure (MapQ) to obtain
(during decoding, presented in Section the original ID of a local object. As shown in Figure Map0

is implemented as an adjacency list structure that contains the original IDs of the objects related to each

21

predicate (except for those related to rdf:type). Thus, MapQ encodes | P — 1| adjacency lists. As explained in
Section this structure encompasses an integer sequence, Map0.S, which contains the lists of object IDs,
and a bitsequence, Map0.B, which marks with 1-bits the end of each list. This can be easily seen in Figure
where the predicate P; is related to five objects: Oy, Oy, Os, Og, and Og (note that Map0.B[5]=1 marks
the end of the list), P» is related to objects Oz, O3, and O16 (Map0.B[8]=1 marks the end of the second
list), and so on.

Mapping a local object ID (Of|P;) to its global ID is simply implemented as neigh(Map0,j) [i],
i.e., the ID of the i-th direct neighbor of P;. For instance, the global ID of Of|P, can be computed as
neigh(Map0,2) [3]1=16, as the third object of predicate 2 is stored at Map0.S[8]= 16.

5.2. Predicate-based Transformations

Two predicate-based transformations are proposed to implement Foundations 1 and 2. Predicate families
must first be discovered (transformation T2), and then be enriched, when necessary, with rdf:type values
(transformation T3). After these transformations, general triples are re-encoded in the form of (subject,

family, object), and triples involving rdf:type are removed and represented separately.

T2. Predicate family discovering. This transformation looks for all the different combinations of pred-
icates that are used for subject descriptions. As mentioned in Foundation 2, the different families are
numbered with an autoincremental ID, hence all families are identified within the range [1, |F|], where |F] is
the number of different families in the dataset. Thus, each subject S; is now related to a family F}, hence ad-
jacency lists can be compacted by replacing (multiple) predicate occurrences with the corresponding family
ID.

Figure illustrates this transformation in our previous example, where three different families are
discovered: Fy = {Py, P3,Ps, P;}, F» = {Py, P5, Ps}, and F5 = {P1, P», P;}. Reconstructing the original
triples from this encoding is straightforward. For instance, S; is related to F}, and the last level of objects

contains four lists (one per predicate):

1. The first list contains Of and Of, and corresponds to the first predicate in Fy, which is P;. Thus, it
encodes the triples (S, P1,07) and (S, P1, O}).

2. The second list only includes O3, and is related to the second predicate in Fi, i.e., Ps. Thus, it encodes

the triple (S, Ps, 03).

3. The third list contains O7F, which is related to the third predicate in Fi, i.e., Ps. Thus, it encodes the
triple (S1, Ps, O7F).

4. Finally, the last list is tagged with P7, which refers to rdf :type. Thus, the corresponding triple will

be removed from this representation (and encoded separately) in the following transformation.

22

P —

si)) Sa) (s.) ‘ss))

, s7)
/I N y L\ ,/L\ y I\ 4 I N /}\
Fi) ED Cra (Fa) Fi) (Fs)
4 @ \ \

[[
Lr Pl Pl Pl el P Pl Pl P

|) "2 > .

Pl Pl e [R PP

F’;l § Pl

) (o) (o) ({0} (o) (o) (0] (07 (o) (0] (0] (o) (o) (o) {0} (0] () (o)
0 0 0o o0 1 0 0 1 0o o0 1 0 1 0o 1 1 001 11 0 1 0 1 1
wapo [1 [4 [5] 6 [8 [7 [13]16] 3 [10]12] 1]2 [14]15]n] famities [1]3[3[1]2[3]1]2]2]
1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 1 2 3 4 5 6 7 8 9
’ LN LN L S L P L5 NNV T B
P1 P2 P3 P4 Ps =23 P1 P2 P3 P2 Ps Pé
Figure 11: Predicate family discovery.
s) s) Ss) S) Ss) ss) s)
1L [pi -~ PR P
F1) F1) (Fs (k) F1) Fa/‘

)

e P R P[P o] P Pa‘ Ps| Pif le P Pl e PR Pi ps| P Pj P
wW V¥ V¥V v v N ¥ ¥ ¥ V ¥V Y 9 Y VY Y W VvV N
‘on) (0%) (0%) (04) (04) (0% (0%) (0%) (0%) (0%) (0%) (04) (0%) (0%) (0 (0%) (0%) o*.\:uo*D:Oﬁ 0%) (0%) (o)
L A A A A A A A A A 4 4 A A A A A A A A A A A /4

MapO families types
0 0o 0o o 1 0 o0 1 0 0 1 o0 1 0 1 1 001 1 1 0 1 0 1 1 0111
[t Ja]s]e[8[7]3]16][3[w[12]1]2[maf[1s]n]|[2]3][3]e]2]3]2]2]2][o
1 2 3 4 5 . 6 7 78 . 9 10 1" 12 13 14 15 16 1 2 3 4 5 6 7 8 9

P1 P2 P P1 P2 P3 P4 Ps Pe¢

P3 Pa Ps P6
Figure 12: rdf:type encoding

Information about predicates and families must also be preserved as part of the encoding. A new ad-
jacency list structure, called families, is used for this purpose. As shown in Figure it encompasses
|P — 1] adjacency lists, each one listing the IDs of the families in which each predicate (except for rdf:type)
is used. For instance, the first predicate is used in two families: {Fi, F3}, the second predicate only appears
in a single family: {F3}, and so on.

Retrieving the IDs of the families for a given predicate p is simply implemented using neigh(families,p).
For instance, in our example, the families in which P4 appears can be retrieved as neigh(families,4)=

{2,3}, i.e., families Fy and F3.

T3. Encoding of rdf:type. This transformation processes triples with the rdf:type predicate, retrieving
class values (i.e., the objects of these triples) and using them to type the corresponding predicate families.
Following Definition 2, the object types are part of the predicate families, so if two subjects are related to
the same initial family, but they differ in the types, two independent families will be formed. Note also that
a typed family can be related to multiple types, e.g., a family with the set of predicates prop:starring and
prop:title can be used to describe a subject having the general type class:film and the more specific type
class:Documentary.

