Escuela de Doctorado Universidad de Valladolid

Universidad deValladolid
PROGRAMA DE DOCTORADO EN INVESTIGACION BIOMEDICA
TESIS DOCTORAL:

Human Intestinal immune and
microbial sighatures in
Inflammatory Bowel Disease: A
multidisciplinary approach to

disease mechanisms

Presentada por Elisa Arribas Rodriguez para optar al grado de

Doctor/a por la Universidad de Valladolid

Dirigida por:
David Bernardo

Eduardo Arranz






Index

TABLE INDEX...c.ciuuiitiiuiiuiieniieniienieeieeiienieenieescesscrscrsssesstsssssssrssssssssssssssesssssssssssssssssssssssssssnsses 1
FIGURE INDEX ...cuuiuuiiuuiiuniinieniieuiieuieeceeienieeieesiestesscressesssessesssrsssesssrsserssssssssssssssssssssssssssassses 2
ABBREVIATIONS .....ouiiiiiiiiiiiiuiiiuiieiieeiiaitaieasseasseestsestasstsssasssesssesssessassssssssssssssosssosssasssasssnsss 5
1 CHAPTER 1. INTRODUCTION ....cuuiiuiiiiiiuiiuiiiuiiieiieesiasiasiesseesisesisesisssrasssasssssssesssessosssassses 11
1.1 GENERAL OVERVIEW OF INFLAMMMATORY BOWELDISEASE.......c..coiiiiiiiiiiiiieieeeieeeennen. 13
1.2 IMMUNE SYSTEM IN THE GASTROINTESTINAL TRACT ...uutiiiiereeiiiee ettt eeetieeeeenieeeeenie s 16
1.2.1  Structure and function Of the INTESTINE........ccccveuiiiiiiiiiiiiiiiii e, 16
1.2.2 Human intestinal dendritic cells and their SUDSETS ...........c.cccuovviiiiiiiiiiiiiiiiiiiiiiii e, 17
1.2.3  Human intestinal MacCrOPRAEES .......cuueue ettt ee et e e e ee e e eeee s e eae e eaeennas 19
T.2.4  OraltolEranCe.......cc.cieuuieiuiieiie ettt ettt ettt et et s et e et s et s et s eeneseenes 21

1.3 DYSREGULATION OF THE IMMUNE RESPONSE INIBD .....ccuuitiiiiiiieiiieeiieeeieeeeeeieeenenees 24
1.3.17 Role of cDC, macrophages and monocytes in inflammation ............cccceeevviviiiieeennennennn. 24

1.3.2 Role of Th1, Th2, @aNA TRT7 CEULS «.c.cnoneeeiee ettt e e e ae e e e e e as 26

1.4 ROLE OF JAK-STAT SIGNALING PATHWAY IN IBD ....ueiiiieiiiiiieeeetiie et e eeeiieeeeeia e 28
N N U 100 Y N 7= 1 11 RPN 28
T.4.2  TRE STAT FAIMULY «..eneeeeee ettt et ettt e e e e e e e et et e e s e saeaasaatae s saneansnneanennes 28
1.4.3 The JAK-STAT pathway in immunoregulation ............c.ceeeveeieiiiiiiiieeiieeeeieeieenreeeeeeneeneannen 29
1.4.4  JAK-STAT PAtAWAY IN IBD .........coneeeeeeee ettt ettt e e e e e e e e s e e e e eaaeanas 29
1.4.5 JAK-STAT inhibitors for IBD tre@tment............cocuuiieiniiiiniiiiiiiiiiiieieie ettt 31

1.5 GUT MICROBIOTAIN IBD: BACTERIAL AND FUNGAL INTERACTIONS........cevviiiiiiiiinnneinnne, 35
1.5.1 Composition and function of a healthy gut miCrobiota...........ceuveueiuiiniiiiiiiiniiiiieeieenennes 35

1.5.2 Importance of microbiota on human health: role of microbial metabolites in immune

INOAUIBTION «.veeeiiieiii ettt ettt e et ettt e e st e st ean s enesaneansanasan 37
1.5.3 Dysbiosis in IBD: shifts in bacterial and fungal populations............cccceevveiiiiiiiienennennenne. 39
1.6 OVERVIEW ettt ettt et ete et et et e ea et et e eaeetuneaaanasensasntnnsensasnennsensasnsennaensennsenneensennnen 43
1.7 BIBLIOGRAPHY ..eiiiiiiiiie ettt et eete e ete e ete e tteeeteeeasaetasaaansaaansaasnsaennsaesnsaennsesnnseennnees 45
CHAPTER 2. OBJECTIVES.....ccctutiuiiuiieiiniieriusieseecieseesiessessessessessessessessesssssesssssesssssssssssssssses 69
CHAPTER 3. MATERIALS AND METHODS .....c.cciuiiiiuiiiinieniecenietasetesesesassecsssesssssssssssesassesssne 73
3.1 PATIENTS AND BIOLOGICAL SAMPLES .....uuiiiiiiiiieiiiie ettt e et e et e et e eeieeeneseeasaanneees 75
3.2 SAMPLE COLLECTING AND PROCESSING .....ccuuiitiiiiiieiieeiieetie et eeee et eeneeeneeenneeenes 77
B.2.7T  BlOOU PrOCESSING eueieiiiie ettt ettt eeee e st st et eae e anstn st saasaeasanssnsansanrenranennenns 77

B.2.2 INtESHINALDIOPSIES . .cuuneneieeeee ittt ettt ettt e et e e te e eaete e saatesneaatesnsaatesnsaatesnennens 78



3.2.83  INtESTINALIESECTION .ttt ettt ettt et e ea e ea e e enenseeasasesasasesaseseseseannns 79

B.2.4  FECALSAMPUES ...ttt ettt et e et ettt e et aete et et e aanaas 79
3.3 FLOW CYTOMETRY APPROACHES..... .. ittt ettt eren e 80
3.3.T  ANtiDOAY SEAINING .ceuoeneieii ettt et s e et e et st et e et s e eansaansaneanaannns 80
3.3.2  SUPEIVISEA GNAIYSIS ..ottt e et et e et aas 80
B R B O [ Yo ) 1 1 o 7= F OO 81
3.3.4 UNSUPEIVISEA QNALYSIS «.ceueuneeeeeiiiiieie ettt et ee et e s s e eaeeaesas e s e e e sansanaanans 81
3.4 CELL CULTURE ...ttt ettt ettt et e ettt e e et e e et taa e e eetaa e e eesneeeeaba e eeennaeanens 83
3.4.1 Lamina propria mononuclear CEUS CUILUIE ............cuueiueiiiiiiiiiii e eae e e 83
3.5 INTESTINAL MICROENVIRONMENT EVALUATION ...ttt et eeenn e 84
5.1.7 BiopSieS-CUltUIe SUPEINAtANTS.....c.iiuiiiiiiiiiiiiiii ittt et et ee e e eaa s 84
3.6 MICROBIOTA ANALYSIS ...ttt ettt ettt e et e e e etie e e ettt e e eetaa s e eetaaeeeannaeeaenaanans 85
3.6.7T  DINA BXETACTION .uvviniiiiiiiiiiiie ittt ettt st st s e e s e e s e e e eaaes 85
3.6.2  BioINfOrmMatiC @NALYSIS.....ccueuieneiiiiiieie e ee et e e et et et et s e eaa s aaeenstneaasaasanennens 86
3.7 STATISTICAL ANALYSIS ...ttt ettt ettt e ettt e e et te e e eta e e eetaa s e eeanaeeeeesaneeeannans 88
4 CHAPTER 4. STUDY AND ISOLATION OF HUMAN INTESTINAL DENDRITIC CELL AND
MACROPHAGE SUBSETS ....ccuituituiiiuiitniieiteiieuiieuiieuiiecrsicrscrssssssssestsssrsssrsssssssssssssssssssssssssssnss 89
4.1 INTRODUGTION ..ttt ettt e e ettee e ettt e ettt e e ettaeeeettaeeeatuaeeeasaaeeeananaeesnaneanennnaes 91
4.2 STUDY OF DENDRITIC CELLS AND MACROPHAGES FROM INTESTINAL BIOPSIES ............. 92
4.3 DENDRITIC CELL AND MACROPHAGE ISOLATION FROM INTESTINAL RESECTIONS........... 95
4.4 INOTES ..ottt e e b e et b s e e taa s e ebaa s s etaaaseeanaaeaes 97
4.5 BIBLIOGRAPHY .eeiiiiiiiiiiiie ittt ettt st e e s s et s s esaaaa e 99
5 CHAPTERS5.TYPE 1 AND CD103* TYPE 2 CONVENTIONAL DENDRITIC CELLS ARE

DECREASED IN ACTIVE PATIENTS WITH ULCERATIVE COLITIS BUT NOT WITH CROHN’S DISEASE.

101

5.1 INTRODUGTION ..ttt ettt ettt ettt e et e ettt e et ttee e e eenn e e eeena e e eeenaeeeennaeeeennneeennans 103

5.2 MATERIALAND METHODS ...ttt ettt e e et e e ettt e e et e e e e e e eenn e e eeenaes 105
5.2.1 Patients and biologiCal SAMPLES.........cuueuiiiiiiiiiiii et eaeeananns 105
5.2.2  BlOOU PIrOCESSING «.eueneeeeee ettt ettt et st ettt e e e s e st s e eaeaansansansansanranennanns 108
5.2.3  BiOPSY PrOCESSING c.eneeeeeeee ettt ettt ettt et et ettt e e e e e et e e e eaanne 108
5.2.4 TiSSUE reSECLIONS PrOCESSING . cunenene ettt ettt ettt e e e et et e e eaenne 108
5.2.5 Human colonic CYtOKING MUlIEU. ...........ceueueeiiiiiiiiiieeieiieiie et eieeneeseseseneaaeaeennanns 109
5.2.6 ANtDOAY LGDEIING ......ceueeeeneeeeee ettt e eane 109
5.2.7 Tcellenrichment and StMUIGTION ...........ccciiviiiiiiiiiiiiiiiiiiii e 111
5.2.8 Flow cytometry and data @nalySiS ........ceueeueeiiiiiiiiiiiieieiieiiee et ee s st s s e anaanns 111
5.2.9  StatiStiICAl @NAlYSIS ...cuveneeeeeeteie ettt es sttt e et a e e e e aans 112

5.3 RESULTS ..o e s e e e s s 113



5.3.1 CD103" cDC2 were the main subset in the human duodenum but not in the colon or the
ileum. 113

5.3.2 ¢DC1and CD103" cDC2 were more mature than their CD103 ¢cDC2 counterparts...... 113
5.3.3 The proportion of CD103" cDC2 was increased following overnight culture. ................ 116
5.3.4 IL-10 production was related to CDT03  DC2. ......cueuieniiiiiiiieeeeeeeieeie e e eans 116
5.3.5 Allhuman intestinal cDC subsets prime the generation of IL-10* T cells in the non-
INFLAMEA COIONM ...t ettt e e aaes 117
5.3.6 SIRPa expression was decreased on mucosal cDC from IBD patients, while the

proportion of cDC1 and CD103* cDC2 was lower in the inflamed colon from UC but not CD

oz L[] ¢ & T PPN 120
5.3.7 Dysregulated phenotype on intestinal cDC subsets from IBD patients. ...........cccccc...... 122
5.3.8 c¢DC stimulatory capacity iN IBD.............cccooiiiiiuiiiiiiiiiiiiiiiiiieiie e 123
5.3.9 Cytokine profile in COLONIC DIOPSIES «...cueuienieiieiieieeieiee e ti e ee e ee e ee e s e sae e eneanns 124
5.3.10 Circulating cDC subsets are not altered in IBD patients. .........cccceeueeeeeieiiiinienennennnn. 124
5.4 DISCUSSION ...ttt ettt ettt e et e ettt e e eette e e ettaa e e etaa e eetuaeseetsaaeeeesaaeeatnaneeeeanans 128
5.5 BIBLIOGRAPHY ...ttt ettt ettt e et e e et e e e eera e e eeenae e e eenna e eeenne e eeenans 133

6 CHAPTER 6. TOFACITINIB DOWNREGULATES JAK1 AND JAK3 ON HUMAN INTESTINAL
MONOCYTES AND MACROPHAGES WITHOUT AFFECTING DENDRITIC CELLS PHENOTYPE OR

FUNCTION. cccciiiiiiiiiiiiniiiiieiteiieniietitetitetetttttsetstttssessstassrsssrsssesssssssassssssrssesssessssssssssessssssssnns 139
6.1 INTRODUGTION ..ttt ettt e ettt e e et e e ettt e e et e e eenn e e eeena e e eeenaeeeennaeeeeennneeennans 141
6.2 MATERIALAND METHODS ......iiiiiiiiiiiiiiiiiin ittt ettt eaaaes 143

6.2.1 Patients and biologiCal SAMPLES.........cuueuniiiiiiiiii e e eananns 143
6.2.2  SAMPLE PrOCESSING «.oueneeeeeeeeie et ettt ettt et e e e e e e e e e e e et et st saa s anesnaanetasaasansnnnans 144
6.2.3 Lamina propria mononuclear CElIS CUILUIE ..........c.cuueeueeniiiiiiiiiieeie e eaeeans 145
6.2.4 Human intestinal cDC sorting and T cell stimulation. .............ccceveuveiiiiiiiiiiiniinennennenns 145
6.2.5  FLOW CYtOMELrY SEAINING «..cuneeeeet it eee ettt e e e e e e ee e e et et st s e snaanstsasaasananns 146
6.2.6  FLOW CYTOMELIY GNALYSIS c.ucuneeeeeesieee ettt ee et e et e e e e e et e et e e eae e s e s asasasanaans 147
6.2.7  StatiStiCAl @NALYSIS ...cuveneeeeee ettt e et e e aans 149
6.3 RESULTS L.ttt ettt b e et b s e et s e e b e eeaaaes 150
6.3.1 Unsupervised characterization of human colonic APC in health and UC. .................... 150
6.3.2 Tofacitinib induced a specific reduction of phosphorylated STATS. ....cceeveiiiiiiiiieennnnns 152
6.3.3 Tofacitinib JAK1 down regulation is restricted to intestinal monocytes.............ccceueeunenn. 152
6.3.4 Tofacitinib does not modulate the outcome of human intestinal cDC ......................... 155
6.4 DISCUSSION ...ttt ettt ettt ettt e et e e ettt e e e tta e e eeaa e e eeera e eeenaeeeennaeeeenaneeeennans 157
6.5 BIBLIOGRAPHY ...ttt t b s eeeaa e s e eeaa e e eaaaes 159

7 CHAPTER 7. CHARACTERIZATION OF THE GUT MICROBIOTA IN INFLAMMATORY BOWEL

DISEASE: INSIGHTS INTO BACTERIAL-FUNGAL INTERACTIONS AND POTENTIAL BIOMARKERS 163



7.1 INTRODUGCGTION ..euiiiiiiiiiiiii ittt e e s e s e 165

7.2 MATERIALAND METHODS .....uiiiiiieetiiiee ettt ettt e et e e ettt e e eeta e e eeeba e e eeeaaeeeeanans 167
7.2.1  Patients and biologiCal SAMPLES.........cc.cuueiiiiiiiiiiiii ettt eie e eae e eaeaans 167
7.2.2 Biopsies processing and SEQUENCING........cuuui ettt eae e e eeeenenns 169
7.2.3 Stoolsamples processing and SEQUENCING .......cc.vuueeuireuiiieiiieeiiiiieeiieeieeieeiieeneeeneenns 169
7.2.4  BioiNfOrmatiC @NAlYSIS. ......uuuuiuiiuiiieiieiieiie st e e ee e ee e sttt saesaeeaeeneaneanetraaransaneanaans 169

7.3 RESULTS ..ttt ettt e ettt e et e e et e eeeaaa e e e eana s e eenae s enenaeseeeenaes 170
7.3.1 Microbial diversity in iINteStINAl DIOPSIES.......uuueniiieiiiiei et e e e e aeeeaaans 170
7.3.2 Microbiota correlation in inteStinal DiOPSIES.....cc.cuuiuieiiiiiiiiiiieieeieeieeieiie e eeeeaeeaeaans 176
7.3.3  Microbial diVersSity iN FABCES ... ..iuuiu ittt eie et et e e et e eaeeeae e senseesansaeeanaans 188
7.3.4 Microbiota comparison between different groups .........cccoeeeeuiieiiiiiiiiiiiiieinienciinnenn. 191
7.3.5 Microbiota comparison between different tiSSUES ........ccoveviieieiiieieiieiiiiiiieeieeieeneans 193

7.4 DISCUSSION ...ttt ettt ettt e et e e et e e eenn e e e eena e e eeana e eeennaeenenaeeeeenans 195

7.5 BIBLIOGRAPHY ...ttt ettt ettt ettt e e et e e e eera e e et enae e e eenna e eeenne e eeenans 197

8  CHAPTER 8. DISCUSSION ....ceuiiiuiiuniinniiniiniieniinniieienieniiesiiesieascesscesserserssssssessesssssssnns 207

8.1 IMMUNOME STUDY ...ttt ettt ettt e ettt e e eeen e e tera e e eeena e e eennaeeeennaeeeeenans 210

8.2 MICROBIOME STUDY ...ttt ettt ettt e et e et e e eeen e e e eeea e e eeena e e eennaeeeennaeeennans 217

8.3 LIMITATIONS AND STRENGTHS .....uniiiieieeiie ettt ettt e e et e e et e e eeeae e eeeanaes 224

8.4 FINAL SUMMARY OF REMARKABLE FINDINGS ......oittiiieiiiiiieeeiiiee et eeeiieeeeeieeeeennans 226

8.5 BIBLIOGRAPHY .ottt e et e e et e e e eeba e e eeena e e eenna e eeennaeeeeenans 227

9  CHAPTER 9. CONCLUSIONS.......co ittt tecteere ettt teeetaeteaseeesaeesasesasesansnnns 237



Table index

TABLE 1.1. PRINCIPAL DIFFERENCES BETWEEN HUMAN INTESTINAL CONVENTIONAL DENDRITIC CELL SUBSETS.......... 19

TABLE 3.1. NUMBER OF PATIENTS OF THE DIFFERENT COHORTS THAT HAD BEEN USED THROUGHOUT THE PRESENT WORK.

TABLE 5.1. PATIENT DEMOGRAPHICS WITH ACTIVE ULCERATIVE COLITIS INCLUDING GENDER, AGE, MAYO ENDOSCOPIC
SCORE AND TREATMENT .. ettt ittt ettt ittt etaetneetaeeseeneenaesasenessesnsennesnssnssnsennsensnnsnnns 106

TABLE 5.2. PATIENT DEMOGRAPHICS WITH QUIESCENT ULCERATIVE COLITIS INCLUDING GENDER, AGE AND TREATMENT.

TABLE 5.3. PATIENT DEMOGRAPHICS WITH ACTIVE CROHN " S DISEASE INCLUDING GENDER, AGE, SIMPLIFIED
ENDOSCOPIC ACTIVITY SCORE FOR CROHN " S DISEASE (SES-CD) AND TREATMENT. ..vuivniininenennenreneannnns 107

TABLE 5.4. PATIENT DEMOGRAPHICS WITH QUIESCENT CROHN ”S DISEASE INCLUDING GENDER, AGE AND TREATMENT.

TABLE 5.5. PATIENT DEMOGRAPHICS WITH COLORECTAL CANCER SUBJECTED TO INTESTINAL RESECTION AND USED AS
CONTROLS, INCLUDING GENDER AND AGE. . .ctuuutttuetuneerueersnsessnsesuesesuesesneessnssssnsessseessneessnssssnsessnnns 107
TABLE 5.6. PATIENT DEMOGRAPHICS WITH ACTIVE CROHN’S DISEASE SUBJECTED TO INTESTINAL RESECTION INCLUDING
GENDER, AGE AND TYPE. ..ttttuuutettuuneeetuunsertunneeesssnsesssnseessssssessssnssssmssssssnsnsssessssnesesssnnsesssnnesennes 108
TABLE 5.7. SPECIFICITY, CLONE, CONJUGATE AND MANUFACTURER OF THE DIFFERENT MONOCLONAL ANTIBODIES USED
IN THE PRESENTWORK. 11uetvuuettuneesuneeuueeesueessnesssneessneessnnsssnssssnssssnssssnsessnssssnssssnssssnssssnsessnsssnessnns 110
TABLE 6.71. PATIENT DEMOGRAPHICS. ... etuuetuetunetneetnetueeneennrtueeneeneeeneensesestnseensesnsensesnsesnsensennsenesensennnes 144

TABLE 6.2. SPECIFICITY, CLONE, CONJUGATE AND MANUFACTURER OF THE DIFFERENT MONOCLONAL ANTIBODIES USED

IN THE PRESENT WORK. t1vuueettunneettuunneeetuuneeeesuneeessunseeessnnseessnnssesssanseesssnsseessnnssesssnnssemsnnssessnneees 146
TABLE 7.71. PATIENT DEMOGRAPHICS. ... ttutetntiuiitnetietuetienittnetneenetnetneeneetnetnsesnstneesnsesstnsesnsenssensesnnes 168
TABLE 7.2. FUNGAL ALTERATIONS IN IBD OBSERVED IN IBD GROUPS WITH RESPECT TO THE CONTROLS. ............... 175
TABLE 7.3. SIGNIFICANT CORRELATIONS BETWEEN BACTERIA AND FUNGI GENUS (P-VALUE < 0,05)......cveuvenennnne. 180
TABLE 7.4. PRINCIPAL CHARACTERISTICS OF MOST RELEVANT BACTERIA GENUS. .vuuevveerineerteeeeineenneeesnneeenneeenns 180
TABLE 7.5. PRINCIPAL CHARACTERISTICS OF MOST RELEVANT FUNGI GENUS. ...cevvvunerrrnneerrnneeerenneeeennnneeeeennns 185

TABLE 7.6. BACTERIAL DYSBIOSIS IN IBD GROUPS WITH RESPECT TO THE CONTROLS BOTH IN BIOPSIES AND STOOL. . 190
TABLE 7.7. PERMANOVA TESTS AMONG ALL GROUPS. «...uuetttuneertnnneeerunneeersnnnseessnnssersnnnseessnnnserssnnseessnnns 192
TABLE 7.8. ANOSIM TESTS AMONG ALL GROUPS. ...uuettuenneeereuneeeruenseessnnseessunnseesssnssesssnnseessnnssessnnnseessnnns 193
TABLE 7.9. PERMANOVA TESTS BETWEEN STOOL AND BIOPSIES IN ALL GROUPS USING BRAY CURTIS DISTANCES FROM
BACTERIAL DATA. t1vuuneetrtunneetuunnseesunnneessunnseessnnssessssnssesssnnseesssnssessssnseessssssessssnssesssnnsssssnnssessnnsees 193
TABLE 7.10. ANOSIM TESTS BETWEEN STOOL AND BIOPSIES IN ALL GROUPS USING BRAY CURTIS DISTANCES FROM

BACTERIAL DAT A, e etttittiitiiitiitetitttattteitettseeasaeeasssessssssssssssessssssssssensssesssssnsssssssssssssnnsssnssssnnee 194



Figure index

FIGURE 1.1.THE GLOBAL PREVALENCE OF IBD IN 20715 (4). «uttuitniiiiiiiiieiieee et eeeeeieeneeeeaeneneenssnsansansansans 13
FIGURE 1.2. MECHANISMS UNDERLYING ORAL TOLERANCE (B8)....uttvuuitrutirieeeiieeerieeeunneenneessneessnsessnnessnneennnns 23
FIGURE 1.3. THERAPEUTIC TARGETS OF THE JAK-STAT SIGNALLING PATHWAY (FROM (187) eevuuiivieiiieeeiineeiineennnns 32

FIGURE 4.1. GATING STRATEGY TO IDENTIFY CONVENTIONAL DENDRITIC CELLS AND MACROPHAGES IN THE HUMAN GUT.

........................................................................................................................................... 95
FIGURE 4.2. POST-SORT ANALYSIS OF HUMAN INTESTINAL ENRICHED CONVENTIONAL DENDRITIC CELLS AND
MACROPHAGES. ..ttt eetttuueeettuneeenenneeeesnneseesnnneeeessnseeessnsessssnseessssnsessssnssessssnssesssnssensssnsssesnnnsennes 96
FIGURE 5.1. T NAIVE ENRICHMENT CHECKING. .uttuuttueuneenenneennrenennreneeneeneeeneeeneennsenseensesnsensennsennsensennnes 111
FIGURE 5.2. HUMAN INTESTINAL CONVENTIONAL DENDRITIC CELL SUBSETS. tvuuetvuuetuueerreeerrneersneeesneesnneesnneennns 114
FIGURE 5.3 CHARACTERIZATION OF CONVENTIONAL DENDRITIC CELL SUBSETS.....ccvuuueerenneereenneeerennneereenneeenees 115
FIGURE 5.4. CD103" CONVENTIONAL DENDRITIC CELLS INCREASE THEIR PROPORTION FOLLOWING CULTURE........ 116
FIGURE 5.5. IL-10 PRODUCTION IS ASSOCIATED WITH CD 103" TYPE 2 CONVENTIONAL DENDRITIC CELLS. ............ 117
FIGURE 5.6. HUMAN INTESTINAL DENDRITIC CELL STIMULATORY CAPACITY. «eevuuetturerrneeruneessneeenneeennsesnneesnneennns 118
FIGURE 5.7. ALL HUMAN INTESTINAL CONVENTIONAL DENDRITIC CELL SUBSETS PRIME THE GENERATION OF IL-10
PRODUCING T CELLS. etuttuttnteunetueenneeuetneeeneenetneeneeeneeasenesensesnsenseensesnsenseensesnsenssensesnsensennsenneens 119

FIGURE 5.8. HUMAN INTESTINAL CONVENTIONAL DENDRITIC CELLS DISPLAY A DECREASED EXPRESSION OF SIRPA IN
INFLAMMATORY BOWEL DISEASE COUPLED WITH LOWER NUMBERS OF TYPE 1 AND CD103* TYPE 2 CONVENTIONAL
DENDRITIC CELLS IN ULCERATIVE COLITIS. 1vvuuettuuneersunneeresnnaeesssnnssesssnasesssnnseesssnnesssssnnsssnsnnsessnsnneees 121

FIGURE 5.9. CHARACTERIZATION OF HUMAN CONVENTIONAL INTESTINAL DENDRITIC CELL SUBSETS IN INFLAMMATORY
BOWEL DISEASE. «.uetuttntutuetneenetneeneeneueueeneensansenssnssssustnsensensenssnssnssssnssnssnsensensnsssssnssnsensensensansnns 122

FIGURE 5.10. HUMAN INTESTINAL CONVENTIONAL DENDRITIC CELLS ARE MORE STIMULATORY IN INFLAMMATORY BOWEL

DISEASE AND PRIME THE GENERATION OF IL-17* T CELLS IN THE INFLAMED TISSUE. +.uuevvurerreerreeernessnnenens 123
FIGURE 5.11. COLONIC CYTOKINE MILIEU IN INFLAMMATORY BOWEL DISEASE. ...eevuunneetrnnneerennneennunneereennneenees 124
FIGURE 5.12. CIRCULATING DENDRITIC CELLS ARE NOT ALTERED IN IBD PATIENTS. .. ccuuieirineieeireneeieeneenennnes 126
FIGURE 6.1. HUMAN INTESTINAL CONVENTIONAL DENDRITIC CELLS, MONOCYTES AND MACROPHAGES................. 147
FIGURE 6.2. CHARACTERIZATION OF HUMAN INTESTINAL ANTIGEN PRESENTING CELLS...ccuuuetveerrnernneeesnnessnnennns 148
FIGURE 6.3. TOTAL HUMAN INTESTINAL MYELOID ANTIGEN PRESENTING CELLS IDENTIFICATION. +..uuvevveennerreennnnnns 149
FIGURE 6.4. UNSUPERVISED ANALYSIS OF HUMAN INTESTINAL ANTIGEN PRESENTING CELLS. ...ccvuueerrenneerennnnnnes 151
FIGURE 6.5. INTRACELLULAR PHOSPHORYLATED STAT CONTENT. .etutuutiitnrenrtneneneneeneenrenrenreessssnsensensensensenns 152
FIGURE 6.6. TOFACITINIB EFFECT OVER HUMAN INTESTINAL ANTIGEN PRESENTING CELLS. ..uevvuuerrnernnerrneesnnnnnns 153

FIGURE 6.7. TOFACITINIB MODULATION OF HUMAN INTESTINAL ANTIGEN PRESENTING CELLS FROM PATIENTS WITH ACTIVE
L0 N O 0 N 154

FIGURE 6.8. TOFACITINIB EFFECT OVER HUMAN INTESTINAL ANTIGEN PRESENTING CELLS FROM PATIENTS WITH
QUIESCENT ULCERATIVE COLITIS. 1uutttiittiiitiiiitititetitetiiteteiteeissseasssessssssssensssssssssssssnsssssssssnsssssssanes 154

FIGURE 6.9. T CELL PROLIFERATION. .. tuutututtneenetneueneueeneeneeneeeeneneneneenaeneneenenensenaensenannanaenseneensensenns 155



FIGURE 6.10. TOFACITINIB EFFECT OVER THE IMMUNOSTIMULATORY CAPACITY OF HUMAN INTESTINAL CONVENTIONAL

DENDRITIC CELLS. 1tnnttiiiiiiitiiiitiiiiteiitteiitttiitetiteeiateeiseetsessasessssesssscessasessssssseessssessssssssssnssssnnee 156
FIGURE 7.1. BACTERIAL ALPHA DIVERSITY IN INTESTINAL BIOPSIES. .c.utuuttnennrtneenenneeneenenneeneenenneennsenennnes 170
FIGURE 7.2. BACTERIAL BETA DIVERSITY IN INTESTINAL BIOPSIES. «.eueuutututtneeneenenneneneeneeneeneenenenenaeneenseneenes 171
FIGURE 7.3. TOP 15 GENUS OF BACTERIA IN BIOPSIES. ... cuutututtnetnenneneneeneeneenennenenaeneeneenreeneenenaeneensensenens 171
FIGURE 7.4. FUNGAL ALPHA DIVERSITY IN INTESTINAL BIOPSIES. +euueuuttunetnenneeneeneenneennrenenneeneenaennsensensennnes 173
FIGURE 7.5. FUNGAL BETA DIVERSITY IN INTESTINAL BIOPSIES. ..evuuetuttuntenenneenneenenneenneenenneeneeenaennsensensennses 174
FIGURE 7.6. TOP 15 GENUS OF FUNGI IN INTESTINAL BIOPSIES. ... eeutuntuniurtneenrenenneneneeneeneeneenenenenaeneensensenens 174
FIGURE 7.7. CORRELATIONS BETWEEN BACTERIA AND FUNGI GENUS IN BIOPSIES. ce.ucvuiunrenennreneenenneenneenennnes 179
FIGURE 7.8. BACTERIAL ALPHA DIVERSITY IN STOOL SAMPLES. .. ctuuttuttunrenenneeneenenneenerenenneeneenaennsensensennnes 188
FIGURE 7.9. BACTERIAL BETA DIVERSITY IN STOOL SAMPLES. .. euttuttnttntuntueeneeneenenneneneeneensenrenenensensensensensenens 189
FIGURE 7.10. TOP 15 GENUS OF BACTERIA IN STOOL SAMPLES. .. evutuntutuetnreneenenneneneeneenrenrenennenaeneenseneensenens 189






Abbreviations

6-MP: mercaptopurine

aCD: active Crohn’s disease

AhR: aryl hydrocarbon receptor

AIEC: Adherent-invasive Escherichia coli

AIM-V: Albumin Insulin Transferrin — Version V
ALDH: aldehyde dehydrogenase

ANOSIM: Analysis of similarities

ANOVA: analysis of variance

APC: antigen presenting cell

ATP: adenosine triphosphate

aUC: active ulcerative colitis

AZA: azathioprine

BA: bile acid

Baft3: basic leucine zipper ATF-like transcription factor 3
BMDC: bone marrow dendritic cell

BMDM: bone marrow-derived macrophages

BSA: Bovine serum albumine

BSH: bile salt hydrolases

BTLA: B and T lymphocyte attenuator

CCR: C-C chemokine receptor

CD(X): cluster of differentiation number X

CD(X)L: CDX ligand

CD: Crohn’s disease

cDC: conventional dendritic cell

cDC1: type 1 conventional dendritic cell

cDC2: type2 conventional dendritic cell

CEACAM: carcinoembryonic antigen-related cell adhesion molecule
CRC: colorectal cancer

CTLA4: Cytotoxic T-lymphocyte-associated protein 4
CXCRa3: receptor for the CX3C chemokine



DC: dendritic cell

DMSO: Dimethyl Sulfoxide

DNA: deoxyribonucleic acid

DSS: dextran sulphate sodium

DTT: dithiothreitol

EDTA.: Ethylenediaminetetraacetic acid
ETBF: Enterotoxigenic Bacteroides fragilis
FAE: follicle-associated epithelium
FBS: fetal bovine serum

FCS: Foetal calf serum

FlowSOM: Flow Self-Organizing Map
FMO: Fluorescence minus one

FMT: Faecal microbiota transplantation
FODMAP: Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols
FOXP3: Forkhead box P3

FSC-A: Forward Scatter — Area
FSC-H: Forward Scatter — Height
GALT: gut-associated lymphoid tissue
Gl: gastrointestinal

GPR: G protein-coupled receptors
HBSS: Hank's Balanced Salt Solution
HLA: Human leukocyte antigen

IBD: Inflammatory bowel disease

ID2: Inhibitor of DNA binding 2

IEC: intestinal epithelial cells

IFN: interferon

Ig: Immunoglobulin

IL: interleukin

ILC: innate lymphoid cell

ILF: isolated lymphoid follicle

IRF: Interferon regulatory factor

JAK: Janus kinase



LPMC: lamina propria mononuclear cells

LPS: lipopolysaccharide

MACS: Magnetic-Activated Cell Sorting

mAPC: myeloid antigen presenting cells

MHC: major histocompatibility complex

MLN: mesenteric lymph nodes

MMPs: matrix metalloproteinases

MO-DC: monocyte derived dendritic cell
MO-M®: monocyte-derived macrophages
MTX: methotrexate

M®: macrophage

NFIL3: Nuclear factor interleukin 3

NLR: NOD-like receptors

NOD: nucleotide-binding oligomerization domain
PBMC: peripheral mononuclear blood cells
PBS: Phosphate-buffered saline

pDC: plasmacytoid dendritic cell
PERMANOVA: Permutational multivariate analysis of variance
PHA: phytohemagglutinin

PP: Peyer’s patch

PRR: pattern recognition receptor

qCD: quiescent Crohn’s disease

qUC: quiescent ulcerative colitis

RA: retinoic acid

RALDH: retinaldehyde dehydrogenase

RBPJ: Recombination Signal Binding Protein for Immunoglobulin Kappa J Region
RELB: RelB Proto-Oncogene

RNA: ribonucleic acid

RORyt: RAR-related orphan receptor gamma t
ROS: Reactive Oxygen Species

RPMI: Roswell Park Memorial Institute medium

RT: room temperature



S1P: Sphingosine-1-phosphate

SA-PE: streptavidin-phycoerythrin

SCFA: short chain fatid acid

SES-CD: simplified endoscopic activity score for Crohn's disease
SIRPa: Signal regulatory protein alpha

SOCS: suppressor of cytokine signaling

STAT: signal transducers and activators of transcription
TCR: T cell receptor

TGF: Transforming growth factor-beta.

Th: T helper lymphocyte

TLR: Toll-like receptor

TNF: Tumor necrosis factor

Treg: regulatory T cell

UC: ulcerative colitis

UCEIS: Ulcerative Colitis Endoscopic Index of Severity
UMAP: Uniform Manifold Approximation and Projection
USA: United Stated of America

XCR1: X-C motif chemokine receptor 1



Generative artificial intelligence has been used for orthographical correction, translation
and style enhancement in some paragraphs. All content has been critically reviewed and

validated by the author to ensure accuracy and scientific relevance.






Chapter 1. Introduction






Introduction

1.1 GENERAL OVERVIEW OF INFLAMMMATORY BOWEL DISEASE

Inflammatory bowel disease (IBD), which comprises ulcerative colitis (UC) and Crohn’s
disease (CD), is a chronic disorder of unknown aetiology characterized by an abnormal
immune response, leading to chronic inflammation of the gastrointestinal (Gl)-tract (1). IBD
affects approximately 7 million people globally and its prevalence is continuously increasing
and is projected to reach approximately 1% in some industrialized regions, including
Europe and North America, within the next decade (2). At the turn of the 21" century, IBD
has emerged as a global health concern, with its incidence rising rapidly in newly
industrialized nations where societies have adopted westernized lifestyles (3), ranging from
10 to 30 per 100,000 in the Western world. In general, the prevalence of UC is higher than

that of CD in Europe, whereas the reverse is observed in Australia. In North America, both

conditions are distributed equally (Figure 1.1) (4).

Prevalence

B Highest
Intermediate

M Lowest
Uncharted

Nature Reviews | Gastroenterology & Hepatology

Figure 1.1.The global prevalence of IBD in 2015 (4).

The economic burden of IBD in the Western world is substantial, encompassing both direct
and indirect costs. In the United States, it is estimated that over 2.4 million individuals are
affected by IBD, with direct medical expenses surpassing $50 billion. Similarly, in Canada,
more than 300,000 people are estimated to have IBD, resulting in annual direct healthcare
costs exceeding CAD $3.3 billion (2). In Europe, about 3 million patients have IBD, and the
direct health-care cost is estimated to be more than €5 billion annually (4).
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Both CD and UC are chronic diseases characterized by relapsing and remitting periods
and despite that their symptoms are similar, CD and UC have differences in their
anatomical location, inflammation pattern and distribution (1). Whereas, CD can affect any
area of the Gl-tract, from mouth to anus, UC is confined to the large intestine (colon and
rectum) (5,6). CD associated inflammation is heterogenous (known as “patchy
inflammation”) and transmural so it could affect any layer of the intestinal wall whereas in
UC the inflammation is continuous and is primarily confined to the mucosal and to a lesser
degree, the submucosal compartments (1,5). The classic hallmarks of CD include
abdominal pain, watery diarrhea, and weight loss, and the major complication associated
to CD is the obstruction of the Gl-tract (due to the formation of obstructive strictures) that
could lead to an intestinal resection (5,7). On the other hand, UC symptoms comprise
bloody diarrhea, abdominal pain and rectal bleeding (5) and major complications includes
the development of toxic megacolon or even the development of colorectal cancer (CRC)
(6,8,9).

