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Abstract

Trajectory-Based Operations (TBO) are the cornerstone of contemporary Air Traffic Manage-
ment (ATM) systems, aiming to enhance operational efficiency, predictability, and safety through
the strategic management of flight trajectories. TBO define flight trajectories as 4D-trajectories,
where each point in the flight path is defined through its latitude, longitude, altitude and time.
Hence, the use of airspace capacity can be optimized by strategically planning the flights not
only from the perspective of the aircraft position, but also of the time. 4D trajectories can be
enriched with additional flight information to provide a more holistic representation of flights.
However, this information is scattered and harmonizing it in an integrated representation is yet
to be achieved.

This Thesis addresses the challenge of leveraging heterogeneous data sources to generate
high-quality 4D trajectories, and explores their potential to improve ATM operations through a
data-driven approach based on deep learning. We first design a conceptual data model tailored
to represent the most critical elements of ATM flight operations. This model encompasses mul-
tiple domains, including surveillance data, flight plans, meteorological information, and airport
infrastructures, ensuring a unified representation of the foundations of ATM. A data integration
architecture is developed to process data from heterogeneous sources and reconstruct enriched
4D trajectories conforming to the defined data model. The data quality is thoroughly evaluated
to ensure that the data is complete, precise and reliable, with special attention to the position
and time where it is missing or incorrect.

The Thesis further investigates the applicability of these enriched 4D trajectories in address-
ing critical operational challenges within ATM, and does so by proposing specific deep learning
architectures that model 4D trajectories as time series. Two primary use cases are identified: the
estimation of arrival times (ETA) for en-route flights and the prediction of flight trajectories, since
both represent core elements of TBO and are vital for improving air traffic flow management,
reducing delays, and optimizing resource allocation in congested airspace. We focus on flights
arriving at the Madrid Barajas-Adolfo Suarez Airport (Spain) as our case study to exemplify and
validate our proposal. The time of arrival at the destination airport for en-route flights can be
reliably estimated based on the current state of the flight, together with other factors influencing
over the flight, such as weather and schedule data. Our approach based on Long Short-Term
Memory networks (LSTM) has improved the current state of the art, providing longer term and
more accurate predictions, at any point in the trajectory, than existing methods with a mean
error of 2.67 minutes versus the 3.67 minutes of the state of the art. A similar approach can
be applied to predict the trajectory of a flight, as the future positions can be predicted based
on the past positions of the flight. The state of the art methods provide results with a mean
error of 0.005 and 0.01 degrees (0.55 and 1.11 kilometres) for latitude and longitude predictions,
respectively, but does so by focusing on a single route (repetitive flights between two airports).



In contrast, our solution apply Temporal Fusion Transformers to achieve a similar precision at
predicting the 2D position for all flights arriving at a specific airport, regardless of their origin.

The outcomes of this Thesis not only corroborate our research hypothesis and fulfils our ob-
jectives, but also contribute to advancing the state of the art by demonstrating how enriched 4D
trajectories, derived from a comprehensive data integration pipeline, can serve as the foundation
for innovative, data-driven solutions for critical Trajectory Based Operations in the increasingly
complex context of the global Air Traffic Management.

Keywords: Air Traffic Management, Trajectory Based Operations, Deep Learning, Es-
timated Time of Arrival, Trajectory prediction, Long Short-Term Memory, Temporal Fusion
Transformers, OpenSky, ADS-B
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Chapter 1

Introduction

Nowadays, air traffic management has become one of the most critical global systems. The
relevance of air traffic operations in the economy, society and geopolitics is manifest. In 2023,
the International Civil Aviation Organization (ICAO) numbered in 4,319 million of passengers on
a total of 35.3 million flights in their latest annual report “The World of Air Transport” in 2023
|66]. Aircraft have become one of the main pillars of modern transportation systems, primarily due
to their capacity to cover long distances efficiently, both in terms of time and cost. While the air
transportation was hit heavily by the COVID-19 pandemic, which reduced the global air traffic
to less than a third with respect to year 2019, in 2024, just four years later, it is expected that
the sector will finally overcome the situation and surpass the pre-pandemic numbers. Moreover,
the inter annual statistics shows that the growth of the sector is accelerating vigorously.

In this context, the European airspace was one of the busiest in the world. In 2024, EU-
ROCONTROL reported 10.7 million flights transporting 1,280 million passengers [34], that is,
almost a third of the global air traffic with respect to the latest consolidated statistics by ICAO.
This means that around 34,350 flights departed from European airports every day, and 3.5 mil-
lion people embarked on those flights daily. The volume of operations is one of the main reasons
behind the European airspace being one of the most complex in the world. In addition, the
European airspace is highly fragmented, since the sovereignty over the airspace belongs to each
state. The control over the air traffic on each of these airspaces resides in the national author-
ities, that are responsible of exerting such control, providing different air traffic services, and
defining specific rules applicable to aircraft crossing its airspace. These activities are only a part
of what is called Air Traffic Management (ATM). ATM comprises all the systems, procedures
and services involved in ensuring the safe and efficient movement of aircraft in the airspace and
at the airports. To this end, the ATM aims to maintain safety while optimizing the air traffic
flows and minimizing delays. However, the fragmented nature of European airspace and the
sheer volume of flights and passengers make this task increasingly challenging.

In 2004, the European Union started an initiative to solve this problem: the Single European
Sky (SES)H SES aimed to transform the European airspace to become more safe and promote the
homogenization of the Air Traffic Management across Europe, with a particular focus on three
pillars: safety, capacity and efficiency. In addition to the consolidation of standardized proto-
cols and services, the materialization of these objectives had to be supported by technology. The

!Single European Sky: https://transport.ec.europa.eu/transport-modes/air/single-european-sky_en.
Visited: 2025-07.
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SESAR programme (Single European Sky ATM Research)ﬂ was established to promote the mod-
ernization and harmonization of the European ATM system through innovative solutions, such
as information standardization, data sharing platforms, and advanced decision support tools. In
this context, the concept of Trajectory Based Operations (TBO) [56] has become central for co-
ordinating and structuring modern Air Traffic Management. TBO goes beyond decision making
based on flight plans by introducing the concept of 4D trajectory, which explicitly incorporates
time into the aircraft’s three-dimensional flight path (latitude, longitude, and altitude) [32].
Trajectories are negotiated and agreed upon by all involved stakeholders (airlines, air navigation
service providers, airports, etc.) to enable a more dynamic and efficient allocation of airspace
and airport resources. This detailed and data-rich description of each flight enhances advanced
management tasks, such as airspace capacity management, improved tactical planning, and more
robust safety assessments.

A key enabler for the success of these initiatives is data. As stated by ICAO in 2005, “the ATM
community will depend extensively on the provision of timely, relevant, accurate, accredited and
quality-assured information to collaborate and make informed decisions. Sharing information on
a system-wide basis will allow the ATM community to conduct its business and operations in
a safe and efficient manner” [64]. Over the last two decades, significant efforts have been made
to improve the collection, monitoring and sharing of operational data. For instance, in 2017
the installation of Automatic Dependant Surveillance — Broadcast (ADS-B) systems became
mandatory in all new aircraft, and in 2020 was mandatory for all aircraft flying in European
airspace. ADS-B [90] is a surveillance technology that takes advantage of the aircraft’s capa-
bilities to determine its position as well as other important flight parameters (altitude, speed,
bearing, etc.), and broadcast this information to enhance the situational awareness of any air-
craft or control authority within the range of emission, and characterize in near real-time the
state of the airspace during operations. Another example is the centralization of the flight plan
management in the Initial Flight Plan Processing System (IFPS) and Enhanced Tactical Flow
Management System (ETFMS). All flights must file in advance a flight plan describing the rele-
vant information about the flight: the scheduled times, the operating airline, the characteristics
of the aircraft, the planned trajectory, etcetera. Flight plans are filed up to one week before the
flight, and the information is shared with all involved stakeholders through the aforementioned
systems. Therefore, strategic decisions and resource allocation can be performed well in advance
to enhance the efficiency and predictability of the air traffic operations, and the real-time sharing
right before and during the flight allows to maximize the safety of these operations. Any other
aspect influencing air traffic operations is being slowly integrated in the monitoring, informa-
tion sharing and decision making processes. A prominent example of these influencing factors is
weather conditions, which have a significant impact on the performance of flights. Many efforts
have been devoted to ensure the detailed description of current weather both at the airports and
throughout the routes, and the increasingly accuracy of forecast models contributes to enhance
the predictability and the efficiency of flights.

The availability of large and detailed datasets describing air traffic operations has brought
significant interest in data-driven methods. Traditionally, Air Traffic Management has relied
on simulations, mathematical modeling, and expert-driven assessments to predict and manage
aircraft trajectories. While these approaches have been effective, the explosive growth in traffic
volume and the increasing complexity of airspace structures have challenged their scalability and

2Single European Sky ATM Research: https://transport.ec.europa.eu/transport-modes/air/
single-european-sky/sesar-project_en. Visited: 2025-07.
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accuracy. Many data-driven methods leverage historical data describing the past states of the
aircraft and the context in which the flight takes place (weather conditions, airspace congestion,
etc.), to accurately predict the future state of the airspace. By learning statistical patterns and
dependencies from these datasets, data-driven models can produce accurate and dynamically
updated trajectory predictions. The introduction of data-driven approaches aligns naturally
with the goals of Trajectory Based Operations (TBO), as it supports more reliable planning and
allocation of airspace and airport resources based on actual operational data.

Despite all these efforts, the envisioned modern air traffic management still faces important
challenges to be fully materialized. Although large amounts of data are continuously generated
and shared among all involved stakeholders in the industry, there is no centralized source of data
that aggregates and harmonizes this information at the scale and granularity required for research
and innovation. As a result, most of the available data is scattered across isolated data silos,
which are difficult to integrate due to differences in format, coverage, granularity and quality
standards. In addition, access to these datasets is generally limited for independent research,
either because of prohibitive fees or strict confidentiality and security constraints imposed by
providers. Even when the data is accessible, it often comes at a large scale and is affected by
missing data, noise and errors, which can compromise the quality and reliability of downstream
systems and applications that depend on it. These challenges limit the potential of data-driven
methods to support key ATM tasks, such as trajectory prediction and arrival time estimation, and
highlight the need for robust techniques capable of dealing with incomplete and heterogeneous
data, while still delivering accurate results.

This Thesis contributes to address these challenges by focusing on two main objectives. First,
we design and implement a data integration pipeline capable of automatically collecting, harmo-
nizing, and ensuring the quality of heterogeneous data sources relevant to air traffic management.
We begin by defining a conceptual model that captures the data required to meet the needs of
data-driven solutions to ATM challenges. Then, it is necessary to identify the appropriate data
sources and assess their suitability to feed the pipeline. To achieve this, we characterize the
available data and evaluate its quality in order to propose corrective measures and establish
continuous quality monitoring throughout the pipeline. In particular, we focus on integrating
surveillance data, flight plans, and weather information.

Second, we leverage the resulting integrated data to apply data-driven methods that support
critical ATM operations, such as arrival time estimation and trajectory prediction, through the
application of machine learning and deep learning techniques. To this end, we propose novel
solutions based on deep learning methods for two use cases, and exemplify their performance on
real-world data from inbound flights at the Madrid Barajas-Adolfo Suarez airport (Spain). The
first use case addresses the estimation of the time of arrival (ETA) for en-route flights, which,
which is one of the most critical tasks in air traffic management, given the high density of aircraft
and the dynamic conditions around airports. The precise prediction of arrival times is crucial
for optimizing airspace organization and resource allocation both at the airport and along the
flight path, and ensuring the safety of landing operations thanks to the enhanced predictability
of the flight. The second use case involves the prediction of an aircraft’s trajectory during flight.
Accurate trajectory predictions can help air traffic controllers to manage concurrent flights within
crowded airspace, particularly near airports, by determining their most probable flight path in
the short-term future. Both use cases leverage the concept of 4D trajectories, and rely on data-
driven methods specialized in sequential data processing. By integrating heterogeneous sources
of surveillance data, flight plans and weather information into a unified data model, this Thesis

Jorge Silvestre Vilches 5
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aims to demonstrate how deep learning approaches can effectively support critical ATM tasks,
ultimately contributing to a safer and more efficient air traffic management system.

1.1 Objectives

In the previous section, we have discussed the value of an information system that supplies
with data to support air traffic operations. These arguments lead us into the following research
hypothesis (RH) that sets the goals we aim to achieve during this Thesis:

RH-1. The integration of data from heterogeneous sources related to Air Traffic Management
through a data transformation workflow to produce enriched 4D trajectory data according
to an unified data model, can improve the operational efficiency of Air Traffic Management
operations by leveraging data driven approaches based on machine learning.

In order to facilitate the organization, planning, and progress assessment of this Thesis, we
have identified the following research objectives (RO) derived from the defined research hypoth-
esis:

RO-01. Design a conceptual model that describes the main concepts involved in ATM operations
(surveillance data, flight plans, weather and infrastructure, among others) and relevant for
the scope of this Thesis, and whose information can be gathered by automatic means and
extracted from heterogeneous data sources, preferably non-commercial.

RO-02. Develop a data integration architecture to construct 4D trajectories based on the avail-
able data sources, that satisfies the data model defined in RO-01.

RO-03. Identify and explore several use cases for the data sets resulting from the RO-02, whose
efficiency can be improved by means of deep learning approaches that leverage the 4D
trajectory representation produced by our data integration architecture.

RO-03.1. Estimated time of arrival (ETA) at the destination airport for en-route flights.
RO-03.2. Trajectory prediction for en-route flights.

Fulfilling these objectives should allow us to validate the research hypothesis stated above.
In particular, the expected result of the objectives RO-01 and RO-02 is an information system
that covers ATM operations focused on commercial flights. This has several implications with
respect to the scope of the defined conceptual model, and the selection of data sources that
will eventually feed this information system. We have made this decision to narrow down the
potential scope of the Thesis, given the complexity and diversity of ATM operations.

A set of deliverables have been proposed as a result for each of the defined objectives, which
can be divided in two groups:

e On the one hand, we will communicate our research results to adequate forums in order
to validate them. The chosen forums consist on specialist conferences, given the potential
interest of our investigations for such venues, and research conferences or journals dedicated
to Data Science applications.

e On the other hand, all the developed software materials will be made public in a Github
repository: https://github.com/JorgeSilvestre/silvestre-thesis.

6 Jorge Silvestre Vilches
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1.2. Methodology

1.2 Methodology

The development of this Thesis follows a data-driven approach to tackle specific challenges in Air
Traffic Management. As such, it aligns with the core principles of Data Science, which include
the acquisition, transformation, analysis, and the application of data to support predictive tasks.
Given the exploratory and iterative nature of data science projects, especially in complex domains
such as Air Traffic Management, it is crucial to adopt a methodological framework that provides
both structure and flexibility. On the one hand, the methodology must provide a systematic
way to plan, execute, and document the different phases of the research. On the other hand, it
must be capable of incorporating ongoing learning, feedback, and revisions that occur as data is
explored and models are refined.

For this purpose, this work adopts the CRISP-DM methodology (Cross-Industry Standard
Process for Data Mining) [119], which has proven to be particularly suitable for applied research
projects involving real-world data. Its phased structure supports clear project definition and
reproducibility, and its iterative nature aligns well with the trial-and-error process inherent to
model development and evaluation.

We considered other methodologies for data-intensive projects were considered, such as KDD
(Knowledge Discovery in Databases) or SEMMA (Sample, Explore, Modify, Model, Assess). To
assess their suitability for our project, we reviewed different comparisons between these method-
ologies |10} [81} 97|, and concluded that CRISP-DM was the best fit for our purposes for several
reasons:

e CRISP-DM provides a well-defined sequence of phases that support the project from its
formulation to the validation of results, which ensures the traceability of the progresses.

e The cyclical nature of CRISP-DM allows for frequent iteration between phases, so the
discovery of new patterns or problems in the data can feed back into earlier stages.

e CRISP-DM is a widely adopted methodology in data science projects in industry and
academia [119]. It has been successfully applied in research projects involving predictive
models in domains similar to ATM |77, [72]. Moreover, it has been generalized to enable
its use in a more general engineering environment [54].

In contrast, the KDD process lacks a standardized operational structure and focuses mainly
on knowledge discovery, with less emphasis on business understanding and deployment. SEMMA
on the other hand, is more focused on the modeling stage and assumes that data preprocessing
has already been completed, making it less suitable for projects where raw and heterogeneous
data sources must be integrated and transformed from scratch.

The CRISP-DM methodology is structured into six iterative phases. In the following, we
discuss how each of these phases is implemented in this Thesis.

a. Business understanding. In this phase, we define the strategic goals of the research and
identify how data science techniques can contribute to improving specific operational aspects of
Air Traffic Management (ATM). To this end, we carry out a review of the relevant literature
(both the research on this area and technical documents published by ATM organizations) to
understand the ATM operational context, the existing challenges and the proposed solutions.

Jorge Silvestre Vilches 7
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This phase contributes to RO-01 by defining the core concepts and operational aspects that
will be modeled later, and to RO-03 by identifying the relevant use cases where deep learn
approaches can be applied.

b. Data understanding. This phase involves the exploration and assessment of the available
data sources. We evaluate their reliability, completeness, and limitations, and we identify relevant
attributes that could be integrated to satisfy the domain conceptual model implemented in RO-
01. In particular, we must identify suitable flight plans, surveillance and weather data sources,
and assess their contribution to fulfill the information requirements of the Thesis.

This phase contributes to RO-01 by learning how the defined concepts map to real world
data, and to RO-02 by determining how to extract and integrate the data in the identified
heterogeneous data sources.

c. Data preparation. This phase comprises the design and implementation of the data
integration architecture. It includes data cleaning, normalization, temporal and spatial alignment
of heterogeneous sources, and the construction of the 4D trajectory representations. This stage
also covers the adaptation of the data to the requirements of the models, including operations
such as windowing, normalization and feature extraction.

This phase addresses RO-02 by defining how the data must be integrated and prepared, and
RO-03 by enabling the data to be used in the training and evaluation of deep learning models.

d. Modeling. In this phase, predictive models are developed using deep learning techniques
adapted to time series data. We focus on the two use cases described in previous stages: estimated
time of arrival prediction (sequence-to-value problem), and trajectory prediction (sequence-to-
sequence problem) tasks, exploring different architectures to determine the most suitable methods
for these tasks.

This phase contributes to objectives RO-03.1 and RO-03.2. (and therefore to RO-03) by
designing and training specialized models using the data generated in previous stages of the
process and conducting an optimization process of the hyperparameters of the models.

e. Evaluation. We assess the models using quantitative metrics relevant to each use case, both
standard (MAE, RMSE) and ad-hoc metrics. The results are analyzed to identify the method
with the best performance for each of the tackled challenges. This phase contributes to RO-03
by validating the effectiveness of the developed models.

f. Deployment. Although full operational deployment is outside the scope of this Thesis,
a research-level deployment is conducted through the development of software artifacts and
experimentation pipelines. These can be reused for future studies or to reproduce the results of
our research.

These six stages are carried out iteratively to progressively refine the accomplished research
results. Therefore, CRISP-DM allows to incorporate new insights as they emerge during the
research lifecycle, and it enables retroactive refinement: as we gain a deeper knowledge about
the data, the methods or the domain, it often becomes necessary that upstream phases are
adjusted. To this end, the use of versioned data processing scripts, model tracking tools, and
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experimental notebooks will be essential to manage this iterative development effectively and
reproducibly.

In summary, the application of CRISP-DM in this Thesis has not been strictly sequential
but has evolved through incremental cycles of development, evaluation, and adjustment. This
adaptive structure has enabled the project to respond to complexity while maintaining coherence
across its different stages, ultimately supporting a robust and extensible research process.

However, CRISP-DM does not explicitly define when a task or objective is considered com-
plete. In this Thesis, completion criteria are defined by combining a scientific validation approach,
based on the testing of our research hypothesis RH-01 and empirical evaluation, with an engi-
neering perspective, focused on iterative refinement until satisfactory performance is achieved.

e The conceptual and architectural objectives (RO-01 and RO-02) are completed when the
designed models and systems meet their functional requirements and demonstrate usability
across different data sources.

e The use cases in RO-03.1 and RO-03.2 are evaluated through quantitative performance
metrics and comparisons with existing approaches, to determine whether they improve the
state of the art.

This combined framework allows for iteration between phases when needed, and ensures that
each result contributes to validating the main hypothesis.

1.3 Thesis Planning

The Thesis was planned for completion within a three-year period, starting from enrolment in the
doctoral programme during the 20192020 academic year. Accordingly, the expected completion
date for the Thesis was set for February 2023. However, it became necessary to extend the
original timeline by one and a half years due to delays caused by several problems in the access
and processing of the data. In particular, we lost access to the data sources that were used
at the moment, which forced us to find alternative data sources to replace the initial sources,
and repeat the study of the characteristics and quality of the new data. The Thesis planning,
updated at the end of the last year of the Thesis, is shown in Figure [I-1}

The objectives are interdependent, requiring at least initial results from one before progressing
to the next. For instance, we can not design a data integration process without first defining the
domain model, or characterizing the data sources. Progress will therefore be cascaded to some
extent. However, we have planned the work using an iterative and incremental approach: in
each iteration, new partial results will be incorporated into the consolidated results; in this way,
progresses on all objectives will feed back to the others and provide a more solid foundation to
future advances.

Similarly, we have defined a communication plan to validate our results in appropriate forums,
such as specialist symposia or scientific conferences. This will help us enable us to identify and
correct any misunderstandings or errors in our approach at an early stage. Later on, we intend
to make contributions to high impact journals as we reach more mature results. Simultaneously,
the accumulated knowledge during the Thesis will be consolidated into the corresponding disser-
tation, which will be developed throughout the Thesis and finalized at the end of the doctoral
program with due conclusions.
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Figure 1.1: Gantt diagram of the Thesis.

In the following, we describe the planned tasks to achieve the defined objectives. To address
the OP-01, we will first conduct a comprehensive study of the aviation and Air Traffic Man-
agement domains, since there is a substantial amount of specialized knowledge we need to be
familiar with before modelling some of their key concepts. A thorough review of the state of the
art will be of great help to guide our understanding of this field. Once we have gained sufficient
confidence in this domain, we will propose a first conceptual model focusing on surveillance data
and flight plans. This first iteration will later be expanded to include weather information as the
research progresses.

After defining the data model, we will proceed with the data extraction and processing
tasks necessary to fulfil RO-02. This will involve identifying and characterizing the available
data sources and assessing their suitability for integration and their usage in this Thesis, with
a special attention to the quality of the data. We will design a data workflow to integrate
these heterogeneous data sources into our envisioned enriched 4D trajectories. This workflow
will provide us with reference datasets to be leveraged in the use cases studied under the next
objective.

The tasks for RO-03.1 and RO-03.2 will follow a similar methodology. First, we will conduct a
review of the state of the art to identify and learn about the most relevant methods for the defined
tasks. Next, we will characterize existing solutions based either on the reviewed literature, or by
developing similar methods to serve as benchmarks for our own proposals. These proposals will
be built upon the datasets defined in the earlier stages of the Thesis. Finally, we will evaluate
our solutions to assess their performance and value compared to the state of the art.

1.4 Contributions

The main results of the research have been published throughout the realization of the Thesis to
validate their quality and scientific interest. To this end, we submitted our work to specialized
conferences, where it could be reviewed by experts in both the domain and the techniques implied
in our research. Given the applied nature of our research, we focused on the results derived from
the RO-03, where several use cases are explored to assess the usefulness of the constructed system
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information. However, these results build upon the results derived from the other two objectives,
since these results are described thoroughly in each of the published papers. In the following,
we describe the different publications, their alignment with the obtained results, and how they
contribute to the satisfaction of the objectives of the Thesis.

According to the Thesis plan described in Section [1.3] we started working towards the RO-
03.1, that is, the estimation of the time of arrival. We submitted our initial results to the
OpenSky Symposium in 2021 in the paper :

Silvestre, J., Santiago, M., Bregon, A., Martinez-Prieto, M.A., Alvarez-Esteban, P.C.
“On the Use of Deep Neural Networks to Improve Flights Estimated Time of Arrival
Predictions”. In: Engineering Proceedings 13.1 (2021), p. 3. issn: 2673-4591. [101]

This paper described an initial version of the data processing workflow that integrated surveil-
lance and flight plan data to construct 4D trajectories with the aircraft reported positions. Using
these data, we trained several models based on LSTM (Long-Short Term Memory) networks |53,
an advanced type of recurrent neural network that can process long sequences of data, to predict
the estimated time of arrival of an aircraft at any point of the flight. These neural networks are
explained in more detail in Chapter [8] These models used sequences of surveillance datapoints
to characterize the state of the flight at that moment, and estimate when the aircraft will arrive
at the destination airport based on historical data. We evaluated our approach on a sample
of flights arriving at the Madrid Barajas-Adolfo Suéarez airport (LEMD) in Spain during three
weeks. The presentation of this work allowed us to receive valuable feedback from domain ex-
perts, and the analysis of the obtained results helped us to accomplish a deeper understanding
of the data and the prediction task.

This line of work culminated in 2024 with the publication of a paper in the Journal of
Supercomputing (Springer).

Silvestre, J., Martinez-Prieto, M.A., Bregon, A., Alvarez-Esteban, P.C. “A Deep
Learning-Based Approach for Predicting in-Flight Estimated Time of Arrival”. In:
The Journal of Supercomputing 80.12 (Aug. 2024), pp. 17212-17246. issn: 1573-
0484 [102]

In this paper, we constructed a more ambitious proposal, with important novelties in several
fronts. First, we developed a larger battery of models to fully assess the performance of several
approaches on predicting flights ETA. In particular, we evaluated several architectures based on
LSTM, and several machine learning models, such as Random Forests [15], AdaBoost [43] and
Gradient Boosting Machines [44], which constituted the state of the art for this task. Second,
we incorporated the analysis of the weather conditions at the airport. This implied that new
data sources had to be included into the data workflow, and then integrated with the rest of the
data. Third, we could delve into the data cleaning process thanks to our deeper knowledge of
the data, and propose solutions to data problems that were not tackled before. Among them,
the main problems were the delayed vectors and the errors in the reported positions. This fact
led us to develop a method to reorder the positions in a trajectory to overcome the assignment
of incorrect time stamps to the reported positions, as well as an outlier detection mechanism.
We also designed a battery of data quality metrics to monitor the process, albeit they were not
included in this paper. As a result, we managed to obtain high quality 4D trajectories, enriched
with flight plan and weather data that could be used as features to improve the performance of
the models. Fourth, we conducted a thorough experimentation based on a larger sample of data
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than before, which grew from three weeks to 9 months of data. The results accomplished by our
proposal based on LSTM networks outperformed all comparable approaches in the state of the
art, as explained in Chapter [7]

We leveraged the acquired knowledge about the data and the used deep learning architectures
to tackle a different problem, the prediction of future positions in a trajectory. This problem
poses more complexity than ETA prediction, since the goal is predicting entire sequences of data
instead of estimating a scalar value. We started by exploring the task using architectures based
on LSTM that were similar to those applied for ETA prediction. We presented our initial results
in the 39th ACM/SIGAPP Symposium on Applied Computing, with the short paper:

Silvestre, J., Mielgo, P., Bregon, A., Martinez-Prieto, M.A., Alvarez-Esteban, P.C.
“Towards Aircraft Trajectory Prediction Using LSTM Networks”. In: Procs. 39th
ACM/SIGAPP Symposium on Applied Computing. SAC '24. New York, NY, USA:
Association for Computing Machinery, May 2024, pp. 1059-1060. [104]

In this paper, we trained several models with a LSTM-based architecture to predict the position of
a flying aircraft two and a half minutes in the future, based on its flown trajectory so far. However,
the results did not improve the state of the art, and we decided to explore other architectures
that could improve these preliminary results. As a result, we published the following paper in
the IEEE Access journal (IEEE) in 2024:

Silvestre, J., Mielgo, P., Bregon, A., Martinez-Prieto, M.A., Alvarez-Esteban, P.C.
“Multi-Route Aircraft Trajectory Prediction Using Temporal Fusion Transformers”.
In: IEEE Access (2024), pp. 1-1. issn: 2169-3536. |103]

In this paper, we investigated the application of the TF'T architecture to the trajectory prediction
task. Temporal Fusion Transformers (TFT) [74] is an architecture based on the Transformer
architecture |114]. Unlike LSTM networks, which use recurrence to construct very deep networks
to be capable of processing sequences of data, the Transformer architecture implements attention,
a much more lightweight mechanism to extract the most important information from a sequence
of data. TFT conciliates these two approaches, in combination with a special treatment of the
different inputs, was an attractive choice to process 4D trajectories. For this paper, we designed
an exhaustive experimentation on flights arriving at LEMD during nine months, similar to the
dataset used in [102], albeit in this case it was more challenging due to the higher complexity
of the resulting models. The accomplished results were satisfactory and on-par with the state
of the art for trajectory prediction, since the trained models were capable of making accurate
predictions for a wide variety of routes, in contrast with the state of the art, which only tackled
single routes (that is, flights between a pair of airports).

During the work in these papers, the data workflow was revised and improved by introducing
the abstraction of the trajectory. Until the definition of this abstraction, there was not an
integrated representation of trajectories: the data was disperse among several data collections,
and had to be integrated on the fly to work with individual trajectories. We implemented the
notion of trajectory to represent the richness of the 4D trajectory concept, which comprises bot
the sequence of positions with its associated timestamp, and a set of metadata that are key for
fully understand the constructed trajectories. In this way, the parts of the data workflow related
to trajectories were rebuilt upon this concept for bringing a more semantic way of working with
the produced data. In addition, we defined a new set of specific metrics to assess the quality of
the trajectories, beyond the data quality metrics defined before.
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In conclusion, these contributions helped us to validate our work and our results in two ways:
First, the OP-03 was completed thanks to the satisfaction of its two sub-objectives: two proposals
were constructed that accomplished state of the art results for ETA prediction and trajectory
prediction. To this end, novel architectures were applied to each of these problems. Second, these
approaches combined features from different data sources to make accurate predictions. The
developed information system, which was designed based on the constructed conceptual model
as a result of the RO-01, was capable of satisfying the data requirements of these approaches,
validating the fact that this information system comprises the main concepts involved in ATM
operations, and effectively provides such data in an appropriate and timely form, so it can be
consumed by deep learning models like the ones developed in this Thesis, as stated by the RO-02.

1.5 Document structure

The document is organized as follows. Chapter [2| presents a comprehensive review of key concepts
in Air Traffic Management to facilitate the understanding of the subsequent chapters. In Chapter
introduces the relevant techniques for this work, with a particular focus on the deep learning
architectures employed in later chapters. Chapter [4] introduces the conceptual model defined to
structure data involved in flight operations and discusses the available data sources to meet the
data requirements of the model. Chapter [5| presents the data transformation workflow, which
includes extracting the data from the original sources, addressing known data quality issues, and
integrating the information into a 4D trajectory representation. These trajectories are analyzed
in Chapter [0, where different approaches are proposed to enhance data quality. Chapters 7 and
8 explore the use of the generated data to develop data-driven methods based on deep learning
to support flight operations and improve the efficiency of ATM. Specifically, Chapter [7] focuses
on the estimation of arrival times, while |8 addresses the prediction of flight trajectories. Finally,
summarizes the main conclusions of the work.

Jorge Silvestre Vilches 13



Chapter 1. Introduction

14 Jorge Silvestre Vilches



Chapter 2

Air Traffic Management

Air traffic management is a complex domain where numerous agents, organizations, standards
and events interact under strict rules and protocols. While the management of air traffic within
a given airspace is responsibility of the owner states, recent decades have seen significant efforts
to harmonize and standardize practices across air spaces worldwide. These efforts have been led
by International Civil Aviation Organization (ICAQO), a global organization that works under
the umbrella of the United Nations, alongside other transnational organizations such as EURO-
CONTROL in Europe and the Federal Aviation Administration (FAA) in the United States.
The outcomes of this standardization process are regularly published and updated in the ICAO
Documents, which define key concepts, rules, and procedures for air traffic operations. Although
the adoption of these regulations by individual states is not mandatory, they are widely accepted
and typically implemented within national and regional air traffic management frameworks.

More formally, Air Traffic Management (ATM) is defined by ICAO as “the dynamic, inte-
grated management of air traffic and airspace including air traffic services, airspace manage-
ment and air traffic flow management (safely, economically and efficiently) through the provision
of facilities and seamless services in collaboration with all parties and involving airborne and
ground-based functions” |62]. This definition is derived from the operational concept of ATM
established in the Document 9854 [64], which defines a vision for the future ATM based on five
guiding principles:

e Safety: Achieving safe operations is the main priority of modern ATM, and any initiative
in ATM is subordinated to ensure safety in all contexts.

e Humans: All operations ultimately rely on humans to be successful, since humans are
responsible of managing, monitoring and take control, so human factors must play a key
role in the organization of air traffic operations.

e Technology: The management of air traffic relies on information provided by automatic
systems like surveillance, navigation and communication systems. It is required that these
systems work in an integrated, interoperable and robust way to ensure the homogeneity of
ATM across different regions and traffic flows.

e Collaboration: The homogenization of technologies, information and processes would en-
able strategic and tactical collaboration between agents and organizations involved in ATM,
to ensure optimal conditions in terms of safety and efficiency.
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Figure 2.1: Concept map that brings together all the concepts covered in this section.

e Continuity: The requirements of safety and efficiency enforce the maximum continuity of
ATM services, and account for measures to operate even in adverse conditions (natural
disasters, security threats, etc).

These guiding principles are materialized through different key components, which are thor-

oughly elaborated in the different ICAO documents. Seven interdependent key components are
defined [64]:
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1. Airspace organization and management: Stablish airspace structures to ensure that the
different types of air traffic, volume of traffic and levels of service are satisfied adequately.

2. Aerodrome operations: Manage ground infrastructures (runways, taxiways, ground ser-

vices, lighting) and provide effective surface guidance to maximize efficiency and safety in
all weather conditions at the aerodrome.

3. Demand and capacity balancing: Strategically evaluate system-wide traffic flows and capac-

ities (specially at the aerodromes) to reduce the risk of conflicts and increase the efficiency
of the air traffic.

4. Traffic synchronization: Tactically analyze air traffic to maintain a safe, orderly and efficient

traffic flow, based on the concept of 4D trajectory operations

5. Conflict management: In terms of the previous two aspects, and separation provision
(between two aircraft, and between aircraft and other obstacles) and collision avoidance.

6. Airspace user operations: Optimize 4D trajectory planning based on aircraft performance,
flight conditions and other ATM resources, enabling tactical and strategic situational aware-
ness and conflict management.
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7. ATM service delivery management: Ensure a continuous and seamless delivery of ATM
services during the entire flight and across all agents involved.

Delving into all these aspects is beyond the scope of the Thesis. Instead, in this chapter, our
goal is providing a succinct description of some aspects of ATM that are relevant to our research,
since a basic understanding is required to address our research objectives, and for the reader
to comprehend the results explained in later chapters. Figure [2.1] provides an overview of the
concepts covered in the following sections, divided in several groups and color-coded accordingly
(see the legend in the diagram).

2.1 Services of Air Traffic Management

As defined by ICAO [62], air traffic management is “the dynamic, integrated management of air
traffic and airspace including air traffic services, airspace management and air traffic flow man-
agement”. These three aspects correspond to the three components into which ATM is divided:
Air Traffic Services (ATS), Air Traffic Flow Management (ATFM) and Air Space Management
(ASM) [62]. Each of these components has a specific role and scope of application. In this
section, we provide an overview of the responsibilities and functions of each of these services.

Air Traffic Management
ATM

\ 4 \ 4 \ 4
‘ Air Traffic Services [ Air Traffic Flow Management ‘ Airspace Management ]

ATS ATFM ASM

Y A\ 4 Y A\ 4

[ Air Traffic Control Service [Advisory Service ‘ Flight Information Service [ Alerting Service ’
ATC FIS

Y Y A\ 4

[ Area Control Service ] [ Approach Control Service ] [ Aerodrome Control Service ]

Figure 2.2: Hierarchy of ATM services [62].

2.1.1 Air Traffic Services (ATS)

Air Traffic Services (ATS) comprise a variety of services to support air traffic operations and
management, including the Flight Information Service (FIS), the Air Traffic Advisory Service,
the Air Traffic Control (ATC) and the Alerting Service. ATC is further divided into three specific
services, depending on the area in which this service is to be provided: the aerodrome, the area
near the aerodrome or the en-route airspace. In the following sections, a succinct description of
these services is provided.

The Air Traffic Services as a whole pursue five objectives [57]:

1. Prevent collisions between aircraft.
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2. Prevent collisions between an aircraft in the Terminal Manoeuvring Area (TMA) and
obstructions in that area.

3. Expedite and maintain an orderly flow of air traffic.
4. Provide advice and information useful for the safe and efficient conduct of flights.
5. Notify appropriate organizations regarding aircraft in need of search and rescue aid.

However, these objectives are not addressed equally by the different ATS services. Each
service has the responsibility over specific objectives, and is provided by specific Control Units in
different areas of the airspace [57]. In particular, the Air Traffic Control (ATC) service pursues
objectives 1, 2 and 3, while the objectives 4 and 5 are responsibility of the Flight Information
Service (FIS) and the Alerting Service, respectively. Finally, the Advisory Service aims to ensure
separation between aircraft (objective 1) when none of the remainder services are available.

With respect to the units providing these services, flight information centres (FIC) provide
FIS and alerting service within FIRs (that is, within controlled airspace), unless the responsibility
over the flight is assigned to an air traffic control unit with those capabilities. Air traffic control
units provide air traffic control, flight information and alerting services in specific parts of the
airspace, depending on their type. The Table[2.I|shows a summary of the correspondence between
services, objectives and control units.

Objective Control Unit

Service 1 2 3 4 5| FIC ACC APP TWR
FIS b b X X X
ATC/ACS X X X b'e
ATC/ApCS X X X
ATC/AeCS || x x x X
Alerting x| x X X X
Advisory X X

Table 2.1: Correspondence between the air traffic services with their assigned ATS objectives
and the units responsible of providing those services.

Air Traffic Control (ATC)

The main purposes of Air Traffic Control (ATC) are avoiding collisions and ensuring an orderly
flow of the air traffic [57]. The application of ATC depends on the class of the airspace where
the service is available (airspace classes are defined in Section 7 and the applicable flight rules
(see : ATC is applicable to flights under instrumental rules in airspace classes A, B, C,
D and E; to flights under visual rules in airspace classes B, C and D; and to all air traffic at
controlled aerodromes. Each ATC sub-service focuses on the realization of these objectives in
different airspaces:

e Area control service addresses objectives 1 and 3 by providing air traffic control service for
controlled flights in the parts of the flight that are not associated with arrival or departure.
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This service can be provided by either an Area Control Centre (ACC), or the unit providing
approach control service in a control zone or in a control area (APP).

e Approach control service also addresses objectives 1 and 3 by providing the air traffic control
service for the parts of controlled flights that are associated with arrival or departure.
Approach control service is provided by the aerodrome control tower (TWR) or an area
control centre.

e Aerodrome control service addresses the three objectives of ATC by providing air traffic
control service for all traffic near to the aerodrome, and is provided by the Tower of the

aerodrome (TWR).

Any of the control units above are responsible of providing ATS for flights in their scope of
responsibility. Whenever none of these units are available, ATS services are to be provided by
the corresponding FIS unit.

Regardless of their control scope, all ATC units have the following responsibilities [57]:

e Be provided with information of the intended movement of each aircraft and any variation
on that intent, and with information on the actual progress of each aircraft.

e Determine the relative positions of known aircraft to each other using the received infor-
mation.

e [ssue clearances and information for the purpose of preventing collision between aircraft,
expediting and maintaining an orderly flow of traffic.

e Coordinate clearances as necessary with other units: whenever an aircraft might otherwise
conflict with traffic operated under the control of such other units, or before transferring
control of an aircraft to such other units.

Flight Information Services (FIS)

According to ICAO Document 4444 [57|, the Flight Information Service (FIS) is “a service pro-
vided for the purpose of giving advice and information useful for the safe and efficient conduct
of flights”. FIS is provided by flight information centres (FIC) within its scope of responsibility.
However, this function may be assumed by the control units that provide ATC, if applicable,
which effectively replace the information centres mentioned above. That is, ATC units have
precedence over information centres, whenever available. In any case, FIS must be provided to
all aircraft to which that information is relevant within the scope of the information service.

Flight Information Services shall provide the following information to all agents concerned
by air traffic:

e Weather information published as Significant Meteorological Information (SIGMET) and
Airmen’s Meteorological Information (AIRMET).

e Volcanic activity and emissions, and radioactive materials or toxic chemicals into the at-
mosphere.

e Changes in the availability of radio navigation services.
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e Changes in condition of aerodromes and associated facilities.
e The presence of unmanned free balloons.

e Any other aspect likely to affect safety.
The flights must also be provided with:

e Weather conditions reported or forecast at departure, destination and alternate aero-
dromes.

e Collision hazards within airspace classes C, D, E, F, and G.

e For flights over water areas, any available information such as radio callsign, position, true
track, speed, etc. of surface vessels in the area.

Alerting service and advisory service

The Alerting Service shall be provided by flight information centres or area control centres for
all aircraft to which ATC service is available, and, in so far as practicable, to all other aircraft
having filed a filed plan or otherwise known to the ATS. It collects all information relevant to a
state of emergency of an aircraft operating within the FIR or control area concerned and forwards
such information to the appropriate rescue coordination centre.

The advisory service is provided to ensure separation between aircraft which are operating
on IFR flight plans, and is responsibility of the flight information centre in the area.

2.1.2 Air Traffic Flow Management (ATFM)

ICAO defines Air Traffic Flow Management (ATFM) as “the service whose aim is contributing to
a safe, orderly and expeditious flow of air traffic and optimizing the use of ATC, so the air traffic
demand does not exceed the airspace capacity and the safety is not compromised” |61]. To this
end, ATFM exerts flow control on current and planned flights, that is, adopts measures to adjust
the flow of traffic into a given airspace, along a given route, or bound for a given aerodrome, so as
to ensure the effective utilization of the airspace. In Europe, the Network Manager Operations
Centre (NMOC) is responsible of providing ATFM under all of these circumnstances.
ATFM is carried out in three phases |62, [22]:

1. Strategic planning, if the action is made more than one day before the day on which it will
take effect. Strategic planning is normally carried out well in advance, typically two to six
months ahead, although it can occur until seven days before the day of operation. In this
phase, the demand is adjusted to match the expected capacity.

2. Pre-tactical planning, if the action is to be taken between one and seven days before the day
on which it will take effect. The strategic planning is refined according to the short-term
estimations of capacity and usage. This is the phase in which flight plans are submitted
(and updated if necessary) to the Initial Flight Plan Processing System (IFPS), which is
the information system where flight plans are communicated by the airlines up to seven
days before the day of the flight.

3. Tactical operations, if the action is taken on the day on which it will take effect. The
necessary resources are allocated to service the flights of that day according to the actual
capacity and air traffic during that day.
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2.1.3 Air Space Management (ASM)

Air Space Management (ASM) has the responsibility of planning and publishing the management
of airspace, attending to its division in air routes, civil and military control routes and airports’
control areas |22]. ASM aims to achieve the optimal configuration of the air space that ensures
the satisfaction of the users’ needs and the safety of the operations.

2.2 Airspace structure

In the previous section we explained that different services and units operate in different parts of
the airspace such as near to the aerodrome or during the flight. In this section, the definition and
classification of such areas is formalized to provide a deeper understanding of the organization
of the air traffic services.

According to ICAO [62|, an airspace is “a portion of the atmosphere controlled by a country
above its territory (land or water)”. An airspace can be further divided into smaller airspaces
depending on the regulations and services that are to be provided in the sub-areas within that
airspace. Therefore, we can refine the definition of airspace as the space of the air delimited
by three dimensions: height, width and depth (and which may not start from the ground), and
characterized by specific flight regulations and provision of services.

We can establish a first coarse classification of airspaces into two types [62]|, depending on
the services that are available:

e Controlled airspace has defined dimensions within which the ATC service is provided to
IFR flights in general, and to VFR flights in accordance with the airspace classification. In
particular, controlled airspace is classified into A, B, C, D or E class (see Section .

e Uncontrolled airspace is where air traffic control does not constitute an executive authority,
although it may act in an advisory manner. Uncontrolled airspace corresponds with the
classes F and G.

2.2.1 Structure of controlled airspace

Controlled airspace is commonly structured into three hierarchical levels. However, this hierarchy
is not necessarily exhaustive: lower-level airspaces are typically nested within higher-level divi-
sions, but not all upper-level airspaces are subdivided. Some portions of the airspace may exist
exclusively at a higher level without being assigned to any lower-tier class. These three levels are
Flight Information Region (FIR), control areas and control zones, and controlled aerodromes.
Note that these are aligned with the control units explained above.

There exists additional divisions of the airspace that do not relate as closely to the services
that are provided on them, but are defined to give better support to flight operations. The
services available in each subdivision is described in Table[2.2] All of these concepts are published
through AIPs (Aeronautical Information Publication) by the authorities managing each airspace.
In the following sections we succinctly describe all these airspace divisions.

2.2.1.1 FIR and UIR

A Flight Information Region (FIR) is a portion of the airspace within which the flight information
service and the alerting service are provided. The global airspace is divided into 9 FIR, illustrated
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T S

Figure 2.3: Division of the global airspace in nine FIR (ICAO).

in Figure 2.3l These FIR are further subdivided horizontally into smaller FIRs, attending to
national airspace borders or managerial criteria.

Usually FIRs are divided vertically; if so, the lower portion remains named as FIR, whereas
the airspace above is named Upper Information Region (UIR). In these cases, the FIR extends
from the ground above up to the flight level FL 245 (24500 feet), while the UIR extends from
F1L.245 up to infinity or an upper limit (for instance, FL460 for the Canary Islands airspace).