Figure shows the resulting transformation. The typed triples (previously marked with red dotted
lines) are no longer represented in the trees, as they are encoded in an additional data structure: types.
This adjacency list preserves the IDs of the object types related to each predicate family. Note that, in this

case, non-typed families are encoded as empty lists, hence types.B is implemented using the adjacency list

23

) s) &) s s s s
- L IS 1 L 1

Fi)) Fi) 5) R Fs |

P J—Pl sl P,?J]\ Ps|

PN W W \ \
04) (0%) (0%2) (01) (0%) (0%) (0%) (0%

) (0%) (0%) (o%) (o4) (00) (o) (o0) (00) (0%) (o%) (0%) (o) (0%) (0%) (o)
/ 48 A A A A A A A A A A A A 4

| [
Pl Pl F/’ﬂ\ P P R P P Pl o] ﬁl—l P Pl Pl Pl

T\ o & C A A A A
MapO families types
0 0 o o 1 0 ©0o 1 0 o0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0111

[1[4a]5s]e]8f7[13]e]3]w0]12]1]2]waf[as][n]|[a]3][s]2]2]3]1]2]2][o
71 27 3 4 5 N 6 ‘\7/7 8) 9 10 1 L i L L 7167 71 72 737 747 i i 7 8 97

P1 P2 P3 Pa Ps P6 P1 P2 P3 P4 Ps P6

0o 0 1 1 0o 0
wos [1 [3 [6 [2] 4[5 [7|
6

Figure 13: Subject re-mapping.

variant that allows for empty lists (see Section . For instance, in our example, types.B=[0111] encodes
that the first family is associated with one object type, while the other families have empty lists, i.e., they
are not typed.

The types structure is used to retrieve object types for a predicate family. For a given family f, it
is easily implemented as neigh(types,f), being () if f is not typed. For instance, neigh(types,1)= 9,
because Oy is the class value of the first family. In contrast, neigh(types,2)=neigh(types,3)= 0, as I

and Fj are not typed.

5.8. Subject-based Transformations

As stated in Foundation 1, a subject is described by a particular family of predicates. Thus, the set of
subjects described by the same family can be re-mapped as (family) local subjects. The following transfor-

mations allow local subjects to be represented and efficiently managed.

T4. Subject re-mapping. This transformation first groups subjects by the family they belong to, and
then orders each group by subject ID. This rearrangement is finally used to assign a new sequential identifier

for each subject within a family. Definition 4 formalizes this concept.

Definition 4 (Local Subject ID). Formally, we define S;|F;, a local subject of the family F;, as S}|F; =
Fili) : Fj # 0 and F; = {Sk... S} 7 € [1,|F|),{k,1} € [1,|S]],k < --- < 1. We abuse the notation to refer

to a local subject ID S}, where the concrete family can be inferred from the context.

Figure shows the resulting organization on our running example, where triples are now grouped by
family. As we can see, subjects have been re-encoded within the family they are related to, represented with
the new local subject identifiers, S¥. For instance, subjects Sy, S5 and S7 were described by family F3 (see

Figure [12), and they are now re-mapped to S}, S5, S5, respectively.

24

(p)) (Ps)) (ps) (pe)
l—% /1\ J

y

Fi) o Fs Fi

) @ @O \T’ &7
e s sl b el e[s

A p
Fs)

,)
[55 sCelEL s

‘o) (0% (0%) (0%) (0%) (0%) (0% (on J(0m)(0%) (0%) (0%) (0%) (0" (o) (%) (on) (om) (%) (om) (on) (on)
L A A A 4B A A 4 4 A 4 4 4B 4 4B~ - A A A A A A 4 /
MapO families types
0 0 o 0o 1 0 0 1 0 0o 1 0 1 0 1 1 0 1 1.1 0 1 0 1 1 0111
[1 45687 [13]16]3[20[12]1]2]aafas5][m |[a]8]3[2]2]3]1[2]2][9
S S S NN . AN S RPN S S LA . G ALY B Sl I A
P1 P2 P3 P4 Ps Ps P1 P2 P3 P4 Ps Ps

o 0 1 1 o 0 1

wos [1 [3 [6 [2] a5 [7]
4 5 6 7
. F:

F F2

Figure 14: Triples rewritten with the RDF-TR algorithm.

A new subject mapping structure, (MapS), is required to obtain (during decoding, presented in Section
the original IDs of local subjects. MapS is implemented as an adjacency list structure that concatenates
the original IDs of the subjects described by each predicate family. Thus, MapS encodes |F| adjacency lists.
As shown in Figure the subjects S1, S3, and Sg are described by the family Fi, and they are mapped to
ST|F1, S5|F1, and S§|Fy, respectively.

Mapping a local subject ID (S} |F}) to its global ID is simply implemented as neigh(MapS,j) [i]. For
instance, the local subject S5|F} is mapped to neigh(MapS,1) [3]= 6, i.e., the global subject Sg. Note that
this structure is also used during the decoding process to retrieve all subjects described by a given family
F};. This functionality is also implemented using the neigh operation, accessing the whole list of directed

neighbors. For instance, in our example, neigh (MapS,1)= {1, 3,6} retrieves all subjects described by F.

T5. Predicate Grouping. The Subject-Family-Object tree-shape organization from the previous trans-
formations results in a very flat representation, as one subject is only represented by one family. Thus, the
last step of our process consists of obtaining a bushy representation that can help compression and favor fast
decoding. The previous representation is rearranged by predicate, obtaining Predicate-Family-Object trees,
such as the example shown in Figure Therefore, a predicate is related to several lists of objects, one per
each family where the predicate is present.

This forest of trees can be represented in a more compact notation based on adjacency lists. The
“abstract” representation of these adjacency data, referred to as ATR, is shown in Figure ATR only
needs to provide a simple operation getObjects, which retrieves all local object IDs given a predicate and
a subject. Sections [6] and [7] describe two practical implementations of ATR on the basis of the existing HDT

and k2 -triples compressors.

25

(P [0*;,0%,10*;]10%,] [0*,]10%,]10%,]) 0111
(P, [0*,10%,,0%,10%,]) cpes [9|
(P3 [0*,10*510%,1)
(P, [0%] [0*,10%,10%,1) 001 1 1 0 1 0 1 1
ATr ilies
(P [0%,10%,10%,] [0*,1) fmivies [1]3]af12]3]1]2]2]
1 2 3 4 5 6 7 8 9
(P, 0*.1) — g
g [1] P1 P2 P3 P4 Ps Pe

0 1 0o 0o 1 0 0o 1 0o 1 0
mapo [1 [4 [5 [6 [8] 7 [13]16] 3 J10]12] 1 [2 [14]15]u]
1 2 3 4 5 6 7 8/;9 10 11\12'13'\14 15 16/

AN) >
v ~ v v v Y
P1 P2 P3 Pg Ps Pe

0o 0 1 1 0 0 1
maps [1 [3] 6] 245 7]

Figure 15: Predicate family based (adjacency list) encoding.

5.4. RDF-TR Implementation and Decoding

Figure shows the final organization and structures after applying RDF-TR, which includes the
compact representation of triples (ATR), and other auxiliary structures, families, types, MapS and MapO.

In the following, we briefly summarize the implementation remarks shown in the previous section:

e RDF-TR focuses on the reorganization of triples in a dataset, hence it manages IDs for each subject,
predicate and object term and assumes the use of a dictionary to make a bidirectional translation

between terms and integer IDs (similar to most symbolic compressors).

e The mapping structures for subjects and objects, MapS and Map0, are represented as adjacency lists,
which are succintly encoded using a bitsequence and an integer ID sequence (see Section [3.4]). The

types and families structures are similarly encoded as adjacency lists.

e The implementation of ATR (essentially, adjacency data) may vary, depending on the internal structure

of the RDF syntactic compressor that uses RDF-TR (as shown in Sections |§| and .