IBD complexity has made challenging for traditional scientific methods to address key
clinical questions. A complete understanding of its pathogenesis has yet to be achieved,
indeed, current treatments remain far from optimal and currently IBD has no cure.
Nevertheless, the therapeutic landscape for IBD is significantly evolving with the
development of novel treatment options including targeted monoclonal antibodies and
small molecules (8). Anti-tumor necrosis factor (anti-TNF) agents, such as infliximab and
adalimumab, were the first biologics approved for IBD and have remained fundamental in
its treatment ever since (9,10). Additionally, integrin antagonists like vedolizumab, which
specifically targets the a437 integrin to block lymphocyte migration to the intestine, provide
a more selective approach to treating IBD (11). The IL-12/IL-23 pathway has also emerged
as a critical therapeutic target, as it is implicated in the regulation of Th1 cell responses
(12), with antibodies directed against the IL-12p35 and IL-23p19 subunits showing
encouraging results. Anti-IL12/23 drugs, such as ustekinumab, which targets the shared
p40 subunit, have proven effective in both inducing and maintaining remission (13). More
recently, selective IL-23 inhibitors, such as risankizumab and mirikizumab, which target the
p19 subunit, have demonstrated promising outcomes in clinical trials (14,15). Sphingosine-
1-phosphate (S1P) receptor modulators (ozanimod, etrasimod) have also emerged as a
promising class of oral therapies for IBD, particularly UC. These agents retain lymphocytes
within lymphoid tissues, thereby reducing their migration to the inflamed intestinal mucosa
and mitigating inflammation (16,17). Finally, small molecule inhibitors of Janus kinases
(JAKSs), particularly JAK1 and JAK3, have been developed as oral treatments for IBD,

introducing a novel method of modulating the inflammatory response. Tofacitinib,
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upadacitinib (JAK1/3 inhibitors), and filgotinib (selective JAK1 inhibitor) represent a new
class of oral small molecules that disrupt the intracellular signalling of several cytokines,
especially interferon (IFN)a/pSTATS and interleukin (IL)-6/pSTAT1, (18-21).

The most accepted hypothesis regarding IBD pathogenesis establishes that it is derived
from an abnormal response of the mucosal immune system towards the commensals
(22,23). Indeed, IBD is a complex, multifactorial disease. Factors underlying IBD include
several factors, including environmental (i.e. diet, use of antibiotics, geography, smoking
abit...), genetical (around 240 loci have been associated with IBD), abnormal immune
responses (i.e. overreactive Th1/Th17 axis) and gut microbiota (microbial dysbiosis) (23—
25). In this thesis, | will focus on two fundamental pillars of IBD: the immune system and
the gut microbiota, due to their crucial role in disease pathogenesis. The interplay between
these components is central due to the loss of immune tolerance toward the gut microbiota,
a key event in the development and progression of the disease (22,23). Understanding the
mechanisms underlying this dysregulation is essential for a better comprehension of the
disease, which could lead to the identification of potential therapeutic targets and

biomarkers, improving current diagnosis and therapeutic strategies.
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1.2 IMMUNE SYSTEM IN THE GASTROINTESTINAL TRACT

1.2.1 Structure and function of the intestine

The small and large intestines form a continuous tubular structure internally lined with a
single layer of columnar epithelium, extending from the stomach outlet to the anus. The
small intestine originates at the pylorus and terminates at the ileocecal valve, which serves
as the entry point to the large intestine. It is composed of three primary segments: the
duodenum, positioned closest to the stomach, followed by the jejunum, and finally, the
ileum. The large intestine begins at the cecum and progresses through the ascending
(proximal) colon, transverse colon, descending (distal) colon, and rectum, ultimately ending
at the anus (26).

The local immune system must adapt to and function within this constantly changing
environment. Most immunological processes occur within the mucosa, which consists of
the epithelium, the underlying lamina propria, and the muscularis mucosa—a thin layer of
muscle situated beneath the lamina propria. The lamina propria is composed of loosely
arranged connective tissue that provides structural support for the villus while also housing
the mucosal blood supply, lymphatic drainage, and nervous innervation. Additionally, it
contains numerous cells from both the innate and adaptive immune systems. Below the
muscularis mucosa is the submucosa, a connective tissue layer that plays a crucial role in
housing a network of parasympathetic nerves. This layer is followed by a thicker muscle
layer, and finally, the serosa forms a dense fibrous covering that separates the intestine

from the surrounding peritoneal cavity (26).

The different regions of the intestine have distinct physiological functions. The small
intestine is where most of the nutrients are absorbed. For this reason, it is covered by a
layer of microvilli that increases the surface available for digestion and, in which are embed-
ded enzymes (to digest dietary components) and nutrient transporters. The ileum, is the
end part in which bile salts and vitamin B12 are absorbed, contributing less to nutrition. On
the other hand, the large intestine has minimal or no inherent digestive function, primarily
serving to reabsorb water and expel undigested food residues. Additionally, it acts as the
primary reservoir for trillions of commensal bacteria that colonize the intestine and play a
crucial role in maintaining gut homeostasis. Small and large intestines are covered in their
inner layer by the mucus, which coats the mucosa and consists in a gel composed by mucin

glycoproteins that acts a physical barrier (26).
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The gut-associated lymphoid tissue (GALT) consists of subepithelial lymphoid aggregates
located within the mucosa and submucosa, distinguished by a specialized follicle-
associated epithelium (FAE). This epithelium contains microfold cells (M cells), which are
specifically adapted to capture and transport particulate antigens from the intestinal lumen
to antigen presenting cells. GALT includes Peyer’s patches (PP), isolated lymphoid follicles
(ILFs) dispersed throughout the intestine, the mesenteric lymph nodes (MLNSs), the
vermiform appendix, and various diffuse immune cells. Peyer’s patches and ILFs are linked
to the MLNs through lymphatic vessels, where they play a crucial role in recognizing

antigens and activating immune cells in the intestinal mucosa (27).

1.2.2 Human intestinal dendritic cells and their subsets

Dendritic cells (DCs) are the most potent antigen presenting cells (APCs) and in the GI-
tract they control the balance between immunity toward pathogens and tolerance toward
commensals (28,29) . DC precursors migrate from the bone marrow to most tissues in the
body, including the mucosa in the Gl-tract, where they become sentinels and sensors of
the immune system (30). DCs can be divided into two major subsets: conventional or
classic DCs (cDC) or plasmacytoid DCs (pDC) (23,31). pDCs are specialized in the
production of type | interferons during viral infections and are critical in antiviral immune
responses (32). cDCs are the professional APC of the innate immune system, hence will

be the main focus of this thesis (28).

cDCs have a unique capacity to migrate to the lymph nodes and stimulate naive T cells,
that is, they can influence or “program” T cells to express specific molecules that guide
them to particular tissues, ensuring that immune responses occur in the appropriate
locations (22,33,34), as it is explained in detail in 1.2.4 section (oral tolerance). cDCs act
also as sensors given their capacity to identify the nature of the antigen, discriminating
between potentially harmless and harmful antigens via their high expression of pattern

recognition receptor (PRR) molecules, including Toll-like receptor (TLRs) (30).

Intestinal cDC in the steady state are generally tolerogenic, as they produce IL-10 and
promote the generation and maintenance of regulatory T cells (Tregs) (35,36). As their
primarily function is to present the antigens to lymphocytes, cDCs are highly effective in
stimulating both B and T lymphocytes in the MLNs. B cells can directly recognize native
antigens through their B cell receptors. In contrast, T lymphocytes require the antigen to be
processed previously. T cell receptors (TCRs) recognize antigen fragments bound to major
histocompatibility complex (MHC) molecules on the surface of an APC. There are two types

of peptide-binding proteins: MHC class I, which activate cytotoxic T cells, and MHC class
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I, which activate helper T cells (37). The migration to the MLN occurs in a CCR7-dependent
manner (38) and provokes DC maturation which is characterized by three primary changes
or signals: The first signal involves an enhanced surface expression of processed antigens,
facilitated by an increase in HLA molecules. The second signal is the upregulation of co-
stimulatory molecules such as CD80/CD86, which are ligands for T cell CD28/CTLA4, as
well as CDA40, the ligand for T cell CD40L. The third signal is associated with a shift in
cytokine production, which alters the balance between pro-inflammatory and regulatory
cytokines (39). Once in secondary lymphoid tissues DCs are extremely efficient in antigen

presentation and in stimulating T cells, true effectors of immune response (29).

In the intestine, cDCs are further divided into subsets based on their ontogeny and function:
type 1 cDCs (cDC1) express CD103, and type 2 cDCs (cDC2) express CD172 (SIRPa)
(40,41). Notably, the intestine harbours a unique subset of cDC2 which express both
CD103 and SIRPa, which controls most of the mechanisms of immune tolerance given its
unique capacity to generate gut-homing CD4* FOXP3* Tregs (by inducing the expression
0437 and/or CCR9) and IgA-producing B cells, although they can also drive Th17
responses (42—-44). cDC1 express the surface markers XCR1 and CD141 in human and
while cDC2 express CD1c. In addition, human cDC1s requires IRF8, ID2, NFIL3 and Baft3
transcription factors for their development while RELB, RBPJ and IRF4 are transcription
factors that identifies cDC2 (40,41). cDC1 are specialized in cross-presentation to cytotoxic
CD8* T cells due to the expression of XCR1 (45). Among cDC subtypes, intestinal CD103*
cDCs are thought to be the regulators of oral tolerance as they have the distinctive function
of metabolizing vitamin A into retinoic acid (RA) through the activation of the retinaldehyde
dehydrogenase (RALDH2) enzyme (28,46).The RA produced by these intestinal CD103*
DCs plays a crucial role in regulating immune responses by imprinting gut-homing
specificity on T cells, B cells, and innate lymphoid cells (ILCs). Additionally, RA has
additional effects: induces the differentiation of IgA-producing B cells, promotes TGF[3-
dependent differentiation of induced Tregs or suppresses the differentiation of Th17 cells
(47) (see section 1.2.4). On the contrast, CD103" ¢cDC2 may play a key role in driving
effector T cell responses occur through the production of proinflammatory cytokines such
as IL-6, TNF-qa, IL-12, and IL-23 (28,48). Table 1.1 summarizes principal phenotypic and

functional differences among human cDC subsets.
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Table 1.1. Principal differences between human intestinal conventional dendritic cell subsets.

cDC subset Surface markers Transcription factors | Principal functions
Promote cytotoxic
cDC1 CD103, XCR1, CD141 IRF8, ID2, NFIL3, Baft3
CD8* T cell response
Regulate immune
cDC2CD103"* SIRPaq, RELB, RBPJ and IRF4
responses
Drive effector T cells
cDC2CD103 SIRPaq, RELB, RBPJ and IRF4
responses (Th1)

Plasmacytoid dendritic cells (pDCs) are present in the intestinal mucosa but in lower
numbers than cDCs (26). Human pDC express the surface marker CD123 and the
transcription factor E2-2 (41). Unlike cDCs, pDCs do not migrate to MLNs but may facilitate
cDC mobilization into lymph in response to TLR7/8 ligands, through TNF and type | IFN
production (38,49). pDCs also contribute to immune tolerance and play protective roles in
models of small intestinal inflammation and food allergy (50). For example, polysaccharide
A from Bacteroides fragilis may modulate immune responses by activating TLR2 on pDCs,

promoting IL-10-producing CD4+ T cells (51).

Most studies involving intestinal DC are based on mouse models, indeed research
regarding human intestinal DC is limited, primarily due to methodological difficulties in the
isolation of human gut DC. It is known that mice DC have markers that are shared with
humans, but others are different. Classically, DC has been defined in mice as
CD11c""MHC-II* cells. pDC and cDC can be differentiated also in mice: B220 and Siglec
H allows to identify mice pDC whereas surface markers BTLA, CD117 characterizes cDC.
Within cDC, mice cDC1 express CD103 and XCR1 as occurs in human DCs, but also
CD8a. Mice cDC2, on the contrary, express CD172 /SIRPa like human cDC2 and CD11b
and CX3CR1 (40). It is also interesting that as occurs in human, CD103* cCDs have been
found in murine MLNSs to confer gut-homing markers CCR9 and B7 on responding T cells,
suggesting a conserved mechanism between the species (52,53). However, in mice
another population of cDC (CD103"CX3CR1M DCs) also migrate to the MLNs and prime
effector T cells. These cells induced differentiation of IFNy and IL-17-producing effector T

cells suggesting a role in generation of inflammatory T cell responses (54).

1.2.3 Human intestinal macrophages

Macrophages (M®) are the most abundant antigen presenting cells in the healthy intestinal

lamina propria where they serve as the first line of defense against invading pathogens
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(26). Mds are strategically located in the subepithelial area where they regulate lumen-
derived commensal microbe penetrance through their capacities of phagocytosis and
degradation (55). As such, they exhibit high phagocytic activity and potent bactericidal
properties (56,57). Interestingly, despite their continuous exposure to microbiota and their
byproducts, these cells do not trigger an inflammatory response due to their unresponsive
phenotype, a phenomenon known as inflammatory anergy (57). This phenotype is primarily
induced by the tolerogenic environment of the lamina propria, which is mediated by
elevated levels of interleukin-10 (IL-10) secreted by tissue-resident CD4*FOXP3* Tregs
(58-60).

The crucial importance of M® as major gatekeepers is that they rapidly adapt their function
by sensing the surrounding microenvironment and acquiring a specific phenotype based
on the microanatomical niche they occupy (61). This occurs in the Gl-tract, where they play
a crucial role in maintaining intestinal homeostasis by phagocytosing and degrading
microorganisms and dead cells, as well as producing mediators that promote epithelial cell
renewal. Additionally, they secrete large amounts of IL-10, which inhibits pro-inflammatory
responses to stimuli such as TLR ligation and supports the survival and function of FOXP3*
Tregs in the mucosa (59,60) and their response to IL-10 is also essential for preserving
local immune balance. Moreover, the production of IL-1B by resident macrophages in
response to the microbiota may contribute to sustaining Th17 cell activity in the steady-

state small intestine (62).

Characterization of human M® can be performed using CD14, CD64 and CD163 (55).
However, regarding their origin, most of the current understanding of M® biology has been
derived from murine models, which have shown that GI-M¢, unlike those from other tissues
that typically originate from yolk sac or fetal liver precursors, are continually replenished by
circulating Ly6C"9" monocytes that enter the Gl mucosa in a CCR2-dependent manner
(56,63). Once these Ly6C"S" monocytes arrive, they are conditioned by the tissue
microenvironment through several intermediates via the "monocyte waterfall" (56,63),
leading to the differentiation of tissue-resident tolerogenic macrophages
(Ly6C"MHCIIN"CX3CR1""CCR2") (56,64). In humans, a similar “monocyte waterfall”
occurs. Human intestinal M¢ can be divided into subsets based on the expression levels
of the CD11c integrin and the chemokine receptors CCR2 and CX3CR1. Hence,
proinflammatory monocyte-like cells can be identified as CD11c"9"CCR2*CX3CR1* cells,
a phenotype also shared by circulating CD14" monocytes. On the contrary, tissue-resident
tolerogenic M can be identified as CD11c"CCR2"CX3CR1~ cells. Moreover, a transition
phenotype between the two can be also found based on CD11c expression with such a

subset displaying an intermediate phenotype and function between the others (64).This
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phenotype comprises newly arrived monocytes or immature M¢s, whose maturation
process comprised a decrease in the expression of some blood monocyte markers such
as CD11c and CCR2, as well as an increased expression of CD163 and CD209 (65).
Mature Més reduce the release of proinflammatory molecules together with desensitization
to TLR ligands, which is a functional feature of anergy (65). This anergic status is thought
to be driven by several micro-environmental factors, such as TGFB, which induces
downregulation of the MyD88 pathway in blood monocytes and results in tolerogenic Més
(66).

It is now well stablished that human intestinal M®s comprise a continuum of blood
monocyte-derived cells differentiating into immature M®s. Differentially, monocytes
originate in the bone marrow from common monocyte progenitors, which derive from
common myeloid progenitors. In healthy individuals, they represent 2—8% of leukocytes in
peripheral blood and constitute a dynamic and versatile cell population, comprising three
main subsets: classical (CD14*CD16"), intermediate (CD14*CD16*), and non-classical
monocytes (CD14°CD16%). Classical monocytes circulate in the bloodstream for only one
day before migrating to peripheral organs, where most of them differentiate into tissue-
resident M¢s and, potentially, DCs -although this is a matter of discussion- in response to
growth factors, cytokines, and microbial products in the local microenvironment. Each of
these subsets has specific extravasation and cell properties, been implicated in different

diseases (55).

1.2.4 Oral tolerance

The intestine contains the largest number of immune cells of any tissue in the body as it is
continually exposed to a wide range of antigens and potential immune stimuli (26). One of
the most well-known and distinctive characteristics of the intestinal immune system is its
capacity to establish tolerance to the vast array of harmless foreign antigens it regularly
encounters while simultaneously developing an active immune response against
pathogens (34,67,68).

Oral tolerance is a crucial immunological process that prevents excessive immune
responses to harmless antigens encountered in the Gl-tract. This process occurs in several
stages. Summarizing, first, antigens must be transported from the intestinal lumen to the
underlying immune cells located in the lamina propria or GALTs. Once there, APCs capture
these antigens, enabling their processing, transportation, and presentation to specific T

cells. Finally, the interaction between APCs and T cells, influenced by signals from both the
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APCs and the local microenvironment, drives the differentiation of T cells into Tregs,

characterized by a tolerogenic phenotype (67,68).

The induction of oral tolerance primarily relies on the function of cDCs, which capture and
present luminal antigens to promote the differentiation of Tregs from naive CD4" T cells.
This process occurs mainly in the MLNs, where migratory cDCs transport antigens from
the intestinal lamina propria through a CCR7-dependent mechanism (69-71). Among cDC
subsets, cDC1 and cDC2 play complementary roles in oral tolerance: while cDC1 cells can
induce a population of tolerogenic CD8* T cells through the combined action of TGF(3, RA,
and PD-L1 (43), cDC2 cells are more efficient at presenting soluble antigens via MHCII to
CD4* T cells (49,72). The differentiation of Tregs in this context is facilitated by key factors
produced by cDCs, including TGFB and RA (73-75). Intestinal cDCs express avp8 integrin,
which activates latent TGF(, and aldehyde dehydrogenases (ALDH) and retinaldehyde
dehydrogenases (RALDH), which convert dietary vitamin A-derived retinol into active RA,
thereby reinforcing their tolerogenic properties (69,70). Local factors, such as retinoids
derived from the diet or secreted in bile, promote the expression of these RA-generating
enzymes in intestinal cDCs, while TGF[ signaling drives the expression of av38 integrin,
essential for TGFB activation (76). The gut microbiota further influences this process by
stimulating intestinal epithelial cells (IECs) to release retinoids that enhance RA production
by cDCs, increasing their capacity to induce Tregs in the MLNs. Following the migration of
intestinal cDCs to the MLNs, stromal-derived TGFB and RA further enhance their Treg-
inducing potential (77) (Figure 1.2) (68).

In addition to cDCs, lamina propria M¢s also play an indirect role in oral tolerance and Treg
cell generation through IL-10 production. In humans, the high expression of 38 integrin by
intestinal M¢s suggests that they may also contribute to local TGF activation, thereby

reinforcing the differentiation and stability of Tregs within the intestinal mucosa (68,78).

Tregs involved in oral tolerance primarily arise from naive CD4" T cells that, upon
encountering luminal antigens in the gut, differentiate into peripherally induced Tregs
(pTregs) expressing the transcription factor FOXP3 (79). It was suggested that most Tregs
involved in oral tolerance are generated in the periphery rather than in the thymus. Despite
their rapid turnover within the intestinal mucosa, oral tolerance remains long-lasting, even
after a single antigen exposure. This persistent tolerance may be attributed to the presence
of long-lived memory Tregs in secondary lymphoid organs, which continuously replenish
effector Tregs in the intestinal mucosa and prevent the activation of immune responses
against dietary antigens (34,80,81) (Figure 1.2) (68).
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Figure 1.2. Mechanisms underlying oral tolerance (68).

Under steady-state conditions, intestinal dendritic cells (DCs) acquire a tolerogenic phenotype through
conditioning by dietary retinoids, microbial metabolites, and host-derived factors such as TGFSB and IL-10.
These conditioned DCs migrate to mesenteric lymph nodes (MLNs), where they further mature and induce
FOXP3* regulatory T cells (Tregs) via retinoic acid and TGFf3 activation. Tregs then home to the intestine,
where they are maintained by macrophage-secreted IL-10, or remain in lymph nodes to limit further immune
activation. Additionally, antigen-specific T cells may undergo deletion or adopt an anergic phenotype,
reinforcing immune tolerance.
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1.3 DYSREGULATION OF THE IMMUNE RESPONSE IN IBD

The most accepted hypothesis regarding IBD pathogenesis establishes that is derived from
an abnormal response of the mucosal immune system towards the commensals, driven by
APCs including DCs and M¢s, and subsequently mediated by pro-inflammatory T cells
(22,23,82). The loss of oral tolerance leads to a waterfall of mechanisms that exacerbate

the activation of the immune system.

The innate immune response is the body's first defence against pathogens. The barrier
function of IECs is established by a network of tight junctions between them, preventing
the passage of substances from the lumen. Besides this epithelial barrier, some IEC, like
Goblet cells, produce mucins that form the mucus layer on the apical membrane of the IEC.
This mucus layer is rich in antimicrobial defensins, neutrophils, and secreted IgA,
contributing to the protection of the Gl-tract (83). Innate immune cells, including DC and
M®, are found in the lamina propria underneath the IEC. Both DC and M® recognize
pathogen associated molecular patterns (PAMPs) by their PRRs. PRRs include
transmembrane TLRs and intracellular receptors such as nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs). Activation of PRR signalling
pathways leads to nuclear factor (NF)-kB activation, initiating gene transcription and the
production of pro-inflammatory mediators that support an effective innate immune
response. Additionally, PRR stimulation drives the maturation of APCs, enhancing the
expression of co-stimulatory molecules essential for efficient antigen presentation and T
cell activation (82). Indeed, NOD2, from the NLR family, was the first identified gene that
confer increased risk to CD (84,85).

The key role of APCs in linking innate and adaptative immune responses as well as
determine the kind of response (tolerogenic or inflammatory) makes them pivotal players
in IBD pathogenesis, for this reason the next section will focus on APC dysregulation in
IBD.

1.3.1 Role of cDC, macrophages and monocytes in inflammation

In healthy conditions, the immune system in the Gl-tract promotes immune tolerance
against commensals and food, by the generation of antigen specific Ig-A secreting B cells
and T cells with regulatory properties. However, in IBD, the immune system fails and drives
the development of pro-inflammatory T cells, which control the progression of the disease.
In the human health intestine, conventional dendritic cells (cDCs) exhibit a tolerogenic
profile whereas in IBD, they display a pro-inflammatory profile (28,30,35,86). The inflamed

mucosa from IBD patients have reported increased numbers of DC, and more specifically,
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a decrease in the CD103* subset (87,88). Indeed, DC from IBD patients increased its
expression of several pattern recognition receptors (like TLRs), increasing their capacity to
recognize microbial antigens and, therefore, exacerbating immune responses (35).
Consequently, cDCs from IBD patients have a reduced capacity to generate
immunosuppressive regulatory T lymphocytes while together with an increased ability to
differentiate pro-inflammatory Th1 and Th17 effector lymphocytes (86). This phenomenon
is presumed to result from a deficiency of CD103* cDCs (86,89,90).

The phenotype and function of DCs are primarily shaped by their surrounding
microenvironment (91). Consequently, in a colonic environment, DC develop a tolerogenic
“‘gut-like” profile which is abrogated in IBD due to the pro-inflammatory cytokine
environment (92). Thus, the altered phenotype and function observed in intestinal DC from
IBD patients are likely a result of the persistent inflammation (30). Under normal conditions,
IEC release regulatory signals, such as IL-10 or RA, which promote a tolerogenic
phenotype in DC (93). However, when danger signals are present—such as during an
infection—IEC cease producing these “sedative” signals, preventing them from maintaining
DC in a regulatory state. This shift occurs because IEC can recognize bacteria at their
apical membrane via PRRs and respond by secreting TGF-B and RA, however, when
pathogenic bacteria disrupt tight junctions and penetrate the epithelial layer, they engage
PRRs on the basolateral membrane instead (94,95). In this scenario, IEC stop producing
inhibitory signals and, as a result, DC interpret the antigens they capture as pathogenic
invaders rather than harmless components of the gut, leading to the suppression of immune
tolerance and the activation of an immune response (30). This adaptability allows DC to
swiftly adjust to their surroundings, playing a crucial role in balancing immune activation

and tolerance.

As it is mentioned above, GI-M¢s serve as a primary phagocytic defense against invading
antigens and regulate effector T cell responses within tissues (96). They remain
unresponsive to commensal microbiota, thereby preserving tissue homeostasis (22,68,97).
However, despite this tolerogenic function, the frequency of M$¢ among intestinal lamina
propria is increased in IBD patients compared to controls, especially in active lesion areas.
Those M¢ also present an immature phenotype, and consequently, less tolerogenic (98—
100). This accumulation in IBD patients seems to result from the inflammatory intestinal
microenvironment, which enhances the recruitment of classical monocytes through
mechanisms involving CCL2, IL-8, and TGF- signalling (98,101). These newly recruited
monocytes remain in an immature pro-inflammatory state, further exacerbating chronic
intestinal inflammation (102,103). In addition, intestinal M¢s produced more pro-

inflammatory cytokines, such as TNF, IL-23, IL-18 and IL-6, in basal conditions as well as
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after TLR stimulation, in UC patients and even more in CD patients compared to controls,
promoting a pathologic environment (89,100,102). Notably, M¢s from CD patients also
showed to express higher levels of both IL-10 and latent TGF-B, which have anti-
inflammatory effects (89,104). However, the expression of integrin avp8, which regulates
immune tolerance through TGF-B activation, is significantly reduced in M¢s from IBD
patients, suggesting that the amount of active TGF-$ is lower (78). Other disease-
associated changes in M¢ function that may promote IBD is their contribution to intestinal
barrier dysfunction. In this way, M¢s from inflamed CD tissue trigger less IL-22 secretion
by ILCs than those from non-inflamed areas (105) and produce more ROS, contributing to
epithelial damage (106). Moreover, blood monocytes alter the structure and integrity of tight
junctions, compromising epithelial barrier function (107). However, it remains uncertain
whether the impaired differentiation of blood monocytes into mature Més is due to the
absence of intrinsic maturation signals that typically guide recruited monocytes toward
tolerogenic M¢s or if to the introduction of new factors derived from the chronic

inflammatory microenvironment that actively disrupt this homeostatic process.

1.3.2 Role of Th1, Th2, and Th17 cells

As opposed to the innate immune response, the adaptive immune system is highly specific
having T cells a central role on its function. An imbalance in T cell responses, characterized
by abnormal activation and differentiation of T cell subsets, can trigger inflammation
through excessive cytokine and chemokine release. These molecules exert different effects
on both the adaptive and innate immune systems (82). Th1 cells, driven by IL-12, produce
IFN-y, while Th2 cells release IL-4, IL-5, and IL-13 (106). In CD, an exaggerated Th1
response, triggered by elevated IL-12 and IL-18 levels, is believed to contribute to intestinal
inflammation (107). CD patients show also increased IL-2 and IFN-y production in mucosal
T cells compared to UC patients and healthy controls (110). For this reason, CD has been
traditionally considered a Th1-driven disease, while UC has been linked to a Th2 response
with excessive IL-5 and IL-13 production. However, this classification remains controversial
as IL-13 has been found decreased in both CD and UC biopsies in several studies even
suggesting an anti-inflammatory role for IL-13 (111-113).This also led to a controversial
role for Th2 cells in IBD. IFN-y produced by Th1 cells induces enterocyte apoptosis and
stimulates activated mucosal M¢s to release TNF-a. Th1 cells are also a major source of
TNF-a, which is central to the differentiation of stromal cells into myofibroblasts which
produce matrix metalloproteinases (MMPs), a group of enzymes that degrade tissue and

contribute to enterocyte apoptosis (114). TNF-a thus serves as a key mediator connecting
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the innate and adaptive immune responses, playing a critical role in the pathogenesis of

IBD and is an important target in biological IBD treatments.

Th17 cells are a T cell subset characterized by the production of large amounts of IL-17A,
IL-17F, IL-21 and IL-22 (115). In addition, Th1/Th17 cells release both IFN-y and IL-17A
(116,117). Th17 cells are induced by a combination of IL-6 and TGF-f3, and their expansion
is promoted by IL-23 (115). IL-21 produced by Th17 cells in turn increases their expression
of the IL-23 receptor, therefore potentiating the expansion of this cell subtype by a positive
autoregulatory feedback loop (118). Supporting this, high transcript levels of IL-17A have
been detected both in CD and UC mucosa in comparison to normal gut, and it has been
observed that IL-17A is overexpressed in the lamina propria of IBD patients (119-121).
Th17 cells also serve as a key source of IL-21, a cytokine related to IL-2, which is
overexpressed in inflamed IBD mucosa and promotes Th1 and Th17 immune responses in
the gut (122,123). Several functions have been demonstrated for IL-17A,; for instance, IL-
17A recruit neutrophils to the site of inflammation and upregulates several pro-inflammatory
molecules, such as inducible nitric oxide synthase and IL-18 (124). IL-17 can also stimulate
the proliferation of IECs, enhance intestinal IgA secretion, and promote the release of
antimicrobial peptides, all of which contribute to the healing of intestinal mucosal injury and
improve the intestinal barrier function. By binding to receptors on Th1 cells, IL-17 also
suppresses the secretion of IL-23R, IFN-y, IL-12Rp2, and other pro-inflammatory factors,
thereby inhibiting their immune regulation. This dual nature of IL-17A makes it an ineffective
target for IBD.
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1.4 ROLE OF JAK-STAT SIGNALING PATHWAY IN IBD

The Janus kinase (JAK)-signal transducer and activator of transcription (JAK-STAT)
pathway is a highly conserved signaling mechanism across evolution, playing a
fundamental role in various essential physiological processes such as hematopoiesis,
cellular differentiation, metabolism, and immune regulation (125,126). Indeed, more than
50 types of cytokines, including interferons (IFNs), interleukins (ILs), and growth factors,
have been shown to play roles in JAK-STAT signaling contributing to different physiological

processes (127-129).

1.4.1 The JAK family

The structure of the JAK-STAT pathway includes transmembrane receptors, receptor-
associated cytosolic tyrosine kinases (JAK), signal transducers and activators of
transcription (STAT) (130). The JAK protein family contains four members: JAK1, JAK2,
JAK3, and TYK2 (131,132). Each kinase functions as an intracellular adaptor protein for
cytokine signaling (133,134). Cytokines such as interferons, interleukins, growth factors
and their receptors are the main activators of JAK (135). The receptor-ligand complex
triggers the activation of JAK proteins associated with the receptor, leading to the
phosphorylation of a receptor tyrosine. Every JAK family member interacts with distinct
cytokine receptors, facilitating the recruitment of specific STAT proteins to mediate several
biological functions (136—-139). JAK1, JAK3, and TYK2 play key roles in the development
and regulation of the immune system, while JAK2 is primarily involved in hematopoiesis
(138,139).

1.4.2 The STAT family

STAT proteins are signaling molecules downstream of JAK. The STAT family consists of
seven proteins: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6 (140,141).
The mechanism of action starts when the receptor binds to an extracellular ligand (i.e. a
cytokine) and then JAKs initiate the phosphorylation of the tyrosine of the receptors and
recruit corresponding STAT (127,128). This phosphorylated STAT then dimerizes and reach
the nucleus to regulate specific gene transcription. This process ensures the rapid
transmission of external signals to the nucleus to regulate biological and pathological
processes (142). Once the receptor tyrosine is phosphorylated cytosolic STAT are recruited
to the activated receptor, and a STAT tyrosine is phosphorylated, leading to the formation
of STAT dimers (143,144). STAT dimers then enter the nucleus as a component of
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transcription factor complexes to promote the transcription of specific genes (145). STAT
proteins are then dephosphorylated and return to the cytoplasm. Its role as a key mediator
in transmitting signals from the plasma membrane to the nucleus makes it a promising

target for drug development (146,147).

1.4.3 The JAK-STAT pathway in immunoregulation

Cytokines are key players in humoral and cellular responses, (148,149). Interactions
among numerous cytokines and the JAK-STAT pathway play a pivotal role in immune cell
differentiation and development, contributing to immunoregulation. IFN-y and IL-12 are
essential for Th1 cell differentiation, promoting T-bet gene expression through STAT1 and
STATA4, respectively. IL-4 enhances GATA3 gene expression via STATG, facilitating Th2 cell
differentiation. IL-6 and TGF-@ are critical for Th17 cell differentiation, activating RORyt
expression through STAT3. Additionally, IL-6 and IL-12 regulate T follicular helper cell
differentiation via STAT3 by increasing Bcl-6 transcription. IL-2 drives Treg cell
differentiation by directly interacting with STAT5A/B to activate the Foxp3 gene (150,151).
Indeed, the JAK-STAT pathway has been implicated in several autoimmune diseases such
as IBD, rheumatoid arthritis or lupus erythematosus (152). JAK-STAT implication in IBD will

be deeper described in the next section (1.4.4).

1.4.4 JAK-STAT pathway in IBD

Cytokines such as IL-6, IL-10, IL-2, and IL-22, as well as those known to drive pathological
responses in UC and CD, including IFN-y, IL-12, IL-23, and IL-9, rely on JAK-STAT-
mediated signalling. JAK and STAT proteins are utilized by a wide range of cytokine
receptors, and their expression is not necessarily confined to specific cell types. However,
JAK3 is an exception due to its exclusive association with the common cytokine receptor
Y chain (Yc) containing cytokine receptors, which include IL-2, IL-4, IL-7, IL-9, IL-15, and
IL-21 (153). Signalling through the Y'c receptor is essential for lymphocyte development,
maintenance, and function (154). Indeed, JAK-3 deficient individuals exhibit abnormalities

in lymphoid compartments but not in myeloid function (155).

Although it is evident that active IBD is linked to an increased transcription of JAKs, the
specific cell types that predominantly express each JAK protein and those responsible for
regulating their expression in inflamed human tissues remain poorly characterized.
Although there is little published data, evidence collectively indicates that JAK expression

is compartmentalized at the cellular level and suggests that different cell subsets and/or
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cytokine pathways may contribute distinctly to intestinal homeostasis. The expression of
JAKs in the inflamed mucosa is also likely to be differentially regulated within these distinct
cell types (157). For example, high characteristic expression of JAK3, among other
proteins, was observed in a recently identified subset of inflammatory fibroblasts that are
enriched in active UC but not in the healthy mucosa (159). During inflammation, a
significant alteration of cells and functions highly dependent on JAK signalling is likely to

play a crucial role in the inflammatory process.

In the same way, the implication of the STAT family on IBD is also being investigated.
Important implications of STAT proteins have been shown, for instance, STAT1 is
phosphorylated by either JAK1 and JAK2 or JAK1 and TYK2 and has a fundamental role
in signalling via the IFN-y and related family of receptors (157). Research findings on
STAT1 expression in IBD have been somewhat contradictory. Some studies report
increased expression and activation in both UC and CD, while others indicate that total
STAT1 levels are higher in CD compared to healthy controls, but without a corresponding
increase in its phosphorylated (active) form—a pattern not observed in UC (160,161).
Although the exact role of STAT1 in intestinal inflammation remains uncertain, its activation
appears to have different effects depending on the cell type. In lymphocytes, STAT1
activation promotes pro-inflammatory responses, while in M®s and IECs, it seems to
contribute to protective functions (163,164). STATZ2 is involved in signal transduction in
response to type | interferons and has been studied in the context of IBD, since one study
has suggested that STAT2 is downregulated in IBD (161). Similarly, STAT3 is the most
widely studied STAT protein and seems to have a fundamental role in IBD, but its protective
or anti-inflammatory potential remains elusive. STAT3 activation is also essential for cellular
responses to IL-10 family members such as IL-10 and IL-22 (potentially anti-inflammatory
cytokines), however several studies have reported an increased expression of STAT3 or
STAT3 phosphorylation in human IBD (161,162,165). In addition, STAT3 has been also
shown to be essential for the differentiation of Th17 cells and for Th17 cell-dependent
murine colitis (164—166). Data regarding STAT4 is better known. STAT4 phosphorylation is
driven by JAK2 and TYK2 in response to cytokines such as IL-12 and IL-23. STAT4
signalling plays a critical role in Th1 cell development in response to IL-12 (167,168), in
regulating IFN-y expression in natural killer cells (169), and in Th1 cell activity induced by
IL-21 (123). Furthermore, STAT4 has been implicated in IL-23-driven responses in memory
Th17 cells (170). Given the well-established involvement of the IL-12, IFN-y and IL-23
pathways in IBD, targeting STAT4-mediated signalling represents a potential therapeutic
strategy (156). On the other hand, STAT5 activation primarily occurs through JAK1 and
JAKS3 following stimulation of Yc family receptors. Additionally, STATS can be activated in
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response to IL-3 and the single-chain cytokine family, including growth hormones (156). In
line with these findings, STAT5 has been shown to stimulate the proliferation of IECs, a
process crucial for intestinal crypt regeneration (171). Furthermore, STATS plays a key role
in IL-2-dependent FOXP3 induction, which is essential for Treg cell differentiation, and in
redirecting Th17 cell differentiation towards a Treg phenotype (172). All these studies
support the idea that STATS is a key regulator of intestinal epithelial regeneration and
immune balance, promoting epithelial proliferation and Treg cell differentiation while
modulating Th17 responses. Similarly, STAT6 phosphorylation is also mediated by JAK1
and JAK3; however, the activation is triggered specifically through the Yc receptors IL-4R
and IL-13R (173). Although its primary role is to induce Th2 type responses, to our
knowledge there is currently no data supporting a clinical benefit of inhibition of the Th2 cell
response mediated by IL-13 (174,175).

1.4.5 JAK-STAT inhibitors for IBD treatment

Due to its essential role in cytokine signaling directly associated with various cancers and
autoimmune diseases, the JAK-STAT pathway has become a significant target for drug
development. Drugs targeting this pathway can be classified into three main categories
based on their impact on signal transduction: cytokine or receptor antibodies, STAT
inhibitors, and JAK inhibitors (129,176,177).