2.2.1.2 ATS Route/En-route

An ATS Route is a specified route designed for channelling the flow of traffic as necessary for
the provision of ATS. Within en-route airspace, the main routes for aircraft consist on airways,
usually with a width of 5 NM either side of the centre-line, and placed at an specific altitude,
or Upper Air Routes (UAR), which are airways designated to be used by flight at high altitudes
(generally higher than the usual altitudes of general aviation). The airways follow straight lines
between “significant points”, also widely referred to as “waypoints”. Each ATS route establishes a
protected airspace along them, as well as a safe spacing between adjacent ATS routes. Depending
on their purpose, several types of airways can be identified: airway, advisory route (where only
advisory service is available), controlled or uncontrolled route (if it crosses a portion of uncon-
trolled airspace), etc. Terminal routes are particularly relevant, since they contain the departing
and arriving traffic from and at an airport. Depending on their usage, they can be divided in
arrival or departure routes.

2.2.1.3 TA (Terminal Airspace)

Terminal Airspace is a generic term describing the controlled airspace surrounding an airport
where air traffic services are provided and all traffic operating along Terminal Routes is contained.
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Thus, it encompasses TMA, CTA, CTR and ATZ airspaces, as illustrated in Figure [2.4]

A Terminal Manoeuvring Area (TMA), also known as Terminal Control Area, is the portion
of controlled airspace surrounding a major airport with a high volume of traffic, and in which
a large number of airways or departures and arrivals converge [62]. The TMA is designed to
handle aircraft arriving and departing flights (excluding aprons), and therefore the TMA is the
airspace in which the approach control service is provided.

UR -~

FIR

ATZ

Figure 2.4: Airspace structure. Each airport can have an ATZ and a CTR, and major airports
can have a TMA that can also comprise other minor airports. The CTA is connected with the
terminations of airways, and enables incoming air traffic to reach the TMA.

The Controlled Traffic Area (CTA) is the portion of controlled airspace that exists in the
vicinity of an airport (or several airports), which extends from a lower level (which cannot be the
surface, and has to be higher than 200m/700ft) to a specified upper level. The CTA is usually
situated on top of the Controlled Traffic Region (CTR), and provides protection to aircraft
climbing out from the airport. It can contain the TMA, and a part of the airways converging at
that TMA. A CTA can be shared by several airports, in which case its lower limit sits over all
of their CTR (in case they exist). In Spain, the lower limit of a CTA is set at 300m/1000ft.

The Controlled Traffic Region (CTR) is the portion of controlled airspace around an airport
(or multiple airports that are close together) which extends from the surface up to a specified
upper limit, in a way that it does not overlap with a CTA, in case a CTA has been defined. This
zone is established to protect air traffic operating to and from the airport (both IFR and VFR).
CTR are usually defined with the shape of a cylinder, but they can be designed as irregular
shapes depending on the geographical features of the terrain surrounding the airport.

A CTR is defined to have a maximum radius of 9.3 km (5 NM) in any direction from which
approaches can be made, and covers from the ground up to the start of the CTA or the TMA,
and lower than the vertical limit of the Aerodrome Traffic Zone (ATZ), if it exists [57].

Finally, the Aerodrome Traffic Zone (ATZ) is the portion of controlled airspace around an
airport and under the supervision of a control tower (TWR). The ATZ starts from the surface
up to 1000-3000 feet as their upper limit. The purpose of the ATZ is to enable the control tower
to provide support to operations of VFR flights around the airport (takeoffs, landings and traffic
circulation). The ATZ is not present in all airports: when IFR traffic is also present, the ATZ is
usually included in the Controlled Traffic Region (CTR).

Jorge Silvestre Vilches 23



Chapter 2. Air Traffic Management

ICAO defines a maximum lateral extension of 25 NM for these zones. In Spain, ATZ are
defined as cylinders with maximum dimensions of 8 km of radius and altitude of 900 m.

Service FIS ATC Alerting Advisory
ACS ApCS AeCS

FIR/UIR
ATS route
TA

TMA
CTA

CTR

ATZ
Airport

[T T A I A A
[T T A A A R A

X

Table 2.2: Services provided within each of the airspace subdivisions.

2.2.2 Airports

Airports (or aerodromes) are facilities designed to support landing and takeoff operations, which
are equipped with the necessary installations, services and equipment to ensure the effectiveness
and safety of these operations. Airports are complex systems, so in this section we will only
cover several of the main parts and concepts related to aircraft management, in particular those
related to the movement area: aprons, taxiways and runways, and also the significant points
around the airport aimed to control air traffic procedures around the airport.

The aprons are designated areas intended to accommodate aircraft on the ground for activities
like loading or unloading passengers, cargo handling, refueling, parking or maintenance (de-icing,
revisions, etc). Taxiways, on the other hand, are one-way “streets” that connect aprons to the
runways of an airport. Aircraft taxiing is subject to approval of the control tower or ground
controllers. There are several types of taxiways, depending on their purpose and the elements
they connect, although we will not delve in such considerations.

More important, physical runways are defined areas on the aerodrome prepared for the landing
and take-off of aircraft. An aerodrome may contain one or more runways, each with well-defined
characteristics in terms of longitude, width, direction or defined landmarks, among other aspects.
Each physical runway corresponds with two logical runways, depending on the direction in which
the aircraft travel along it. For example, on an east-west runway, aircraft can approach from
the east (heading west and travelling down the runway in that direction), or from the west (in
which case the aircraft will travel down the runway towards the east). This fact leads into the
concept of runway configurations. The orientation of a logical runway is defined by the bearing
of the aircraft that is going to use it. In the example, there would be a west configuration, and
an east configuration, respectively.

The configurations of an airport are defined as the possible combinations of all its logical
runways. For example, an airport with a single runway has two possible configurations, one
for each logical runway (note that these configurations are mutually exclusive, since both can
not be active at the same time). An airport with two runways will have a maximum of four
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configurations, since the four logical runways can be arranged in four different combinations.
However, some of these theoretical configurations may eventually be discarded if they compromise
the safety of operations or are not feasible (e.g. the orography around the airport, the prevalence
of winds in some direction, or the location of the airport). Runways at an airport can be arranged
in different patterns (see Figure , which also influences the available configurations.
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b. Parallel runways c. Four parallel runways d. Open V runways e. Parallel plus crosswind runway

Figure 2.5: Different arrangements of physical runways.

Each logical runway is named according to a standard naming convention, consisting on
two digits indicating its orientation with respect to the north (in tens of degrees and rounded
to the nearest whole number) plus various suffixes to distinguish it from the other runways at
the airport, if required. Going back to the runway in our previous example, the two logical
runways would be named as 09 and 27, since their bearings are 90° and 270°, respectively. If
multiple logical runways share the same orientation, a letter L, R or C (for left, right and center,
respectively) may be appended to the number depending on the position of the runway with
respect to the others. Lets suppose we have a second east-west runway at the airport. Both
runways share the same orientation, so their number would be equal. The logical runways would
be named as 09L and 18R for one physical runway, and 09R and 18L for the other. Additional
rules are defined to more specific (and rare) cases. For instance, for the case of four parallel
runways, they are named as two pairs of two parallel runways, and the numbers in one of these
pairs is increased by 1.

Consequently, configurations are named after the logical runways that define them. In our
two parallel runway airport example, the four configurations would then be 09R-18R, 09R-18L,
09L-18R and 09L-18R. In the next section, the Adolfo Suirez Madrid-Barajas airport is used to
illustrate these concepts with a real-world example.

Airports also have associated standard procedures to orderly control the flow of air traffic ar-
riving at or departing from the airport: the Standard Instrument Departure (SID) and Standard
Terminal Arrival Routes (STAR) routes, respectively. SIDs and STARs provide a predefined
procedure under IFR rules that establishes the flight path, speed patterns and altitudes that
should satisfy any aircraft following the procedure. The SID or STAR that a flight should follow
can be defined in the flight plan, and changed tactically by ATC if the situation requires so
before the procedure is started. A SID links the aerodrome or a specific runway, with a specific
significant point around the airport, such as a designated ATS route or any other reference point
the aircraft has to fly by to leave the aerodrome. Conversely, a STAR defines the trajectory
between an entry point to the airport TMA and the designated runway on which the aircraft
must land.

There is one standard procedure more that is worth mentioning: holding procedures. With
this procedure, the aircraft adopts a waiting position, in which it flies in circles over a holding
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point following a predefined pattern, as shown in Figure This procedure can be ordered
by ATC when an arriving aircraft can not land at the airport due to several reasons: all the
runways are occupied, the weather conditions do not allow to perform the landing procedure,
etcetera. In such situations, the aircraft must wait until the authorization to land is finally
issued. Holding procedures provide a safe area to wait following a predefined flight path in the
form of a descendent spiral pattern.
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Figure 2.6: Example of a holding procedure. The aircraft changes direction when entering the
TMA of the airport, and is instructed to wait at a designated position following a holding
maneuver. When the pilot is authorized to land, the aircraft gets out of this position and heads
towards the designated runway.

2.2.3 Description of Spanish airspace

To illustrate the previous concepts, we can use the airspace of Spain as example. Spain is
situated in the FIR EUR, and has its airspace divided in three smaller FIR: Madrid, Barcelona
and Canary Islands (with their corresponding UIR). Due to its size and volume of air traffic, the
south region of the FIR of Madrid is delegated into another control centre situated in Seville. The
three FIR are shown in Figure 2.7 Within these FIR, there are 12 TMA; every large and busy
airport in Spain has its own TMA, although many are shared with smaller airports that are close
to the main airport. Outside of these TMA, eight other airports have their own CTA. Figure
2.8 shows the location and boundaries of all these airspaces. A more exhaustive description of
Spanish airspace can be consulted in [29).

We will focus now on the Adolfo Suarez Madrid-Barajas airport (ICAO code: LEMD, IATA
code: MAD), managed by AENA and located 13 kilometres from Madrid. The LEMD airport is
situated at 609 meters over the sea level (1998 feet). The Adolfo Suarez Madrid-Barajas airport
is the busiest airport in Spain, and was the fifth in Europe and the fifteenth busiest airport in
the world in 2023.

The airport contains four terminals and four physical runways arranged as two crosswind
pairs of parallel runways (see Figure , resulting in eight logical runways: 14L, 14R, 32R,
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Figure 2.7: Structure of the Spanish airspace. The thin, dark blue lines indicate the limits of the
three FIR in Spain: Madrid, Barcelona and Canary Islands. The shadowed, blue lines indicate
the limits of the defined TMA. The areas in gray describe the CTR around the main airports.
Source: Insignia (ENAIRE).

32L, 18L, 18R, 36R, and 36L. That is, two physical runways north-south and two southeast-
northwest. However, only two configurations are commonly used: the north configuration
(32L/32R-36L/36R) and the south configuration (18L/18R-14L/14R) due to the wind condi-
tions that are prevalent in the zone. A total of 8 SID and 4 STAR are defined to leave and
arrive to the airport, respectively, and each STAR is associated with several holding points for
incoming flights.
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Figure 2.8: Structure of the TMA of the LEMD airport, comprising several airports (LEMD,

Torrejon, Getafe...). Source: Enaire .

28

Jorge Silvestre Vilches



2.2. Airspace structure

ES  Madrid-Barajas Airport LEMD MAD 082023 +—1000m—i AN

18L

18R

(wp1) pupeny X

- H

32

Figure 2.9: Runway arrangement Source:
Wikipedia (uncredited).

&
: 50

e -
Figure 2.10: Examples of holding positions near the Adolfo Suirez Madrid-Barajas airport.

Source: Enaire [30].

| 7

it W) 7 Q A
4 y, , e
Y A — =T
5¢ | m é&;;) A p é’wlm ;
o 2 e T - Z3
[,] L comtun L
i . Ik ;

Jorge Silvestre Vilches 29



Chapter 2. Air Traffic Management

2.3 Altitude and flight levels

In previous sections, we have seen several criteria to divide the airspace, and in most of then,
the altitude is also used to define their boundaries. Altitude is also key, for obvious reasons, to
plan and carry out flight operations. While this concept can be understood intuitively, there are
some relevant aspects to consider to use it in air traffic management.

In aviation, the vertical position of aircraft or other entities (such as significant points, or
places on the surface of the Earth), can correspond with three different concepts. The altitude,
as defined by ICAO [62], is the vertical distance of any object above the surface of the Earth to
the mean sea level (MSL). The elevation is similar, but it is used to describe objects directly on
the surface of the Earth, and generally it refers to their point of maximum height. The definition
of height is more generic, and it indicates the vertical distance with respect to an specific datum,
and not necessarily the MSL.

The altitude of an aircraft is measured using the altimeter installed in the cabin or the on-
board GPS systems. The altitude calculation methods differ, and so do the resulting values for
the altitude of an aircraft. Lets see how they are different:

e The geometric altitude is that given by the GPS system of the aircraft. Defines the altitude
with respect to the reference system WGS-84, which defines a geoid that approximately
describe the shape of the Earth. This approximation introduces a deviation between -100
and 70 metres with respect to the real altitude over the MSL.

e The barometric altitude is obtained directly from the altimeter of the aircraft, and is
calculated based on the pressure difference with respect to a reference pressure. This
reference pressure is manually set by the pilot, and must be adjusted in different situations
during the flight.

Therefore, the geometric altitude is independent of the atmospheric pressure, but the baro-
metric altitude varies depending on the pressure setting defined by the pilot. In aviation, there
are two main pressure settings that are used in most airspaces, as shown in Figure

e The QNH corresponds to the sea level pressure at the position of the aircraft, and is
generally communicated by the ATC. It is constant within the zone from which it is defined,
but it can change from one zone to another, since it depends on the meteorology among
other factors.

e The QNE (or Standard altimeter setting) defines a reference pressure set at the Standard
Pressure of 1,013.25 millibars/29.92 inches Hg. The calculated altitude is variable depend-
ing on the weather conditions (and therefore it might be incorrect), but since the same
reference pressure is used by all aircraft within an area, the altimeters of all aircraft within
that area will be off in the same amount.

There exists a third setting: QFE, which sets the pressure according to the pressure level at
the airport, so the altitude at the ground of the airport is 0, instead of the MSL. In contrast,
when it is set to QNH, the altimeter should inform the MSE elevation of the airport. However,
this configuration is now generally in disuse.

The airspace is structured vertically, using the barometric altitude, in flight levels. A flight
level or “pressure altitude” is a surface of constant atmospheric pressure which is related to a
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specific pressure datum (generally QNE), and is separated from other such surfaces by specific
pressure intervals. The flight levels are defined to ensure a minimum vertical separation between
aircraft, since two aircraft are not allowed to share a flight level within a radius in terms of
horizontal separation. Flight levels are named using the two letters ‘FL’ with the altitude (with
standard pressure or QNE) in hundreds of feet, rounded down. For example, an aircraft flying
at 25,500 feet QNE is flying at the FL255.

D
)ﬂ.

Altitude Flight level Height

QFE TE

1013.2 mb QNE

Elevation

Mean Sea Level QNH

Figure 2.11: Altitude settings.

Both pressure settings are used during the flight. The standards dictate that QNH shall
be used under the transition altitude, and any aircraft shall adjust its altimeter to QNE when
flying above the transition altitude. The transition altitude is set at 18,000 feet (FL180) using
QNH in the United States; in Europe, it varies from airport to airport, and the pressure setting
depends on the intent of the aircraft: QNE is used for climbing, and QNH when descending.
The transition flight level is defined as the last flight level available that is above the transition
altitude.

2.4 Airspace classification

ICAQO defines different airspaces of defined dimensions , alphabetically designated, within
which specific types of flights may operate and for which air traffic services and rules of operation
are specified. The characteristics of the different classes are summarized in Table 2.3] Class A
is exclusive for IFR flights, which are provided with ATC and separation services. In the rest of
airspace classes both IFR and VFR flights are permitted. The classes are organized in decreasing
restrictiveness. Flights with IFR in airspace of classes B, C, D and E are subject to ATC, and the
difference resides in the vicinity of an airport. Depending on the size and the air traffic density,
the airspace around the airport can be of class B, C or D, as shown in Figure [2.12

Additionally, different restrictions can be applied, temporally or permanently, to portions of
airspace. There are three types of restrictions:
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Class Type of flight Service Provided Communication ATC clearance
A IFR ATC Continuous, two ways Yes
B IFR ATC Continuous, two ways Yes

VFR ATC Continuous, two ways Yes
C IFR ATC Continuous, two ways Yes
VFR Traffic info Continuous, two ways Yes
D IFR ATC Continuous, two ways Yes
VFR Traffic info Continuous, two ways Yes
E IFR ATC Continuous, two ways Yes
VFR Traffic info No No
F IFR Advisory ATC, FIS  Continuous, two ways No
VFR FIS No No
G IFR FIS Continuous, two ways No
VFR FIS No No

Table 2.3: Summary of characteristics of the defined airspace classes.

/C].erssb
/eﬁssA

Class C

Class G

Figure 2.12: Illustration of the airspace classes.

Danger zone. A dangerous zone (D) is an airspace of defined limits in which dangerous activities
for aircraft may develop. Typical activities developed might be: test flights, parachuting, rocket-
launching... Normally, there are specific periods of time when dangerous activities take place;
then, the dangerous zone is said to be ’active’. If this zone is not active, then this area can be
considered as disabled and there is no danger.

Restricted zone. A restricted zone (R) is an airspace of defined limits in which dangerous
activities for aircraft may develop. Typical restricted zones might be zones with: training flights,
military training, sensitive fauna...

Prohibited zone. A prohibited zone (P) is an airspace of defined limits in which flying is
totally prohibited (except for some authorized military and government use). Civil flights are
not allowed in these areas, except special authorization. Normally, there are specific periods of
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time when dangerous activities take place; then, the restricted zone is said to be ’active’ and it
must not be crossed unless complying with published requirements.

2.5 TFlights

Flights are defined by ICAO as “a planned operation of an aircraft from a specific point of
departure to a specific point of destination, including intermediate segments if applicable.” [62].
The definition by EUROCONTROL focuses more on the actual trajectory: “A flight is an aircraft
movement identified by a unique Aircraft Identification (ACID) and flight plan, covering the
period from off-block at the departure aerodrome until on-block at the arrival aerodrome” [38].
Therefore, a flight is characterized by two main aspects: the flight plan, which include the
applicable flight rules, and the actual trajectory, which can take place in different stages. This
section provides a succinct overview of these concepts.

2.5.1 Flight rules

The operation of an aircraft either in flight or on the movement area of an aerodrome shall be
in compliance with the general rules [60] and, in addition, when in flight, either with the visual
flight rules or the instrument flight rules.

Visual Flight Rules (VFR) are the flight rules applicable to operations by aircraft in visual
meteorological conditions, that is, conditions in which it is possible to fly solely by visual refer-
ence. These conditions allow for a non-instrumentally aided navigation ensured that particular
visibility conditions are met, and the pilot can guide the flight based on visual contact with other
airspace users and determine the route guided by geographical landmarks.

Visual conditions depend on the situation, although certain minima are defined internation-
ally |60]. For instance, the pilot must have a visibility of at least 8 km, and there must be no
clouds within 1500 metres horizontally, or closer than 1000 feet in vertical. The pilot must also
maintain a distance of 1000 feet above any obstacle in the ground over congested areas, or 500
feet when flying over uncongested areas.

Instrument Flight Rules (IFR) are applicable to properly equipped aircraft to fly under
instrument meteorological conditions. These conditions are meteorological conditions expressed
in terms of visibility, distance from cloud and ceiling, which are less restrictive than the minima
defined for visual meteorological conditions.

An IFR flight operating outside controlled airspace and required by the appropriate ATS
authority to submit a flight plan and maintain an air-ground voice communication with the air
traffic services unit providing flight information service, shall report its time and level of passing
each designated compulsory reporting point.

2.5.2 Flight stages

Flights develop in several stages, defined with their own goals, regulations and procedures. There
exist different criteria in which a flight can be divided: TATA defines up to 18 phases, while
ADREP [55], a taxonomy maintained by ICAQO, reduces them to nine. However, it is possible
to match the steps of one to another and it is only a matter of the description granularity. We
will focus on the division proposed by ICAO from now on, illustrated in the Figure which
consist on:
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Figure 2.13: Flight stages defined by ICAO.

Standing: Includes all operations before the aircraft engine is turned on and starts moving:
flight planning, passenger and cargo onloading, aircraft preparation, etcetera. The moment
in which the aircraft is authorized to start movement is called off-block time.

Taxi-out: Corresponds with the movement on the surface of the aircraft, from the gate at
the terminal in which it was parked, to the runway where the the takeoff is going to be
performed.

Takeoff: Is the phase where the aircraft travels on the runway and elevates from the ground,
maneuvering to head towards the designated exit point from the airport’s TMA.

Initial climb: This phase starts once the aircraft reaches an altitude of 1000 feet/300 metres
above runway elevation, and ends when the designated cruise altitude is reached.

Cruise or en-route: In this phase, once the cruise altitude is exceeded, the aircraft climbs
up to the designated altitude and heads towards the flight destination and the altitude,
bearing and speed are mostly constant.

Descent: This phase starts when the aircraft leaves its cruise stance and starts descending
towards the destination TMA. During this phase, a holding procedure may be issued in
case the aircraft cannot land at the airport.

Approach: Once the aircraft have been authorized to land at a particular runway, the
aircraft starts manoeuvring to align with the designated runway and attempt to land on
it. If the landing cannot be performed (for example, due to winds or any problem at the
runway), a go-around procedure may be issued to allow the aircraft to abort the landing
and ascend again and move away from the airport to try again the landing operation or
divert to another airport.

Landing: During landing, the aircraft slowly descends with the purpose of landing smoothly
at the designated runway, and decrease its speed once all its tires are in contact with the
ground.

Taxi-in: It corresponds with the movement of the aircraft, once it has reached the taxiing
speed, from the landing runway to the gate of the terminal, until it parks there and stops
the engines.

Standing: During this last phase, the cargo, passengers and crew are offloaded.
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2.5.3 Flight plans

A flight plan describes the main flight information to allow for strategic decisions related to
route planning, resource allocation and safety assessment. The airlines are responsible of filing
the flight plans for their scheduled flights prior to the flight start and submitting them to the
IFPS. The Initial Flight Plan Processing System (IFPS) is a centralized service of the Network
Manager Operations Centre (NMOC) to manage the initial processing and distribution of the
flight plans in European airspace during the strategic planning phase. These flight plans are
filed up to 5-7 days before the actual flight starts (i.e. the estimated off-block time, or EOBT),
and include scheduling information such as the planned departure and arrival times, the airline
that operates the flight, the origin and destination airports, and so on. Between the filing of
the flight plan and the departure, these flight plans can be amended to accommodate possible
changes in the schedule or the availability of resources. Twenty hours before EOBT, flight plan
data is transferred to the ETFMS. The Enhanced Tactical Flow Management System (ETFMS)
provides enhanced tactical data to all operational stakeholders, and facilitates improvements in
flight management from the pre-planning stage to the arrival of the flight. Thus, ETFMS data
describe the pre-tactical and execution phases of a flight, and goes beyond schedule information
by providing data describing the actual flight, such as the effective times of the takeoff or landing,
or the events taking place during the flight.

Any commercial flight in European airspace must file a flight plan and inform of any mod-
ification at any moment during the planning. The IFPS and ETFMS systems enable the real-
time information sharing about flight plans among all stakeholders, as part of the System Wide
Information Management (SWIM) infrastructure, to ensure the aforementioned conditions of ef-
ficiency and safety. Traditionally, flight plans consisted on a encoded text description indicating
the main characteristics of the flight and the temporal and spatial milestones in its path. These
descriptions were physically printed, and placed in front of the controllers responsible of ATC
along the route of the aircraft. Nowadays, the flight plans contain much more information to
allow for a more detailed description of the flights and enhance the predictability of the airspace.
A complete description of the data shared through the IFPS and ETFMS systems is included in
Chapter [

2.5.4 4D trajectories

4D trajectories are a key concept in the modern air traffic management. 4D trajectories enable
a holistic representation of flight operations that integrate all relevant aspects into a single
integrated and consistent form. The simplest conceptualization of 4D trajectories is as sequences
of 3D positions, described by the latitude, longitude and altitude of the aircraft according to
a geographical reference system, with their associated timestamp. The introduction of time
in the trajectory description allows for an optimized airspace capacity management and safety
assurance, in contrast with more traditional descriptions based on the waypoints included in the
flight plan. This concept is depicted in Figure [2.14] with an example of semantic annotation by
defining the flight phase at each point.

However, the concept of 4D trajectories has evolved to provide effective support to modern
trajectory-based operations, depending on the airspace and the corresponding regulations and
restrictions. The raw position information can be interpreted and enriched with semantics,
such as flight phases, and other valuable information: weather, applicable flight rules, flight
and aircraft types, airports of departure and destination, scheduled departure and arrival times,
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2:26:29
lon: 57.67501/12.29196
ight phase: Touch down

01:05

on: 56.13383/14.15156
ight phase: Top of descent

Osition: 38.08814/25.56496
Flight phase: Top of climb

Flight phase: Take off thrust applied

Figure 2.14: Diagram of a 4D trajectory, combining 3D position and time information.

etcetera . The aforementioned regulations include separation criteria, capacity limitations at
the airports, and other considerations that may affect the planning of flights. In particular, the
vision of 4D trajectories in the context of European airspace was established in early 2010s as
“business trajectories” for civil flights . The detailed and unified representation of trajectories
helps the required information sharing between all stakeholders implied in the ATM tasks. First,
trajectories are defined by the airlines during the planning stage of the flight, and shared to the
rest of the stakeholders. This initial definition and any subsequent changes in the flight plan are
shared in real-time through the SWIM.
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Background

Modern Air Traffic Management relies on automated systems to continuously monitor the airspace
and the traffic operating within it. These systems rely on a variety of sensors to assess key fac-
tors affecting the performance of the ATM elements, such as aircraft states and position, weather
conditions, quality of communication channels and so on. Therefore, a lot of data is produced
as a result of the operations related to air traffic and other areas in ATM.

Traditionally, many of these operations, such as estimation of the arrival time or trajectory
prediction, have been tackled using approaches based on physical simulations using determin-
istic models [85]. These models take into account the different factors that have effects on the
performance of aircraft, such as the aforementioned weather conditions, the flight characteristics
or the performance profiles of the aircraft’s makemodel, to produce a particular measurement
to guide or evaluate the operations of an aircraft. However, the variety of these factors make it
difficult to account for all of them, and are prone to significant deviations in presence of inac-
curacies or errors in the defined parameters, which also require to be known in advance to the
operation. They are also complex and costly to develop, and specific for a particular aircraft
model. Therefore, other approaches have been explored in later decades to complement these
effective yet often impractical methods. Data driven methods are one of the most prominent
candidates to fulfil this role.

Many data driven methods leverage historical data to model complex problems based on
observed patterns and previous experience. Among them, machine learning has emerged as a
prominent approach for modelling real-world events based on data, due to the development of
advanced algorithms and the notable increase in the availability of computational resources. Ma-
chine learning relies on automatic systems that “learn” from past observations, each characterized
by a set of dimensions or features. The learning process consists of optimizing a function that
approximates the desired outputs for a particular set of inputs. During training, past observa-
tions are fed into the model, and the internal parameters that define the function (the weights)
are adjusted iteratively to minimize the prediction error on these examples.

Deep learning is one of the aforementioned advanced machine learning algorithms that are
currently succeeding in tackling the most complex tasks. Deep learning builds upon the concept of
neural networks, a set of smaller, inter-connected components that allow to define more complex
functions than simpler machine learning models. These networks typically consist of an input
layer, responsible of taking the input into the network; an output layer that consolidates the
outputs generated by the network; and one or more hidden layers, which process the inputs by
applying several transformations in order to produce the desired outputs. In a typical neural
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network, the information is passed from one layer to the next layer only (in such case they are
called feedforward neural networks). There exist other types of networks that define different
connections, such as recurrent networks, in which the elements within the same layer can be
connected, or residual networks, which implement skip connections that allow the information
to bypass some layers.

The approach (either machine learning or deep learning) and algorithms chosen depend on
the complexity of the task and the nature of the data. In ATM, there is a prevalence of sequential
data, like data describing the state of a particular real-world element over time. In this chapter,
we discuss these topics in order to identify the most suitable approach to fulfil the objectives of
this Thesis.

3.1 Sequential data

Sequential data consist of a set of individual elements, or data points, that are arranged in
an ordered fashion and a relation of dependence exists between the individual elements in the
sequence |26]. Thus, individual elements are interpretable in the context of the other elements,
more than on their own. Moreover, in sequential data, the progression of the values across the
sequence is often more relevant than values alone. Sequential data have dimensions, which are
determined by the length of the sequence (the number of elements) and the number of features
that describe each individual element in the sequence. Each element can be described by one or
more features with a varied nature, either numeric or categorical.

Time series are a prominent example of sequential data. In time series, each individual ele-
ment has an associated timestamp, which is often unique within the sequence of data, in addition
to the features comprising each element. In general, sequential data of time series correspond
to periodic measurements of a particular event or metric, with a defined rate (e.g. daily, hourly,
etc.). In time series, the order of the elements is determined not (only) by their position within
the sequence, but mainly by their order in the time dimension. The time dimension enables fur-
ther analysis of the sequences, introducing additional notions such as the time distance between
the elements, or the consistency of these distances between adjacent elements.

Common examples of time series are data generated by the monitoring of physical or industrial
processes, where a sensor regularly takes readings of a particular metric to characterize different
dimensions of the monitored process. In the context of Air Traffic Management, 4D trajectory
data can easily be interpreted as a time series, albeit a particularly complex one. In Chapter [2]
we introduced some of the dimensions that characterize the state of an operating flight, such as
location, altitude, or speed. That is, 4D trajectory data constitute a wide sequence, since each
element encompasses numerous features, and the data sequences are typically very long. Current
monitoring techniques, such as ADS-B (which will be covered in the next chapter), generate new
readings several times per second. In flights several hours long, the number of elements in the
sequence is obviously considerable. Moreover, the data sequences as a whole can be associated
descriptive properties, which are constant for all the elements in the sequence, such as the identity
of the flight, the departure and destination airports, and so on. These properties are often called
static features.

Many tasks related to sequential data require some form of prediction, where a sequence of
data can be utilized to derive a value or another sequence, generally the next elements that would
continue the sequence. These tasks are known as many-to-one and many-to-many (or sequence
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to value and sequence to sequence problems), respectively. In ATM, there exist examples of
both scenarios. On the one hand, an example of sequence to value prediction problem is the
estimation of the arrival time of an aircraft, where based on the sequence of the latest states
of the flight, we try to determine the remaining time until it arrives at the destination airport.
On the other hand, trajectory prediction requires to forecast several future states of an aircraft,
which should also be coherent; that is, these predicted states should also form another sequence
of data. In time series, the time dimension is especially relevant, since it is key to fully apprehend
the progression in the values of the features as it might not be linear if the time distance between
the elements is not constant.

3.1.1 Time series prediction strategies

In sequence to sequence prediction problems, multiple approaches or strategies can be followed
to produce multiple elements based on a single sequence. Ben Taieb et al. [13| identified five
strategies to make multi-step predictions in time series, which are illustrated in Figure Each
strategy is characterized by two aspects: whether a single or multiple models are used to make
predictions, and the length of the output of the models.

Recursive

@@

|

2
Direct DirRec

() G0 ) () @@d:%@@@
AN

MIMO ’—[I}w DIRMO
@@@0@@@0<©@®Q@@@0

Figure 3.1: Graphical description of the defined prediction strategies. In all examples, the models
take four elements as inputs.

The Recursive strategy defines a single-output, one-step ahead model to predict the next
timestep. In order to predict further timesteps, the previous predictions are appended to the
input window; therefore, the prediction error is propagated through successive predictions.

Ymt1 = f(21, s Tm) (3.1)

The Direct strategy defines a single-output model specifically for each time horizon that
should be predicted. This method avoids error propagation, but implies a conditional indepen-
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dence between successive predictions:

Umet1s - Ymeap) = ([1(@15 s 2m)s ooy fp(@1, 00 ) (3.2)

The DirRec (Direct-Recursive) strategy combines the previous two strategies. DirRec consists
of predicting several timesteps using a direct strategy, and appending these predictions to the
input sequence, to predict the next set of timesteps recursively.

(Ymt1s - Ymeap) = ([1(21, s Tm)s oo, fp(@1, oy )
(ym+1+p7 e ym+2p) = (fl <m1+p7 A xm-l—p)? sy fp(x1+p7 s xm+p)) (33)

The remaining two strategies define multi-output models that predict more than one timestep
at a time. The MIMO (Multi-input multi-output) strategy defines a multi-output model to
predict the next p timesteps. This approach conserves the stochastic dependence between the
elements in the predicted sequence and avoids the error propagation, but has a reduced flexibility
given that only one model is used for all time horizons:

(YUmt1s s Ymap) = f(21, 000, 2 (3.4)

Finally, DIRMO combines Direct and MIMO strategies: multiple multi-output models are defined
for different blocks, each of them calculated in a MIMO manner.

The choice of the best strategy depends on the capabilities of the chosen models and the
needs of the problem. The strategies with a recursive nature (Recursive and DirRec) can pose
some risks due to error accumulation: the error in the first outputs influences the inputs for
later predictions, and in some cases the accumulated error can affect the performance of the
resulting model. The MIMO strategy, however, is more complex and difficult to train, and may
be more susceptible to noise in the data. Finally, the outputs in DirRec and DIRMO approaches
are independent of each other, ignoring the sequential nature of the desired output, and their
performance degrades as the prediction moves further out in time.

3.1.2 Application of deep learning approaches to sequence processing

In general, sequences can be of different lengths: for example, different flights have different
durations, even if they share the same origin and destination airports. This can constitute an
obstacle to apply many of the existing deep learning approaches to sequential data processing.
Most of these methods assume that the input sequences are of fixed length. Additionally, time
series processing methods also assume the sequences to be homogeneous and evenly distributed
from the time perspective. That is, the sequences are continuous —there are no gaps or skips in
the sequence of elements—, and the periodicity between elements is consistent, that is, the time
between successive elements is constant for all elements. Finally, several methods require the
data to be numerical, o restricted to a particular range of values, albeit it is clear that data will
not always fit this description.

There exist multiple approaches to face situations where these requirements are not met.
For example, variable length in the sequences can be resolved by shortening or filling up the
sequences to accommodate them to a defined length. Inconsistencies in the time dimension can
also be approached in a similar fashion. In the following, some of these techniques are briefly
presented.
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3.1.2.1 Windowing

Depending on the target use case, it can be required that long sequences with variable length are
converted into fixed-length sequences. For instance, several deep learning architectures require
that inputs have constant length, while 4D trajectories comprise a variable number of state
vectors.In these cases, each sequence can be broken down into one or more sub-sequences of the
required length, so each sub-sequence can be processed individually and interpreted as a sequence
itself.

Multiple strategies can be adopted to construct these sub-sequences. A typical one is to
apply a sliding window on the original sequence. A window is defined as a consecutive interval
of Ib elements from a sequence (hence having a length of [b). The windowing operation through
a sliding window is defined by two parameters: the window size, often referred as lookback,
and the step size, which indicates the number of elements skipped between the start of two
consecutive windows. A step size of 2 skips one element between windows, while a step size of 1
does not skip any elements. More formally, given a sequence of n elements, (1, x2, ..., T, ), We can
generate | (n — lookback)/step| sub-sequences of length [b where each window is a subsequence
Wy = (Tt.step—1,--» Tr-step—1+1p) Of the original sequence, as illustrated in Figure In the
example, the windows have a length of 3, and each new window skips one element at a time. As
a side note, if the lookback and the step size have the same value, the resulting sub-sequences
are disjoint.

Step Lookback

X1 X3 Xn-2
X2 X 4 Xn-l
X3 X 5 Xn
w;, Wy Wmn-3)/2

Figure 3.2: Example of the windowing operation on a sequence with n elements with a lookback
of 3 and a step size of 2.

3.1.2.2 Normalization

Most machine learning methods require numeric data, so often it is necessary to preprocess the
data to apply the corresponding transformations. Sequential data is no different, and therefore
the standard transformations can also be applied on them.

Some common transformations that are required to process 4D trajectory data are the en-
coding and the scaling of the values. Encoding is the operation of transforming categorical data
(generally features that are not numerical) into numerical values. Some techniques to this are
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to replace each categorical value with a particular numerical value according to a replacement
mapping. Scaling consists of transforming numerical values through a mathematical expression
to apply an invertible transformation (so that the original values can be recovered later), to make
the values appropriate for better interpretation by the model. Some examples of these transfor-
mations are scaling the values to a particular range (such as [0, 1]) to compress all features into
this range and neutralize the scale differences between the different features; or transforming the
data distribution by centering it at 0 to have more symmetrical distributions.

Ultimately, these transformations depend on the requirements of the model. Later we will
introduce Recurrent Neural Networks as a means to process sequences of data; these networks
can only use numerical data, and is common practice to compress the range of all features into
[0,1] to ensure a better behaviour from the network.

3.2 Recurrent neural networks

In recent years, methods based on Recurrent Neural Networks (RNN) have shown good perfor-
mance in time series modeling tasks, provided that they are able to capture temporal dependen-
cies in sequential data [52]. In contrast with traditional feed-forward neural networks, in which
each layer passes information only to the next layer, recurrent layers present cycles within them,
that is, they have links between the neurons in the layer. This fact enables RNN to have “mem-
ory” from the elements that have already been processed. A simple recurrent layer contains a
single recurrent neuron that expects a sequence of elements as input. Recurrent neurons contain
a cell state that changes after processing each input element, and is used to process the next
input element. The layer iterates on every element in the sequence: at each step, the cell state
is propagated from the previous iteration and used to process the next element in the sequence.
Thus, the layer has “memory” of the elements that were processed before in the input sequence.
When all elements in the sequence have been processed, the final output is passed to the next
layer.

Xt

Figure 3.3: RNN unit internal structure.

This structure causes RNNs to form very deep structures that increase the risk of the van-
ishing gradient problem [52|, particularly when analyzing sequences with long-distance depen-
dencies. Vanishing gradient problem consists of the error becoming too small or zero during the
back-propagation step in model training. If the errors are zero, the parameters of the model are
not updated (the value of the weights does not change); this translates into a part of the model is
not “learning” correctly, or taking a lot of time to learn long-term dependencies in long sequences.
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AN,
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Figure 3.4: Example of a RNN that takes a sequence & = (x1,...,2,) of size n and outputs a
sequence Yy = (y1, ..., yp) with size p.

This problem can be handled using different techniques, but Long Short-Term Memory networks
in particular have attracted much attention in recent years.

3.2.1 Long-Short Term Memory networks

Figure 3.5: LSTM unit internal structure.

Long Short-Term Memory (LSTM) [53] is a gated recurrent network architecture that ensures
error propagation even in deep recurrent layers, allowing the model to have “long-term” memory
without the loss of “short-term” memory shown by traditional RNN.

Inside a LSTM cell (see Figure , three multiplicative units are defined that act as gates
with different purposes and regulate the flow of information across the layer: the forget, input
and output gates. This information consists of the cell state (the long-term memory mechanism),
and the hidden state, which is the output of the unit to be passed to the next iteration, or the
next layer if the iteration has finished. At each step, the unit receives three values: the element
itself, the cell state, and the hidden state of the previous iteration.

Let us exemplify the process for an element, z;, in an input sequence with length [b: X =
(T1yeeey Tt—1, Tty Tt41, ---, Tp), using the cell state and the hidden state from the previous iteration,
Cy—1 and hy_1, respectively. First of all, the element x; is concatenated with the hidden state
hi—1: Vi = [h4—1,x¢], to be used as input to the three gates. Thus, each element is processed in
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light of the output of the previous iteration. The forget gate f; determines the influence of the
propagated cell state on the processing of the current element.

The input gate i; controls how much information from the input element will contribute to
the cell state. In practice, it protects the cell state from perturbations and irrelevant elements
in the input sequence. This gate comprises two parts: a sigmoid function that controls which
parts of the cell state will be updated, and a hyperbolic tangent function (tanh) that generates
a candidate cell state to update the previous one.

Forget gate: Jt=0(Wy - [h—1, 2] + by)
Input gate: iy = o(W; - [he—1, ] + b;)

The cell state is updated with the results of the forget and input gates: the first determines
which parts of the cell state should be forgotten, and the second determines which values from
the candidate cell state should be added to the definitive cell state. This cell state is propagated
directly to the next iteration of the recurrent layer.

Finally, the output gate outputs the most relevant parts of the cell state, once it has been
updated. This helps to filter the information to be passed on to the next iteration, avoiding
the propagation of irrelevant information from the current hidden state in light of the current
element. The hidden state is propagated to the next iteration in the recurrent layer, and it can
also be passed to the next layer, depending on the specified output size of the layer. It is worth
noting that, during this process, the hidden state and the output are updated separately, which
helps to ensure long-term memory.

Candidate cell state: ~ C] = tanh(W,. - [hy—1, 2¢] + bo)

Cell state: Ci=fioC1+i06C]
Hidden state: hy = O; ® tanh(Cy)
Output gate: or = c(Wy - [hi—1, 2] + bo)

LSTM networks have already proven to be effective in dealing with air traffic data in different
problems in the ATM field. In [14], LSTMs were combined with convolutional neural networks to
predict the aircraft type using ADS-B data. Different aircraft types present particular patterns in
their displacement, which can be identified in sequences of surveillance data. LSTM can analyze
the progression of the latitude and longitude values, among other features, to classify the flight
according to the aircraft type. Beyond RTA prediction, other regression problems have also been
tackled with the use of LSTM. Shi et al. [99] proposed an architecture for trajectory prediction
based on ADS-B data. Their results showed that the last reported positions of an aircraft, among
other features of interest for this task, allow accurate prediction of its future positions.

3.2.2 Gated Recurrent Units

Gated Recurrent Units, or GRU |20, offer a simplified alternative to LSTM, reducing compu-
tational complexity while preserving sequence modeling capabilities. The architecture of GRU
reduced the number of gates in LSTM networks by merging the forget and input gates into a
single “update gate” (see Figure . This simplification often leads to small improvements in
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training times since the architecture has fewer parameters to train, although the performance
difference between GRU and LSTM units largely depends on the nature of the problem. Instead,
the input sequence is encoded into a sequence of vectors, and a subset of these vectors is selected
during decoding.

Y

Xt
Figure 3.6: GRU unit internal structure.

We can illustrate the processing of a GRU layer using the same example as for LSTM net-
works. GRU units take only two inputs in each iteration: an element z;, and the hidden state
from the previous iteration h;_1. In this case, the hidden and the cell states are not propagated
separately.

On the one hand, the element x; and the propagated state are concatenated and passed
through the reset gate r;, whose role is to determine which parts of the hidden state are relevant
for the current iteration. Again, a sigmoid function is used with that purpose. The modified
hidden state is concatenated with z; to calculate the candidate state of the cell, hj.

On the other hand, the concatenation of z; and h;_1 is also passed to the update gate z,
which decides, in a single step, which parts of the input element will contribute to the hidden
state, and which parts of the candidate state will modify the current cell state.

Reset gate: re = o(Wy - [he—1, x¢])
Update gate: 2zt = o(Wy - [hi—1, 24])
Candidate cell state:  h} = tanh(W - [ry © hy—1, 24])
Cell state: hi=(1—2)®hi—1+ 2 Oh,

GRU networks have been used less than LSTM, since they are significantly more recent.
However, the development of attention-based architectures may be an even stronger argument
against GRU gaining attraction, especially since attention mechanisms have begun to displace
recurrent networks in sequence processing research. In the following sections, we will introduce

these mechanisms, and motivate why they have attracted such interest.
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3.3 Transformer-based architectures

Attention mechanisms [11] help models to discover implicit patterns in sequences of data by
identifying which elements are more important for performing a task. In this way, the model
can modulate the importance of each element in the sequence by assigning weights to them, and
focus more on the most relevant elements. Attention mechanisms became most prominent with
the publication of the Transformers architecture |114], which implied a breakthrough in sequence
to sequence problems.

3.3.1 Attention

O =oEGh D~
® - © © Lo

Figure 3.7: Example of an encoder-decoder architecture.
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Bahdanau et al. [11] proposed attention mechanisms to improve the performance of encoder-
decoder architectures for long and complex sequences. Encoder-decoder architectures consist of
two separate models (the encoder and the decoder) with two different roles: the encoder takes
an input sequence, and encodes it into a fixed-length sequence; that is, the encoder summarizes
the input sequence. Then, the decoder processes this sequence to produce a new sequence. One
of the first applications of such architecture was automatic translation [20], where a sentence
in the source language is encoded into a fixed length representation, which is later used by
the decoder to produce the corresponding sentence, a word at a time, in the target language.
However, encoder-decoder models based on recurrence have a few shortcomings that attention
mechanisms try to alleviate to some degree. Without attention, the decoder does not have access
to all information in the input sequence, given the summarized representation as a fixed-length
sequence (which in principle is much shorter than the input sequence) that is generated by the
encoder.

Attention is constructed upon three concepts: a set of scores e;; according to an alignment
model a, a matrix of weights a;; and a context vector ¢;:

eij = a(si-1,hj) (3.5)
a;j = softmax(e;j) = M (3.6)
>kt exp(eir)
Ty
ci =Y aihy (3.7)
j=1

The alignment model a evaluates the strength of the match between the inputs in positions
i and j (in the original paper, this model is implemented as a feedforward neural network).
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h;j is the j-th annotation generated by the encoder, and s;_1 is the hidden state of the decoder
right before generating the i-th element in the output sequence, y;. The weights «;; describe
the probability that the target element, y;, is aligned to a source element, x;. That is, the
importance of the annotation h; with respect to the previous hidden state (of the decoder) s;_;
in deciding the next state s; and generating the output element y;. The softmax function ensures
that agr, € [0,1] and >, agr, = 1 for the calculated weights. Effectively, these parts provide
an attention mechanism to the decoder, since the decoder can decide which parts of the input
sequence should be given more importance, and thus the encoder can spread the information
from the input sequence throughout the sequence of annotations instead of having to encode it
all into a fixed-length vector.