Algorithm [f] illustrates the decoding process that retrieves the original triples from the RDF-TR-based
encoding. It implements a multi-nested-loop algorithm that iterates through all predicates (Line 1), except
for rdf:type. For each predicate, we obtain the list of families in which the predicate is present (Line 3),
and iterate over them (Line 4). For each family, we first obtain its ID (Line 5), and then use it to retrieve
the list of object types (or (), if it is a non-typed family), and the list of subjects related to this family (Lines
6 and 7). These subjects are then also iterated (Line 8). For each subject, we use ATR to retrieve the list
of objects related to the current predicate and subject (Line 10), referred to as O,. At this point, we have
retrieved all IDs, but they must be mapped from their local encoding to their original IDs in the dictionary.
In Line 9, the local subject ID is mapped to its global one, and global object IDs are obtained in Line 13

(within a loop that iterates over all objects in Oy). Finally, in Line 14, the corresponding triple is emitted.

26

Algorithm 5: Decoding algorithm.

1 for predicate + 1 to |P — 1| do

2 ptrSubject + 1;

3 Fp < neigh(families, predicate);

4 for f + 1 to |F,| do

5 family < Fyp|f];

6 T; < neigh(types, family);

7 Sy + neigh(MapS, family);

8 for s + 1 to |S¢| do

9 subject < Sy|s;

10 O, < ATR.get0Objects(predicate, ptrSubject);
11 ptrSubject < ptrSubject + 1;
12 for o + 1 to |O;| do

13 object <— neigh(Map0, predicate)[O[o]];
14 newtriple(subject, predicate, object);
15 if Ty # 0 then
16 for ¢t < 1 to |T#| do

17 L newtriple(subject, rdf :type, T¢[t]);

Note that Lines 15 to 17 are only executed for typed families. In this case, object types are iterated and
new typed triples are emitted for the corresponding subject and object type.
In the following sections, we show how RDF-TR can be integrated into existing compressors, which

assume the responsibility of implementing ATR.

6. HDT++4

The integration of HDT and RDF-TR is referred to as HDT++. We first provide an overview of HDT,
with particular attention to triples encoding. Then, we show how RDF-TR can be plugged into HDT.

6.1. HDT

HDT [I7] was a pioneer in RDF binary serialization, specifically focused on optimizing storage and trans-
mission costs over a network, as well as fast retrieval on compressed space. It is specifically tailored to
potentially large datasets, achieving similar compression ratios to general techniques such as gzip. As sum-

marized in Section RDF is encoded using three logical components: Header (i.e., metadata), Dictionary

27

Subjects (1 2 3 (4 (s 6 @
T 1 T T T T T
of o o 1 o o 1 o o o 1 o o 1 o 0 1 o o o 1 o o 1
Predicates 1 (3)(s)(7)(4)(5 ‘kew1‘ﬁ'3k7'5w7 \1\2‘\4‘\1) (2) (9) (1 3)(s)(7) (1)(2)(4)
o /1L 44 11 11 11 /1,]\ /11 PR /11\ 1[1[11 1[ol /1 ; /ﬂ /1[\ /11 é\ 1 4 1l 1[
e DOOOOOOPODOPOOOP000OPOOOPOOBO
Figure 16: Forest of trees modeling ID triples in HDT
E Bp 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 i
1 Sp 1 & 5) 7 4 5) 6 1 8 5) 7 1 2 4 1 2 4 1 3 5 7 1 2 !
: 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 138 19 20 21 22 23 24 25 26 !
! Bo 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 i
| So 1 8 10 14 9 17 14 1 9| 2| 18 9 6 7 1 4 7 13 2 6 3 14 9 8 16 " H

Figure 17: Bitmap Triples implementation.

(the aforementioned mapping between string terms and IDs), and Triples (the graph of IDs). We focus on
the Triples component hereinafter, as RDF-TR is focused on triples organization.

Figure [16| shows the organization of HDT Triples over the original triples of our running example (see
Figure . Triples are organized as a forest of trees, one per different subject in the dataset: the root of each
tree encodes the subject, the second level encodes the predicates related to the subject and the leaves encode
the adjacency lists of all objects related to each predicate within its root (subject) scope. Note that the IDs
of subjects, the predicates related to each subject, and the objects related to a subject-predicate pair, are in
increasing order.

HDT encodes triple IDs using the so-called Bitmap Triples structure. As shown in Figure this
approach consists of two coordinated adjacency lists that respectively encode predicate and object adjacency
information for each subject. On the one hand, predicate IDs are listed in the integer sequence Sp, delimiting
each subject list with 1-bits in Bp. Thus, the i-th 1-bit marks the end of the list corresponding to subject
i. On the other hand, So contains the integer sequence of object IDs, corresponding to the leaves of the
forest, where a 1-bit in the bitsequence Bo marks the end of the objects related to the corresponding subject-

predicate pair.

6.2. Plugging RDF-TR into HDT

Plugging RDF-TR into HDT is straightforward. RDF-TR assumes that the HDT dictionary and the
corresponding forest of trees (represented in Figure has been created. Then, leaving aside the dictionary
compression, which is performed as in HDT, the novel HDT++4 process starts by traversing the obtained
forest of trees and performing transformations T1, T2, T3, T4, and T5 to reorganize triples and build the
data structures described previously. Finally, the abstract ATR structure is implemented as follows.

HDT++ encodes ATR as an array of |P — 1| adjacency lists (one per predicate, except for rdf:type),

referred to as Ps. FEach list is encoded as in BitmapTriples, i.e., using an integer sequence of IDs, S,

28

i1 1 1
[4]aT2]5]

78
- =]
oo o] -
o] [
.

i)
«

w0

o
H-H
g

&

&

P o«
(B, [0%,,0%,]0%,]0%,] [0%,]0%,10%,]) o1 — e [ATaT2Ta]
(P, [0*,10*,,0%,]0*,1) 2 | o Bo 1 1 1
(B, [0%,10%,10%,1) P |ef— Tl
(P, [0%,] [0*,]10*,]0%,1) P . 4»{ Bo 1 1 1 1
4
(P; [0%,]10%,]0%,] [0*,1) — so
(Pg [0*,1) Ps 7.‘\-»{ Bo ! ! ! !
P, .\\{

Figure 18: HDT++ implementation of ATR.

Algorithm 6: HDT++: getObjects(predicate, ptrSubject).

1 return neigh(Ps[predicate], ptrSubject);

and its aligned bitsequence, B,. This simple but effective approach allows adjacency lists to be managed
independently, hence each one can be encoded according to the features of its corresponding predicate.