Therapeutic agents that modulate JAK-STAT-dependent cytokines and receptors, such as
siltuximab and tocilizumab, which block IL-6 signaling, can inhibit JAK-STAT signal

transduction and have been utilized in the treatment of various diseases (178).

On the other hand, most STAT inhibitors act by preventing STAT phosphorylation, blocking
its dimerization, or promoting STAT degradation (179,180). Given the vital role of activated
STAT3 and STATS in signal transduction and disease progression, several inhibitors
specifically targeting STAT3 and STAT5—such as peptides, peptidomimetics,
oligonucleotides, siRNAs, small molecules, and metal-based complexes—have

demonstrated promising efficacy in preclinical studies (181,182).

Additionally, suppressor of cytokine signalling (SOCS) proteins, which function as part of a
negative feedback loop in the JAK-STAT pathway (by blocking JAK proteins), and peptides
targeting SOCS interactors have also shown potential as inhibitors of disease progression
(183,184). JAK inhibitors, which are small-molecule compounds, exert immunosuppressive

effects, reduce the pathological production of proinflammatory cytokines driven by JAK-
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STAT signaling, and inhibit gain-of-function JAK mutants (185,186). Figure 1.3 summarizes
the principal types of drugs targeting the JAK-STAT signaling pathway (187).
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Figure 1.3. Therapeutic targets of the JAK-STAT signalling pathway (from (187)

(1) Recombinant cytokines, (2) cytokine antibodies, and (3) receptor antibodies are designed to target cytokines
or receptors; (4) JAK inhibitors are designed to target JAKs; and (5) peptide inhibitors, (6) small-molecule
inhibitors, (7) decoy oligonucleotides (ODNSs), (8) antisense oligonucleotides (ASOs), and (9) siRNAs target
STAT.

Given its extensive use in the treatment of UC treatment and the lack of information on the
remaining target cells, in this thesis we will focus on the first-generation JAK inhibitor

tofacitinib.

Tofacitinib, also known as Xeljanz or CP690550, is a small molecule and, along with
baricitinib, was the first orally available JAK inhibitor approved for the treatment of
rheumatoid arthritis, psoriasis and ulcerative colitis (188). Tofacitinib has demonstrated
efficacy in inducing and maintaining remission in UC (189), and in reducing the disease
severity in rheumatoid arthritis patients (190). It primarily inhibits JAK1 and JAKS, with a
lesser effect on JAK2 and TYK2. Tofacitinib acts by blocking the Yc cytokine-receptor
signaling pathway via JAK1 and JAK3 in T cells, thereby disrupting Th1 and Th2

differentiation and reducing the production of inflammatory Th17 cells. Additionally, it

32



Introduction

suppresses cytokine production in both innate and adaptive immune responses, targeting
key cytokines such as IFN-y, TNF, IL-6, IL-12, IL-17, and IL-23 (191).

Multiple studies have demonstrated the ability of tofacitinib to shift M® polarization toward
an anti-inflammatory M2-like phenotype in human and murine bone marrow-derived
macrophages (BMDM) (192), while also modulating M1 macrophages derived from human
peripheral blood monocytes, reducing IL-6 production and increasing IL-18, IL-23, and IL-
10 levels (193). Notably, tofacitinib has been also reported to impair M2-like M®
development under certain conditions by downregulating CD206 expression and IL-10
production in monocyte-derived macrophages (MO-M®s), thereby reducing the
development of the M2 macrophage phenotype (193). Additionally, it suppresses the
expression of immunostimulatory surface molecules such as CD80, CD86, CD83, and
CD40 in both M1- and M2-polarized human MO-M®s, thereby reducing their activation
potential (193). While these findings are remarkable, it is important to highlight that M1 and
M2 polarization models (induced with LPS/IFNy and IL-4, respectively) are only
methodological approximations, as M®s exist along a continuum of phenotypes rather than
discrete M1 or M2 states. Regarding T cell function, tofacitinib has been shown to
significantly suppress the proliferation and differentiation of peripheral blood Th1 and Th17
cells, key drivers of inflammation in IBD (194). This effect is likely mediated by JAK1 and
JAK3 inhibition, leading to reduced production of inflammatory cytokines such as TNF-q,
IL-6, IL-17, and IFN-y in human peripheral blood CD4* T cells (190,195)

The effect of tofacitinib on DCs has been less extensively studied. However, research using
monocyte-derived dendritic cells (MO-DCs) and bone marrow-derived dendritic cells
(BMDCs) has provided some insights. In MO-DCs, tofacitinib did not suppress MHC-II
expression, but it downregulated CD80/CD86 expression as well as the transcription factor
IRF7, which promotes type | IFN production (196). Additionally, in human MO-MO-DCs,
tofacitinib was shown to suppress their T cell stimulatory capacity, further modulating the
adaptive immunity (196). In contrast, tofacitinib-treated BMDCs displayed a strongly
impaired ability to polarize IFNy* T cells, while promoting an increase in IL-17* T cells and

a slight increase in FOXP3"* regulatory T cells (192)

Summarizing, Tofacitinib emerges as a potent immunomodulator with broad applications
across inflammatory and autoimmune diseases. Its primary mechanism involves
JAK1/JAKS inhibition, leading to a reduced inflammatory cytokine production in human and
murine T cells, modulation of human MO-M® polarization, suppression of DC activation,
and restoration of immune balance through Treg promotion and Th1/Th17 inhibition (194).

While its ability to skew immune responses toward a regulatory state makes it highly
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effective, some paradoxical effects—such as impaired M2 macrophage polarization and
suppression of antimicrobial peptides—highlight the need for further research to optimize

its therapeutic use and minimize potential adverse effects (193,197).

Last, but not least, it is important to note that most studies analysing tofacitinib's effects on
M®s and DCs use in vitro models, such as BMDMs, MO-M®s, and MO-DCs. However, no
studies have directly examined human intestinal M®s or DCs isolated from the gut (i.e.
bona fide DC and M®). While bone marrow-derived and monocyte-derived cells provide
valuable experimental models, they do not fully replicate the phenotype and function of
tissue-resident intestinal immune cells (198,199). These in vitro-derived cells lack exposure
to the intestinal microenvironment, which plays a critical role in conditioning their activation
state, cytokine profile, and functional properties. Consequently, while these studies provide
significant insights into the immunomodulatory effects of tofacitinib, caution is required
when extrapolating these findings to “real” intestinal M®s and DCs. Future research should
focus on assessing tofacitinib’s effects on primary intestinal immune cells to improve our

understanding of its precise mechanisms of action in IBD.
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1.5 GUT MICROBIOTAIN IBD: BACTERIAL AND FUNGAL INTERACTIONS

1.5.1 Composition and function of a healthy gut microbiota

The Gl mucosal system serves as the primary point of direct interaction with external
antigens, potentially associated with the necessity of managing the diverse and dynamic
populations of commensals. Besides, although the Gl mucosal system operates separately
from the broader immune system, it is inseparable from the systemic immune system. The
Gl-tract contains a variety of bacteria (bacteriome), which comprise most of it, as well as
archaea, fungi (mycobiome) and virus (virome), collectively termed the “gut commensal
microbiome”. Commensals have formed a relationship of mutually beneficial coexistence
with the host. Indeed, the microbiota that live in the Gl-tract help the host in many ways
such as metabolic, trophic, immunologic and intestinal defense functions (200) while
commensals take advantage of the host by breaking down dietary fibers and other food
metabolites that the host cannot digest on its own, producing short-chain fatty acids (SFCA)
and other metabolites that can be absorbed and utilized by the host (200). The Gl-tract
harbours between 10" and 10" microorganisms, in which about 3.8 x 10"® are bacterial
cell -same number as human cells, belonging to about 1000 different species primarily
comprised of members of phyla Firmicutes, Bacteroidetes, Actinobacteria and
Proteobacteria (201,202). As a result, our mucosal surfaces interact closely with the
resident microbiota, forming a "supraorganism"—a concept that encompasses both the
host and the diverse microbial communities residing within it (200). However, microbial
communities show high diversity between individuals (203), which makes it challenging to

define what constitutes a balanced microbial community in a healthy state.

Each mucosal surface is composed of distinct cell types and generates unique
microenvironments, shaping the biogeography of the microbiota. The distribution of
microbial communities along the gastrointestinal tract is influenced by gradients of
nutrients, chemical factors, and localized immune responses. For example, the small
intestine has a more acidic environment, higher oxygen levels, and an increased presence
of antimicrobial compounds. Consequently, the bacteriome of the small intestine is primarily
composed of rapidly growing facultative anaerobes (204) belonging to the class Bacilli
(phylum Firmicutes) and the order Enterobacterales, whereas obligately anaerobic primary
fermenters belonging to the classes Bacteroidia (phylum Bacteroidetes) and Clostridia

(phylum Firmicutes) dominate the microbial community in the large intestine (205).

Diet also shapes the gut microbiota composition during homeostasis (205). Under normal
homeostatic conditions, the host regulates oxygen and nitrate concentrations at stable

levels throughout different sections of the intestine (206,207). However, fluctuations in the
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availability of diet-derived electron donors can lead to changes in microbiota composition.
In the Gl-tract, food is broken down by host enzymes in the upper digestive system into
simple sugars, amino acids, fatty acids, and diglycerides. These nutrients are efficiently
absorbed in the small intestine where they serve as major electron donors for the colonic
microbiota. In contrast, indigestible polymers—such as plant polysaccharides (fiber) and
cartilage-derived glycans—act as diet-derived electron donors available to colonic
microbiota (208). Another category of diet-derived electron donors in the colon consists of
simple sugars that are poorly absorbed in the small intestine (fermentable
oligosaccharides, disaccharides, monosaccharides, and polyols, FODMAPSs) (209). During
homeostasis, the host restricts the availability of exogenous electron acceptors such as
oxygen and nitrate in the colonic lumen. As a result, FODMAPs and indigestible polymers
are metabolized by obligate anaerobic primary fermenters using endogenous electron
acceptors. The ATP generated through these redox reactions supports the dominance of
obligate anaerobic primary fermenters within the colonic microbiota under homeostatic
conditions (205). In this way, microorganisms increase in both concentration and

complexity as they migrate through the Gl-tract (204).

On the other hand, fungi constitute around 0.1% of the gut microbiome and engage in both
antagonistic and/or synergistic interactions with bacteria and viruses within the gut (210).
The fungal population gradually increases along the intestinal tract, from the ileum to the
colon, being at the highest concentration in the distal colon (210). The diversity and
abundance of fungi in the Gl-tract are significantly lower than those of bacteria, and their
composition is considered heterogeneous and relatively unstable (211). The human
intestinal mycobiome is primarily composed of three major phyla: Ascomycota,
Basidiomycota, and Chytridiomycota. It seems that only few genera are the main
components of the gut mycobiome. Candida spp., Penicillium commune, Saccharomyces
cerevisiae, Aspergillus versicolor, Cryptococcus spp., Malassezia spp., Cladosporium
herbarum, Galactomyces geotrichum, Debaryomyces hansenii and Trichosporonspp. have
been frequently reported from the gut (212), while other fungal genera, including
Aspergillus, Cryptococcus, Rhodotorula, Mucor, and Trichosporon, are occasionally
detected (210). Fungal composition also depends on several factors as the diet, and
subsequently there exists cultural and regional differences in the composition of the
intestinal mycobiota. For example, the mycobiome of healthy Japanese mainly consists of
the phyla Ascomycota and Basidiomycota (213), similarly as the mycobiome from Western
populations (214), however there are differences at the genus level. The genus
Saccharomyces is dominant in both Japanese and Western populations, but other major

taxa of the Japanese population, i.e., the genera Sarocladium and Leucosporidium, were
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not detected in Western population (213,214). In contrast, major taxa reported in Western
populations, i.e., the genera Debaryomyces and Penicillium, were not detected in the

Japanese samples (214).

Fungi can respond to diverse environmental conditions of the Gl-tract through metabolic
shifts, as bacteria (215), and as a unique characteristic of certain fungi, adopting multiple
morphological growth forms (216,217). This unique trait adds an extra layer of complexity

to host-mycobiome interactions.

Last, the gut virome is challenging to study due to the difficulty of isolating their DNA without
contamination from human DNA and consequently, the low number of reads. Despite this,
most studies show that the human gut virome is predominantly composed of
bacteriophages (phages), which plays a crucial role in maintaining gut homeostasis and
influencing pathogenic conditions through its interactions with the gut bacterial community
(218,219). Viruses that infect prokaryotic cells (bacteria and/or archaea) constitute
approximately 90% of all viruses, while the remaining 10% are eukaryotic viruses that infect
plants and animals, including humans (220). Phages replicate and proliferate within
infected bacterial cells and are subsequently released through cell lysis in the lytic cycle
(220,221). This lytic process alters the composition of bacterial populations and
significantly contributes to shaping the gut microbiota. In the gut, many phages exist in a
lysogenic or latent state, persisting as integrated prophages within their bacterial hosts
(218). This integration can modify bacterial immunogenicity, thereby influencing bacteria-
host interactions, as well as bacterial functions such as antibiotic resistance and toxin
production (219,220). In healthy individuals, the human gut virome exhibits high
interindividual diversity while remaining temporally stable (222,223). Among healthy
individuals, phages belonging to the order Caudovirales or the family Microviridae are
predominant, primarily existing in a latent state within their bacterial hosts and producing

limited viral progeny capable of infecting and lysing other bacteria (222,224).

1.5.2 Importance of microbiota on human health: role of microbial metabolites in

immune modulation

The microbiome collaborates with the host to establish a host-microbiota co-metabolism
system to contribute to various metabolic processes in the human body. Complex
carbohydrates can be fermented by bacteria, generating metabolites such as SCFAs,
which serve as crucial chemical mediators between the microbiota and the host. It is
suggested that SCFAs have combined effects that support intestinal, hepatic, and overall

glucose homeostasis (225). Additionally, microbial metabolism plays a role in bile acid,
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choline and tryptophan metabolisms, as well as other biochemical pathways (204). By
enhancing the expression of intestinal nutrient transporters, gut microbes facilitate nutrient
supply to the host (226).

One key process that microbiota supports is the fermentation of undigested or partially
digested dietary fibers in the colon, which generates SCFAs such as butyric acid, propionic
acid, and acetic acid. While fungi produce higher amounts of methane, acetate and
formate, bacteria produce more butyrate and propionate (227). These SCFAs can pass
through the intestinal epithelium and interact with host cells, thereby influencing immune
function (228) as well as serve as crucial energy sources not only for the gut microbiota but
also for IECs (229) or colonocytes (230). SCFAs further stimulate intestinal
gluconeogenesis, aiding in the production of supportive lipids (231), and enhance epithelial
barrier integrity and promoting immune tolerance through various mechanisms: i)
increasing mucus production by intestinal goblet cells (232); ii) inhibiting the NF-kB
signaling pathway, which reduces inflammation (233); iii) activating inflammasomes,
leading to the production of IL-18 (234); iv) stimulating B cells to secrete secretory IgA
(slgA), which helps regulate the gut microbiota (235); v) reducing the expression of T cell-
activating molecules on APCs (236), vi) increasing the number of Tregs in the colon, along
with their expression of FOXP3 (237) and vii) production of anti-inflammatory cytokines like
IL-10 (238). Moreover, the gastrointestinal microbiota participates in the de novo synthesis
of essential vitamins that the host cannot produce, such as Vitamin B12 (239). Another way
the microbiota influences the host is by inducing epigenetic changes in host cells. SCFAs
and other microbial metabolites regulate histone acetylation, which can modify gene
expression. A notable example is butyrate's role in promoting Treg cell differentiation
through epigenetic mechanisms, demonstrating the microbiota's impact on immune
regulation (240). Additionally, the microbiota can alter DNA or histone methylation, further

influencing immune responses (241,242).

Bile acids (BAs) are host-derived metabolites synthesized from cholesterol in the liver.
Primary BAs, cholic acid and chenodeoxycholic acid, are produced through a multi-enzyme
process and conjugated with either taurine or glycine. These amphipathic molecules play
a crucial role in facilitating lipid digestion and absorption in the small intestine. In the colon,
primary BAs undergo microbiota-driven deconjugation, where the amino acid moiety is
removed, converting them into secondary BAs. These transformations are mediated by
specific bacterial taxa, including Bifidobacterium, Lactobacillus, Bacteroides, Clostridium,
Eubacterium, and Listeria (243). BAs have an anti-inflammatory role as they promote

RORYy" Treg cells via BA-vitamin D receptor signaling (244).
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Tryptophan is an essential amino acid obtained through diet, with the Gl-tract serving as
the primary site of its metabolism. This process generates several bioactive compounds,
including serotonin, vitamin B3, melatonin, and various metabolically significant
intermediates such as anthranilates, indoles, kynurenates, and quinolines, each with
diverse biological functions. Tryptophan can be metabolized by the host (245) or by gut
microbiota, which converts tryptophan into indole-based compounds. Increased tryptophan
metabolism, along with a reduction in indole-derived metabolites, which serve as aryl
hydrocarbon receptor (AhR) ligands, has been strongly implicated in IBD pathogenesis
(246). Alimited number of bacterial taxa, including Peptostreptococcus russellii, Clostridium
sporogenes, and members of the Lactobacillus genus, have been identified as producers
of these indole-based metabolites. These compounds act as key agonists of AhR,
triggering the transcriptional activation of genes involved in the anti-inflammatory response

in T cells and innate lymphoid cells (247).

1.5.3 Dysbiosis in IBD: shifts in bacterial and fungal populations

Gut dysbiosis, which is characterized by the loss of homeostatic balance of beneficial and
detrimental microorganisms in the gut, is a characteristic feature of IBD, and occurs through
the disruption of the intestinal barrier and changes in the intestinal microbiome (248).
However, whether these microbial alterations are the cause, or an effect of the IBD-

associated inflammation stays elusive.

Gut microbial dysbiosis in patients with IBD has been characterized by reduction in diversity
and loss of beneficial gut microbial genera and by colonization of potential pathobionts. IBD
patients have reduced bacterial biodiversity, with a a consistent reduction in beneficial
bacterial taxa such as Faecalibacterium prausnitzii and Roseburia hominis, along with an
increase in facultative anaerobes, including members of the Enterobacteriaceae family and
known inflammation-associated species like Ruminococcus gnavus. Both CD and UC
samples exhibit decreased gut microbiome stability, as evidenced by the loss of previously
prevalent microbial members and the emergence of new taxa over time. These microbial
changes are also associated with reduced fecal SCFA levels, as well as elevated
concentrations of primary BAs (cholate) and acyl-carnitines, further highlighting the
metabolic shifts linked to IBD-related dysbiosis (249). The overgrowth of harmful bacterial
species has been recognized for its pro-inflammatory effects, contributing to the
pathogenesis of IBD. Pathobionts such as adherent-invasive Escherichia coli,

enterotoxigenic Bacteroides fragilis, Campylobacter concisus, Fusobacterium nucleatum,
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and Mycobacterium avium subsp. paratuberculosis have been reported to be elevated in
human IBD studies (248).

Adherent-invasive Escherichia coli (AIEC) has been strongly linked to CD as it adheres to
abnormally expressed CEACAMG6 (a glycoprotein expressed in IECs) in the intestinal
epithelium and invades the lamina propria, triggering an inflammatory response. AIEC
persistence is facilitated by impaired autophagy in M®s, leading to increased production of
pro-inflammatory cytokines such as TNF-q, IL-6, and IL-8. Additionally, its metabolism of
1,2-propanediol has been associated with Th17 cell induction and IL-18 production
(250,251). Enterotoxigenic Bacteroides fragilis (ETBF) has been linked to UC, colitis-
associated cancer, and colorectal cancer due to its B. fragilis toxin, which activates the
Th17 inflammatory pathway (252). Similarly, the oral bacterium Campylobacter concisus
has been associated with an increased IBD risk, especially when carrying the
enteropathogenic Zot virulence protein, which disrupts epithelial tight junctions and
enhances immune sensitivity to commensal flora (253). Fusobacterium nucleatum, found
in higher abundance in IBD tissues, promotes inflammation through autophagic epithelial
cell death, M1 macrophage polarization, and Th1/Th17 differentiation, leading to increased
TNF-a, IFNy, IL-1B, IL-6, and IL-17 levels. Additionally, F. nucleatum is linked to colorectal
cancer progression via activation of the TLR4-Myd88 and NF-kB signaling pathways
(254,255). Eggerthella lenta, another bacterium enriched in IBD patients, has been shown
to promote a Th17 response in mice (256). IBD is also characterized by an increase in
hydrogen sulfide-producing bacteria, such as Desulfovibrio and Bilophila wadsworthensis.
These sulfate-reducing bacteria contribute to gut toxicity by producing H,S while also
depleting beneficial Firmicutes of essential carbon sources. B. wadsworthensis has been
associated with Th1-mediated colitis in IL-107/~ mice, while Desulfovibrio has demonstrated
to exacerbate colitis (257,258). Sulfide-producing bacteria are particularly abundant in
inflamed pouches of UC patients (a complication of UC), where they metabolize sulfomucin,
reducing butyrate availability and contributing to epithelial damage. Finally, other
pathobionts such as Enterobacteriaceae, Fusobacterium spp., Clostridium perfringens,
Escherichia coli, and Clostridium difficile have been associated with pouchitis, further

emphasizing the role of dysbiosis in IBD pathogenesis (259,260).

While pathobionts increase, there is also a loss of beneficial bacteria in IBD. IBD involves
a decline in the abundances of beneficial gut bacteria that are active SCFA producers such
as Faecalibacterium prausnitzii and species of Roseburia, Eubacterium, Dorea, Blautia,
Holdemanella and other members of Firmicutes and Bacteroidetes phyla (261). Both CD
and UC are characterized by a reduction in secondary BA levels and an increase in the

primary BA pool within the gut. Similarly, pouchitis exhibits lower concentrations of both
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secondary BAs and SCFAs. This reduction is likely attributed to inflammation-driven
decreases in the abundances of bacterial taxa belonging to the Lachnospiraceae and
Ruminococcaceae families (262). Metabolomic screens in patients with IBD have
highlighted reduced secondary BA pool and elevated primary BAs, which could be driven
by impaired microbiota mediated deconjugation, transformation and desulfation of primary
BAs (244).

The fungal composition also changes in IBD. Some studies have shown that fungal
diversity increases in CD patients (263), while decreases in UC (214). A study of the faecal
mycobiome from IBD patients and controls showed that fungal dysbiosis in IBD is marked
by a shift in the ratio of dominant fungal phyla, particularly an increased
Basidiomycota/Ascomycota ratio (214). The abundance of Saccharomyces cerevisiae is
significantly reduced in IBD patients, while Candida albicans, a known opportunistic
pathogen, is elevated, particularly in CD. Additionally, Malassezia species, are more
abundant in the gut of IBD patients, suggesting a potential role in intestinal inflammation
(214). Other works that study mucosal mycobiome observed that, as occurs in faeces, the
colonic mucosa-associated fungal microbiota was dominated by Basidiomycota and
Ascomycota phyla (264). Cystofilobasidiaceae family and Candida glabrata species were
overrepresented in CD patients. Saccharomyces cerevisiae and Filobasidium
uniguttulatum species were associated with non-inflamed mucosa, whereas Xylariales

order was associated with inflamed mucosa (264).

The specific IBD phenotypes are linked to distinct mycobiome profiles. In CD, the
mycobiome composition varies depending on whether the disease affects the ileum or is
confined to the colon. Notably, CD cases sparing the ileum exhibited higher levels of
Candida and Debaryomyces, whereas Aspergillus and Pichia were more abundant in ileal-
involved CD (265). During disease flares, the Basidiomycota/Ascomycota ratio increases
compared to healthy controls (265). At the species level, CD patients with active flares
showed a greater relative abundance of Candida species, Gibberella moniliformis,
Alternaria brassicicola, and Cryptococcus neoformans (266). In UC, mycobiome variations
were most evident when categorized by disease extent. Patients with proctitis displayed
the highest relative abundance of Penicillium, which negatively correlated with the proximal
progression of the disease (265). In contrast, Pichia was overrepresented in patients with

left-sided colitis compared to those with proctitis (265).

These functional alterations are reflected in the disease-associated remodeling of the gut
metabolome. Given the critical role of gut dysbiosis in IBD pathogenesis, therapeutic

strategies aimed at microbiome restoration, such as fecal microbiota transplantation, have
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demonstrated both efficacy and safety in inducing and maintaining remission in UC patients
(267,268).
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1.6 Overview

To sum up, cDCs are pivotal orchestrators of intestinal immune responses, acting as a
bridge between innate and adaptive immunity through their capacity to sample antigens
and shape T cell differentiation. In the gut, cDCs play essential roles in maintaining mucosal
tolerance and responding to microbial and dietary antigens. However, in the context of IBD,
the function and phenotype of cDC are altered, contributing to the loss of immune
homeostasis and the amplification of pro-inflammatory responses. Despite their known
importance, most current insights into DC biology in IBD arise from murine models or
monocyte-derived DCs, which may not accurately reflect the dynamics of human intestinal
DCs. Moreover, dysregulated microbial communities in IBD further modulate immune
function, promoting aberrant immune overactivation. Therefore, this thesis will focus on
characterizing the phenotypic and functional properties of human intestinal cDC in health
and IBD context, assessing the immunomodulatory effect of tofacitinib on these cells, and

exploring the interplay between microbial dysbiosis and immune responses.
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Objectives

To optimize a standardized protocol for the isolation of human intestinal lamina
propria mononuclear cells (LPMCs), enabling the isolation and experimental use of

dendritic cells (DCs), monocytes, and macrophages from human intestinal tissue.

To characterize human intestinal conventional DC (cDC) in both healthy individuals
and patients with inflammatory bowel disease (IBD), including Crohn’s disease (CD)
and ulcerative colitis (UC), during active status of the diseases and remission

phases.

To investigate the function of intestinal cDCs in health and IBD, assessing how their
source (control or IBD mucosa) and phenotype affect their stimulatory capacity over

naive T cells.

To perform an unsupervised analysis of human intestinal antigen-presenting cells
(APCs), using dimensionality reduction and clustering algorithms to perform deeper

characterization analysis.

To study the immunomodulatory effects of tofacitinib on intestinal APCs from control
patients under basal conditions and upon inflammatory stimulation with

lipopolysaccharide (LPS).

To assess the effects of tofacitinib on APCs from patients with UC (both active and

quiescent patients).
To evaluate how tofacitinib modulates the function of human intestinal cDCs.

To characterize the intestinal microbiota—including bacteria, fungi, and viruses—in
human intestinal biopsies from both healthy controls and IBD patients (CD and UC,

in both active and remission states).

To analyze the bacterial composition (bacteriome) of faecal samples, comparing
healthy and IBD cohorts.

To compare the bacterial genera present in intestinal mucosa and faeces,
identifying similarities and differences across control subjects and IBD subtypes

(active/quiescent UC and active/quiescent CD).

To explore correlations between fungal and bacterial communities in the intestinal

mucosa of both control and IBD patients.

To identify specific bacterial genera that could serve as potential fecal biomarkers

for IBD diagnosis or disease monitoring.
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Materials and methods

3.1 PATIENTS AND BIOLOGICAL SAMPLES

Samples from six different cohorts of patients were used through this thesis, including:
healthy controls (HC), Crohn’s disease (CD) patients, differentiating between
endoscopically active Crohn (aCD) and quiescent Crohn (qCD); ulcerative colitis (UC), both
endoscopically active (aUC) and quiescent (qQUC) and patients with colorectar cancer
(CRC).

Biopsies and blood samples were taken during the normal course of a gastroscopy or
colonoscopy at the gastroenterology service from either Hospital La Princesa (Madrid,
Spain), or Hospital Clinico Universitario or Hospital Universitario Rio Hortega, both from
Valladolid (Spain) in the context of a routinary endoscopy or colonoscopy for the diagnosis
and monitoring of the disease. In the case of control individuals, they had been referred
due to rectal bleeding, dyspepsia or colorectal cancer screening, but in all cases they had
macroscopically and histologically normal mucosa. The location of the biopsies, SES-CD,
UCEIS, and Mayo Endoscopic scores, patients' gender and age, as well as other relevant

data for the study, are detailed in the specific chapters.
Stool samples were also obtained during the 24 hours prior to the colonoscopy.

lleal and colonic resection were obtained from the proximal and distal ends from patients
with colorectal cancer, with a minimum distance of 10 cm from the tumors (used as control
tissue) and, in a similar manner, the affected and non-affected tissue from CD patients

subjected to tissue resection were also obtained.

Peripheral blood samples were also obtained from healthy controls provided by the
“Biobanco del Centro de Hemoterapia y Hemodonacién de Castilla y Ledn” (Valladolid,

Spain).

In all cases, samples were obtained following written informed consent after ethical
approval from the local ethics committee from Hospital La Princesa (Madrid, Spain),
Hospital Clinico Universitario (Valladolid, Spain) and Hospital Rio Hortega (Valladolid,
Spain) (Pl 19-1353, PI-19-1430 and Pl 22-2869). To ensure patient confidentiality, all
samples were assigned unique identifiers that do not reveal any personal information using

the coding system for later analysis.

Table 3.1 summarizes the number of samples from each cohort of study that had been

used in all this work.
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Table 3.1. Number of patients of the different cohorts that had been used throughout the present work.

Number of samples
Cohort cDC studies Tofacitinib studies Microbiome studies
(Chapter 5) (Chapter 6) (Chapter 7)
Healthy controls 61 10 5
Active Crohn’s
Disease 12 ) 6
Quiescent Crohn’s
disease 7 ) 6
Active colitis 15 10 5
Quiescent colitis 11 10 7
Colorectal Cancer 7 6 -
Crohn’s Disease
subjected to
resection 6 - -

76




Materials and methods

3.2 SAMPLE COLLECTING AND PROCESSING

3.2.1 Blood processing

Peripheral blood mononuclear cells (PBMC) were obtained from buffy coats from healthy
donors as well as and from blood samples from healthy mucosal controls and IBD patients
(aCD, qCD, aUC and qUC), collected in Heparin-Lityhium tubes (BD Vacuatiner® cat #
367526). Concentrated blood from buffy coats were first diluted in Phosphate-buffered
saline (PBS) 1:2 (Cytiva, cat # SH30028.02).

In both cases (whole blood and diluted blood from buffy coats) were processed by
centrifugation over Ficoll-Paque PLUS (Cytiva, cat # 17144003). First, 3 mL of Ficoll-Paque
Plus was added to a 15 mL tube (Corning™, cat # 10579691), ensuring it was not adhered
to the tube walls. Next, a maximum of 9 mL of diluted blood was carefully layered on top of
the Ficoll solution using a sterile Pasteur pipette (Fisherbrand™, cat # 13439108), ensuring
minimal mixing. The tube was then centrifuged at 800g for 30 minutes at 4°C and no brake,
allowing the separation of blood components based on density. Following centrifugation,
the PBMC layer, appearing as a distinct white band between the plasma and Ficoll, was
carefully collected and transferred into a new tube containing 3 mL of RPMI (Gibco, cat #
11875093). To remove residual Ficoll and plasma, isolated PBMCs were washed by adding
RPMI up to 8 mL, followed by centrifugation at 300g for 5 minutes at 4°C. Resulting pellet
was then resuspended in 2 mL of fresh RPMI, ensuring cell viability in case of downstream
cell culture or in PBS containing 1 mM Ethylenediaminetetraacetic acid (EDTA) (Invitrogen,
cat# 15575-038) and 0.02% sodium azide (Sigma-Aldrich, cat # S2002-25G) (FACS buffer)

in case of downstream flow cytometry staining.

3.2.1.1 Naive T cell enrichment

T cell enrichment was first carried out using magnetic beads and following manufacturer’s
instructions of Pan T Cell Isolation Kit human (Miltenyi Biotec, cat # 130-096-535), which
capture cells thanks to their specificity. Labelled cells were passed through an LS column
(Miltenyi Biotec, cat #:130-042-401) coupled to a magnet, and only those cells that were
not of interest were retained on the mesh of the column, previously conditioned with MACS
buffer, which consists in PBS containing 2 mM EDTA + 0,5% Bovine Serum Albumine,
(BSA) (Gibco, cat # 30063-572). Therefore, isolated T cells were those that eluted from the

column.

From those T cells, naive T cells were obtained. Starting from enriched T lymphocytes, the
REAlease® CD62L MicroBead kit (Miltenyi Biotec, cat # 130-124-203) was used following
manufacturer’s instructions. This kit retained CD62L" cells in the magnetic LS column and

therefore a specific buffer provided in the kit was used to allow CD62L+ cells to be released.
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3.2.2 Intestinal biopsies

In all cases, biopsies were collected immediately following extraction in a maximum of 30
minutes in ice-chilled RPMI (Gibco, cat # 11875093) at 4°C and then transported to the lab

maintaining cold conditions (4°C).

For the obtention of lamina propria mononuclear cells (LPMC), biopsies were first incubated
in 5 mL of HBSS (Gibco, cat # 24020117) supplemented with 1 mM dithiothreitol (DTT)
(Sigma-Aldrich, cat # 43816) and 1 mM ethylenediaminetetraacetic acid (EDTA)
(Invitrogen, cat # 11568896) on an orbital shaker (30 minutes, 250 rpm, 37°C). After
incubation, the supernatant was discarded, and the tissue was subjected to a second
incubation under identical conditions to remove the mucus layer, enterocytes, and
intraepithelial leukocytes. Subsequently, the remaining tissue was enzymatically digested
in 5 mL of RPMI medium containing 1 mg/mL collagenase D (Roche, cat # 11088882001),
20 pg/mL Liberase™ TL Research Grade (Roche, cat # 5401020001), and 25 U/mL
benzonase (Universal Nuclease for Cell Lysis, Pierce™, ThermoFisher Scientific, cat #
88702) to obtain finally LPMC. The digestion was performed on an orbital shaker (MaxQ
4450, TermoFisher, cat # SHKE4450) (three incubations, 30 minutes each, 250 rpm, 37°C).
After each incubation, the medium was filtered through a 100 um strainer (Fisherbrand™,
cat #22363549) into a 50ml tube (Corning™, cat # 10334131) to isolate LPMC, which were
maintained at 4°C until finishing all the process. The remaining tissue underwent two
additional digestion cycles following the same protocol. After all incubations, the collected
LPMC were pooled into a single 50 ml tube, centrifuged (300g, 10 min, 4°C), and
resuspended in RPMI for immediate use (see 3.4 or 3.3.1 sections) or cryopreservation.
For cryopreservation, the cells were suspended in freezing medium composed of RPMI
supplemented with Foetal Calf Serum (FCS) (Gibco, cat # 10500064) and 10% Dimethyl
Sulfoxide (DMSO) (MP Biomedicals, cat # 190186) until needed. Cryopreservation was
performed in cryogenic vials (Fisherbrand™, cat # 300460-0020), which were stored for at
least 24 hours in a CoolCell™ cell freezing container (Corning™, cat # 432001) to ensure

a controlled freezing rate.

For microbiome studies, biopsies were preserved in PBS (Cytiva, cat # SH30028.02) at
4°C just after being obtained and then, cryopreserved in RNAlater™ (ThermoFisher
Scientific, cat # AM721) at -80°C in cryogenic vials (Fisherbrand™, cat # 300460-0020)

until being sent in cold conditions to sequencing.

For cytokine analysis, one biopsy per patient was cultured overnight in 0,5 ml of RPMI
medium (Gibco, cat # 11875093) supplemented with 100 U/ml Penicillin-Streptomycin
(Gibco, cat # 11548876) and 60 pug/ml Gentamicin (Gibco, cat #11520506) in 24 flat-bottom
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plates (TermoFisher Scientific, cat # 142475) at 37°C and 5% CO.. After 18h culture media
was centrifugated at 400g for 5 min, pellet was discarded, and the cell-free supernatant
was cryopreserved in cryogenic vials (Fisherbrand™, cat # 300460-0020) at -80°C until

use.

3.2.3 Intestinal resection

Human intestinal resections were collected immediately following surgery in ice-chilled
RPMI medium (Gibco, cat # 11875093) (4°C) and then transported to the lab maintaining
cold conditions (4°C). Tissue was cleaned with HBSS, and muscle and fat were removed
using surgical scissors. When tissue was clean, it was cut into pieces of about 1 cm? in
order to process them separately in 15 ml tubes (Corning™, cat # 10579691). At this point,
tissue was processed exactly as biopsies following chemical and enzymatic digestions as

explained above (see “Intestinal biopsies section”).

3.2.4 Fecal samples

Stool samples were collected in fecal collection tubes (Canvax Biotech, cat # SC0012)

during the 24 hours prior to the colonoscopy and then, frozen at -80°C until use.
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3.3 FLOW CYTOMETRY APPROACHES

3.3.1 Antibody Staining

Staining of the isolated cells (both PMBC or LPMC) was carried out in polystyrene tubes
(Falcon™, cat # 352054). First, a viability dye, Live/Dead™ Near-IR (Invitrogen, cat #
10154363), was added and incubated for less than 1 minute at room temperature (RT),
and then, washed in FACS buffer at 400g for 5 minutes. After that, nonspecific binding was
blocked using Fc-block (BD Pharmingen, cat # 564220) for 10 minutes at RT. Cells were
subsequently washed in FACS buffer at 400g for 5 minutes. Extracellular staining was then
incubated for 20 minutes at 4°C. For intracellular staining (if required), the Fix and Perm kit
(Invitrogen, cat # GAS004) was employed following the manufacturer’s protocol. In brief,
cells were fixed with Medium A for 15 minutes at RT. After a FACS-washing step, cells were
permeabilized with Medium B and incubated with the primary intracellular antibody for 20
minutes at RT and then washed again (centrifuging at 400g, 5 min). In all procedures, the
cells were fixed using Fixing Medium consisting in PBS (Lonza, cat # 17-516F) with 1%
Buffered Formalin (Protocol, cat # 032-059), for 10 minutes at 4°C. After washing in FACS
buffer, the cells were acquired within 48 hours using a flow cytometer (Gallios Beckman

Coulter or Aurora Cytek 5 lasers).

3.3.2 Supervised analysis

Supervised data analysis was performed with the FlowJo software (BD Biosciences) and
on the OMIQ Data Science platform (©Omiq, Inc. 2024), depending on the origin of the
data (Gallios Beckman Coulter flow cytometer or Aurora Cytek spectral flow cytometer,
respectively). In the spectral cytometer files, first step was to transform the fluorescence
data using the scale parameters suggested by the software. Subsequently, a cleaning
algorithm (PeacoQC) was run on all samples. Standard flow cytometer data was
compensated before acquisition, so they did not need a subsequently fluorescence data
transformation in FlowJo. In both analysis software (FlowJo and OMIQ) cells were identified
by following hierarchical gating strategies that enabled to distinguish different immune cells
(i.e. dendritic cells, macrophages, etc) and different cell markers (TNFa, IL10, IL6,
CXCRa3...). In all cases, gating strategies started discarding doublets -comparting FSC-A
and FSC-H- and selecting total viable leukocytes (CD45" cells that were negative for the

viability dye) and followed with the specific gates depending on the cells of interest.