Finally, the context vector ¢; depends on a sequence of annotations (hq, ..., hr,) to which
the encoder maps the input sequence. These annotations are generated by the encoder: each
annotation h; corresponds with the hidden state of the encoder after processing the i-th element
in the sequence, and it contains information about the whole input sequence, with a particular
focus on the part surrounding the i-th element in the sequence. The context vector is used by the
encoder to process new elements in the sequence in light of the previously processed elements.

Several variants to this attention mechanism have been proposed, with self-attention and
multi-head attention being two of the most prominent. These concepts were introduced as parts
of the Transformer architecture, and thus they are covered in the following section.

3.3.2 Transformer

The Transformer architecture [114] replaces recurrence with attention mechanisms in deep neural
networks, achieving great success in tasks such as machine translation. With the removal of
recurrence, which enforces a sequential processing of the input sequences, Transformer allows for
parallelization during the training process, although it loses the notion of the order of the elements
within the input sequence. This fact is overcome by adding a component responsible of position-
encoding the elements in the input sequence. Hence, Transformer provides a parallelizable, high-
performance alternative to traditional recurrent networks for sequence analysis. The building
block of this architecture is shown in Figure [3.9]

Transformer relies on three key concepts: self-attention, multi-head attention and the posi-
tional encoding of the elements in the input sequence. Self-attention takes into consideration the
importance of each element in the context of the rest of the elements in the input sequence, rather
than using a predefined set of keys. Therefore, queries and keys in self-attention are the same.
Multi-head attention (see Figure allows for different interpretations of the input sequence by
projecting the query vectors into different representation subspaces. Finally, positional encoding
allows the model to account for the order of the elements in the sequence, which was lost after
removing the recurrence. In the following, we briefly review these three components.

Transformer generalizes the concepts presented in [11] and makes an analogy to searching
information in a database: these concepts are defined as queries () (which are the previous decoder
outputs, s;—1), values V' (the encoded inputs, h;), and keys K (equal to the values). The vectors
in Q and K have a dimension dj, while the keys have a dimension d,, which corresponds with
the length of the encoded representation of the inputs. Then, attention is defined as:

Attention(Q, K, V) = A(Q, K)V = Softmax <63/I§T€T> V (3.8)
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Figure 3.8: Single head (left) and multi-head (right) attention [114].
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Figure 3.9: Transformer architecture [114]. The encoder (left) encodes the input sequence
through multiple attention blocks, and passes the results to the decoder. The decoder pro-
duces the output by feeding the previous outputs, or a placeholder in the first iteration.
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Where QK7 is the dot product of the query and key vectors, scaled by a factor of (v/dy) ™"
to reduce the saturation effect of the softmax function for large values of di. The result of the
softmax (equivalent to the Equation presented in the previous section) is used to weight the
values (Equation through the dot product. By avoiding recurrence, the sequential nature of
the operations disappears and enables the computation of all vectors in parallel as matrices.

Multi-head attention further modifies attention mechanisms by making multiple projections
of the input, H, = A(Q, K) (heads). In this way, each head can focus on different features at dif-
ferent positions in the input sequence by transforming it into different representation subspaces:

MultiHead(Q, K, V) = [Hy, ..., Hyn,, | Wi (3.9)
Hy, = Attention(QWS", kKw{M viw{) (3.10)

Where W(h), gl) € R¥moderXdatin  and W‘(/h) € R¥moderXdv are head specific weights for keys,

queries and values, and Wy € R(™ndv)Xdmodel Jinearly combines outputs concatenated from all
heads Hy,.

The results of all attention heads are concatenated and projected into a final dimension d,,
equivalent to that used in single-head attention.

3.3.3 Temporal Fusion Transformer

Temporal Fusion Transformer (TFT) [75] introduced several novelties that make this approach
appropriate to work with time series, instead of simple sequences of data. In particular, TFT
distinguishes between different types of inputs, including contextual information; is able to make
multi-step predictions; and optimizes the performance of the process by applying specific variable
selection for all types of inputs. In the following, we review the main characteristics of this
architecture, and discuss its suitability for our project.

Temporal Fusion Transformer tackles the problem of multi-horizon forecasting problem, which
is defined as the prediction of variables of interest at multiple future time steps, similar to the
MIMO strategy discussed in Section [3.1.1} For this purpose, the architecture of TFT combines
recurrent layers to learn temporal relations between variables at different scales, and self-attention
layers to account for long-term dependencies. Moreover, different types of variables are processed
separately, in contrast with previous works that face this task like deep neural networks with
attention mechanisms. These approaches fail to consider the different types of inputs with
decisions such as considering all exogenous inputs known into the future, or treat static variables
as sequential variables by replicating their values on each example. These decisions have an
impact on the computation cost and the effectiveness of the resulting model.

The Figure describes the forecast process. In TFT, each example 7 € I is characterized
by the time-dependent input features and the target features for each time step t € [0,7;], and a
set of static covariates. The time-dependent input features, x; ; = [zzt, m;{t]T € R™x are divided
in observed inputs, zgt € R™=, which are unknown in advance, and known inputs, wgt € R™M=,
whose value is known for the forecast time period. The scalar targets, y;; € R describe the past
(known) values of the variable to be predicted. Finally, the set of static covariates s; € R™s are
time-independent and constant for all time steps.

Then, for each example i, TFT outputs forecasts for 7,,,, time-steps, based on all past
information that is incorporated within a finite look-back window k (including the forecast start
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Figure 3.10: Diagram of the TFT approach to multi-horizon forecast.

time t): Y t—k:t = {Yit—k,---» Vit }, and past and future inputs across the entire range: @; ;g4 =
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The architecture of TFT is represented in Figure [3.11] In the following, we briefly review its
main components and their roles.

Quantile Forecasts{ Pe+1(0.1) 941(0.5) %141(0.9) wur Giar(0.1) Ge4-(0.5) 4-(0.9)
Dense Dense Residual | Dropout
Connection '
A \
Temporal Fusion Decoder o \ e
are . rimary Context
Position-wise Input \ (Optional)
Feed-forward - \_# ¢
............................................................................................ v !
‘Temporal Gated Residual Network (GRN)
Self-Attention
My
; () £(5)
&= Z vy &
.......................................................................................... 1
Static J ariae
i Selection
Enrichment Weights
Uxt
Static ! £(1) e 5‘("1\ )
Covariate C | t t
Encoders LSTM T sue LSTM LSTM LSTM
Encoder ] Encoder Decoder Decoder e GRN
/
- A A
Variable Variable Variable Variable Variable 5( 1) f[ my ) - L
Selection Selection Selection Selection Selection t t T‘f
8 { + { 1 Inputs n q Ext:mal
(Linear/Embedding) ny
~ puts  Context
Statis lXt—k, Xt‘ |.77t+1 g't—l—mel;‘ (Optional)
Metadata Past Tnputs Known Future Inputs Variable Selection Network

Figure 3.11: Structure of Temporal Fusion Transformer architecture \\
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Gating mechanisms. Gating mechanisms allow the model to decide whether each exogenous
variable is relevant, and the required complexity of the relationship between each variable and
the target, that is, if it should be modelled whether as a linear or as a non-linear relationship. In
particular, TFT implements Gated Residual Networks (GRN), which apply non-linear processing
when needed, and fall back to linear processing otherwise. As seen in the top right corner of the
Figure [3.11} a GRN first processes an input a and an optional encoded context vector ¢ through
two layers, with an intermediate ELU (Exponential Linear Unit) layer as activation function.
ELU acts as the identity function if the processed input after the first layer is < 0, and as a
linear layer (with a constant output) if it is > 0.

Then, a GLU (Gated Linear Unit) is used as a gating mechanism to regulate the contribution
of the result through the residual connection, or even skip it altogether. Finally, the result is
normalized by means of a normalization layer.

Variable selection networks. TFT applies instance-wise variable selection on both static
covariates and time dependent covariates, in order to ignore irrelevant or noisy inputs and pay
attention to significant inputs only. To this end, specific variable selection networks are defined
for static metadata, past inputs and future inputs. These networks are represented in the bottom
right corner of the Figure[3.11] First, categorical and continuous variables are transformed using
entity embeddings and linear transformations, respectively. Then, each variable at a time ¢ is
passed to a GRN, and combined with the result of operating the concatenation of all past inputs
at that time ¢ with the context vector ¢s through another GRN.

Static covariate encoders. TFT integrates information from static metadata using separate
GRN encoders to produce four different context vectors: temporal variable selection, cs; local
processing of temporal features, c., ¢p; and enriching of temporal features with static information,
Ce. As shown in the Figure static covariates are encoded using LSTM networks, although
it is noted that other approaches can be implemented.

Interpretable multi-head attention. TFT employs a self-attention mechanism to learn long-
term relationships across different time-steps. In general, attention mechanisms scale values
V € RV*4 based on relationships between keys K € RY*datn and queries Q € RN *dattn;

Attention(Q, K,V) = A(Q,K)V (3.11)

Multi-head attention employs different heads for different representation subspaces:

MultiHead(Q, K, V) = [Hy, ..., Hp, | W g (3.12)
Hy, = Attention(QW ), KW, vw () (3.13)

Where W%),ng) € RmoderXdatin  and ng ) € Rimodet¥dv gre head specific weights for keys,

queries and values, and Wy € R(madv)xd

heads Hy,.

model linearly combines outputs concatenated from all
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Temporal fusion decoder. The Temporal Fusion Decoder (depicted in purple in the Figure
is composed of three types of layers with specific roles. First, the input sequence is enriched
with positional encoding using a sequence to sequence model (such as LSTM) to improve signif-
icant points detection and provide a better interpretation of the context of each element. Static
covariates are also incorporated to the sequence. The static covariates are also incorporated by
means of a GRN and the context vector c.. The resulting sequence is applied self-attention at
each forecast time. Finally, an additional GRN layer applies additional non-linear processing to
the outputs of the attention layer.

52 Jorge Silvestre Vilches



Part 11

Data workflow

93






Chapter 4

Flights information system

The automation of information management has motivated significant efforts to standardize data
processes and data representation, both conceptually and practically. Conceptual models and
ontologies and have a relevant role in such efforts.

4.1 Background

The automation of information management has motivated significant efforts to standardize data
processes and data representation, both conceptually and practically. Conceptual models and
ontologies and have a relevant role in such efforts.

4.1.1 Information exchange models

Prior to the ongoing initiatives aimed at building a unified and comprehensive perspective across
all stakeholders in Air Traffic Management, automation efforts were undertaken separately by
each organization, often limited to their individual operational domains. In consequence, different
exchange models where developed separately according to the needs of each business area. These
exchange models define an information model (usually as UML models), and an information
schema based on XML. Below we list some of the most relevant exchange models in ATM:

e Aeronautical Information Exchange Model (AIXM) [36] is a global specification for the
encoding and the distribution of digital aeronautical information. To this end, AIXM
defines a logical data model and an XML schema: Aeronautical Information Conceptual
Model (AICM) + XML Exchange Model.

e Flight Information Exchange Model (FIXM) [41] is an exchange model based on XML
capturing Flight and Flow information.

o ICAO Meteorological Information Exchange Model (IWXXM) [65] is an information model
designed for the operational exchange of meteorological information for ATM purposes.
This model includes all of the information required by ICAO Annex 3 [61], including
reports such as METAR/SPECI, TAF, SIGMET, AIRMET, Tropical Cyclone Advisory,
Volcanic Ash Advisory and Space Weather Advisory.

o Weather Information Exchange Model (WXXM) is developed by EUROCONTROL and
FAA, and extends IWXXM with further weather information not covered by the latter.
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However, the different points of view and the separate developments can lead into discrep-
ancies between information models in how different concepts are related, or even in the meaning
of the same concept. In the current context of integrated information, ATM Information Refer-
ence Model (AIRM) has become the most significant effort to reconcile these interpretations and
provide an holistic information system for the ATM.

4.1.2 ATM Information Reference Model (AIRM)

ATM Information Reference Model (AIRM) [35] consolidates a global standard vocabulary for
ATM, based on the ICAO Annexes and Documents, and different information exchange models
used at a global scale. In order to ease the adaptation of idiosyncratic exchange models to this
standardized vocabulary, several mappings have been established between the AIRM and the
models defined in these exchange models. In this way, AIRM enables semantic interoperability
at a global scale by ensuring that the concepts used by all agents involved in ATM have an
unique, unambiguous meaning.

The scope of AIRM is ATM-wide, that is, it encompasses all the concepts related to air
traffic management on any of its areas: airspace and base (ground) infrastructures, air traffic
operations and surveillance, flight information and meteorology, among others. AIRM comprises
three components, which are described using UML (Unified Modeling Language):

o A contertual model, providing the terminology, abbreviations, standards and classification
scheme that characterize the concepts behind ATM operations. This component gathers
business terms from international organizations, such as ICAO, ISO and WMO.

e A conceptual model, which serves as a reference model for operational experts.
o A logical model, which serves as a reference model for technical agents and developers.

However, AIRM does not provide with an information exchange model that defines how
information is actually encoded, so it still needs to rely on the exchange models described before
for its implementation on specific domains, and is the reason why individual exchange models
still are relevant today.

4.2 Conceptual model

Based on the AIRM, we have designed a specific conceptual model that represents the concepts
relevant to this Thesis. However, in prevision of future extensions, and to homologate our model
to the existing approaches, we have mapped the concepts in our model to those existing in AIRM
(and, by extension, to the specific exchange models applicable to each of the ATM areas).

Our conceptual model is shown in Figure In gray, we have indicated the entities that will
be included as part of our future work, but are currently not defined in the conceptual model
since they are not used later in the data workflow. Since our focus are flown 4D trajectories, the
Flight entity is the central concept in our model. We define a flight as the trajectory followed
by an aircraft between the off-block time, where it starts moving at the departure airport, and
the on-block time at the destination airport; that is, when the aircraft is parked after landing
and stops moving at the terminal gate, with no stops in between. This notion of Flight is
analogous to the concept of flight leg that is common in ATM, since commercial flights can make
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scales (short duration stops) at intermediate airports. In these cases, a single flight comprises
several legs, each with its own arrival and departure times, flight plan, or even aircraft and
operating carrier. Considering these two concepts introduced additional layers of complexity in
our model, so we decided to make it simpler by focusing on legs only, and renaming them as
Flights (instead of Flight legs) for clarity. Therefore, a multi-leg flight would be represented as
multiple, independent flights in our model.

The involved concepts are specified in Tables A succinct definition of each concept
and its descriptive attributes is provided in each table, based on the corresponding AIRM concept.
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Figure 4.1: Conceptual model
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AERODROME

AIRM: Aerodrome

A defined area on land or water (including any buildings, installations and equipment) intended to be
used either wholly or in part for the arrival, departure and surface movement of Aircraft.

Attribute AIRM concept Definition

ICAO code designator Four-letter identifier assigned by ICAO.

TATA code IATAdesignator Three-letter identifier assigned by IATA.

Latitude aerodromeReferencePoint.lat  The latitude coordinate in WGS84.

Longitude aerodromeReferencePoint.lon  The longitude coordinate in WGS84.

Altitude fieldElevation The vertical distance in feet above Mean Sea
Level (MSL) of the highest point of the Land-
ing area.

City servedCity The city primarily served by the Aerodrome.

Name name The primary official name of an Aerodrome.

Type type The type of Aerodrome
(AD=Airport, HP=Heliport, LS=Landing site,
AH=Airport and heliport).

Transition altitude transitionAltitude The altitude in feet at or below which the vertical
position of an Aircraft is controlled by reference
to altitudes.

Transition level transitionLevel The lowest flight level available for use above the

transition altitude.

Table 4.1: AERODROME entity description

AIRCRAFT

AIRM: Aircraft

Attribute

AIRM concept

Definition

ICAO24 Code

Aircraft model

Type

Wake turbulence

aircraft Address

aircraftMakeModelSeries

aircraft Type

wakeTurbulenceCategory

The unique address (a combination of twenty-four
bits) of the aircraft for the purpose of air-ground
communications, navigation and surveillance.

Aircraft model, make and series information as
provided by the manufacturer.

The Aircraft type (LANDPLANE, SEAPLANE,
AMPHIBIAN, HELICOPTER, etc.).

A classification of aircraft based on the magnitude
of wake turbulence they are expected to generate
(LIGHT, MEDIUM, HEAVY, and SUPER).
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Table 4.2: ATRCRAFT entity description.
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FLIGHT

AIRM: Flight

The operation of an Aircraft which, in the case of a manned Aircraft, takes place between the time
any person boards the Aircraft with the intention of Flight until such time as all such persons have

disembarked.

Attribute AIRM concept Definition

callsign aircraftIdentification. A combination of letters and /or numbers which is used

flightNumber to identify the flight.

flightDate dateOfDeparture The date of flight departure.

takeOffTime airborneTime The time at which the aircraft leaves the ground and
becomes airborne.

landingTime landingTime The time at which the aircraft touches down on the
runway.

actualTimeOfArrival — actualArrivalTime The time at which the Aircraft reaches its final parking
position and the brakes are set.

flightRules flightRules The regulations that govern all aspects of flight opera-
tions (VFR, IFR).

codeFlightType flightType The classification of the flight, such as scheduled pas-
senger, cargo, general aviation, etc.

ssr ssrCode The four-digit Secondary Surveillance Radar (SSR)
code assigned to the Aircraft for identification by radar.

status flightStatus The operational state of the Flight.

(Scheduled, Departed, En-route, Landed, Cancelled)

Jorge Silvestre Vilches

Table 4.3: FLIGHT entity description.
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FLIGHT PLAN ATIRM: Flight (f), FlightPlan (fp)

Specified information provided to air traffic services units, relative to an intended Flight or portion of

a Flight of an Aircraft.

Attribute AIRM concept Definition

ifplld A unique Flight plan identifier allocated by
the IFPS.

flightDate f.dateOfDeparture The date of Flight departure.

totalEstimated Time f.totalEstimated Elapsed Time

estimatedOffBlockTime

estimated TakeOff Time

estimated TimeOfArrival

estimatedLandingTime

Flight plan version fp.operatorFlightPlanVersion

The estimated time required from take-off to
arrive at the destination aerodrome.

The estimated time at which the aircraft will
commence movement from its parking posi-
tion with the intention of departing.

The estimated time at which the aircraft will
become airborne, calculated as the sum of the
estimated off-block time and taxi-out time.

The time at which it is estimated that the air-
craft will arrive at the destination aerodrome.

The estimated time at which the aircraft
will make physical contact with the runway
(touchdown).

The version of the flight plan provided by the
operator.

Table 4.4: FLIGHT PLAN entity description.
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FORECAST

AIRM: Forecast (f), SurfaceForecastReport (sfr), MeteorologicalForecast (mf),
WeatherCondition (wc), Wind, AirspaceCondition (ac)

A statement of expected meteorological conditions for a specified time or period, and for a specified
area or portion of airspace.

Attribute AIRM concept Definition
timestamp f.forecast Time The time for which the weather conditions are fore-
cast.
temperature wc.temperature The forecast air temperature at the aerodrome sur-
face, in Celsius degrees.
dewPointTemperature wc.dewPointTemperature The forecast dew point temperature at the aero-
drome surface, in Celsius degrees.
windDirection Wind.windDirection The forecast direction from which the wind is blow-
ing, in degrees.
windSpeed Wind.windSpeed The forecast wind speed at the surface, in knots.
windGustSpeed Wind.windGustSpeed The forecast maximum gust wind speed, in knots.
visibility ac.visibility The forecast horizontal visibility, in meters or
statute miles.
weatherPhenomena wc.present Weather Forecast weather phenomena.
(rain, fog, snow, thunderstorms).
cloudAmount we.cloudAmount The forecast total cloud coverage.
(SKC, FEW, SCT, BKN, OVC).
cloudBase wec.cloudBase The height of the base of the lowest significant
cloud layer, in feet AGL.
cloudType wec.cloudType The type of cloud layer.
(Cumulonimbus, Towering Cumulus).
forecastType sfr.type The type of forecast issued.
(TAF, trend, probabilistic).
reportValidityStart mf.validPeriod.start Start of the forecast validity period.
reportValidityEnd mf.validPeriod.end End of the forecast validity period.
forecastProbability mf.probability Probability of occurrence, if applicable.

(30, 40).

Jorge Silvestre Vilches

Table 4.5: FORECAST entity description.
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OPERATOR AIRM: Aircraft Operator

Any air transport enterprise (airline) offering or operating a Scheduled international air service

Attribute AIRM concept Definition

ICAO code designatorICAO  The identifier of the AircraftOperator as assigned by ICAQO.
TATA code designatorIATA  The identifier of the AircraftOperator as assigned by IATA.
Name name The full official name of the organization.

Callsign code designator A distinguishing label, term, abbreviation or acronym used to

identify an organization, authority, agency or unit.

Table 4.6: OPERATOR entity description

VECTOR

AIRM: TrajectoryPoint

A four dimensional Point used in defining the Flight path of an Aircraft, enriched with additional
values indicating the state of the aircraft.

ICAO24 Code
Ground speed

Track

Vertical rate
Latitude

Longitude
Barometric altitude
Geometric altitude

On ground flag

Squawk (SSR)
Callsign
Time position

Last contact

icao24

velocity

true track
vertical rate
lat

lon
baro_altitude
geo _altitude

on_ground

squawk
callsign
time position

last _contact

ICAO 24-bit ID of the transponder (hexadecimal).

Ground speed en m/s; velocidad sobre el suelo del avion en el
momento del estado.

Bearing in decimal degrees clockwise from north.
Ascent or descent rate, in meters per second..
WGS-84 latitude in decimal degrees.

WGS-84 longitude in decimal degrees.

Barometric altitude in feet.

Geometric altitude (over WSG84 ellipsoid) in meters.

Boolean value which indicates if the position was retrieved from
a surface position report.

The 4-number transponder code (squawk) assigned by ATC.
Callsign of the flight.
Unix timestamp (seconds) for the last position update.

Unix timestamp (seconds) for the last update in general.

Table 4.7: VECTOR entity description with respect to the State Vector concept from OpenSky.
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WEATHER STATION ATRM: WeatherInformationSource (wis)

Attribute ATRM concept Definition

Station ID wis.identifier Unique identifier of the station assigned by
ICAO

Latitude Point.latitude WGS-84 latitude in decimal degrees.

Longitude Point.longitude WGS-84 longitude in decimal degrees.

Elevation Point.altitude Vertical distance to the MSL in meters.

StationType stationType The type of the station.

(AWOS, ASOS, METAR, etc).

Table 4.8: WEATHER STATION entity description.
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4.3 Data sources

In this section we review the data sources that feed the designed data workflow. Given the
information requirements defined in our conceptual model, we have to gather data describing
the flights, the flown trajectories, the airports and the operators, and the weather conditions at
the airports. In particular, we have chosen open data sources when possible, although the lack
of open sources for some of the data categories or the quality requirements of our project have
determined the use of different data sources, either restricted or paid.

4.3.1 Surveillance data

The purpose of surveillance is to monitor and describe the state of the airspace (or of the ground
facilities within an aerodrome) to enforce the control of the operations taking place in an area
of control. This kind of situational awareness requires to know the position of all vehicles within
the area, in order to avoid risk situations and ensure the safety of the operations. This task is
ultimately conducted by humans (air traffic controllers and pilots), but nowadays surveillance
relies on many automatic systems to support human agents to accomplish its goals.

Surveillance systems generate data as a result of the monitoring of the air and ground opera-
tions. Surveillance data is therefore characterized by position and, in general, by the identification
of the sender of the data. These data depend on the nature of the system providing them: the
position can be expressed in terms of its coordinates (latitude, longitude, and altitude), or be
relative to the receiver (such is the case of the secondary radar). The same applies for the identi-
fication data: a vehicle emitting surveillance data can be identified using different criteria, being
the transponder code of an ADS-B emitter or the callsign of the flight are two common examples
of aircraft identifiers. In addition, surveillance data can include other data, such as speed, flight
level, current intent, or any other datum that may be valuable to characterize the current or
future states of the airspace.

Several surveillance systems and technologies are combined in order to provide a detailed
picture of the airspace (primary and secondary radars, multilateration, ADS-B, ADS-C), but
in recent years ADS-B has become the keystone of surveillance after it became mandatory in
European and North American airspaces. In the next section, we provide a succinct description
of this technology.

4.3.1.1 ADS-B

Automatic Dependant Surveillance — Broadcast (ADS-B) [90] is a cooperative, GPS-based surveil-
lance technology that has consolidated as a standard since 2020 in the main airspaces in the world.
ADS-B plays a similar role to the traditional SSR (Secondary Surveillance Radar) for surveil-
lance purposes, although ADS-B provides a much higher update rate than radar (minimum rate
of 2s vs 10-15s), more precise positioning and better coverage with a lower installation cost.
The system transmits information autonomous and periodically without involving the pilot or
operator. This information is derived directly from the on-board systems such as GNSS (Global
Navigation Satellite System) or pressure altimeter.

ADS-B relies on the Mode S transponder to broadcast ADS-B data using the 1090 MHz band.
Mode S allows for specific interrogations to aircraft, although ADS-B messages are automatically
and continuously broadcast without the need of external interrogation. There are other variants
of ADS-B, such as ADS-B UAT (Universal Access Transceiver), which operates in the 978 MHz
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band and is typically used by aircraft flying below 18,000 feet in the United States under FAA
regulations.
ADS-B can function in two modes of operation:

e ADS-B Out: ADS-B Out is responsible for gathering information from on-board systems
and transmitting ADS-B messages. Currently, this is the most commonly implemented
system in aircraft.

e ADS-B In: Aircraft equipped with ADS-B In can receive ADS-B messages broadcast by
other aircraft, which enhances the pilot situational awareness. However, this component
is not mandatory, and most aircraft lack ADS-B In capability, relying instead on ATC for
traffic information.

ADS-B messages on 1090ES contain 112 bits, which include aircraft identification, downlink
metadata and a variable payload depending on the type of the message. ADS-B messages belong
to one of 8 different types [80], each providing with identification data, position data, and so
on. These message types can be summarized as shown in Table [106]. Thus, multiple
messages must be captured in order to fully describe the state of the aircraft. Each message can
carry additional metadata, such as an estimation of message quality indicators (NIC, NACp) in
messages with type code 23-27. The physical structure of ADS-B is shown in Figure [£.2] Each
sensor can capture ADS-B messages broadcast by aircraft located within the range of ADS-B
transmissions (in blue in the figure): the theoretical range is 320 NM, although in practice the
range can be substantially reduced. If the aircraft does not have any receiver in range, all of its
ADS-B messages will be lost. On the contrary, if the aircraft is in range of more than one receiver,
the same message could be received twice. The travel time to both sensors can be different, and
the two copies will be assigned different timestamps. This data duplication problem is further
discussed in the next section.

Code  Content description

1-4 Aircraft identification
5-8 Surface position

9-18  Airborne position (with barometric altitude)

19 Airborne velocities

20-22  Airborne position (with GPS altitude)
28 Aircraft status

29 Target state and status information
31 Aircraft operation status

23-27 Reserved for local applications or future extensions

Table 4.9: Description of the types of ADS-B messages.

4.3.1.1.1 ADS-B problems The ADS-B technology has some limitations. Due to its nature,
ADS-B requires at least one receiver to be situated within range of the broadcast transmission
to be effective. Moreover, the communication is purely unidirectional, so there is no form of
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Potential data
duplication

Ground ADS-
receivers

Figure 4.2: ADS-B physical structure. A receiver can only capture ADS-B messages if the
emitting aircraft is in range. If the aircraft is in range in more than one receiver, the same
message can be captured by each of them, resulting in duplicated data.

persistent link or reception acknowledgment and the sender has no way to determine whether or
not the messages are being received. Any message that is not captured by any receiver is lost,
since the aircraft does not keep a record of the sent messages. ADS-B Out has a theoretical
maximum range of 600 Km (320 NM). In practice, its range is reduced to 450 Km (250 NM),
and can be even lower depending on the working conditions [2, 115], the terrain configuration or
the Earth’s curvature. For example, weather has a significant impact in the quality of the ADS-
B transmissions. Moreover, signal degradation is also relevant [110], and the data might result
unusable even if a message reaches a receiver. Congestion has also been found to heavily influence
the quality of ADS-B data. Alhazbi et al. 2| determined that the availability of receivers in
range does not ensure the reception of the emitted messages even at low distances due to packet
loss, particularly in conditions of congestion (with multiple aircraft emitting ADS-B messages at
the same time).

As indicated before, these factors may cause data losses due to packages being corrupted
or not reaching any receiver. When it happens, the theoretical update rate of 1Hz might be
compromised, and therefore affect the continuity of the signal from the aircraft. These losses
of data can form gaps in the signal that can be punctual or sustained. Given the frequency
of ADS-B messages (specially the most critical ones: identification and position), the loss of
individual messages might be assumable, but losing several seconds or more of data might be
risky in several scenarios. This factor can be alleviated by a dense network of receivers in order
to maximize the coverage of the airspace. However, this leads us into a different problem. The
complementary situation might also be a problem: the same message can be received by multiple
antennae within the emission range. All of their payload would be identical (if the reception was
successful), except for their timestamps. Note that the timestamp of each message is set at
reception time by the receiving device. This situation must be accounted for when merging data
from different receivers; otherwise, the resulting data would tell a story of an aircraft flying over
the exact same point twice within a short time span.

There exist other potential problems derived from the dependency of ADS-B on other sys-
tems, such as Global Positioning System (GPS) (or other navigation system), Global Navigation
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Satellite System (GNSS), or the aircraft on-board systems from which the transponder gathers
the necessary data. Ali et al. [6] describe some of these problems, like the complete absence of
position data when there is no GPS coverage, the GPS errors or the lack of precision of the GPS.
The transmission between the physical interfaces of these systems is also prone to errors. These
situations derive in ADS-B transmitting faulty or incorrect data. Factors like the transponder
make-model or the aircraft make-model |5, or the heterogeneity of the receivers’ hardware and
software, also influence the probability of errors in ADS-B data.

ADS-B messages include both geometric and barometric altitudes. The geometric altitude
is obtained from GPS, and is subject to the factors described above. The barometric altitude
corresponds to the altitude determined by the altimeter according to a configuration set by the
pilots, and thus prone to errors and imprecision [7]. These data must be utilized with care, since
it can lead into different or even contradictory conclusions. For instance, in [110] it is observed
that the geometric altitude overestimates the barometric altitude, while in [7] they observe the
opposite. Remind that barometric altitude expresses the altitude with respect to a particular
pressure level (specially in the cruise phase), and may not be accurate for the conditions in which
the aircraft flights in every moment of the flight, nor the value indicated by the GPS. It is more
a conventional altitude agreed by pilots flying the same area.

Finally, ADS-B is vulnerable to intentional attacks due to the lack of cryptography protection
or authentication. This allows an attacker to send fake or manipulated ADS-B data to be
captured by the receivers and introduced into the surveillance system [93]|. This is inherent to
the technology, and detecting or avoiding such situations is beyond the scope of this Thesis.

Several metrics have been defined in the literature to evaluate the quality of ADS-B data,
according to the characteristics and the theoretical capabilities of this technology. A summary
of the metrics defined and the case of application used in each study is provided in [£.10] In the
following, we define the most prominent metrics:

e Missing payload: Some of the payload of ADS-B messages can be corrupted or lost during
transmission, causing the data to not be available when processed at the receiver.

e Latency: Latency corresponds with the total transmission time between the reading gen-
eration by the on-board systems and the effective processing of the data by the receiver.
This time includes the generation of ADS-B messages by the aircraft transponder, the
travel time from the aircraft to the receiver and the processing the receiver must do to
extract the data.

e Refresh/update rate: The update rate corresponds with the frequency the ADS-B messages
are generated and sent, if analyzing the emitter, or the frequency the ADS-B messages are
captured by the receiver. Since the messages can be lost during transmission by multiple
causes, the “perceived” update rate at the receiver is always less or equal than the “initial”
update rate at the aircraft.

e Position accuracy: ADS-B gets position information from the GPS system from the aircraft.
Therefore, position data is subject to errors and precision problems originated by these
systems.

e Data duplication: The architecture of ADS-B makes it possible that the same message is
captured twice by different receivers, or even by the same receiver if the signal is divided
during transmission and arrives through different paths (multipath propagation).
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e Package integrity and precision: ADS-B includes indicators (NIC and NACp) that describe
the physical integrity and precision of the data, respectively, which sometimes is degraded
under acceptable levels (around 3% of the messages) [110].

e Incorrect position/data jumps: This situation occurs when one or more data points deviate
significantly from the adjacent points, specially in position data.

e Packet loss: ADS-B messages may not be received successfully by any receiver, leading into
a complete loss of the data. There can be multiple causes for this:

— Lack of coverage: There is no receivers within the distance of effective communication,
or this distance is reduced due to weather conditions or geographical accidents.

— Distance: Even within the practical distance, it is possible that ADS-B messages are
lost with increased probability along the distance.

— Congestion: Specially in high density areas, like near the airports, the transmission
medium or the receiver can be congested and not be able to cope with the data load.

Work Year Case study Period Sample size
Ali et al. |6] 2014 London City Airport, UK 2011 Jan, 10 26 flights
Ali et al. [5] 2016 London City Airport, UK 2011 Jan, 10; 57 flights
2011 May, 23
Ali et al. [3] 2017 London City Airport, UK 2011 Jan, 10 26 flights
Tabassum et al. [110] 2017 Grand Forks Int., USA 2015 Jun, 15-21 5.2M messages
Verbraak et al. [115] 2017 Receiver in Delft, NE 2015 Sep, 21-27; Not described
2016 Jan, 11-15
Alhazbi et al. |2] 2019  All OpenSky Network 2015 Apr, 21 304,131 messages
O & S
e & & @f IS
Work SRR N T R L v
Ali et al. [6] - X X X - -
Ali et al. [5] X - X - -
Ali et al. [3] - - X - - - - -
Tabassum et al. [110] X - X X X X X X
Verbraak et al. [115] X be X X X X b'e -
Alhazbi et al. |2] X - b'e - X X X -

Table 4.10: Previous studies on ADS-B data characteristics and types of analysis performed.
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4.3.1.2 OpenSky

OpenSky is an open data initiative launched in 2012. It is based on a participatory sen-
sor network to capture real-time air traffic surveillance data. OpenSky aims at improving the
security, reliability and efficiency of the air space usage by providing open access of real-world
air traffic control data (mainly ADS-B data) to support the research in this area. Currently,
it gathers data from around 7,000 registered receivers (October, 2024) covering most of the
airspace on Europe and the U.S.A., as well as parts of South-America and South-Asia. A coarse
description of the network’s global coverage is shown in Figure [£.:3] The OpenSky Network also
organizes every year the OpenSky Symposiunﬂ, where aviation specialists and practitioners can
communicate their on-going research and developments on the field, with a focus on works using
surveillance data, and in particular ADS-B data.

Figure 4.3: Global OpenSky Network coverage (October, 2024).

4.3.1.2.1 Schema and Data processing OpenSky does not (primarily) provide with ADS-
B raw data as obtained from the ground ADS-B receiver network. Instead, ADS-B messages
are decoded and processed to build state vectors. Each state vector contains the minimum
information required by the current standards [59]: i) Aircraft identification: every ADS-B
message informs the 24-bit ICAO code of the aircraft’s transponder. In some cases, the call sign
assigned by the airline is also provided. ii) Position: The aircraft emits ADS-B position messages
twice per second, informing its position as latitude, longitude and altitude. iii) Velocity: Both
horizontal velocities (north-south and east-west) and vertical rate. iv) Others: Some aircraft
broadcast messages with additional data, such as emergency data, priority, technical capabilities
or operational models.

The complete relation of the structure of the state vectors is described in Table (see
Appendix [A]). State vectors are generated every 5 seconds: each state vector aggregates the
information of all ADS-B messages received within that time (for a particular aircraft). State
vectors include two timestamps: time_ position, that indicates the timestamp of the latest ADS-B
message with position data used to construct that state vector, and last contact, which denotes
the timestamp of the latest ADS-B with velocity data. If any piece of information is not updated
during that time, the last value is considered valid for 15 seconds. That is, old position or velocity

!OpenSky Symposium: https://symposium.opensky-network.org
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values are used for new state vectors if were received less than 15 seconds before. Once that time
has elapsed, the corresponding field is left blank. If none of those values are updated for more
than 15 seconds, the flight is considered discontinued and no more vectors are generated until
new messages are captured.

4.3.2 Flight plan data

While surveillance data describes the actual flight during the tactical phase, in Chapter [2] we
stated that flight planning takes place well before that phase and the relevant information is
shared among all stakeholders in the form of flight plans. Flight plans include the relevant
schedules and metadata to ensure the safe and efficient planning of flight operations, such as
when and where the flight is planned to depart and arrive, the entities responsible of the flight,
the capabilities of the aircraft performing the flight, etc. All of this data essential for adequately
describing any flight, and thus several data sources are available to satisfy these information
requirements. In this section, we describe the two data sources that we have considered for
including flight plan data in our information system.

4.3.2.1 OpenSky Flights API

In addition to providing surveillance data in the form of state vectors, OpenSky Network also
provides flight information derived from this data. For OpenSky, a flight is defined as a continuous
sequence of vectors generated by a transponder, identified by its transponder code. The maximum
time between two adjacent messages is set to 10 minutes. If this threshold is exceeded, the later
message is assumed to belong to a different flight (performed by the same aircraft). Flight data
contains aircraft identification information, origin and destination airports (when identifiable)
and the timestamps of the first and last ADS-B messages of the flight. The origin and destination
are determined using a simple heuristic: choose the closest airport in a radius of 10 Km from
the first and last detected messages for that aircraft, respectively. If there are no airports within
this radius, this field is left empty.

Flight information is published through the OpenSky REST APIﬂ This API can be queried
through many endpoints, retrieving flight data for a given time interval and one of the following
criteria: i) all flights, ii) by aircraft, iii) by departure or arrival airport. Table[A.2]in Appendix [A]
shows the attributes of the response that is shared by all these endpoints.

Since OpenSky flight data is derived from surveillance data, it is prone to provide missing or
incorrect information if surveillance data from the complete trajectory is not available. It is also
insufficient to identify relevant information beyond the departure and arrival airports, such as
the scheduled times for those events, among others. Therefore, this data source does not satisfy
our information requirements and does not ensure the required data quality to carry out our
research, so it will not be used in this Thesis.

4.3.2.2 Network Manager

The Network Managexﬁ (NM) is a platform operated by EUROCONTROL that provides access
to flight plan data submitted by airlines to the Network Manager Operations Centre (NMOC)
through the Initial Flight Plan Processing System (IFPS). Airlines must file flight plans for their

2https://openskynetwork.github.io/opensky-api/index.html
3https://www.eurocontrol.int/network-operations
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scheduled flights prior to the flight start to enable strategic decisions related to route planning,
resource allocation and safety assessment. These flight plans are filed up to 5-7 days before
the actual flight starts (i.e. the estimated off-block time, or EOBT), and include scheduling
information such as the planned departure and arrival times, the airline that operates the flight,
the origin and destination airports, and so on. Between the filing of the flight plan and the
departure, these flight plans can be amended to accommodate possible changes in the schedule
or the availability of resources. Twenty hours before EOBT, flight plan data is transferred to the
ETFMS. ETFMS data describe the pre-tactical and execution phases of a flight, and goes beyond
schedule information by providing data describing the actual flight, such as the effective times
of the takeoff or landing, or the events taking place during the flight. Flight data for commercial
flights is created mainly by airlines and pilots, since they are responsible of submitting the new
flight plans, and the modifications to existing flight plans, to the IFPS and ETFMS systems.

NM publishes these data through two closed APIs: the Flight Plan and Flight Data APIs,
as a part of their B2B services.

e Flight plan data provides scheduling information, which may not reflect the actual times
if the schedules were not satisfied. In that sense, flight data may be more useful, as it
provides the actual times of the start and end of the flight.

e Flight data refers to the pre-tactical phase and the execution phase of the flight, once the
flight plan has been submitted from IFPS to ETFMS. This means that the Flight Data
API contains flight information about the flight from 24h before the takeoff, during the
flight, or after the flight, if the flight plan is updated with a posteriori measurements.

The data provided by Network Manager contains a large amount of fields that describe
different aspects related to the flight. For now, we are focusing on a subset of attributes valuable
for constructing 4D trajectories using the flight plan schedules to facilitate the management of
the data provided by this source. The list of selected attributes of the Flight Plan endpoint
is defined in the Table [A77 and in the Table [A.T]] for the Flight Data endpoint, both tables
situated in Appendix [A]

4.3.3 Weather data

While weather has a significant influence on ATM operations —specially storms, lightnings and
other intense phenomena—, the en-route weather conditions are implicitly taken into account in
both the flight plan and the actual trajectory. If adverse conditions are expected to cause a risk
situation along the route of the aircraft, its path can be modified in advance or during the flight
to avoid facing these phenomena. However, the aircraft must arrive at the destination airport
—unless the adverse weather conditions are so extreme that the flight needs to be rerouted to
another airport in order to land in safer conditions, so it is necessary to know the actual and
forecast weather conditions to adapt the approaching maneuvers and perform a safe landing
operation. Therefore, our conceptual model incorporates information on aerodrome weather
conditions.

The actual and expected weather conditions at the airports are described by TAF and ASOS
systems, respectively, both expressed in METAR format. We describe these concepts in the
following sections.
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Field Description Example Interpretation
Report type ~ Whether the report is METAR or METAR
SPECI
Place Station identifier that originated the LEMD Station ID: LEMD
observation
Day—+time Concatenates day of the month, 2809257 22nd day in the month, 16:30
hours and minutes in UTC
Report origin  How the report was generated: AUTO AUTO
manually (empty), automatically
(AUTO) or does not contain data
(NIL)
Surface-wind  Direction and speed (in meters per 24004MPS Wind direction 240°
second) of the surface wind Wind speed 4 mps
Visibility Visibility range 0800 Prevailing visibility of 800m
R12/1000U  Visibility for runway 12 of
1000m and increasing (upward)
Weather A list of observed weather phenom- DZ FG Moderate drizzle and fog
ena
Clouds A list of observed cloud conditions SCTO010 Scattered cloud at 300m
OvVC020 Overcast at 600m
Temperature  Air temperature and dew point tem- 17/16 Air temperature 17°C
perature Dew point at 16°C
Air-pressure  Pressure at the airport ground level Q1018 QNH defined at 1018 HPa

Table 4.11: Description of the METAR format fields.

4.3.3.1 METAR

The Meteorological Aerodrome Report (METAR) data format is used to distribute reports gen-
erated by weather stations located at airports. This format allows to describe both actual or
forecast weather conditions at the airport area, given their influence on operations taking place
at the airport. METAR reports have a fixed structure defined by:

[METAR|SPECI] place day+time [AUTO|NIL] surface-wind visibility weather
clouds temperature air-pressure trend

The METAR reports encode all relevant weather information, such as the characteristics of the
wind, the visibility and the precipitation, as well as the station identification and the timestamp
of the observation (or forecast). The following sequence would be an example of METAR. The
definition of each of the element in the report is shown in Table

METAR LEMD 221630Z 24004MPS 0800 R12/1000U DZ FG
SCT010 0VC020 17/16 Q1018
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4.3.3.2 ASOS reports

Automated Surface Observing System (ASOS) reports are automatically generated METAR
reports that contain actual observations of the current weather at the airport. Routine reports
are issued every 60 minutes to provide updated information about the current weather conditions,
unless a sudden and significant change is observed at any moment between updates. In this case,
a new report can be published to account for the new weather conditions in addition to the
scheduled updates. The structure of ASOS reports are identical to that defined for METAR
reports in the previous section.

4.3.3.3 TAF reports

Terminal Aerodrome Forecast (TAF) reports are manually-generated messages that describe the
forecast weather conditions expected at an airport. Routine TAF reports are generated every 6
hours, and have a defined validity (forecast horizon) of 12-30 hours. TAF reports are structured
as follows:

TAF place day+time validity general-forecast
temperature-range
[[PROB] BECMG|FM|TEMPO forecast-change]

The validity defines the period in which the forecast weather is applicable, unless another
report replaces or amends the report. This period can last 30 hours and starts one hour after
the issue time of the report. The general forecast describes the expected weather conditions
structured as a METAR report, including descriptions of winds, clouds and visibility. The
temperature range defines the maximum and minimum temperatures within the validity period,
and the times they will occur.

TAF reports can contain a clause with a forecast change. This clause describes one or
more scenarios with weather conditions that differ from the weather conditions defined in the
base report. The change can be either permanent or temporary. If the weather transitions into
different conditions in a short lapse of lapse, the change clause is annotated as FM. However,if the
transition is gradual along a larger period of time, then it is denoted as BECMG. These changes
define new weather conditions that replace those set in the general forecast, and the time (or
the period along the transition will take place, if the change is gradual) they are expected to
materialize.

The change can be temporary (TEMPO) and take place only during a particular time period,
and return to the previous weather stated in the general forecast after it ends. The previous
changes can be qualified with a measure of probability, if the change occurrence is not certain.
The probability of the event is indicated as PROB30 or PROB40 (events with a higher probability
are included in common TAF reports, and events with lower probability are not reported). The
reports that predict a change also have the attributes time from and time to, which define the
lifespan of the change. BECMG and FM changes will last until the end of the validity of the
report, while TEMPO reports have a shorter time of occurrence.

In our data source, TAF reports are already decoded using the pytaf librarylﬂ The structure
of the resulting data is described in Table (see Appendix .

*Pytaf library: https://github.com/dmbaturin/pytaf| (visited: july, 2025)
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4.3.4 Other

We use two additional small datasets to provide with basic airport and airline data, such as the
international identifiers of each airport and airline, or the coordinates of each airport. These
datasets are curated by FlightRadar24 [42|, and publicly accessible through its web site. The
description of these datasets is included in Appendix [A.7]
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Data processing

In this chapter, we discuss the extraction and initial cleaning of the data that will be used
to accomplish the objectives of this Thesis. First, we explain how the data is structured and
extracted from their data sources, described in the previous chapter, and discuss some of the
quality problems of the data in their original form. Then, we propose a methodology to solve
these data quality problems, and a set of metrics to identify and characterize the presence of
these problems in the obtained data. Finally, we evaluate our approach on a representative
sample of two weeks of surveillance, flight plan and weather data to assess the quality of the
extracted data.