Algorithm [] shows the implementation of the getObjects method in HDT++. Recall that this operation
is used in the decoding process (see Line 10 of Algorithm [5)) to get the objects related to a given predicate
and subject. Note that, in practice, the decoding algorithm does not iterate on the subject ID, but the
position (i.e., ‘ptrSubject’ in the code) where its object list is encoded for a given predicate, as explained
in Section [5.4] This algorithm simply performs the neigh operation over the corresponding adjacency list
structure, stored at Ps[predicate], retrieving all neighbors encoded in the list of ptrSubject.

Finally, note that the remaining data structures (Map0, MapS, types and families) are built in HDT++

following the same aforementioned proceduresﬂ (see Section .

7. K2-triples++

We refer to k2-triples++ as the integration of k2-triples and RDF-TR. As in the previous section, we
first introduce the foundations of k2-triples and then we describe the RDF-TR integration.

7.1. K -triples

Similarly to HDT, k2-triples [1] performs dictionary compression before encoding the resulting ID-graph.
It is worth noting that both approaches implement the same scheme for dictionary compression. k2-triples
takes advantage of the low number of predicates used in an RDF dataset and partitions it vertically. That
is, k2-triples performs a predicate-based partition of the dataset into disjoint subsets of subject-object pairs,

and then these subsets are highly compressed as binary matrices (i.e., a 1-bit marks that the corresponding

"These structures are not represented in Figure for simplicity, but their configuration is the same as in Figure

29

objects

P, 1 2 3 4 5 6 7 8 16
1]1lofofodo|ofol1 ﬂ\
2 lolofofolo]ofolo X 0 0 0
s |olololot1|ofo|o /N
s lolofofoto|1io]o0 h A i A
TS © NN RS AR
6 ol o 0 0 0 1 0 0 i 0 0 © 0 1 1 0o 0 1 0 0 1 0 0 1
Tlofojofofojojols /\\%//\/A%\%\
2 s olojolotolotolo {00001 do0d7 001 010000010100
Q
£ 0 0 T - 1000 1111 1000 0110 0100 1001
5 L = 1000 0100 1001 0100 0001 0100

Figure 19: Vertical-Partitioning on k2triples (k=2) for predicate P;.

triple exists in the dataset) using k*-trees [9]. The size of these matrices will be m x m, where m is the
minimum power of k that is greater than max(|S|, |O)).

Continuing with the triples given in our running example, Figureillustrates the resulting k2-tree for the
first predicate (with ID 1), i.e., it encodes all triples (s, 1, 0), where s and o are the IDs of the corresponding
subjects and objects. The conceptual 16 x 16 matrix is illustrated on the left hand side (note that, in this
example |S| = 7 and |O| = 15), modelling subjects by rows and objects by columns. We consider k = 2,
hence each level is divided into k? = 4 submatrices. Recall that (i,j) = 1 means that there is a triple, in
which the subject i (rows) is related to object j (columns) through the predicate 1.

The right hand side of Figure [I9] depicts the conceptual tree and the final configuration of bitsequences
T and L, which effectively encode the k?-tree. As explained in Section all the aforementioned graph

operations (including neigh) are efficiently provided by the k?-tree using rank and select.

7.2. Plugging RDF-TR into k*-triples

Transforming k2-triples into k?~triples++ involves a similar process to that described for HDT++. Thus,
the dictionary and the ID-graph are first obtained, and the RDF-TRr transformations are then performed
to obtain MapO, MapS, types, families and the ATR structure, which is represented as follows. As in
k2-triples, ATR is vertically partitioned by predicate, i.e., (subject, object) pairs are encoded in the k2-
tree corresponding to their related predicate(s). It is worth noting that, in k>-triples++, the size of each
adjacency matrix depends exclusively on the number of subjects and objects related to the corresponding
predicate (instead of the total number of subjects and objects in the dataset).

Figure illustrates how k2-triples++ implements ATR. Note that the largest matrix (of size 8 x 8)
is modelled for predicate 1, as it is related to 6 different subjects and 5 different objects. In contrast, the
matrix for predicate 6 is 1 x 1, as this predicate is just present in a single triple.

The implementation of ATR in k?-triples++ provides the getObjects operation, required for decoding.
As shown in Algorithm we also make use of the neigh operation of the k?-tree to process the row ptrSubject

and retrieve the corresponding objects.

30

1|0 ofofo 1 oo 1lof1fofo
HIEIE [ofo]o 2[1|1fofo0 ofof1f0
P
(Py [0%,0%10%510%,]1 [0%,10%,10%.1) ol) oefelfel Pa) o[
P 4|0 ofofo 4l0fofofo0

(B, [0* 0% ,0%,]0%,]) AN

(Py [0*,10%;10%,1) E—— : 2o e

(P, [0%,] [0*,]0%,]0%,1) - I N o
1 1| 0[O0 5 3

(Pg [0*;]10%,]10%,] [0*,1) PG{A B S

(Pg [0%,])

Figure 20: K Z2triples++ implementation of ATR

Algorithm 7: k2triples++: getObjects(predicate, ptrSubject).

1 return neigh(k? — tree[predicate], ptr Subject);

8. Experimental Evaluation

This section evaluates the performance of RDF-TR in real-world RDF datasets. We first provide concrete
details of our prototype (Section[8.1)) and then describe the evaluation corpus (Section [8.2). We analyze the

results of the evaluation in Section [8.3] and Section [8.4] provides a final discussion of our results.

8.1. Practical RDF-TR Implementation

Our RDF-TR prototypeﬁ is built in C++11, making extensive use of the Succinct Data Structure Libmr@,ﬂ
(SDSL). This library implements different compact data structures and provides rich functionality over these
structureﬂ Thus, our prototype implements all the auxiliary RDF-TR structures, types, families,
MapO and MapS on SDSL functionalities:

e Types is serialized as an adjacency list: the sequence S is implemented as an SDSL int_vector, which
uses log,(|O]) bits per ID, and the bitsequence B is built over a plain bit_vector. Note that a variant

of the aforementioned Clark’s structur@ [10] is loaded to provide efficient select support.

e Families is serialized as an adjacency list, but it is loaded as a wvector of vectors to speed up data
access. Each secondary vector is implemented as an independent SDSL int_vector, which encodes
each ID using a number of bits proportional to the greatest family ID: F’ related to the given predicate;
i.e. logy(F') <logy(|F|) bits per ID.