Fluorescence Minus One (FMO) method was used to define positive populations in all
cytometry panels. Briefly, in an FMO control, all fluorochromes in a given panel were

included except for the one being evaluated, allowing to account for spectral spillover and
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autofluorescence. This approach helps to distinguish true positive signals from background

noise and compensatory artifacts, ensuring precise data interpretation.

3.3.3 Cell sorting

LPMC obtained from tissue resections were used to enrich cDC1, cDC2, cDC2 CD103*
cDC subsets as well as M® by flow cytometry sorting. In this way, total LPMC were stained
using first a viability dye, Live/Dead™ Near-IR (Invitrogen, cat # 10154363), incubated for
1 minute at RT, followed by a wash step in FACS buffer. Then, a nonspecific binding blocker,
Fc-block (BD Pharmingen, cat # 564220) was incubated for 10 minutes at room
temperature (RT). Cells were subsequently washed in FACS buffer at 400g for 5 minutes.
Extracellular staining consisting in CD45, HLA-DR, CD14, CD64, CD11¢, CD103, CD172
(SIRPa) was then incubated for 20 minutes at 4°C. Finally, cells were washed in RPMI

medium before being acquired in a FACS ARIA sorter (BD Biosciences).

Sorter gating strategy includes discarding doublets -comparting FSC-A and FSC-H-. Within
singlets, total viable leukocytes were identified as CD45* and negative for the viability dye.
Total M® are identified as CD14"CD64*. Within the non-M® fraction, total cDC are
identified as HLA-DR*CD11c* and can be further divided into subsets based on the
expression of CD103 and SIRPa. Type 1 cDC are defined as CD103*SIRPa while type 2
cDC are SIRPa*. Finally, type 2 cDC can be further divided into CD103-SIRPa* and
CD103*SIRPa* (Figure 4.1). Separated cells were automatically collected with the sorter
device into 1.5 mL Eppendorf tubes (TermoFisher Scientific, cat # 11926955) containing 1
mL of AIM-V™ medium.

3.3.4 Unsupervised analysis

The OMIQ Data Science platform (©Omiq, Inc. 2022) was utilized after transforming the
data, with the scale, parameters, and cofactors configured as recommended by the
platform. The PeacoQC algorithm was applied for data cleaning to remove outlier events
in spectral cytometry files caused by abnormal flow behaviour, such as clogs or other
technical issues. Following this, a manual filtering step was performed to exclude cell
debris, doublets, and non-viable cells, retaining only viable myeloid antigen presenting cells
(mAPC) (CD45* HLA-DR® cells) for further analysis.

For exploratory analysis, an unsupervised approach using the uniform manifold
approximation and projection (UMAP) algorithm was used. This algorithm employs a non-
linear, graph-based method to represent multidimensional data and reconstructs it into a
two-dimensional map while preserving the multidimensional structure. By doing so, it
identifies similarities between cells across all dimensions, which correspond to the intensity

of marker expression. The resulting two-dimensional map reflects the proximity of cells
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based on their distances in multidimensional space, ensuring that cells with similar
expression patterns are positioned close to each other. Prior to analysis, a subsampling

step was performed to ensure equal representation across groups.

Subsequently, the FlowSOM algorithm was applied to identify and group similar cell
clusters in an unsupervised manner. This algorithm evaluates the expression of all selected
markers in each cell and organizes them into metaclusters based on their expression
levels. While it enables the visualization of typical biological groupings, it also facilitates the
detection of novel or unexpected clusters. However, FlowSOM primarily highlights
metaclusters representing major immune system subsets present in the sample. The visual
representation of the two algorithms (UMAP and FlowSOM) allows for further subdivision
of these metaclusters into smaller clusters, providing a more detailed representation of the

phenotypic and functional diversity within mAPCs.

A clustered heatmap was generated using the clusters identified in the previous step. This
heatmap visually depicts the expression levels of each phenotypic marker within each
cluster, with dendrograms grouping clusters and markers based on similarity. This
approach enables the identification of mAPC subsets associated with each cluster by
analysing their marker expression profiles. If a specific cluster is linked to a particular
condition under study, its phenotype can be further characterized using classical
supervised methods, potentially revealing subsets that might otherwise remain undetected.
Finally, the refined results from the FlowSOM algorithm were overlaid onto the UMAP plot

to visualize their spatial distribution.
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3.4 CELL CULTURE

3.4.1 Lamina propria mononuclear cells culture

Total LPMC were cultured in 96-well round bottomed plaques (ThermoFisher, cat #
10418623) in complete AIM-V™ medium (Gibco, cat # 12055091) at a concentration of
200.000 cells in a volume of 200ul. LPMC were cultured 18h with 5% CO, at 37°C. In some
cases, LPMC were cultures without stimuli (resting conditions), but in others, cells were
cultures with different stimulus: 100 ng/ml lipopolysaccharide (LPS) (Invitrogen, cat # 00-
49-76-93), 100 nM tofacitinib citrate (Sigma-Aldrich, cat # PZ0017) or a combination of two
(LPS 100 ng/ml and 100 nM tofacitinib citrate). Following 18-hour culture, LPMC were

harvested for flow cytometry staining.

3.4.1.1 T cell co-cultures

Different subsets of previously sorted intestinal cDC were used to stimulate naive T cells
in a 1:20 proportion in round bottomed 96-well plaques (ThermoFisher, cat # 10418623) for
5 days in AIM-V™ medium (Gibco, cat # 12055091) and in a final volume of 200 pl. In all
cases, experiments included a negative (naive T cells cultured in resting conditions) and a
positive control (T cells stimulated in the presence of 1ug/ml phytohemagglutinin
(TermoFisher, cat # 10576015). Naive T cells were also cultured with paired intestinal M¢
from the same donor as a second negative controls. Following culture, T cells were

harvested for flow cytometry staining.
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3.5 INTESTINAL MICROENVIRONMENT EVALUATION

5.1.1 Biopsies-culture supernatants

Cell-free culture supernatant from the biopsy cultures were collected and stored at -80°C
until analysed. Prior to analysis, samples were centrifuged to remove any debris. Levels of
IFN-y, IL-10, IL-17A, IL-1B, IL-6, TNF-a, and IL-8 were determined using MILLIPLEX® MAP
custom magnetic bead panel kit following the manufacture's specifications. Briefly, the
protocol involved preparing assay buffer, calibrators, controls, and magnetic beads coated
with specific capture antibodies. After pre-wetting the plate, samples, standards, and
controls were incubated with the bead mixture to allow antigen binding. Following
incubation and washing steps, detection antibodies and streptavidin-phycoerythrin (SA-PE)
were added to generate fluorescence signals. A broad sensitivity range of standards were
used to help enable the quantitation of a wide dynamic range of cytokine concentrations
while still providing high sensitivity. The plate is read on a Luminex® platform, which detects
and quantifies fluorescence for each analyte. Median fluorescent intensity was calculated
using the MAGPIX® system version (Luminex) which integrates the Luminex xPOTENT®

acquisition software and the MILLIPLEX® Analyst 5.1 analysis software.
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3.6 MICROBIOTA ANALYSIS

3.6.1 DNA extraction

3.6.1.1 Fecal DNA Extraction and sequencing

Bacterial DNA was extracted following manufacturer's recommendations for the QIAmp
PowerFecal Pro DNA Kit (Qiagen, cat # 51804). Briefly, the protocol involves the efficient
extraction of microbial DNA from fecal samples using mechanical and chemical lysis. The
process begins with bead-beating to disrupt microbial cells, followed by chemical lysis to
enhance DNA release. Then, inhibitors are removed through specialized binding and wash
steps, ensuring high-purity DNA. The lysate is then passed through a silica-based spin
column, where DNA binds selectively while contaminants are washed away. Finally, the
DNA is eluted in a low-salt buffer, yielding high-quality DNA suitable for downstream
applications. DNA samples were quantified using a NanoDrop microvolume

spectrophotometer (Thermo Fisher, USA) and then kept at -20°C until shipment.

Metagenomic sequencing was performed at the Agricultural Technology Institute of Castilla
y Leon (ITACYL) in Myseq platform (lllumina, San Diego, CA, USA) and using the Nextera
XT Index Kit paired-end (2x300nt) (lllumina, San Diego, CA, USA) for microbiota analysis
by amplifying the hypervariable V3 and V4 regions of 16S rDNA with specific primers (515F-
806R).

3.6.1.2 Biopsy DNA Extraction and sequencing

Human intestinal biopsies were used to analysed both bacteria and fungi. DNA extraction
and sequencing was carried out on Seqplexing (Sequencing Multiplex, Valencia) using an
lllumina MiSeq device, paired-end 2x250bp. For bacteria (16S DNA), the primers used for
amplification were 16S V1-V2 Forward Primer 5'-1: TNANACATGCAAGTCGRRSG; 16S
V1-V2 Forward Primer 5'-2: TAACACATGCAAGTCRACTYGA and 16S V1-V2 Reverse
Primer 3. GCTGCCTCCCGTAGGAGT. For fungi (ITS2 region), the primers used were
ITS2_F1: GTGARTCATCGAATCTTTG, ITS2_R1: TCCTCCGCTTATTGATATGC and
ITS2_R2: GATATGCTTAAGTTCAGCGGGT. Biopsies were used also to study viral
composition using a Shotgun approach also in Segplexing (Sequencing Multiplex,

Valencia).
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3.6.2 Bioinformatic analysis

Data analysis was firstly performed using Qiime2 (https://qiime2.org/), an open-source
software, to obtain the necessary datasets to perform the further analysis using R
(https://lwww.r-project.org/). All the code related to this project is available in the following

GitHub repository: https://github.com/mariagpms/Microbiome-Analysis.qgit

Qiime2 workflow started importing raw sequences into Qiime2 using the g2-tools import
script with the input format PairedEndFastqManifestPhred33V2. A file containing the
necessary data was previously generated. Then, samples were demultiplexed using the
demux summarize command, which classifies total reads based on flanking
oligonucleotides. After that, DADA2 algorithm was used to remove sequencing errors and
distinguish true biological sequences from artifacts. Sequence quality was then assessed,
ensuring good read integrity, and low-quality regions, barcodes, and primers were removed
using the dada2 denoise-paired script. Subsequently, representative sequences were
aligned using MAFFT via q2-alignment, and taxonomy was assigned to the sequences
using a Naive Bayes classifier (feature-classifier fit-classifier-naive-bayes command)
against the SILVA 16S v138 99 database for bacteria and UNITE database for fungi, with
a 99% similarity threshold in both cases. Relative abundances of all taxes at the genus
level were also obtained with the feature-table relative-frequency command. Finally, beta
diversity analyses were performed by calculating the distance matrix with different
distances (Bray-Curtis, Jaccard, UniFrac and Weighted Unifrac) using the command beta-
group-significance and generating different Principal Coordenate Analysis (PCoA) plots for

each beta-diversity distance.

In the R studio analysis, first, microorganisms were associated with their relative
abundances in the dataset. Then, the mean frequency for every genus (except the NA’s)
was calculated in each dataset. Top 15 most abundant genus of each dataset were
identified and the frequencies of the 15 most abundant genus were relativized between 0
and 100 to represent them using the ggplot2 package (library) in a stacked bar plot. This
was done for fungi and bacteria found in biopsies as well as bacteria found in stool samples.
Moreover, the alpha diversity was measured using the function estimate_richness from the
phyloseq library, using Shannon’s and Simpson’s indices, to assess species richness and
evenness. These values were then plotted into an alpha diversity plot with ggplot2 library,
one for each of the following groups: bacteria in biopsies, bacteria in stools and fungi in
biopsies. In addition, the Kruskal Wallis test was performed using Shannon’s and

Simpson’s indices to check whether the median of the different study groups was the same.
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Finally, fungus-bacterium correlations were analyzed using Spearman’s correlation
coefficient and identifying statistically significant associations with its rank test using the
cor_test function from the library rstatix. Then, a heatmap for each study group was plotted

with ggplot2 library.
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3.7 STATISTICAL ANALYSIS

Statistical analyses were conducted using GraphPad Prism version 8 for Windows

(GraphPad Software, www.graphpad.com) and R (https://www.r-project.org/). For

comparisons between two groups, a T-test was performed on normally distributed data,
while the Mann-Whitney U test was used for non-parametric data. One/Two-way ANOVA
(with or without repeated measures) was applied to compare multiple groups with normal
distributions, while the Kruskal-Wallis test was used for non-parametric groups. Pearson
correlation was used for normally distributed data, and Spearman correlation for non-

parametric data. A p-value of <0.05 was considered statistically significant.
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Study and isolation of human intestinal dendritic cell and macrophage subsets

4.1 INTRODUCTION

Dendritic cells (DC), the most potent antigen-presenting cells (APC), determine the
outcome (pro-inflammatory or tolerogenic) of antigen-specific adaptive immune response
(1). DC are divided into two major subsets: conventional or classical DC (cDC) and
plasmacytoid DC (pDC). In the gastrointestinal (Gl)-tract, cDC are essential to maintain the
balance between tolerance towards nutrients/commensals and immunity against
pathogens (2). cDC can be further divided into subsets based on their ontogeny and
function named type 1 (cDC1), specialized in cross-presentation and type 2 (cDC2),
specialized in classical presentation (3). In mice, cDC1 express surface marker CD8aq,
although in human they are characterized by the expression of CD141. Nevertheless, both
mice and human cDC1 express XCR1 and CD103. cDC1 require IRF4 and Notch2
transcription factors, cDC2, on the contrary, require IRF8 and Baft3. While murine cDC2
express surface marker CD11b, in human they are characterized by the expression of
CD1c while both species express SIRPa. The gut, however, harbors a unique subset of
CD103* cDC2. This gut-specific population controls most of the mechanisms of immune
tolerance given its unique capacity to generate gut-homing regulatory T cells (Treg) and

IgA-producing B cells, although they can also drive Th17 responses (4,5).

As opposed to cDC, which can initiate adaptive specific immune responses by performing
antigen presentation to naive T cells, macrophages (M®) are APC highly adapted to the
tissue that they inhabit (6). In the intestine, M® are highly specialized to avoid overt
immunity in response to the gut microbiota (7). In human, GI-M® can be divided into two
major subsets, newly arrived pro-inflammatory monocytes and tissue resident tolerogenic
M®, based on the expression of CD11c, CCR2 or CXCR3 respectively (8,9).

In this chapter, we will provide therefore the required protocols and guidelines to study
human intestinal dendritic cell and macrophage subsets by flow cytometry (either in fresh
or following culture) using biopsy explants obtained during routine endoscopy. Moreover,
we shall also explain how to enrich them from tissue resections to obtain enough numbers
of these scarce cell types to perform further downstream applications including cell culture

or “omic” analyses (e.g. RNAseq, proteomics, etc.) among others.
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4.2 STUDY OF DENDRITIC CELLS AND MACROPHAGES FROM INTESTINAL

92

BIOPSIES

Intestinal biopsies are collected during routine endoscopy in a tube with ice-chilled
Roswell Park Memorial Institute (RPMI) Medium. A minimum of 4 biopsies should be
obtained to properly characterize human intestinal cDC and M®.

Biopsy explants should be immediately transferred to the research laboratory within the
following 30 minutes to be further processed. Tissue will be incubated with 5 ml Hank's
buffered salt solution (HBSS) supplemented with 1mM Dithiothreitol (DTT) and 1mM
Ethylenediamine-tetra acetic acid (EDTA) in an orbital shaker (30 minutes, 250 rpm,
37°C). Following incubation, supernatant will be discarded, and the remaining tissue
will be incubated under the same conditions to remove the mucus layer, enterocytes
and intraepithelial leukocytes.

Remaining tissue will be subsequently digested in 5 ml of RPMI medium supplemented
with collagenase D (1 mg/mL), liberase (20 pg/mL) and benzonase (25 U/mL) in an
orbital shaker (three incubations, 30 minutes each, 250 rpm, 37°C). Following each
incubation, the medium must be filtered with a 100 um strainer to obtain lamina propria
mononuclear cells (LPMC) which will be preserved at 4°C until used. The remaining
tissue will be further digested two more times following the same approach.

Following the incubations, LPMC are collected in the same tube which will be further
centrifuged (300g, 10 min, 4°C) and resuspended in RPMI medium.

LPMC cells can be directly stained to characterize freshly obtained cDC and M®
subsets in different patient cohorts by flow cytometry. Alternatively, LPMC can be
further cultured (e.g. in resting conditions and in the presence of different
compounds) to assess how cDC and M® subsets respond to the stimuli.

5.a. Staining for cytometry approach:

5.a.i.Cells are washed to remove RPMI by centrifugation at 300g, 5min, 4°C. LPMC
pellet will be washed in 1 ml of Fluorescence Activated Cells Sorting Buffer
(FACS buffer), which consists in Phosphate Buffered Saline (PBS)
supplemented with 2% fetal bovine serum (FBS), 3mM NaNszand 1 mM EDTA,
and further centrifuged (300g, 10 min, 4°C).

5.a.ii. Pellet will be resuspended in 1ml of FACS with the presence of a viability
dye to exclude dead cells from the analysis. Time and titration of the viability
dye must be determined within each laboratory to optimize the timing and
dilutions. LPMCs will be further washed.

5.a.iii. Pellet will be resuspended with 100ul of FACS buffer in the presence of 2l

of a non-specific Fc Receptor-mediated fluorescent antibody blocker
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(FcBlock). LPMC will be incubated 10 min at room temperature (RT) in the
dark and then further washed.

5.a.iv. Pellet will be resuspended in FACS buffer and the extracellular antibodies
added at the adequate titration (which depends on the clone, the brand and
the batch). To study human intestinal cDC and M® subsets, in addition to the
viability dye, LPMC must be stained with CD45, CD14, CD64, CD103,
CD172 (SIRPa), HLA-DR and CD11c (Figure 4.1). In addition, monocytes and
M® and be further discriminated based on the expression of CD11c (Figure
4.1) (8,9). Moreover, the phenotype of the different cDC and M® subsets
can be further studied by adding further antibodies to the cocktail to assess
their activation status (CD80, CD86, etc.), migration capacity (CCR2,
CCR9, etc.). LPMC will be incubated for 20 minutes at 4°c and then, further
washed in FACS buffer

5.a.v. In addition, intracellular staining of the cells at this stage (not discussed)
can be also performed to assess the expression of different intracellular
markers like transcription factors, cytokine production, etc.

5.a.vi. Following incubation, LPMC are resuspended in 250 ul of 2%
paraformaldehyde solution (in PBS) to fix the cells, followed by a further
incubation at 10 min at 4°C. Cells will be subsequently washed with FACS
buffer.

5.a.vii. Finally, LPMC will be resuspended in 500 ul of FACS buffer and preserved
at 4°C until acquisition in a cytometer within 48 hours.

5.a.viii.Once acquired in the cytometer, gating strategy includes discarding doublets
-comparting FSC-A and FSC-H (not shown)-. Within singlets, total viable
leukocytes are identified as CD45" and negative for the viability dye (Figure
4.1). Total M® are identified as CD14"CD64" and can be further divided
into newly arrived pro-inflammatory monocytes or tissue resident
macrophages based on the expression of CD11c, CX3CR1 or CCR2
respectively (8) (Figure 4.1). Within the non-M® fraction, total cDC are
identified as HLA-DR*CD11c* and can be further divided into subsets based
on the expression of CD103 and SIRPa. Type 1 cDC are defined as
CD103*SIRPa while type 2 cDC are SIRPa*. Finally, type 2 cDC can be further
divided into CD103SIRPa* and CD103*SIRPa*, being the latter specific to the

gastrointestinal tract.
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5.b. LPMC culture:

5.b.i.LPMC are washed in RPMI medium and resuspended in AIM-V® serum-free
medium.

5.b.ii. LPMC are further cultured in flat-bottom plates at 1.000.000 cells/ml density.

5.b.iii. Different wells can be now supplemented with different conditions including
specific antigens (i.e. 33-mer peptide, gliadin...), pro-inflammatory cytokines
as IL-15 or TNFa, pro-inflammatory compounds (i.e. LPS), anti-inflammatory
compounds, etc. Optimum dose for each stimulus should be optimized based
on the specific readout. It is also important to highlight that all experiments
must include a negative control or basal condition (i.e. cells cultured in the
absence of any stimuli).

5.b.iv. LPMC are incubated overnight (O/N) at 37°C, 5% CO..

5.b.v. Next day, LPMC are recovered from the plates and stained as explained in
point a).

94



Study and isolation of human intestinal dendritic cell and macrophage subsets

4.3 DENDRITIC CELL AND MACROPHAGE ISOLATION FROM INTESTINAL

1

3

RESECTIONS

Human resections are collected immediately following surgery in ice-chilled RPMI
medium (4°C). Typically, around 10g of tissue is enough to perform subsequent
processing and enrichment.

Once in the laboratory, resections are further prepared to process them. First step is
cleaning the tissue with HBSS and remove the muscle and fat using surgical scissors.
Resulting tissue is composed of two layers: mucosa (brown, dotted appearance) and
submucosa (pink, very irrigated). As long as tissue is clean, cut it into pieces of about
1 cm? in order to process them separately as previously described (10).

When LPMC are isolated, they can be stained to identify different cDC and M® subsets.
Hence, total LPMC are stained as above, and the same gating strategy (Figure 4.1)

is set on the sorter to enrich total M® as well as the three different cDC subsets.

Gated within singlet cells

Monocytes &

macrophages 3.4% Monocytes

o
No macrophages 38%

O
= Macrophages
'3 62%

CD64 =y

Viability

CD103-SIRPa*45.0%
‘.

CD103*SIRPa*
39.0%

CD103*SIRPa
13.0%

Figure 4.1. Gating strategy to identify conventional dendritic cells and macrophages in the human
gut.

Following obtention of lamina propria mononuclear cells from biopsy explants or tissue resections, total
leukocytes are identified within the singlet factor as CD45* which are negative for the viability marker.
Within then, total macrophages can be identified as CD14*CD64* being all of them HLA-DR*. These cells
can be further divided into newly arrived pro-inflammatory monocytes and tissue resident macrophages
based on the expression of CD11c, CCR2 or CX3CR1 respectively (9). Within the non-macrophage gate,
total conventional dendritic cells (cDC) are identified as HLA-DR*CD11c* and further divided into subsets
based on the expression of CD103 and SIRPa.

Following sorting enrichment, post-sort analyses should be performed to confirm the

purity of the different isolated cell subsets (Figure 4.2).
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Figure 4.2. Post-sort analysis of human intestinal enriched conventional dendritic cells and

macrophages.

Conventional dendritic cell (cDC) subsets and total macrophages are identified as in Figure 4.1 and sorted
into 4 different tubes containing total macrophages (Tube 1), CD103" type 2 cDC (tube 2), CD103* type 2
¢DC (tube 3) and type 1 cDC (Tube 4). Post-sort analysis confirms the purity of the cells within each tube

which can be now used for downstream applications.

Sorted cells can be now used for further downstream applications including T cell

stimulation, pure cell culture with different compounds, proteomics, RNA-seq analyses,

etc.
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4.4 NOTES

v

It is important to note that for the resections, there is obviously no proper healthy
control. In these cases, patients with colorectal cancer can act as controls as far as
obtained tissue is at least 10 cm away from the tumor.

When LPMC isolation is performed, it is recommended to vortex tubes before and after
adding collagenase solution.

Three incubations are sufficient to obtain a high number of LPMC from tissue resection
even if the tissue is not fully digested although, if needed, further incubations can be
performed following the same principles.

At the time of performing the sorting enrichment, 1 ml of RMPI should be added to
collection tubes before starting the process.

Preparing a “stock mix” of antibodies (in the correct dilution) reduces human error and

makes experiments more comparable.
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Type 1 and CD103+ type 2 conventional dendritic cells are decreased in active patients with ulcerative colitis
but not with Crohn’s disease.

5.1 INTRODUCTION

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis
(UC), is a chronic disorder of unknown aetiology that involves a pathological response of
the immune system resulting in chronic inflammation of the gastrointestinal (Gl)-tract. IBD
prevalence is high, affecting more than 1.6 million inhabitants in the United States and more
than 2.2 million in Europe (1). Although IBD incidence varies widely depending on the

different countries, it is increasing rapidly, probably due to the "westernization" of lifestyles

).

Dendritic cells (DC), the most potent antigen-presenting cells (APC), determine the
outcome (pro-inflammatory or tolerogenic) of antigen-specific adaptive immune responses
(3,4). DC are divided into two major subsets, named conventional or classic DC (cDC) and
plasmacytoid DC (pDC). In the Gl-tract, cDC are essential to maintain the balance between
tolerance towards nutrients/commensals and immunity against pathogens (5-7). cDC can
be further divided into subsets based on their ontogeny and function named type 1 (cDC1),
specialized in cross-presentation and type 2 (cDC2), specialized in classical presentation
(8—10). cDC1 require transcription factors IRF4 and Notch2. In mice, they express surface
marker CD8a, although in human they are characterized by the expression of CD141.
Nevertheless, both mice and human cDC1 express XCR1 and CD103. cDC2, on the
contrary, require transcription factor IRF8 and Baft3. While murine cDC2 express surface
marker CD11b, in human they are characterized by the expression of CD1c although both
species express SIRPa. The gut, however, harbours a unique subset of CD103" cDC2.
This gut-specific population controls most of the mechanisms of immune tolerance given
its unique capacity to generate gut-homing regulatory T cells (Treg) and IgA-producing B

cells, although they can also drive Th17 responses (11-13).

While human GIl-cDC show a tolerogenic function which helps to maintain immune
homeostasis, in IBD patients they display a pro-inflammatory biased profile (14-24).
Indeed, GI-cDC from IBD patients have a reduced capacity to generate suppressor Treg
cells coupled with an enhanced production of pro-inflammatory Th1 and Th17 effector T
cells, which is thought to be associated with lower numbers of CD103* cDC (15,23,25) .
Nevertheless, and although cDC are likely to be essential in IBD development and
progression, it is currently unknown whether these differences in cDC biology in IBD are
restricted to any particular subset. Moreover, the properties of the immune system (26,27),
including cDC subset composition (28-30), systematically change through its length.
However, and despite UC exclusively affects the human colon while CD can happen
anywhere in the Gl-tract (from mouth to anus), few studies attempted to study GI-cDC in

both CD and UC abrogating those regional differences. To that end, we here specifically
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studied human intestinal cDC from patients with CD or UC, either active or quiescent, and

compared them with the non-inflamed colon from the same patients and with controls.
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but not with Crohn’s disease.

5.2 MATERIAL AND METHODS

5.2.1 Patients and biological samples

Blood (10 ml) and intestinal biopsies from healthy controls were obtained during endoscopy
or colonoscopy from a total of 61 healthy controls [37.7% males; 47.7 + 11.7 years (mean
+ standard deviation); age interval 25-80]. Patients had been referred due to rectal
bleeding, dyspepsia or colorectal cancer screening. In all cases they had macroscopically
and histologically normal mucosa. In the case of a colonoscopy, paired samples were
obtained from the distal colon, proximal colon and the terminal ileum (when accessible)
from the same patients. Duodenal samples were obtained in the context of an upper
endoscopy. A maximum of 8 biopsies were obtained per tissue/patient. Samples were
immediately preserved in ice-chilled complete medium [Dutch modified RPMI 1640 (Sigma-
Aldrich, Dorset, UK) containing 100 pug/mL penicillin/streptomycin, 2 mM L-glutamine, 50
pg/mL  gentamicin  (Sigma-Aldrich) and 10% foetal calf serum (TCS Cellworks,

Buckingham, UK)] and processed within 30 minutes.

Blood and colonic biopsies were also obtained from IBD patients, including 15 patients with
active UC (defined by a Mayo endoscopic score >1; Table 5.1), 11 patients with quiescent
UC (defined by a Mayo endoscopic score <1;Table 5.2), 12 patients with active CD (defined
by a simplified endoscopic activity score for CD (SES-CD) score > 3; Table 5.3) and 7
patients with quiescent CD (defined by a SES-CD score <3;Table 5.4). In the case of
patients with active disease (either UC or CD), both the inflamed and the non-inflamed

colonic mucosa were sampled.

In addition, ileal and colonic resection were obtained from the proximal and distal ends from
patients with colorectal cancer, with a minimum distance of 10cm to the tumours (Table
5.5). In a similar manner, the affected and non-affected tissue was also obtained from

patients with CD subjected to tissue resection (Table 5.6).

Finally, blood samples from healthy controls were also obtained from the blood bank of
Valladolid.

In all cases, samples were obtained following written informed consent after ethical
approval from the Ethics Committee at La Princesa Hospital (Madrid, Spain) and Hospital

Clinico Universitario (Valladolid, Spain).
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Table 5.1. Patient demographics with active ulcerative colitis including gender, age, Mayo Endoscopic
score and treatment.

Code Gender Age MayoEndoscopic Treatment
1 Male 48 3 Infliximab
2 Female 43 2 Mesalazine + Azathioprine
3 Female 42 2 Prednisolone + Etrolizumab
4 Male 30 3 Infliximab + Adalimumab
5 Female 59 3 Mesalazine
6 Female 29 3 Mesalazine + Azathioprine
7 Female 38 2 Mesalazine
8 Female 31 3 Mesalazine
9 Male 59 2 Mesalazine
10 Female 60 2 Adalimumab
11 Female 60 2 Adalimumab
12 Female 39 3 Adalimumab + Azathioprine
13 Male 42 3 Azathioprine + Mesalazine + Infliximab
14 Female 27 3 Mesalazine + Azathioprine + Golimumab
15 Male 29 3 Untreated

Table 5.2. Patient demographics with quiescent ulcerative colitis including gender, age and treatment.

Code Gender Age Treatment
1 Female 60 Mesalazine
2 Female 58 Mesalazine
3 Female 50 Mesalazine
4 Female 56 Mesalazine
5 Female 23 Metronidazol
6 Female 58 Mesalazine
7 Female 54 Mesalazine
8 Male 59 Mesalazine
9 Male 44 Infliximab
10 Female 55 Mesalazine
11 Female 54 Mesalazine + Azathioprine
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Table 5.3. Patient demographics with active Crohn’s disease including gender, age, simplified

endoscopic activity score for Crohn’s disease (SES-CD) and treatment.

Code Gender Age SES-CD Treatment
1 Female 53 9 Untreated
2 Female 36 8 Azathioprine + Vedolizumab
3 Male 59 14 Azathioprine
4 Female 56 5 Vedolizumab
5 Female 62 15 Mesalazine
6 Female 55 5 Untreated
7 Female 65 6 Untreated
8 Male 31 12 Azathioprine + corticoids
9 Female 36 6 Azathioprine + Adalimumab
10 Male 43 9 Sulfasalazine
11 Female 81 9 Adalimumab
12 Female 48 3 Methotrexate

Table 5.4. Patient demographics with quiescent Crohn’s disease including gender, age and treatment.

Code Gender Age Treatment
1 Female 51 | Sulfasalazine + Mercaptopurine
2 Male 46 Azathioprine
3 Female 64 Metotrexate + Adalimumab
4 Female 26 Sulfasalazine + Ustekinumab
5 Male 57 Azathioprine + Adalimumab
6 Female 49 | Sulfasalazine + Mercaptopurine
7 Female 35 Azathioprine + Infliximab

Table 5.5. Patient demographics with colorectal cancer subjected to intestinal resection and used as
controls, including gender and age.

Code Gender Age Type Behaviour
1 Female 87 | Cancer | Non-affected
2 Female 44 | Cancer | Non-affected
3 Male 85 | Cancer | Non-affected
4 Female 71 | Cancer | Non-affected
6 Male 80 | Cancer | Non-affected
11 Male 65 | Cancer | Non-affected
12 Male 85 | Cancer | Non-affected
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Table 5.6. Patient demographics with active Crohn’s disease subjected to intestinal resection including
gender, age and type.

Code Gender Age Type Behaviour
5 Female 47 | Crohn B3 (penetrating)
7 Female 57 | Crohn | B2, B3 (stricturing and penetrating)
8 Male 72 | Crohn B2 (stricturing)
9 Female 41 | Crohn B1 (inflammatory)
10 Male 46 | Crohn B3 (penetrating)
13 Male 53 | Crohn B2 (structuring)

5.2.2 Blood processing

Peripheral blood mononuclear cells (PBMC) were obtained by centrifugation over Ficoll-
Paque PLUS (Amersham Biosciences, Chalfont St. Giles, UK). PBMC were washed twice
in PBS containing 1 mM Ethylenediaminetetraacetic acid (EDTA) and 0.02% sodium azide

(FACS buffer) and stained with fluorochrome-conjugated antibodies as explained below.

5.2.3 Biopsy processing

Intestinal biopsies were processed as previously described (30,31). Briefly, intestinal
biopsies were processed to obtain lamina propria mononuclear cells (LPMC) following two
incubations (30 minutes each) with Hanks balanced salt solution (HBSS) (Gibco BRL,
Paisley, Scotland, UK) containing 1 mM DTT and 1 mM EDTA solutions to remove the
associated mucus/bacteria and epithelial layer, respectively, and further digested in the
presence of 1 mg/mL of collagenase D and 20 ug/mL of liberase (Roche Diagnostics Ltd,
Lewes, UK). LPMC were subsequently passed through a 100 um cell strainer and collected
by centrifugation before they were further used for flow cytometry staining or culture (5
million LPMC in 2.5 mL of complete medium during 18 hours) in the presence/absence of
LPS (100 ng/ml, Sigma-Aldrich).

5.2.4 Tissue resections processing

Human intestinal resections were collected immediately following surgery in ice-chilled
RPMI medium (4°C). Tissue was cleaned with HBSS and muscle and fat were removed
using surgical scissors. As long as tissue was clean, it was cut it into pieces of about 1 cm?
in order to process them separately in 15 ml tubes. First, tissue was incubated with 5 ml
Hank's buffered salt solution HBSS supplemented with 1mM DTT and 1mM EDTA in an
orbital shaker (30 minutes, 250 rpm, 37°C). Following incubation, supernatant was

discarded, and remaining tissue was incubated under the same conditions to remove the
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mucus layer, enterocytes and intraepithelial leukocytes. The remaining tissue was
subsequently digested in 5 ml of RPMI medium supplemented with collagenase D (1
mg/mL), liberase (20 pg/mL) and benzonase (25 U/mL) in an orbital shaker (three
incubations, 30 minutes each, 250 rpm, 37°C). Following each incubation, medium must
be filtered with a 100 um strainer to obtain LPMC which were further preserved at 4°C until
used. Remaining tissue was further digested two more times following the same approach.
Following incubations, all LPMC were collected in the same tube which was further
centrifuged (300g, 10 min, 4°C) and resuspended in RPMI before they were cryopreserved
in freezing media (FBS supplemented with 10% DMSO) until used.

5.2.5 Human colonic cytokine milieu.

Cell-free culture supernatant from the biopsy cultures were collected and stored at —-80°C
until analysed. Prior to analysis, samples were centrifuged to remove any debris. Levels of
IFN-y, IL-10, IL-17A, IL-1B, IL-6, TNF-a, and IL-8 were determined using MILLIPLEX® MAP
custom magnetic bead panel kit following the manufacture's specifications. A broad
sensitivity range of standards were used to help enable the quantitation of a wide dynamic
range of cytokine concentrations while still providing high sensitivity. Median fluorescent
intensity was calculated using the MAGPIX® system version (Luminex) which integrates
the Luminex xPOTENT® acquisition software and the MILLIPLEX® Analyst 5.1 analysis
software. Values above or under the standard curve for each cytokine (IFN-y: 0.61-2,500
pg/mL; IL-10: 0.88-6,000 pg/mL; IL-17A: 0.73-3,000 pg/mL; IL-1B: 0.49-2,000 pg/mL; IL-6:
0.8-2,500 pg/mL; IL-8: 0.31-2,000 pg/mL; TNF-a: 0.43-1,750 pg/mL) were reported as

equal to them respectively.

5.2.6 Antibody labelling

Cells were stained with monoclonal antibodies and characterized by flow cytometry. In all
cases, a Live/Dead fixable near-IR dead cell stain kit (Molecular Probes) was added to the
cells prior to perform antibody staining hence allowing the exclusion of dead cells from the
analysis. Table 5.7 shows the specificity, clone, fluorochrome and source of the antibodies
used. Cells were labelled in FACS buffer on ice and in the dark for 20 min following Fc
block incubation (Becton Dickinson). For the assessment of intracellular cytokines, cells
were permeabilized (Leucoperm, Abd Secrotec) following surface staining and stained with
intracellular antibodies. cDC endocytic activity was determined by uptake of TRITC-dextran
(molecular weight 40 kDa, 100 ug/ml, 30 minutes at 37 °C or on ice; Sigma, UK) followed

by subsequent surface staining of the cells as above. In all cases, cells were further washed
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in FACS buffer, fixed with 2% paraformaldehyde in FACS buffer for 10 minutes on ice, and
washed again in FACS buffer before they were stored at 4 °C prior to acquisition on the
flow cytometer. For cell sorting, LPMC were immediately acquired following staining in

FACS buffer and collected in complete medium.

Table 5.7. Specificity, clone, conjugate and manufacturer of the different monoclonal antibodies used
in the present work.