5.1 Description of the data workflow

As defined in the previous chapter, our flights data model requires extracting data from a plethora
of heterogeneous data sources and integrating them. The differences in nature, formats and prop-
erties, however, pose particular challenges for each of these sources. Moreover, the integration is
far from trivial in many cases. Hence, we propose a data workflow in two phases:

e A first step where each source is processed separately and specific solutions are proposed
for each of their known defects and problems. This process is monitored using a set of data
quality metrics that help us to identify the presence of data problems, and to assess whether
our actions have resolved them. Once cleaned, the different data sources are integrated
to construct the enriched 4D trajectories we aim to define. This phase is described in
Chapter

e A second step, in which we tackle the problems that arise when we consolidate the differ-
ent sources into 4D trajectories, that could not be discovered until the data is structured
according to such representation. In general, these defects are related to the time informa-
tion, the position, or the consistence of the (evolution of the) data reported by aircraft. A
set of quality metrics are proposed in order to assess the defects fount in the constructed
trajectories, and characterize the quality of the resulting data sets to evaluate their value
for different use cases. This phase is explained in Chapter [6]

Figure [5.1 shows an overview of the data workflow described above, which will be delved into
in subsequent chapters. We have defined four levels that describe the maturity of the data:
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e Level 0 (LO) corresponds with raw data, that is, data extracted directly from the data
sources and placed in our storage. The raw data is stored to ensure traceability to the
source itself, and protect us from any changes that can occur in the source repositories.

e Level 1 (L1) corresponds with cleaned data, where the data from the individual data
sources have been processed and some of the problems that can be found in them have
been addressed. This process is described later in Chapter

e Level 2 (L2) corresponds with integrated data, that is, the constructed 4D trajectories
through the integration of the cleaned data. The process of integrating these datasets is
explained in Chapter [6]

e Level 3 (L3) contains the processed trajectories. The definition as 4D trajectories arises
new problems in the data that are addressed prior to this level. What these problems are,
and how they are resolved in our project, is also described in Chapter [6]
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Figure 5.1: Description of the data pipeline.

5.1.1 Data partitioning

In addition to the heterogeneity, the volume of the data can also present a challenge. Both the
OpenSky Network and Eurocontrol’s Network Manager maintain large and continuously updated
datasets, incorporating millions of new records daily. Furthermore, some of the operations re-
quired to construct 4D trajectories based on this data involve integrating data from these sources,
and the complexity of the process rapidly becomes unmanageable in terms of memory and com-
putation power for commodity hardware. Therefore, we need to partition the data to improve
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the scalability of the process and enable simple update mechanisms for our data repositories.
We have decided to generate daily partitions for large datasets, such as surveillance data and
flight plan data, and monthly partitions for datasets with a smaller volume, like data about the
weather at the airports. This enables us to add new data daily by creating and populating the
new partitions. Complementary datasets of small sizes with a low frequency of update are not
partitioned, such as those related to the airports or the airlines.

In practice, the data partitioning for each data source is defined as follows:

e Surveillance data is partitioned according to the generation timestamp of the state vectors.
Each daily partition contains all vectors generated between 00:00:00 and 23:59:59 on that
date. Consequently, flights spanning two calendar days will have their state vectors split
across two partitions.

e Flight plan data is partitioned by the estimated off-block time of each flight. All flights
scheduled to depart within a given day are included in the corresponding partition, along
with all related flight plan messages, regardless of the timestamp of message publication.

e Flight data is also partitioned by the estimated off-block time of the flight. As a result,
flight plan and flight data messages for a given flight are always stored within the same
partition.

o Weather forecasts at the terminal are partitioned according to their issue date, with each
partition containing all forecasts issued during a given month. Since weather reports covers
up to 30 hours into the future, the validity of the last report in the partition can span into
the next partition.

The misalignment between the different data collections must be addressed during the inte-
gration process. On the one hand, although all flight plan and flight data messages for a given
flight are stored in the same partition, its trajectory may be split across two daily surveillance
data partitions. On the other hand, the forecast in effect at the timestamp of a given state vector
may have originated from a weather report issued the previous day, if its validity period extends
into the following month. These factors will be taken into account later in the data processing
workflow to ensure a successful integration between the different datasets.

5.1.2 Case study: European airspace

The European airspace has been chosen to evaluate our data workflow. We made this decision
for multiple reasons. First, we have access to data sources providing exhaustive data from flights
taking place in that airspace, since there is where both EUROCONTROL and the OpenSky
Network are located. Second, the European airspace is a complex scenario that allows us to study
a large volume and variety of flights, including international and domestic (between airports in
the same country) flights.

Our main surveillance data provider has excellent coverage on FEuropean territory thanks
to its large network of receivers, which contributes to achieve a good availability and density
of data to conduct a relevant study. However, the European territory is considerably rugged,
with significant mountain systems and water masses. Combined with the high density of flights,
we can expect a sufficient frequency of occurrence for the main problems that can be found in
aviation trajectory data.
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In order to facilitate the analysis of the experiments, we have limited our study to a subset
of the flights taking place within European airspace, between European airports. This subset
is representative of the considered airspace, since it covers a significant portion of the air traffic
using the the main airways defined over European territory, and result in a large coverage of the
European airspace. As a consequence, all surveillance data generated outside of this geographical
scope is ignored since they can not belong to any flight within the defined parameters. In
particular, we have chosen to study all flights between eight airports, which are listed below:

e EDDF - Frankfurt (GE)

e EGLL - Londres-Heathrow (UK)

e EHAM - Amsterdam-Schipol (NE)
e EKCH - Copenhague-Kastrup (DK)

LEMD - Madrid-Barajas (SP)

e LFPG - Paris-Charles de Gaulle (FR)

o LGAV - Atenas-Elefterios Venizelos (GR)
e LIRF - Roma-Fiumicino (IT)

We have also limited our study to flights completed between July 3-16, 2023 (that is, two
complete weeks). A threshold of a minimum of 200 vectors per trajectory is set to remove all
trajectories that are too short due to faulty data.

However, surveillance data cannot be filtered in such ways until we construct the trajectories
and identify the origin and destination for each of them, since ADS-B data does not provide with
information about flight scheduling. Hence, we will process and analyze all the data available
in OpenSky for the considered period until the trajectories are adequately identified. The rest
of the analyzed sources (flight plans data and weather data) effectively have information about
airports, which allows us to select the relevant data beforehand.

5.2 Data extraction

The first step for processing the data consists on retrieving the data from their original sources.
These sources provide storage and filtering capabilities so we can query for the data we are
interested on, but the transformations that can be applied on data in this way are very limited.
Furthermore, an excessive retrieval of data from these sources may overload the data sources
systems or quickly exhaust our usage quotas. We decided to store a copy of the raw data in
our own storage to be able to work with the data without these restrictions. In this section, we
describe how the data is extracted from the data sources and stored in our systems.

5.2.1 State vectors

State vectors data is served by OpenSky as JSON objects grouped by their assigned timestamp,
as shown below. State vectors are represented as JSON objects, and grouped by their assigned
timestamp. This fact leads into a structure with two levels of granularity: (i) a first level where
the time information is given for sequences of individual state vectors; and (ii) a second level
where the data contained by each of these state vectors is provided.
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[ timestampl : [ { "icao24": icao241,
"callsign": callsigni,
"latitude": latitudel, ... },
{ "icao24": icao242,
"callsign": callsign2,

"latitude": latitude2, ... },
o1,
timestamp2 : [ {...}, 1,

]

In this Thesis we require the data of individual state vectors to construct the corresponding
4D trajectories. Therefore, it is necessary to transform these data into a tabular form to work
at the state vector level. Each timestamp and JSON object representing a state vector create a
new row in a table with the corresponding columns. The attributes of each state vector object
are aligned according to their key names. Then, a new column timestamp is added, whose value
is the timestamp assigned to the original JSON object.

5.2.2 Flight plan data

A similar problem arises when processing flight plan data. Network Manager delivers these data
in a deeply nested form, grouping in the structure the attributes that are related to each other.
Each record describes a single flight plan or flight data version for a flight, which updates or
extends the previous version for that particular flight. Its processing poses two main difficulties.
On the one hand, the varying schema of the data across messages, even with messages associated
to the same flight, since only a few attributes are mandatory and, depending on the state of the
flight, new attributes are added over time. On the other hand, the existing attributes can be
updated over time, whether by adding new values or changing the existing ones. In the second
case, later messages contain data that was already included in previous messages, so there is a
degree of data redundancy that may need to be treated.

5.2.3 Weather data

Weather data require different approaches depending on whether they are forecasts (TAF) or
actual readings (ASOS). ASOS reports are generated hourly by each weather station based
on actual observations, in METAR format. Each report can be identified by the station that
generated it and the timestamp of its generation, since only one report is emmited each time.
TAF works a bit differently: with each update, one to many METAR reports are generated based
on the conditions forecast at each station. Then, for each station and update timestamp, multiple
reports with different probabilities of occurrence can be generated. Moreover, in the event of
sudden and significant changes, new TAF reports can be generated out of schedule to inform of
the new forecast weather conditions. In these cases, the new reports can amend or overwrite the
previous ones. Thus, keeping track of the current forecast at each moment requires additional
care. Weather data is structured in tabular form based on the decoded METAR provided by the
pytaf Python module [124].
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5.3 Problem discussion

All of these data are originated by different systems and sensors that can eventually malfunction
and provide incorrect readings, or even fail completely and stop providing any data for some
time. Therefore, the integrated representation of these data may present different errors or
missing data for some of its attributes. In this section, some of the most common errors for the
different categories of data are reviewed succinctly.

5.3.1 State vectors

OpenSky aims to provide with surveillance data that is useful for research. Hence, they do not
perform a heavy post-processing of the data to ensure that it is as raw and realistic as possible.
This means that OpenSky data may contain several data flaws inherited from ADS-B messages,
such as errors in positioning or missing attributes, already covered in Section [£.:3.I] Some of
these problems are alleviated by the fact that each state vector is constructed by aggregating
the data of several messages received during lapses of 5 seconds. This time is higher than the
theoretical update rate of ADS-B, and multiple messages of the same type should be available
to generate each vector. Therefore, state vectors are more robust to data loss caused by missing
payload, message loss or message corruption.

However, prolonged losses of data still constitute a significant problem in areas with no
coverage, or in high density areas due to congestion of the medium or the receivers. While
OpenSky Network has reached a good coverage over the years in Europe and North America, the
availability of data can become very limited outside of these areas, or over large masses of water
(such as the Mediterranean Sea). OpenSky tackles these situations “reusing” old data, if new
messages have not been received, to reduce interruptions in the state vector generation, which
introduces additional redundancy in the data. The most notable cases occur when position is
reused: during several seconds, the aircraft seems to have stopped in the air, since the reported
position remains constant for some time. If the position has stopped updating, but velocity data
keeps being captured, the position is left empty after 15 seconds, or three state vectors. We will
remove these vectors since position data is key to construct the aircraft trajectory.

The collaborative nature of the network also introduces several challenges derived from the
heterogeneity in the devices deployed to capture ADS-B data. Different software and hardware
configurations, unsynchronized clocks, buffer mechanisms or network limitations are some of the
factors affecting the quality of the resulting data [93|. These problems are tackled during the
processing of the data as it arrives to the OpenSky servers, but it is difficult to fully account for
each of these situations and their effects.

For instance, the timestamps assigned to ADS-B messages are relative to the reception time
by the sensor that captured it, and then rounded to the closest second in the OpenSky servers;
moreover, the timestamps calculated for state vectors correspond with the timestamp of the
last message included in each state vector. If an ADS-B message is delayed at any stage of the
processing pipeline (e.g. if a receiver takes too long to forward its captured messages), it may
be assigned to an incorrect state vector. As a result, this vector would include information that
actually corresponds to an earlier time than the timestamp it carries, leading to a misrepresenta-
tion of the aircraft’s state, as shown in Figure[5.2] The diagram shows the altitude of the plane
across the sequence of state vectors, sorted by their timestamp. It is clear that several vectors
might have been constructed with messages including altitude values from a few minutes before,
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and not with the actual altitude of the aircraft at that moment. However, these problems only
become apparent once the trajectories are reconstructed, and are difficult to approach in this
phase.

Further, vectors can inherit some of the problems of ADS-B covered in Section beyond
the lack of data. It is possible that some values used to build state vectors are incorrect due
to sensor or GPS malfunctioning (particularly in position and altitude values). Again, some of
these problems can remain unnoticed until the trajectories are identified, although others can be
identified as such very quickly. For instance, it is not uncommon to find vectors with altitudes
well beyond 42,000 feet, which is the usual maximum altitude for commercial flights.

Profile of altitude Profile of latitude Profile of longitude
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Figure 5.2: Example of delayed vectors (flight AT02523950 in July 1, 2023). Several vectors at
the end of the trajectory show altitude, latitude and longitude values that are inconsistent with
the progression of the trajectory.

5.3.2 Flight plans

We have found several problems that can interfere with the processing of flight and flight plan
data from Network Manager. We discuss these problems below:

e The ICAO code (ICAO24) of the aircraft changes once the flight has already started.
ICAO24 can change if the flight is assigned to a different aircraft in the pre-tactical phase
of the flight or before, but obviously should not change after the flight has already started.
In these cases, we prioritize the last informed value.

e Some attributes, such as the ICAO code or the flight rules applicable to the flight, are not
included in the last message or messages, which hinders the integration between the flight
plans and other sources. Specially in the Flight Plan message sent after the flight ends. A
sensible solution would be propagating the previously observed value to these last records.

e The source repository where the data was stored used the local time zone (Madrid, Spain)
to define the time information, instead of UTC. It is required to shift the time data to
account for winter or summer time before integrating flight plans with other sources that
use UTC, such as OpenSKky.

e There exists some inconsistencies between flight plan and flight data records. Some data
is present in one but not in the other, even if the attributes exist on both sources (e.g.
callsign).
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e Reused flight identifier: The flight identifier (ifplld) has been found to not be unique in
the repository, which can cause an incorrect integration between flight plan and flight data
records. However, these IDs only reappeared after a long time (months or years after). We
have defined a more strict time frame in which this integration can take place, so flight
plan records can only be associated with flight data records generated within that time
frame.

5.3.3 Weather forecasts

Although the TAF records were already decoded with the pyTAF library, we have observed
several data issues that must be addressed to enable their usage for our purposes. First, and
similar to flight plan data, the structure of the decoded TAF reports is nested and variable.
In particular, all the attributes that describe weather phenomena at different altitudes (cloud
characteristics, icing or turbulence caused by wind) can be empty or contain a variable number
of elements, each containing additional attributes. This structure can be translated into a wide
tabular form, with columns for each of the possible sub-attributes. However, the resulting table
would be very sparse, and the high number of columns could hinder the use of the data in later
stages. Therefore, we opted to extract only a subset of these elements (i.e. the records closest
to the airport, since they are of most importance for the studied use cases), and keep the nested
attributes in their current form. The attribute wx string is a special case: it is constructed as
a string containing the concatenation of a variable number of codes describing different weather
phenomena. While not explicitly an enumeration, the challenge it poses is similar to the other
variable length attributes.

Second, TAF reports correspond with evolutionary forecasts, and thus they are subject to
change with time. Therefore, to associate a particular state vector with the relevant forecast
weather conditions, it is necessary to keep track of the latest available report according to their
validity period and the publication of new reports with updated forecasts or amendments to the
existing ones. This requirement is tackled after the cleaning step. Third, a significant portion
of the forecasts have associated a particular probability, in contrast with other reports that
describe expected changes (with a high probability) in the weather conditions. Depending on
the application of TAF data, the more confident forecasts could be prioritized in detriment of
probable changes, which also influences how the second consideration can be approached. Finally,
in rare cases there are errors in the report type like PROB04 or PROB30TEMPO, which can be
easily replaced with the correct values.

5.4 Data cleaning

In this first phase, we apply several common operations in data cleaning to remove problems
that have incidence on individual fields from each dataset. We follow the methodology indicated
in Figure [5.3] with few additional tweaks when required. For example, in some cases the values
that are out of their defined domain will be removed, while in others it is possible to set them
to a correct value. These operations are conditioned by the particularities of each data source:
design decisions, data format and structure, the storage system, etc. All these factors introduce
different characteristics and transformations that must be standardized before working with the
data. We start by adapting the extracted data to our data model by removing irrelevant fields
and changing the names of fields that are used later. The data types are also changed to ensure
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Evaluation Evaluation
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Figure 5.3: Data cleaning methodology. After each evaluation, the data quality metrics are
measured on the processed dataset.

an adequate interpretation of the data (e.g. surveillance data is stored as JSON files, where all
values are strings).

Once the data have refined, several cleaning operations are applied to correct different defects
in the data: replace default values, normalize the existing values (e.g. changing the case of
letters), and remove vectors with incorrect or empty values. Finally, we add the calculated
attributes that could only be generated when the raw data is clean (or are more convenient to
generate at the end of the process so they do not have to be carried throughout the cleaning
process), and sort the resulting data before the storage. During the data processing, we measure
the data quality according to a set of metrics right before the cleaning (once the structure of the
data has been normalized) and at the end of the process, to monitor the changes in the metrics
before and after the cleaning of the data.

5.4.1 OpenSky state vectors

The summary of transformations on the individual attributes is shown in Table First, the
sensors, spi and position_ source fields are discarded, since they are mostly empty, and they serve
no purpose for our data model. The attributes related to flight times are provided as strings
comprising the date and the time, so we convert them to Unix epoch to work with them as
integer values. To this end, the date and time are interpreted, and translated into seconds. The
callsign and icao?2/ fields are switched to upper case and trailing spaces are removed to comply
with their expected formats (callsign strings are padded with spaces up to a length of 7).
Then, we search for values that are out of the scope, or are null, in a subset of the fields where
missing or incorrect data would turn the vector irrelevant. Hence, we discard all vectors with null
values in any timestamp or position fields. If latitude and longitude have a value, but it is out
of their domains (recall that they are expressed in degrees), the corresponding vector is removed
as well. After these filters, we look for any vectors having duplicated values for the combination
of fields (ICAO24, time_position, latitude, longitude), to remove the state vectors constructed
with outdated positions. Also, true_track values are applied the module 360 operation. The
state vectors with missing altitude are not removed, since it can be estimated later once the
trajectories have been identified. This also holds true for altitude values that are unrealistic.
Finally, two auxiliary columns are added: timestamp and altitude, and they are assigned the
values of time_position and baro_altitude. These fields will act as the main time and altitude
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values, which will be overwritten during the trajectory cleaning stage of the workflow, if their
value is determined as incorrect. The remainder time and altitude fields are kept intact for
traceability reasons. The result is sorted by ICAO24 and timestamp, so the vectors of the same
aircraft are stored adjacently.

Raw attribute Process Final attribute
hexid Convert to upper case, align to format: [A-F0-9]{6}, re- icao24
move vectors with identical position
callsign Convert to upper case, align to format: [A-Z0-9]{3,9} callsign
time stamp Convert to epoch time _position
time stamp velocity ~Convert to epoch last contact
longitude Remove if null or out of the valid range longitude
latitude Remove if null or out of the valid range latitude
altitude geo _altitude
baro altitude baro altitude
on_ ground on_ ground
ground speed velocity
vertical rate vertical rate
track Apply module(360) true_track
squawk squawk
origin _country Remove attribute -
spi Remove attribute -
sensors Remove attribute -
position_source Remove attribute -
New attribute, copy of time_ position timestamp
New attribute, copy of baro _altitude altitude

Table 5.1: Logical map for OpenSky state vectors (L0 to L1)

5.4.2 Network Manager Flight Plans and Flight Data

To start cleaning Flight Plan data (FPLAN), we project only the fields described in Appendix
[A] to remove all unnecessary attributes. Tables and show the operations applied on the
remaining attributes. First, the names of these attributes are adapted to match our data model.
All timestamps are converted into epoch in a similar fashion to state vectors, and then modified
into UTC from the corresponding local time zone in Madrid, Spain, where the flight plan message
were generated. The local time zone can be GMT+1 or GMT+2 depending on the period of
the year, so the process is parametrized to apply the adequate factor to the conversion. Then,
all duplicate vectors, that is, vectors that are identical except for the wuid (message ID), are
removed. All messages missing at least one of a set of key attributes are also discarded. These
attributes are the identifier of the flight in NM systems (ifplld), the real identifier of the flight
(callsign), and the departure and arrival airports. These attributes are necessary to identify
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trajectories, and can not be inferred through other methods. As pointed in previous sections,
some flight plans “lose” some values in their last versions, once the flight has landed. In these
cases, the last valid value is propagated into these messages for several attributes. All identifiers
are converted to upper case to align them with the rest of data sources. Finally, the result is
sorted by the ifplld and the flightData VersionNr, which indicates the version of the flight plan,
so the flight plan messages for each flight are stored together.

A similar approach is followed to process flight data messages (FDATA).

Raw attribute Process Final attribute
ifplld ifplld
aircraftld Convert to upper case, align to format: callsign
[A-Z0-9]{3,9}
registrationMark registrationMark
aircraft Address Convert to upper case, align to format: icao24
[A-F0-9]{6}, propagate if missing
ssrlnfo SST
aerodromeOfDeparture Convert to upper case, remove if null aerodromeOfDeparture
aerodromeOfDestination Convert to upper case, remove if null aerodromeOfDestination
alternatel Convert to upper case alternateAerodrome
aircraft Type aircraft Type
totalEstimatedElapsedTime  Convert from HHMM format to minutes totalEstimatedElapsed Time
wakeTurbulenceCategory wakeTurbulenceCategory
flight Type flight Type
flightRules flightRules
estimatedOffBlockTime Convert to epoch, shift from local time to UTC estimatedOffBlockTime
icaoRoute icaoRoute
aircraftOperator operator
operatingAircraftOperator operatingOperator
timestamp Convert to epoch, shift from local time to UTC timestamp
uuid uuid

Table 5.2: Logical map for Flight Plan messages (LO to L1)

5.4.3 Flights

Once the flight plans and the flight data have been cleaned, we can integrate these datasets to
identify the individual flights for that day. Flights will be constructed using the most updated
information about that flight, so only the last FPLAN and FDATA messages are used. We lever-
age the timestamp and flightData VersionNr attributes in the datasets, respectively, to identify
the last message for each flight. Only flights that have been reported to have finished (e.g. their
flightState attribute has been set to ‘terminated’) are considered.

The integration is easy using the unique flight ID, ifplld, although the problem of duplicated
ID in this data source must be taken into account (although we have not detected repeated IDs
that are close in time to each other, e.g. a few days). To this end, we integrate only the flight
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Raw attribute

Process

Final attribute

id

aircraftld

aerodromeOfDeparture
aerodromeOfDestination
estimatedOffBlockTime
aircraft Address

aircraft Type
flightState
actualOffBlockTime
estimated TakeOff Time
actualTakeOff Time

estimated TimeOfArrival

actual TimeOfArrival

calculatedted TakeOff Time
calculated TimeOfArrival
aircraftOperator
operatingAircraftOperator
icaoRoute

routeLenght
estimatedElapsed Time
flightDataVersionNr
timestamp

uuid

Convert to upper case, align to format:
[A-Z0-9]{3,9}

Convert to upper case, remove if null

Convert to upper case, remove if null

Convert to epoch, shift from local time to UTC

Convert to upper case, align to format:
[A-F0-9]{6}, propagate if missing

Convert to epoch, shift from local time to UTC
Convert to epoch, shift from local time to UTC

Convert to epoch, shift from local time to UTC,
propagate if missing

Convert to epoch, shift from local time to UTC

Convert to epoch, shift from local time to UTC,
propagate if missing

Convert to epoch, shift from local time to UTC
Convert to epoch, shift from local time to UTC

Convert from HHMM format to minutes

ifplld

callsign

aerodromeOfDeparture
aerodromeOfDestination
estimatedOffBlockTime

icao24

aircraft Type
flightState
actualOffBlockTime
estimated TakeOff Time
actualTakeOff Time

estimated TimeOfArrival

actual TimeOfArrival

calculatedted TakeOff Time
calculated TimeOfArrival
operator
operatingOperator
icaoRoute

routeLenght
estimatedElapsed Time
flightDataVersionNr
timestamp

uuid

Table 5.3: Logical map for Flight Data messages (LO to L1)

data messages whose actual take-off time is close in time to the estimated off-block time defined
in the flight plan. The defined thresholds are at most one day in advance, and two days later.
In that way, messages from advanced or delayed flights would still be considered.

FPLAN and FDATA integration requires the consolidation of redundant information. Many
attributes are present in both datasets, but some discrepancies have been detected in their values,
such as different values of ICAQ24, if the aircraft that was planned to be used changes at some
point, or the estimated off-block time, if the flight is delayed short before the takeoff. In these
cases, FDATA values are prioritised over FPLAN as they are considered more up to date.

5.4.4 Weather forecasts

TAF reports only required light processing to bring them into an appropriate form, as shown in
Table[5.4] First, we extracted the relevant attributes located in nested structures. The minimum
and the maximum temperatures at the airport, and their respective timestamps, were extracted
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from the temperature attribute. The main sky condition was also extracted from the correspond-
ing attribute, and characterized by three new attributes: sky cover, cloud base ft agl and
cloud_type. The fields describing the turbulence and the icing conditions were not extracted,
since these attributes were found to be mostly empty. For all these nested attributes, we identified
the empty list of elements as missing values, and treated them accordingly so the completeness
of the data could be correctly assessed.

The attributes that define the validity period of the forecast can be empty if this period has
not been defined. In these cases, they are implicitly relative to the issue time: routine forecasts
are generated one hour in advance of the expected weather conditions, and all reports have a
validity of 30 hours if it is not stated otherwise. Therefore, when these values are unknown the
default validity of a TAF report can be assigned to this report based on the issue time.
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Raw attribute Process Final attribute
raw_text Remove
station id Convert to upper case, align to format: station id

issue_ time

valid _time_ from
valid _time to
time_ from
time_to

change indicator
probability

wind _dir_degrees
wind _speed kt
wind _gust _kt
wind _shear hgt ft agl

wind _shear dir degrees

wind _shear speed kt
visibility _statute mi
altim_in_hg
vert_vis_ft

wx_string

turbulence condition
icing_condition

sky condition

[A-Z|{4}

If it has no value, assign issue_time + 1 hour

If it has no value, assign issue time + 30 hours

Apply module(360)

Identify empty values

Identify empty values

Extract fields, identify empty values
New attribute

New attribute

issue_time
valid_time_from
valid _time to
time_ from

time to

change indicator
probability

wind _dir_degrees
wind _speed kt
wind _gust kt
wind _shear hgt ft agl

wind _shear dir degrees

wind _shear speed kt
visibility _statute mi
altim_in_hg

vert _vis_ft

wx_string

turbulence condition
icing_condition

sky condition

sky cover

cloud base ft agl

New attribute cloud type
temperature Extract fields, identify empty values temperature
New attribute min_temp
New attribute min_temp_ timestamp
New attribute max_temp
New attribute max_temp timestamp
Table 5.4: Logical map for TAF reports (LO to L1).
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5.5 Data quality metrics

All of the considered data is subject to the usual data quality problems that affect the complete-
ness, consistency, duplication, uniqueness, value (domain, range or structure) [100]. To this end,
several common metrics are measured for each data source and each attribute, relative to the
partition criteria defined for each data set. The list of calculated metrics is shown in Table 5.5

Univariate analysis

Completeness Ratio of non-empty values for each attribute
Cardinality Number of unique values for each categoric attribute
Distribution Frequency of values for each categorical attribute with low cardinality

Duplicated values  Detect and process duplicated data in attributes defined as unique
Domain Number of values outside of the defined range or domain

Structure Number of values that do not conform to a defined pattern

Multivariate analysis

Duplicated records Duplicated values for combinations of attributes (such as 3D position and time)
which may denote redundant or incorrect data

Descriptive metrics

Number of records Number of records in the dataset

Table 5.5: Summary of data quality metrics.

5.6 Experiments

The datasets described in Section [5.1.2] has been processed following the methodology explained
above. In the next sections, we explore the characteristics of the resulting dataset, and analyze
the values obtained for the defined metrics.

With the aim of demonstrating and evaluating the data workflow described in this chapter,
we have defined a test dataset in line with the case study presented in Section[5.1.2] In particular,
we have captured data to construct the trajectories of all flights between July 3-16, 2023. To
this end, we have to process surveillance and flight plans data extracted from their respective
data sources. In the following sections, we discuss the main results of the data cleaning step for
this dataset, before we can integrate the data in the next chapter.

5.6.1 OpenSky dataset

A total of 447.5M state vectors were extracted from the OpenSky Network for that period, with
an average of 32M state vectors per day. After applying the operations explained in previous
sections, 5.4M state vectors (1.2065%) were removed due to having a repeated position, as
indicated in Table To this end, adjacent vectors with the same positions were removed,
while keeping the first state vector, for each aircraft (identified by their ICAO24). Figure
shows the distribution of the state vectors across the studied days, before and after the cleaning.
The amount of daily vectors is similar, with a slight increase before and during the weekend. In
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total, 174,761 aircraft were identified in the surveillance data, which performed 463,151 different
flights (slightly reduced after the cleaning).

Table shows the completeness of the fields of surveillance data. The most important
attributes, such as the callsign, the ICAO24, the timestamps, the ground flag and the position,
are almost always available. Interestingly, the completeness of the callsign and the origin country
decreases after the cleaning, because default values are removed during this step since they do not
provide any relevant information. Some examples of these default values are ‘TEST*, ‘1234¢, ‘000
or an empty string, which are all valid values and counted towards the completeness metric. Such
default values have not been found in other attributes. The geometric and barometric altitudes
are missing more often, with 3.97% and 4.33% of the state vectors lacking a value for these fields.
These results are slightly improved after the cleaning.

le7

Figure 5.4: Number of vectors captured each day for the raw and clean data.

5.6.2 NM Flight Plans dataset

A total of 890,200 messages were extracted from the Network Manager relative to 348,388 dif-
ferent flights, as indicated in Table [5.8] This means that almost 25,000 flights were planned
for each day. After cleaning, only 244 duplicate messages were found and removed, so the car-
dinality of the dataset remains almost unchanged. The main improvement can be observed in
Table where many of the attributes with low completeness (wakeTurbulenceCategory, regis-
trationMark, flightType, totalEstimatedElapsedTime, and more importantly the ICAO24) were
significantly improved thanks to the value propagation to the latest messages for each flight,
which we have observed to have many fields blank. These flights were planned to be performed
by 85,400 different aircraft. Note that there is a discrepancy between the number of flights and
the number of identified callsigns: the difference can be attributed to repetitive flights, which
reuse the same callsign in different flights.

Another prominent change is the size of the dataset, which is reduced from 3,786 MB to 51.5
MB. We decided to change how the data was stored for efficiency, and transformed the original
JSON files into a tabular representation, and then stored them as (compressed) Parquet files.
Finally, the distribution of flight plan messages across the studied days, which is similar to the
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Raw data Clean data

Value Total Mean Total Mean
File size (MB) 13,152 939 10,291 735
Records 447,426,023 31,959,001 442,027,582 31,573,398
Removed records 5,398,441 385,602 - -

Reused position 5,398,441 385,602 - -

Other concepts 0 0 - -
Unique ICAO24 174,761 12,482 174,761 12,482
Unique callsign 463,151 33,082 463,104 33,078

Table 5.6: Total and mean values (per partition) of the state vectors dataset.

Raw data Clean data
Attribute Mean StD Mean StD
callsign 100.00% - 98.89% 0.28%
icao24 100.00% - 100.00% -
last _contact 100.00% - 100.00% -
latitude 100.00% - 100.00% -
longitude 100.00% - 100.00% -
on_ ground 100.00% - 100.00% -
origin_country  100.00% - 99.64% 0.13%
time_position  100.00% - 100.00% -
true_track 100.00% - 100.00% -
velocity 99.95% 0.02% 99.95% 0.02%
vertical rate 96.50% 0.17%  96.55% 0.16%
geo _altitude 96.03% 0.18% 96.07% 0.19%
baro_altitude 95.67% 0.13% 95.79% 0.12%
squawk 81.75% 1.49%  81.76% 1.50%

Table 5.7: Mean completeness per day for numeric attributes in the state vectors dataset.
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distribution of state vectors, is shown in Figure [5.5
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Figure 5.5: Number of messages captured each day for the raw and clean data.

5.6.3 NM Flight Data dataset

Similar conclusions can be extracted from the flight data dataset. We captured 13,04M flight
data messages, corresponding with 248,402 planned flights, as indicated in Table [5.10] This
number is lower than the observed in the flight plans dataset: this is because many flights are
canceled well before the pre-tactical phase, that is, before they are transferred to the IFPS
system and their data becomes available as flight data. In this case, a total of 76,248 aircraft
performed flights with 237,706 different callsigns. The distribution of flight data messages differs
from the flight plan messages: a significant decrease can be observed the days 7 and 11, but we
have not been able to identify the cause. Finally, small improvements were achieved after the
cleaning with respect to completeness: while most of the attributes are always present, some
of the remaining fields could be partially recovered (in particular, the actual takeoff and arrival
times). Once again, the size of the data was reduced by changing the storage format to improve
the performance of reading files in later stages of the data workflow.
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Raw data Clean data

Value Total Mean Total Mean
File size (MB) 3,786 270 51.5 3.7
Records 890,200 63,585 889,953 63,568
Removed records 244 17 - -

Duplicated 244 17 - -
Unique flights 348,388 24,884 348,388 24,884
Unique ICAO24 85,397 6,099 85,397 6,099
Unique callsign 333,567 23,826 333,567 23,826

Table 5.8: Total and mean values (per partition) of the flight plans dataset.

Raw data Clean data
Attribute Mean StD Mean StD
aerodromeOfDeparture 100.00% - 100.00% -
aerodromeOfDestination 100.00% - 100.00% -
callsign 100.00% - 100.00% -
estimatedOffBlockTime 100.00% - 100.00% -
timestamp 100.00% - 100.00% -
uuid 100.00% - 100.00% -
ifplld 99.99% 0.02% 99.99% 0.02%
operator 98.34% 0.10%  98.34% 0.10%
operatingOperator 92.24% 0.33%  92.24% 0.33%
aircraft Type 90.75%  0.26% 90.75%  0.26%
wakeTurbulenceCategory 90.75% 0.26%  99.99%  0.02%
registrationMark 90.53% 0.28% 99.87% 0.07%
flightRules 89.56% 0.28% 89.56% 0.28%
flight Type 80.56% 0.28%  99.99%  0.02%
totalEstimatedElapsedTime  89.56% 0.28%  99.99% 0.02%
icao24 86.29%  0.48% 95.23% 0.36%
Ssr 7.14%  0.17% 9.14% 0.27%
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Raw data Clean data

Value Total Mean Total Mean
File size (MB) 12,158 868 532 38
Records 13,038,699 93,133 1,3038,628 93,128
Removed records 71 5 - -

Duplicated 71 5 - -
Unique flights 248,402 17,743 248,402 17,743
Unique ICAO24 76,248 5,446 76,248 5,446
Unique callsign 237,706 16,979 237,706 16,979

Table 5.10: Total and mean values (per partition) of the flight data dataset.

Raw data Clean data
Attribute Mean StD Mean StD
aerodromeOfDeparture 100.00% - 100.00% -
aerodromeOfDestination  100.00% - 100.00% -
aircraft Type 100.00% - 100.00% -
callsign 100.00% - 100.00% -
estimatedOffBlockTime  100.00% - 100.00% -
estimated TakeOff Time 100.00% - 100.00% -
estimatedTimeOfArrival ~ 100.00% - 100.00% -
flightState 100.00% - 100.00% -
flightDataVersionNr 100.00% - 100.00% -
ifplld 100.00% - 100.00% -
routeLength 100.00% - 100.00% -
timestamp 100.00% - 100.00% -
uuid 100.00% - 100.00% -
icao24 98.28% 0.27%  98.32% 0.26%
operator 98.07% 0.10%  98.07% 0.10%
operatingOperator 91.05% 0.40%  91.05% 0.40%
actualOffBlockTime 75.55% 3.71%  75.55% 3.71%
actualTakeOff Time 75.55% 3.711%  77.08% 3.59%
actualTimeOfArrival 75.55% 3.71%  77.08%  3.59%
calculated TakeOff Time 4519% 5.83%  45.19% 5.83%
calculatedTimeOfArrival ~ 45.19% 5.83%  45.19% 5.83%

Table 5.11: Mean completeness per day for numeric attributes in the flight data dataset.
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Figure 5.6: Number of messages captured each day for the raw and clean data.
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5.6.4 TAF dataset

Due to the volume of the data, the TAF dataset was partitioned monthly instead of daily.
Therefore, Tables [5.12] and [5.13] shows the statistics of the complete partition of July, 2023.
A total of 1,578,281 reports were generated by 3,158 weather stations located at an airport.
No duplicated records were found in this partition. The FM reports, which indicate certain
changes in the weather conditions, were the most common, with more than 440k reports. Reports
informing of temporary weather phenomena (TEMPO) were second in frequency, closely followed
by reports informing of gradual changes towards new weather conditions (BECMG), with 270k
and 260k reports, respectively. The corrections on previous forecasts (AMD and COR) were
comparatively rare (2.41%). The remaining reports corresponded with probable forecasts.

With respect to the completeness of the data, the nested attributes showed a false high value
of the metric since they were assigned a value, even if it means that there were no readings. We
interpreted such situation as no data, thus providing a more accurate assessment of this aspect on
the clean data. It becomes evident that these weather conditions are rarely informed, in contrast
with the sky condition, which has at least one record in 82.71% of the reports. The attribute
valid time from has increased its completeness thanks to the attribution of the default validity
period during the cleaning. The rest of the attributes remain unchanged, since no action was
taken on them.

Value Raw data Clean data
File size (MB) 146 25.8
Records 1,578,281 1,578,281
Removed records 0 -

Reports per type

FM 441,334 441,334
BECMG 261,649 261,649
TEMPO 272,650 272,650
PROBXX 119,163 119,163
AMD 34,200 34,200
COR 3,759 3,759
Unique stations 3,158 3,158

Table 5.12: Total and mean values (per partition) of the TAF reports dataset.
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Raw data Clean data
Attribute Mean Mean
issue time 100.00% 100.00%
part date utc 100.00% 100.00%
station id 100.00% 100.00%
valid_time_to 100.00%  100.00%
icing condition 100.00% 0.07%
sky condition 100.00% 82.71%
temperature 100.00% 4.80%
turbulence condition 100.00% 0.29%
valid time from 98.96% 100.00%
sky cover 82.71% 82.71%
wind_speed kt 80.57% 80.57%
visibility statute mi 73.18% 73.18%
change indicator 71.77% 71.77%
cloud base ft agl 71.02% 71.02%
time from 69.37% 69.37%
wind dir degrees 66.96% 66.96%
time to 41.40% 41.40%
wx_string 34.82% 34.82%
wing gust kt 12.70% 12.70%
cloud _type 11.15% 11.15%
probability 7.55% 7.55%
max_temp 4.68% 4.68%
max_temp timestamp 4.68% 4.68%
min_temp 4.64% 4.64%
min_temp timestamp 4.64% 4.64%
altim in hg 3.50% 3.50%
vert vis_ft 0.64% 0.64%
wind _shear hgt ft agl 0.08% 0.08%
wind shear dir degrees 0.08% 0.08%
wind _shear speed kt 0.08% 0.08%

Table 5.13: Mean completeness per day for numeric attributes in the flight data dataset.
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Chapter 6

Trajectory processing

At this stage, the individual data sources have been processed to characterize different aspects of
flights, such as the surveillance data, the flight plans and the weather conditions. However, these
data are disjoint and barely usable to support air traffic management in their current form. In
Chapter [2| we introduced the concept of 4D trajectory as the cornerstone to conciliate all these
flight-related concepts and provide an effective support to air traffic operations. This chapter
discusses how 4D trajectories can be created based on the aforementioned data, and how to
tackle some of the challenges that arise when structuring this data following this abstraction.

6.1 Trajectory definition

4D trajectories comprise static and dynamic information, providing a complete representation
of all aspects related to the state of a flight. For the purposes of this Thesis, we have defined
a enriched 4D trajectory representation containing the information necessary for implementing
the identified use cases and that is available in the identified data sources.

A trajectory is uniquely identified (we use the attribute ifplld from Network Manager for
this purpose), although several additional attributes should be incorporated to fully characterize
it. These attributes are defined in the flight plan and have a single value for that trajectory. In
particular, the following attributes are assigned to the trajectory: the callsign of the flight, the
ICAO24 code of the aircraft, the aerodromes of departure and destination, the flight date, and
the operating airline. We also include the schedule information, such as the estimated and actual
times of arrival and departure. Since these trajectories are constructed a posteriori, we use the
last value available for these attributes. Schedule attributes are subject to change as the flight
progresses, so any online processing would require to keep track of their latest value during the
flight. We also store the flight status reported in the last flight plan message to keep track of
whether the flight has ended or the available data for that trajectory is incomplete.

The dynamic data in the trajectory corresponds with the surveillance data available for that
trajectory. This information is represented as a time series with all the updates of the state of
the flight, described by the following subset of attributes of those provided by OpenSky: the 2D
position of the aircraft (latitude and longitude), the altitude (both geometric and barometric),
the track of the aircraft, and the flag indicating whether the aircraft is on the ground or in the
air. Based on this sequence of data, the metadata of the trajectory is enriched with the indication
of the used sources of the surveillance and flight plan data, the number of vectors contained in
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the sequence and the time period that it describes; i.e. the timestamps of the initial and final
state vectors. Finally, we add an attribute indicating the maturity of the trajectory in our data
workflow; i.e. raw for the newly created trajectories, and clean for the refined trajectories.

6.2 Data integration

In previous chapters we have discussed some of the main data resources available to support
ATM operations. Surveillance data allows to monitor the state of every aircraft equipped with
the adequate systems in a near-real time manner. Flight plans provide schedule information that
enables organizing the airspace in advance, in order to increase the predictability and efficiency
of the operations. It is apparent that these resources bring complementary views of the same
reality, although separately they are partial and limited. Therefore, it is necessary to integrate
them in a single resource to unlock their full potential.

Trajectories, and in particular 4D trajectories, constitute a great abstraction to reconcile the
concepts behind the flight plan data and the surveillance data. Trajectories provide a context
(the state vectors describing the same flight) to surveillance data, increasing the interpretability
of each data point in isolation. Trajectories also provide a deeper description of the progression
of a flight beyond the defined time and route schedules or the summary submitted after the flight
ends. After the integration of these data, trajectories can be enriched with different metadata
to increase the characterization and value of the individual trajectories.

In the following sections, we delve into the common problems we can find when constructing
trajectories based on flight plan and surveillance data, and how this problem is tackled in the
context of our investigation.

6.2.1 Discussion of the main quality problems

The constructed trajectories can show several anomalies derived, in most of the cases, from
problems present in the surveillance and flight plan data, although they only become apparent
when we interpret these data as trajectories.

a. Missing vectors
e At the beginning of the trajectory
e At the end of the trajectory

e In the middle (measure % of missing data in terms of distance, number of gaps, size of the
gaps in time and distance, estimate number of lost vectors (one each 5s))

Theoretically, the surveillance data provides a continuous and detailed description of the
state of the aircraft, updated every few seconds. However, as discussed in the previous chapter,
several factors can lead to ADS-B messages being lost during transmission and never reaching any
receiver. Depending on the severity of these losses, we can distinguish between several scenarios.

In the case of punctual losses of ADS-B messages, OpenSky can account for these lost vectors
by using messages emitted close in time. The theoretical update rate of ADS-B for position is
1Hz, so five or more ADS-B messages should be lost to break the continuity of the sequence of
state vectors. Moreover, losing the first messages would not result in any consequences. Take
the example of two messages of the same type received within the same vector generation cycle.
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Only the latest message is used to construct the vector, so the loss of the first message is not
relevant since the resulting vector is identical. If the second message was lost, the first one can
provide slightly obsolete data from the aircraft state, but close enough to remain relevant.

When more ADS-B messages are lost, OpenSky reuses the latest message available during
three more vector generation cycles to ensure continuity. This becomes more apparent when the
position data is not adequately refreshed; during up to three vectors, the aircraft is situated at
the exact same point. While new vectors are being generated, albeit only partially updated,
they could be considered as anomalous depending on the use case, and thus they should be
taken into account during the data process. In our case, such vectors describe an impossible
movement pattern that introduces noise in the sequence. Hence, we identify those vectors based
on their position data, and define them as “vectors with reused location” to be excluded during
the trajectory reconstruction. In more severe cases, such as zones where high traffic density leads
to massive message losses, the density of state vectors (amount of state vectors per time unit)
can decrease, or even show gaps where no state vectors exist for a prolonged period of time and
the state of the flight is unknown.

It is necessary to study such events, since they can be relevant depending on the destination
of the data. In this project, we assess the continuity of the constructed trajectories and annotate
them accordingly. First, we compute the average update rate, and determine those parts of the
trajectory where this rate is not consistent. Second, we determine the existence and impact of
gaps in the sequence, and whether they appear at the beginning, the middle or the end of the
trajectory. In that way, we can evaluate the quality of each trajectory for the intended use cases.
These metrics are described in more detail later in this chapter.

b. Coverage problems and duplication

While state vector losses are occasional and affect to individual trajectories, there exist zones
where these losses occur more frequently. The most evident example are zones with no coverage,
that is, those where there are no receivers to capture ADS-B messages from aircraft flying
over. This situation causes gaps on all trajectories that fly over these zones, causing a complete
absence of data on those zones. Such is the case of large water masses, where no receivers can
be deployed. Orography is another common cause for persistent message losses: since ADS-B
receivers are deployed on the ground, the terrain can block aircraft transmissions when flying
over particular areas. In all cases, the lack of ADS-B data leads to being able to construct state
vectors, and thus to gaps in the data sequence.