8The code of the prototype is publicly available at https://github.com/antonioillera/HDTpp-src
9https://github.com/simongog/sdsl-1lite
10A brief summary of the structures and operations is available at http://simongog.github.io/assets/data/sdsl-cheatsheet .pdf
Mhttps://github.com/simongog/sdsl-lite/blob/master/include/sdsl/select_support mcl.hpp

31

e Map0 is also serialized as an adjacency list, but it is loaded as a vector of vectors to optimize the memory
footprint. Note that the list of objects related to each predicate can be very large, so bitsequences use
more bits than the required pointers. Besides, object lists can be compressed, saving additional space.
Thus, we implement secondary vectors using the compressed SDSL enc_vector. First, we perform
gap-encoding over the elements of each list and store samples each t_dens positions. Then,
the resulting representation is compressed using Elias-Delta. Note that ¢_dens is a user-defined value,
so it is possible to tune this parameter for faster decompression, or greater compression (at the expense
of speed). Thus, in the analysis section, we will evaluate how the variation of this parameter affects

the decompression time and space of some datasets.

e MapS is loaded similarly to Map0 in order to exploit the fact that the lists of subjects for predicate

families are also large, and these are effectively compressed using gap-encoding and Elias-Delta.

Finally, we provide two concrete implementations of ATR leading to the HDT++ and k?-triples++

compressors (as explained in Sections |§| and :

e HDT++ serializes |P — 1] adjacency lists and loads them into an array for decoding purposes. Note that
the int_vector of each adjacency list is configured to use logz2(|OP|) bits per ID, where |OP| is the

number of different objects within the range of the predicate p.

e k2-triples++ serializes | P — 1| k2-trees, each one configured according to the number of subjects and

objects related to the corresponding predicate. We use k = 2, as in the original k?-triples approach [1].

8.2. FEwvaluation Corpus: Description and Statistics

Our evaluation considers five real-world RDF datasets: dblp provides open bibliographic information on
major computer science journals and proceedings; dbtune includes music-related structured data; us census
provides census data from the U.S.; linkedgeodata uses the information collected by the OpenStreetMap
project and makes it available as an RDF knowledge base according to the Linked Data principles; and
dbpedia is an RDF conversion of Wikipedia (mostly on the infobox information).

Table [I] reports the main statistics of these datasets, namely, the number of triples, and the number of
total subjects, predicates, and objects, (|S|,|P], and |O|, respectively). Furthermore, Table reports relevant
statistics for RDF-TR. We show, for each dataset, the number of families (|F|), the number of different
types used in the dataset, the number of typed-families (recall that a typed-family is a family that is defined
by at least one type), the number of typed-triples (i.e., triples involving rdf:type), as well as the maximum
value of local object identifiers (i.e., the maximum number of objects in the range of a particular predicate).

A first analysis of these statistics shows that linkedgeodata and dbpedia are the less-structured datasets,

inasmuch as the number of families is ~ 24 times the number of predicates in linkedgeodata and ~ 50 times

32

Dataset #triples |S| |P| |0O|

dblp 55,586,971 3,591,091 27 25,154,979
dbtune 58,920,361 12,401,228 394 14,264,221
us census 149,182,415 | 23,904,658 429 23,996,813
linkedgeodata | 271,180,352 51,916,995 18,272 121,749,861
dbpedia 837,257,959 113,986,155 60,264 221,623,898

Table 1: Main statistics of the evaluation corpus.

Dataset |F| #types #typed-families #typed-triples Max local-obj
dblp 283 14 283 5,475,762 6,428,355
dbtune 1,047 64 866 12,340,116 2,254,960
us census 106 0 0 0 1,242,683
linkedgeodata 441,922 1,081 440,035 81,261,427 38,826,195
dbpedia 2,969,486 370,069 2,811,839 92,725,995 40,325,707

Table 2: Statistics related to RDF-TR.

1 1

4 L L L
#predicates per object (with deviations) m====

25 q

Mean
N
T
I

+
]
|
|

DBLP
Dbtune -
Dbpedia

2000 US Census
Linked Geo Data -

Datasets

Figure 21: Number of predicates per object (mean and standard deviation).

10000

1000 4 g

100 |

Number of RDFpredicates related to X objects

SHHHICT I THOR e
1 * S ———SGENESESE UL UL
1 10 100 1000 10000 100000 1e+06

Number of RDF objects related to Y predicates

Figure 22: Distribution of RDF objects per predicate in linkedgeodata.

in the case of dbpedia. Despite their low structural level, it is important to note that the number of detected

families is small compared to the possible combinations of relationships between subjects and predicates.

33

Conversely, dbtune and dblp are structured datasets, since the number of families is ~ 2.5 and ~ 10.5 times
the number of their predicates, respectively. Finally, us census is a clear example of a highly-structured
dataset because the number of families is even less than the number of predicates.

The use of types is denoted by #types, #typed-families and #typed-triples columns in Table A
comparison of #typed-families with the total number of families shows that most families are actually typed
(except for us census, which does not use types). In other words, although the predicate rdf: type is optional
in a dataset, it is actually present in most subject descriptions. In this regard, the #typed-triples column
shows that typed datasets include a high number of triples involving rdf:type. For instance, 1inkedgeodata
has more than 81 million typed triples, which corresponds to almost 30% of its total triples, while in the
rest of the typed datasets, 10-20% of the triples are typed.

Figure[21|extends these statistics and represents the average number of predicates per object. As expected
(see Section , we can observe that the number of predicates per object is very close to 1, even in the less
structured datasets. In turn, Figure [22] shows the inverse relation, i.e., the number of objects per predicate,
in linkedgeodata. In general, all datasets show a skewed distribution: most predicates are related to few
objects, while there is a small number of predicates related to many objects.

All these features suggest that a typed family encoding, such as RDF-TR, may be more effective because
it groups predicates and types, thus preventing unnecessary repetitions, and it encodes objects by predicate,

thus minimizing their ID lengths.

8.3. RDF-TR Analysis

This section analyzes the experimental results when applying RDF-TR to the well-known HDT and
k2-triples RDF syntactic compressors, leading to HDT++ and k?>-triples++ respectively. Experiments were
performed in a -commodity server- Intel Xeon E5645@2.4GHz, 96GB DDR3@1066Mhz. Reported (elapsed)
times are the average of five independent executions. We report in-memory spaces of the encodings (including
the necessary structures to decode the serializations), disregarding the dictionary space (as all of the evaluated
techniques make use of the same dictionary).

For each dataset in our evaluation setup, Table [3| shows the triples encoding size and decompression
time of the original HDT and k2-triples compressors, as well as the resulting size after applying RDF-
TR i.e., HDT++ and k*-triples++ respectively. For this experiment, we fix a value of t_dens such that
the decompression time of the original serialization is similar to the decompression time of its improved
serialization with RDF-TRr. We evaluate different ¢_dens tradeoffs below.

The results in Table|3|show that, with similar decompression times, HDT++ and k?>-triples++ are able to
significantly reduce the space requirements of their HDT and k2-triples counterparts. The improvement of
the RDF-TR technique in HDT++ results in 37% space savings in dblp ({_dens=128), ~=50% savings in dbtune

(t_dens=32), US census (t_dens=16) and linkedgeodata (t_dens=16), and 30% in dbpedia (t_dens=16).