Antibody Specificity Clone Conjugate Manufacturer
CCR7 5F4 APC Biolegend
CD3 HIT3a PE-Cy5 BioLegend
CD4 SK3 BV510 Becton Dickinson
BU15 Alexa700 Biolegend
CD11c -
BU15 APC invitrogen
CD14 MOP9 PECF594 Becton Dickinson
3G8 BV786 Becton Dickinson
CD16 3G8 APC-Cy7 Becton Dickinson
CD19 HIB19 PE-Cy5 Becton Dickinson
CD40 5C3 BV711 Becton Dickinson
CD45 HI30 FITC BioLegend
CD45RA HI100 PE-Cy7 eBioscience
CDe2L DREG-56 BV510 BioLegend
10.1.1 PE-Cy5 Miltenyi
CD64 .
10.1 PerCP-Cy5.5 BioLegend
CD86 2331 (FUN-1) BV711 Becton Dickinson
CD103 Ber-ACT8 Bv421 Biolegend
CD137L 5F4 APC Biolegend
CD163 GHI/61 Biotin Biolegend
CD172a (SIRPa) REA144 PE-Vio770 Miltenyi
CD172 (SIRPa) SE5A5 PE-Cy7 BioLegend
CD206 DCN228 APC Miltenyi
L243 BV570 Biolegend
HLA-DR :
1243 BvV510 BioLegend
ICOSL 2D3 PE Biolegend
IFNy 4S.B3 APC BioLegend
IL-1B JK1B-1 APC Biolegend
IL-10 JES3-12G8 Biotin Biolegend
JES3-9D7 PEDazzle 594 BioLegend
IL-17a BL168 APC-Cy7 BioLegend
IL23-p19 727753 PE R&D
PD-L1 MIH1 BV786 Becton Dickinson
SLAN (M-DC8) DD-1 APC Miltenyi
Streptavidin BV605 Becton Dickinson
TNFa MAb11 BV786 R&D



http://www.biolegend.com/index.php?page=pro_sub_cat&action=search_clone&criteria=Ber-ACT8
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5.2.7 T cell enrichment and stimulation

Naive T cells T were enriched from total PBMCs from a buffy coat using magnetic beads
following the manufacturer instructions (Pan T Cell Isolation Kit human, Miltenyi Biotec) and
further stained with CellTrace™ Violet following manufacturer instructions in AIM-V™
medium. In order to confirm that the enrichment was successfully performed, PBMC and
the enriched T naive cells were stained with an easy panel that included a viability die,
CD3, CD45RA and CD62L to identify and measure the percentage of enriched T naive cells
(Figure 5.1). Differed subsets of intestinal sorted cDC subsets were used to stimulate naive
T cells in a 1/20 proportion in round bottomed 96-well plaques for 5 days in AIM-V™
medium. In all cases, experiments included a negative (naive T cells cultured in resting
conditions) and a positive control (T cells stimulated in the presence of 1ug/ml
phytohemagglutinin). Naive T cells were also cultured with paired intestinal M¢ from the
same donor as a second negative controls. Following culture, T cells were further stained

as previously explained.
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Figure 5.1. T naive enrichment checking.
T naive enrichment was checked by staining PBMC and enriched T naive cells with a simple panel which
included a viability die, CD3, CD45RA and CD62L.

5.2.8 Flow cytometry and data analysis
LPMC and PBMC were acquired on a LSR-Fortessa (BD Biosciences) or on a FACS Aria

for cell sorting. Following T cell stimulation, cells were acquired on a Gallios (Beckmam
Coulter). In cases, results were analyzed using FlowJow (version 10.1). All cells were
analysed within singlet viable cells. Positive and negative gatings were set by the

fluorescence minus one (FMO) method.
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5.2.9 Statistical analysis

T-test or One/Two-way ANOVA (with or without repeated measures) and subsequent Tukey
or Sidak ad-hoc correction were applied as detailed in each figure legend. The level of

significance was fixed at p <0.05 in all cases.
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5.3 RESULTS

5.3.1 CD103* cDC2 were the main subset in the human duodenum but not in the

colon or the ileum.

Human intestinal cDC were identified within singlet viable leukocytes as CD14-CD64 HLA-
DR*CD11c* (Figure 5.2A). Given that the properties of the immune system vary throughout
its length (26,27), we first determined cDC densities in different compartments of the human
gut revealing that their proportion was higher in the large bowel (proximal and distal colon)

compared with the small bowel (terminal ileum and duodenum) (Figure 5.2B).

cDC were divided into subsets based on the expression of CD103 and SIRPa. Hence,
cDC1 were identified as CD103*SIRPa while cDC2 were identified as SIRPa*. The latter
were further divided into CD103" and CD103- cDC2 (Figure 5.2C). Further analysis
confirmed that cDC1 were CD141°CD1¢cXCR1* while cDC2 were CD141-CD1c*XCR1" (not
shown) in agreement with previous observations (30-32). The proportion of cDC1 and
¢DC2 did not change throughout the human gut (Figure 5.2D). Further analysis within the
cDC2 subset revealed that CD103* cDC2 were predominant in the duodenum as opposed
to the CD103" ¢DC2 fraction, which represented the majority of cells in the lower

compartments of the Gl-tract including the colon and the terminal ileum (Figure 5.2E).

5.3.2 cDC1 and CD103* cDC2 were more mature than their CD103- cDC2

counterparts.

We next characterized cDC subsets in the human colon. cDC1 and CD103" cDC2 were
typically more mature than their CD103- ¢cDC2 counterparts as they had higher levels of
CD40, CD137L and ICOSL. HLA-DR and CD86, on the contrary, were preferentially
expressed by CD103* cDC2. Finally, and although CCR7 expression displayed much
variability, it was preferentially expressed by cDC1 (Figure 5.3A).

We also assessed PD-L1 expression on human intestinal cDC as it mediates the
generation of Treg cells (33,34). Although PD-L1 expression is scarce on human intestinal
cDC, its expression was restricted to CD103* cDC2 (Figure 5.3B). Fc receptor CD16, was
also associated with CD103* ¢cDC2 (Figure 5.3B). However, and although M-DC8/SLAN is
associated with CD16™ APC (35), M-DC8/SLAN was not detected on human intestinal cDC
or macrophages (M®) (data not shown). Scavenger receptors were also differentially
expressed between subsets. Hence, although both CD163 and CD206 were found on
cDC2, CD163 was preferentially expressed on the CD103" ¢cDC2 fraction as opposed to
CD206 which was mainly found on the CD103* cDC2 subset (Figure 5.3B). Finally, and
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although all cDC subsets were endocytic, that was overall higher on CD103* ¢cDC2 (Figure
5.3C).
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Figure 5.2. Human intestinal conventional dendritic cell subsets.

A) Human intestinal conventional dendritic cells (cDC) were identified within singlet viable leukocytes (CD45*)
as CD14CD64 HLA-DR*CD11c* on lamina propria mononuclear cells (LPMC) by flow cytometry. B) The
proportion of cDC (referred to the total number of viable LPMC) was lower in the duodenum (compared with
the ileum, proximal colon and distal colon) and the terminal ileum (compared with both the proximal and distal
colon). C) Total cDC were divided into subsets based on the expression of CD103 and SIRPa. Hence, type 1
¢DC (cDC1) were identified as CD103*SIRPa" while type 2 (¢cDC2) were identified as SIRPa*. cDC2 were also
divided into subsets based on the expression of CD103. D) cDC1 and cDC2 did not change their proportions
though the human gut. E) However, within the cDC2 subset, CD103* ¢cDC2 were the main subset in the
duodenum as opposed to the ileum or the colon where CD103- DC2 were the majority. For Figure 5.2B, 1D and
1E samples from the distal colon, proximal colon and terminal ileum were obtained from the same controls
(when access to the ileum was available) while duodenal samples were obtained from independent donors.
Results from Figure 5.2B, 1D, and 1E also denote samples from the same individuals, considered either total
¢DC (Figure 5.2B) or divided into subsets (Figure 5.2D and 1E). One-way ANOVA repeated measures and
subsequent Tukey’s correction (Figure 5.2B, 1D and 1E) was applied to compare cDC between the distal colon,
proximal colon and terminal ileum while duodenal samples were compared with the other three by t-test. P-
values <0.05 were considered significant (*p<0.05; **p<0.01; ***p<0.001).
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Figure 5.3 Characterization of conventional dendritic cell subsets.

A) Human intestinal conventional dendritic cell (cDC) subsets were identified as in Figure 5.2C and
characterized for the expression HLA-DR, CD40, CD86, CD137L, ICOSL and CCRY7; as well as B) PD-L1,
CD163, CD206 and CD16. C) DC subset phagocytic capacity was also assessed. Histograms show
representative levels of expression of each marker on each given subset. Proportion of positive cells for each
given marker within each cDC subset (shown on the pooled plots) was determined by the region method
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referred to specific fluorescence minus one (FMO) controls (shaded histograms) for all the markers excluding
HLA-DR (were shaded histogram denotes its expression on the CD11¢c'HLA'DR- fraction within lamina propria
viable leukocytes) and Dextran (were shaded histogram shows the phagocytic capacity of cell preserved as
4°C). One-way ANOVA repeated measures with Tukey’s correction was applied in all cases. P-values <0.05
were considered significant (*p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001).

5.3.3 The proportion of CD103* cDC2 was increased following overnight culture.

The ontogeny of CD103* cDC2 remains unknown, although they are likely derived from
newly arrived CD103" cDC2 following mucosal conditioning (32). In this regard, the
proportion of cDC1 and cDC2 DC was not altered following LPMC overnight culture either
in resting conditions or in the presence of LPS (Figure 5.4A and Figure 5.4B). However,
and within cDC2, the proportion of CD103* cells was increased after culture, although that

was prevented in the presence of pro-inflammatory LPS (Figure 5.4A and Figure 5.4B).
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Figure 5.4. CD103* conventional dendritic cells increase their proportion following culture.

A) Human intestinal conventional dendritic cells (cDC) were identified as in Figure 5.2C within fresh lamina
propria mononuclear cells as well as after overnight culture in resting conditions or in the presence of LPS.
Pooled results from several independent experiments are shown in B). Two-way ANOVA repeated measures
with Sidak correction was applied in Figure 5.4B. P-values <0.05 were considered significant (*p<0.05; **

p<0.01).

5.3.4 IL-10 production was related to CD103* DC2.

We next assessed the cytokine profile of the different mucosal cDC subsets. While IL-18
production was associated with cDC2, both in resting condition as well as in the presence

of LPS, IL-23 was not produced by any particular cDC subset (Figure 5.5). TNFa
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production, on the contrary, was mainly produced by CD103* cDC2. Finally, IL-10 was
produced by all human intestinal cDC subsets, although its production was higher on
CD103* cDC2.
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Figure 5.5. IL-10 production is associated with CD103* type 2 conventional dendritic cells.

Human intestinal conventional dendritic cell (cDC) subsets were determined as in Figure 5.2C and their
intracellular production of IL-1B, IL-10, IL23p19 and TNFa determined. Histograms show representative
examples of cytokine production within each given subset. The proportion of positive cells for each given marker
within each cDC subset (shown on the pooled plots) was determined by the region method referred to specific
fluorescence minus one (FMO) controls (shaded histograms). Experiments were performed after 18 hours
culture both in resting conditions (basal) or in the presence of LPS. Two-way ANOVA repeated measures with
Sidak correction was applied. P-values <0.05 were considered significant (*p<0.05; ** p<0.01; *** p<0.001; ****
p<0.0001).

5.3.5 All human intestinal cDC subsets prime the generation of IL-10* T cells in the

non-inflamed colon

Having addressed human intestinal cDC phenotype in resting conditions, we next studied
their stimulatory capacity in the human setting. To that end, human intestinal CD103- cDC2,
CD103* cDC2 and cDC1 subsets were sorted in parallel to total M¢ as previously described
(36), and their stimulatory capacity, together with the acquired profile of the stimulated T
cells, determined (Figure 5.6). Our results confirmed that all human intestinal cDC subsets
can stimulate human allogenic naive T cells, as opposed to intestinal macrophages (Figure
5.7A). Besides, all human intestinal cDC subsets (including cDC1) primed mainly the
proliferation of CD4* T cells (Figure 5.7B). Indeed, the 3 intestinal cDC subsets primed the
generation of IL-10* T cells, being this capacity expanded in the cDC1 and CD103* cDC2
with little or no production of IFNy or IL-17A (Figure 5.7C). In addition and given that the
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properties of human intestinal cDC change through its length (28—-30), we also determined

whether that also translates into a different function between ileal and colonic cDC. Hence,

Figure 5.7D proves that all 3 ileal cDC subsets are more stimulatory in the ileum than in

the colon, although the type (Figure 5.7E) or cytokine profile (Figure 5.7F) of the responding

T cells is not affected by cDC origin.
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Figure 5.6. Human intestinal dendritic cell stimulatory capacity.
A) Total human intestinal conventional dendritic cells (cDC) were identified as in Figure 5.2 and divided into
subsets based on the CD103 and SIRPa. Total macrophages were also identified, within singlet viable CD45*
as CD14*CD64*. Post-sort acquisition of the 3 different cDC subsets, together with total macrophages is shown
in B). C) cDC subsets and macrophage stimulatory capacity was assessed on cell-trace labelled allogeneic
naive T cells, as well as the acquired cytokine profile as shown in D). Results from one experiment
representative of several independent ones is shown.
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Figure 5.7. All human intestinal conventional dendritic cell subsets prime the generation of IL-10

producing T cells.

A) Human intestinal conventional dendritic cell (cDC) subsets and macrophages were sorted as in Figure 5.6
and used to stimulate allogenic naive T cells. The proportion of CD4* T cells that had been stimulated is shown
in B), while the cytokine profile of the responding CD4* T cells is shown in C). D) Comparison of the proliferation
of three cDC subsets both from the colon and the ileum; the percentage of proliferating CD4+ T cells is shown
in E) and the cytokine profile of the responding CD4+ T cells is shown in F). Paired One-way ANOVA with Tukey
correction was applied in Figure 5.6A-C, while paired Two-way ANOVA with Sidak correction was applied in
Figure 5.6D-G. P-values <0.05 were considered significant (*p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001).
One-way ANOVA repeated measures with Tukey’s correction was applied in all cases. P-values <0.05 were

considered significant (*p<0.05; ** p<0.01).
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5.3.6 SIRPa expression was decreased on mucosal cDC from IBD patients, while
the proportion of cDC1 and CD103* ¢cDC2 was lower in the inflamed colon
from UC but not CD patients.

Having characterized the phenotype and function of human intestinal cDC in health, they
were further studied in IBD. Given that the proportion of cDC (Figure 5.2B), together with
their subset composition (Figure 5.2E) and stimulatory capacity (Figure 5.7E), are
influenced by the tissue under study, we here specifically focused on the human colon,

hence abrogating regional differences.

The proportion of total colonic cDC (Figure 5.8A) was not altered in the IBD mucosa.
Nevertheless, colonic cDC from IBD patients constitutively displayed lower expression of
SIRPa irrespectively of the IBD type (UC/CD) or status (inflamed/non-inflamed) (Figure
5.8B and Figure 5.8C). Further analysis shown that the proportion of cDC1 and CD103"
cDC2 were specifically lower in the inflamed colon from patients with active UC but not CD
(Figure 5.8D). Consequently, the inflamed tissue from these patients also carried higher
numbers of CD103  ¢cDC2. Moreover, the inflamed mucosa from patients with active UC
(and to a lower extent the non-inflamed tissue from the same patients) also displayed
higher numbers of CD103 SIRPa" putative cDC (Figure 5.8D).
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Figure 5.8. Human intestinal conventional dendritic cells display a decreased expression of SIRPa in
inflammatory bowel disease coupled with lower numbers of type 1 and CD103* type 2 conventional
dendritic cells in ulcerative colitis.

A) The proportion of human intestinal conventional dendritic cells (cDC), identified as in Figure 5.2, was
determined in the colon from healthy controls (HC), in the inflamed tissue from patients with active ulcerative
colitis (aUC) as well as in the non-inflamed colon from the same patients (non-infl aUC) and in patients with
quiescent ulcerative colitis (qUC). DC proportion was also determined in the inflamed tissue from patients with
active Crohn'’s disease (aCD) and the non-inflamed tissue from the same patients (non-infl aCD) as well as in
patients with quiescent disease (QCD). B) cDC subset composition (based on the expression of CD103 and
SIRPa) was also determined in the colonic mucosa from the same patients as in Figure 5.2C. Pooled results
regarding the intensity of SIRP on total cDC, as well as the proportion of the different cDC subsets, are shown
in C) and D) respectively. One-way ANOVA with Dunnett’s correction was applied in Figure 5.8C and Figure
5.8D. Ad-hoc comparisons were performed, in all cases, compared with healthy mucosa. P-values <0.05 were
considered significant (*p<0.05; ** p<0.01; *** p<0.001).
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5.3.7 Dysregulated phenotype on intestinal cDC subsets from IBD patients.

We next assessed the cDC phenotype in the IBD mucosa. HLA-DR expression was
decreased on CD103" ¢cDC2 in the inflamed colon from patients with CD and UC compared
with the healthy mucosa (Figure 5.9). Activation markers CD40 and ICOSL were increased
on cDC2 from patients with active disease (CD or UC), although CD40 was higher in the
CD103" fraction as opposed to ICOSL which was expanded in the CD103* subset (Figure
5.9). CD137L was associated with active CD as it was higher in all 3 subsets (CD103"
cDC2, CD103* ¢cDC2 and cDC1) as well as on CD103* cDC2 from patients with quiescent
CD (Figure 5.9). On the contrary, CD86 was associated with inflamed UC as it was
increased on all cDC subsets from these patients as well as on CD103- ¢cDC2 in CD. Finally,
inhibitor receptor PD-L1 was ubiquitously up-regulated on all intestinal cDC subsets in the

inflamed colon from IBD patients.
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Figure 5.9. Characterization of human conventional intestinal dendritic cell subsets in inflammatory
bowel disease.

Human intestinal conventional dendritic cells (cDC) subsets were identified as in Figure 5.2. The expression of
HLA-DR, CD40, CD86, ICOSL, CD137L and PD-L1 on each cDC subset was further determined as in Figure
5.3 in the colonic mucosa from healthy controls (HC) as well as in the inflamed colon from patients with active
ulcerative colitis (aUC) or Crohn’s disease (aCD) together with the non-inflamed mucosa from patients with
quiescent ulcerative colitis (qUC) or Crohn’s disease (QCD). One-way ANOVA with Tukey correction was
applied in Figure 5.9A, while Two-way ANOVA with Sidak correction was applied in Figure 5.9B. Ad-hoc
comparisons were performed, in all cases, compared with the healthy mucosa. P-values <0.05 were considered
significant (*p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001).
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but not with Crohn’s disease.

5.3.8 c¢DC stimulatory capacity in IBD

Having proved that human intestinal cDC subsets display an altered composition and

phenotype in IBD patients (which was however more prominent in UC patients), we next

determined whether that also translated into a different function. Given however, the UC

patients barely have resections, the stimulatory capacity of human intestinal cDC subsets

was therefore restricted to CD patients.

Our results revealed that, in agreement with the altered phenotype elicited from the non-

inflamed tissue from CD patients, cDC showed an increase stimulatory capacity as elicited
over allogenic naive T cells (Figure 5.10A) although that did not translate into a differential
cytokine profile (Figure 5.10B). Nevertheless, and although cDC subsets from the inflamed
ileum from CD patient did not display such increased stimulatory capacity (Figure 5.10C),
likely due to the increased stimulatory capacity that ileal cDC already have (Figure 5.7E),
CD103* ¢cDC2 from such tissue had an increased capacity to generate IL-17* helper T cells

(Figure 5.10D).
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Figure 5.10. Human intestinal conventional dendritic cells are more stimulatory in inflammatory bowel

disease and prime the generation of IL-17* T cells in the inflamed tissue.

A) Human intestinal conventional dendritic cell (cDC) subset stimulatory capacity from the colon from controls
and the non-inflamed colon from patients with Crohn’s disease (CD) was assessed as in Figure 5.6 and Figure
5.7, while the acquire cytokine profile of the CD4* responding T cells is shown in B). C) cDC subsets stimulatory
capacity and D) the induced cytokine profile of the CD4* responding T cells was also determined in the ileum
from controls, as well as in the inflamed tissue from CD patients. Two-way ANOVA with Sidak correction was

applied. P-values <0.05 were considered significant (*p<0.05; *** p<0.001).
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5.3.9 Cytokine profile in colonic biopsies

The analysis of cytokine concentrations in colonic biopsies revealed significant differences
between supernatants from HC and patients with IBD, depending on disease activity and
type. In aUC supernatants, there was a pronounced increase in pro-inflammatory
cytokines, including IFN-y, IL-18, IL-6, IL-8, IL-17, and TNF-a, compared to HC (p < 0.05
for all). Additionally, anti-inflammatory IL-10 was significantly elevated in aUC. In
supernatants from aCD inflamed mucosa, IL-1B and IL-8 cytokines were significantly
increased; INFy, IL-6 and TNFa were elevated, but the response was less pronounced
compared to aUC. In non-inflamed mucosa from quiescent status of IBD (both qUC and
gCD), most cytokine levels returned to baseline, except for a slight persistence of IL-6 in

qCD (Figure 5.11).
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Figure 5.11. Colonic cytokine milieu in inflammatory bowel disease.

Colonic biopsies from healthy controls (HC), together with the inflamed colon from patients with active ulcerative
colitis (aUC) or Crohn’s disease (aCD) and the non-inflamed mucosa from patients with quiescent ulcerative
colitis (qUC) or Crohn’s disease (QqCD) were cultured overnight in complete medium before multiplex cytokine
analysis was performed. Those cytokines with values above or below the standard curve were reported as
equal to the limits. One-way ANOVA with Tukey correction was applied. Ad-hoc comparisons were performed,
in all cases, compared with the healthy mucosa. P-values <0.05 were considered significant (*p<0.05; **
p<0.01; *** p<0.001; **** p<0.0001).

5.3.10 Circulating cDC subsets are not altered in IBD patients.

Conventional blood circulating dendritic cells were identified as CD14'CD16°CD19'HLA-
DR*CD11c" cells from the total PMBC and subsequently divided into two subsets: cDC1
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(CD141%) and cDC2 (CD1c") (Figure 5.12A). Analysis of the relative proportions of these
subsets within PBMC revealed that cDC2 was significantly more abundant than cDC1 when

pooling data of all groups (Figure 5.12B).

Phenotypic characterization of cDC subsets in HC included the expression of activation
and regulatory markers such as HLA-DR, CD40, CD86, CD137L, and PD-L1. cDC2
displayed higher expression of CD86 compared to ¢cDC1, which also showed higher
expression of CD40. Levels of HLA-DR, CD137 and PD-L1 were similar between the two
subsets (Figure 5.12C).

When comparing the expression of those markers (HLA-DR, CD40, CD86, CD137L, and
PD-L1) in the two subsets (cDC1 and cDC2) in IBD groups (aUC, qUC, aCD and qCD)
regarding controls, we showed that the proportion of cDC subsets and the expression of
most markers (CD40, CD86, CD137L and HLA-DR) remained similar to HC across both
cDC subsets among IBD patients. However, PD-L1 expression on cDC2 was significantly
increased in patients with aUC compared to HC (Figure 5.12D).
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Figure 5.12. Circulating dendritic cells are not altered in IBD patients.

A) Conventional blood circulating dendritic cells (cDC) were identified within the CD14-CD16:CD 19 fraction as
HLA-DR*CD11c* and further divided into type 1 (cDC1) and type 2 (cDC2) based on the expression of CD141
and CD1c respectively. B) Pooled data shows the relative proportion of both subsets within total peripheral
blood mononuclear cells (PBMC). C) Blood circulating ¢cDC1 and cDC2 were characterized in healthy
individuals for the expression of HLA-DR, CD40, CD86, CD137L, and PD-L1. D) cDC subsets relative
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proportion, as well as their phenotype, were also determined in the blood from patients with inflammatory bowel
disease, including ulcerative colitis (either active —aUC- or quiescent —qUC-) and Crohn’s disease (either active
—aCD- or quiescent —qCD-). Histograms show representative levels of expression of each marker on each
given subset. Proportion of positive cells for each given marker within each cDC subset (shown on the pooled
plots) was determined by the region method referred to specific fluorescence minus one (FMO) controls
(shaded histograms) for all the markers excluding HLA-DR (were shaded histogram denotes it expression on
the CD11cHLA-DR- fraction). Paired t-test was applied on panels B and C. Two-way ANOVA with Sidak
correction was applied in panel D. Ad-hoc comparisons were performed, in all cases, compared with the blood
DC subsets from healthy controls. P-values <0.05 were considered significant (*p<0.05; ** p<0.01; *** p<0.001;
**** p<0.0001).

127



Chapter 5

5.4 DISCUSSION

Although the mechanisms of immune tolerance in the human gut have been traditionally
related to CD103* cDC2, recent evidence suggests that cDC1 are also needed to achieve
such goal (37). Hence, both cCD1 and cDC2 are essential to prime the mechanisms of
intestinal tolerance in a retinoic acid dependent manner (11,12). Indeed, the role of PD-L1
on intestinal cDC to maintain the mechanisms of immune homeostasis is more relevant in
the small bowel, while in the colon that tolerogenic effect would be XCR1-deppendent (38),
in agreement with the restricted PD-L1 expression that we have reported on human
intestinal cDC in health. Moreover, we hereby have also showed that all ileal cDC subsets
are more stimulatory than their colonic counterparts (28) at the time that have also unveiled
how all human intestinal cDC subsets prime the generation of IL-10* helper T cells, being
that capacity increased in CD103* ¢cDC (both ¢cDC1 and cDC2) in agreement with the
regulatory properties attributed to these cells (11,12,28).

Specifically referred to the colon from IBD patients, our results revealed that although the
proportion of cDC2 was not altered in these patients, DC from IBD patients constitutively
display lower levels of SIRPa irrespectively of IBD type (CD or UC) or mucosal condition
(inflamed or non-inflamed). Besides, we have also described how ¢cDC1 and CD103* cDC2
are specifically reduced in the inflamed colon from UC patients, but not from CD patients,
describing therefore a differential immune signature between both conditions. These results
confirmed that mucosal cDC from IBD patients display an altered subset composition,
phenotype and function, including an increased stimulatory capacity in the non-inflamed

colon from IBD patients.

Although the proportion of total cDC changes throughout the human Gl-tract (Figure 5.2B),
the relative proportion of cDC1 and cDC2 (Figure 5.2D) remains stable through the
duodenum, terminal ileum, distal colon and proximal colon. CD103* cDC2 are predominant
in the proximal compartments of the small bowel (duodenum) as previously reported (29).
Nevertheless, and although the terminal ileum is technically small bowel, given its proximity
to the distal colon is not surprising that it carries a higher proportion of CD103- ¢cDC2 as in
the colon (Figure 5.2E). This is indeed an important consideration for human studies where
the terminal ileum (and not the duodenum) is typically used to represent the small intestine.
Future studies should therefore be aware that the terminal ileum may be more similar (from
an immune point of view) to the colon so it may not represent a good tissue to study the

human small bowel as opposed to the duodenum.

It has been previously reported that the numbers of CD103* cDC are lower in the inflamed

colon from patients with IBD, irrespectively of its type (CD or UC) (22) or mucosal status
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(23). Here, we have shown how the inflamed colon from patients with UC carried lower
levels of both cDC1 and CD103" cDC2, rendering the inflamed tissue from these patients
with a higher proportion of putative CD103'SIRPa- cDC. However, the inflamed colon from
CD patients with CD did not display a specific reduction of any cDC subset, hence revealing
specific differences between CD and UC patients. Besides, and although there was not a
specific reduction of CD103* ¢cDC in CD patients, these cells were more stimulatory, even
in the non-inflamed tissue, at the time that they also acquire the capacity to prime the
generation of IL-17* T cells in the inflamed ileum. Given nevertheless the low proportion of
UC patients that require a colectomy, we could not sort enough number of cDC from UC

patients in order to address whether they also had a differential function as in CD.

It is currently unknown whether the different cDC subsets present in the mucosa truly
represent different subsets or, on the contrary, different developmental or activation stages
(10). Recent evidence suggests that, at least in mice, CD103* ¢cDC2 originate from CD103"
cDC2 after mucosal conditioning in a TGFB-dependent manner (39). Our results support
this idea, as we observed an increase in CD103* cDC2 after LPMC culture. However, this
process is blocked in the presence of pro-inflammatory LPS, likely due to the resulting
inflammatory environment, including IL-13, which inhibits CD103* DC differentiation in the
Gl-tract (40). This would also explain the lower proportion of CD103* ¢cDC2 in the colon of
UC patients, but not in CD patients. The more pro-inflammatory cytokine environment in
UC (Figure 5.11) may prevent the local differentiation of newly arrived CD103" ¢cDC2 into
CD103* cDC2.

In agreement with that concept, circulating cDC1 and cDC2 were also studied in the blood
from these patients (Figure 5.12A), being the later the main subset in the human blood
(Figure 5.12B). Indeed, both subsets displayed differences in their phenotype (Figure
5.12C) although the presence of IBD (either CD or UC, both active or quiescent) did not
have any major impact on their phenotype (Figure 5.12D). Hence, these results again
suggest that the altered phenotype and function of human intestinal cDC in IBD is acquired
once they have entered the tissue, given that the intestinal microenvironment modulates
the phenotype and function of intestinal cDC through the action of both hosts, dietary and
microbial-derived metabolites (13,41-44). Hence, in the presence of a pro-inflammatory
stimuli, like the one found in the IBD mucosa intestinal cDC2, can be reprogrammed to
prime the generation of proinflammatory immune responses (45), including the generation

of Th17 cells (46,47) as in the inflamed ileum from CD patients.

SIRPa (a regulatory membrane glycoprotein) is predominantly expressed on the surface of
APC including cDC and M®. Its ligand, CD47, prevents cell phagocytosis by the APC on a
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mechanism named as the “don’t eat me signal’. This signalling pathway has been related
with cDC regulation and the development of autoimmunity (48) including murine models of
IBD where neutralization of the CD47/SIRPa signalling pathway prevents trinitrobenzene
sulfonic acid induced colitis (49). In our work, we have described how colonic cDC from
IBD patients display lower levels of SIRPa. This is in agreement with previous observations
in the context of UC (23), which are hereby expanded to CD. Hence, mucosal cDC from
IBD patients carry lower levels of SIRPaq, irrespectively of IBD type (CD or UC) or condition
(inflamed or non-inflamed). However, blood cDC were classified into cDC1 and cDC2
based on the expression of CD141 and CD1c, respectively (Figure 5.12). Given that SIRPa
was not included among the markers used to characterized blood cDC in IBD, we cannot
confirm whether such lower expression found in the mucosa is a constitutive difference on
¢DC biology in IBD, or on the contrary an acquired phenotype once they have entered the
tissue. Further studies should identify the specific mechanisms controlling the lower levels
of SIRPa shown by mucosal ¢cDC in IBD and determine its functional implications, if any,

on IBD pathogenesis.

PD-L1 expression on cDC is required to supress T cells and, in the presence of TGF, to
generate Treg cells (33,34). Within intestinal cDC, PD-L1 expression was restricted to the
CD103* cDC2 subset, which also display an enhanced capacity to produce IL-10 in
agreement with the regulatory functions attributed to this subset in the maintenance of
intestinal homeostasis. Nevertheless, in the inflamed IBD mucosa, PD-L1 expression was
ubiquitously up-regulated on all intestinal cDC subsets confirming previous observations
reporting increased PD-L1 expression within LPMC from CD patients (50) and which,
together, may explain the higher numbers of FOXP3* Treg cells found in the intestinal IBD
mucosa (51). Although this process is likely aiming to control the exacerbated immune
response found in the inflamed tissue from these patients (52), we cannot discard the

possibility that the PD1/PD-L1 signalling pathway is not fully functional in IBD (53).

One of the major limitations of our study is that we are aware of the large individual
variability regarding cDC subset composition and phenotype in IBD patients. Nevertheless,
we could not find any correlation between these observations and the demographics
(gender, age), severity of the inflammation (Mayo endoscopic score for UC and SES-CD
for CD) or treatment among the patients suggesting that IBD is a multifactorial disease

where unfortunately no simple factors explain the heterogeneity of the disease.

In summary, here we have reported how human intestinal cDC can be divided into different
subsets with differences in their phenotype and function, having all of them the capacity to

prime the generation of IL-10 T cells. In addition, we have also observed that, in IBD, cDC2
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display lower expression levels of SIRPa irrespectively of IBD type (CD or UC) or mucosal
condition (inflamed or non-inflamed), while ¢cDC1 and gut specific CD103* cDC2 are
specifically reduced in the inflamed colon from patients with UC but not with CD. This
suggests the presence of different pathogenic mechanisms operating between colonic CD
and UC, which may translate therefore into the development of better therapies which

specifically target the altered routes between CD and UC.
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Tofacitinib downregulates JAK1 and JAK3 on human intestinal monocytes and macrophages without affecting
dendritic cells phenotype or function.

6.1 INTRODUCTION

The gastrointestinal (Gl)-tract is in contact with a wide variety of commensal microbiota and
diverse pathogens. Therefore, it requires a balance between immunity and immune
tolerance; the lack of immune responses, or immune tolerance, to food antigens and the
commensal microbiota is essential to keep the homeostasis of the Gl-tract (1).
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn’s
Disease (CD), is an inflammatory disorder of the Gl-tract characterized by an uncontrolled
inflammation and abnormal activation of the immune system that occurs when intestinal
homeostasis becomes dysregulated (2). Although the aetiology of IBD remains largely
unknown, studies indicate that the individual’s genetic susceptibility, external environment,
intestinal microbiota and immune responses are all involved and functionally integrated in
the pathogenesis of IBD (2,3).

While CD can cause transmural inflammation and affect any part of the Gl-tract in a non-
continuous manner, UC is typified by mucosal inflammation and limited to the colon (2).
Development of targeted gut-specific therapy for IBD is still an unmet need. UC is a serious,
costly and persistent health issue with a socioeconomic impact comparable with that for
other chronic diseases. Treatment involves escalating drug regimens with concomitant side
effects followed by surgical interventions which are often multiple. Indeed, the most
effective current available therapies like the biological drugs (antibodies targeting immune
mediators like TNFa, a437, p40, etc.) are only effective in around 1/3 of patients so there

is a need to develop novel and better compounds to treat IBD patients.

The Janus kinase (JAK) family includes four intracellular tyrosine kinases: JAK1, JAK2,
JAK3, and one non-receptor tyrosine-protein kinase 2 (TYK2). These proteins associate
with the intracellular portion of cytokine or hormone receptors and activate signal
transducers and activators of transcription (STATs) through autophosphorylation in an
intracellular signal transduction pathway (4). Upon binding of a cytokine or hormone to its
receptor, the subunits of receptors form multimers, enabling JAK proteins to phosphorylate
the associated cytokine receptor. Phosphorylated intracellular cytokine receptor facilitates
recruitment of STATs. JAK proteins phosphorylate STAT proteins, leading to STAT homo-
dimerization. The STAT homodimer localizes to the nucleus and activates downstream
transcription (4). JAK-STAT pathways regulate signalling for multiple immune-relevant
mediators, including type | interferon, IFN-y, and IL-2, IL-4, IL-6, IL-7, IL-9, IL-12, IL-15, IL-
21, IL-23, and IL-27 and they are implicated in the pathogenesis of inflammatory bowel
diseases (4,5). JAK signalling pathway plays therefore a critical role in mediating
inflammatory immune responses. Specially, JAK3 appears to play an important role in

driving lymphocyte development, proliferation, and differentiation as its signalling drives
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CD4* T cell differentiation into specialized Type 1 helper T (Th1) and Type 2 (Th2) (6).

Furthermore, IL-15 signalling through JAK3 serves as a survival signal for NK cells (6).

Building from that, Tofacitinib (CP-690550) is an oral, small molecule, Janus kinase inhibitor
currently used to treat patients with UC (6-8). Tofacitinib interferes with the JAK-STAT
signalling by competing with ATP for binding to the kinase domain of JAKs and inhibits
JAK1, JAK2, and JAKS3. In vitro studies, however, showed preferential inhibition of JAK1
and JAK3 with less effect on JAK2 (9). Despite knowing this, it remains unknown which

type of cells are the specific target of Tofacitinib.

In this regard, antigen presenting cells (APC), including conventional dendritic cells (cDC),
monocytes, and macrophages, are essential to maintain the mechanisms of immune
tolerance towards nutrients and commensals, and immunity against invading pathogens
(1,3). Besides, the JAK-STAT signalling pathway play a key role modulating the phenotype
and function of human intestinal APC. (10-13)

Given therefore the central role displayed by the JAK-STAT signalling pathway on cDC,
monocytes and macrophages, we hereby aimed to assess the specific contribution of these
cells to disease progression in UC and to identify the immunomodulatory effects that

Tofacitinib elicits over them.
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6.2 MATERIAL AND METHODS

6.2.1 Patients and biological samples

Colonic intestinal biopsies were obtained from patients with UC undergoing a colonoscopy
for disease diagnose and/monitoring. A total of 10 patients with active (aUC, defined by a
Mayo endoscopic score 21; 70% men, 52 + 16 years) and 10 patients with quiescent
disease (qUC, defined by a Mayo endoscopic score =0; 60% women, 59 + 13 years) were
included. Intestinal biopsies from 10 healthy controls (60% women, 77 + 8 years), referred
for colonoscopy due to rectal bleeding, dyspepsia or colorectal cancer screening but with
macroscopically and histologically normal mucosa, were also obtained. All samples were
obtained at the Digestive Service from both Hospital Clinico Universitario and Hospital
Universitario Rio Hortega (both from Valladolid, Spain). In all cases, biopsies were
preserved in Roswell Park Memorial Institute (RPMI) Medium (Sigma-Aldrich, Dorset, UK)
at 4°C, and processed immediately. Patient demographics including disease condition
(active/quiescent), gender, age, Mayo endoscopic score, UCEIS and treatment is shown in
Table 6.1.

lleocolonic resections were also obtained from 10 patients (60% men, 77 + 8 years) with
proximal colon cancer at the General Surgery and Digestive System Service from Hospital
Clinico Universitario (Valladolid) following written informed consent from the patients
(approval code by the CEIm Area del Salud de Valladolid Este 19-1353). The non-affected
tissue (minimum distance of 10cm with the tumour) was preserved in Roswell Park
Memorial Institute (RPMI) Medium (Sigma-Aldrich, Dorset, UK) at 4°C until processed.

Peripheral blood samples were also obtained from healthy controls provided by the
“Biobanco del Centro de Hemoterapia y Hemodonaciéon de Castilla y Le6n” (Valladolid,

Spain).
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Table 6.1. Patient demographics.