On the contrary, it is possible that ADS-B messages reach multiple receivers, leading into
data duplication; for example, due to overlapping reception areas or bounces on geographical
accidents. This problem is lessened by the state vector construction process: duplicate messages
received during a single generation cycle would have no effect onto the produced state vector.
However, if the delay between the two copies of the same ADS-B message is large enough, it
could result into vectors with duplicated data (albeit timestamp would be different). These cases
must be acknowledged and processed.

c. Incomplete payload

The different ADS-B messages serve specific purposes by carrying specific data. Therefore,
all state vectors require at least one message of the necessary types to be complete. When some
messages are not received in time, the resulting vector can have a part of their data missing,
leading to an incomplete representation of the flight state. The problem of reused positions can
be also be considered as an incomplete payload problem, since its caused by position data not
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being updated with enough frequency.
In some cases, this problem can be overcome by data imputation or even interpolation:

e Static data (which generally does not change across the trajectory) can be determined
based on other vectors in the trajectory. Callsign is an example of this.

e Time-dependent attributes, such as timestamps, position, velocity or direction can be in-
ferred or interpolated based on the surrounding vectors that have a valid value. However,
these techniques should be applied with care, since introducing artificial data can lead to
significant distortions in the reconstructed trajectory.

e Some attributes may be deemed to not be relevant, and left empty without consequences
if data is not available and cannot be recovered in any other way. This decision depends
on many factors, being one of the main ones the use case for the data.

d. Characterization of trajectories

An adequate description of trajectories via metadata can be a good option to help the value
assessment and effective management of these data. For the purposes of the project, several
measures are proposed to characterize trajectory data, which results in the definition of several
metrics that are covered later in this chapter:

e Geographical range (latitude, longitude and altitude).

Rate of update/Vector density per distance.

Number of duplicated positions.

The presence and impact of gaps and segments of low density.

The percentage of vectors emitted when the aircraft is on ground.

The presence of holdings in the trajectory, specially at the end of it.

6.2.2 OpenSky Flight API - OpenSky

OpenSky’s flight data is inferred directly from surveillance data, following a set of heuristics
to identify the individual flights in the stream of state vectors [94] (this process is outlined in
Section . Therefore, flight data is subject to errors if surveillance data shows incorrect
information or incomplete data; e.g. missing vectors at the start or the end of the trajectory,
incorrect callsign values, etc. When the data is complete and correct, other information can be
inferred based on the trajectory data, like actual time of takeoff or landing, the departure and
destination airports, or the airline operating the flight (based on callsign). However, other data
can not be determined indirectly, and require to rely on other data sources to fully describe the
flight, such as schedule data. Hence, OpenSky flights API does not satisfy our data model, and
will not be used hereafter.

Surveillance data and flight data can be joined using the icao2/ attribute. Then, firstSeen
and lastSeen attributes are used to assign each trajectory the state vectors created during its
duration.
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Figure 6.1: Trajectory identification mechanism based on the timestamps from the flight plan.

6.2.3 Network Manager - OpenSky

NM’s flight plan data and flight data can be merged using the flight plan ID, as explained in the
previous chapter. However, joining these data with surveillance data requires a more elaborated
integration strategy:

e Flight plan data and flight data do not always include the ICAO24 of the aircraft. However,
the callsign of the flight is always present.

e Surveillance data can have the callsign attribute missing, but the ICAO24 attribute is
always present.

e The partitions defined for these datasets can not be integrated directly: a flight that started
at the end of a day will continue at the beginning of the next day, so the corresponding
surveillance data for that flight belong to the partitions of both days. Therefore, each
partition of flights should be integrated with two partitions of surveillance data.

The missing ICAO24 values in flights datasets are those lost in the last messages for each
flight. These values were filled during cleaning, so ICAO24 can be used reliably to join the two
datasets. However, it is not sufficient: a single aircraft can make multiple flights during a day,
so the surveillance data in a day for that aircraft comprises data from different trajectories. We
can leverage the information about the flight plan to identify the individual trajectories in the
sequence of surveillance data for that day. In particular, timestamps included in the flight data
messages once the flight has ended can be used for this purpose. These timestamps describe
the time the flight actually took off (actualTakeOffTime) or landed (actualTimeOfArrival). If
the taxiing trajectory on ground is needed, actualOffBlockTime can be used to determine the
moment the aircraft started moving at the terminal.

During the integration, we use the actualTakeOff Time and actualTimeOfArrival because the
two use cases we are investigating utilize surveillance data of aircraft in flight, and the taxiing
phases of the flight are not relevant. We also need to account for clock desynchronization and
other factors that may cause the times included in the flight plan to be inaccurate with respect to
the surveillance data. To this end, the time window defined by the above timestamps is extended
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by 10 minutes before and after to ensure that the complete trajectory is effectively identified as
such, as shown in Figure [6.1]

6.2.4 OpenSky

The process of identifying individual trajectories can also be tackled using surveillance data
only, and heuristics to determine when the flight starts and ends based on the flight state. For
instance, the start and end of a flight can be determined using the callsign, on_ ground, speed or
altitude can be leveraged to determine the moments the aircraft lands or takes off [80], or when
the aircraft actually stops at the gate of the destination airport (or starts moving from the gate
during the departure). The GPS position of the aircraft can also be used with similar purpose,
if the precision is good enough. The time patterns can also be helpful, since once the aircraft
stops, it does not emit ADS-B messages.

However, all these heuristics are vulnerable to incorrect or missing data, which can be alle-
viated to a degree by using a combination of heuristics that help to overcome the errors or the
lack of a value for an attribute if the problem is sporadic. Nevertheless, if no surveillance data
is available, the heuristics become ineffective. For example, in Madrid Barajas-Adolfo Suérez
airport it is frequent that almost no state vectors are generated under 2k feet once the aircraft
is heading to the runway, which means that the end of the trajectory and the touchdown (the
first contact of the aircraft with the ground in the runway) is not described in the surveillance
data sequence. Thus, none of the heuristics explained above would be able to determine the end
of the trajectory.

6.2.5 TAF reports

There are multiple possibilities for integrating surveillance and forecast weather data. The
described weather conditions in these reports are relative to a particular position; e.g. at the
terminal, or in intermediate areas during the flight. Influenced by the use case explained in
Chapter [7} in this Thesis we associate each surveillance data point (each state vector) with the
current weather forecast at the destination airport at the moment of generation of that state
vector. Recall that several TAF reports of different types can be valid at the same time, as
explained in Chapter [d] Then, it is required to reconcile the different forecasts in all these
reports to characterize the weather conditions that can be expected at the destination airport.

To this end, the different types of reports are prioritized: routine reports define the base
weather conditions, which are valid unless stated otherwise. The changes in these base conditions
can be originated in three ways:

e New AMD or COR reports: AMD reports partially overwrite the contents in routine
forecasts, while COR reports replace the base forecast entirely.

e Changes announced in the routine report, which can be permanent (FM and BECMG) or
temporary (TEMPO).

e New routine TAF reports replace the last routine report and invalidate any other forecast
change.

Taking these considerations into account, FM and BECMG clauses take precedence over the
underlying base forecast, and are themselves overridden by TEMPO clauses, which describe more
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significant variations. When an AMD (Amendment) or COR (Correction) report is issued, it
updates or corrects the base forecast accordingly, although the precedence order is not altered.
Furthermore, the publication of a new routine TAF report invalidates all previous forecasts for
the same validity period, establishing a new base forecast and new associated change periods, if
any.

Figure illustrates a feasible scenario where the forecast at a given time results from the
overlap of several valid forecast elements. When a BECMG clause becomes valid (shown in
blue), it supersedes the conditions defined by the base forecast. This period is temporarily
overridden by a TEMPO clause (shown in red), which describes short-lived weather variations.
Once the temporary event ends, the forecast reverts to the conditions defined by the BECMG
clause, lasting until the end of the validity of the base forecast. Later, a new TAF report
(shown in green) establishes a different base forecast, which may include new FM, BECMG, or
TEMPO clauses describing further expected changes. Once the current forecast is reconstructed
by resolving overlapping TAF reports and their associated amendments and changes, we can
accurately identify the prevailing weather conditions at any point in time. This, in turn, allows
us to associate each state vector with the relevant forecast according to its timestamp.
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Figure 6.2: Prioritization of TAF reports. Routine reports (green) set the expected weather
conditions. The gradual changes defined by BECMG reports overwrite the base conditions until
the end of its validity period. Temporary events (TEMPO) have a short life span and overwrite
the other forecasts.

6.3 Data quality problems of trajectories

Once reconstructed, the trajectory can show several problems that could not be identified before
in the data workflow. These problems arise when each data point is put into a context, and
are related to the availability of data (e.g. the density or frequency of the data, or the presence
of gaps), the consistency of the data (e.g. incorrect or inconsistent values of individual data
points, or an incorrect order in the data sequence) or the expectations on the characteristics of
the trajectories (e.g. some trajectories might be too short or be incompatible with their pursued
use). In this section, we discuss these problems and how they can be tackled.
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6.3.1 Data density

In previous chapters, it was indicated that ADS-B has a theoretical update rate of 1Hz, and
OpenSky Network generates a new vector every 5 seconds if the necessary ADS-B data has
been captured. However, these are ideal values — we have seen that many factors can influence
the actual availability of these data and reduce the volume and frequency of generated records.
This fact becomes more prominent after trajectory identification: trajectories can have segments
where the density of state vectors (that is, the number of state vectors per unit time) is strongly
diminished below the ideal value of approximately 20 vectors per minute. As a result, the density
of the data sequence is not homogeneous, which in some cases can hinder the application of these
data. For instance, many deep learning methods to process time series data (sequences of data
where each record is associated to a timestamp) require the data to be consistent in terms of
the time separation between the elements. In these cases, the differences in the frequency of the
records may harm the success of the training processes and the effectiveness of the developed
models.

In other situations, even if the density is consistent along the sequence, it may not be the
most convenient for a particular use case. Going back to the example above, some models do
not benefit from having high density data, either because of the extra computations needed to
train on a large amount of data, or because it could overfit on data that have too much detail,
and fail to generalize the task it aims to perform. On the contrary, it is possible that a higher
density of data is required, like if it is needed to fill the gaps in the trajectory or to make up for
several state vectors that were lost. In these cases, it might be necessary to tweak the density of
the data through different methods. Depending on the situation, one may want to reduce or to
increase the density of a trajectory or a segment of it.

Reducing the data density requires that some vectors are removed from the sequence, pro-
viding a kind of summarized version of the trajectory. This process is called downsampling.
While there exist different strategies to implement downsampling, in this project we opted for
implementing a simple mechanism called bucketization. According to this method, the state
vectors in the trajectory are divided into buckets of ST seconds (sampling time) according to
their timestamp. Then, one vector is chosen for each bucket, and the rest of vectors in the bucket
are discarded. The selection of the vector can be implemented through different strategies, like
choosing the first or the last in the bucket, the nearest vector to the centre of the bucket, or
the centroid of the bucket (the vector that is most similar to all other vectors in the bucket).
These strategies are illustrated in Figure[6.3] Another strategy could be to construct a synthetic
state vector that summarizes the vectors in the bucket, but creating synthetic data should be
considered with care since it could lead to different problems and anomalies in the data.

The complementary operation is oversampling. In this case, new vectors are generated to fill
in the spaces between the existing vectors. Once again, there exists different methods to tackle
this synthetic data generation problem, although one of the simplest is interpolation. Trajectory
data is a time series, so each element in the sequence is related to the adjacent elements. This
dependence can be leveraged to apply interpolation techniques, such as linear, polynomial or
spline interpolation, to find feasible intermediate values between the existing elements. However,
synthetic data generation is inherently complex, and its use requires a very careful consideration.
In the context of this project, we use interpolation on specific attributes to recover anomalous
values in existing vectors, such as the altitude.
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Figure 6.3: Different strategies to choose a vector in a bucket.

6.3.2 Gaps

During a flight, it is possible for more than just a few state vectors to be lost, resulting in
significant gaps in the trajectory data. As explained in Chapter @] ADS-B data availability
depends on the presence of receivers within an effective range. Adverse weather, geographic
obstacles, or the distance to the receiver may prevent data reception, causing entire segments
of the trajectory to go unrecorded and leaving gaps in the data sequence. Gaps can be either
accidental or systematic. Accidental gaps are caused by temporary factors, such as weather or
equipment malfunction. Systematic gaps, however, result from persistent issues like the absence
of coverage in specific areas, affecting all flights passing through them. The nature of the gap
influences the severity of the problem: trajectories with accidental gaps can be replaced by
other trajectories once the problem has passed. However, systematic gaps lack the possibility
of replacement. Additionally, the size and frequency of the gaps are relevant factors to assess
the impact of gaps in a trajectory. Larger gaps significantly reduce the certainty about the true
state of the aircraft during the affected periods.

Like missing vectors, gaps can be addressed using data generation techniques such as inter-
polation or regression methods, as the state of the flight before and after the gaps are known
and can be used to estimate the intermediate states. The trajectory prediction methods can be
applied with this purpose (these methods are reviewed in Chapter . However, estimating entire
flight segments is even more challenging than individual state vectors, and the results may be far
from satisfactory. A better alternative could be incorporating data from complementary sources
of surveillance data to fill the gaps, since OpenSky is limited by the coverage of its receiver
network. Alternative surveillance data providers may offer coverage in regions where OpenSky
does not.

6.3.3 Anomalous values

In the previous chapter, we said that some attributes can show incorrect values, which in some
cases correspond with unfeasible values that could be immediately identified as such. An example
is the altitude of 126,400 feet that has been observed in some state vectors. Since we know that
commercial flights rarely exceed 42,000 feet of altitude, these errors can be easily found and
removed. However, the error can be much more subtle, although some of them become more
noticeable after the trajectory identification.

As mentioned earlier, trajectory data can be regarded as time series. Provided that the
data are dense enough (i.e., there are no large gaps between elements), each data point should
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be consistent with its neighboring points. The changes between elements should be gradual,
resulting in every element being either quite similar to their neighbors, or showing a similar trend
than previous elements. For example, an aircraft flying at 800 kilometers per hour would travel
about a kilometer in 5 seconds; this means that the position difference between two consecutive
state vectors should not exceed this amount (provided that there exist vectors every 5 seconds).
We can leverage this fact to define different methods to identify strange or atypical values, which
we also call outliers (values that are outside of the expected distribution of the data). There
exist more advanced methods, such as median filters or Kalman filters, that can be experimented
with to process these trajectories.

In the context of this project, we search for outliers in the altitude and the position, since
3D position plays a relevant role in the studied use cases that are presented in Chapters[7]and [§]
In particular, we apply a combination of median filters to identify anomalous values and treat
them accordingly. In the case of position, the state vector is removed, since the error could be
caused by an error in the onboard GPS, and could compromise the validity of other attributes of
the vector (such as the speed). If the affected attribute is the barometric altitude, it could have
been caused by an occasional error on the altimeter (e.g. it was being set up or adjusted by the
pilot), and its value could be estimated based on the geometric altitude.

6.3.4 Delayed vectors

In Chapter [4] we introduced the problem of delayed vectors. The heterogeneity of the receivers
that submit ADS-B data to the OpenSky Network can cause different problems, specially when
it comes to the timestamp of the ADS-B messages and the delays that can occur before OpenSky
consolidates all ADS-B data, and delayed vectors are one of the most prominent problems. These
vectors are constructed using outdated ADS-B messages, which were assigned timestamps that
are much later than they should be. Consequently, they represent true positions and states
of the flight, but are placed out of their position in the chronological sequence of data, as
illustrated in Figure [6.4] Figure [6.5] shows a real example of this situation: the altitude profile
of a chronologically ordered trajectory where several vectors generated during the descent phase
were delayed. Seemingly, the aircraft is jumping up and down with differences of more than 2,000
feet, a description that clearly does not match the reality of the flight. A similar observation can
be made when we analyze the latitude and longitude profiles: the aircraft is suddenly displaced
several hundreds of meters back and forth. After sorting the state vectors according to their
position, the trajectory makes much more sense, as shown in Figure Identifying these
situations is sometimes difficult, and only becomes more apparent when one of these magnitudes
(altitude, latitude or longitude) are represented in relation with time. Other representations, like
the visualization on the map (see Figure , effectively hide the problems in the timestamp.

As a result, the trajectory describes changes in the descriptive attributes of the aircraft state
that are unrealistic. Therefore, they could be detected by outlier detection methods and classified
as anomalous vectors. However, timestamp errors have been identified as systematic, potentially
affecting a significant number of vectors and trajectories, so their removal or overwriting through
value imputation can have a large impact on the quality or density of these trajectories. Hence,
this problem should be tackled on its own.

Detecting and recovering delayed vectors poses multiple challenges:

e Distinguishing delayed vectors from vectors with anomalous attribute values.
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Figure 6.4: A schematic example of delayed vectors and outliers. The path in black indicates the
original 4D trajectory ordered by the timestamp of the vector, with two delayed vectors sg and
s7. The reordered trajectory (in red) resituates those vectors, and skips the sg and sg positions
since they are inconsistent with the rest of the trajectory (outliers).

e Determining the correct position in the sequence for these delayed vectors.

e Identifying which vectors have been resorted, as moving a vector back in the sequence shifts
the position of subsequent vectors, but those vectors themselves have not been resorted.

e Assigning new timestamps to the reordered vectors.

6.3.5 Trajectory selection

Some trajectories might be discarded if their quality is insufficient and can not be fixed, or they
just do not met the requirements for a particular use case. An exhaustive list of the potential
problems that could affect the trajectory data is beyond the scope of this chapter, but below
we list some additional problems we have found when working with the trajectory data and are
taken into account in later operations with these data:

1. Trajectories that are too short (have too few state vectors) are excluded since the descrip-
tion they provide of the flight path has a severe lack of details, or they are incompatible
with some of the techniques applied later, which require long sequences of data.

2. Trajectories whose origin and destination are the same airport (failed flights that had to
return to the departure airport).

3. Trajectories whose maximum altitude is too low, which can correspond with test or training
flights, unmanned flights (drones) or helicopters, since they are out of the scope of this
study.

4. Trajectories with insufficient coverage of the flight path, e.g. trajectories with severe losses
of data in the form of gaps.

5. Trajectories that are missing too many vectors at the start or at the end, which causes the
trajectory to not describe the most critical phases of the flight: the ascent and the descent
and landing of the aircraft.

Jorge Silvestre Vilches 109



Chapter 6. Trajectory processing
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Figure 6.5: Flight profiles of flight AT02523950 on July 1, 2023. Several vectors at the end of the
trajectory show altitude, latitude and longitude values that are inconsistent with the progression
of the trajectory due to vectors being assigned incorrect timestamps.
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Figure 6.6: Example of delayed vectors (flight AT02523950 on July 1, 2023) after sorting the
state vectors of the trajectory. The delayed vectors have been identified and assigned a consistent
timestamp. Some vectors show an incorrect altitude value due to errors in the surveillance data.
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Figure 6.7: Representation in the map of the flight AT02523950. The state vectors are color-
coded according to their timestamp; the smooth change in color reflects the correct progression
of the timestamps.
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Trajectories should be annotated with different metadata and quality metrics to facilitate the
identification of such common problems in the trajectories, enabling the quick identification of
which trajectories can be used for a particular use case. In the following sections we describe the
set of metadata we have developed to assess the validity of the trajectories data for our purposes.

6.4 Trajectory quality metrics

In this section we define a set of data quality metrics that help to describe a trajectory following
different criteria. Table [6.1] shows the list of defined metrics for trajectory data.
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Generic
Number of records
Completeness

Cardinality

Number of state vectors associated to the trajectory
Ratio of non-null values for each attribute in the time series

Number of unique values for each categoric attribute

Flight path characterization

Geodesic/direct distance

Actual flight time

Distance in kilometers between the origin and destination airports in a
straight line; e.g. the minimum distance traveled by the aircraft.

Effective flight time in seconds defined as the difference between the actual
arrival time and the actual takeoff time reported in the flight plan. The
trajectory duration for that flight should be at least this value.

Coverage

Total duration
Total distance

Distance to origin
Distance to destination
Initial segment

Final segment

Last altitude

Difference in seconds between the timestamps of the first and last state
vectors

Accumulated distance in kilometers defined by the sequence of reported
positions

Distance in kilometers between the first vector and the departure airport
Distance in kilometers between the last vector and the destination airport
Flag indicating if the start of the trajectory is missing

Flag indicating if the end of the trajectory is missing

The last reported altitude in feet before touchdown, to help detecting miss-
ing data in the last phase of the descent.

Density
Density

Time separation

Distance separation

Number of vectors per traveled distance unit

Mean and StD of the time differences in seconds between all adjacent vec-
tors

Mean and StD of the distances between all adjacent vectors

Continuity
Gaps

Continuous segments

Low density segments

Characterize all gaps in the sequence: start and end vectors, time elapsed
in the gap, ratio between gap time and total flight time

Characterize all the segments in the sequence under continuity conditions:
start and end vectors, time elapsed, ratio between continuous time and
total flight time

Characterize all the segments in the sequence under low density conditions:
start and end vectors, time elapsed, ratio between low density time and
total flight time

Thresholds
Thresholds Values used to determine continuity and low density conditions, and the
minimum threshold for gaps.
Table 6.1: Summary of trajectory quality metrics.
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6.5 Improving trajectory quality

Some errors only become apparent in the context of a trajectory. In previous sections we have
tackled individual datum errors, such as missing values or out-of-domain values. However, even in
cases where the measurements included in a state vector are present and look feasible, they may
be inconsistent with the situation described by other state vectors in the trajectory. For example,
it is possible to find that a state vector reports an altitude of 42,000 feet (corresponding with a
feasible cruise altitude) a few minutes after it started descending to approach to the destination
airport. Obviously, an aircraft flying at 16,000 feet to approach to an airport can not be at
42,000 feet five seconds later. The same situation comes when a state vector locates the aircraft
at a coordinates it crossed several minutes ago, like doing a quick jump back in the trajectory,
and then returning to its advanced position. These and other facts are strong indicatives of a
delayed vector.

The disorder in trajectories from a time perspective is caused fundamentally by the assign-
ment of incorrect timestamps to one or more vectors in the trajectory. Thus, to carry any data
analysis that depends on time, such as working with 4D trajectories, it is a necessity that these
incorrect timestamps are identified and corrected. Since using the timestamps of the state vec-
tors is not a reliable sorting criteria, we draw upon position data to find the correct order of the
state vectors, identify which state vectors are out of their natural place, and try to fix their time
information based on their new position within the trajectory.

However, there are cases in which different errors in the data may cause these inconsistencies
in the data, even if the time information is correct. These errors are more common in position
data (for example, due to positioning errors of the GPS), and specially in altitude data. For
instance, it is common that an incorrect configuration of the aircraft’s barometer or sudden
changes of the atmospheric pressure can cause inconsistent variations in the reported barometric
altitude. These problems also should be detected and solved to enable a reliable usage of the
position data.

6.5.1 State vector sorting as an instance of the travelling salesman problem.

The Travelling Salesman Problem [49], or TSP, is a classic combinatorial optimization problem
where the shortest path that includes all the nodes in a graph has to be found, under the condition
that each node can only be included once, except for the first one. The TSP uses the analogy
of a salesman that needs to visit a set of cities, and he needs to find the shortest tour (that is,
a path that visits them all and goes back to his initial position): “Given a list of cities and the
distances between each pair of cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city?”. In this analogy, cities are the graph’s nodes, and
the distances between cities correspond with the weights of the edges between the nodes. If we
consider that all cities can be visited from any other city, the underlying graph is complete (that
is, all nodes are linked to all of the remaining nodes); and if these edges can be traveled in either
way, then the graph is also undirected.

Vector sorting based on the reported positions in aircraft trajectories can be interpreted as
an instance of the Travelling Salesman Problem (TSP), since the trajectory can be defined as
a complete, undirected, weighted graph in which there are no cycles. Let us examine these
affirmations. First, the graph is complete: there are no restrictions to travel from any point in
the airspace to any other point, since aircraft are not bound to travel through a defined pathway
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like other vehicles. Second, the edge between a particular pair of points can be weighed though
different means (being the euclidean distance in three dimensions a common choice), and the cost
of travelling in either direction is the same. Third, each state vector is unique in the sequence of
states (the same state vector is not emitted twice), so the same state can not be “visited” more
than once. These characteristics allows us to find the shortest path (that is, the correct order
of the trajectory vectors) using techniques developed to solve this problem. In the following
sections, we discuss some of these techniques.

6.5.1.1 Approaches to TSP

Since TSP is a NP-hard problem, exact methods are not feasible for long sequences and an
approximation method is required. In particular, we discuss two well known algorithms: Nearest
Neighbour, and 2-opt (an instance of the more general k-opt).

Nearest Neighbour (NN) is a greedy algorithm where an initial node is chosen, and the closest
unvisited node is iteratively visited until all nodes have been chosen once. This method has a
time complexity of O(N?), and can lead to non-optimal solutions depending on the chosen initial
node. However, it is simple to implement, and can be effective in some scenarios.

k-opt is a local search optimization heuristic that starts with an initial tour (a path travelling
across all nodes), and iteratively tries to identify a shorter tour until a local minimum is reached,
although the probability of finding the global minimum is higher than using NN. The process
starts with a random tour (albeit different heuristics can be applied to improve this initial our),
and iteratively changes k non-contiguous edges. If the length of the tour decreases as a result,
the change is applied and the iteration continues with the new tour. Once all changes have been
evaluated and the length does not decrease with any of them, then the optimal solution has
been reached. However, it is important to note that the resulting tour may not correspond with
the global optimum. 2-opt and 3-opt are the most common variants of the k-opt heuristic. The
greater the k, the higher the number of replacements that have to be calculated on each iteration,
so depending on the size of the graph higher values of k can make the task unfeasible (starting
with & = 5, the running time becomes exponential [51]). We can retake the example in Figure
and apply 2-opt to the initial trajectory (see Figure . In this case, we do not remove
any outliers. First, we define the trajectory as a graph, where the positions are the nodes of the
graph, and define the edges between them according to their initial order by their timestamps.
Then, we link the first and last nodes to create a tour, a closed path. Recall that this graph
is complete and undirected, but the edges have different weights depending on the selected cost
function. Let us use the Euclidean distance for this example.

On each iteration, we perform a 2-change: we have to choose two non-consecutive edges,
remove them, and then reconnect their nodes in a different way. If the length of the resulting
path is smaller than the previous one, the 2-change was successful. If not, the iteration continues.
Obviously, the number of combinations to evaluate on each iteration grow with the number of
nodes in the graph. In particular, for a graph with n nodes, at each iteration we can try up to
n(n — 2) changes [33]. For each candidate change, we also need to calculate the length of the
resulting path, which depends linearly of the number of nodes. Moreover, for a particular pair
of edges, there is no guarantee that any of the changes will result in any improvement. In fact,
to the best of our knowledge, the theoretical bounds of applying 2-opt is still under discussion.

In our example, we choose to remove the edges 5556 and 5gsg, and define two new edges 5558
and Sgsg. In this case, the resulting path is not shorter, so this candidate change is not applied.
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Figure 6.8: Two candidate changes of the 2-opt heuristic. The two edges in blue are replaced
with the two edges in red, and the total cost of the new path is calculated. The top change does
not improve the path’s length, while the bottom change does (since it clears a crossing of edges).

Figure 6.9: The result after a full run of the 2-opt algorithm using only the distance between
points to weigh the edges.

After several iterations, we can reach the result in Figure[6.9] However, although in this case it is
the optimal solution for this graph, this result is not guaranteed since 2-opt can fall into a local
minima, where none of the 2-changes improves the length of the tour and no further progress
can be made.

At this point, it is easy to see that applying 2-opt to aircraft trajectories can be a burden,
since each trajectory usually comprises several hundreds or thousands of positions (nodes). Thus,
we have made several adaptations to alleviate the computational cost of 2-opt for the particular
case of aircraft 4D trajectories, which are discussed in the next section.
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Figure 6.10: Flight AT02845701 on July 10, 2023. The aircraft approaches from the east and
enters the designated area for holding procedures located to the north-east of LEMD airport.
The aircraft performs one loop, and then it is cleared to attempt the landing.

6.5.1.2 The problem of loops and holding patterns

In Chapter 2] we introduced holding procedures, in which an aircraft performs an stationary
pattern near to the destination airport in wait to the controller to allow the landing operation.
These manoeuvres are always performed in designated areas near the airport. As shown in
Figure [6.10] during a holding procedure the trajectory of the aircraft crosses with itself, and it
can overlap if the manoeuvre is composed of multiple loops. However, loops can appear even in
common manoeuvres during the ascent or descent phases, for example. 2-opt is not able to solve
these situations: this heuristic naturally undoes this kind of crossings between the edges, so it
is not possible to apply the 2-opt heuristic based on distance directly on trajectories with such
patterns. In these cases, the 2-opt converts the loop into a “sac”, in which the subsequence is
reversed between the points with crossing edges, as shown in Figure [6.11| with the arrows in red.
Other approaches, like Nearest Neighbours (designated in the figure as NV, Nearest Vectors),
can find some trouble at finding the next vector. While the next vector is often the closest one,
this is not always true, specially in a loop. In the figure, the state vector s7 is closer to so than
s3 (which is the correct state vector) or even sg (which is the state vector indicated by 2-opt). In
fact, if sg was closer than s3 to s7, the state vectors in the loop would be completely ignored until
the rest of the trajectory has been processed (since NN looks for the closest unvisited node).

Several approaches can be applied here. The first one is taking no action — if a loop or a
holding pattern is detected, the segment of the trajectory containing the loop is kept in the
initial order. Another option would be applying 2-opt on segments of the trajectory so the cross
is never included in any of these segments. In this way, 2-opt can process the positions in the
loop without having to resolve the crossing edges. However, the number of positions and the
characteristics of the loops vary from trajectory to trajectory, and it is difficult to automatize
the construction of suitable segments for every trajectory, since multiple factors can affect it
(coverage losses, delayed vectors, etc). Using small segment sizes could avoid such problems,
but working with such segments can make the locality of the process excessive, and make the
process ineffective. Another approach is including the altitude in the distance calculation, so
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Figure 6.11: Example of a simple loop. The methods based on distance (Nearest vector and
2-opt) fail to follow the correct path.

the apparent low distance in 2D between the points with crossing edges become more prominent
thanks to the vertical distance between these points. However, in our experience this approach
has not been effective: we have found that the altitude values in the state vectors is subject to
artifacts and missing values, particularly near the airport, which hinders the calculation of the
distances, and therefore of the length of the path. Moreover, the differences in altitude are very
small (in the order of tens or hundreds of feet), and have little impact in comparison with the
vertical distances between those positions.

Based on our observations, we have developed several heuristics to tackle these situations,
albeit there are still some challenging scenarios (such as holding procedures with multiple loops),
which we detect and left without sorting. In the following, we discuss these heuristics.

1. Identify the presence of a loop (whether simple or multiple) by evaluating the accumu-
lated rotation of the plane in areas where such manoeuvres are more probable; i.e. the
manoeuvreing segment near the airport.

2. Implement a cost function, instead of a distance function, that accounts for the inertia of
the movement so any candidate “next position” other than the correct position has a larger
weight.

3. Parametrize our efficient 2-opt implementation to adapt to these patterns.

6.5.1.3 Cost functions

To assign weights to the edges between nodes, a cost function is required. An intuitive option are
distance functions, such as the Euclidean distance or a great circle distance such as the haversine
distance. However, these functions may behave badly in some situations and alternative methods
could be needed. Let us analyse the application of these techniques to flight trajectories.

Distance functions. The distance functions give a measure of the distance between two points
based on their coordinates in a particular space. The nature of aircraft 4D trajectories suggest
using either the Euclidean or the great cicle distances. The Euclidean distance between two
points is the length of the segment between the two points. The great circle distance, on the
contrary, indicates the length of the arc between two points on the surface of a sphere. Both can
be applied to measure the distances between two positions of an aircraft, although the use of
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Euclidean distance is discouraged if the points are very far apart. The aircraft’s movement takes
place in a spherical shell with a depth of, at most, 42,000 feet (around 14 kilometers) above the
surface of the Earth, with an inner radius of 6,378 kilometers. This means that the movement
between two positions is not linear, but follows the spherical surface of the earth at a particular
distance (the flight altitude). Hence, the haversine formula is more accurate at measuring the
distances traveled by an aircraft. However, if the distance between the two points is small, the
Earth radius is large enough to approximate the Earth surface (the portion that is traveled above
during the movement) to a plane, and these distances are rather interchangeable (at least for
our purposes). The difference become more noticeable as the two points are farther, in which
case the haversine formula would be preferred. This problem is exacerbated by the fact that the
Earth is more like an ellipsoid, and the movement is not equal in all directions. In fact, the error
of the Euclidean distance is bigger in the latitude than in longitude. Given the geographical
scope of our study, which implies the study of long trajectories in long distances, we opted for
using the haversine formula to determine the distances between positions.

Another aspect to discuss is whether to use two (latitude and longitude) or three dimensions
(latitude, longitude and altitude) to describe the points. If the altitude is not considered, the
measured distance would not be between two points, but between a projection of those two points
in 2D, which would be always lower or equal. Again, for points that are close the difference would
be negligible, and grow with the altitude difference between the points. However, the altitude
difference will always be much lower than the difference in the other two dimensions (since
the ascending and descent should be smooth); thus, the impact of the third dimension in the
distance is reduced in the Euclidean distance. In the haversine distance, the altitude would have
to be added to the radius of the sphere, and its value is negligible with respect to the Earth
radius. Moreover, we have found that altitude is frequently not available in all vectors in the
trajectory, which would difficult the calculation of distances. Therefore, we decided to use only
two dimensions, as it is precise enough for our purpose.

In conclusion, the formula we use to calculate distances is shown in Equation [6.1] where
(¢1, A1), (P2, A2) are the coordinates (in radians) of the two points, and R the average radius of
the Earth (6378 kilometers or 3959 miles).

2 2
hav((¢1, A1), (P2, A2)) = 2R arcsin \/sin <¢2;¢1> + cos(¢1) cos(¢2) sin <)\2;)\1> (6.1)

Since the 2D position coordinates in our data is expressed in degrees, these can be easily
converted into coordinates in radians as:

(¢, ) = (mx/180, 7wy /180) (6.2)

Cost functions. However, the previous solutions only take into account the initial and final
positions, without accounting the role of the “inertia” of the aircraft movement. Let us suppose
that an aircraft is moving over a plane and is at the point s1(0,0); let sy and s3 two points,
(5,0) and (0,5), and the movement vector of the aircraft is v = (1,0) (as shown in Figure [6.12).
Would the cost of arriving to s3 be equal to the cost of reaching s3, even if they are at the same
distance from s1?7 The answer is no: the aircraft can not perform sudden 90 degrees turns, and
the traveled distance to arrive to s3 would be larger (as it would need to make an arc) instead of
travel straight to ss. In fact, the distance difference would depend on the speed of the aircraft:
the higher this speed, the larger the radius of the circle needed to turn. Therefore, the path
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5152 is more likely than the path s7s3 according to its initial direction, since it requires a lower
traveled distance.

Figure 6.12: The path of an aircraft to a point depends on the speed and the direction. To
reach the point C, the aircraft should perform a turn since it can not change its initial direction
instantly. On the contrary, it can reach the point B by following a straight line.

This kind of movement can be modelled mathematically, but it is far from trivial (an example
of these methods are Dubins path{l) and would require to know the turn rate of the aircraft (to
calculate the maximum curvature of the trajectory), which depends on the aircraft model, among
other factors. Hence, we have developed a simple method to penalize excessive turns in favour
of more straight movements, where the cost is defined as the distance between the two positions,
penalized by the multiplication of an exponential factor dependant on the angle between their
respective directions. In this way, equal directions receive no penalties, and the penalty increases

Cost(vi,v2) = hav(vy,v2) - exp (a/2) (6.3)

Where « is the angle in degrees between the vectors v; and wvs.

We have explored two ways of introducing the direction in the cost calculation. The first one
requires that we define the two vectors that join the current vector with the previous and the
next vectors, with the same direction as the aircraft movement, and calculate the angle between
them. The second one uses the difference between the true track (that is, the bearing of the
aircraft with respect to the north) values of two vectors. In both cases, larger angles would be
penalized since aircraft tend to make slight to no turns during most of the flight, and sudden
and significative changes in heading are not likely to occur. We can see an example of these
techniques in Figure [6.13] Let us take a segment of a trajectory described by four state vectors.
The vectors s1 and so are correctly sorted, but we need to attend to the direction of the aircraft
to determine whether the next state vector is the s3 or the s4. To this end, we evaluate the
coherence of the current direction with the direction required to reach each of the two candidate
vectors.

1A Dubins path is the shortest curve between two points with a constraint on the maximum curvature, given
an initial direction.

Jorge Silvestre Vilches 119



Chapter 6. Trajectory processing

tracks

a. Trajectory description b. Angle difference c. Angle difference
between segments between tracks

Figure 6.13: Example of failure of distance functions. The state s4 is closer to s5 than s3, although
their directions are inconsistent (left diagram). We can calculate the difference between the
directions using the angles between the vectors connecting the positions (center), or the bearing
in the state vectors for each position (right). The difference between o and (3 is larger in the
second case.

With the first method, we define the vectors ss9s3 and s3s4, and calculate their angles with
the vector s1s5. We can calculate the angle between two vectors vy, vy as:

Q= arccos ( ke ) (6.4)

[v1]|va

For the second method, we leverage the feature that describe the bearing of the aircraft in
each state vector (true_ track). Thus, the angle between the movement direction of two positions
is:

a = bearings, — bearings, (6.5)

The two methods allows us to characterize the magnitude of the change in the direction of
the aircraft between two positions. On the one hand, the method based on the bearing relies on
the availability of its value, although it is mostly guaranteed to be defined in all state vectors. On
the other hand, the calculation of the angle between vectors is computationally more expensive,
and does not describe the actual direction of the aircraft at that position, as seen in the Figure
In consequence, we choose to use the bearing-based method.

6.5.2 Sorting algorithm

While ordering vectors in a trajectory is similar to TSP, these data have some characteristics
that can be used in our favour to improve the probability of finding a better result, or reduce
the computational cost of 2-opt by tweaking the initial tour. In the following, we discuss these
characteristics, and how they can be leveraged to order our trajectories.
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6.5.2.1 Flight segments

The trajectories can be divided in segments to improve the performance and computational cost
of the sorting using our efficient 2-opt implementation. This division is related to the flight phases
and airspace division described in Chapter [2] since these aspects determine the characteristics
of the flight and its statuses along the trajectory. We can leverage these characteristics to apply
several heuristics and tune the parameters ¢t and ¢ that regulate the 2-opt algorithm.

Airport area

Ascent phase

Cruise phase

Figure 6.14: Segments identified in the flight.

In particular, we have defined four segments, defined by the following characteristics:

Ascent phase. During this phase, the aircraft moves steadily away from the departure airport,
while gradually ascending until it reaches the cruise altitude. The direction in which the aircraft
moves is determined by the runway used for take-off and the SID indicated by the control tower.
This phase includes the manoeuvres to direct the aircraft towards destination airport, such as
travelling around the airport TMA to avoid interference with other departing or arriving air
traffic.

Cruise phase. After reaching the cruise altitude and speed, the aircraft moves towards the
destination airport until it arrives at its TMA. In general, this movement has constant speed
and direction, unless required by the planned route (for instance, moving around high obstacles
or keeping close to the coast line). The aircraft gets closer to its destination with time, so the
distance to destination is a reliable measure to leverage during the vector sorting.

Manoeuvreing phase. The manoeuvreing phase is the most complex for vector sorting. It takes
place in the TMA of the airport, and may include approach manoeuvres, holding procedures,
or even go-arounds (missed approaches). During this segment, the aircraft adopts different
directions, altitudes and speeds. It also becomes more difficult to monitor the aircraft state,
since more ADS-B messages are lost by network saturation due to the high traffic density in the
area.

Approach phase. Once the pilot has been cleared to approach and attempt the landing oper-
ation, the aircraft leaves the manoeuvres area and heads towards the designated runway. This
phase extends until the aircraft land at the runway and the flight ends.

Taxiing phase. A fifth segment can be defined with the parts of the trajectory that take place
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on the ground; i.e., the movement of the aircraft on the ground, from the terminal to the runway
at the departure airport prior to takeoff, and from the runway to the terminal at the destination
airport after landing. In these parts of the trajectory, the speed of the aircraft is low, and
the state vectors are very densely distributed. However, these segments are not present in all
trajectories, since it is common that there is no ADS-B data at the airport or close to it due to
saturation or other factors.

These segments are aligned with the flight phases, and are determined by the different areas
defined for organizing the airspace (TMA, en-route, etc.). In previous works the state of the
flight has been used to determine these phases, either by the application of rules [107] or machine
learning [108|. A different approach is using spatial operations to determine the area in which the
flight is based on the specifications of the airspace. However, in this project the flight segment
identification is used as a pre-processing operation and thus a more coarse approach is enough to
fulfil our purposes. In particular, we divide the trajectories into the following segments based on
the distance to the origin and destination airports of each position, according to the heuristics
below:

e The taxiing segments are constructed with all vectors that are close to any of the two
airports (a distance of <5 NM with respect to a point of reference in the airport), and were
emitted on the ground. These segments remain unchanged, as they are not relevant to our
objectives; however, they are preserved in the final trajectory for completeness.

e The approach or airport segment is defined at the destination airport, before the aircraft
lands and after exiting the manoeuvreing area, as all vectors in the air that are close
enough to the airport. We set this threshold at 30 NM, since within this area there are no
manoeuvres beyond the required by taking-off and landing operations, by aircraft that are
already committed to these operations.

e The ascent and manoeuvreing segments are identified based on the approximate size of their
respective TMA. Since a TMA is defined by a bounded volume of the airspace, the distance
to the airport at which the area starts is variable with the direction in which it is left or
approached, and the SID or STAR used to leave or arrive to or from that area. However,
for our application of 2-opt we define a generic distance to an airport to approximately
characterize the true TMA of the airport. We have set this threshold distance at 110 NM
for all airports, since we have observed it to be adequate for LEMD airport.

e The cruise segment corresponds to the intermediate segment between the identified ascent
and manoeuvreing segments.

In the following steps of the sorting algorithm, we can leverage these segments to apply specific
operations and configurations to each in order to improve the performance of the process.

6.5.2.2 Efficient implementation of 2-opt

Since the application of 2-opt on complete trajectories can become a burden computationally,
we can approach it by dividing the process into smaller tasks. To this end, we can decompose
the trajectory into subsequences, and perform the 2-opt heuristic on each of them. Hence,
the number of nodes is reduced in each iteration, and the number of combinations is reduced
drastically.
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The trajectory is decomposed into smaller sequences using a sliding window of size t, which
defines the number of positions (nodes) included in each sequence, and an overlapping factor
q, which indicates the number of nodes in common between two adjacent windows. Thus, a

trajectory with n nodes is effectively decomposed into s sequences, where s = HT_‘;J + 1. Then,

2-opt is successively applied to these sequences to find the shortest tour in each. Note that nodes
belonging to two or more windows (depending on the values of ¢ and ¢) can change position
multiple times as part of the corresponding windows, with the order defined by the last window
to which they belong prevailing over the previous orders.

The parameters ¢t and g can be set attending to different factors. On the one hand, a high
value of ¢ implies a larger number of nodes to sort in each subsequence; however, a low value can
lead into an excessive locality of the process and lead into incorrect results. On the other hand,
a high value of ¢ introduces more redundancy (since more nodes are taken into consideration
in more iterations), but a low value reduces the dependency between adjacent windows. In
practice, the order of the overlapping vectors remain unmodified (since they were already sorted
in the previous window), and the rest of the elements in the window are sorted accordingly. The
configuration of parameters can be changed for each trajectory, or even for different segments
within the same trajectory, as explained in the next section.

There are some further considerations to make when setting their values, which also are
attended in the following sections. Firstly, the initial order of the elements in the trajectory is
not trivial, particularly when they are sorted by timestamp. In this case, delayed vectors may
fall outside their corresponding window if their assigned timestamp is sufficiently later than their
emission timestamp. Since the windows are processed sequentially, they may never be able to “go
back” in the sequence, resulting in an incorrect order. This situation can be resolved by either
setting a sufficiently large value of ¢ (which increases the computational cost); randomising the
order in which the windows are processed and performing multiple passes; or using a different
sorting criterion to define the initial order of the sequence. In the next section we propose a set
of heuristics for defining a good initial order at a low computational cost.

Secondly, the 2-opt heuristic can not handle the presence of (correct) loops in trajectories.
2-opt replaces the edges forming a cross in order to reduce the total length of the path, and is
unaware of whether the crossing makes sense in the trajectory or not. It is not frequent that a
trajectory crosses with itself, but not impossible — specially when the aircraft have to make a
holding procedure, or have to adjust their approach to an airport. This topic is discussed further
in a later section.

6.5.2.3 Heuristics based on the distance to the airport

We can leverage the characteristics of the flight during each of the identified segments to apply
several heuristics to help defining a better starting point for the sorting algorithm. These heuris-
tics use the position reported in the state vectors to sort them independently of their timestamp.
We have stated in previous chapters that the assigned timestamp is not always reliable due to
delays in the reception process, among other causes. Thus, the ordering by time may not coin-
cide with the correct order, and an alternative approach needs to be applied. The position is
also subject to errors, such as an incorrect GPS positioning, but errors in are much less likely to
happen. Moreover, errors in position are more likely to be identified and processed accordingly
(either by solving them, or by excluding the anomalous points from the data).