34

HDT HDT++ k2triples k2-triples++
dataset size (MB) | time (us) | size (MB) | time (us) size (MB) | time (us) | size (MB) | time (us)
dblp 203.19 0.0614 127.03 0.0557 99.85 0.2292 43.71 0.1456
dbtune 242.05 0.0835 112.75 0.0810 152.38 0.3309 125.95 0.3302
us census 649.22 0.0892 323.24 0.0792 347.05 0.3030 195.46 0.2409
linkedgeodata 1,446.19 0.0867 646.17 0.0667 541.28 0.2394 525.39 0.2688
dbpedia 4,152.62 0.0639 2,901.12 0.0674 2,208.40 0.2982 1,326.74 0.2628

Table 3: Compression (size) and decompression (time per triple) results.

DBLP decompression performance DBTune decompression performance
0.5 T T T T T 0.5 T T T T T

HDT --G--- HDT --G---
HDT++ HDT++

x2triples —-— k2triples —-—

k2triples++ —o— V‘ k2triples++ —v—
0.4} 4 0.4 ‘ 4

¥]
0.3 4 3k {7\7 4
v

time per triple (us)
time per triple (is)
|
|
<4

q{yQ

—— -

0 o
0 20 40 60 80 100 120 0 20 10 60 80 100 120
space (% HDT)

space (% HDT)

Figure 23: dblp and dbtune tradeoffs

k?-triples++ also achieves important compression improvements over k2-triples, with 56% space sav-
ings in dblp (t-dens=128), 17% in dbtune (t_-dens=32), 45% in US Census (t-dens=32) and 30% in dbpedia
(t_dens=128). In linkedgeodata, the space improvement is negligible (3%). In this case, the dataset has
many different terms with respect to the number of triples (see Table , i.e., elements are hardly reused
and less redundancies in the triples can be found. Note also that the matrices generated by k?>-triples++
are generally smaller than the k2-triples ones because local object IDs are smaller than global object IDs.
Table [1| shows the comparison between the total number of objects and the maximum local ID, which are
the reference values to generate the matrices by k2-triples and k?-triples++ respectively.

Finally, in order to inspect potential space/time tradeoffs, Figures evaluate different ¢t_dens values
in HDT++ and k?triples++. The x-axis reflects the space given as a percentage over the size of HDTE
The decompression time per triple (in microseconds) is represented in the vertical axis. For simplicity, the
same t_dens values have been applied to MapS and Map0. Results show how HDT++ and k*triples++ can be
adapted to particular scenarios. For instance, in the case of dbpedia (Figure , HDT++ can be tuned to
take only 60% of the original (already compressed) HDT size, at the cost of additional decompression time.

Note that the tradeoffs depend on the data distribution. For example, dblp (Figure is a very structured

12We take HDT as the baseline as it is a W3C Member submission, i.e., a de-facto standard for RDF compression.

35

US census decompression performance LinkedGeoData decompression performance
0.5 T T T

T T 0.5 T T T T T
HDT --G-- HDT --@--
HDT++ HDT++
T k2triples ——Mh— k2triples ——Mh—
k2triples++ —v—

k2triplestt —v—

time per triple (ps)

4
time per triple (is)
|

o 0
0 20 40 60 80 100 120 0 20 40 60 80 100
space (% HDT)

space (% HDT)

Figure 24: US census and linkedgeodata tradeoffs

DBPedia decompression performance

T T T T ———
HDT++

k2triples —i-—

k2triples++ —v—

time per triple (is)

0 20 40 60 80 100 120
space (% HDT)

Figure 25: dbpedia tradeoffs

dataset and decompression times are not significantly degraded at more aggressive t_dens values.

8.4. Discussion

Our experimental results show that RDF-TR can leverage structural redundancies and achieve large
space saving (approx 50% overall) as a preprocessing technique of both HDT and k?-triples compressors.

In general, as expected, RDF-TR takes advantage of highly-structured datasets (i.e., datasets with a
lower number of families). That is, HDT++ and k*-triples++ achieve better compression ratios in the more
structured datasets, such as dbtune, dblp and us census. Nonetheless, with the aforementioned exception
of linkedgeodata in k?-triples++, results also show important space savings in weakly-structured datasets
such as dbpedia, both in HDT++ and k?-triples++.

Besides the level of structuredness of a dataset, a detailed analysis of the results and the characteristics

of the datasets shows the following correlations:

e The compression ratio of RDF-TR is positively affected by the number of typed triples in the dataset
(see column #typed-triples in Table . As shown in Foundation 2 and the corresponding T3 trans-

36

formation, RDF-TR encodes the values of rdf:type within predicate families, avoiding unnecessary
repetitions across subjects. For instance, as noted before, linkedgeodata has more than 80 million
typed triples, which amounts to an impressive 30% of the total triples. This results in the reported

good compression ratios of RDF-TR, in spite of its weak structure (with more than 400K families).

e The compression ratio of RDF-TR is negatively affected by a high proportion of RDF objects over the
total number of triples (see Table 7 but positively affected by a skewed distribution of the number
of objects related to each predicate (see Figure . Thus, excluding the auxiliary structures (i.e.,
families, types, MapS and Map0), the main burden of the representation lies in the encoding of ATR.
Irrespective of the concrete RDF syntactic compressor that integrates RDF-TR, given Foundation 3
and the object remapping in the transformation T1, ATR uses predicate-local IDs (i.e., sequential
identifiers per predicate). Thus, the smaller the number of objects per predicate, the shorter the IDs
and the smaller the space they take up. In turn, an overall large number of objects with respect to the
total number of triples (e.g., in dblp or linkedgeodata) results in some large object lists, and thus large

IDs (see column Maz local-obj in Table [2)), where the effect of the transformation is less remarkable.

Finally, while we show that the decompression time is not affected by RDF-TR, it is also important to
consider the time that RDF-TR takes, in practice, to perform all the transformations described in Section
This time is represented on the Y-axis (logarithmic scale) of Figure [26| and is dependent on two factors,
the number of triples of the dataset (X-axis) and the number of predicate families that make it up. This
last dimension is depicted by the size of the bubble of each dataset (in logarithmic scale). As expected, the
one-time RDF-TR organization mainly depends on the number of triples in the dataset (as we scan all of
them to discover the families), with a relative influence on its number of families (as we need to construct
all RDF-TR structures based on them). In particular, RDF-TR takes only a few seconds for dblp, dbtune,
and uscensus, all of them with few families and a relatively small number of triples, and ~11 minutes for
the weakly structured linkedgeodata dataset, with almost 300m triples and more than 400K families. As
a corner case, dbpedia pays the price of almost 1B triples and 3M families, requiring a one-time processing
of several hours. Exploring optimized construction techniques for such extremely unstructured datasets,
e.g., exploiting parallelism to iterate triples and building families and RDF-TR structures, is considered for

future work.