Mayo

Code | Type |Status |Age|Gender . |UCEIS Treatment
endoscopic

1 Control | Healthy | 73 Male - - -

2 | Control | Healthy | 66 | Female - - -

3 | Control | Healthy | 67 Male - - -

4 | Control | Healthy | 84 | Female - - -

5 Control | Healthy | 79 | Female - - -

6 |Control|Healthy| 86 | Female - - -

7 | Control | Healthy | 87 Male - - -

8 [Control | Healthy | 81 Male - - -

9 |Control | Healthy | 83 Male - - -

10 | Control | Healthy | 67 Male - - -

11 uc aucC 61 Male 1-2 2 Mesalazine

12 uc aucC 50 Male 3 4-5 Mesalazine

13 uc aucC 67 Male 1 1-2 Mesalazine

14 ucC aucC 66 Male 1 2 Mesalazine

15 ucC aucC 71 Male 0-1 1 Ustekinumab + Mesalazine
16 ucC aucC 50 | Female 2 2 -

17 ucC aucC 27 Male 3 5 Tofacitinib + Mesalazine
18 uc aucC 29 Male 2 3 Mesalazine + Azathioprine
19 ucC aucC 37 | Female 1 1 Infliximab

20 uc aucC 59 | Female 3 4 Mesalazine + Azathioprine
21 uc qucC 57 | Female 0 0 Azathioprine

22 uc qucC 74 Male 0 0 Mesalazine

23 uc qucC 39 Male 0 0 Mesalazine

24 uc quC 56 Male 0 0 Mesalazine + Azathioprine
25 uc quC 75 Male 0 0 Mesalazine

26 uc qucC 59 | Female 0 0 Mesalazine

27 uc quC 74 Male 0 0 Mesalazine

28 uc qucC 50 | Female 0 0 Mesalazine

29 uc quC 62 Male 0 0 Vedolizumab

30 uc qucC 42 | Female 1 2 Infliximab+ Mesalazine
6.2.2 Sample processing

Once in the laboratory, biopsies were incubated with 5mL Hank’s buffered salt solution
(HBSS) (Gibco BRL, Paisley, Scotland, UK) supplemented with 1mM Dithiothreitol (DTT)
(ThermoFisher Scientific, Waltham, USA) and 1mM Methylenediamine-tetra acetic acid
(EDTA) (ThermoFisher Scientific, Waltham, USA) in an orbital shaker (30 min, 250 rpm,
37°C). Following incubation, supernatant was discarded, and the remaining tissue was
incubated under the same conditions to remove the mucus layer, enterocytes and
intraepithelial leukocytes. Remaining tissue was subsequently digested in 5mL of RPMI
medium supplemented with 1mg/mL collagenase D (Roche Diagnostics GmbH, Mannheim,
Germany), 20ug/mL liberase (Roche Diagnostics GmbH, Mannheim, Germany) and

25U/mL benzonase (ThermoFisher Scientific, Bonn Germany) in an orbital shaker (three
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incubations, 30min each, 250rpm, 37°C). Following each incubation, the medium was
filtered with a 100um strainer to obtain lamina propria mononuclear cells (LPMC) which
were preserved at 4°C until used. Remaining tissue was further digested two more times
following the same approach. Following incubations, LPMC were collected in the same
tube which was further centrifuged (300g, 10min, 4°C) and resuspended in RPMI medium.
Human intestinal resections were cleaned with HBSS and muscle and fat were
subsequently removed using surgical scissors. Tissue was further cut it into smaller pieces

and processed as above.

Peripheral blood samples were processed to obtain peripheral blood mononuclear cells
(PBMC) by centrifugation over Ficoll-Paque PLUS (Amersham Biosciences, Chalfont St.
Giles, UK).

6.2.3 Lamina propria mononuclear cells culture

Total LPMC from controls were further cultured in complete medium (AIM-V™ medium,
Gibco BRL, Paisley, Scotland, UK) in resting conditions, as well as was 100 ng/ml
lipopolysaccharide (LPS) (ThermoFisher Scientific, Waltham, USA) in the
presence/absence of 100 nM tofacitinib citrate (active principle of Tofacitinib) (Sigma-
Aldrich, Dorset, UK) with 5% CO- at 37°C. On the contrary, LPMC from patients with UC
(either active or quiescent) were just cultured in the presence/absence of Tofacitinib as
above. Following 18-hour culture, cell-free culture supernatants were cryopreserved until

further used while LPMC were harvested for flow cytometry staining.

6.2.4 Human intestinal cDC sorting and T cell stimulation.

Following LPMC culture from the tissue resections in resting conditions, as well as in the
presence/absence of Tofacitinib following LPS stimulation, total cDC were sorted on a
FACS Aria Il cell sorter (BD Biosciences, New Jersey, USA) as previously published by
our group (14).0n the other hand, total T cells from control PBMC were magnetically sorted
following the manufacturer instructions (Human Pan T Cell Isolation Kit, Miltenyi Biotec,
Bergisch Gladbach, Germany) while subsequent naive T cell enrichment was performed
with the REAlease® CD62L MicroBead (Miltenyi Biotec, Bergisch Gladbach, Germany).
Naive T cells were further stained with the proliferation marker CellTrace™ Violet
(ThermoFisher Scientific, Waltham, USA).

Total cDC from each condition were used to stimulate naive T cells in a proportion of 5%-

95% on 96-well plaques for 5 days in AIM-V™ medium. In all cases, T cells were also

145



Chapter 6

cultured in resting conditions as well as with phytohemagglutinin (PHA) 1ug/ml. Following

culture, T cells were harvested and stained.

6.2.5 Flow Cytometry staining

Cells were stained using viability dye Near-IR (ThermoFisher Scientific, Waltham, USA)
and blocking the unspecific unions with Fc block (BD Biosciences, New Jersey, USA).
Table 6.2 shows the specificity, clone, fluorochrome and source of the antibodies used. In
all cases, cells were further washed in FACS buffer (PBS (ThermoFisher Scientific,
Waltham, USA)) containing 1 mM EDTA and 0.02% sodium azide (Sigma-Aldrich, Dorset,
UK)) Intracellular staining was performing after fixation by adding intracellular antibodies
with a permeabilizer Fix and Perm™ kit (ThermoFisher Scientific, California, USA). Cells
were finally fixed with 1% Buffered Formalin (ThermoFisher Scientific, California, USA) for
10 minutes at 4 °C. Cell were then washed in FACS buffer before they were acquired (within
48 hours).

Table 6.2. Specificity, clone, conjugate and manufacturer of the different monoclonal antibodies used

in the present work.

Antigen Specificity Conjugate Clone Manufacturer
CD3 PE-Cy5 HIT3a BiolLegend
CD4 BvV510 SK3 Becton Dickinson
CD11c Alexa Fluor 700 Bul5 Blo!_egend
APC BU15 Invitrogen
cD14 cFluor V450 M5E2 CYTEK
PECF594 MoP9 Becton Dickinson
CD45 BUV395 HI30 Bectgn Dickinson
FITC HI30 BiolLegend
CD64 BUV563 10.1 Bectgn Dickinson
PerCP-Cy5.5 10.1 BiolLegend
CD103 Bv421 Ber-ACT8 BioLegend
PerCP eFluor 710 P84 Invitrogen
CD172a (SIRPa) PE-Cy7 SE5A5 BioLegend
CD183 (CXCR3) BUV737 1C6/CXCR3 Becton Dickinson
CD282 (TLR2) BUV615 11G7 Becton Dickinson
FOXP3 FITC PCH101 Invitrogen
HLA-DR BV510 L243 BiolLegend
IFN APC 4S.B3 BiolLegend
IL-1B PE AS10 BD Fastimmune
IL-6 PE Cy7 MQ2-13A5 BioLegend
IL-10 BV711 JES3-9D7 Becton Dickinson
PEDazzle 594 JES3-9D7 BiolLegend
IL-15 Alexa Fluor 594 34559 R&D systems
IL-17a APC-Cy7 BL168 BioLegend
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Antigen Specificity Conjugate Clone Manufacturer
JAK1 Alexa Fluor 647 413104 R&D systems
JAK3 Alexa Fluor 488 452524 R&D systems
RORyt PE B2D Invitrogen
STAT5 (Phospho Tyr694) PE A17016 BioLegend
STAT6 (Phospho Tyr641) Alexa Fluor 488 A15137E BioLegend
T-bet PE-Cy7 4B10 BioLegend
TLR4 BV605 TF901 Becton Dickinson
TNFa BV785 MAb11 BioLegend

6.2.6 Flow cytometry analysis

In all cases, cells were acquired on a Cytek Aurora (5 laser) cytometer (Cytek, California,
USA) and analysed using OMIQ Data Science platform (© Omigq, Inc. 2022).

For the supervised analysis, total HLA-DR* cells were identified withing singlet viable
CD45" cells and categorized into conventional dendritic cells (cDC), monocytes and M¢
based on the expression levels of CD14 and CD11c as shown in Figure 6.1. Further
quantification of the expression levels of each marker was determined using the

fluorescence minus one approach as shown in Figure 6.2.
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Figure 6.1. Human intestinal conventional dendritic cells, monocytes and macrophages.

Human intestinal antigen presenting cells, including conventional dendritic cells (cDC, CD14-CD11c+),
monocytes (CD14+CD11c+) and macrophages (CD14+CD11c-) were identified within single viable HLA-DR+
leucocytes in the human intestinal lamina propria. Results are representative of several independent
experiments.
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Figure 6.2. Characterization of human intestinal antigen presenting cells.

Human intestinal antigen presenting cells, including conventional dendritic cells (cDC), monocytes and
macrophages (M®) were identified as in Figure 6.1. Expression levels of the different makers displayed in the
figure were referred to their respective fluorescence minus one (FMO). Although the analysis is only shown for
M®, the same approach was followed for cDC and monocytes.

For the unsupervised analysis, a complementary gating strategy was applied to select all
APC (monocytes, macrophages and cDC) within single viable HLA-DR*CD45* following
exclusion of CD14°CD11c cells as shown in Figure 6.3. Building from that, an unsupervised
approach applying Uniform Manifold Approximation and Projection (UMAP) algorithm was
used. Subsequent FlowSOM algorithm was used to find similar cell subsets and separate
them into groups in an unsupervised manner. A clustered heatmap was then created using
the clusters obtained in the previous point. The refine results of FlowSOM algorithm were
mapped on the UMAP to observe their distribution. Finally, Volcano plots were constructed

with the edgeR algorithm comparing cluster differences.
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Figure 6.3. Total human intestinal myeloid antigen presenting cells identification.
Total human intestinal myeloid antigen presenting cells (mAPC) were identified within singlet viable HLA-DR*
leucocytes discarding CD14:CD11c" cells.

6.2.7 Statistical analysis

For statistical analysis, GraphPad Prism 9 was used for the supervised analysis. One-Way
ANOVA, and t-test comparisons were also applied considering p-values <0.05 significant.
As for the flow cytometry unsupervised analysis, volcano plots were constructed with the
edgeR algorithm comparing cluster differences in the unsupervised analysis. In all cases,

a p-value under 0.05 were considered statistically significant.
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6.3 RESULTS

6.3.1 Unsupervised characterization of human colonic APC in health and UC.

First, total human intestinal APC from the controls, as well as from patients with active and
quiescent UC were identified as in Figure 6.3. The UMAP analysis identified 4 major islands
(Figure 6.4A). The relative contribution of each marker on the UMAP structure is shown in
Figure 6.4B.

Given that CD11c can be used as a surrogate marker to discriminate human intestinal
monocytes (CD11c*) and M¢ (CD11c’) (15), monocytes and cDC seem to be restricted to
island found on the top at the right as it is CD11c". Indeed, cDC seem to be found on the
upper side of such island as cells are CD14- and express CD103, JAK1 and TLR2. On the
contrary, the lower side of such island seem to be CD14* inactivated monocytes. On the
other hand, both islands on the left seem to be M¢ (CD11c’). Although the top one express
higher CD14 expression, both express TLR4, JAK3 and IL-13. On the other hand, the lower
island on the right seems to be non-activated JAK1" macrophages which do not express

TLR4 and have lower production of IL-1.

To further refine our analysis, the FlowSOM algorithm was used to find similar cell subsets
and separate them into clusters in an unsupervised manner. A total of 16 clusters were
identified according to the expression of the different markers as shown in the heatmap
(Figure 6.4C), which also reveals a close relationship between the cells from patients with
quiescent UC and controls, referred to patients with active disease. These clusters were
further plotted in the UMAP to relate one with each other (Figure 6.4D).

Volcano plots revealed that 6 of the clusters were significantly increased in controls when
compared with aUC, and only one was increased in aUC. When comparing aUC and qUC,
6 of the clusters were significantly increased in qUC and 2 of them were decreased. Finally,
only 1 cluster was differentially represented between controls and patients with qUC (Figure
6.4E).
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Figure 6.4. Unsupervised analysis of human intestinal antigen presenting cells.

A) Total myeloid antigen presenting cells (mAPC) were identified within singlet viable leukocytes as in Figure
6.3,and analyzed with a Uniform Manifold Approximation and Projection (UMAP) on resting conditions (n=30).
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B) Expression intensities of the analyzed markers represented with a color code based on the intensity where
red represents higher expression and blue, lower expression. C) Heatmap displaying the intensity levels of
each identified cluster within the three cohorts. D) All 16 clusters were overlaid on the UMAP projection using
a specific color and number as shown in the legend. E) Volcano plots comparing the different clusters among
the 3 study groups highlighting in green those with statistically significant differences.

6.3.2 Tofacitinib induced a specific reduction of phosphorylated STAT5.

In order to confirm the inhibitory capacity of Tofacitinib in our ex-vivo model, total PBMC
were overnight cultured in the presence of different concentrations (1, 10, 100 and 1000
nM) of Tofacitinib citrate and in basal conditions (no stimulus) before addressing
phosphorylated STAT5 and STATG6 intracellular content. Results revealed that Tofacitinib
induced a specific reduction of phosphorylated STATS but not STAT6 (Figure 6.5).
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Figure 6.5. Intracellular phosphorylated STAT content.

Total peripheral blood mononuclear cells were overnight cultured in the presence of different concentrations (1,
10, 100 and 1000 nM) of Tofacitinib citrate before addressing phosphorylated STATS and STATG6 intracellular
content referred to resting conditions (shaded histogram). Results are representative from several independent
experiments.

6.3.3 Tofacitinib JAK1 down regulation is restricted to intestinal monocytes.

Having demonstrate the modulatory capacity of tofacitinib over PBMC, we next assessed
the effect that Tofacitinib elicits on LPMC following LPS stimulation. Our results revealed
that Tofacitinib decreased IL-6 production, as well as the expression of TLR4 and JAK3 on
macrophages. On the other hand, Tofacitinib decreased JAKS levels on monocytes while it
restored CXCR3 downregulation caused by LPS on cDC (Figure 6.6).
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Figure 6.6. Tofacitinib effect over human intestinal antigen presenting cells.

Total lamina propria mononuclear cells (LPMC) from controls, were ex-vivo cultured in resting conditions
(Basal), as well as with 100ng/ml of LPS in the presence/absence of 100nM Tofacitinib. Total monocytes,
macrophages and conventional dendritic cells (cDC) were identified as in Figure 6.1, as assessed for the
expression of CXCRS3, IL-10, IL-15, IL-18, IL-6, TLR2, TLR4, TNFa, JAK1 and JAK3 based on their respective
fluorescence minus one (FMQO) controls as in Figure 6.2. Two-way ANOVA was applied. P-values <0.05 were
considered significant (*p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001).

When focused on patients with active UC, our results shown that only JAK1 expression on
both macrophages and monocytes, but not cDC, were decreased following Tofacitinib
stimulation (Figure 6.7). Similar observations were found in the case of patients with
quiescent disease, where Tofacitinib decreased JAK1 and JAK3 levels, as well as
increased TLR2 levels on monocytes, and decreased IL-15 production by ¢cDC had no

effect on macrophages (Figure 6.8).
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Figure 6.7. Tofacitinib modulation of human intestinal antigen presenting cells from patients with active
ulcerative colitis.

Total lamina propria mononuclear cells (LPMC) from patients with active ulcerative colitis were ex-vivo cultured
in resting conditions (Basal) as well as with 100nM Tofacitinib. Subsequent expressions of CXCR3, IL-10, IL-
15, IL-1B, IL-6, TLR2, TLR4, TNFa, JAK1 and JAK3 on monocytes, macrophages and conventional dendritic
cells (cDC) was determined as in Figure 6.6. Two-way ANOVA was applied. P-values <0.05 were considered
significant (*p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001).
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Figure 6.8. Tofacitinib effect over human intestinal antigen presenting cells from patients with quiescent
ulcerative colitis.

Total lamina propria mononuclear cells (LPMC) from patients with quiescent ulcerative colitis were ex-vivo
cultured in resting conditions (Basal) as well as with 100nM Tofacitinib. Subsequent expressions of CXCR3, IL-
10, IL-15, IL-14, IL-6, TLR2, TLR4, TNFa, JAK1 and JAK3 on monocytes, macrophages and conventional
dendritic cells (cDC) was determined as in Figure 6.6. Two-way ANOVA was applied. P-values <0.05 were
considered significant (*p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001).
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6.3.4 Tofacitinib does not modulate the outcome of human intestinal cDC

Although Tofacitinib did not elicit any major effect of the phenotype of human intestinal cDC
from patients with UC (either active or quiescent), we finally addressed whether it could,
modulate cDC function given their central role at driving disease inflammation in UC (1—
3,16). Given that UC patients, as opposed to those with CD, hardly have tissue resections,
we used a model of controls using human intestinal cDC sorted from human resection

which had been previously activated with/out LPS.

Human intestinal cDC induced naive T cell proliferation (Figure 6.9) as opposed to the
monocytes/macrophages counterparts (data not shown). Overall, our results revealed that
Tofacitinib decreased the stimulatory capacity of LPS-activated colonic cDC but not their
ileal counterparts (Figure 6.10A). Of note, when further analysis was performed to
determine whether such reduction was mainly elicited on the helper or the cytotoxic
fraction, no differences were found (Figure 6.10B). Finally, we also assessed the profile of
the stimulated T cells in order to determine whether Tofacitinib could modulate the outcome
of the T cells responses towards Treg (FOXP3, IL-10), Th1 (Tbet, IFNY’) or Th17 (RORM,
IL-17) which was not the case (Figure 6.10C) therefore confirming that Tofacitinib does not

modulate the phenotype and function of human intestinal cDC.
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Figure 6.9. T cell proliferation.

CellTrace™ Violet naive T cells were cultured for 5 days in resting condition or with 1ug/ml of
phytohemagglutinin. Total T cells were identified within singlet viable CD3* and those divided cells identified by
CellTrace™ Violet dilution.
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Figure 6.10. Tofacitinib effect over the immunostimulatory capacity of human intestinal conventional

dendritic cells.

A) Total lamina propria mononuclear cells were ex-vivo cultured in resting conditions (Basal), as well as with
100 ng/ml of LPS in the presence/absence of 100 nM Tofacitinib. Total conventional dendritic cells (cDC) were
subsequently sorted and co-cultured with allogeneic cell-trace violet labelled naive T cells. cDC stimulatory
capacity over total T cells was determined, as well as B) the stimulatory capacity specifically elicited over both
CD4 and CD8. The acquired phenotype (Treg: FOXP3*IL-10%; Th1: Tbet'IFNv*; Th17: RORYt*IL17*) is
displayed in C). Two-way ANOVA was applied in all cases. P-values <0.05 were considered significant
(*p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001).
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6.4 DISCUSSION

Although Tofacitinib inhibits the JAK1 and JAK3 signalling pathway (9), and its use has
been approved to treat patients with UC (6—8), its specific mechanism of action (i.e. its main
target cell) remains elusive. Given the central role that human intestinal cDC elicit
controlling the outcome of the immune responses in health (17), and since their phenotype
and function is altered in IBD, including UC (18,19), our hypothesis was that Tofacitinib
would specifically modulate their phenotype and function. In order to address such
hypothesis, we assessed the effect of Tofacitinib on human intestinal cDC, both in health
and UC, referred to human intestinal monocytes and macrophages. Nevertheless, and
contrary to our expectations, we found that Tofacitinib downregulates JAK1 expression on
human intestinal monocytes (and to a lower extent JAK1 and JAK3 on macrophages)

without affecting human intestinal cDC phenotype or function.

Previous studies have reported that Tofacitinib decreased human monocyte-derived
dendritic cell (MoDC) stimulatory capacity (20) and differentiation (21). Nevertheless, the
same has not been mirrored on human intestinal cDC. The origin of such discrepancy can
be due to several reasons. The most obvious one is that those experiments were performed
on LPS-activated MoDC which, nevertheless, do not resemble the properties of real cDC
(22). Besides, we hereby have performed the experiments on real human intestinal cDC
so although we cannot discard that Tofacitinib may modulate the phenotype and function
of circulating cDC (either in health or UC), the same does not seem to be true in the human
intestinal mucosa as we have observed. In a similar manner, our observations suggest that
although ¢DC are central to in controlling the outcome of the human adaptive immune
responses, once the pro-inflammatory Th1/Th17 signalling pathway has been triggered on
the UC intestine (23)Tofacitinib does not modulate the outcome of cDC. On the contrary,
its therapeutic effect may be suppressing pro-inflammatory T cell activation in the human
gut (24,25) without modulating cDC.

In order to further confirm the inhibitory effect of Tofacitinib in our ex-vivo model, in addition
to specifically address the intracellular expression of JAK1 and JAK3, further downstream
analysis revealed that Tofacitinib induced a specific reduction of phosphorylated STAT5
(but not STAT6) which confirms the Tofacitinib-induced JAK inhibition (Figure 6.5). Building
from that, we hereby have found that although Tofacitinib did not seem to elicit any major
effect on human intestinal cDC, it actually downregulated JAK1 on human intestinal
monocytes from UC (both active and quiescent). On the other hand, JAK1 was decreased
on macrophages from patients with active UC, while JAK3 was downregulated on patients

with quiescent disease following Tofacitinib exposure. Previous observations have shown
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that Tofacitinib induces a regulatory phenotype on human primary monocytes and
monocyte-derived macrophages (26-29). Building from that, and as opposed to the
previous observations on the cDC context, we hereby have confirmed, for the first time to
our knowledge, that Tofacitinib downregulates JAK1 and JAK3 on bona fide human

intestinal monocytes and macrophages.

We have also performed an unbiased characterization (in resting conditions) of the total
mMAPC subsets than can be found in the human colon in health and UC, both active and
quiescent, by spectral and computational cytometry (30). Our results have found that,
based on the markers that we have used, we can identify up to 16 different subsets of
human intestinal mAPC, being most of them macrophages in agreement with previous
observations from our group (15). Besides, and as expected, mAPC from patients with qUC
were more similar to those from controls rather than to those from UC patients with active
mucosal inflammation. Nevertheless, when the same approach was performed to assess
whether Tofacitinib would expand or decrease a given cell cluster in any of the patients, no
differences were found. Hence, these results imply that although Tofacitinib downregulated
the JAK1, and to a lesser extent, the JAK3 signalling pathway on monocytes and
macrophages, that is not translated into a major phenotype change on these cells.
Nevertheless, whether that translates into a differential function on such cells remains
elusive. Hence, a major limitation of this study is that we have focused specifically on the
effect that Tofacitinib elicited over cDC rather that over monocytes or macrophages.
Therefore, future studies should address whether Tofacitinib modulates monocytes and
macrophage function or whether, on the contrary, its main mechanism of action is elicited

over immune cells (like T cells as previously comments).

In summary, other previous models have suggested that Tofacitinib modifies the phenotype
and function of human MoDC, we hereby have proved that human intestinal cDC are not
modulated by such compound. These therefore has major implications given the
differences between the mucosal and circulating immune system. Our results therefore
highlight the relevance of performing experiments on the human intestinal mucosa if we
want to unveil the mechanism of action of any drug in the IBD setting given the differences

between the mucosal and the circulating immune system.
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Characterization of the Gut Microbiota in Inflammatory Bowel Disease: Insights into Bacterial-Fungal
Interactions and Potential Biomarkers.

7.1 INTRODUCTION

Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal (Gl)-
tract mediated by an altered immune response. IBD includes Crohn's disease (CD) and
Ulcerative colitis (UC), which differ in their inflammatory patterns, intestinal location, clinical
symptoms and associated complications (1,2). Although the aetiology of the disease is not
yet known, IBD is widely considered to result from an exacerbated immune response
against enteric microorganisms in genetically susceptible individuals (3). Its prevalence is
increasing, especially in western countries, with an estimated 3.5 million cases of IBD in
Europe and the United States (4).

The immune system maintains a delicate balance between immune responses against
pathogens and tolerance toward commensal microbiota. (5). In addition to the microbial
composition, microbial-derived metabolites play a crucial role in immune modulation. For
instance, short chain fatty acids (SCFAs) such as butyrate, propionate and acetate
produced by bacterial fermentation of dietary fiber, modulate histone acetylases and gene
expression, influencing immune responses. Notably, IBD patients exhibit a reduced
abundance of butyrate-producing bacteria, such as Roseburia spp (6) microbial
metabolism of tryptophan generates bioactive metabolites containing indole, that affect the
host by activating the aryl hydrocarbon receptor, a transcription factor present in immune
cells that regulates inflammation, this pathway is impaired in IBD (7). Moreover, secondary
BAs produced by bacteria modulate immune cells maturation and cytokines release (8),

yet their production is decreased in patients with IBD.

The gut microbiota is influenced by host genetics, environmental factors, lifestyle and diet.
The transition to a state of dysbiosis can trigger or exacerbate autoimmune and
inflammatory responses (9-11). Amplicon sequencing of the 16S ribosomal RNA gene
have revealed differences in the intestinal microbiota signature in IBD patients compared
to healthy controls (12), including a depletion of Firmicutes (which have an anti-
inflammatory effect) and Clostridium species, as well as an increase in the abundance of
Bacteroidetes and Proteobacteria, such as Bacteroides, Bifidobacterium and Lactobacillus,

which are associated with inflammation (7,13).

Other enteric microorganisms such as fungi and virus also contribute to gut eubiosis.
Despite limited studies focused on elucidating the role that Gl-tract fungi and viruses may
have in the etiology of IBD, dysbiosis in these populations has been associated with the
disease (14). IBD patients exhibit a higher Basidiomycota/Ascomycota ratio, reduced
Saccharomyces cerevisiae and increased Candida albicans compared to healthy

individuals (15). While numerous fungal species have been detected in the human gut, only
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a few are commonly found across individuals. Meanwhile, the enteric virome is gaining
scientific interest due to its potential impact on digestive tract homeostasis (16). However,
the high variability observed among individuals complicates the identification of specific

relationships IBD-virome (17,18).

Despite advances in understanding IBD, its pathogenesis remains incompletely defined,
and current treatments are far from optimal. Therefore, a comprehensive characterization
of enteric microorganisms in different IBD types (UC and CD) and disease states (active
vs. quiescent) is needed. The present study aims to analyse the microbial composition of
faeces and biopsies from IBD patients and healthy controls. Hence, these results might
identify microbial interactions and their potential role in disease pathogenesis. This

knowledge could contribute to improved diagnostic and therapeutic strategies.
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7.2 MATERIAL AND METHODS

7.21 Patients and biological samples

Biopsies and stool samples were obtained from four groups of patients with IBD: Crohn's
disease (CD) -both active and quiescent-, and ulcerative colitis (UC), also active and
quiescent. Samples were also collected from individuals attending medical consultation for
reasons other than IBD and who have healthy mucosa during colonoscopy and constitute
control group. Samples were collected from both the Hospital Clinico Universitario de
Valladolid and Hospital Universitario Rio Hortega de Valladolid. All participants provided
signed informed consent (approval code by the CEIm Area del Salud de Valladolid Pl 22-
2869). Information was collected for each patient regarding age and gender, current
treatments, as well as any treatments received in the four weeks prior to sample collection
(if applicable) including antibiotics (people who had taken antibiotics for at least three
months prior to sample collection were discarded). Additionally, disease phenotype in CD
(B1 inflammatory; B2 stenosing; B3 penetrating or fistulizing), disease location according
to the Montreal classification: CD (L1 ileal; L2 colonic; L3 ileocolonic; L4 upper
gastrointestinal tract), UC (E1 proctitis; E2 distal colitis; E3 extensive colitis) any other
information that might be relevant for interpreting the results was also collected and it is

shown in Table 7.1.

Faecal samples were obtained from 30 individuals: 5 controls (40% men, 61 £ 6 years), 6
patients with active Crohn’s disease (83% men, 48 + 18), 6 patients with quiescent Crohn’s
disease (71% men, 42 + 12), 5 patients with active ulcerative colitis (60% men, 58 + 12)
and 7 patients with quiescent ulcerative colitis (57% men, 54 t 9). Biopsies were obtained
from the ileum of 24 of these 30 patients (5 from each group). Patient 11- from quiescent
Crohn's cohort- was excluded from the study due to not meeting the inclusion criteria, as

antibiotic use was identified.

Stool samples were collected in faecal collection tubes (Canvax Biotech, Valladolid, Spain)
during the 24 hours prior to the endoscopy and cryopreserved at -80°C. Following biopsy
obtention, they were preserved in ice-chilled Phosphate-buffered saline (PBS)
(ThermoFisher Scientific, Waltham, USA) and subsequently cryopreserved at -80°C in
RNAlater™ (ThermoFisher Scientific, Waltham, USA).

167



Chapter 7

Table 7.1. Patient demographics.

IBD SES-
Code IBD e Gender e | UCEIS Treatment
typ subtype Ag CD
1* | Active colitis N/A Male | 47 | 4 Mesalazine, Azatioprine and
Infliximab
2 Control N/A Male 50 N/A
3 Control N/A Female 66 N/A
4 Qwesgent N/A Female 49 0 Mesalazine
colitis
5 QU|e§9ent N/A Male 57 1 Oral mesalazine
colitis
6 Quiescent N/A Male | 63 | o© Azatioprine
colitis
Quiescent
7 lleal L1 Male 57 0 N/A
Crohn
8 Qwespgnt N/A Male 62 0 Mesalazine
colitis
9* | Active colitis N/A Male | 56 | 3 Azatioprine and oral+topic
Mesalazine
10 QU|e§9ent N/A Female 43 0 Golimumab
colitis
Quiescent Ileocolonic Ciprofloxacine and
11 Crohn L3 Male 29 0 Metronidazol
12 Active Crohn IleocLoslonlc Male 41 9 Mesalazine
13 Qwespgnt N/A Female 45 0 Infliximab and Mesalazine
colitis
14 Quiescent llealLl | Female | 43 0 Infliximab
Crohn
Quiescent Ileocolonic
15 Female 46 0 Metotrexate
Crohn L3
16* Quiescent Colonic L2 Male 44 0 Azatioprine
Crohn
17 Active colitis N/A Female 47 4 Vedolizumab
18 | Active colitis N/A Male | 73 | 3 Vedolizumab and oral
Mesalazine
19 Control N/A Male 64 N/A
20 Control N/A Female 64 N/A
21 Control N/A Female 63 N/A
22 Quiescent Male | 24 0 Azatioprine
Crohn
23 Quiescent Male | 52 0 Ustekinumab
Crohn
24 Active colitis Female 67 4 Vedolizumab .and oral
Mesalazine
25 Active Crohn Ileal Female | 64 Azatioprine
26* Active Crohn Male 20 5 Ustekinumab
27 Active Crohn Male 58 6 N/A
0g* QU|e§gent N/A Male 62 0 Vedolizumab gnd oral
colitis Mesalazine
29 Active Crohn Ileal Male 40 3 Mercaptopurine
30 Active Crohn Ileal Male 66 3 Adalimumab
*Only faecal samples.
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7.2.2 Biopsies processing and sequencing

DNA extraction and sequencing was carried out on Seqplexing (Sequencing Multiplex,
Valencia) using an lllumina MiSeq device, paired-end 2x250bp. For bacteria (16S DNA),
the primers used for amplification were 16S V1-V2 Forward Primer 5'-1:
TNANACATGCAAGTCGRRSG; 16S V1-V2 Forward Primer 5'-2:
TAACACATGCAAGTCRACTYGA and 16S  V1-V2 Reverse Primer 3"
GCTGCCTCCCGTAGGAGT. For fungi (ITS2 region), the primers used were ITS2_F1:
GTGARTCATCGAATCTTTG, ITS2_R1: TCCTCCGCTTATTGATATGC and ITS2_R2:
GATATGCTTAAGTTCAGCGGGT. Biopsies were also used to study viral composition

using a Shotgun approach also in Segplexing (Sequencing Multiplex, Valencia).

7.2.3 Stool samples processing and sequencing

Bacterial DNA was extracted following manufacturer's recommendations for the QIAmp
PowerFaecal Pro DNA Kit (Qiagen, Venlo, Netherlands). DNA was quantified using a
NanoDrop microvolume spectrophotometer (Thermo Fisher, USA) and then kept at -20°C
until shipment. Metagenomic sequencing was performed at Agricultural Technology
Institute of Castilla y Ledn (ITACYL) in Myseq platform (lllumina, San Diego, CA, USA) and
using the Nextera XT Index Kit paired-end (2x300nt) (lllumina, San Diego, CA, USA) for
microbiota analysis by amplifying the hypervariable V3 and V4 regions of 16S rDNA with
specific primers (515F-806R).

7.2.4 Bioinformatic analysis.

Data analysis was firstly performed using Qiime2 (https://giime2.org/), an open-source

software, to obtain the necessary datasets to perform the further analysis using R

(https://www.r-project.org/). All the code related to this project is available in the following

GitHub repository: https://github.com/mariagpms/Microbiome-Analysis.qgit
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7.3 RESULTS

7.3.1 Microbial diversity in intestinal biopsies

7.3.1.1 Bacterial diversity

Alpha diversity in intestinal biopsies was analysed using both Shannon and Simpson
indices to assess bacterial diversity (Figure 7.1). Even though there were no significant
differences, alpha diversity indices revealed distinct microbial patterns. The control group
exhibited a well-balanced microbial diversity with a slight predominance of certain species.
In contrast, both active UC and CD groups showed increased microbial diversity but with a
lower dominance of specific taxa. Notably, the quiescent UC and CD groups displayed the
highest diversity and evenness, suggesting a partial restoration of microbiota composition

during remission (Figure 7.1).

Simpson Shannon
. 50 r
—— : |
| .. %j .
[ |
40
0.92 g
" 35
0.88 ’
3.0
0.84 . 25
HC aCD qCD auC qucC HC aCD qCD aucC qucC

Figure 7.1. Bacterial alpha diversity in intestinal biopsies.

Shannon and Simpson indices of alpha diversity of the bacteria were calculated in intestinal biopsies from the
different studied groups: healthy controls (HC), active Crohn’s disease (aCD), quiescent Crohn’s disease
(qCD), active colitis (aUC) and quiescent colitis (qUC). Kruskal Wallis test was then performed. P-value < 0.05
was considered significant.

Beta diversity analysis revealed no significant differences between groups. Bray-Curtis,
Jaccard, and UniFrac (weighted and unweighted) distance metrics were used to assess
community composition. Although no statistically significant differences were detected,
variability among individuals was evident, suggesting a heterogeneous microbial landscape

irrespective of disease status (Figure 7.2).
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Figure 7.2. Bacterial beta diversity in intestinal biopsies.
PCoA showing beta diversity was calculated using different distances: A) Bray Curtis, B) Jaccard, C)

Unweighted Unifrac, D) Weighted Unifrac.

7.3.1.2 Bacterial composition
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Genus
[Clostridium]_innocuum_group
[Ruminococcus]_gnavus_group
[Ruminococcus]_torques_group
Agathobacter
Alistipes
Alloprevotella
Anaerostipes
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Blautia
Brachyspira
Campylobacter
Collinsella
Coprococcus
Cutibacterium
Dorea
Erysipelotrichaceae_UCG-003
Escherichia-Shigella
Faecalibacterium

Figure 7.3. Top 15 genus of bacteria in biopsies.
The 15 most abundant bacteria genera found in intestinal biopsies were identified for each group: healthy
controls (HC), active Crohn’s disease (aCD), quiescent Crohn’s disease (qCD), active colitis (aUC) and
quiescent colitis (qUC). Relative frequencies of each genus were calculated and those which relative
frequencies were not assigned to any genus (N/A) were discarded. Values of these 15 genera were
standardized to 0-1 to calculate the percentage that is represented.

Fusobacterium
Haemophilus
Helicobacter
Lachnoclostridium
Neisseria
Parabacteroides
Parasutterella
Plesiomonas
Porphyromonas
Prevotella
Roseburia
Staphylococcus
Subdoligranulum
Sutterella
Turicibacter
uncultured
Veillonella
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Distinct bacterial signatures were observed among groups. In control group, Bacteroides,
Escherichia-Shigella and Helicobacter were predominant. Helicobacter was associated
with a single infected patient and excluded from further taxonomic analysis. Interestingly,
Brachyspira, Erysipelotrichaceae, and Ruminococcus gnavus were detected exclusively in
control samples. Active CD patients exhibited a high abundance of Bacteroides,
Fusobacterium, Prevotella and Faecalebacterium, while in quiescent CD patients, the most
abundant genera were Bacteroides, Fusobacterium and Escherichia-Shigella. Notably
Neisseria and Staphylococcus were exclusive to active CD, while Porphyromonas,
Plesiomonas and Subdoligranulum were specific to quiescent CD. Cutibacterium was
detected in both CD groups, but absent in UC and controls, suggesting its potential
association with CD. In patients with active UC the most abundant genera were
Bacteroides, Faecalibacterium and Sutterella while Clostridium innocuum, Dorea, and
Anaerostipes were uniquely present in this cohort. Quiescent UC patients showed higher
abundance of Bacteroides, Turicibacter, Faecalebacterium and Campylobacter.
Agathobacter, Campylobacter and Parasutterella were found exclusively in this group.
Turicibacter was specific to UC and in the same way, Coprococcus was identified only in
active disease states (both UC and CD) (Figure 7.3).

To further investigate IBD-associated microbial changes, we compared relative abundance
in IBD groups versus controls. In active CD Fusobacterium and Faecalebacterium were
enriched, while in quiescent CD, Fusobacterium and Faecalebacterium and Alistipes were
augmented. In active UC, there was an increase in Bacteroides, Faecalebacterium,
Lachnoclostridium, Roseburia and Sutterella. Lastly, in quiescent UC Alistipes and
Faecalebacterium were augmented together with a reduction in Escherichia-Shigella

compared to controls.
A comprehensive summary of bacterial alterations is described in Table 7.6.

7.3.1.3 Fungi diversity

Bacterial microbiota has been extensively studied in IBD, leading to the validation of
previously described findings. However, mycobiome remains less explored, despite its
potential role in IBD. Alpha diversity was analysed using both Shannon and Simpson
indices (Figure 7.4). Kruskal Wallis test was also performed and no significative differences

among groups were observed (Shannon or Simpson index).
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Figure 7.4. Fungal alpha diversity in intestinal biopsies.