These heuristics help our 2-opt implementation in two ways. First, these heuristics allows
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to reallocate many vectors with an incorrect order in a more lightweight manner than 2-opt,
thus reducing the total number of changes that have to be evaluated during 2-opt. Second,
out 2-opt implementation depends on the chosen window size. To reallocate a state vector into
their correct position, both the vector and the correct position has to be “present” in the same
window. Thus, if the state vector falls outside all of the windows containing the position, it may
not be reallocated successfully (in general, it would be moved to the first positions of the first
window containing the state vector). This situation would require to use larger window sizes,
which implies significantly longer processing times. By using these heuristics, many of these
state vectors are moved in the sequence closer to their appropriate spot.
The pre-sorting heuristics are applied in sequence as follows:

e First, the vectors in the taxiing phase are excluded from the sorting process.

e The manoeuvring segment at the origin airport can be sorted either by timestamp, or using
the Nearest Vector heuristic. The state vectors in this phase are less likely to be out of
their order from a time perspective, since there can not be delayed vectors from a previous
segment of the trajectory. Also, the NV method is effective for simple paths like the ascent
manoeuvres in case they are disordered.

e The cruise phase often consists on a simple, straight-line path, so the Nearest Vector can
also be applied on this segment. A more lightweight approach is sorting the vectors ascend-
ing or descending by their distance to the departure or destination airport, respectively.

e Within the TMA, including the manoeuvring and approach segments, Nearest Vectors
can be used if there are no loops in the trajectory. As discussed before, these patterns
potentially break both Nearest Vectors and 2-opt approaches. Otherwise, the Nearest
Vector method is robust enough to pre-sort these segments.

Applying these heuristics reduces the workload of the application of 2-opt, which is responsible
of dealing with the most difficult positions and solving any error caused or not tackled by the
previous methods. They also allows 2-opt to work with more performant parameters, such as
smaller windows and a lower degree of overlapping between consecutive windows.

6.5.2.4 Nearest vector

In Section [6.5.1.1] we have introduced the Nearest Neighbour as an approach to solve the TSP.
This method leverages the similarity between elements with different purposes; e.g. classification
of elements, sorting, etc. The similarity of two elements is given by a distance function in a
particular vector space, under the assumption that the more similar are two elements, the lower
is the distance that separates them. In TSP, the Nearest Neighbours approach tries to determine
the shortest tour by iteratively visiting the closest unvisited node in the graph, starting with
one node (either random or chosen by a different initialization strategy). In the case of 4D
trajectories, the “next vector” for each state vector would be the closest position that has not
been visited yet. In this project, we call this method as the Nearest Vector method.

The Nearest Vector approach (like any Nearest Neighbour method) relies on a distance func-
tion. For calculating distances between 2D /3D positions, the Euclidean distance is a common
choice. However, as discussed in Section this distance function may not be suitable for
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Figure 6.15: Different initial points chosen for initializing the Nearest Vector algorithm. Each of
them generates different paths, with the path in green being the only correct one.

4D trajectories in some scenarios. In this case, the cost function explained in that section can
be used when necessary as the distance function in NV.

The Nearest Vector approach still has three shortcomings. Firstly, it is vulnerable to the
presence of loops in the trajectory, as explained in Section [6.5.1.2] Even trajectories that do
not intersect with themselves can be problematic, such as those involving very closed sacs.
These problems are more frequent in trajectories with low continuity, with gaps in parts of
the trajectory describing turning manoeuvres. Secondly, its complexity is O(n?), since each
iteration requires the calculation of the distance to all unvisited elements. Therefore, processing
long sequences could also be problematic. Thirdly, Nearest Neighbours methods are dependant of
their initialization; that is, the initial conditions (e.g. the state vector chosen as the first vector)
determine the output of the algorithm, which may not correspond with the optimal solution. NV
is not different: depending on the first vector of the trajectory, the result can change drastically.
Specially since the distribution of the positions in the vector space is linear-like, in contrast with
more homogeneous distributions in other problems such as element classification. For instance,
choosing an intermediate position during the cruising phase could result in the trajectory being
traveled backwards from that point.

Several strategies can be adopted to optimize the initialization of the algorithm, although we
have explored two. First, choose as the starting point the state vector with the earliest timestamp
(whether in the trajectory, or in the considered segment). This strategy is safe at the start of
the trajectory, since there can not be delayed vectors prior to the starting of the trajectory, and
any delayed vector in that segment would have a later timestamp. However, it may become
problematic when processing intermediate vectors in the trajectory, which could result in a
similar situation to that described above. NV can also benefit from using overlapping windows
like 2-opt, particularly for setting up a good starting point for each window with several vectors
already sorted in the previous window. For intermediate segments (specially during the cruising
phase), we evaluated using the position instead and choose the closest or farthest position to
the departure and destination airports, respectively. Either method (lowest timestamp or lowest
distance) have been found to be effective, since we have not found them to introduce errors in
the processed trajectories.
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6.5.2.5 Loop and holdings detection

Assuming continuity of the trajectory within the manoeuvres area, the total rotation performed
by the aircraft with respect to its entry direction is a reliable indicator of the presence of a loop.
Generally, aircraft enter this area via an appropriate route to land on a designated runway, in
accordance with the current runway configuration. Thus, the path they follow is straightforward,
requiring only slight turns to align with the runway entry point. However, loops (that is, paths
that intersect with themselves) and holdings require larger turns, exceeding the 360 degrees.
In some scenarios, an aircraft may turn left and then right, or vice versa, thus reducing the
accumulated turn in the manoeuvre area. To account for these cases, the maximum accumulated
turn is calculated instead of the accumulated turn at the exit of the manoeuvre area.

As with the directional factor explained in Section[6.5] either the track variation or the angles
between subsequent positions can be used for this purpose. However, since trajectories are more
likely to be affected by delayed vectors in the areas surrounding the airport, the latter method
is less reliable. Therefore, we calculate the changes in the bearing of the aircraft to determine
the maximum accumulated turn in either direction. If the total turn exceeds 360°, there is
a loop in the trajectory. While we can determine the number of loops, we can not currently
identify whether this loop is due to a holding procedure, or a simple manoeuvre, because these
trajectories are excluded from our study in later chapters. However, a more precise analysis
could be conducted based on pattern recognition and where the loops are located (since holding
manoeuvres are made in predetermined places within the TMA).

6.5.2.6 Further considerations

During the data cleaning applied in previous steps, we removed all state vectors with duplicate
positions and position update timestamp for each ICAO24 in the dataset. However, we have
found that some vectors with repeated positions are still present at this point of the data pro-
cessing, possibly due to message duplication: the same ADS-B message that reports the position
is captured by different sensors and receives different timestamps, and can arrive to OpenSky
servers at different times. Then, these copies are then used by OpenSky to construct multiple
state vectors with different time information, but the same position. Since we consider dupli-
cated positions as redundant data to reconstruct the 4D trajectories, we apply a further clean up
of vectors with repeated positions independently of their timestamp. These state vectors should
not interact with the sorting algorithms, since they are at a distance 0 between them and do not
influence the total traveled distance, but they could be problematic for timestamp and altitude
inferences.

6.5.3 Reordered vector identification

Detecting whether or not an element has been moved is not trivial. Let there be a sequence X =
{«]},i,j € [1,6] an ordered sequence of five elements, where i is the initial index of the element,
and j is the current index of that element. The moved elements will be underlined. Let us
suppose that the element x4 is moved back into the second position: X’ = {z}, 2% 23, x%, x?, xg}.
Note that the index of the elements between the original position and the new position of x4
has changed, albeit those elements have not been moved. If, on the contrary, the element xo is

moved forward up to the index 4, the sequence results as follows: X’ = {z}, 23, 23, 23, x2, 28}.

Again, not only the index of the moved element has changed, but also the indices of all elements
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between the initial and final positions. Moreover, if the vector is moved to an adjacent position,
like z4 to position 3, the result is as follows: X' = {xi, 23,23, 23,23, 28}. Looking at the
sequence, it is not obvious to tell whether x3 or x4 has been moved. This situation is common
when a single vector is delayed and appears later than its next state vector. After each of these
operations, the position of several elements in the sequence changed, although only one element
was moved each time. If we move backwards two elements, s4 and sg to positions 3 and 2,
respectively: X’ = {1, x%, x3, x5, 3, :L‘g}, all intermediate elements have their position modified,
and the discrepancy between their original position and their new index is two. We can move
one element forward and other element backwards; e.g. swap the position of elements xo and 4.

Based on these examples, we can identify two situations when a single vector is moved:

e The vector is moved forward: when a vector is moved forward, the next vectors in the
sequence decreases their indices by 1 until the moved element is found in the sequence.

e The vector is moved backwards: when a vector is moved backwards, the vectors between
the new index and the original index increases their indices by 1.

Based on these observations, we have to check the elements in the sequence and keep track of
the state vectors that are found outside of their initial position. In this way, we can distinguish
between elements that have been effectively moved, and elements whose index has changed due
to another element being moved. We define the following rules:

e Each element has two indices, p and ¢ that indicate the initial and final positions of the
element in the sequence, respectively. The index p is used to identify the element, and the
index ¢ is used to check whether the element has been moved or not.

o We follow the sequence after being reordered.

e Let F and M be the sets of found and missing elements, respectively. Found elements are
those moved backwards in the sequence; that is, they are found before arriving at their
initial position. Missing elements are those moved forward in the sequence; thus, they are
not at their initial position when we reach there. These sets are initially empty, and should
be empty after the iteration ends.

Let xi be the j-th element in the sequence after being reordered, and the i-th element in the
initial sequence. Let f and m be the cardinality of F' and M sets (the number of elements found
or missing before processing the element xz in the position 4, respectively). Let us evaluate the
possible scenarios:

o If f =m =0, there are no state vectors out of position that have been detected or missing
up to the position j, and the indices ¢ and j coincide.

o If f =0 and m > 0, there are m state vectors that have not been found at their position.
In those positions, the index i is increased in m, while j is not. If a state vector has not
been moved, then its indices should verify that j =i — m.

o If f >0 and m = 0, then f elements have been found whose initial index 7 is higher than
it should be. If 2] has not been moved, then j — f = .
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e Finally, if f > 0 and m > 0, there are missing state vectors pending of being found, and
state vectors found before their initial position. Any other state vector that has not been
moved should verify that j — f =7 — m.

e If a state vector does not validate these expressions, then the state vector in the initial
position i is a reordered vector.

At the start of each iteration, we update the F' and M sets. If i € M, we have found a
missing element and it is removed from that set. For found vectors it is a bit more complex: to
remove a position from F', we must find that j + m — f € F to indicate that we have reached
the position of an element that we found before. If we have already found f elements before
in the sequence, the position of that element is displaced f positions ahead; on the contrary, if
m elements were missing, the position of that element is advanced in m positions. We can also
remove all subsequent positions (j + 1,7 + 2, ...,4 — 1) that are present in F' until i — 1. When
one of these positions is not in F', we stop removing positions from that set. In this way, we can
reduce the total iterations of the algorithm. Then, the expression j — f = i — m is evaluated to
determine the type of the element under analysis:

e If the equality holds, then the element is correct: it is not either a moved vector, a found
vector, or a missing vector.

e lfi—m<j—f=i<j— f+ m, the element i is a missing element, and the element j
has been moved. The element ¢ is added to M.

e Ifi—m>j—f=1i>j— f+m, the element 7 is a found element, and the element j has
been moved. The element ¢ is added to F'.

Once the sequence has been exhausted, the sets F and M are empty, and the state vectors
that were moved have been flagged accordingly to enable the posterior operations on reordered
vectors; i.e. find a valid timestamp to replace the original timestamp that was found incorrect.

6.5.4 Timestamp calculation

Once the vectors with incorrect timestamps have been identified and corrected, we need to de-
termine new time marks for them to be used as time series. Since the recovery of the original
timestamp is not possible, we can calculate an estimation of that timestamp based on the times-
tamps of the adjacent state vectors that have not been moved. The new timestamp is calculated
as follows:

dii—1

’
==
i+1,0—1

(tit1 —ti1) (6.6)
where d,, , is the Euclidean distance between the state vectors s, and s,. Thus, the time difference
with the previous state vector is proportional to the traveled distance with respect to the previous
state vector.

A different approach would be using the speed indicated in the previous state vector to
calculate the time it would take the aircraft to travel that distance. However, this approach
would require additional validation since we have found this attribute to suffer from some noise,
and it introduced some anomalies in our tests.
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6.5.5 Outlier detection and attribution

Many of the dimensions described in the state vectors progress gradually, and their values are
similar in vectors that are close to each other. Thus, it can be assumed that, provided the
absence of gaps in the trajectory, the values that introduce significative changes in the sequence
are incorrect.

Different methods can be applied to identify and solve such cases. Median filters are common
for these kind of sequences given their simplicity and lightweight computation. Median filters
consist on calculating the median of a window of elements around a given element to determine
if its value is consistent with those found in the window; that is, if the central value is close
enough to the median value of the window. The threshold of the likelihood can be set either
statically (fixed or proportional threshold values) or dynamically (training the filters on example
sequences). Median filters are more robust to extreme values than mean filters (or moving
averages), which makes them more appropriate for finding anomalies in a sequence. We have
evaluated this approach with the altitude, which we have found to be more prone to errors such
as extreme values than other attributes.

Generally, these methods require to know several elements in advance in the sequence, al-
though they can be implemented so the considered element is located at the end of the window
instead of its centre if we consider an implementation where future elements are unknown. Then,
the element is compared with the mean/median of the previous elements, and not the elements
surrounding that element in both directions. More complex approaches implement statistic auto-
regressive methods or machine learning to predict appropriate values to compare with the real
element. Some examples of these techniques are ARIMA, DeepAR or LSTM, which learn the
patterns of the sequence to predict one or more elements based on a window of past elements.

6.5.5.1 Altitude calculation

Once the state vectors in the trajectory have been reordered, we face two problems that can be
present in the reported values for the altitude. Firstly, the altitude can be null, specially when
the aircraft is on the ground at the start or at the end of the flight. However, we have found
state vectors without an altitude value at any point in the trajectory. Secondly, the altitude
can be erroneously reported and provide a value that is inconsistent with the surrounding state
vectors. This situation is frequent in delayed vectors, specially during the descent of the aircraft,
since the reported altitude corresponds with the altitude of several seconds or minutes before.
However, some incorrect values are still present even after sorting the state vectors according to
their reported position.

We tackle these problems in two phases. In the first place, state vectors without an altitude
value and indicating that the aircraft is on the ground are assigned the altitude in feet of the
airport in which the aircraft is located. The state vectors with no altitude values during the flight
are flagged to be corrected later on. In the second place, inconsistent values are detected using
the aforementioned median filter. To ensure the correct calculation of the median, null values are
replaced by a linearly interpolated value just for this purpose. Each altitude value is compared
with the value provided by the median filter, and if the difference exceeds a particular threshold
(arbitrarily set at 100 feet), the state vector is flagged as incorrect. Finally, the altitude of all
flagged state vectors is replaced by a linearly interpolated value, in a similar fashion that was
done for the timestamps. We measure the altitude variation between the previous and posterior
state vectors, and assign the intermediate incorrect state vector a value proportional to the time
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elapsed since the previous vector, according to the expression below::

ti —ti—1
h; =

= 7L (it — hisa) (6.7)
tit1 —ti—1

Again, the vertical rate attribute included in the state vectors could be helpful to estimate
the altitude. However, the vertical rate is applied a rounding to 25 feet that influences the quality
of this estimation. Thus, we opted for this more simple approach instead.

6.5.5.2 Position outliers

A similar approach can be applied for other attributes that are characterized by smooth changes
in their values. However, in some cases we may prefer to remove the state vector altogether if we
deem that it has incorrect data in critical attributes. In our case, the 2D position is vulnerable
to GPS errors that locate the aircraft a large distance away from the rest of the trajectory. Such
cases are easy to identify, but solving them by assigning an artificial value is not trivial. We could
interpolate a feasible value, but the dependence between position and time makes this calculation
a bit tricky. The timestamp can be incorrect, as shown in previous sections, and may be of no
help to estimate the position. The middle point between the previous and the posterior state
vectors could be used as the new , but this could bring some inconsistency into the evolution
of the timestamp and other derived attributes (such as speed). Therefore, it is safer to flag the
state vector as an outlier, and remove it later depending on the use case.

The detection of position outliers is performed using thresholds. Once the trajectory has
been reordered, we calculate the average speed required to travel from each position to the next
position. The speed is calculated as the traveled distance divided by the elapsed time between
those two points:
distance(s1, s2)

la —t1

speedqpg = (6.8)

If speedqyq exceeds an arbitrary threshold of 0.5 kilometers per hour (which is high for a
commercial flight), the state vector is flagged as an outlier, since it is impossible that it could
have traveled that distance in the elapsed time. However, this is only applied if the elapsed time
is less than 60 seconds to avoid problems derived of gaps associated with delayed vectors.

6.6 Experiments

In this section, we will evaluate the methodology using the dataset defined in the Chapter [f
This dataset is described quantitatively in Table which shows the daily aggregated values.
Appendix [B] provide a more in-depth analysis with data aggregated by route A sample of 6,456
flights has been selected to fulfill the requirements of our case study, i.e. all flights between a set
of eight major European airports between 3rd and 16th July 2023. All 442 million state vectors
extracted from OpenSky after the data cleaning are potential candidates to belong to one of
the identified flights. While we can easily filter the complete dataset to find the relevant flights
based on their origin and destination airports, the state vectors can only be selected based on
their date. Therefore, we must consider all state vectors generated during the duration of each
trajectory as potential candidates for that particular trajectory. The results of the process are
discussed in the next section.
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Date

Flights

Vectors

2023-07-10 499 30,517,151
2023-07-03 471 32,536,121 2023-07-11 458 29,412,851
2023-07-04 466 32,395,989 2023-07-12 492 29,157,569
2023-07-05 427 31,820,693 2023-07-13 503 30,651,364
2023-07-06 503 33,194,943 2023-07-14 487 29,988,333
2023-07-07 369 34,333,216 2023-07-15 394 29,906,144
2023-07-08 434 33,486,486 2023-07-16 476 30,637,029
2023-07-09 477 33,989,692 Total 6,456 442,027,581

Table 6.2: Number of records available in our dataset. The number of flights corresponds with
the flights described in Network Manager for the considered airports and period (July 3-16,
2023). The number of vectors corresponds with the all the data captured from OpenSky.

6.6.1 Integration results

The aggregated results of the integration between flights extracted from Network Manager and
surveillance data generated by OpenSky are shown in Table [6.3] The columns reflect two phases
in the process: the column named Joined indicates how many records were successfully matched
based on the criteria defined in Section [6.2.3} the ICAO-24 code of a state vector coincides with
the ICAO-24 code of a flight, and its timestamp is within the time period defined by the flight
plan in which the flight actually took place. Thus, the number of joined flights indicates how
many flights matched at least one state vector, and the number of joined vectors shows how many
vectors were assigned to a flight. However, some of the flights populated in this way are invalid;
e.g. the amount of vectors that were assigned to it was too low, so those flights are removed
later. We have set this threshold at 200 state vectors to ensure dense enough trajectories. The
vectors assigned to those flights are consequently removed. The columns called Final indicate
the number of records after this cleaning step.

First, we review the effectiveness of the process regarding flights. The success rate is between
97.5% and 99.4% for most of the considered days, which demonstrate that OpenSky provides
a notable coverage for all flights in European airspace. Recall that a relevant amount of state
vectors were already removed due to repeated positions derived from the processing by OpenSky;,
so the (>200) vectors assigned to these flights should all be relevant and informative. However,
the degree in which trajectories are complete can not be observed in these results; we rely on
the trajectory quality metrics for that purpose. The percentages of the state vectors may seem
low in comparison, ranging between 1.05% and 1.5%. However, we are considering all the state
vectors extracted from OpenSky, since state vectors can not be segregated like the flight plans.
Moreover, we are only working with a selection of routes, which is why so few vectors actually
match a flight in our dataset.

6.6.2 Reordering results

In this section, we delve into the reordering of state vectors within the defined trajectories. Ta-
ble shows several values to assess the operations applied on the data: the number of sorted
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Flights Vectors
Date Joined Final Joined Final

1.43%
1.40%
1.34%
1.42%

2023-07-03 465 464 (98.5%
2023-07-04 456 455 (97.6%
2023-07-05 419 419 (98.1%
2023-07-06 485 485 (96.4%
2023-07-07 362 362 (98.1% 361,491 361,491 (1.05%
2023-07-08 427 427 (98.4% 449,854 449,854 (1.34%

(98.5%) 466,948 466,795 (
(97.6%) (
(98.1%) (
(96.4%) (
(98.1%) (
(98.4%) (
2023-07-09 470 470 (98.5%) 483,470 483,470 (1.42%
(99.4%) (
(98.9%) (
(98.8%) (
(99.4%) (
(98.8%) (
(98.5%) (
(99.4%) (

453,821 453,801
425,487 425,487
470,100 470,100

2023-07-10 496 496 (99.4% 458,467 458,467 (1.50%
2023-07-11 453 453 (98.9% 408,497 408,497 (1.39%
2023-07-12 486 486 (98.8% 426,309 426,309
2023-07-13 500 500 (99.4% 452,550 452,550
2023-07-14 481 481 (98.8% 433,302 433,302
2023-07-15 388 388 (98.5% 385,312 385,312
2023-07-16 473 473 (99.4% 439,274 439,274

1.46%
1.48%
1.44%
1.29%
1.43%

N N N N N N N N N

Total 6361 6359 6,114,882 6,114,709

Table 6.3: Results of the integration between state vectors and flight plans, aggregated daily.
A majority of the flights in our dataset have at least one state vector. However, the sample of
flights only accounts for a small portion of the OpenSky data.

vectors, the incidence of loops in the trajectories of the dataset, and the variation introduced by
the timestamp recalculation. Similar to the previous section, in Table we provide aggregated
values to characterize the impact of the reordering process on the constructed trajectories ac-
cording to different metrics. We delegate into Appendix [B|a more thorough analysis of individual
routes.

A total of 4,515 trajectories, out of 6,163, had some of their vectors changed their position in
the sequence, and their timestamps adjusted. That is, the 73.26% of the trajectories presented
this kind of error in the data, and required to be corrected. In average, 21.3 vectors were moved
within the trajectory, or 30 if we only take into account the trajectories in which any state
vectors were moved. This amount corresponds with an average of 3.12% of the vectors in the
trajectories. The variation of the timestamp in the reordered vectors (the calculated timestamp
minus the original timestamp assigned by OpenSky) can be used to characterize the amount of
time in which these vectors were delayed with respect to their correct position in the sequence.
To this end, we calculated the mean difference for all moved vectors within each trajectory,
and then calculated the mean of this value across all trajectories. The vectors were assigned
a timestamp 257.62 seconds earlier than their original timestamp. That is, those vectors had
a delay of 4.3 minutes in average, although the delay is highly variable across the vectors: the
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Metric Mean StD.
Reordered vectors 21.30  48.58
Reordered vectors (resorted trajectories) 29.99  55.34
Timestamp variation -175.73  278.04

Timestamp variation (resorted trajectories) -257.62 303.71

Resorted trajectories 4,515 (73.26%)
Loops 303 (4.77%)

Table 6.4: Description of the incidence of sorting operations on the trajectories in the dataset.

Reduced distance Removed vectors Process time

Mean 137.07 36.87 6.32
St.Dev. 285.49 44.33 4.45
Min -339.61 0 0.41
25% 0.00 9 4.10
50% 15.47 22 5.61
75% 149.59 46 7.15
90% 411.93 92 9.22
Max 4,957.04 434 72.09

Table 6.5: Description of the results in terms of reduced distance (kilometers), number of removed
vectors, and total processing time (seconds).

standard deviation of the timestamp difference is high at 303.7 seconds, more than 5 minutes.
Finally, a loop (or a holding) was found in at least 303 trajectories, so the presence of these
patterns in the trajectories is relatively frequent (4.77%).

In the following we discuss the results shown in Table [6.5] The most relevant measure is
the variation of the traveled distance. As stated before, an incorrect order of the state vectors
in a trajectory leads into an increased total traveled distance. Trajectories with a high level of
disorder show a traveled distance that is much higher than reasonable to travel between two
airports. In these cases, sorting the trajectory should lead into a notable decrease in the traveled
distance. For trajectories with low to no disorder, the variation of this distance will not be as
apparent, though. In our benchmark, we observed that the reordering algorithm did not change
the traveled distance in 29% (1843) of the trajectories, and 12 trajectories had worse values
for this measurement. After closer inspection, we found that these trajectories either had loops
and holdings in their paths (11) or were incorrectly generated (1). The remaining 75% of the
trajectories had reduced their traveled distance to some degree, with a mean improvement of
137.07 kilometers across all trajectories. The distribution of the differences in traveled distance
are shown in Figure in logarithmic scale.
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Figure 6.16: Distribution of the variation in the traveled distance after reordering the trajectories.
The vertical axis has been applied a log scale to improve the visibility of less frequent values.

With respect to processing time, in previous sections we stated that the defined heuristics
helped to alleviate the computational cost of the process by applying lighter operations than
2-opt only. As shown in Table we reported a running time to 6.32 seconds per trajectory
in average. Furthermore, for 90% of the trajectories the processing time is under 9.22 seconds,
with only few trajectories that require more time. The distribution of running times is shown
in Figure [6.17], with a clear high frequency around 6 seconds. We have investigated whether
the number of vectors in the trajectory influences the running time, as per intuition, but Figure
[6-18] shows that there is not a clear correlation between these two factors. The processing time
remains constant to a degree, independently of the number of vectors with a notable density in
the range (0,10), albeit a slight increase can be observed starting at 1000 state vectors.

Finally, additional vectors were removed during this step for having their positions repeated.
This removal is applied trajectory-wise, and the first state vector (chronologically) is kept, and
the rest are removed from the trajectory. Figure shows that many trajectories still had a

significant amount of such state vectors, with a mean of 37 vectors removed per trajectory, as
indicated in Table 6.5

6.6.3 Trajectory quality metrics

Once the vectors in the trajectories have been processed, we can use the set of quality metrics
defined in Section to characterize the trajectories before and after the sorting operation. In
the following we present the aggregated results across all trajectories, with a special focus on
some interesting aspects.

Table [6.6] shows the mean results for two categories of quality metrics. Under Flight path
characterization, the actual flight time (as defined in the flight plan) and the distance between
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Figure 6.17: Histogram showing the distribution of processing time across all trajectories. Most
of the trajectories are processed in 10 seconds or less, with some difficult cases extending up to
45 seconds. The longest time (72.61 seconds) has been excluded from the graph.
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Figure 6.18: Correlation between processing time and the number of vectors in the trajectory.
The longest time (72.61 seconds) has been excluded from the graph.
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Figure 6.19: Number of vectors removed per trajectory.

Metric

Raw trajectories

Clean trajectories

Mean StD

Mean StD

Flight path characterization
5,810.30  2,686.82

Actual flight time

Geodesic/direct distance

671.35 374.79

5,810.30  2,686.82
671.35 374.79

Coverage

Total duration
Total distance
Distance ratio

Distance to origin

Distance to destination

Initial segment
Final segment
Last altitude

6,056.95 2,595.73

867.04 507.25
1.37 0.61
3.65 20.87
5.93 17.54

1.0022%
1.1952%

2,467.74  5,098.46

6,018.41  2,599.93
729.98 387.27
1.12 0.18
3.60 20.26
4.45 15.09
1.0022%
0.6762%
1,830.43 4,247.01

Table 6.6: Summary of the mean values of the trajectory quality metrics results for integrated
and clean trajectories. Flight path characterization and Coverage metrics.
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the departure and destination airports are calculated to set the reference values that can be
used to evaluate the actual characteristics of the trajectory. Recall that these factors define
the minimum values for the distance and duration of the trajectory, respectively These values
become more valuable when the routes are analyzed separately, since they set a common ground
for all trajectories of that route. The Coverage category shows the actual characteristics of the
trajectory, including its duration, distance, and other aspects that help to assess its completeness.

The characterization of the flights does not vary from raw to clean data, since they are
independent of the flown trajectory. In average, the considered routes require flights of 5,810
seconds (1.61 hours) that travel 671 kilometers in a straight line from airport to airport. The
variance in these values is high, exceeding the 50% in both cases, though, so they do not provide
an accurate representation of the flights. Nevertheless, they can be used to assess the mean values
for the related measures in the next category of metrics. In fact, the average values observed
in the trajectories are quite similar. The cleaned trajectories have a mean duration of 6,019
seconds (1.68 hours, a 4.34% more time), including the taxiing time at the airports (which is
not contemplated in the values of the actual departure and arrival timestamps indicated in the
flight plan). Further analysis could be done to identify the takeoff and landing in the trajectory
and compare the real time in which the aircraft is flying with the flight time, but the lack of
data during the landing operations at the destination airport prevented us from carrying out
this analysis. The traveled distance is also higher at 730.07 kilometers (1.09%), but this fact
was predictable since aircraft do not fly in a straight line from airport to airport. In many cases,
even during the cruise phase the aircraft must maneuver to follow coastlines, avoid obstacles
or follow airways. During the ascent and descent phases, the path is anything but a straight
line, specially if there are holdings or other manoeuvres around the airports. These factors add
up and set the minimum distance higher than the direct distance defined above, which is also
reflected in the distance ratio metric that relates the traveled distance and the direct distance
for each trajectory. Airlines and air traffic control organizations make use of theoretic reference
trajectories to provide a more realistic value of the required distance for a trajectory in a route,
but currently we do not have access to such information.

Starting with the comparison between the raw and cleaned trajectories, it can be observed
that there is little difference in terms of the duration of the trajectories. With the exception of the
last vectors in a trajectory having duplicated positions and being removed during the cleaning,
the first and last vectors of the trajectory are not modified, so the duration is the same. The
differences in traveled distance are more prominent: the distance reduces from 867 kilometers
to 730, a reduction of 15.8% (137 kilometers). The standard deviation is also reduced in 23.7%,
since the trajectories with delayed vectors become more similar to the normal trajectories of
their route. According to the value of the distance ratio metric, raw trajectories are 34% longer
in average than the distance between the airports, and this value decreases to 12% (and shows
a lower standard deviation, from 0.54 to 0.18) in clean trajectories. The distance of the last
vector in the trajectory to the destination airport also decreases from 5.93 to 4.45 kilometres in
average, which is normal since the presence of delayed vectors in the last segment of the flight
could make that the (chronologically) last state vector is farther than the closest state vector to
the airport (which in general should be the last vector in the trajectory). A similar conclusion
can be made for the last observed altitude value. Therefore, correctly reordering the last vectors
in the trajectory contributes to improve the quality of the final segments of the trajectory, which
become available more often and reduces the amount of trajectories without this segment from
1.2% to 0.68%. The availability of the initial segment does not vary since previous state vectors
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Raw trajectories Clean trajectories
Metric Mean StD Mean StD
Density
Density 1.27 0.42 1.39 0.38
Density (no gaps) 1.30 0.40 1.44 0.34
Time separation 6.40 1.27 6.66 1.53
Time separation (no gaps) 5.98 0.89 6.26 1.09
Distance separation 0.90 0.42 0.78 0.24
Distance separation (no gaps) 0.87 0.39 0.73 0.18
Continuity
Gaps 0.38 0.68 0.49 0.79
Continuous segments 1.38 0.68 1.49 0.79
Gap ratio 3.66% 7.35% 4.80% 8.45%
Continuity ratio 89.52%  10.65%  86.84%  12.64%
Discontinuity ratio 6.82% 5.97% 8.36% 7.69%
Gap time 279.39 604.79 344.61 657.52
Continuity time 5,335.57  2,228.50 5,155.98  2,252.32
Discontinuity time 441.99 457.40 517.82 539.86

Table 6.7: Summary of the mean values of the trajectory quality metrics results for integrated
and clean trajectories. Density and Continuity metrics.

are not added at the start of the trajectory.

These values indicate that the constructed trajectories provide a good coverage during most
of the flight, since they describe the initial and final segments of the flight. However, we require
further analysis on the level of detail and completeness of this description to assess the quality of
the trajectory. To this end, we proposed several Density and Continuity metrics that helps us to
carry out such analysis. Let us review the observed results of these metrics, described in Table
[6.7] Density metrics analyze the rate at which the flight state is updated with respect to the time
and the traveled distance. The density indicates the mean number of state vectors per traveled
kilometer. Two factors influence this value when going from raw to clean trajectories: firstly, the
density increases due to the decrease in the traveled distance; secondly, several redundant state
vectors are removed from most trajectories, thus lowering the density while keeping intact the
relevant information. In the defined dataset, we observed a net increase in the density from 1.27
to 1.39 state vectors per kilometer. The time separation and distance separation metrics are also
influenced by these operations. The time separation analysis indicates the average update rate
between subsequent state vectors. Since some vectors are discarded, the average time between
state vectors increases from 6.4 seconds to 6.66 seconds between reported positions, but there
is not information loss in terms of the reported valid positions. Recall that OpenSky offers a
theoretical refresh rate of 5 seconds; a mean time separation of 6.66 seconds indicates that the
state vector density of these trajectories is close to the capacity of OpenSky even after removing
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the vectors with reused positions. On the contrary, the mean distance between subsequent
reported positions decreases from 0.90 to 0.78 kilometers thanks to the state vector sorting, and
the decrease in the standard deviation indicates that the separation between vectors became
more homogeneous.

Nonetheless, the presence of gaps in the trajectories due to a lack of coverage raises this
value up. The impact of gaps (that is, trajectory segments with no updates for more than 300
seconds) has been measured at an average of 4.8% of the total travel time across all trajectories.
The increase of this value with respect to the raw trajectories was expected: when OpenSky
stops capturing ADS-B messages, it keeps generating a few more vectors with redundant data.
Since we are removing such vectors, in practice we are “extending” the existing gaps. If the
gaps are excluded from the analysis, the density metrics vary significantly. The distance-related
metrics improve slightly on raw trajectories, but the improvement is more notable in the average
time separation, which reduces to 5.98 seconds. On clean trajectories, the values are better in
value and more consistent. The density increases to 1.44 vectors per kilometer, the average time
separation lowers to 6.26 seconds between state vectors, and the average distance separation also
decreases to 0.73 kilometers between state vectors. Thus, the sorting process manages to increase
the quality of the segments of the trajectories that are described in the data.
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Chapter 7

Estimation of the time of arrival

The Estimation of the Time of Arrival ETA is a key factor for ATM operations. Determining
when a flight will arrive at its destination airport improves the predictability of the operations
at the airport, and allows for a better resource allocation in the transit airspace and on the
ground. As a consequence, accurately predicting the time of arrival is crucial to enhance the
efficiency, capacity and safety of ATM operations, and therefore to reduce operational costs
and the environmental impact of flights [9]. Conversely, inaccurate ETA predictions can trigger
cascading delays at the airports, affecting both the departures of aircraft from the airport and the
arrivals of subsequent flights, which may need to wait until the necessary resources are available
for landing. However, the inherent uncertainty of flight operations, which are influenced by many
dynamic and non-deterministic factors, makes accurate ETA prediction a challenging task.

Most current research focuses at predicting ETAs within the Terminal Manoeuvring Area
(TMA) [46, 79, 117, [25 /18, [83], where some of the most critical ATM operations take place.
Nevertheless, ETA prediction are valuable throughout the en-route phase, as it allows coverage of
a wider portion of the airspace and enables earlier and more robust planning. On the other hand,
some studies [9] adopt a more limited scope, targeting individual routes or segmenting flights
by specific criteria. However, we found that a broader scope might benefit the performance of
the predicting models. As flights approach the airport, the traffic coming from the different
routes becomes more homogeneous when performing the approach manoeuvres defined for that
airport. The behaviour of the aircraft may also be similar during the flight, especially during the
cruise phase. In other words, learning from multiple routes should help to identify and model
increasingly rich flight patterns, rather than focusing on single routes that require, on the other
hand, training and maintenance of specific models, with the additional costs that this entails. In
addition, the model can be trained with comparatively more data, which benefits the training of
deep learning models in particular.

In this chapter, we describe our approach to ETA prediction for inbound aircraft at a des-
tination airport. Our solution leverages data that describe factors influencing the progression
of a flight, such as the realized trajectory, the origin and the planned schedule of the flight and
the weather conditions at the destination airport, to provide accurate predictions accounting for
all of these factors. To this end, we train and evaluate several models implementing different
architectures of LSTM networks to determine the most suitable model for this task.
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7.1 Related work

ETA prediction for commercial flights was traditionally addressed using deterministic methods
[85], based on aircraft performance and physics simulations. The idea behind these methods is
to determine the planned trajectory and then calculate the time needed to fly that trajectory
under specific conditions. While effective, developing these methods is complex and expensive,
and their predictions are very dependent on the simulation conditions for all considered factors:
weather conditions, traffic congestion, the planned flight path... Any variation of these factors
during the actual flight can make the prediction to be inaccurate. In recent years, data-driven
approaches have gained relevance due to the increased availability of air-traffic related data and
hardware resources capable of running computationally intensive machine learning algorithms.
These methods leverage historical data to learn flight patterns and are better suited to adapt to
unseen or rare circumstances, providing more accurate predictions in the uncertain conditions
that govern ATM operations. Thus, data-driven approaches generalize better than fine-tuned
deterministic ones, and have become a recurrent choice to address the problem at hand.

Most of the existing data-driven approaches [46} (69} [83], |18, 25, 117, |79] build a prediction
model for a particular arrival airport, enabling ETA predictions for all incoming flights, regardless
of their departure airport. All of them report figures for short-term ETA predictions, when
the aircraft is close to the destination airport in terms of distance (mostly between 25 and
100 nautical miles, or NM, away from the airport) or time (between 5 and 60 minutes before
landing), but do no report numbers at the early stages of the flight. In [105], a single model
is proposed to predict all flights within a given area, but it is suggested that individual models
for each destination airport (or groups of related airports) would be more effective. Ayhan et
al. 9] follow this approach and build optimized models for each particular route (i.e. a pair of
departure and arrival airports), enabling long-term accurate ETA predictions, at the price of a
complex deployment that involves maintaining multiple models (one per route) at the destination
airport.

A second aspect to consider is the data used to construct the prediction models. This decision
must take into account the many factors that can affect the operation of a flight. Surveillance
information (mainly ADS-B) is present in most of the proposals, allowing to describe enriched
4D trajectories, where time and situation (latitude, longitude, and altitude) are enhanced with
other valuable features, such as speed or heading, to characterize the aircraft movement over
time. Weather data (wind direction and speed, visibility, etc.) is also present in most of the
solutions, but they differ in whether they consider this information only at the arrival airport
[46, 105, 69, |18, 25|, also at the departure airport |1] or throughout the flight |9]. Flight plan
data, reporting origin and destination airports, the (scheduled and actual) off-block and takeoff
times (if the flight has already started), the scheduled arrival time or the expected total duration
of the flight, among other features, is also commonly used [105} 69, |1, |9} [83} 25, 117]. Finally,
seasonality information |1,|18, 46, 69| (e.g. the day of the week, the month or the time of the day
in which the flight will occur), congestion information |105, 1,9, 18] (traffic density metrics at the
airports or airspace levels) or information about resource management [46, 25| (e.g. configuration
of runways) have proven to be useful for ETA prediction.

The main difference between the existing state-of-the-art solutions lies in the method they
used to predict ETAs. Various machine learning methods have been evaluated for such purpose,
highlighting bagging ensemble models, such as random forests (RF) [15] or Extra-Trees (ET) [45],
and boosting methods, such as Gradient Boosting Machines (GBM) [44] or Adaptive Boosting
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(AB) [43]. More recently, FeedForward Neural Networks (FFNN) [12| and other deep learning
models, such as Long Short-Term Memory (LSTM) networks [53], which where already covered
in Chapter |3 have been used with varying degrees of success.

Glina et al. |46] propose a RF-based model (called Quantile Regression Forest), which provide
short-term predictions (between 3 and 60 NM) with RMSE values between 0.33 and 1.25 minutes,
for flights arriving at Dallas/Fort Worth International Airport (ICAO code, KDFW). Kern et al.
[105] also use random forests to predict ETAs for domestic routes in the United States and report
a MAE reduction of 42.7%, compared to the ETA prediction provided by the Federal Aviation
Administration (FAA) system. Kim [69] uses linear and median regression, and a nonparametric
additive model to predict ETAs for incoming domestic flights at the Denver International Airport
(KDEN). In this case, the models were trained on 2010 data and then predictions were made for
flights in 2011, reporting a mean absolute deviation of 8.63 minutes and concluding that departure
delays are the most important factor for improving predictions. Dhief et al. [25] compare RF,
ET, and GBM models, at the Changi Airport (WSSS), concluding that ET performs better than
the other methods, and reporting a RMSE of 1.92 minutes at 100 NM from the destination
airport.

Subsequent publications demonstrate the superiority of GBM over bagging methods, at dif-
ferent time horizons. In [83], a GBM-based model is used to predict ETAs for incoming flights to
the Malpensa-Milan Airport (LIMC), reporting RMSE values of 175 seconds and 304 seconds, at
20 and 60 minutes from the arrival airport, respectively. Chen et al. [18] compare GBM, RF and
FFNN predictions at different distances from the Zurich airport (LSZH), concluding that GBM
performed slightly better than RF and reporting RMSE values of 3.16 and 4.75 minutes, at 45
and 250 NM of distance, respectively. An ensemble “stacked” model is proposed in [117], report-
ing slightly better figures than GBM (and other methods) for ETA prediction at the entry point
of Terminal Manoeuvring Area (TMA) of the Beijing Capital International Airport (ZBAA).
Achenbach et al. |1] also propose an ensemble model, which combines GBM and linear regres-
sion. This ensemble performs better than its constituent models, reporting effective predictions
at long-term (RMSE of 5.9 minutes at departure), for flights flown by the A320 european fleet
arriving at two airports. Ayhan et al. [9] make an exhaustive comparison of machine learning
methods for ETA predictions on 10 major flight routes in Spain, including LSTM for the first
time. In this case, GBM and AB report the best numbers, within 4 minutes of RMSE on average,
regardless of the flight length. It is worth noting that LSTM reports unstable numbers in this
evaluation, providing the most accurate prediction for a given route and reporting twice as much
error as AB on another. Recently, Ma et al. |79] proposed a spatio-temporal neural network
model that reports comparable numbers to a LSTM-based approach, for incoming flights to the
ZBAA airport.

Table[7.I|summarizes the main features of the reviewed approaches: the scope of their models
and the machine learning method they used (RF': random forests, LR: linear regression, GBM:
gradient-boosting machines, AB: adaptive boosting, ET: extra trees, and LSTM: long short-
term memory neural networks); the data used to build these models are then displayed (Su:
surveillance, W: weather, FP; flight plans, Se: seasonality, C: congestion, and R: resources);
and the flight points where the ETA is predicted. It is worth noting that the last row also
describes our approach in the same terms, for comparison purposes.
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Data
Approach Scope Method
Su W FP Se C
[46] (2012) | Arrivals at KDFW RF v v v
[105] (2015) | US territory RF v v/ v
[69] (2016) | Arrivals at KDEN LR VRV
[1] (2018) | Arrivals at two airports | Ensemble v v v v v
[9] (2018) | Individual route AB/GBM | v Vv V v
[83] (2019) | Arrivals at LIMC GBM v
[18] (2020) | Arrivals at LSZH GBM v v v v
[25] (2020) | Arrivals at WSSS ET v v v
[117] (2020) | Arrivals at ZBAA Ensemble v v
[79] (2022) | Arrivals at ZBAA LSTM v
Our proposal | Arrivals at LEMD LSTM v v Y v

Legend:

Su: Surveillance, W: Weather, FP: Flight plan, Se: Seasonality, C: Congestion, R: Resources.

Approach ‘ Prediction
[46] (2012) | 3-60 NM before landing
[105] (2015) | During the flight
[69] (2016) | Before departure
[1] (2018) | Before departure
[9] (2018) | Before departure
[83] (2019) | 20-60 minutes before landing
[18] (2020) | 45-250 NM before landing
[25] (2020) | 100 NM before landing
[117] (2020) | Entry point of the TMA (20-25 NM before landing)
[79] (2022) | 0-4 minutes after passing the entry point of the TMA
Our proposal | 15-150 minutes / 25-250 NM before landing

Table 7.1: Summary of data-driven approaches for ETA prediction

7.2 Architecture

Estimating time of arrival based on 4D-trajectory data can be intuitively approached as a se-
quence modelling problem. 4D trajectories consist on long sequences (several hundreds or even
thousands) of flight states, which in turn comprise multiple values describing different aspects
of the flight. These data points are interdependent in a way that each of its values depends on
the previous values in the sequence. Moreover, each data point has an associated timestamp,
enabling the interpretation of these sequences as time series. As such, the analysis of these data
using deep learning can be tackled using different types of Recurrent Neural Networks (RNN).
However, the length of these sequences makes it difficult for traditional RNN to encode all their
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data; in practice, these networks fail to keep memory from distant values in the sequence, that is,
they forget past elements as they advance in the sequence. Therefore, LSTM (Long Short-Term
Memory) networks [53] should be better suited to tackle this task. As explained in Chapter [3]
LSTM-based networks are specialized on learning long sequences of data, such as 4D trajecto-
ries, in order to capture both short-term and long-term dependencies between the elements in
the sequence. This fact motivates our decision to build a LSTM-based neural network to predict
the estimated time of arrival of a flight. This architecture consists of a single LSTM layer, with a
hidden state of dimension n, and a fully connected (FC) layer with one cell and linear activation,
to transform the output of the LSTM layer (a vector of length n) into a scalar value, which is
the predicted RTA value for the input sequence.

7.2.1 Feature selection

In the following, we describe the set of features extracted from the enriched 4D trajectories
used for training the ETA prediction models. For clarity, features are grouped according to
their origin, although all of them are processed jointly by the models. Table summarizes the
selected features and provides examples for each of them.

Surveillance data. The surveillance data included in 4D trajectories comes from OpenSky
network, as explained in Chapter [4] Surveillance data is used to describe the flight state over
time. Each data point has an associated timestamp, and contains information about the 3D-
position of the aircraft (longitude, latitude and altitude), the instant speed (both horizontal and
vertical) and the direction the aircraft is heading (track). Additionally, we calculate a distance
feature, which is the Haversine distance of the aircraft with respect to LEMD airport.

Flight Plan Data The flight plan data in 4D trajectories, originally extracted from Network
Manager, provide us with schedule data such as the expected times of departure and arrival,
the actual times of departure and arrival (which are calculated after the end of the flight), the
departure airport and the airline operating the flight. We use this information to calculate the
delay of departure, which is obtained as the difference between the scheduled time and the actual
time of the takeoff, and two seasonality features, to leverage daily and weekly time patterns:
(i) the day of week, in which the flight is scheduled to end; and (ii) the time of day [1], that
describes the hour range the aircraft is scheduled to arrive; based in our observations, we consider
three periods: morning (7-13h), evening (13-20h) and night (20-7h). The actual time is used to
validate the remaining time to arrival, which is explained later in this section.