9. Conclusions and Future Work

This paper presents RDF-TR, a preprocessing technique that reorganizes RDF triples to leverage inher-
ent structural redundancies. We first describe the foundations of two types of schema-based redundancies

underlying RDF': predicate families are massively repeated for general and typed subjects, and objects are

37

100.000

10.000

/T N\

)

15,649 secs

670 secs Odblp

1.000 7~ N\ Odbtune
U O uscensus
88 secs Olinkedgeodata
AR O O dbpedia
100 ¢ ‘ !' 173 secs

84 secs

Reorganization time (logarithmic scale)

10

0 200.000.000 400.000.000 600.000.000 800.000.000 1.000.000.000
Triples

Figure 26: Datasets reorganization time.

often related to just one predicate. Then, we provide the required RDF-TR transformations and additional
structures to efficiently compress RDF data.

RDF-TR has been applied to HDT and k2-triples, two of the most commonly used state-of-the-art com-
pressors. These techniques have been evaluated on real-world RDF datasets, considering different domains
and structuredness. Our results show that the resultant HDT++ and k?-triples++ compressors save up to
half the space of their counterparts, with similar decompression times. In addition, the final configuration
can be tuned to explore different space/time tradeoffs.

Our current work focuses on exploiting the RDF-TR organization to additionally provide fast retrieval
on compressed space. In particular, we work on implementing SPARQL triple pattern retrieval, partially
reusing the HDT and k2-triples functionality. In turn, both HDT++ and k?-triples++ should be currently
loaded entirely in main memory in order to be consumed. The adaptation of RDF data repositories for these
compressed models is a challenge to face in the near future. In addition, we are also exploring how to use
parallelism to practically optimize the construction of RDF-TR structures.

Finally, the application of our foundations (i.e., heuristics) to uncover redundancies that can be further
captured by RDF compression techniques sets the stage for the application of further uncovered transforma-
tions. Our future work considers both using other implicit structural similarity patterns (e.g., looking at the
structure of adjacent nodes in the RDF graph [27]), as well as making use of explicitly declared constraints

or regularities in the data (e.g., expressed with SHACL [26] or ShEx [4]).

38

Acknowledgement

This paper is funded by MINECO-AEI/FEDER-UE [Datos 4.0: TIN2016-78011-C4-1-R}, the EUs Hori-

zon 2020 research and innovation programme: grant 731601 (SPECIAL), the Austrian Research Promotion
Agency’s (FFG) program “ICT of the Future”: grant 861213 (CitySPIN).

References

[1]

[10]

S. Alvarez—Garcia, N. Brisaboa, J.D. Fernandez, M.A. Martinez-Prieto, and G. Navarro. Compressed
Vertical Partitioning for Efficient RDF Management. Knowledge and Information Systems, 44(2):439—
474, 2014.

M. Atre, V. Chaoji, M.J. Zaki, and J.A. Hendler. Matrix ”Bit” Loaded: A Scalable Lightweight Join
Query Processor for RDF Data. In Proceedings of the International Conference on World Wide Web
(WWW), pages 41-50, 2010.

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, and Z. Ives. DBpedia: A Nucleus for a Web of Open
Data. In Procedings of the International Semantic Web Conference (ISWC), pages 11-15, 2007.

T. Baker and E. Prudhommeaux. Shape Expressions (ShEx) Primer. Draft Community Group Report
14 July 2017, 2017.

D. Beckett. RDF 1.1 N-Triples. W3C Recommendation, 2014.

https://www.w3.org/TR/2014/REC-n-triples-20140225/.

D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers. RDF 1.1 Turtle. W3C Recommen-

dation, 2014. nttps://waw.w3.org/TR/2014/REC-turtle-20140225/.

P. A. Bonatti, M. Cochez, S. Decker, A. Polleres, and V. Presutti, editors. Knowledge Graphs: New
Directions for Knowledge Representation on the Semantic Web, Schloss Dagstuhl, Germany, September

2018. To appear, http://polleres.net/bona-etal-DagstuhlReport18371.pdf.

N. Brisaboa, A. Cerdeira-Pena, Fari na, and G. Navarro. A compact rdf store using suffix arrays. In
Proceedings of the International Symposium on String Processing and Information Retrieval (SPIRE),
pages 103-115, 2015.

N. Brisaboa, S. Ladra, and G. Navarro. Compact Representation of Web Graphs with Extended Func-
tionality. Information Systems, 39(1):152-174, 2014.

David Clark. Compact PAT trees. PhD thesis, University of Waterloo, 1997.

39

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

O. Curé, G. Blin, D. Revuz, and D.C. Faye. WaterFowl: A Compact, Self-indexed and Inference-
Enabled Immutable RDF Store. In Proceedings of the Extended Semantic Web Conference (ESWC),
pages 302-316, 2014.

S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and oranges: a comparison of RDF
benchmarks and real RDF datasets. In Proceedings of the ACM SIGMOD International Conference on
Management of data, pages 145-156, 2011.

P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions on Information

Theory, 1T-21(2):194-203, 1975.

N.L. Elzein, M.A. Majid, I.B. Targio Hashem, I. Yaqoob, F.A. Alaba, and M. Imran. Managing Big
RDF Data in Clouds: Challenges, Opportunities, and Solutions. Sustainable Cities and Society, pages
375-386, 2018.

J. D. Ferndndez, M. A. Martinez-Prieto, P. de la Fuente Redondo, and C. Gutiérrez. Characterizing
RDF Datasets. Journal of Information Science, 44(2):203-229, 2018.

J.D. Fernandez, M.A. Martinez-Prieto, C. Gutiérrez, and A. Polleres. Binary RDF Representation for

Publication and Exchange (HDT). W3C Member Submission, 2011. nttp://ww.ws.org/Submission/HDT/.

J.D. Fernandez, M.A. Martinez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias. Binary RDF Represen-
tation for Publication and Exchange. Journal of Web Semantics, 19:22—-41, 2013.

T. Guang, J. Gu, and L. Huang. Detect Redundant RDF Data by Rules. In Proceedings of the Database
Systems for Advanced Applications (DASFAA) International Workshops, page 362368, 2016.

B. Heitmann and C. Haye. SemStim at the LOD-RecSys 2014 Challenge. In Proceedings of Semantic
Web Evaluation Challenge (SemWebEval), pages 170175, 2014.

A. Herndndez-Illera, M.A. Martinez-Prieto, and J.D. Ferndndez. Serializing RDF in Compressed Space.
In Proceedings of the Data Compression Conference (DCC), pages 363-372, 2015.