Shannon and Simpson indices of alpha diversity of fungus were calculated in intestinal biopsies from the
different studied groups: healthy controls (HC), active Crohn’s disease (aCD), quiescent Crohn’s disease
(qCD), active colitis (aUC) and quiescent colitis (qUC). Kruskal Wallis test was then performed. P-value < 0.05
was considered significant.

The control group exhibited the lowest fungal diversity, with a moderate number of species
and a clear dominance of a few taxa. Compared to controls, IBD patients with active
disease (both UC and CD) showed increased mucosal fungal diversity, although a few
species remained predominant. Notably, the highest fungal diversity was observed in
quiescent IBD patients, suggesting a shift towards a more complex yet still unevenly

distributed fungal community during remission.

Beta diversity analysis showed no significant differences among groups. Bray-Curtis,
Jaccard, and UniFrac (both weighted and unweighted) distances were assessed (Figure
7.5).
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Figure 7.5. Fungal beta diversity in intestinal biopsies.
PCoA showing beta diversity was calculated using different distances: A) Bray Curtis, B) Jaccard, C)
Unweighted Unifrac, D) Weighted Unifrac.

7.3.1.4 Fungi composition

Genus
1.00
- Agaricales_gen_Incertae_sedis Metschnikowia

Alternaria Naganishia
Ascomycota_gen_Incertae_sedis Nigrospora
Aureobasidium Ochroconis

0.75
Candida Phaeosphaeriaceae_gen_Incertae_sedis
Cercospora Pleosporales_gen_Incertae_sedis
Cladosporium Polyporales_gen_Incertae_sedis
Cryptococcus Rhodotorula
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Cystofilobasidium Saccharomyces
Debaryomyces Schroeteria
Eupenidiella Spizellomycetales_gen_Incertae_sedis
Exophiala Stemphylium
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Figure 7.6. Top 15 genus of fungi in intestinal biopsies.

The 15 most abundant fungi genera found in intestinal biopsies were identified for each group: healthy controls
(HC), active Crohn’s disease (aCD), quiescent Crohn’s disease (qCD), active colitis (aUC) and quiescent colitis
(qUC). Relative frequencies of each genus were calculated and those which relative frequencies were not
assigned to any genus (N/A) were discarded. Values of these 15 genera were standardized to 0-1 to calculate
the percentage that is represented.
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In control samples, a lower diversity of fungal genera was observed compared to IBD
cohorts, with only seven genera represented, while IBD groups exhibited between 12 and
15 genera. The genera detected in controls included Cladosporium, Candida, Malassezia,
Rhodotorula, Saccharomyces, Sterigmatomyces, and Wallemia; however, none were
exclusive to this group. Distinct fungal signatures were observed across disease groups.
In active CD, Metschnikowia and Wickerhamomyces were predominant, while Cercospora,
Lasiobolidium, and Polysporales were exclusive to this cohort. Similarly, in quiescent CD,
Metschnikowia and Wickerhamomyces remained the most abundant, with
Cystofilobasidium, Phaeosphaeriaceae, Schroeteria, and Sympodiomycopsis being
specific to this group. In active UC, Cladosporium and Malassezia were the most abundant
genera, with Debaryomyces, Filobasidium, Naganishia, and Spizellomycetales uniquely
present in this cohort. In quiescent UC, Metschnikowia and Malassezia were predominant,
while Alternaria, Exophiala, and Stemphylium were exclusively found in this group.
Although no genus was specifically associated with either UC or CD, nor with disease
activity, Hypopichia and Metschnikowia were identified in all IBD groups but were absent
in controls. Additionally, Aureobasidium and Wickerhamomyces were present in all IBD

cohorts except in active UC (Figure 7.6).

To further investigate fungal alterations in IBD, we compared the relative abundance of the
top 15 genera between IBD groups and controls. In active UC, Cladosporium was enriched,
while Rhodotorula was reduced compared to controls. In quiescent UC, Cladosporium and
Malassezia showed a decrease relative to controls. Lastly, both active and quiescent CD

biopsies exhibited a reduction in Malassezia and Saccharomyces compared to controls.

A summary of all the alterations in fungi genera in biopsies described in the different

disease groups are represented in Table 7.2.

Table 7.2. Fungal alterations in IBD observed in IBD groups with respect to the controls.

Sample Group ‘ Changes in fungal genera (increase/decrease) |
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+ Cercospora,

Active CD Lasiobolidium,
Polysporales ™ Metschnikowia,
+ Cystofilobasisium, | Wickerhamomyces VMalassezia,
Quiescent CD Phaeosphaeriaceae, Saccharomyces
Shroeteria and
Sympodiomycopsis

VRhodotorula,
1 Cladosporium,
Malassezia,
Active UC Debaryomyces,

Filobasidium,
Naganishia,
Spizellomycetales MPleosporales
VCladosporium,
Malassezia,
™ Metschnikowia,
Malassezia,
Alternaria, Exophiala,
Stemphylium

Biopsies

Quiescent UC

7.3.1.5 Viral composition

Similar to the mycobiome, the virome remains largely unexplored. In this study we aim to
characterize the viral composition in intestinal biopsies across all cohorts. However, the low
proportion of viral DNA compared to the host DNA (human) resulted in an insufficient
number of reads, limiting a comprehensive analysis. As a result, viral sequences were

underrepresented, limiting further analysis.

7.3.2 Microbiota correlation in intestinal biopsies

Microbial interactions within the gut ecosystem were explored through bacterial-fungal
correlation analysis. Spearman’s rank correlation coefficient was calculated to analyse
associations between controls, active UC, quiescent UC, active CD and quiescent CD
(Figure 7.7). Significant correlations and their principal characteristics in biopsies are
summarized in Table 7.3. For a better comprehension of the role of the most relevant
bacterial and fungal genera, Table 7.4 and Table 7.5 compile their main features and

potential effects in health.
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Figure 7.7. Correlations between bacteria and fungi genus in biopsies.

Spearman’s rank correlation coefficient was calculated to analyse the correlations between bacteria and fungi
in biopsies. Genus which a value of 0 in their relative frequency for all the patients were deleted. The hypothesis
of no correlation was checked based on the asymptotic t-student to identify significant correlations. Significant
correlations (p-valor < 0,05) are highlighted in bold. A) Controls, B) Active Crohn, C) Quiescent Crohn, D) Active
colitis, E) Quiescent colitis.
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Table 7.3. Significant correlations between bacteria and fungi genus (p-value < 0,05).

Group Fungi Bacteria R

Wallemia Fusobacterium -0,89
Control ) )

Wallemia Roseburia 0,89

Hyphopichia Prevotellaceae 1

Active UC Filobasidium Prevotellaceae 1
Cladosporium Sutterella 0,89

Stemphylum Turicibacter 1

Mortierellales Turicibacter 1

Eupenidiella Turicibacter 1

Cryptococcus Turicibacter 1

Alternaria Turicibacter 1
Quiescent Hyphopichia Campylobacter 0,92
ucC Cladosporium Collinsella 0,92
Cladosporium Fusobacterium -0,89
Candida Blautia -0,97
Aureobasidium Parabacteroides -0,89
Aureobasidium Parasutterella -0,89
Aureobasidium Roseburia -0,89

Metschnikowia Roseburia 1
Active CD Aureobasidium Collinsella -0,89
Aureobasidium Roseburia -0,89

Sympodiomycopsis Plesiomonas 1

Quiescent  Sterigmatomyces Plesiomonas 1

CD Pleosporales Erysipelotrichaceae 1

Phaeosphaeriaceae Erysipelotrichaceae 1

Hyphopichia Erysipelotrichaceae 1

Table 7.4. Principal characteristics of most relevant bacteria genus.

Bacterial genus

Principal characteristics

Health effects

References

Agathobacter

v'Produce butyrate, a short-chain
fatty acid which contributes to energy
homeostasis, colonic motility,
immunomodulation and suppression
of gut inflammation

vInvolved in the fermentation of
carbohydrates

v'Some strains can utilize a range of
dietary and host-derived
carbohydrates

v'Considered part of the core
human gut microbiome

v Increased  abundance
associated with barley
consumption, which may have
positive effects on glucose
tolerance

v'Less prominent in patients
with ulcerative colitis compared
to healthy individuals

(19,20)
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v'Butyrate producer .
v'Considered part of the core
v'Capable human gut microbiome
. carbohydrates
Anaerostipes v'Some species may beinvolved |  (21,22)
v'Some strains can utilize acetate |in metabolizing the anticancer
and lactate to produce butyrate drug 5-fluorouracil
v'Maintain a complex and
v'Play crucial roles in breaking down ggnerally benef|0|al. relationship
. with the host when in the gut
complex polysaccharides
v'Can become opportunistic
v'Capable of degrading and utilizing | pathogens if they escape the gut
Bacteroides glycans, including mucin-type O- | environment (23,24)
glycans
v'Associated with bacteraemia
v'Produce short-chain fatty acids|and abscess formation in
(SCFA) as fermentation end products | various body sites (B. fragilis)
v'Help maintain gut
v'Ferment carbohydrates, producing | OMeostasis
lactic acid and acetic acid as primary v'May provide protection
end products against  pathogens through
v competitive exclusion
Bifidobacterium Csnh . break (25,26)
carbohydrates, vInvolved in modulating the
oligosaccharides (prebiotics) immune system
\/nge species<_:an mgtabolizg host- vMay help in  mineral
derived glycans, including mucin absorption and protect against
intestinal permeability
v - - -
v'Ferment carbohydrates, producing Assoua?ed with both positive
and negative health outcomes
SCFAs
v . -
vCan utiize a wide ! May play a role in allewatmg
. L . inflammatory and metabolic
carbohydrates, including indigestible | .
diseases
ones
Blautia v ; ; L (27,28)
v'Some species can use CO, Hy/CO,, Shows aqt!bacjrerlal acjuwty
against specific microorganisms
and carbohydrates as energy sources
v i -
v'Produce acetic acid, succinic acid, Somgspeues produce heal.th
. . promoting compounds like
lactic  acid, o .
) SCFAs and antimicrobial
fermentation end products .
peptides
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v'Can alter differentiation of T
helper 17 cells and regulatory T
cells

v" Many Clostridium species

feeding)
v’ Ferments indigestible fiber

v’ Possesses anti-inflammatory
properties

v May act as a keystone taxon in
stabilizing the gut microbiota

v'Ferment  carbohydrates  and | have beneficial effects: help
proteins to produce SCFAs like | maintain intestinal
butyrate homeostasis, Strengthen the
Clostridium v Produce beneficial metabolites like intestinal barr!er anq. have | (7,29,30)
. L . shown to alleviate colitis and
indole propionic acid L
allergic diarrhea
v'Metabolize bile acid
etabofize brie acids v" Some species can be
pathogenic, for example C.
difficile can cause severe
diarrhea and colitis
v’ Promotion of inflammation by
altering neutrophil chemotaxis
and producing an increase in
NF-kB
v . . . .
Collinsella aci:j/liel:febrﬁilezgiabt: acids to oxo-bile| Collinsella abundance was (31)
found to be 12-fold higherin
patients with non-alcoholic
steatohepatitis (NASH)
compared to controls
v’ Produces butyrate from glucose,
acetate, and lactate
. v f  butyrat
v Capable of utilizing glycerol to concnecnrt?:tsizzs aecal butyrate
produce 3-hydroxypropionaldehyde
Eubacterium hallii | (3-HPA, reuterin) v Affects bile acid metabolism, | (32:33)
. tentially i ti (
v' Converts 1,2-propanediol to potentially Impac mg. glucose
. and energy homeostasis
propionate, propanal, and propanol
v’ Produces cobalamin (vitamin B12)
v’ Considered a biomarker for a
healthy gastrointestinal tract
v’ Decreased abundance linked
v’ Major butyrate producer in the gut | to inflammatory bowel diseases
Faecalibacterium | v Acetate consumer (acetate cross- (IBD) and colorectal cancer (34,35)
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v Produce butyric acid as a major

v’ Part of the normal flora in the
human gut mucosa, it is found
particularly in the colon

v" Implicated in colorectal

cancer development

Fusobacterium | end product of metabolism (36-38)
v Unable to ferment carbohydrates ‘/ Linked to inflammatory bowel
diseases
v/ Can induce secretion of
specific IgA antibodies
v/ Strengthen intestinal barrier
function
v’ Increase mucus production
v’ Metabolize carbohydrates to|¥ Stimulate release of anti-
produce lactic acid microbial peptides
v Some species can ferment|¥Y Enhance production of
Lactobacillus indigestible fibers secretory immunoglobulin A (39,40)
(slgA)
v' Aid in digestion of certain dietary
substrates, including lactose v Increase tight junction
integrity of intestinal epithelial
cells
4 Provide competitive
resistance against pathogens
v Associated with metabolic
v Produce acetic and succinic acids SY”dfome: |nflammatory bowel
as major degradation products of disease, and obesity
sugars v Some species (P. distasonis
Parabacteroides inii
v Capable of carbohydrate |21 P goldsteinii)  show (41,42)
metabolism potential as next-generation
probiotics due to protective
v’ Secrete short-chain fatty acids effects on inflammation and
obesity in mice
v' Associated with both
beneficial  and potentially
detrimental effects
vl .
v’ Associated with plant-rich diets Lmkegl to improved glucose
S metabolism and reduced
high in complex carbohydrates . Lf
Prevotella visceral fat (43-45)

v Capable of metabolizing
various plant polysaccharides

v’ Also associated with chronic
inflammatory conditions, insulin
resistance, and hypertension

v Foundininflamed tissuein UC
patients
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v Produce
particularly butyrate

SCFAs,

v Part of the normal gut
microbiota, primarily inhabit the
human colon

v Produced butyrate serves as

Roseburia v Ferment complex polysaccharides (46,47)
an energy source for
v Prefer anacidic intestinal | colonocytes
i t s .
environmen v' Helps maintain gut barrier
function
v’ Associated with both health
and disease states
v’ Capable of utilizing both dietary v Increased abundance linked
carbohydrates  and  host-derived to various intestinal disorders
Ruminococcus | SU8ars (IBD, IBS, colon cancer) (48,49)
gnavus : ’
v Some_ strains have evolved t0| . Aso associated with extra-
preferentially use sugars found in the intestinal  conditions  (skin
gutlining allergies, cardiovascular
diseases, liver diseases, brain
disorders)
v/ Capable of degrading mucin
glycoproteins and O-linked glycans
v’ Utilizes both mucin glycoproteins | v' Associated with inflammatory
and released oligosaccharides from | bowel diseases (IBDs) in
gastric and colonic mucins multiple studies
v' Possesses strong fucosidase, | v’ Its mucin-degrading ability
Ruminococcus |sialidase, and f1,4-galactosidase | may contribute to defects in (50)
torques activities mucus protection
v’ Lacks detectable sulfatase activity | v' Potential target for preventing
and has weak B1,3-galactosidase |or treating IBD due to its
activity keystone role in  mucin
) degradation
v’ Secretes a variety of enzymes
which are involved in the degradation
of mucin and mucin-derived glycans
v Highly pathogenic, causing
shigellosis (bacillary dysentery)
v" Invade the epithelial lining of
the colon, causing severe
inflammation and cell death
v Generally, cannot ferment lactose | ¥ Trigger release of pro-
infl t ki IL-1
Shigella inflammatory cytokines (IL-1B, (51,52)

v" Produce organic acids from
carbohydrate or peptone metabolism

IL-18)

v" Suppress innate immune
responses
v" Interfere with adaptive

immune responses, leading to
partial susceptibility to re-
infection
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Turicibacter

v Produce short-chain fatty acids,
smaller
amounts of acetate and butyrate

primarily lactate, with

v’ Primarily found in the gut

bile acids

serum bile acid profile

cholesterol metabolism

v’ Different Turicibacter strains
exhibit varying abilities to modify

v’ Possess bile salt hydrolases
(BSHs), so they may modulate

v’ Can influence host lipid and

(53-55)

Table 7.5. Principal characteristics of most relevant fungi genus.

Fungi genus

Principal
characteristics

Health effects

References

Aureobasidium

v They can produce a wide
variety of compounds,
including enzymes,
polysaccharides, and
biosurfactants

v’ Some species can ferment
to produce B-polymalic acid,
laccase, liamocins, and
pullulan polysaccharides

v Its presence in the gut would
likely be transient or incidental
rather than as an established
colonize

(56,57)

Candida

v' Candida species can
ferment various sugars, with
different species having
distinct fermentation
profiles

v/ They can adapt to different
nutrient environments within
the gut

v It is part of the normal flora of the
gastrointestinal tract in  many
healthy individuals

v’ Candida species interact with the
host immune system and can
modulate immune responses

v" Overgrowth of Candida in the
intestine has been linked to various
gastrointestinal disorders, including
inflammatory bowel disease and
irritable bowel syndrome

v" In mice, can induce protective
immune responses against invasive
candidiasis, mediated by elevated
systemic anti-C. albicans Th17 cells
and IL-17 responsive neutrophils

(58,59)

185



Chapter 7

v/ It is a common opportunistic
fungus with the ability to colonize
the gastrointestinal tract

4 Can produce
claglosponde A'_ an | v Over half of the natural products
Cladosporium antifungal agent against the isolated from Cladosporium have (60,61)
human Pathogenic | heen  found to have various
f|lamer_1tous ) fungus biological  activities, including
Aspergillus fumigatus cytotoxic, antibacterial, antiviral,
antifungal and enzyme-inhibitory
activities
v' Exophiala can produce | v While not typically associated
three different  types  of | with the gut, Exophiala has been
melanin found to colonize the human
; intestine and respiratory tract
Exophiala v Exophiala species are (62,63)
polyextremotolerant, able to | v In the gut of UC patients there are
survive in harsh | less amount of Exophiala compared
environments to healthy controls
/Filobasic{ium Species can | v The enriched presence of
ferment various sugars Filobasidium spp. in donor faeces is
v They are known to associated with the positive
assimilate a wide range of response to Faecal microbiota
Filobasidium carbon compounds trgnsplantatlon (FMT) for patients (64,65)
with UC
v' Some species produce v o )
extracellular enzymes that F/lobagld/um spe.C|es vyerg fou_nd
could potentially aid in near non-inflamed tissue in biopsies
nutrient acquisition from Crohn patients
v’ Malassezia is part of the human
mycobiome
v' They can modulate immune
responses, particularly the innate
immune system
v’ Malassezia species are v It can interact with pattern-
Malassezia lipophilic, meaning they | recognition receptors (PRRs) like (66,67)

require lipids for growth

Toll-like receptors (TLRs), leading to
the release of cytokines

v’ Higher prevalence of Malassezia
in the intestines of patients with
Crohn’s disease, where it might
trigger immune responses
contributing to inflammation
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v Rhodotorula species are
commonly found in the human
gastrointestinal tract

v They may have a probiotic effect
by regulating the multiplication of

pathogenic bacteria and
v They produce the enzyme | neutralizing or destroying their
urease and do not ferment | toxins
Rhodotorula carbohydrates (68,69)
v Colonized humans may benefit
V' Rhodotorula  species |from nutrients produced by
produce carotenoids Rhodotorula, including proteins,
lipids, folate, and carotenoids
v Some strains of Rhodotorula are
being studied for their potential
beneficial effects on immune
function and gut microbiota
v' Saccharomyces species can
influence the composition of the gut
microbiota, potentially increasing
beneficial bacteria and reducing
harmful ones
v’ S. cerevisiae can ferment o
various sugars v’ S. boulardii is widely used as a
probiotic for treating
v' It produces enzymes like | gastrointestinal disorders,
Saccharomyces | Urease and does not ferment | particularly diarrhea (70-72)
carbohydrates
v Produce antimicrobial ¥ It can improve gut barrier function
peptides, modulate  the | Saccharomyces is mostly
immune system, and have | ysociated  with  an  anti-
trophic effects inflammatory effect on dendritic
cells, as well as suppression of the
exacerbated activation of the NLRP3
inflammasome both in patients and
in murine models of IBD
v" While not primarily considered
v Wallemia species can |intestinal fungi, Wallemia species
produce toxins even under can be ingested through
Wallemia saline conditions contaminated food. (73)

v They are considered
filamentous food-borne
pathogenic fungi

v W. sebi, W. mellicola, and W.
muriae have been reported to be
related to human health problems.
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7.3.3 Microbial diversity in faeces

7.3.3.1 Bacterial diversity in faeces

Bacterial communities in the human microbiota have typically been studied either in faecal
samples or intestinal biopsies separately. To provide a more comprehensive view of the
human bacteriome, bacterial composition of the faeces of the same patients whose

mucosal samples had been previously examined was analysed.

First, to assess bacterial diversity in intestinal biopsies, alpha diversity was analysed using
both Shannon and Simpson indices (Figure 7.8). Kruskal Wallis test was also performed

but no significative differences among groups were observed (Shannon or Simpson index).

Simpson Shanon
p 5.5
0.99 EL oL ;l
[P T 50 '.‘ -
0.98 L : B
’ 45
0.97
4.0
0.96
0.95 35
0.94
HC aCh gCD auC quC HC aCh qCD auC quC

Figure 7.8. Bacterial alpha diversity in stool samples.

Shannon and Simpson indices of alpha diversity of the bacteria were calculated in stool samples from the
different studied groups: healthy controls (HC), active Crohn’s disease (aCD), quiescent Crohn’s disease
(qCD), active colitis (aUC) and quiescent colitis (qUC). Kruskal Wallis test was then performed. P-value < 0.05
was considered significant.

Alpha diversity was very similar between groups (as indicated similar values in both
Shannon and Simpson indices), however in controls, Shannon and Simpson values
showed greater microbial diversity with a balanced microbiome and no dominance by
specific species while a reduction in microbial diversity was observed during the active
phases of CD and UC. Finally, in both quiescent CD and UC samples a little recovery of

the dysbiosis with no dominance by any specie was observed.

Beta diversity was evaluated using Bray Curtis, Jaccard and Unifrac (weighted and
unweighted) distances metrics. No significant differences were observed between groups
(Figure 7.9).
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Figure 7.9. Bacterial beta diversity in stool samples.
PCoA showing beta diversity was calculated using different distances: A) Bray Curtis, B) Jaccard,
Unweighted Unifrac, D) Weighted Unifrac.

7.3.3.2 Bacterial composition in faeces
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Figure 7.10. Top 15 genus of bacteria in stool samples.
The 15 most abundant bacteria genera found in stool samples were identified for each group: healthy controls
(HC), active Crohn’s disease (aCD), quiescent Crohn’s disease (qCD), active colitis (aUC) and quiescent colitis
(qUC). Relative frequencies of each genus were calculated and those which relative frequencies were not
assigned to any genus (N/A) were discarded. Values of these 15 genera were standardized to 0-1 to calculate
the percentage that is represented.
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Our results showed that Bacteroides, Blautia, and Faecalibacterium were the most
prevalent genera, with Streptococcus also being highly represented in quiescent CD stool
samples. Distinct bacterial signatures were observed across groups. In controls, five
genera were exclusively identified: Ruminococcus torques, Anaerostipes,
Erysipelotrichaceae, Lachnoclostridium, and Prevotellaceae. In active CD, Dialister,
Fusobacterium, Parabacteroides, Ruminococcus, and Succinivibrio were uniquely present,
while quiescent CD samples exhibited five specific genera: Ruminococcus gnavus,
Catenibacterium, Enterococcus, Holdemanella, Lactobacillus, and Megamonas. UC stools
had fewer exclusive genera, with Christensenellaceae found only in active UC and
Roseburia and Subdoligranulum restricted to quiescent UC. Notably, Prevotella was

detected solely in active disease states, both in CD and UC.

To further explore bacterial alterations in IBD, differences in the abundance of
representative genera between IBD groups and controls were analysed. Stool samples
showed greater similarity among cohorts and fewer variations in genus abundance. The
most striking change was a decrease in Bacteroides across all IBD groups compared to
controls. Additionally, Coprococcus and Streptococcus were present in all IBD groups

except active CD, while Collinsella was detected in all IBD cohorts except quiescent CD.

A summary of all the alterations in bacterial genera, both in faeces and biopsies described

in the different disease groups are found in Table 7.6.

Table 7.6. Bacterial dysbiosis in IBD groups with respect to the controls both in biopsies and stool.

Sample Group ’ Changes in bacterial genera (increase/decrease) ’
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1 Collinsella, Dialister,

Fusobacterium,
Active CD Parabacteroides, ) .
. N Vv Bacteroides, Anaerostipes,
Ruminococcus, Succinivibrio, ]
Ruminococcus torques,
Prevotella )
stool - Erysipelotrchaceae,
™ Ruminococcus gnavus, .
. ) Lachnoclostridium,
Catenibacterium,
. Prevotellaceae
Quiescent CD | Coprococcus, Enterococcus,
Holdemanella, Lactobacillus,
Megamonas, Streptococcus
" Alloprevotella, Neisseria,
Staphylococcus,
Active CD Cutibacterium, Prevotella, ™ Fusobacterium,
Veillonella, v Escherichia- | Faecalibacterium, Alistipes ¥
biopsies Shigella Brachyspira,
1Alistipes, Collinsella, Erysipelotrichaceae,
. Plesiomonas, Ruminococcus gnavus
Quiescent CD 8
Porphyromonas, Prevotella,
Subdoligranulum

™ Christensenellaceae,

Coprococcus, Prevotella,

Active UC Vv Bacteroides, Anaerostipes,

Faecalebacterium, :
. Ruminococcus torques,
Collinsella, Streptococcus )
Stool Erysipelotrchaceae,
Lachnoclostridium,
Prevotellaceae

M Collinsella, Coprococcus,
Escherichia-Shigella,
Roseburia, Subdoligranulum,
Streptococcus
1 Bacteroides,
Faecalibacterium,
Lachnoclostridium,
Roseburia, Sutterella,
Clostridium innocuum, Dorea,
Anaerostipes

Biopsies ™ Agathobacter,
Alloprevotella, Blautia,
Campylobacter,
QuiescentUC Faecalibacterium,
Parabacteroides,
Parasutterella, Veillonella
Vv Escherichia-Shigella

QuiescentUC

Active UC

M Faecalibacterium, Alistipes,
Turicibacter ¥ Brachyspira,
Erysipelotrichaceae,
Ruminococcus gnavus

7.3.4 Microbiota comparison between different groups

To assess differences between groups (controls, active and quiescent UC, active and

quiescent CD) PERMANOVA (Permutational Multivariate Analysis of Variance) was
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performed in a pairwise manner. PERMANOVA was conducted comparing two groups each
time using Bray Curtis distances and was repeated for each analysis (16S faeces, 16S
biopsies and ITS2 biopsies). Results are summarized in Table 7.7. There were only
significative differences in fungi diversity between control vs active CD and active UC vs
active CD, pseudo-F value in both comparisons is high (3,6402 and 3,836 respectively)
indicating that the variability between groups was significantly greater than the variability

within groups.

Table 7.7. PERMANOVA tests among all groups.

Bacteria
PERMANOVA Fungi Biopsies . . Bacteria Stool
Biopsies
Groups Pseudo-F | P-Value | Pseudo-F | P-Value | Pseudo-F | P-Value
Control-Active Colitis 0,2894 0,971 0,8094 0,771 1,106 0,327
Control-Quiescent Colitis 1,2474 0,252 1,013 0,42 0,6201 0,877
Control-Active Crohn 3,6402 0,005* 1,1926 0,221 0,8029 0,807
Control-Quiescent Crohn 1,5191 0,101 0,8541 0,669 0,7717 0,78
Active Colitis-Quiescent
Colitis 1,4056 0,198 0,8472 0,774 1,0633 0,36

Active Colitis-Active Crohn 3,836 0,009* 1,3829 0,15 0,8897 0,633
Active Colitis-Quiescent Crohn 1,719 0,16 1,1298 0,32 0,584 0,986

Quiescent Colitis-Active Crohn | 11,4249 0,198 1,0821 0,31 1,2079 0,172
Quiescent Colitis-Quiescent
Crohn 0,7634 0,701 0,7512 0,859 0,8013 0,729

Active Crohn-Quiescent Crohn | 0,7297 0,647 0,7804 0,734 0,6452 0,976

To analyse the similarities among the different groups ANOSIM (analysis of similarities)
was performed in a pairwise manner. ANOSIM was done comparing two groups each time
using Bray Curtis distances and was repeated for each analysis (16S faeces, 16S biopsies
and ITS2 biopsies). Results are summarized in Table 7.8. There were significative
differences in fungi diversity between control vs active CD and active UC vs active CD and
in two cases the statistic R value were relatively close to 1 (0,49 and 0,496 respectively),
which meant that differences between groups were significantly greater than differences
within groups, according to PERMANOVA results. The ANOSIM test also found significative

differences when comparing quiescent UC vs active CD in bacterial analysis in stool.
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Table 7.8. ANOSIM tests among all groups.

Bacteria
ANOSIM Fungi Biopsies Biopsies Bacteria Stool
Statistic Statistic P-

Groups R P-Value | Statistic R | P-Value R Value
Control-Active Colitis -0,164 0,902 -0,076 0,743 0,012 0,442
Control-Quiescent Colitis 0,05 0,256 0,036 0,314 -0,1336 0,853
Control-Active Crohn 0,49 0,01* 0,124 0,153 -0,104 0,966
Control-Quiescent Crohn 0,098 0,172 -0,0625 0,657 -0,1467 0,993
Active Colitis-Quiescent Colitis 0,124 0,184 -0,02 0,589 0,0765 0,255

Active Colitis-Active Crohn 0,496  0,012* 0,116 0,203 -0,09333 0,86
Active Colitis-Quiescent Crohn 0,08438 0,227 0,075 0,297 -0,09067 0,898
Quiescent Colitis-Active Crohn 0,076 0,169 0,008 0,449 0,1521 0,045*

Quiescent Colitis-Quiescent

Crohn -0,05 0,671 -0,125 0,819 0,08598 0,143

Active Crohn-Quiescent Crohn -0,0125 0,499 -0,01875 0,503 -0,1 0,996

7.3.5 Microbiota comparison between different tissues

PERMANOVA was conducted comparing faeces and biopsies in each group using Bray
Curtis distances. Results are summarized in Table 7.9. The PERMANOVA test showed that
faeces and biopsies have different compositions in all groups. High Pseudo-F values (1.5
or higher) in all groups indicated that there were great differences between tissues except

in the case of quiescent CD.

Table 7.9. PERMANOVA tests between stool and biopsies in all groups using Bray Curtis distances from
bacterial data.

Bacteria - Biopsies Vs
PERMANOVA Stool

Group Pseudo-F P-Value
Control 1,7973 0,045%*
Active Colitis 2,3399 0,016*
Quiescent Colitis 1,9253 0,004*
Active Crohn 1,5964 0,036*

Quiescent Crohn 1,4691 0,1

ANOSIM test was conducted between faeces and biopsies in each group using Bray Curtis
distances. Results are summarized in Table 7.10. There were significative differences in
controls and both active and quiescent UC groups when comparing stools to biopsies.
Statistic R value was relatively close to 1 in both colitis groups (0,41 and 0,48 respectively),
which meant that differences between tissues were significantly greater than differences
within tissues. This R value was very close to 0 in the active CD group, indicating that the

difference between tissues was small and not significant.
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Table 7.10. ANOSIM tests between stool and biopsies in all groups using Bray Curtis distances from
bacterial data.

Bacteria - Biopsies Vs
ANOSIM Stool
Group Statistic R P-Value
Control 0,28 0,042*
Active Colitis 0,412 0,015*
Quiescent Colitis 0,4839 0,002*
Active Crohn 0,088 0,189
Quiescent Crohn 0,0635 0,263

Analyzing the differences and similarities at the taxonomy level between tissues (Figure
7.3 and Figure 7.10), some genera were represented in both tissues in several groups, as
Collinsella and Prevotella, both present in active status of IBD diseases. In a similar way,
Escherichia-shigella was represented in controls and quiescent phases of IBD, both in
biopsies and stools. Bacteroides and Faecalebacterium were present in all cohorts both in
stool and mucosal samples. It is also interesting that Parabacteroides were found in
mucosal samples from all cohorts except active CD, although in faeces it was found only
in active CD group. Alistipes genus was identified in the mucosal samples from all cohorts
while in faeces was only absent in quiescent CD. Erysipelotrichaceae_UCG_003 however
was present in both tissues also but only in the control groups. Parallelly, some genera
were only found in one tissue as Eubacterium_hallii and Bifidobacterium, only present in

faeces, or Turicibacter or Veillonella, only present in intestinal biopsies.
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7.4 DISCUSSION

Our study provides novel insights into the diversity and interactions of bacterial and fungal
communities in inflammatory bowel disease (IBD) at the gut location, revealing distinct
microbial patterns associated with disease activity and remission. Moreover, our study
analysed bacterial composition in both intestinal tissue and faecal samples from the same
patients, providing a highly interesting approach to compare mucosa-associated and faecal
microbiota. This paired-sample strategy enhances our understanding of microbial
dynamics and explores the potential of faecal bacteria as non-invasive biomarkers for
disease. A key finding was the identification in faeces of potential biomarkers, such as
Prevotella for active disease and Roseburia for remission states which offers exciting
opportunities for developing less invasive diagnostic tools and improving patient

management.

Our results showed a decrease in SCFA producers in both CD and UC which has also been
reported by other studies (74,75) and involves a reduction in the production of butyrate,
propionic acid among others that promotes a tolerogenic environment in the gut (76,77).
IBD involves an increase in other SCFA producing bacteria like Turicibacter,
Faecalebacterium, Alistipes confirmed by other authors (78—80). One of their primary roles
is the production of SCFAs, particularly Faecalibacterium, a butyrate-producer. While
Turicibacter and Alistipes also produce SCFAs, they may produce different types (lactate
and propionic acid, respectively) or amounts of them. Indeed, Alistipes has been linked to
both protective and pathogenic effects as it showed protective benefits against colitis but
has also been associated with colorectal cancer development (34,35,53-55,81). The
depletion of SCFA producing bacteria observed in IBD patients is associated with aberrant
immune responses and impaired intestinal barrier integrity (82). Analysis of the fungal
diversity showed an increase in the fungi diversity of IBD patients compared with controls.
This increase has been observed by other groups (83). We hypothesize that the bacterial
dysbiosis in IBD facilitates fungal colonization, a process not observed in healthy
individuals, as has been supported by studies showing an increase in the relative
abundance of Candida albicans and a decrease in Saccharomyces cerevisiae in IBD
patients compared to controls (15,84). Furthermore, increased fungal diversity in inflamed
mucosa of CD patients has been correlated with disease activity and higher levels of pro-

inflammatory cytokines, such as TNF-a and IFN-y (85).

These findings suggest that IBD-related dysbiosis creates an environment that facilitates
fungal colonization, although further research is necessary to fully elucidate the fungal
dysbiosis associated to IBD and its impact on the pathogenesis. Regarding to that, our data

suggest that Wallemia could play a role in balancing that presence of potentially beneficial
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of pathogenic bacteria such as Roseburia and Fusobacterium. It is interesting the fact that
SCFA producers like Turicibacter, Roseburia or Erysipelotrichaceae were detected in the
same mucosal sites as potentially pathogenic fungi like Stemphylum, Cladosporium or
Aureobasidium in remission states of the disease -both UC and CD-, indicating a
mechanism of regulation of the fungi and bacteria as it has been described in other fungi
(61). Some authors confirmed that SCFAs, such as acetate, propionate, and butyrate,
produced by commensal intestinal bacteria, directly modulate the presence and behaviour
of intestinal fungi, particularly Candida albicans, inhibiting its growth and its ability to form
hyphae (a more invasive form) (86,87). This regulation is crucial for maintaining fungal
eubiosis and preventing dysbiosis associated with inflammation or disease (61). Our results
support the idea of the regulation of mycobiome and bacteriome for its own. In summary,
while established microbial interactions contribute to shaping the mycobiome, the
metabolic complexity of the gut microbiota likely involves additional regulatory

mechanisms.

Bacterial biomarkers present a promising, less invasive alternative to traditional procedures
such as colonoscopy (88,89), potentially offering a more patient-friendly approach in the
future. To identify these biomarkers in our IBD patients, we assessed bacterial genera that
were present in both stool and biopsy samples within the same patient groups (Figure 7.3
and Figure 7.10). In this way, Prevotella was identified as a potential biomarker for active
status of IBD -both UC and CD-, which agrees with other studies that found pro-
inflammatory characteristics of this genus (43—45); Fusobacterium for active CD and which
was also linked with colorectal cancer and IBD (36—38) and Roseburia, a well-known SCFA
producer related to normal microbiota (46,47), for quiescent UC. Summarizing, our results

justify further investigation of these genera as potential biomarkers of IBD.

Our results highlight the critical role of bacterial-fungal balance in modulating the gut
microbiota of patients with IBD. Despite limitations as the sample size and the inability to
characterize the virome, we have proposed three bacteria genera that could act as

biomarkers of IBD.
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Discussion

This thesis was aimed to deepen our understanding of the key factors underlying I1BD,
focusing primarily on the study of two main factors underlying IBD: immunome and
microbiota. Regarding the immunome, | focused on APCs, as they are crucial regulators of
intestinal homeostasis. In particular, cDCs play a pivotal role in shaping the type of
response elicited against antigens (tolerogenic against commensals and inflammatory
against pathogens, in health conditions), which led us to hypothesize that they may also
be therapeutic targets of some drugs (specifically tofacitinib), used in IBD treatment (UC in
this case). Furthermore, given the importance of the gut microbiota in maintaining intestinal
homeostasis and its involvement in IBD pathogenesis, this thesis also aimed to
characterize the faecal and intestinal mucosal-associated microbiome in human samples,
with the final goal of identifying bacterial and fungal patterns and potential faecal

biomarkers.
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Chapter 8

8.1 IMMUNOME STUDY

To that end, in the first instance, a protocol for isolating human intestinal LPMC from
biopsies and intestinal resections has been optimized. This protocol subsequently allowed
the identification and isolation of different subsets of intestinal APC, including cDC1, cDC2,
CD103* ¢cDC2, monocytes, and M®. This optimization is highly relevant because studies
of intestinal APCs have been usually performed in mice or human cells derived from
monocytes (e.g., MO-DC or MO-M®s), which, although share some of their properties, they
do not fully replicate the properties of bona fide intestinal DCs and M®. Research regarding
human gut DC is limited, primarily due to methodological difficulties in studying human
tissue and isolating human gut APC. For this reason, the optimization of a protocol that
enables the isolation of human intestinal APC implies an advance in the study of human

intestinal cDC and M®, and consequently, their implication in IBD, main topic in this thesis.