Weather data Weather forecast data is used to characterize the expected weather conditions
at the destination airport for the flight’s estimated time of arrival. The most relevant features
are those related to wind condition (direction and speed), because these factors determine the
direction of approach the aircraft must take, and influence its speed and maneuvers. Other
selected features describe temperatures, visibility conditions and sky conditions. As described in
Chapter [d] forecast reports are extracted from TAF reports generated by the weather station
located at the LEMD airport. These reports include data about wind (direction and speed),
temperatures, precipitation, icing probability and visibility, many of which may influence landing
and takeoff operations.
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Feature Description Sample value
Surveillance
Latitude Latitude of a position update 51.477402
Longitude Longitude of a position update -0.4745
Altitude Altitude over the ground at a position update (feet) 225.0
Distance Haversine distance to LEMD airport (miles) 773.208995
Speed Horizontal speed with respect to the ground (knots) 141.0
Vertical rate Speed of climb or descend (feet per second) 2689.0
Track Angle between aircraft heading and north 267
Flight plans
Departure airport ICAO code of origin airport EGLL
Day of week Arrival day within a week 5
Time of day Scheduled arrival period of the day evening
Departure delay Difference in minutes between planned and actual off-block time 0
Operator IATA code of the operating airline BAW
Weather
Wind direction Direction from where the wind blows 35.0
Wind speed Wind speed (knots) 4
Mazx. temperature Maximum expected temperature 15.0
Min. temperature  Minimum expected temperature 1.0
Cloud altitude Altitude of lowest clouds, if any (miles) 30
Visibility Horizontal visibility in case of fog (miles) 4
Sky status Qualitative description of sky status CAVOK
Target variable
RTA Remaining time to arrival (seconds) 7048

Table 7.2: Description of the features extracted from data to train the proposed models.

Target variable We define a Remaining Time to Arrival (RTA) value, which is used as the
target variable for our model. RTA is the difference (in seconds) between the timestamp of each
state vector and the actual landing time of the flight to which it belongs. We use surveillance
information to obtain the landing time, even though flight plans provide an end time value,
since this end time usually corresponds to the time at which the pilot was cleared to initiate the
landing procedure, several minutes before actually landing.

7.2.2 Data preparation

To construct the datasets used for training the models, we extract the sequence data from the
enriched 4D trajectories included in the considered dataset, which include both surveillance and
weather information. Static attributes from the flight plan, such as the operating airline or
scheduled times, are incorporated into the sequences by repeating their values at each timestep.
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Since LSTM networks process sequences one element at a time, and each element must have the
same structure, static features must be included in every timestep, even if their value does not
change.

Trajectory selection

Before the data is Before adapting the data to the model requirements, trajectories containing
holding procedures are excluded from the dataset. As discussed in Chapter [6} loops and holding
procedures add additional complexity and unpredictability to the trajectory [24]. In the context
of ETA prediction, they also distort the computation of the RTA, as these procedures introduce
delays that cannot be foreseen before the aircraft enters the TMA. Since they depend on real-
time landing slot availability, they result in unpredictable waiting times that shift the RTA across
the entire trajectory. Moreover, in this Thesis, such manoeuvres may not have been correctly
ordered during the trajectory sorting process, as their looping nature interferes with the 2-opt
heuristic. For further details, see Chapter [6]

In addition, to ensure a balanced representation of all routes in the dataset, a maximum
number of trajectories per month was defined for each origin airport. Since some routes to
LEMD are significantly more frequent than others, the model could otherwise overfit to these
dominant patterns. If the number of trajectories for a given route exceeds the monthly threshold,
a random selection is applied to discard the excess and maintain the balance.

Data normalization

We further enhance the suitability of the data by downsampling the time series using the buck-
etization techniques introduced in Chapter [6f This operation serves two main purposes. First,
it homogenizes the density of state vectors across the trajectory, distributing them more evenly
in time in regions where the original update rate is higher than required. Since LSTM networks
perform best when the time steps are uniformly spaced, reducing this variability facilitates more
effective pattern learning. Second, downsampling contributes to noise reduction, simplifying the
underlying patterns while preserving the relevant information. It also increases the total flight
time covered by each sequence for a given sequence length, which has a significant impact in the
performance of the developed models as discussed in Section [7.4] The update rate is treated as a
configurable hyperparameter to evaluate which temporal resolution yields the best performance
for the models. In this study, we consider update intervals of 30 and 60 seconds, compared to
the nominal 5-second rate of OpenSky data.

Next, the data is transformed into numerical values suitable for model training. As discussed
in Chapter [3] categorical features are converted to numerical format using label encoding, which

maps each category to a unique integer. All features are then normalized to the [0, 1| range
f

according to Equation where v is the original value of feature f, and v, . and v,fmw are the

minimum and maximum values of its distribution.

f
v—v
v = e "“]’} (7.1)
Umaz — Vpyin
The sequences must then be transformed into fixed-length segments to be used as input for
LSTM networks. This is achieved through the windowing operation described in Chapter [3]

which divides each trajectory into overlapping sub-sequences using a sliding window of length
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[ (lookback). Thus, for a trajectory (x1,Xs,...,xp) with p state vectors, we obtain p — [ sub-
sequences wr, . ..,wp — [ of length [ (as shown in Figure . All sub-sequences that contain a
gap of more than 180 seconds between adjacent vectors are discarded to ensure the continuity
of the time series in each sequence. Finally, each fixed-length sequence is labeled with the RTA
value corresponding to the last state vector in the window, which will be the desired output
associated to each example.

[xl X, e X e X, X X X XX, . xp)

w (xl X e X X, RTA,

@1 (xt—l-l Xt o X x,_I)—RTAt_]

L>wt-1 e - R J_RTAt
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Figure 7.1: Extraction of sub-sequences using a sliding window.
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Figure 7.2: Example of a downsampled trajectory where the periodicity is increased from ~ 5 s.
in the original Opensky data to 15, 30 and 60 seconds.

The lookback I, or the window size, is a determinant parameter to our model: longer input
sequences provide more contextual information to the model, potentially improving predictions,
but also increase computational cost and model complexity.
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Importantly, the effective length of the “flight history”seen by the model is a function of both
the sampling rate and the lookback. For example, with a sampling rate of 60 seconds and a
lookback of 32 vectors, the model have access to the last 32 minutes of flight time to make a
prediction. If the lookback is increased to 64 (keeping 60 seconds of sampling rate), then the
“flight history” taken into account extends to the last 64 minutes of flight time. This is also true
if we increase sampling period to 120 seconds, while keeping 32 vectors of lookback. However,
these choices are not equivalent as the configuration with a lookback of 32 and a sampling rate
of 120 seconds provides less detailed data, because it describes the same time period with half
as many state vectors. Figure shows an example with lookback=5. If we sample every 15
seconds (SP:15), a single window represents the previous 75 seconds of flight time. However,
if the sampling period is 30 seconds, then each window amounts for 150 seconds of flight time.
While the length of the window is the same in all cases (5 state vectors), the flight time and the
level of detail in which the trajectory is described are different for each configuration.

7.3 Experiments

This section outlines the experimental design adopted to validate the proposed methods for ETA
prediction. We first describe the experimental setup, including the models under evaluation, the
case study dataset used for training and validation, and the metrics employed to measure the
predictive accuracy and overall performance of each model.

7.3.1 Models

We briefly describe below the model configurations under evaluation. These descriptions are
intended as a complement to the theoretical background provided in Chapter |3, where the un-
derlying architectures and mechanisms are explained in greater detail.

LSTM

When we described LSTM networks in Chapter [3] we stated that LSTM models are defined by
two main hyperparameters: the lookback and the number of units. On the one hand, lookback
determines the number of individual elements (state vectors) the model expects to process in
order to make a prediction. As discussed in the previous section, the longer the sequence, the more
information the model has to characterize the evolution of the flight. However, longer sequences
require more computing power or model complexity to learn long-term, complex patterns from the
data. The number of units determines the dimensions of the internal representation (the hidden
state) that the model constructs from the input data. Larger values of these hyperparameter
allows to store more information in the hidden state, but also imply a significant increase in the
computation cost and an additional risk of overfitting.

These two hyperparameters should be balanced. Low numbers of units combined with long
sequences can lead into loss of information, since the hidden state does not have enough capacity.
On the contrary, a large hidden state for processing short sequences could overfit to the data
and being unable to generalize correctly, while increasing significantly the training times. In our
study, we evaluated lookback values of 32 and 64, since our preliminary experiments reported
poor performance for [ = 4, 8,16, and values larger than 64 were discarded as it was not possible
to generate windows for many of the shorter routes considered. On the other hand, The higher
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this value, the more complex the model and the greater the risk of overfitting. After some
preliminary testing, values of 10, 20, and 30 units were chosen.

We assigned fixed values to the other hyperparameters of the model: the hyperbolic tangent
was set as the activation function; the batch size to 128; the loss function to mean absolute error
(MAE), and Adam |70] was used as optimizer. We also experimented with the ReLU activation
function, but it caused unstable training processes due to exploding gradient problems. During
training, early stopping was used as a regularization measure to avoid overfitting. Models were
trained for 30 epochs and the version with the lowest validation loss was selected for evaluation.
As mentioned before, these configurations were applied to data with a sampling period of 30 and
60 seconds.

Baseline

We consider a baseline that includes the most prominent approaches to ETA prediction in the
state of the art: Gradient Boosting Machines (GBM), Random Forest (RF) and Adaptive Boost-
ing (AB). Similar to [9], all models were configured by using the default hyperparameters from
their implementation in the Scikit-learn package (version 1.1.3), but reducing the number of
estimators from 100 to 50 in all models due to memory constraints. Preliminary tests showed
that AB performed poorly compared to other models because the decision trees used as the
default base estimator were too shallow. We decided to replace the base estimator of AB with
the estimator implemented in RF, reporting better results. None of these models are designed to
work with time series, so we provide individual state vectors as inputs instead of the constructed
windows.

We also explored the implementation of GRU networks instead of LSTM units, but we found
no significant differences in model performance for comparable hyperparameter settings, so we
excluded them from our study.

7.3.2 Case study: LEMD

In this work, we focus our case study on the Adolfo Sudrez-Madrid Barajas airport (ICAO code,
LEMD), the leading Spanish airport in terms of passenger traffic and the fifth in Europe in
2022. LEMD has four physical runways, arranged as two pairs of parallel runways, that can be
used for either takeoff or landing operations, depending on the current runway configuration.
LEMD uses two different configurations: north (north-facing runways are used for takeoffs and
south-east-facing runways are used for landings) and south (vice-versa), which are chosen on the
basis of weather conditions and available resources. A sample of 200 flights landing at LEMD
for January 2022 are illustrated in Figure [7.3] which shows the prevailing runway configuration
at that moment.

The north configuration was the most frequently used configuration in the first two months
of 2022, but from March onwards, the distribution between configurations became more even
due to the change in prevailing weather conditions. Due to this fact, the estimated time of
arrival at Madrid-Barajas is even more uncertain. This is because incoming flights may need to
execute different approximation maneuvers depending on the airport’s current configuration in
order to land on the assigned runway. These maneuvers may take several minutes and can not
be anticipated, since the landing runway is only assigned and communicated to the pilot when
the aircraft is already close to the airport and therefore cannot be used as input to the proposed
model.
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Figure 7.3: A sample of the trajectories from the five airports considered in the study of the
individual models.
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Figure 7.4: Model training workflow.

7.3.3 Datasets

Our study covers inbound flights at LEMD in the first nine months of 2022, that is, the collected
data corresponds to the period between January 1 to September 30, 2022. As introduced in
Section [7.2.2] we remove several trajectories due to the presence of holding manoeuvres. In
total, 338 trajectories (1.61%) with holding patterns were removed. Since there are significant
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imbalance in the number of flights from each departure airport, we restrict our study to the
40 most frequent routes to ensure a minimum contribution from each origin. Then, we set the
aforementioned limit of 70 trajectories per month from each origin airport. After these filtering
operations, the resulting dataset consists of 19,633,275 state vectors from 20,560 trajectories.
The monthly distribution of trajectories among the different routes is shown in Appendix [C]

The dataset is divided into the train, validation and test subsets (containing 72.25%, 12.75%,
and 15% of the trajectories respectively). A randomized, stratified approach is applied by dis-
tributing trajectories in direct proportion to their monthly and route frequency. In this way,
the trajectories are evenly distributed across the three subsets according to the distribution of
the original data. Finally, data in each subset is adapted to the particular model configuration,
according to the process described in Section [7.2.2] as illustrated in Figure [7.4]

7.3.4 Metrics

The models are evaluated using MAE (Mean Absolute Error) and RMSE (Root Mean Squared
Error) metrics. MAE is the mean of the absolute values of the differences between each objective
RTA value, y;, and the predicted value, gy;, for every input i (Equation . RMSE is the
square root of the mean value of the squares of the differences between each objective value and
the predicted value across all examples (Equation . Due to its linear nature, MAE weights
equally each example regardless of its error value. In RMSE errors are squared, so larger errors
are weighted more than smaller errors, and can be used as a metric of the variance of the error
values. The values are provided in seconds to enable direct comparisons.

1 n
MAE = — i — Ui 7.2
P (72)

— RPN
RMSE \/ Zizl(‘% ¥i) (7.3)

In this study, we use two types of metrics: (i) global metrics to indicate the mean error value
across all sequences (examples) in the dataset, regardless of the point of the trajectory in which
they are placed; and (ii) at-time and at-distance metrics, which are used to characterize the
prediction error at particular points of the trajectory. These particular points can be selected by
time (e.g. the error 60 minutes before landing) or by distance (e.g. the error at 100 NM from
the destination airport).

Note that longer trajectories are subject to greater uncertainty, but “cutting” all trajectories at
the same remaining time or at the same distance to the arrival airport allows for fair comparison,
regardless of the route they describe. To calculate these metrics, we evaluate the model on the
last available sequence at the selected point in the trajectory, provided that it is close enough to
the cutting point. We define maximum thresholds of 300 seconds and 10 NM for the difference
between the cutting point and the RTA value and distance of the last state vector in the sequence.
Otherwise, the sequence is not taken into account in the evaluation, as it is not representative
of the designated point in the trajectory.
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Model SP LB Time Units MAE (s) RMSE (s)

LSTM 10 224.27 338.52
30s 32 16m 20 220.06 333.95

30 233.31 341.55

10 162.90 260.85

30s 64 32m 20 159.24 257.82

30 161.04 261.52

10 218.77 321.59

60s 16 16m 20 218.79 332.58

30 211.56 320.56

10 164.18 262.22

60s 32 32m 20 163.60 263.56

30 161.17 259.91

GBM  30s - - - 220.45 323.73
AB 30s - - - 222.41 458.28
RF 30s - - - 256.92 552.01

Table 7.3: Global metrics.

7.4 Results

Table shows global metric results for different model configurations. To make it easier to
refer to individual configurations, we will use the notation (SP:X,LB:Y,U:Z) to indicate the
model with sampling period of X seconds, lookback of Y vectors, and Z units, respectively. Note
that the third column (7Time) refers to the length (in minutes) of the input sequences, and it is
obtained by multiplying the value of SP and LB. The results for the baseline methods are also
reported at the bottom of the table using data sampled at 30 seconds, as in our most prominent
configuration.

We first analyze the impact of downsampling by comparing same time values and different
samplings. In this case, they report similar numbers for sequences describing either 16 or 32
minutes of flight time, but SP:30 outperforms SP:60 for longer sequences, reporting a reduction
in MAE between 0.13 and 4.36 seconds. It is also shown that the number of units has little effect
on the reported error values, but it is worth noting that more units imply higher training costs.
Finally, the lookback value has the greatest impact on the result. By doubling the number of state
vectors of the input sequences, the model has access to twice the flight time, which helps to better
characterize its current state and provide a more accurate prediction. (SP:60,LB:32,U:30) reduces
MAE in 50.39 seconds compared to (SP:60,L.B:16,U:30), and this difference is consistent for 10
and 20 unit models. The gap is even larger for SP:30, where (SP:30,1.B:64,U:20) outperforms
(SP:30,LB:32,U:20) in 60.82 seconds in terms of MAE. The smallest MAE (159.24 seconds)
is reported by the configuration (SP:30,LB:64,U:20), although (SP:60,LB:32,U:30) also reports

competitive error values, increasing MAE by a2 seconds (161.17 seconds). In all cases, the
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Figure 7.5: MAE and RMSE values of baseline models and best LSTM configuration.

RMSE values for each configuration confirm all of these observations.

We promote the configuration (SP:30,1.B:64,U:20) for comparison purposes with the baseline
models, which are trained on data with the same sample period. As shown in Figure
GBM and AB provide similar results, with a MAE of 220.45 and 222.41 seconds, respectively.
However, GBM achieves a significantly lower RMSE value than AB, indicating that GBM error
values have a lower variance and thus its predictions are more consistent. RF performs poorly
in both metrics, confirming that boosting approaches are superior to ensemble approaches, as
noted in the related work. The LSTM model is superior to all the baselines, improving their best
result in terms of MAE by 61.23 seconds. The study of the RMSE yields the same conclusions,
with LSTM providing a result 65.09 seconds better than the best baseline method, GBM, which
highlights the improved stability of LSTM over GBM.

To complete this analysis, Tables [7.4] and show the values for the at-time and at-
distance metrics for our two selected configurations. Accordingly with the global metrics,
(SP:30,LB:64,U:20) outperforms (SP:60,LB:32,U:30) on all at-time metrics up to 90 minutes
before landing, although the differences are small, between 2 and 4 seconds. However, SP:60
model yields better results at 120 and 150 minutes, with a MAE 8.71 and 18.20 seconds lower,
respectively. These evaluation metrics measure the performance when most of the remaining
flights are still at cruise-level, although they exclude most short-range routes (e.g. those corre-
sponding to national flights in Spain). SP:30 has a bigger density of data around the destination
airport than SP:60, which may be biasing the model towards the area surrounding the airport
in spite of farther parts of the routes. Also, sampling reduces the amount of noise in the data,
and thus may help the model to generalize better at higher rates when there are not sudden
changes in the trajectory. In consequence, SP:30 models might be best fitted to sequences near
the airport, where the more detailed representation of the trajectory may benefit the model,
while SP:60 performs better on sequences that are farther away from the airport, where there is
less variability in the trajectory. This situation holds true for the at-distance metrics, although
the differences are generally negligible, in concordance with the global results shown in Table[7.3]

In all cases, our models significantly improve the results reported by GBM, AB, and RF,

156 Jorge Silvestre Vilches



7.4. Results

MAE at-time 15min  30min 60min 90min  120min 150min

SP:30, LB:64, U:20 93.80 143.50 173.92 205.12 264.36 345.03
SP:60, LB:32, U:30  95.84  145.15  175.83  209.12 255.65 326.83

GBM (SP:30) 153.33 189.21 209.46  253.62  298.01 348.24
AB (SP:30) 113.67  198.19  207.74 251.24  358.89  385.19
RF (SP:30) 191.30 225.64 243.60 320.15 385.22  395.16
RMSE at-time 15min 30min 60min 90min  120min 150min

SP:30, LB:64, U:20 173.65 224.92 258.35 299.46 378.32 477.81
SP:60, LB:32, U:30  175.76  229.11  259.39 296.10 356.93 473.09

GBM (SP:30) 255.73  299.60  304.55  342.98 398.16 472.45
AB (SP:30) 379.49  429.63  308.95 489.61 533.39  521.00
RF (SP:30) 693.32  467.57  543.27  638.97 534.18  525.14

Table 7.4: Metrics at-time for LSTM models (time=32 min). Lowest values (in seconds) for each
metric are bolded.

MAE at-distance 25NM  45NM  60NM  100NM 125NM  250NM

SP:30, LB:64, U:20 55.76 81.77 102.85 132.61 137.54 149.19
SP:60, LB:32, U:30  58.69  83.72 106.45 133.16 136.46  149.62

GBM (SP:30) 103.94 149.69 183.82 204.01 211.04 205.24
AB (SP:30) 69.78 105.11  141.97 187.92 211.32  211.66
RF (SP:30) 127.34 173.51  215.69 248.06 248.70  218.16

RMSE at-distance ~ 25NM  45NM  60NM  100NM 125NM  250NM

SP:30, LB:64, U:20 98.34 138.25 167.18 215.28 218.77 233.83
SP:60, LB:32, U:30  99.72  140.45 17221  217.29 215.09  234.52

GBM (SP:30) 231.68  282.72 32647  344.97 358.16  361.29
AB (SP:30) 37243  396.10  424.19  451.72  474.65  469.91
RF (SP:30) 568.44  780.65  765.67  544.76  515.27  431.92

Table 7.5: Metrics at-distance for LSTM models (time=32 min). Lowest values (in seconds) for
each metric are bolded.

both in terms of at-time and at-distance metrics, with the exception of RMSE at 150 min, where
GBM performs slightly better than LSTM models.
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Model MAE 15min 30min 60min 90min  120min

SP:30, LB:64, U:20 200.13 101.48 169.57 21546  286.24 337.46
SP:60,LB:32,U:30 201.62  106.02 167.43 208.54 282.08 344.30

GBM (SP:30) 252.89  142.71 191.18  226.06  289.77  383.67
AB (SP:30) 267.37  121.84  221.11  264.02  299.01  419.57
RF (SP:30) 313.49  272.07  275.76  248.12  336.18  473.83

Table 7.6: Evaluation with future data. Global MAE and at-time metrics for the best LSTM
configuration and the baseline models are included. Lowest values (in seconds) for each metric

are bolded.

7.4.1 Generalization assessment

This section focuses on further evaluating the performance, quality and reusability of our ap-
proach, but on a more realistic scenario. For this purpose, we use trajectories that were flown at
a later date than the trajectories used to train the models. These trajectories describe incoming
flights to Madrid-Barajas (from the 40 selected departure airports) from 1 to 31 October 2022.
The resulting dataset (using the generation process described in Chapters [5| and @ consists of
2,224 trajectories and 2,512,429 state vectors.

Table [7.6|reports global MAE and at-time metrics for this scenario, including our best model
configurations and baseline methods. The performance deteriorates for all models, as expected,
but ours still lead the comparison. The LSTM SP:30 model reporting a 25.7% higher global
MAE, with an increment of 41 seconds in absolute terms, compared to the results shown in
Table The at-time metrics also increase, but each at a different rate: at 15, 30, 60, 90 and
120 minutes, the MAE increases by 8%, 18%, 24%, 39.5% and 27.5%, respectively. This analysis
is also valid for the LSTM SP:60 model, since its figures are comparable. These results indicate
that the model is more robust the closer the aircraft gets to the destination airport. The most
likely reason is twofold. On the one hand, the maneuvers around the airport are standardized,
and there is less variability in how the flight should progress. On the other hand, there is much
more data on how the aircraft will behave in the surroundings of the destination airport than
in any other area of the airspace, so the model may have learned better about this section of
the flights. Having more data for each route should help the model to reduce the gap in the
generalizability at different time horizons.

LSTM remains the leading model by a wide margin, improving the MAE by 52 seconds over
GBM, which is the most effective state-of-the-art model in this experiment. This comparison
also applies for every at-time metric considered, demonstrating LSTM’s superiority.

7.4.2 Individual airport models comparison

We conducted several experiments to assess whether a global approach would be better than
training specific models for each individual route, as stated in [105]. In particular, we trained
several (SP:30,LB:64,U:20) models using data from each of these individual routes. Each model
was trained and evaluated on the subset of the global dataset corresponding to the trajectories
that belong to its particular route. Therefore, the global model and each individual model share
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Table 7.7: Individual route model vs. global model approach. All the trained models are (SP:30,
LB:64, U:20). Units in seconds.

Airport Model MAE 15min  30min 60min  90min
EDDF Global 136.29 79.90 129.24 158.21 187.53
Individual  222.97 176.10 199.61 239.29 229.86
EGCC Global 170.68 93.88 176.37 200.84 189.73
Individual ~ 254.59 259.82 267.79 275.49 236.30
EHAM Global 155.87  93.98 136.58 179.45 244.70
Individual  214.70 146.67 157.59 237.75 298.91
LIPZ Global 147.73  98.33 128.35 179.14 184.72
Individual ~ 203.36 129.06 195.23 222.24 223.89
Global 221.89 149.14 143.61 128.44 161.11
LTFM

Individual 269.67 230.73 163.20 167.40 202.82

Mean MAE reduction 61.76 68.57 38.98 57.56 21.65

exactly the same data about the corresponding route. All models were trained for 40 epochs in
the same conditions that were used to train the (SP:30,LB:64,U:20) global model, including the
partition of the data in train, test and validation: the training data of each of these models were
the data from the same route that were used to train the global model. The same holds true for
test and validation datasets.

The results of these experiments are shown in the Appendix [C.2|for all departure airports, but
we focus on five of them: Frankfurt Main International (EDDF), Germany; Manchester Airport
(EGCC), UK; Amsterdam Airport Schiphol (EHAM), Netherlands; Aeroporto Internazionale
Marco Polo di Venezia (LIPZ), Italy; and Istanbul Airport (LTFM), which are chosen to cover
the main European routes arriving at LEMD airport. A sample of the corresponding trajectories
are depicted in Figure[7.3] Nevertheless, it is worth noting that similar conclusions can be drawn
for routes that follow the same airways to fly to Madrid.

Table [7.7] shows the results of evaluating global and individual models on the test datasets
corresponding to each of the selected routes. The global model performed consistently better on
every metric for each of the routes. The bottom of the table reports the mean improvements ob-
served on these five routes. The largest reductions in MAE can be observed closer to the airport.
EDDF and EGCC benefit the most from using the global model: they achieve improvements of
86.7 and 83.9 seconds in global MAE. In particular, EDDF shows a great improvement at 15
minutes, with a reduction of MAE of 96 seconds. These routes have in common that the origin
airport is located in the hearth of the European airspace, and thus the synergy with trajectories
from other routes, which is observed in the surroundings of the airport, is extended along most
of the trajectory. Other routes, such as LTFM, do not have as much path in common with the
other trajectories used to train the global model, so they do not benefit as much as the rest of
the considered individual routes, with a MAE improvement of 47.8 seconds. In a middle ground
we find EHAM, which still achieves a MAE reduction of almost a minute with the global model.
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Table 7.8: Results of the ablation test. Units in seconds.

Feature set MAE RMSE
Surveillance 208.77  326.09
Surveillance + Flight Plans 206.43 319.23
Surveillance + Weather 215.70 324.33
Full dataset 159.24 257.82

Provided that global and individual models were trained with the same data from each
route, it becomes clear that the global model takes advantage of the availability of data from
other routes. The European airspace is structured as a route network, where flights converge on
airways, which roughly determine the route that an aircraft must follow to fly to the destination
airport. Once in an airway, most flights will behave similarly under similar conditions (aircraft
model, weather conditions, etc). This synergy becomes more apparent closer to the airport,
given that flights follow standard procedures in the surroundings of the airport to approach to
the runway and perform a landing procedure, so the model benefits from having data from more
flights, even if they belong to different routes. Therefore, global models can learn a wider variety
of patterns using data from different routes, thereby improving their performance on each route.

These results show that using a global model is better than maintaining multiple models, one
per route (i.e. between an origin airport and a destination airport), for three main reasons: (i)
the global model can predict the ETA at any point in the flight more accurately than any of the
individual models that only model flights for a specific route; (ii) maintaining a single model is
less costly than maintaining a large number of smaller models; and (iii) the global approach can
improve predictions even on routes where there are fewer flights due to a lower flight frequency
or less data availability.

7.4.3 Ablation test

Our approach combines data from different sources to account for different factors that influence
the course of a flight (surveillance, flight plans and weather conditions). We have conducted an
ablation test to determine how each factor affects the performance of our approach. In partic-
ular, we trained a LSTM model (SP:30,LB:64,U:20) with three different datasets: (i) a dataset
containing only surveillance data, which is the core of 4D trajectories; (ii) a dataset enhancing
surveillance with flight plan data; and (iii) a dataset combining surveillance and weather data.We
replicated the training configuration used for LSTM models in previous experiments, changing
only the features used by the model from the original dataset.

The results are shown in Table Surveillance data are the backbone of the predictive
power of the model, given that they provide detailed information about the trajectory itself,
rather than factors influencing on it. On the one hand, adding flight plan features (time of
day, departure airport, day of week and departure delay) slightly lowers the MAE results of the
model. On the other hand, the weather features causes an increase in the error. However, flight
plan and weather data in combination help the model to refine the results of using surveillance
data by 49.5 seconds.
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Ap. Scope Method Metric Main results Our proposal
[46] KDFW RF MAEsonm 58 s 55.76 s
MAEgoNnMm 75.4 s 102.85 s
[69] KDEN LR MAEg; 8.63 min 3.33 min
RMSE 12.2 min 5.35 min
1] Two airports Ensemble MAE 4.31 min 2.65 min
RMSE 5.9 min 4.29 min
19] Indiv. route AB/GBM RMSEpgco 3.12 min 2.61 min
l83| LIMC GBM RSMEGO min 304 s 258 s
|18] LSZH GBM RMSE 5nM 3.16 min 2.45 min
RMSE250NM 4.75 min 4.03 min
I25| WSSS ET MAElOONM 85-101 s 132 s
RMSE1gonMm 104-125 s 215 s
|[117] ZBAA Ensemble MAEasnm 48 s 55s
[79] ZBAA LSTM MAE20 min 89.39 s 93.8 s
[105] US territory RF No comparable results were provided

Table 7.9: Overview of the main results of the works reviewed in Section Each entry
includes the used metric, the value reported in the corresponding paper and the value from
(SP:30,LB:64,U:20) model.

7.5 Discussion

Our previous experiments confirm LSTMs models as a good choice for ETA prediction, outper-
forming other machine learning methods that have been successfully used for the same purpose.
The comparison with [9] is particularly interesting, because the behaviour of the LSTMs in their
evaluation was rather unstable and, in all cases, their accuracy was lower than that reported by
methods such as AB or GBM, contrary to what happens with our proposal.

We will now take a closer look at our results in comparison with the main results of the state
of the art, which are summarised in Table [7.9] It is worth noting that these results may not be
directly comparable in quantitative terms, since each proposal analyzes different case studies, but
it is valuable to consider these numerical results in order to elaborate the following qualitative
analysis.

One of the strengths of our proposal is its ability to provide good predictions in both the
long and short term (from few minutes to several hours), which is not common in the state of
the art, where existing proposals focus on one or the other case. The approaches in 1] and [69]
are the most similar to ours, given that they predict ETA during the whole trajectory and using
one global model for all traffic incoming into a destination airport. [1] reports MAE/RMSE
values (on the test set) of 4.31 and 5.9 minutes, respectively, using an ensemble model comprised
of a linear regressor and several GBM models. In comparison, our LSTM model with the best
configuration (SP:30,LB:64,U:20) achieves a MAE/RMSE of 2.65/4.29 minutes. In [69], the
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approach based on a non-parametric additive model reached a MAE and RMSE values of 8.63
and 12.2 minutes, respectively, far from those reported by LSTM. However, their model was
trained on data from 2010, and tested on data from 2011, so a fairer comparison may be made
with the results reported in Table [7.6} still, LSTM achieves 3.33/5.35 minutes when applied on
data outside of the training dataset time frame.

Nevertheless, the state of the art is mainly focused on short-term predictions. Munoz et
al. [83] report an RMSE value of 304 seconds at 60 minutes before landing, while our best
configuration achieves 258 seconds for the same metric. Wang et al. |117] report 48 seconds of
MAE at 25NM from the destination airport, while we achieve 55 seconds for the same distance.
It is worth noting that this approach trains specific models for each runway, which removes one of
the main sources of uncertainty in the short-term, and provides only very short-term predictions
in the TMA of the destination airport. Strottmann Kern and Medeiros |105] also used Ranfom
Forest and reported an reduction of 42.7% in MAE with respect to the ETMF predictions (the
ATM system used by the Federal Aviation Administration). However, they do not provide any
result that enable direct comparison with the results of our study. Glina et al. [46] applied
Random Forests to predict short-term ETA in the surroundings of the airport using 5 days of
data. The authors indicate that, during those days, there were only one active configuration in
the destination airport and good weather conditions, which may reduce the complexity of the
problem. The model is evaluated in a short term scenario, at 20 and 60 NM away from the
destination airport, with a MAE of 58 and 75 seconds, respectively. Our LSTM model reaches
slightly better results at 20 NM, and worse at 60 NM, with 56 and 103 seconds. This difference
may be due to the airport characteristics: in LEMD, the 60 NM radious falls inside the area
where the aircraft usually maneuver, and therefore is the most difficult part of the flight to be
predicted.

Dhief et al. |25] report competitive numbers at 100NM: MAE of 85-101 seconds and RMSE
of 104-125 seconds, depending on the runway and the model, outperforming ours: 132 and 215
seconds of MAE and RMSE. The difference between both errors is particularly interesting in
our case, because denotes the presence of outliers (which are more heavily penalized by RMSE
than by MAE). This is due to the fact that, in our dataset, we kept trajectories with single-loop
holding procedures in our dataset (while in |25| they are removed). However, the exact impact of
holdings in our results is yet to be determined, and will be addressed as part of our future work.
Finally, the GBM model presented in [18| reports 3.16 and 4.75 minutes of RMSE at 45NM and
250NM, while our model reports 2.45 and 4.03 minutes at the same distances.

Ma and Du [79] proposed a complex model that combines trajectory clustering, convolutional
neural networks, LSTM and attention mechanisms to predict ETA in the TMA using surveillance,
congestion and weather data. That is, their results are based on the elapsed time since the aircraft
enters into the TMA of the airport. As indicated in this study, the average time between the
entering in the TMA and the landing time is approximately 20 minutes, so their results (MAE
of 89.39 seconds) are comparable to our 15 minutes at-time metric, which is a slightly higher
(93.80 seconds).

Finally, Ayhan et al. [9] created different models for a sample of individual routes between
Spanish airports, and the results supported the authors’ claim that LSTM produced unstable
predictions. The results of this work may not be directly comparable with our proposal since they
make the prediction before the aircraft takes off; however, we include the following observation. In
our study, there is only one route in common with [9]; i.e. the route between LECO (A Coruna
Airport, Spain) and LEMD. They reported that AdaBoost performed best at predicting this
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route, with a RMSE value of 3.12 and 3.71 minutes for their AdaBoost and LSTM models,
respectively. For reference, our global LSTM model yields a RMSE value of 2.61 minutes, which
is the same than that of the individual model for this route. This route was not included in
Section [7.4.2] for a deeper analysis because the short length of its trajectories did not allow the
calculation of at-time metrics beyond 15 minutes.
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Chapter 8

Trajectory prediction

Trajectory prediction plays a central role in ATM, particularly during the tactical phase of flight
operations—that is, shortly before and during the flight itself |[121]. Accurate trajectory forecasts
improve situational awareness, support conflict detection and resolution, and enable more efficient
planning of airspace resources. Traditionally, trajectory prediction has been approached using
model-based methods grounded in aircraft kinematics. While these approaches offer a simplified
and interpretable view of aircraft motion, they often fail to capture the full complexity of real-
world flight operations. In particular, they typically neglect the influence of dynamic and context-
dependent factors such as delays, adverse weather, airspace restrictions, or interactions with other
traffic—factors that significantly affect the evolution of a flight.

In this context, data-driven methods offer a promising alternative. Some of these approaches
leverage large volumes of historical data to model the relationship between a flight’s observed
progression and the operational context in which it takes place. By learning from actual flight
trajectories and associated contextual data—such as weather conditions, airport congestion, and
scheduling constraints, these models are able to capture complex dependencies and provide more
accurate and adaptive predictions of future aircraft positions.

In this chapter, we present our approach to trajectory prediction using models based on Long
Short-Term Memory and Temporal Fusion Transformers architectures. We focus on predicting
future positions of en-route flights using the 4D trajectory data defined in previous chapters,
particularly the position, the speed and the bearing of the aircraft along its flight path.

8.1 Related work

LSTM networks [53] have been extensively applied to approach sequence prediction tasks, whether
alone or combined with different techniques to improve the natural capabilities of these neural
networks. Shi et al.[99] used LSTM to predict all aircraft trajectories in an airspace sector using
surveillance data obtained from ADS-B sources. Their approach was later improved using LSTM
networks with constraints [98|, which force the model to take into account different aspects of the
kinematics and behavior of an aircraft depending on the flight stage. With this new proposal,
they provided the best performance of all the studied LSTM-based approaches, with a mean
absolute error (MAE) of 0.0050 and 0.0105 degrees for latitude and longitude predictions, and
a MAE of 9.96 feet for altitude. However, these results correspond with a single route (that is,
flights between two particular airports), in contrast with other works where multiple routes can
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Ref. Method Strategy  Scope Inputs
Pos Spe Tr Org Clu Dst

Single route

[98] (2021) ConstLSTM  One-step Complete traj.
[78] (2020) CNN-LSTM One-step Complete traj.
[68] (2022) LSTM+Att One-step Not indicated
[92] (2022) BILSTM Direct Complete traj.

NN
NN
NN

Multiple routes

[99] (2018) LSTM One-step  Airspace sector v/ Ve
[73] (2020) RF One-step  Airspace sector v/ v v v
[122] (2020) LSTM One-step TMA (<90s). v v v
[21] (2021)  RM-IMM  One-step TMA (<60NM) Vv v v v
96] (2022) CNN-GRU MIMO  TMA VRV
Ours (2024) LSTM/TFT MIMO Complete traj. v v v v v

Legend: Pos: Position, Spe: Speed, Tr: Track, Org: Origin, Clu: Clustering, Dst: Distance.

Table 8.1: Summary of data-driven approaches for trajectory prediction.

be predicted with the same model. Zeng et al. [122] also applied LSTM networks to model the
aircraft dynamics in a complex scenario, such as the environment around an airport, by analyzing
landing and takeoff operations at the Guangzhou airport. More recently, Sahadevan et al. [92]
successfully applied bidirectional LSTM to leverage both backwards and forward dependencies
in the trajectories time series. They evaluated their approach on a single direction from a single
route (from Chhatrapati Shivaji Maharaj airport (VABB) to Kempegowda airport (VOBL)),
and reported MAE values of 0.0206 and 0.0160 degrees, and 33.75 feet, for latitude, longitude
and altitude, respectively.

Subsequent work has introduced various elements to enhance the LSTM capabilities. For
instance, Convolutional Neural Networks (CNN) were combined with LSTM to exploit the spatial
aspect inherent in trajectory data. Ma et al. |78| proposed a hybrid model where spatial and
temporal inputs are processed sequentially using CNN and LSTM networks. Each component is
responsible for extracting different patterns in order to characterize better the current and future
state of the aircraft. The case study in |78| is similar to [92] in terms of characteristics (single
direction on a single route) and results. Shafienya et al. [96] proposed CG3D, a more complex
architecture that combines conventional CNN, GRU and 3D CNN to analyze the different types
of information from surveillance data. GRU (Gated Recurrent Units) [20] are similar to LSTM,
but with a simpler internal structure. As in other proposals, spatial and temporal features are
processed separately by CNN and GRU networks, respectively; however, they also add a 3D-CNN
network that combines both sets of features, which in combination with the CNN-GRU defines
the proposed CG3D architecture. Their results report a global MAE of 0.1176 for all predicted
features.

More recently, attention mechanisms have gained prominence in sequence prediction prob-
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lems, and therefore have also been applied to trajectory prediction. Jia et al. [68] added self-
attention layers after LSTM layers to refine their output by promoting their main features and
improving their prediction accuracy. LSTM have also been combined with physical simulation
models [21], where the LSTM network processes dynamics information about the aircraft (e.g.
surveillance data) and its output is used to refine the result of the RM-IMM estimation algorithm.
This approach yielded good results in terms of predicting altitude (MAE of 2.94), although it
is outperformed by other works given that latitude and longitude are predicted with a MAE of
0.0373 and 0.0397 degrees, respectively.

With respect to the implemented prediction strategy, most of the analyzed works aim to
predict only the next state update given the m last updates: y,+1 = f(z1,..., ). However,
this approach has limited use given that the prediction is too short-term and immediate, so
many of them extend this approach to perform multiple timestep-ahead predictions in a recursive
manner. Sahadevan et al. [92] studied the degradation of the prediction accuracy with the number
of predicted timesteps when following a direct strategy. The results are best at 1 timestep for
all features considered (latitude, longitude, altitude and time), after which the results rapidly
deteriorate as the predicted sequence lengthens. Similar conclusions can be drawn when using
a recursive strategy, as demonstrated in [21], due to the prediction error propagation. [96] is
the only work that proposes a MIMO approach, similar to ours, where 5 timesteps are predicted
based on the previous 100 timesteps.

With regard to the context in which each study is carried out, most of the analyzed proposals
focus on the prediction of trajectories on individual routes |78, 99, 92|; i.e. flights between two
particular airports, a specific airspace sector |73] or at the TMA of an airport [96, 21, 122],
which may include both landing operations, take-off operations, or both. In terms of the inputs
for the prediction models, all previous work uses surveillance data (mainly ADS-B data) such as
latitude, longitude and altitude. Most of them also account for the speed of displacement (vertical
or horizontal) and the heading of the aircraft, which have demonstrated to be determinant
in trajectory prediction. Zeng et al. [122] also utilize the aircraft type, and the speed and
acceleration of change of the considered features.

Table 8.1 summarizes the main features of the reviewed approaches: the scope of their models
and the deep learning method they used (RF': random forests, RM-IMM: Residual-Mean Inter-
acting Multiple Models, CNN-GRU: convolutional neural networks -+ gated recurrent unit); the
strategy followed to make predictions (see Section ; and the data used to build these models.
It is worth noting that the last row also describes our approach in the same terms, for comparison
purposes.

8.2 Architecture

8.2.1 Feature selection

In this section, we describe the features extracted from the processed 4D trajectories used to train
the trajectory prediction models. These features are derived from surveillance and flight plan
data, as described in Chapter |5, For consistency with the approach followed in Section the
features are grouped by their origin, although they are processed jointly by the models. Table[8:2]
summarizes the selected features.
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Surveillance data Surveillance data describe the flight state over time according to the con-
sidered dimensions. Each data point has an associated timestamp and contains information
about the 3D-position of the aircraft (longitude, latitude and altitude), the horizontal speed and
the direction the aircraft is heading (¢rack).From these, we also compute the distance to the
destination airport (using the Haversine formula) to provide a spatial reference with respect to
the flight’s endpoint..

The surveillance data used in our study are provided by the OpenSky Network [94], as
introduced in Chapter [l OpenSky collects ADS-B messages and post-processes them into state
vectors sampled every 5 seconds. To improve the quality and continuity of the trajectories,
additional data cleaning and preprocessing steps are applied, as detailed in Chapter [5]

Flight Plan Data Flight plans provide with scheduling data such as the flight ID data, and
the departure and destination airports. We use this information to filter the relevant data for
the selected case study, and as input feature in the case of the origin airport.

Target Variable The prediction task is formulated as a multivariate time series forecasting
problem, where the objective is to predict the future position of the aircraft over the next n time
steps. Therefore, for each input sequence, the target variables are the longitude, latitude, and
altitude values corresponding to the next n state vectors in the trajectory.

Feature Description Sample value
Latitude Latitude of a position update 51.477402
Longitude Longitude of a position update -0.4745
Altitude Altitude over the ground at a position update (feet) 225.0
Distance Haversine distance to LEMD airport (miles) 773.208995
Speed Horizontal speed with respect to the ground (knots) 141.0
Track Angle between aircraft heading and north 267
Sector Approach direction to destination airport 1
Departure airport ~ ICAO code of origin airport EGLL

Table 8.2: Model features extracted from the data sources.

8.2.2 Data preparation

To prepare the dataset used for training the trajectory prediction models, we need to apply
similar operations to those applied in Section [7.2.2] In the following, we succinctly describe this
process, also illustrated in Figure [7.4

Trajectory selection and cleaning

The first step consists in selecting and filtering the trajectories relevant to our case study. Similar
to Section trajectories with less than 300 state vectors and trajectories with multiple loops
during a holding procedure are discarded. In addition, we remove trajectories that include
holding procedures or sustained looping behavior. As discussed in Chapter 5| these maneuvers
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are often imposed by external air traffic control constraints, such as runway congestion, and
are thus exogenous to the trajectory itself. Their presence introduces significant variability and
unpredictability in the flight path, which cannot be inferred from the preceding trajectory data
alone.

Normalization

Similar to Section [7.2.2] trajectories are downsampled to ensure a regular distribution over time
of their state vectors. We set the sampling rate at 15 seconds, which we have found to be a
good compromise between reducing the computational cost of the model training and keeping
the fidelity to the original trajectory data.

Data is further transformed to fit the model requirements. First, the track feature is trans-
formed according to f(z) = sin (%) which captures the circular nature of angular measurements
and preserves the proximity between 0° and 359°. The track is divided by 2 to fit the output in
the [0, 1] range. Since this transformation is not injective in the interval [0,360), we introduce
an auxiliary binary feature (sector) to distinguish between headings in the ranges [0, 180) and
[180, 360).

As explained in Chapter 3] the categorical features are transformed into real values using label
encoding (i.e. replacing each categorical value with an integer), and all features are normalized
into [0,1] range according to Equation , where v is the original value of the feature f, and
vl i and vf;w are the observed minimum and maximum values.

m

f
v = ——min_ (8.1)
Umaz — Uppin

The final step consists in transforming each trajectory into fixed-length sequences suitable
for model training. As detailed in Chapter [3] we apply a windowing operation with a sliding
window of length [, generating all possible sub-sequences of [ consecutive state vectors within
each trajectory. For each input window, the target output is defined as the values of the next p
vectors, corresponding to the desired prediction horizon. To ensure temporal continuity within
each sequence, we discard any sub-sequences that include a gap of more than 180 seconds between

consecutive vectors.

8.3 Experiments

This section presents the experimental framework used to assess the proposed methods for tra-
jectory prediction. It begins with a description of the setup, detailing the evaluated models,
the case study dataset employed to develop the models, and the performance metrics used to
evaluate predictive accuracy and overall effectiveness.