L. Tannone, I. Palmisano, and D. Redavid. Optimizing RDF Storage Removing Redundancies: An
Algorithm. In Procedings of the International Conference on Industrial and Engineering Applications

of Artificial Intelligence and Expert Systems (IEA/AIE), pages 732-742, 2005.

D. Janke, S. Staab, and M. Thimm. Impact Analysis of Data Placement Strategies on Query Efforts in
Distributed RDF Stores. Journal of Web Semantics, 50:21-48, 2018.

A. Joshi, P. Hitzler, and G. Dong. Logical Linked Data Compression. In Proceedings of the Extended
Semantic Web Conference (ESWC), pages 170-184, 2013.

40

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

A. Joshi, P. Hitzler, and G. Dong. Alignment Aware Linked Data Compression. In Proceedings of the
Joint International Conference on Semantic Technology (JIST), pages 73-81, 2016.

M. R. Kamdar, T. Tudorache, and M. A. Musen. A systematic analysis of term reuse and term overlap

across biomedical ontologies. Semantic Web, 8(6):853-871, 2017.
H. Knublauch and D. Kontokostas. Shapes constraint language (SHACL). W3C Recommendation, 2017.

P. Maillot and C. Bobed. Measuring structural similarity between rdf graphs. In Proceedings of the
Symposium on Applied Computing (SAC), pages 1960-1967. ACM, 2018.

S. Maneth and F. Peternek. Grammar-based graph compression. ”Information Systems”, 76:19-45,
2018.

F. Manola and R. Miller. RDF Primer. W3C Recommendation, 2004. www.w3.org/TR/rdf-primer/.

M. A. Martinez-Prieto, J. D. Ferndndez, A. Herndndez-Illera, and C. Gutiérrez. Rdf compression. In
Sherif Sakr and Albert Zomaya, editors, Encyclopedia of Big Data Technologies. Springer International
Publishing, 2018.

M.A. Martinez-Prieto, M. Arias, and J.D. Ferndndez. Exchange and Consumption of Huge RDF Data.
In Proceedings of the Extended Semantic Web Conference (ESWC), pages 437-452, 2012.

M.A. Martinez-Prieto, N. Brisaboa, R. Cénovas, F. Claude, and G. Navarro. Practical Compressed
String Dictionaries. Information Systems, 56:73—108, 2016.

M.A. Martinez-Prieto, J.D. Fernandez, and R. Cédnovas. Compression of rdf dictionaries. In ACM Press,
editor, ACM International Symposium on Applied Computing (SAC), pages 1841-1848. ACM, 2012.

M. Meier. Towards Rule-Based Minimization of RDF Graphs under Constraints. In Procedings of the
International Conference on Web Reasoning and Rule Systems (RR), pages 89-103, 2008.

T. Minier, H. Skaf-Molli, and P. Molli. SaGe: Web Preemption for Public SPARQL Query Services. In

Proc. of The Web Conference, 2019. nttps://callidon.github.io/pdf/paper wwwi9.pdf.

B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web Ontology Language

Profiles. W3C Recommendation, 2012. www.w3.org/TR/owl2-profiles/.
G. Navarro. Compact Data Structures — A practical approach. Cambridge University Press, 2016.

T. Neumann and G. Moerkotte. Characteristic Sets: Accurate Cardinality Estimation for RDF Queries
with Multiple Joins. In Proceedings of the International Conference on Data Engineering, pages 984-994,
2011.

41

[39]

[40]

[47]

[48]

[49]

[50]

J.Z. Pan, J.M Gémez-Pérez, Y. Ren, H. Wu, W. Haofen, and M. Zhu. Graph Pattern Based RDF Data
Compression. In Proceedings of the Joint International Conference om Semantic Technology (JIST),

pages 239-256, 2015.

J.Z. Pan, J.M. Goémez-Pérez, Y. Ren, H. Wu, and M. Zhu. SSP: Compressing RDF data
by Summarisation, Serialisation and Predictive Encoding. Technical report, 2014. available at

http://www.kdrive-project.eu/wp-content/uploads/2014/06/WP3-TR2-2014_SSP.pdf.

R. Pichler, A. Polleres, S. Skritek, and S. Woltran. Towards Rule-Based Minimization of RDF Graphs
under Constraints. In Procedings of the International Conference on Web Reasoning and Rule Systems

(RR), page 133148, 2010.

K. Sadakane. New Text Indexing Functionalities of the Compressed Suffix Arrays. Journal of Algorithms,
48(2):294-313, 2003.

D. Salomon. Data Compression: The Complete Reference. Springer-Verlag London Limited, 2007.
D. Salomon. Variable-length Codes for Data Compression. Springer-Verlag, 2007.

G. Schreiber and Y. Raimond. RDF 1.1 Primer. W3C Recommendation, 2014.

https://www.w3.org/TR/rdf11-primer/.

J. Swacha and S. Grabowski. OFR: An Efficient Representation of RDF Datasets. In Proceedings of
the Symposium on Languages, Applications and Technologies (SLATE), pages 224-235, 2015.

R. Taelman, M. Vander Sande, J. Van Herwegen, E. Mannens, and R. Verborgh. Triple storage for

random-access versioned querying of RDF archives. Journal of Web Semantics, 54:4-28, 2019.

R. Ticona-Herrera, R. Tekli, J. Chbeir, S. Laborie, I. Dongo, and R. Guzman. Toward RDF Normal-
ization. In Proceedings of the International Conference on Conceptual Modeling (ER), pages 261-275,
2015.

G. Venkataraman and P. Sreenivasa Kumar. Horn-rule based compression technique for RDF data. In

Proceedings of the Annual ACM Symposium on Applied Computing (SAC), pages 396-401, 2015.

R. Verborgh, O. Hartig, B. De Meester, G. Haesendonck, L. De Vocht, M. Vander Sande, R. Cyganiak,
P. Colpaert, E. Mannens, and R. Van de Walle. Querying datasets on the web with high availability.
In Proceedings of the International Semantic Web Conference (ISWC), pages 180196, 2014.

42

	Introduction
	Preliminaries and State of the Art
	Sources of RDF redundancies
	RDF Compression

	Data Compression and Coding
	Variable-Length Codes
	Encoding of Integer Sequences
	Compact Data Structures
	Encoding of Graphs

	blackRDF-Tr Foundations
	Predicates
	Objects

	blackRDF-Tr
	Object-based transformation
	Predicate-based Transformations
	Subject-based Transformations
	blackRDF-Tr Implementation and Decoding

	HDT++
	HDT
	Plugging blackRDF-Tr into HDT

	K2-triples++
	k2-triples
	Plugging blackRDF-Tr into k2-triples

	Experimental Evaluation
	Practical blackRDF-Tr Implementation
	Evaluation Corpus: Description and Statistics
	blackRDF-Tr Analysis
	Discussion

	Conclusions and Future Work