Focusing on the functional differences between human and mouse cDC, it becomes clear
why studying human intestinal cDCs directly is essential. Although mouse gut cDC subsets
are well characterized and have been key in understanding basic immunological principles,
their functional responses often diverge from those of human intestinal cDC (1). For
example, while murine CD103* cDCs are robust inducers of regulatory T cells via RA and
TGF-B production and are capable of suppressing colitogenic responses in vivo (2-5),
evidence for these same functions in human intestinal DCs is much more limited.
Additionally, inflammatory responses show variation: murine cDCs respond strongly to
TLR2 and TLR4 ligands during colitis, producing cytokines like IL-12 (6—8), whereas human
intestinal DCs in IBD tissues tend to express different activation profiles, including elevated
IL-6 and IL-18, with unclear upstream triggers (9,10). Moreover, human cDCs are exposed
to a far more complex and variable microbiota, diet, and genetic background than lab-
housed mice, which further impacts their function and plasticity (11). These differences
underscore the necessity of working with primary human intestinal cDCs when the goal is
to understand their precise roles in health and disease, especially in those whose cause

remains unclear, as occurs in IBD.

Importantly, immunomodulatory drugs that are effective in human IBD sometimes fail to
reproduce the same effects in murine models. For example, tofacitinib has been shown to
ameliorate colitis severity in murine models, including dextran sulphate sodium (DSS)- and
T cell transfer-induced colitis, but typically fails to induce full remission or prevent disease
relapse (12). Additionally, tofacitinib have been shown to suppress pro-inflammatory
cytokines such as TNF-qa, IL-6, and IL-8 in colonic organoids from tissue biopsies,
specifically targeting gut-resident phagocytes without disrupting basal antigen presentation

(13). Another important distinction lies in the use of MO-DCs as simulators of human

210
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intestinal APCs. Although MO-DCs are widely used due to accessibility and ease of
generation, they differ transcriptionally, phenotypically, and functionally from tissue-resident
bona fide cDCs (14). For instance, tofacitinib impairs T cell priming and reduces
costimulatory molecule expression in MO-DCs derived from healthy blood donors and
decrease stimulatory capacity of MO-DC (15), however in this thesis is showed that
intestinal cDCs are not affected by tofacitinib neither their phenotype, nor their function
(tofacitinib do not modulate their stimulatory capacity over T cells) (16), reinforcing the idea
that conclusions drawn from MO-DC models may not fully replicate tissue-specific
responses. In summary, experiments using primary human intestinal APCs can faithfully
capture the complexity of human immune responses and allows to consider the

interindividual human variability.

Having optimized a protocol that allowed the isolation and use of human intestinal APC, |
explored the immunome as a key factor underlying IBD. Within the human immunome, |
focused in cDC as they are key players in immune regulation determining the type of
response (tolerogenic or proinflammatory) that is generated to different intestinal stimuli.
Firstly, the distribution of different cDC subsets along the gastrointestinal tract was
examined, from the duodenum to the terminal colon, characterizing both their phenotype
and function. Our findings indicated that the cDC1 and CD103" cDC2 subtypes promote
regulatory phenotypes in T cells via a RA—-dependent mechanism (2,17); this tolerogenic
profile is associated with the expression of PD-L1 in the small intestine, whereas in the
colon, it appears to be dependent on XCR1 (18). These observations are consistent with
the low expression of PD-L1 typically found in healthy human intestinal cDCs, with the
exclusive intestinal CD103* cDC2 subset exhibiting the highest expression. This subset,
when exposed to TGF[, generates Tregs and shows an enhanced capacity to produce IL-
10. Additionally, all cDC subsets (in contrast to monocytes) promoted the differentiation of
IL-10 producing CD4* T cells.

Human intestinal CD103* cDC2 have emerged as a key tolerogenic DC subset in the gut.
Recent human studies indicate that these CD103*SIRPa* cDC2 express high levels of
immunoregulatory molecules such as PD-L1 and produce anti-inflammatory IL-10 in the
steady state (18,19). Indeed, mice lacking PD-L1" and XCR1* DC have a proinflammatory
gut milieu associated with an increase in Th1/Th17 cells and a decrease in Treg cells and
have exacerbated disease in the models of colitis (18). This work provides evidence that
PD-L1* ¢cDC2 in the small intestine may correspond to the CD103* cDC2 subset previously
characterized as tolerogenic in both human and murine models. The enrichment of PD-L1*
DCs in the duodenum, particularly within the SIRPa* cDC2 population, is in agreement with

other studies performed in mice that showed that intestinal CD103* cDC2 exhibit a
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tolerogenic phenotype marked by high PD-L1 expression, IL-10 production, and the
capacity to induce regulatory T cells via RA and TGF-B (2,20,21). Given that CD103
expression is a hallmark of tolerogenic intestinal DCs, especially in the upper gut, it can be
suggested that these PD-L1* ¢cDC2 in mice represent the same functionally specialized
CD103* cDC2 subset. Their compartmentalized distribution, with a dominant presence in
the duodenum and decreasing abundance toward the colon, further supports their role in
region-specific immune tolerance and suggests a functional specialization of cDC2 along

the intestinal axis.

cDC efficiently migrate to mesenteric lymph nodes and induce gut-homing FOXP3* CD4*
Tregs under the influence of the mucosal environment (19,22). In particular, CD103* cDC2
upregulate retinaldehyde dehydrogenase (RALDH) and use locally abundant TGF- to
generate RA, imprinting CCR9*04B7" gut-homing on differentiating Tregs (23,24).
Consistent with a tolerogenic profile, human small intestinal cDC show especially high PD-
L1 expression compared to colonic DC (18), and mTOR-dependent IL-10 production by
these cDC2 is required to maintain gut homeostasis (19). Thus, human CD103* cDC2
combine high PD-L1 and IL-10 with RA/TGF-B—dependent signalling to potently drive
FOXP3" regulatory T cell differentiation in the intestine (19). Supporting the idea of the
tolerogenic role of CD103* cDC2, it has been also observed that CD103* cDC2 can acquire
the ability to induce Th17 responses in the inflamed mucosa of CD patients. This shift from
a tolerogenic to a pro-inflammatory profile suggests a functional plasticity of CD103* cDC2
and supports the hypothesis that, in CD, gut microenvironment make cDC to shift to a
proinflammatory state and phenotype, losing their regulatory function and instead

contributing to gut inflammation.

When studying these cells in mice, intestinal CD11b*CD103* cDC2 are uniquely efficient at
inducing FOXP3* Tregs (via a TGF-f and RA) (19,25). In contrast, intestinal CD103* cDCA1
(XCR17") specialize in cross-presentation and Th1/Th17 immunity as they produce IL-12/IL-
27 and primarily support IFN-y producing T cells rather than classical CD4* Tregs (9,26,27).
For example, cDC1-derived PD-L1, TGF-B and RA drive a FOXP3"* regulatory CD8" T cell
population in the gut (27), whereas cDC2 are the main inducers of FOXP3* CD4" Tregs
(19). Reflecting these functional differences, murine cDC2 express high PD-L1 and ALDH
in the small intestine (where they induce IL-13/TNF responses), whereas colon DC
(enriched for XCR1*) show lower PD-L1 and instead bias T cells towards IL-17/IL-22
programs (18). Thus, mouse models of intestinal immunity support that CD103* cDC2 carry
a distinct tolerogenic signature (high PD-L1, IL-10/RA production, TGF-B dependence)
relative to cDC1 or CD103- cDC2 (19,27).
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On the other hand, although the proportion of colonic cDC2 does not decrease in IBD,
colonic ¢cDC2 from patients with IBD (both UC and CD) exhibit reduced expression of
SIRPa a receptor implicated in the “don’t eat me” regulatory signal via its interaction with
CDA47 (28). Moreover, our study reveals a reduction in the cDC1 and CD103* cDC2 subsets
in the inflamed colonic mucosa of UC patients, but not in CD. This differential distribution
of cDC subsets suggests disease-specific alterations in mucosal immune regulation and
highlights a potential divergence in the pathophysiological mechanisms underlying these
diseases. The reduction of cDC1 in UC is particularly noteworthy given their role in
maintaining intestinal homeostasis through cross-presentation and the induction of
regulatory CD8* T cells, as well as their ability to produce IL-12 and IL-27, which contribute
to the control of Th17-mediated inflammation (29,30). Their depletion could therefore
exacerbate the dysregulated immune activation and epithelial barrier dysfunction that
characterize UC. Similarly, the loss of CD103" ¢cDC2 in the inflamed colon may further
compromise mucosal immune regulation. This subset has been shown to induce Tregs via
RA and TGF-B dependent mechanism (2,4), as well as to express immunoregulatory
molecules such as PD-L1 and secrete IL-10, contributing to tolerance both in mice (18) and
humans, as our observations showed. Their diminution in UC mucosa may reflect a failure

of tolerogenic control, enhancing the persistence of proinflammatory responses.

In contrast, in CD, both cDC1 and CD103* cDC2 appear to be preserved in the inflamed
tissue. However, their functional program may be altered. Indeed, it has been showed that
CD103*SIRPa* cDC2 isolated from the inflamed ileum of CD patients acquire the capacity
to prime IL-17—producing CD4* T cells, suggesting a loss of regulatory function and
acquisition of proinflammatory potential. This functional plasticity supports that, although
tolerogenic DC subsets remain in CD tissue, they may shift their phenotype under
inflammatory conditions. Conversely, in UC, the physical absence of these key regulatory
DC subsets points to a more profound and possibly irreversible disruption of the tolerogenic
network, potentially driven by differences in local cytokine environments, microbiota
composition, or epithelial barrier cues (31-33). This divergence in cDC subset phenotype
and function between UC and CD underscores the distinct immunological fingerprints of
these diseases. It also highlights the potential of CD103* cDC2 and cDC1 as therapeutic
targets, particularly in UC, where their depletion might represent a key player in disease
progression. Therapeutic strategies aimed at preserving or restoring these populations
could provide novel avenues to reestablish immune tolerance in the Gl-tract of IBD patients.
Further studies are needed to determine what factors trigger the change in cDC phenotypes
and its dysfunction in UC, and whether these changes are reversible with treatment or

immune-modulating interventions.
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Previous studies have indicated that CD103* cDCs originate from CD103- cDC2 (25). This
is also observed in our work, that showed an increased number of CD103* cDC2 after
culturing LPMC. Notably, this differentiation process is inhibited by proinflammatory stimuli
such as LPS, which promotes IL-1B secretion (although this inhibition is not exclusive to
LPS). This inhibitory effect may mirror the scenario in IBD, wherein a proinflammatory
microenvironment—that it was hypothesized that it is induced by microbiota stimuli—
prevents cDC2 from differentiating into tolerogenic CD103* ¢cDC2. This mechanism could
explain the observed reduction in cDC1 and CD103* ¢cDC2 within the inflamed colon of UC
patients. Furthermore, although CD103* cDC2 expresses PD-L1 and is attributed with
regulatory functions through IL-10 production and Treg stimulation, increased PD-L1
expression and a higher number of FOXP3* Treg cells have been observed in the intestinal
mucosa of CD patients (34). This phenomenon may represent a compensatory mechanism
by the immune system to mitigate inflammation or could be due to a malfunction in the PD-
1/PD-L1 axis (35,36).

Taken together, our findings suggest a mechanism in the development of IBD in which
inherently tolerogenic intestinal cDCs (which in normal conditions promote tolerogenic
responses) encounter a proinflammatory stimulus—likely derived from the microbiota or its
metabolites—resulting in a shift of the intestinal microenvironment towards a
proinflammatory state. This shift reprograms cDCs, preventing their differentiation into a
tolerogenic (CD103") profile and instead promoting the generation of IL-17A—producing
Th17 cells.

Having showed the pivotal role played by cDCs in the immunological mechanisms
underlying IBD, the hypothesis was that these cells might represent the therapeutic target
for tofacitinib—a small molecule approved for the treatment of UC whose cellular targets
are still not fully defined. To explore this hypothesis, a cytometry panel for the identification
of human intestinal mMAPCs was developed, encompassing the various subsets of cDCs,
monocytes, and M®s. This panel included markers of the JAK/STAT pathway (tofacitinib
targets), as well as cytokines and receptors implicated in mucosal inflammation (such as
CXCR3, TLR2, TLR4, IL-1B, IL-6, IL-10, TNFa and IL-15). Previous studies had
demonstrated that tofacitinib could modulate the function of MO-DCs by reducing their
stimulatory capacity (15,37). In contrast, our experiments using human intestinal cDCs
isolated from intestinal resections—evaluated under basal conditions and following LPS
stimulation in the presence/absence of tofacitinib did not show any change in their
stimulatory capacity. This discrepancy may be explained by inherent differences between
MO-DCs and human tissue-resident intestinal cDCs, as previously discussed. Thus, while

tofacitinib may affect circulating DCs, it does not appear to impact tissue-resident intestinal
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cDCs directly. Alternatively, tofacitinib might exert its therapeutic effect by suppressing
proinflammatory T cell activation (13,38) without directly modulating the function of cDCs.
However, an inhibitory effect of tofacitinib on intestinal human monocytes and M®s was
observed. Specifically, in UC patients (both active and quiescent), there was a reduction in
JAK1 expression in monocytes, with a concomitant decrease in JAK1 in active UC
monocytes and JAK3 in quiescent UC monocytes. This is, to the best of our knowledge,
the first confirmation of the reduction in JAK1 and JAKS3 levels in human intestinal

monocytes and M®s.

Previous studies have shown that tofacitinib can impair the function of MO-DCs by reducing
their ability to stimulate T cells (15). These studies, largely based on in vitro—generated
DCs from peripheral blood monocytes, support the notion that JAK-STAT signalling is
crucial for DC maturation and proinflammatory cytokine production (39,40). However, our
data, generated using human intestinal cDCs freshly isolated from surgical resections,
presented a different scenario. Under both basal conditions and after stimulation with LPS,
with or without tofacitinib, any significant changes in the allostimulatory capacity of
intestinal cDCs were observed. This discrepancy may be due to intrinsic differences
between MO-DCs and tissue-resident cDCs as have been explained above. These results
suggest that while tofacitinib may modulate circulating myeloid cells, including MO-DCs, its
direct impact on tissue-resident intestinal cDCs appears limited. Therefore, tofacitinib’s
therapeutic efficacy in UC may instead stem from its effects on downstream effector cells—
particularly T lymphocytes. Supporting this, tofacitinib has been shown to suppress the
differentiation and function of Th1 and Th17 cells by interfering with IL-2, IL-6, and IL-23
signalling pathways (13,38). These pathways are crucial for the expansion of pathogenic T
helper subsets in IBD, suggesting an indirect mechanism by which tofacitinib may suppress
inflammation. Interestingly, however, an immunomodulatory effect of tofacitinib on intestinal
monocytes and M®s was identified. In both active and quiescent UC patients, we observed
a reduction in JAK1 expression in intestinal monocytes. Notably, JAK3 was selectively
reduced in monocytes from quiescent UC patients. Prior studies have confirmed the
inhibitory potential of tofacitinib on monocytes in systemic contexts by showing reduced
phosphorylation of STAT5, a downstream target of JAKs that regulates proinflammatory
cytokine transcription (41-43). Our findings extend these results to the human intestinal
lamina propria and suggest a local anti-inflammatory mechanism mediated through
disruption of JAK-STAT signalling in resident M®s.

Additionally, an unsupervised analysis of the entire human intestinal myeloid APC
compartment, enabled us to identify 16 distinct subsets, the majority of which corresponded

to M®s. Importantly, mAPCs from healthy controls more closely resembled those from
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patients with quiescent UC than those from active UC, reinforcing the role of macrophage
phenotypic plasticity in disease progression. However, treatment with tofacitinib did not
significantly alter the proportional distribution of these subsets, indicating that while the
drug effectively reduces JAK1 and JAK3 expression, it does not reprogram mAPC subset
composition. This confirms that although tofacitinib downregulates JAK1 and JAK3 in

monocytes and M®s, it does not appear to modify the phenotype of these subsets.
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8.2 MICROBIOME STUDY

Finally, given the central role of APCs in IBD, and having studied the differences between
controls and IBD patients, it was ultimately decided to investigate the other major pillar in
IBD research: microbiome. In this way, microbiota was evaluated, including bacteria and
fungi (viruses were not possible to be assessed), in both human intestinal mucosa and
stool (in this case, only bacteria). Initially, assessments of bacterial alpha and beta diversity
did not reveal significant changes in either stool or intestinal mucosa samples. This
contrasts with other studies that reported a decrease in bacterial diversity in IBD (44,45),
particularly in active disease, which could be attributed to the low sample numbers per
study group. Regarding fungal diversity in the intestinal mucosa, the literature presents
different results: some described an increase (46), others a decrease in diversity in IBD
(47), but all report a change in mycobiome (46—48). In our study, an increase in fungal
diversity was observed in IBD patients in both faeces and intestinal biopsies, but it was not

statistically significant.

Our analysis of the microbiota from both intestinal mucosal biopsies and stool samples
from controls and IBD patients revealed a marked reduction in SCFA—producing bacterial
genera in IBD, with a concomitant increase in genera with potential to contribute to disease
under dysbiotic conditions. Among the most consistently reduced genera was Bacteroides,
a major anaerobe in the healthy human gut known for its ability to produce acetate and
propionate through fermentation of dietary fibers (49-51). The decline of Bacteroides in
both CD and UC has been previously reported in numerous studies and is considered a
hallmark of dysbiosis in IBD (52,53). SCFAs such as acetate, propionate, and butyrate are
microbial metabolites known to maintain intestinal homeostasis by supporting epithelial
barrier integrity, regulating mucosal immune responses, and promoting the differentiation
of regulatory T cells (52,54). Thus, the loss of SCFA-producing microbes in IBD may
facilitate inflammation and mucosal damage. Moreover, our data showed an increase in
potentially harmful genera, such as Fusobacterium, which has been associated with pro-
inflammatory activity, epithelial invasion, and colorectal carcinogenesis (55-57). The
expansion of Fusobacterium in the inflamed gut likely contributes to the disruption of
epithelial integrity and perpetuation of chronic inflammation in IBD (55). Interestingly, not
all SCFA-producing genera were uniformly decreased. In stool samples, Agathobacter, a
known butyrate producer, was significantly reduced during active disease but showed
increased abundance in remission phases, suggesting a dynamic response of this genus
to the inflammatory environment. Similarly, mucosal biopsies from IBD patients showed an
increase in genera such as Faecalibacterium and Alistipes. Faecalibacterium prausnitzii is

a key butyrate producer with documented anti-inflammatory properties (58), and its
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increase in certain mucosal areas may represent a compensatory attempt by the microbiota
to restore homeostasis. Conversely, the increased presence of Alistipes and Turicibacter
in IBD tissues may reflect more complex and context-dependent roles. While Alistipes has
been associated with both anti-inflammatory and pro-inflammatory effects depending on
the host condition and microbial community structure (59), Turicibacter’s role remains less
clear but has been linked to host serotonin signalling and mucosal immunity (60). These
findings underscore the need to consider tissue localization and disease phase when

interpreting microbiota shifts.

Altogether, our results highlight a complex restructuring of the intestinal microbial
ecosystem in IBD, characterized by a loss of beneficial SCFA-producing bacteria and an
expansion of potentially pathogenic or opportunistic genera. Importantly, the differential
patterns observed between stool and mucosal samples reinforce the value of assessing
both luminal and mucosa-associated microbiota, as they may represent distinct ecological

niches with varying implications for disease activity.

The intestinal microbiota plays a pivotal role in maintaining immune homeostasis, primarily
through the production of SCFAs, including butyrate, acetate, and propionate. These
metabolites are known to promote Treg differentiation and sustain a tolerogenic
environment in the gut by modulating the function of local antigen-presenting cells,
especially DCs (61-63). In our study, both mucosal and faecal samples from IBD patients
revealed a reduction in SCFA-producing genera, such as Bacteroides, Agathobacter, and
Roseburia, particularly during active disease, consistent with previous findings (64,65). In
contrast, an enrichment of potentially human pathogenic taxa was observed, including
Fusobacterium. Moreover, certain SCFA-producing genera such as Faecalibacterium and
Alistipes, which may have context-dependent effects, were found to increase in mucosal
biopsies despite their reduction in faeces, suggesting spatial differences in microbial
function and interaction with the host immune system (66). This microbial dysbiosis has
significant implications for the function of intestinal cDCs. Mechanistically, SCFAs such as
butyrate act as histone deacetylase (HDAC) inhibitors, leading to downregulation of
costimulatory molecules (CD80, CD86), MHC-II, and proinflammatory cytokines like IL-12,
while enhancing IL-10 production, thus promoting Treg differentiation over inflammatory
subsets (67). In addition, SCFAs bind to G-protein-coupled receptors such as GPR109A
and GPR43 expressed on DCs, further reinforcing anti-inflammatory responses (68,69);
activation of GPR109A by butyrate has been shown to induce Tregs and suppress Th17
responses in colitis models (70). These regulatory mechanisms have been mainly
described in murine models, but human data support similar effects: butyrate-treated

human MO-DCs exhibit decreased CCR7 and IL-12 expression and promote IL-10-
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producing T cells instead of Th1 or Th17 cells (71). Therefore, the depletion of SCFA-
producing bacteria observed in IBD patients may impair the capacity of intestinal cDCs to
acquire tolerogenic functions while instead promote Th17 responses (72—74). Thus, the
interplay between microbial dysbiosis and local inflammation likely disrupts the tolerogenic
capacity of cDCs, reinforcing a feedback loop that perpetuates chronic inflammation and

mucosal immune dysregulation in IBD.

Comparing the bacterial composition of the intestinal mucosa with that of stool samples
revealed significant differences in microbial profiles. These results highlighted distinct
patterns between mucosal and luminal communities, underscoring the influence of local
microenvironmental factors, such as oxygen gradients, host immune interactions, and
nutrient availability, on shaping the microbiota composition in each compartment (75,76).
Despite these differences, a substantial overlap in bacterial taxa was observed, with many
genera and species being shared between tissue biopsies and faecal samples. This
overlap suggests that stool samples may serve as a practical and informative window into
the mucosal microbial landscape. However, it is important to know that faecal samples do
not fully capture the mucosa-associated microbiota, particularly those bacteria that
preferentially colonize the epithelial surface or exist in close contact with host cells (77,78).
Consequently, while faecal microbiome analysis remains a valuable non-invasive tool for
studying gut microbial dynamics, it should be interpreted as an approximation rather than
a complete representation of the mucosal ecosystem. This distinction is particularly
relevant in IBD, where mucosal dysbiosis may be more closely associated with disease
(64,74).

In terms of fungal composition, although no statistically significant differences were
observed in alpha and beta diversity metrics between IBD patients and controls, an
increased number of fungal genera was detected in the IBD groups. This observation is
consistent with previous reports suggesting that dysbiosis in IBD also affects the
mycobiome (79). Interestingly, the genera enriched in IBD samples in our study were not
the well-characterized Candida or Saccharomyces, which have historically been
associated with mucosal inflammation and immune activation in IBD (80,81), but rather
lesser-known fungal genera whose role in gut immunity remains poorly understood. This
highlights a critical gap in our understanding of the intestinal mycobiome and calls for more
studies characterizing these underrepresented genera in the context of intestinal
inflammation. Additionally, a reduction in Saccharomyces in IBD patients was shown
compared to controls, which aligns with findings linking decreased abundance of this genus
to gut barrier dysfunction and impaired anti-inflammatory responses (47,82). Specifically,

S. boulardii can promote a tolerogenic DC phenotype by downregulating proinflammatory
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cytokines (e.g., IL-6, IL-12, TNF-a) and enhancing the secretion of anti-inflammatory
mediators such as IL-10, thereby contributing to the expansion of Tregs and the
maintenance of immune homeostasis (83). Additionally, S. boulardii has been shown to
preserve epithelial barrier function by enhancing the expression and localization of tight
junction proteins, such as occludin and zonula occludens-1 (ZO-1), and by reducing
epithelial permeability in models of inflammation-induced barrier dysfunction (84). Given
these immunomodulatory and barrier-stabilizing properties, the observed decrease in
Saccharomyces in patients with IBD may contribute to a shift toward a more
proinflammatory intestinal microenvironment, thus exacerbating disease pathogenesis.
However, due to limited sample size and the high degree of interindividual variability
observed in fungal community composition, it was not possible to define a consistent
dysbiotic signature. Further studies with larger, well-stratified cohorts and integrative multi-
omics approaches will be necessary to clarify the role of the fungal microbiota in the

pathogenesis and progression of IBD.

It is important also to highlight that diet -one of the most influential modulators of the gut
microbiota- was not controlled in this study. Dietary intake can significantly alter the
composition and metabolic activity of the intestinal microbiota, thereby influencing immune
responses and disease activity in IBD patients (85,86). However, due to its high variability
and the difficulty of accurately monitoring dietary habits over time, this factor was not

incorporated into our analyses.

Having described both microbiome and mycobiome, the potential regulatory interactions
within the microbiota has been also investigated. The correlation analysis of the intestinal
mucosal microbiota revealed a complex network of interactions between bacterial and
fungal genera that may reflect regulatory dynamics within the ecosystem, particularly in the
context of IBD. Notably, certain fungal genera such as Wallemia showed positive
correlations with commensal, SCFA—producing bacteria like Roseburia, and negative
correlations with proinflammatory (in human health context) genera such as
Fusobacterium. This is consistent with the hypothesis that specific fungi may contribute to
the maintenance of microbial homeostasis through their interactions with beneficial

bacteria.

Interestingly, a greater number of bacteria—fungi correlations were described during
remission phases of IBD compared to periods of active inflammation. Many of these
associations involved SCFA-producing bacteria and fungi with less characterized or
potentially regulatory roles. This observation aligns with findings from a study which

demonstrated that microbial network disturbances are more pronounced during active CD,
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whereas remission phases exhibit more stable and interconnected microbial communities
(87). Other study revealed alterations in the fungal microbiota of IBD patients, suggesting
that changes in fungal-bacterial inter-kingdom relationships may influence disease activity
(47). Collectively, these findings suggest that increased microbial network complexity and
stability during remission may reflect compensatory mechanisms that favour immune
tolerance and tissue repair. It is also interesting that during active phases of IBD,
correlations were dominated by potentially pathogenic taxa such as Fusobacterium,
Escherichia/Shigella, and fungal genera with known proinflammatory properties, which may
reflect a breakdown of regulatory cross-talk and a shift toward microbial configurations that
sustain inflammation (88). In remission state, it was described that beneficial cross-
kingdom correlations—such as positive associations between Wallemia and SCFA-
producing bacteria like Roseburia and Agathobacter—were more prominent, suggesting a
cooperative and potentially immunoregulatory ecosystem. This pattern is consistent with
other studies using multi-omics profiling to show that remission in IBD is associated with
more complex and stable microbial co-occurrence networks, including bacteria—fungi
interactions (89). Altogether, these findings support the concept that interkingdom microbial
interactions are central modulators of gut immune homeostasis, especially in the context
of IBD. This agrees with studies that support that fungal and bacterial species in the gut do
not operate in isolation but instead engage in complex ecological networks that can either
sustain immune tolerance or exacerbate inflammation depending on the health status of
the host (90). These condition-dependent microbial interactions underscore the importance
of viewing IBD not only as a disease of bacterial dysbiosis but also one of disrupted trans-

kingdom symbiosis.

The identification of reliable, non-invasive biomarkers is a critical goal in the management
of IBD, particularly to support diagnosis, monitor disease activity, and predict therapeutic
responses. In this context, stool samples offer a practical, cost-effective and patient-friendly
alternative to mucosal biopsies, and the presence of microbial signatures in faeces that
reflect mucosal conditions holds considerable clinical promise. Based on our comparative
analyses of microbial profiles in mucosal biopsies and paired stool samples, three bacterial
genera with biomarker potential were identified: Prevotella, Fusobacterium, and Roseburia,

each exhibiting disease- and phase-specific patterns across intestinal compartments.

Prevotella was consistently elevated in both stool and mucosa during active IBD,
supporting its potential as a biomarker of disease flare. Although traditionally associated
with fiber-rich diets and considered part of a “healthy” enterotype in some populations,
certain Prevotella species have been implicated in proinflammatory responses through

TLR2 activation and promotion of Th17 differentiation (91). The expansion of Prevotella in
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active IBD may therefore signal mucosal immune activation and microbial imbalance.
Fusobacterium, particularly F. nucleatum, was enriched in stool and mucosal samples from
patients with active CD (92,93). This genus has been previously associated with
proinflammatory properties, epithelial barrier disruption, and increased disease severity in
CD (56,92). Its invasive potential and strong correlation with inflamed mucosa further
support its utility as a biomarker specific to CD activity. Moreover, Fusobacterium has
shown predictive value in other intestinal diseases such as colorectal cancer, which agrees
with the clinically relevancy taxon for inflammation-associated pathology. Finally,
Roseburia, a well-known SCFA-producing genus with anti-inflammatory properties, was
more abundant in stool and mucosa during quiescent UC and reduced during active
disease. Its capacity to produce butyrate suggests a role in maintaining remission. Further

longitudinal studies are needed to confirm their potential use as biomarkers.

The integration of taxonomic, functional, and correlation-based microbiota data from both
mucosal and stool samples provides new insights into the complex ecological dynamics
underlying IBD. Our findings reveal not only a reduction in beneficial SCFA-producing taxa
and an enrichment of proinflammatory microorganisms in active disease but also highlight
the importance of interkingdom microbial interactions, particularly the regulatory roles of
underexplored fungal genera, in modulating immune responses. Moreover, the consistent
presence of genera such as Prevotella, Fusobacterium, and Roseburia across
compartments support their value as faecal biomarkers for disease type and phase. These
results reinforce the concept that intestinal dysbiosis in IBD is not merely a consequence
but an active participant in disease pathogenesis, capable of reshaping immune cell
phenotypes and functions. Unravelling these networks will be crucial for the understanding
of IBD pathogenesis and in the long term could support the development of microbiota-

based therapies aimed at restoring immune and microbial homeostasis in patients with IBD.

All the described changes in microbiome and mycobiome composition implies also a
reduction in compounds such as SCFAs that are needed to maintain intestinal homeostasis
and, consequently, these microbial alterations are likely to influence the intestinal
microenvironment disrupting immune tolerance. The hypothesis is that the dysbiotic state,
characterized by the depletion of SCFA-producing bacteria and expansion of potentially
pathogenic species, creates a microenvironment that impairs the tolerogenic function of
intestinal cDC. Specifically, exposure to proinflammatory microbial products and altered
metabolic signals such as reduced SCFA may drive cDCs to lose their regulatory phenotype
(marked by expression of molecules like PD-L1 and production of IL-10) and instead adopt
a proinflammatory profile. This shift in ¢cDC, particularly in gut specific CD103" cDC2

phenotype could promote Th1/Th17-mediated inflammation, triggering the chronic
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intestinal inflammation characteristic of IBD. Therefore, the combined dysbiosis and
impaired cDC tolerogenicity likely form a feed-forward loop that sustains mucosal
inflammation and tissue damage in IBD. This interplay between the microbiota and immune
system highlights new avenues for therapeutic intervention, including microbiota
modulation aimed at restoring beneficial microbial populations and reinforcing cDC-
mediated immune tolerance. The identification of microbial biomarkers such as Prevotella,
Fusobacterium, and Roseburia offers potential tools for disease monitoring and new

treatment strategies.
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8.3 LIMITATIONS AND STRENGTHS

This study presents several limitations that must be described, as well as significant
strengths that contribute to improve our understanding of intestinal immunology and its
associated microbiota in the context of IBD. One of the main limitations lies in the low
number of samples used for functional assays, primarily due to the inherent difficulty in
obtaining intestinal resections from patients with CD, and even more so from patients with
UC, since surgical interventions are much less frequent in UC. This restricts our capacity
to functionally study the function of the different subsets of intestinal cDCs, particularly in
the context of UC. Nevertheless, one of the strengths of our approach is the use of human
intestinal cDC, which are difficult to isolate due to the low proportion that they represent in
the total LPMC. In most studies, these cells are analyzed within the total population of
LPMCs, often identified by flow cytometry gating strategies without being physically
separated, or replaced by monocyte-derived DCs. In contrast, our ability to isolate and
study bona fide intestinal DCs enhances the physiological relevance of our findings and
expands current knowledge regarding the role of these APC in mediating inflammatory
processes within the human gut. Another important consideration is the nature of the
control intestinal samples, which were obtained from individuals undergoing colonoscopy
due to non-specific gastrointestinal complaints. Although their mucosa appeared
macroscopically normal, we cannot totally discard the presence of subclinical or molecular
alterations that could influence our results. Additionally, the cDCs used as controls in the T
cell immmunostimulation assays were isolated from the healthy tissue adjacent to resected
intestinal tumors. Although this tissue is not macroscopically inflamed, the proximity to the
tumor may influence local immune responses, potentially altering DC phenotype or
function. Despite this, we successfully isolated and analyzed distinct subsets of human
intestinal cDCs, co-culturing them with allogeneic T cells to assess their stimulatory
capacity. This allowed us to delineate the specific roles of each subset in promoting
regulatory or inflammatory responses, providing novel insights into their functional

specialization in the intestinal microenvironment.

Another limitation of the study is the patient treatment status. Recruiting IBD patients not
undergoing any therapy is challenging, especially in cases of clinical remission, which often
depends on ongoing pharmacological intervention. Consequently, most patients included
in cDC subset characterization and the evaluation of the effect of tofacitinib over APC were
under treatment, primarily with azathioprine and mesalazine, both of which are known to
influence DC biology. Azathioprine (AZA) and its metabolite mercaptopurine (6-MP) have
been shown to impair DC maturation and activation by downregulating costimulatory

molecule expression and reducing pro-inflammatory cytokine production, while promoting

224



Discussion

Treg expansion (94). These agents also reduce DC migration, thereby limiting their ability
to prime T cells (95). Methotrexate (MTX), another common immunosuppressant, has
similar effects by suppressing DC activation, reducing IL-12 and TNF-a levels, and
enhancing IL-10 production (96). Moreover, MTX can induce oxidative stress and apoptosis
in DCs, thereby reducing their viability and immunogenic potential. While these
pharmacological effects may confound some of the immunological readouts, all patients
included in our study were confirmed to have active mucosal inflammation through
endoscopic scoring—SES-CD for CD and Mayo Endoscopic Score for UC—ensuring that

our analyses captured immune activity in the context of ongoing intestinal inflammation.

In the microbiological component of the study, a notable limitation was the low number of
samples in each patient cohort, as well as the absence of fungal diversity and
characterization data from stool samples. Despite these constraints, one of the major
strengths of our approach was the parallel analysis of bacterial communities in both fecal
and mucosal samples from the same individuals. This allowed for a more comprehensive
understanding of the gut microbiota and its spatial variation and provided valuable insights
into the potential utility of faecal biomarkers for disease monitoring and diagnosis. Finally,
an important technical limitation was encountered in the viral metagenomic analysis of
intestinal biopsy samples. Although shotgun sequencing was performed, the high
proportion of human DNA in these samples severely compromised viral DNA detection,

ultimately precluding a reliable analysis of the intestinal virome.
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8.4 FINAL SUMMARY OF REMARKABLE FINDINGS

In summary, this study has optimized a robust protocol for isolating human intestinal
LPMCs from biopsies and resections, allowing for the comprehensive identification and
characterization of distinct APC subsets, including cDC1, cDC2, CD103* cDC2,
monocytes, and M®s. Notably, it was observed that intestinal cDCs play a pivotal role in
maintaining immune tolerance via mechanisms involving PD-L1, and that their functional
reprogramming in an inflammatory environment -probably due to microbiota dysregulation-
contributes to the pathogenesis of IBD by shifting from a tolerogenic to a proinflammatory
profile. Moreover, while tofacitinib did not modulate the function of tissue-resident cDCs, it
significantly reduced JAK1 and JAK3 expression in monocytes and M®s, revealing different
cellular responses. Complementarily, our investigations into the intestinal microbiota
revealed notable alterations in bacterial and fungal compositions associated with IBD,
identifying potential non-invasive biomarkers such as Prevotella, Fusobacterium, and
Roseburia, and highlighting complex interkingdom correlations that may regulate intestinal
homeostasis. Collectively, the findings presented in this thesis provide insights into the
immunopathogenesis of IBD and identifies potential immune fingerprints, enhancing our
understanding of the disease and laying the groundwork for the development of more

precise therapeutic strategies and non-invasive diagnostic tools.
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Conclusions

. We have successfully optimized a protocol for the isolation of human intestinal

cDCs and macrophages from surgical resections, allowing the implementation of a
reproducible workflow to work with human intestinal tissue avoiding the use of

monocyte-derived DC or mouse cDC.

. We have defined both the phenotype and function of the different cDC subsets in

the human intestine in health and disease, proving that:

o Different cDC subsets exhibit differential spatial distribution along the

intestinal tract.

o CD103" cDC2 cells are potentially tolerogenic in the gastrointestinal (GlI)-

tract of controls.

o AllcDC subsets in control tissue promote T cell responses with a tolerogenic

profile, characterized by IL-10 production.

o ©¢DC1 and CD103* cDC2 subsets are reduced in the inflamed tissue from

patients with active UC

o In the inflamed ileum from CD patients, CD103* cDC2 cells promote the

proliferation of IL-17* helper T cells.

In IBD, particularly in inflamed tissues, CD103* cDC2 cells lose their tolerogenic

properties, contributing to the breakdown of immune tolerance.

Through unsupervised analysis, the profile of APCs from the intestinal mucosa of
qUC patient resemble those of controls more closely than those of patients with

active disease.

Tofacitinib does not significantly affect the phenotype or function of cDCs. However,
it modulates the activity of monocytes and macrophages by reducing the expression
levels of JAK1 and JAKS.

. We have successfully characterized the bacterial (bacteriome) and fungal
(mycobiome) components of the intestinal mucosa in both control and IBD patients.
IBD samples showed a marked reduction in short-chain fatty acid (SCFA)-producing
species, especially butyrate producers, along with altered fungal community

composition.

Fecal and mucosal bacterial profiles differ significantly, even within paired samples

from the same individuals, in both control and IBD cohorts.
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8. Microbial correlation analysis revealed that, in controls, potentially beneficial
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bacteria are positively associated with beneficial fungi and negatively associated
with pathogenic fungi. In contrast, during active IBD, these correlations weaken or

reverse, and positive associations between bacterial and fungal pathogens emerge.

Based on our findings, we propose three potential fecal biomarkers for IBD disease
states: Prevotella for active IBD, Fusobacterium for active Crohn’s disease, and

Roseburia for quiescent ulcerative colitis.