8.3.1 Models

In this section, we describe the implemented models based on the LSTM and Temporal Fusion
Transformer architectures. Since these architectures were introduced in Chapter 3] we do not
provide a detailed discussion of their relevance to this task.
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8.3.1.1 LSTM

4D trajectories consist on long sequences (several hundreds or even thousands) of flight points,
which hide long and short-term temporal dependencies within the multiple time series they
comprise. As stated in Section [3] LSTM-based networks can learn from long sequences of data,
such as 4D trajectories, to capture both short-term and long-term dependencies between the
elements in the sequence. This fact motivates our decision to build a LSTM-based neural network
to predict sequences describing the next states of the aircraft based on the last available states.
This architecture consists of a single LSTM layer, with a hidden state of dimension n, and a
fully connected (FC) layer to transform the output of the LSTM layer (a vector of length n)
into an interpretable trajectory prediction. In this work, this prediction include multiple future
states (i.e. timesteps) characterized by three features: latitude, longitude and altitude, in order
to determine the short-term future positions of the aircraft. In particular, we aim to predict the
next 10 timesteps (i.e. 150 seconds of flight time with the defined sample rate of 15 seconds).
The predictions made by LSTM networks are sometimes unstable, and describe maneuvers that
are unrealistic for an aircraft in the air (such as a jagged paths that oscillate around the true
trajectory followed by the aircraft). We experimented with a LSTM-based architecture with two
additional FC layers after the LSTM layer to apply a quadratic polynomial interpolation as a
curve smoothing operation [19] on the output of the network. Thus, LSTM layers are responsible
of extracting and interpreting time-dependent patterns, and FC layers should transform this
interpretation into more feasible trajectory predictions.

We evaluated two main hyperparameters: the input window size (m) and the number of
units of the LSTM network. On the one hand, input window size determines the number of
individual elements (state vectors) the model expects to receive to make a prediction. The
longer the sequence, the more information the model has to characterize the evolution of the
flight. However, longer sequences require more computing power or model complexity to learn
long-term, complex patterns from the data. On the other hand, the number of units determines
the dimensions of the internal representation that the model constructs from the input data.
The higher this value, the more complex the model and the greater the risk of overfitting. We
tested window sizes between 25 and 60, in increments of 5, and a range of different numbers of
units between 10 and 35, based on previous experiences with this task.

We assigned fixed values to the other hyperparameters of the model: we set the sigmoid
function as the activation function; the batch size to 128; the loss function to mean absolute
error (MAE), and Adam [70] is used as optimizer. We experimented with different activation
functions (namely, linear, hyperbolic tangent and sigmoid), but the sigmoid function provided
the best results in terms of training stability and convergence speed. During training, early
stopping was used as a regularization measure to prevent overfitting. The models were trained
for 40 epochs, and the version with the smallest validation loss was selected for evaluation. The
best model was configured with 30 LSTM units and input sequences of size 55.

8.3.1.2 TFT

We also applied the original TFT architecture [75] on 4D trajectory data to explore its capabilities
at the trajectory prediction task. While the architecture also involves LSTM, the multi-head
attention mechanisms should extract the key information from the output of LSTM layers to
further improve the trajectory predictions.

We tuned three hyperparameters in the TFT model: head attention size, number of elements
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in the hidden layer, and the input window size. The head attention size is the number of parallel
attention layers applied to the input of the model. Each of these layers may learn to detect
different patterns, effectively “paying attention” to different aspects in the time series. The
number of hidden elements corresponds with the number of units in the LSTM network that is
integrated in the TFT architecture. The evaluated head attention sizes were 1, 2 and 4, and the
number of hidden elements ranged from 140 to 380, in increments of 60 units. Finally, for the
window size we experimented with values of m between 50 and 65 elements. The rest of the
hyperparameters were set to the default values defined in the used implementation. The best
results were achieved using 4 attention heads, a hidden size of 320 and input sequences of 60
state vectors.

8.3.2 Datasets

Our dataset (referred to as Complete) includes data from incoming flights at LEMD airport
in the first nine months of 2022 (January 1 to September 30, 2022). It is worth noting that
there is a significant imbalance in the number of flights from each departure airport to LEMD,
which could bias the model in favour of more frequent routes. Similar to Chapter [7| we choose
the 40 most frequent routes to reduce this effect, and limit each route to have a maximum of 50
trajectories per month. As a result, the dataset comprises data from 7,146 trajectories (2,971,108
state vectors). The datasets used for ETA prediction and for trajectory prediction differ in two
main aspects. First, the threshold of maximum trajectories per month and route was lowered in
this chapter, since the trained models are more complex and required additional training time
and computational power. Thus, we reduced the amount of data to alleviate the training process.
Second, the feature set is more restrictive in this chapter; many of the features used for ETA
prediction are not relevant to predict the trajectory throughout the flight, so including them
would serve no purpose for this task.

A second dataset is defined (called Airport from now on), which is a subset of the dataset
described above. This dataset contains all state vectors that were emitted closer than SONM
to the destination airport. The purpose of Airport dataset is two-fold: (i) to evaluate the
performance of the developed models in the TMA of the airport; (ii) to produce results that are
comparable to those reported in the state of the art, which mainly focus on this area around the
airport, and not on the whole trajectories.

The dataset is divided into the usual train, validation and test subsets (containing 72.25%,
12.75%, and 15% of the trajectories respectively), as depicted in Figure A randomized,
stratified approach is applied by distributing trajectories in direct proportion to their monthly
and route frequency. In this way, the trajectories are evenly distributed across the three subsets
according to the distribution of the original data. Finally, data in each subset is adapted to the
particular model configuration, according to the windowing process described in Section [7.2]

8.3.3 Metrics

The models are evaluated using MAE (Mean Absolute Error), RMSE (Root Mean Squared Error)
and MSE (Mean Squared Error) metrics.

- MAE is the mean of the absolute values of the differences between each objective sequence,
(41, .-y Te4m), and the predicted sequence, (Y41, ..., Yi+m), for every input (xi—p, ..., x¢)

(Equation [3.2)).
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- MSE is the mean value of the squared differences between each objective value and the
predicted value (Equation [8.3).

- RMSE is the square root of the mean value of the squares of the differences between each
objective value and the predicted value across all examples (Equation [8.4]).

1 n
MAE=—3 " ly;—xi (8.2)
_ 1l 12
MSE=-3%  (y;,—xi) (8.3)

RMSE — \/ L DN (8.4)

Where n is the number of examples in the evaluation dataset, y; is the tensor comprising the
predicted next p future states, and x; is the tensor that contains the actual next p timesteps.

Due to its linear nature, MAE weights equally each example regardless of its error value. In
RMSE and MSE errors are squared, so larger errors are weighted more than smaller errors, and
can be used as a metric of the variance of the error values. The MAE and RMSE values are
provided in degrees (latitude and longitude) and feet (altitude) to enable direct comparisons.
MSE values are normalized in the range [0,1).

MSE was used as metric during the preliminary experiments. MAE and RMSE are used in
the evaluation of the final models in order to enable direct comparisons with the state of the art.

8.4 Results

8.4.1 Preliminary studies

In this section, we report some findings in our preliminary study to guide the experimentation
process.

Approach MSE LSTM MSE LSTM-FC MSE TFT
Basic 0.000126 0.000124 0.0000749
Basic+sector 0.000125 0.000119 0.0000877
Expanded 0.000118 0.000124 0.0000942
Expanded+sector  0.000117 0.000117 0.0000768

Table 8.3: MSE (scaled) on the validation set for all feature sets

8.4.1.1 Iterative vs. Complete sequence

In our first tests, we evaluated the recursive and MIMO strategies to approach the trajectory
prediction task. We implemented two simple LSTM networks, which predicted one timestep and
ten timesteps ahead, respectively. The results confirmed the conclusions exposed in [13].
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The recursive approach performed worse, with a MSE of 0.004400. This strategy led to an
accumulation of errors that increased with successive predictions. In particular, the predicted
trajectory often showed non-existent turns after a small deviation in the predicted values (mainly
latitude or longitude). On the other hand, the MIMO strategy, while making the model more
difficult to fit, had a much lower MSE value: 0.000129 (an order of magnitude lower). Therefore,
we adopted MIMO strategy for the rest of our experiments.

8.4.1.2 Feature set

Two different sets of input features were put under evaluation: Basic (latitude, longitude, altitude
and track), and Ezpanded (basic features plus speed, departure airport, and distance to destina-
tion airport). We also evaluated the effect of the sector feature in the prediction capabilities of
the models.

The results are shown in Table Both LSTM models benefited from having the addi-
tional features and improved their MSE values with the Expanded-+sector feature set, while the
TFT model performed best with the Basic feature set. However, in both cases the differences
were rather small. The best sets of features for each architecture are used for the rest of the
experimentation.

8.4.2 Main results

Table [8.4] shows the main results of our experiments on the Complete dataset, corresponding to
the complete trajectories from flights arriving at LEMD airport, and the Airport dataset, where
only the vectors within the destination airport TMA are considered. The MAE and RMSE
values on each dataset are also presented in Figure (top and bottom, respectively). We
report per-feature values in their original scale and units (i.e. latitude and longitude in degrees,
and altitude in feet) to facilitate their interpretation and analysis.

On the one hand, the LSTM and LSTM-FC models report very similar numbers for the
Complete dataset on all the considered features, in terms of both MAE and RMSE. There
are small differences depending on the predicted feature: LSTM performs better in longitude
(0.0364 vs 0.0373 degrees, equivalent to 4.04 and 4.14 km, respectively) and altitude (242.8 vs
259.2 feet), while LSTM-FC has a slight advantage at predicting the latitude (0.0216 vs 0.0208
degrees, around 2.3 kilometers). The TFT model report different results. The MAE for the
latitude is the same as the achieved by LSTM, although with half the variance according to the
RMSE (0.0403 vs 0.0910 degrees). The MAE for longitude is worse, with 0.0574 degrees (6.38
km), but the RMSE halves those presented by the LSTM and LSTM-FC models. Finally, the
results for altitude are better in terms of MAE and RMSE, with the lowest values of the three
models (189.8 and 465.9 feet, respectively). The difference between MAE and RMSE leads to
the conclusion that LSTM models perform better than TFT in the individual trajectories that
are closer to the most frequent trajectory, and worse in less frequent scenarios (such as adverse
weather conditions, diverted flights or special procedures like holdings or go-arounds), where
they make larger errors than TF'T and therefore get penalized by the RMSE metric.

We also trained and evaluated the models on the Airport dataset (with the same model
configuration used for the Complete dataset). The bottom line in Table shows the corre-
sponding results. Here, the TFT model provides the best performance at predicting the 2D
position (latitude and longitude), and improves significantly its altitude predictions with respect
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Model Dataset MAE RMSE
lat lon alt lat lon alt

LSTM 0.0216 0.0364 242.8 0.0910 0.1470 820.2
LSTM-FC Complete 0.0208 0.0373 259.2  0.0910 0.1490 820.2
TFT 0.0216 0.0574 189.8 0.0403 0.0834 465.9
LSTM 0.0238  0.0544 360.9 0.0350 0.0940 557.7
LSTM-FC  Airport 0.0255 0.0855 367.5 0.0360 0.1430 590.6
TFT 0.0091 0.0104 225.3 0.0162 0.0238 381.9

Table 8.4: Evaluation results for the Complete and Airport datasets. Values in original units
(degrees for latitude and longitude, and feet for altitude). The best values for each result set

and feature are marked in bold.
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considered scenarios.

174

Jorge Silvestre Vilches



8.4. Results

to the previous experiment. Our intuition is that data from outside the TMA is too disperse and
scarce to train the TFT model correctly, so its performance should improve as we increase the
size of the dataset. This hypothesis is further discussed in a later section. Inside the TMA, all the
trajectories converge, which reduces the variability found in the data, and the size of the dataset
is large enough for the model to capture the movement patterns around the destination airport.
On the other hand, the LSTM models provide error values that are on-par than those observed
on the other experiments in terms of latitude and latitude, while the longitude predictions are

worse.
MAE distribution across the predicted window
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Figure 8.2: Distribution of the mean absolute error of the TFT model across the predicted
window. The red lines indicate the mean values across the vectors in each position.

Latitude Longitude Altitude
Position Mean StD Mean StD Mean StD
1 0.0205 0.0251 0.0559 0.0506 99.70 195.86
2 0.0193 0.0255 0.0559 0.0507 116.93 246.48
3 0.0194 0.0276 0.0562 0.0537 137.73 294.76
4 0.0196 0.0299 0.0564 0.0562 157.96 340.22
5 0.0202 0.0322 0.0570 0.0590 179.30 386.18
6 0.0210 0.0342 0.0576 0.0615 200.48 429.71
7 0.0221 0.0363 0.0581 0.0637 221.22 470.83
8 0.0233 0.0385 0.0588 0.0660 241.56 510.90
9 0.0247 0.0405 0.0594 0.0686 261.88 551.68
10 0.0260 0.0439 0.0592 0.0711 281.24 594.38

Table 8.5: Mean and standard deviation values for the MAFE values on each of the positions in

the predicted window.
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Ref  Year Approach Strategy  Scope MAE RMSE
lat lon alt lat lon alt

Single route
[98] 2021 ConstLSTM One-step Complete trajectory 0.0050 0.0105 9.96 0.0203 0.0482  45.34
|78 2020 CNN-LSTM One-step Complete trajectory  0.0170  0.0710 33.83  0.0230  0.0860 40.14
|68] 2022 LSTM+Att One-step Not indicated 0.0373  0.0397 2.94 0.0464  0.0494 3.92
[92] 2022 BiLSTM Direct Complete trajectory 0.0206  0.0160 33.75  0.0264 0.0222 52.34
Multiple routes
[99] 2018 LSTM One-step  Airspace sector 0.0725 0.0552 77.95 0.2295 0.1337 134.51
Ours TFT MIMO TMA 0.0091 0.0104 225.3 0.0162 0.0238 381.9

LSTM MIMO Complete trajectory 0.0216  0.0364 242.80 0.0910 0.1470  820.20

Table 8.6: MAE and RMSE values for latitude, longitude and altitude features from comparable proposals.
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8.5. Discussion

8.5 Discussion

Table [8.6] summarizes the main results of the state of the art described in Section [8.1] including
those reported by the best LSTM and TFT-based approaches presented in this study. Although
none of these approaches is directly comparable, as they all represent different case studies
(different airports, number and type of routes, etc.), we think it is interesting to analyze these
numbers to position our current contributions with respect to the existing literature. To do this,
we have arranged the results in Table according to the number of routes that each approach
able to predict: the top part shows the results of approaches that work with data from a single
route, while the bottom part shows the reported results of techniques (including ours) that are
able to predict the trajectory for multiple routes. On the other hand, it is worth noting that most
of the studied approaches implement an one-timestep prediction (with the exception of [92] and
its Direct approach), while ours uses a MIMO approach. This means that the errors reported
in those works correspond to the error in the prediction of the next timestep (which is the one
with the least uncertainty), while our results describe the errors for the next 10 timesteps, whose
uncertainty increases progressively. In consequence, the error made by the model would vary
across the predicted window. This intuition is confirmed in Figure [8:2] where the mean absolute
error distribution on each of the predicted window positions is shown for the Complete dataset.
The outliers (values that exceed 1.5 times the interquartile range) have been removed from the
graph for clarity. The mean and standard deviation values (without excluding the outliers) are
shown in Table 8.5l The mean MAE for altitude increases monotonically from 100 to 281 feet.
The dispersion of the values also increases progressively due to higher uncertainty the further in
time we aim to predict. The error distribution in latitude and longitude is more uniform along
the predicted window in terms of mean errors and dispersion. However, there is still a slight but
steady increment of the error the further we advance within the window. It is worth noting that
this fact is not evident in the Figure due to outlier removal, although it becomes clear in
Table The only exception is that the error in latitude is slightly higher in the first predicted
vector than in the second one.

Taking these aspects into account, our numbers are competitive with those reported in the
state of the art in terms of latitude and longitude. TFT outperforms all the considered works in
terms of the MAE in 2D positioning except 98], albeit this case study is performed on a single
route, which significantly reduces the variance of the predicted trajectories, and only predicts the
next timestep. Similar conclusions can be made for our LSTM model, which manages to compete
with, or even outperform, most of the analyzed LSTM-based proposals in terms of MAE.

The situation is different when it comes to altitude, with our models performing worse than
the state of the art. Figure [8:3] shows the distribution of the MAE values of the TFT model
at different distances to the destination airport. The mean and median error values are mostly
uniform up to 650 NM, although the dispersion of the error values fluctuates significantly. These
variations in the metrics are aligned with the start of the routes: as shown in Figure many
trajectories manifest ascending patterns at several points within the considered geographical
scope, introducing additional variability into the data of flights occurring in those areas. As the
aircraft gets closer to the airport, the flight patterns become more clearly defined, which help the
model to provide more consistent results. This can be observed in the range (200-650), where
most of the air traffic organizes at different, but defined, flight levels. However, the error is still
lower than acceptable from a domain point of view: MAE in altitude is 318 feet, which is much
lower than the minimum vertical separation for aircraft crossing paths standardized by ICAO.
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ICAO specify a minimum separation of 1,000 feet for aircraft flying at 29,000 feet at most, and
2,000 feet if they fly above this value [62].
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Chapter 9

Conclusions and future work

This chapter presents the main conclusions of the work carried out throughout this Thesis. After
reviewing the initial objectives and hypothesis, we summarize the key contributions, discuss the
results obtained, and outline potential directions for future research.

At the beginning of this Thesis, we proposed three main objectives for guiding our research
and helping to validate the research hypothesis. These objectives presented strong dependencies
among them, and this fact required us to tackle them in order to ensure some progress at each of
them before being able to advance to the next objective. However, thanks to the methodology
adopted in this Thesis, we were able to make concurrent progress on all objectives after con-
solidating the initial results. As a consequence, it has been possible to leverage our increasing
knowledge on each area to reinforce advancement in the other areas.

Objective RO-01. Conceptual model. The first objective was the consolidation of a con-
ceptual domain model that captured the key entities and relationships in the relevant areas
of Air Traffic Management. Our initial efforts were dedicated to surveying existing resources,
including ATM ontologies, reference data models and other specialized resources like official
documentation published by authorities and organizations such as ICAO or EUROCONTROL.
Although comprehensive, most of these resources were either too broad in scope or misaligned
with the specific needs of this work. In particular, models such as AIRM, while highly detailed
and standardized, introduced levels of abstraction or coverage that were not practical for our
integration and analytical goals. Consequently, we developed a tailored domain model centered
on the concept of Flight as the core entity. Around this central concept, additional entities were
progressively incorporated based on their relevance to unify and accurately describe the temporal
and operational aspects of flights. This pragmatic, flight-centric modeling allowed us to focus
on the integration of heterogeneous data sources and the generation of enriched 4D trajectories,
which would serve as the foundation for subsequent tasks. Finally, to ensure consistency with
existing standards and promote interoperability, we established a mapping between our domain
model and the AIRM concepts. This mapping was not intended to provide full compliance, but
rather to align our model semantically with recognized references.

Objective RO-02. Data workflow. The second objective was the design and implementation
of a data integration workflow capable of transforming the raw data obtained from heterogeneous
data sources into enriched 4D flight trajectories. This task was built upon the domain model

179



Chapter 9. Conclusions and future work

developed previously, which determined the information requirements that had to be satisfied by
the integration of these data sources. First, we started by identifying and characterizing the data
sources we could have access to, so the suitability of each of them for feeding our data workflow
could be assessed. The selection process for data sources was primarily driven by two criteria:
data availability and accessibility. To ensure coverage of the information requirements estab-
lished in the domain model, we first examined the availability of data elements across candidate
sources. In those cases where no single source could provide complete coverage, integration of
heterogeneous datasets was considered a necessary step to be addressed later in the process. Ac-
cessibility, on the other hand, was greatly enhanced thanks to the support provided by BR&TE,
which granted us access to a wide set of datasets and sufficient computational resources to explore
and process them effectively.

Additionally, we performed a comparative assessment of data quality across sources for con-
cepts where alternatives existed. While some entities, such as flight plan data, could only be
obtained from a single reliable source, other concepts like ADS-B surveillance data were avail-
able from multiple providers. The selection was thus based on identifying those sources that
best aligned with our requirements in terms of coverage, reliability, and usability within a re-
search context. Some additional sources were consulted to enhance our understanding of the
domain, though they were not incorporated into the final workflow due to scale, licensing, or
usage constraints.

Once the relevant sources had been identified, we designed the data integration pipeline.
This process addressed issues of data quality, solved inconsistencies and duplicated records, and
produced an integrated representation of flight trajectories in the form of enriched 4D trajectories.
Such 4D trajectories comprised sequences of aircraft states that combine spatial and temporal
information with additional attributes describing the status of the flight. Building upon this
integrated data, we defined a trajectory abstraction that combines the raw 4D trajectory with
relevant metadata (e.g. information extracted from the flight data, or the quality assessment of
the trajectory), facilitating semantically meaningful access to flight data. On this abstraction,
additional processing was applied to enhance their data quality. The most significant among
them included the temporal reordering of state vectors within each trajectory and the correction
of anomalous values, as exemplified by the filtering and smoothing of altitude data. To monitor
and validate the quality of the processed data, we also designed a set of data quality metrics.
These metrics allowed us to evaluate the impact of the integration and cleaning steps, and to
iteratively refine the pipeline.

Finally, the data integration process was evaluated through a case study involving a significant
dataset. We selected over 6000 flights corresponding to all commercial movements between a
group of eight European airports over a two-week period. This experiment provided a solid
empirical basis to assess the effectiveness and scalability of our approach.

Objective RO-03. Use cases. The third objective aimed to leverage the constructed 4D
trajectories for implementing different solutions to support ATM operations. To this end, we
selected two tasks of critical importance, such as predicting the estimated time of arrival (ETA)
and predicting the future trajectory of an en-route flight, to propose two novel solutions based
on deep learning methods that adressed these tasks.

The first use case addressed the prediction of arrival times for en-route flights. This task
is particularly challenging due to the wide range of factors that can influence the evolution
of a flight, especially during its cruise phase, where uncertainty is high. However, accurately
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estimating the arrival time well in advance is critical for improving the management of airport
resources, such as runway assignments and terminal airspace, and for increasing the efficiency of
key operations like sequencing arrivals and minimizing holding times.

To address this, we applied deep learning techniques capable of capturing the complex de-
pendencies between multiple features that describe the flight context at each moment. The
selected model architectures were based on Long Short-Term Memory (LSTM) networks, given
their effectiveness in modeling long temporal sequences. Although some studies had noted sta-
bility issues with LSTM models [9], our initial experiments showed promising results compared
to alternative approaches. In addition to LSTM, we explored other architectures such as convo-
lutional networks for sequences and encoder-decoder structures, but none of them surpassed the
performance of LSTM in our preliminary experiments.

Unlike many previous studies that focus on specific origin-destination pairs or predefined
routes, we opted for a broader approach that aimed to predict the arrival time for any inbound
flight to a given airport, regardless of its origin. This required not only a careful selection of
predictive features, but also the inclusion of data sources that were not initially covered by the
domain model. To this end, we performed a comparative analysis of the features used in related
works and evaluated the feasibility of integrating missing features (such as the airport weather
forecasts) into our data workflow.

The prediction model was evaluated through an extensive experiment covering a nine-month
period and including all flights arriving at Madrid Barajas Adolfo Suarez Airport (LEMD).
Results showed that our LSTM-based models outperformed the all the ensemble methods that
constitute the state-of-the-art for the task (e.g., AdaBoost, Gradient Boosting Machines, Random
Forests), both in terms of accuracy and robustness across heterogeneous flight patterns. In
particular, our models showed higher accuracy across all stages of the flight, with the mean error
reduced in 10-48 seconds with respect to the best ensemble method at the different measured
time milestones (between 15 and 150 minutes before landing). The error also showed greater
consistency, with a quadratic error lower in 41-82 seconds in the last two hours of flight time.
These results demonstrate that the implemented methods enhance the predictability of flight
ETA for an improved awareness of the airspace state.

The second use case focused on short-term trajectory prediction. The goal in this case was
to anticipate the aircraft’s future path by predicting several upcoming positions, which would
enable the early detection of potentially hazardous situations, such as loss of separation or entry
into restricted areas. Accurate trajectory prediction contributes directly to the enhancement of
airspace safety and efficiency.

We began by reviewing the state of the art to understand the different strategies for sequence
prediction and to identify the most relevant features and modeling approaches. Building on
the experience gained in arrival time prediction, we adopted a similar LSTM-based approach.
Additionally, we explored the use of a novel architecture particularly suited to this problem:
the Temporal Fusion Transformer (TFT). TFT is designed to combine sequential data present
in our enriched 4D trajectories with static contextual information (e.g., flight plan metadata),
leveraging attention mechanisms to capture relevant patterns over time. This makes it especially
appropriate for our integrated data setting.

The feature set used in this case was more compact, focusing on spatial and dynamic at-
tributes such as position, bearing, speed, and the origin airport. We again conducted a com-
prehensive experiment using nine months of data for flights arriving at Madrid, testing the
performance of the models over a wide variety of trajectory shapes and entry points into the
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terminal area. The LSTM-based architectures yielded results comparable to those in the state
of the art, while TFT models showed promise due to their ability to exploit both temporal de-
pendencies and static contextual inputs. In particular, the TFT model predicted latitude and
longitude for the next 2.5 minutes of flight-time within the TMA with mean errors of 1 and 1.15
kilometers, respectively, and both the LSTM and the TFT models performed well with errors of
2.3 and 3.4 kilometers at any moment of the flight. Notably, our models addressed the full set
of inbound traffic rather than being limited to a single route, marking a significant step toward
generalizability and operational applicability.

The results achieved in the three research objectives allow us to validate the different com-
ponents of our research hypothesis:

The integration of data from heterogeneous sources related to Air Traffic Manage-
ment through a data transformation workflow to produce enriched 4D trajectory data
according to a unified data model, can improve the operational efficiency of Air Traf-
fic Management operations by leveraging data-driven approaches based on machine
learning.

Therefore, we consider the research hypothesis validated. The overall goal of this Thesis,
that is, to demonstrate the value of integrating heterogeneous ATM data into a unified, enriched
representation that enables advanced data-driven applications, has been successfully achieved.

9.1 Future work

This Thesis lays the groundwork for several promising directions of future research, which can
be grouped along the three main axes of the work: the domain model, the data transformation
workflow, and the application of data-driven methods.

Domain model evolution

There are several relevant areas in the developed domain model that can be further developed
to improve coverage and support additional use cases. In particular, a more comprehensive
description of the airspace structure is needed, including the definition of controlled airspace di-
visions, airways, runways, and airport surroundings (such as SID/STAR procedures and relevant
navigation points). Additionally, better integration between trajectory data and meteorological
conditions is an important challenge. This would involve associating trajectories with weather
observations not only at the airport, but also along the route.

Data workflow extension

Extending the domain model will require the incorporation of new data sources to satisfy the
emerging information requirements. Some candidate sources are already known and were par-
tially studied during this work. For instance, ASOS (Automated Surface Observing System) can
provide accurate weather observations at the airport, while GF'S (Global Forecast System) offers
global meteorological forecasts along the route. The integration of additional surveillance data
sources such as FlightRadar24 could also be beneficial to mitigate some limitations observed in
OpenSky Network, particularly in areas with low reception coverage and problematic areas like
the closest airspace to the airport, including the runways, where OpenSky lacks coverage, which
restricts further analysis of landing operations.
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Exploration of advanced models

The enriched 4D trajectory data enables further exploration of novel deep learning architec-
tures beyond those evaluated in this Thesis. Preliminary experiments with architectures such as
TSMixer |17] and Liquid Neural Networks [50] have shown encouraging results. These approaches
offer promising alternatives for modeling complex temporal and spatio-temporal patterns and
should be studied in greater depth. Additionally, emerging techniques in self-supervised learn-
ing and model interpretability could be explored to enhance the robustness and transparency of
prediction models in ATM.

Implementation of additional use cases

The constructed 4D trajectories can support additional use cases beyond those explored in this
Thesis. Their detailed spatio-temporal resolution, combined with integrated flight and contextual
information, makes them well suited for the support of critical tasks. Some examples of these are
airspace capacity assessment, by analyzing traffic density and factors affecting sector throughput;
or early conflict detection, by anticipating potentially hazardous situations through the analysis
of predicted aircraft positions, especially within terminal areas. They also provide a solid basis
for flight efficiency analysis, enabling comparisons between actual and optimal trajectories and
facilitating the study of contributing factors to inefficiencies. The use cases implemented in this
Thesis confirm the feasibility of this enriched representation for operational applications.

Overall, these research directions offer a natural continuation of the work developed in this
Thesis and open the door to new applications and improvements in Air Traffic Management
efficiency and safety.
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Appendix A

Data sources description

This appendix provides an overview of all data sources used in our research, according to their
constituent data fields. All fields are described, along with their domains and illustrative ex-
amples. For certain categorical attributes, or attributes that contain codes that require inter-
pretation, additional tables are provided with a description of their values with the purpose of
clarifying their meanings.
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A.1 OpenSky state vectors

Property Description Domain/range Example

icao24 ICAO 24-bit ID of the transponder (hexadecimal) [0-9A-F|{6} 34444b

callsign Callsign of the flight (can be null) [A-Z]{1,8} IBE05ZB

origin _country  Country name inferred from the ICAO 24-bit address Spain

time position Unix timestamp (seconds) for the last position update 1688335192

last _contact Unix timestamp (seconds) for the last update in general 1688335191

longitude WGS-84 longitude in decimal degrees (-180,180] -105.7453

latitude WGS-84 latitude in decimal degrees [-90,90] 42.5375

baro_altitude Barometric altitude in meters [0,inf) 10675.62

on_ground Boolean value which indicates if the position was retrieved from a surface {0,1} false
position report

velocity Velocity over ground in m/s [0,inf) 238.66

true_track True track in decimal degrees clockwise from north (north=0°) [0,360] 71.14

vertical rate Vertical rate in m/s 9.1

Sensors Receiver ID

geo _altitude Geometric altitude in meters 11163.3

squawk The transponder code (squawk) [0000,7777] 2604

spi Whether flight status indicates special purpose indicator. false

position source  Origin of this state’s position (ADS-B, ASTERIX, MLAT or FLARM) 0,1,2 0

category

Aircraft category

Table A.1: OpenSky state vectors attributes. All fields can be null except icao24 and timestamp.
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A.2 OpenSky Flights API

Property Description Domain/range Example
icao24 ICAO 24-bit ID of the transponder (hexadecimal) [0-9A-F|{6} 4cabld
firstSeen Estimated time of departure (Unix time) 1657573398
estDepartureAirport ICAO code of the estimated departure airport [A-Z]{4} LPPR
lastSeen Estimated time of arrival (Unix time) 1657576440
estArrivalAirport ICAO code of the estimated arrival airport [A-Z]{4} LEMD
callsign Callsign of the flight (if any) [A-Z]{1,8} RYRI1AC
estDepartureAirportHorizDistance  Horizontal distance of the last received airborne position [0,inf) 218

to the estimated departure airport
estDepartureAirport VertDistance ~ Vertical distance of the last received airborne position to  [0,inf) 14

the estimated departure airport
estArrival AirportHorizDistance Horizontal distance of the last received airborne position [0,inf) 1915

to the estimated arrival airport
estArrival AirportVertDistance Vertical distance of the last received airborne position to [0,inf) 60

the estimated arrival airport
departureAirportCandidatesCount Number of other possible departure airports [0,inf)
arrival Airport CandidatesCount Number of other possible arrival airports [0,inf) 3

Table A.2: OpenSky flight attributes. All fields can be null except icao24, firstSeen and lastSeen.
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Property Description Domain/range Example
raw _text The raw TAF report in METAR format See footnot
station _id Station identifier [A-Z0-9]4 UTSS
issue time Issue time (date and time the forecast was prepared) Datetime 2023-07-08 21:00:00
valid time from The start time of when the report is valid Datetime 2023-07-08 21:00:00
valid time to The end time for when the report is valid Datetime 2023-07-09 22:00:00
fest time from The start of the forecast time Datetime 2023-07-09 02:00:00
fcst_time to The end time of the forecast Datetime 2023-07-09 11:00:00
change indicator Forecast change indicator See Table TEMPO
time becoming The time a forecast transition ends (in becoming re- Datetime 2023-07-09 11:00:00
ports)
probability Percent probability of the change (if any) [0,100] 30
wind dir degrees Wind direction (the direction from where the wind [0,360] 60
is blowing)
wind _speed kt Wind speed (in knots) [0,inf) 10
wind _gust_kt Wind gust, corresponds with the maximum wind [0,inf) 20
speed in the last 10 minutes (in knots)
wind _shear hgt ft agl Wind shear height above ground level (in feet) [0,inf) 2000
wind _shear dir_degrees Wind shear direction [0,360] 180
wind _shear speed kt Wind shear speed (in knots) [0,inf) 25
visibility statute mi Horizontal visibility (in miles). The value 6+ denotes [0,6+) 6
anything higher than 6
altim_in_hg Altimeter (in mmHg) [0,inf) 29.9500007629394
vert_vis_ft Vertical visibility (in hundreds of feet) [0,inf) 2

wx_string String encoding of the weather conditions BR VCSH

(MWTAF AMD CYSJ 0821597 0821/0906 23010KT P6SM SCT012 TEMPO 0821,/0824 6SM BR BKN005 OVC012 FM090000 18007KT 6SM BR BKN005
BECMG 0900/0902 1/4SM FG VV002 RMK NXT FCST BY 090000Z
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sky condition

— sky cover

— cloud base ft agl

— cloud_type

turbulence condition

— turbulence _intensity

— turbulence min alt ft agl
— turbulence max_alt ft agl
icing condition

— icing intensity

— icing min alt ft agl

— icing max alt ft agl
temperature

— valid _time

— sfc_temp_c
— max_temp c

— min_temp c¢

Describe the sky conditions at several flight levels
Sky coverage.

Cloud base

Cloud type

Turbulence intensity values
Minimum altitude for turbulence (in feet)

Maximum altitude for turbulence (in feet)

Icing intensity values

Minimum altitude for icing conditions (in feet)
Maximum altitude for icing conditions (in feet)
An array of temperature data

Date and time at which temperature will become
valid

Surface temperature
Max temp
Min temp

See Table
See Table

[0,9]

[0,9]
2000

(-273,inf)
(-273,inf)
(-273,inf)

FEW
50
CB

100
3100

2
10000
18000

2023-07-09 09:00:00

23
40
10

Table A.3: TAF report description.
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Code Description

TEMPO Temporary change: the weather will revert to the previous state
after the indicated period

BECMG Progressive and permanent change to new weather conditions
FM Immediate and permanent change to new weather conditions

PROB For weather changes that are not certain, probability of change
(30 or 40%)

COR Corrected report (replaces completely the previous one)

AMD Amended report (partial report that overwrites the previous one)

Table A.4: Description of change indicator codes in TAF reports.

Code Description

FEW Few clouds

SCT  Scattered clouds

BKN  Broken clouds

OVC  Overcast clouds

NSC No significant cover

NCD No clouds measured

SKC No cloud cover

CLR  No cloud cover below 12K feet

Table A.5: Description of sky condition codes in TAF reports.

Code Description

CB Cumulonimbus cloud

TCU Towering cumulus of great vertical extent

Table A.6: Description of cloud type codes in TAF reports.
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A.4 Network Manager Flight Plans

Property Description Domain/range Example
flightPlanData.structured
— flightPlan
— ifplld Unique identifier assigned to flight by the NM sys- [A-Z]{2}[0-9]{8} AT03394183
tem. Mandatory.
— aircraftld Information regarding the aircraft. Mandatory.
— aircraftld Assigned callsign to the flight [A-Z0-9]{2,7} THY7JQ
— registrationMark Registration mark of the aircraft [A-Z0-9]{1,50} TCJST
— aircraft Address ICAO address of the aircraft (hexident or transpon- [0-9A-F|{6} 4BAAT4
der code)
— ssrInfo SSR code assigned to the aircraft by the ATS and its  [0-9]{4}
transmission mode (squawk)
— aerodromeOfDeparture Airport from which the aircraft is set to depart.
Mandatory.
— icaolD ICAO ID of the designated airport LTFM
— aerodromesOfDestination Airports where the aircraft is set to arrive. Manda-
tory.
— aerodromeOfDestination Airport where the aircraft have to arrive
— icaolD ICAO ID of the designated airport LKPR
— alternateX Airports where the aircraft can be rerouted into
if necessary.  Multiple airports can be defined
(X=1,2...)
— icaolD ICAO ID of the designated airport EDDC
— enrouteAlternateAerodromes Aerodromes where the aircraft can land in case of
emergency along the route
— icaolD ICAO ID of the designated airport LOWW
— takeOffAlternateAerodromes Aerodromes where the aircraft can land in case of
emergency at take-off
— icaolD ICAO ID of the designated airport LTFM
— whatIfRerouteReference Indication of AO What-If rerouting reference in a [1,9]
flight plan
— numberOfAircraft Number of aircraft in a formation flight [1,99] 2
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— aircraftType

— icaolD
— totalEstimatedElapsed Time
— wakeTurbulenceCategory
— flightType
— flightRules
— estimated OffBlockTime

— icaoRoute
— stayInformation

— enrouteDelays
— delay
— point

— equipmentCapability AndStatus

— surveillanceEquipment

— otherInformation

— supplementaryInformation

— iataFlightNumber
— arrivalAirportSlot
— departureAirportSlot

Aircraft type of the aircraft performing the flight.
Mandatory.

ICAO identifier of the aircraft type

Total estimated elapsed time. Mandatory.

Wake turbulence category. Mandatory.

Type of the flight. Mandatory.

Flight rules applicable to the flight (visual or instru-
mental). Mandatory.

The estimated time at which the aircraft will start
the movement associated with departure. Manda-
tory.

Encoded Flight Plan ICAO Route. Mandatory.
Type of activity (training, photographic mission, etc)
to be performed during the stay periods mentioned
in the route of the flight

A list of delays or holdings planned at given points
Delay

The point where the delay is planned to occur
(ICAO)

Represents  the capability and status of
the equipment of the aircraft of the flight.
EQUIPPED/NOT EQUIPPED. Mandatory.
Surveillance equipment of the aircraft of the flight
EQUIPPED/NOT _EQUIPPED. Mandatory.

Any other flight data Items specified in the bilateral
agreement. Refer to ICAO 4444 field type 18 (Other
information). Mandatory.

Supplementary flight data. Refer to ICAO 4444 field
type 19 (Supplementary information). Mandatory.
Public ID of the flight assigned by IATA.
Designated slot to start the landing operation.
Designated slot to start the take-off operation.

[A-Z][A-Z0-9]{1,3} A321

HHMM

See Table
See Table
See Table

[A-Z]{2}[0-9]{1,4}

A.8]

A.9

A.10

0226
MEDIUM
SCHEDULED
IFR

2024-01-02 14:35:00

See footnot

(2)N0441F180 NETEX5T NETEX 7282 DIBIR L179 ROMIN/N0463F320 L179 SASKI L608 LOGAN LOGANIH
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— flightPlanOriginator
— airFiledData

— atsUnitld

— startingPoint

— clearedLevel

— estimated TimeOver
— eetsToLocations

— elapsedTime

— fir

— point

— latitude

— longitude
— aircraftOperator

— operatingAircraftOperator
— originatorAddress

— knownErrorIndicators
timestamp

uuid

Entity that submitted the flight plan to NM (usually
the airline)

Estimate data provided when the flight plan was filed
airborne

ICAO ID of the ATS unit from which supplementary
flight plan data can be obtained

Starting point at which the air filed flight plan is
submitted

Level at which the aircraft has been cleared to join
controlled airspace over the given point

Estimated date/time over the given point

Array of locations and the corresponding accumu-
lated elapsed time to these locations (FIR, named
point or coordinates).

The elapsed time.

ICAOQO ID defined for the reference FIR

ICAO ID defined for the reference point

Latitude of the reference point

Longitude of the reference point

ICAO ID of the aircraft operator that owns the air-
craft

ICAO ID of the operating aircraft operator
Originator address. Mandatory.

List of the known error indicators

Timestamp of the message.Mandatory

Unique identifier assigned to message by the NM sys-
tem. Mandatory.

11
LBSR

THY

THY
EGLLBAWD
MODE S

Table A.7: Flight plan description.

suelJ WS IoSeury YIompN TV



Appendix A. Data sources description

ICAO code Value Description
H HEAVY Take-off mass of 136,000 kg or more
M MEDIUM Take-off mass between 7,000 kg and 136,000 kg
L LIGHT Take-off mass of 7,000 kg or more
J SUPER Special cases where the take-off is much higher than the

limit set for HEAVY

Table A.8: Description of wake turbulence category codes in flight plans.

ICAO code Value Description
S SCHEDULED Scheduled commercial air transport services
N NOT_ SCHEDULED Not scheduled commercial air transport services: charter,
on demand...
G GENERAL Other flight services: instructional flying, aerial work,
non-commercial business aviation...
M MILITARY Military flights
X OTHER Any flight type that is not of a type described above
Table A.9: Description of flight type codes in flight plans.
ICAO code Value Description
I IFR Flight guided by instrumental flight rules
Y IFR_THEN VFR Flight guided by instrumental flight rules that is expected
to transition to visual flight rules
\Y VFR Flight guided by visual flight rules
Z VFR_THEN IFR Flight guided by visual flight rules that is expected to
transition to instrumental flight rules
Table A.10: Description of flight rules type codes in flight plans.
196 Jorge Silvestre Vilches
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A.5 Network Manager Flight Data

Property Description Domain /range Example
flightData
— flightld IFPL id and flight keys associated to the
flight
— id Unique IFPL id.Mandatory [A-Z]{2}]0-9]{8} AT04873391
— keys
— aircraftld Assigned callsign to the flight [A-Z0-9]{2,7} ITY1463
— aerodromeOfDeparture ICAO ID of the aerodrome of departure. LIRF
— nonlCAOAerodromeOfDeparture True if the aerodrome of departure is not an false
ICAO one.
— airFiled True if the flight plan was filed airborne false
— aerodromeOfDestination ICAO ID of the filed aerodrome of destination LIPZ
— nonlCAOAerodromeOfDestination  True if the filed aerodrome of destination is false
not an ICAO one
— estimatedOffBlockTime Estimated off-block date/time according to Datetime 2023-09-06 07:20:00

— aircraft Address

— aircraftType

— flightState

— estimated TakeOff Time

— calculatedTakeOff Time

the latest processed flightplan message (by
IFPS)

The 24 bit aircraft address

ICAO identifier of an aircraft type.

Flight state.

Estimated take-off time: the take-off time
corresponding to the FTFM flight pro-
file. The corresponding estimated off-
block time of the FTFM flight pro-
file is the flight.estimatedTakeOffTime -
flight.taxiTime

Calculated take-off time: the take-off time
corresponding to the RTFM flight pro-
file. The corresponding calculated off-block
time is the flight.calculatedTakeOffTime -
flight.taxiTime

[A-Z]{1}[A-Z0-9]{1,3}
See Table

4CASD1
A320

ATC ACTIVATED
2023-09-06 07:33:00

2023-09-06 07:57:00
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— actualTakeOff Time

— estimated TimeOfArrival
— calculated TimeOfArrival
— actualTimeOfArrival

— actualOffBlockTime

— aircraftOperator

— operatingAircraftOperator
— readyEstimated OffBlockTime

— cdmEstimatedOffBlockTime

— icaoRoute

— routeLength
— estimatedElapsed Time

Estimated Actual take-off time: the take-off
time corresponding to the CTFM flight pro-
file. The corresponding estimated actual off-
block time is the flight.actualTakeOffTime -
flight.currentlyUsed TaxiTime.

Estimated time of arrival: time of arrival ac-
cording to the FTFM flight profile.
Calculated time of arrival: time of arrival ac-
corting to the RTFM flight profile.
Estimated Actual time of arrival: time of ar-
rival according to the CTFM flight profile.
Estimated Actual Off-Block time: off-block
time according to the CTFM flight profile.
Aircraft operator.

Operating aircraft operator.

Last flight plan related estimated off-block
time, but amended by NM or READY mes-
sage (filing time). Present if different from
the latest flight plan related estimated off-
block time in flightId.keys; null otherwise
The last ready estimated off-block time
amended by E-DPI or T-DPI _t message (tar-
get takeoff time). Present if different from the
latest flight plan related estimated off-block
time in flightld.keys; null otherwise.
Complete ICAO 4444 item 15 information
comprising of initial requested speed and
flight level and route

Length of the route.

Estimated elapsed time.

2023-09-06 07:57:00

2023-09-06 08:21:00

2023-09-06 08:45:00

2023-09-06 08:44:00

2023-09-06 07:33:00

ITY
ITY

See footnotd®

277

(3)N0436F350 LATRA7P LATRA UM133 LERGA /N0430F350 UY30 LATAM UY22 NISAR NISAR6R
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— flightDataVersionNr

— arrivallnformation

— registrationMark
— aircraftType

— aircraftlATAId
— arrival TaxiTime

— nmArrivalProcedure
— arrivalRunway

timestamp
uuid

The version number of the flight data: the
version number increases as the flight data
changes over time.

Arrival information from API messages and
exchange of times over the coordination fix
point.

The last aircraft registration mark provided
The last ICAO Aircraft type provided

The last aircraft IATA identifier provided
The last estimated or actual taxi time from
landing to gate provided

The identifier of the Standard Instrument Ar-
rival Route currently selected by NMOC
The identifier of the last assigned arrival run-
way provided

Timestamp of the message.Mandatory
Unique identifier assigned to message by the
NM system. Mandatory.

[A-Z0-9]{1,50}

27

TCJST

2023-09-06 08:39:34

See footnot

Table A.11: Flight data description.

4)3168861d-c4ab-4eb2-a9a3-a67ed2cecc-74
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A.6 Network Manager Flight Data

Code Value Description

FILED Filed A flight is in the state Filed after ETFMS received its FPL

FILED SLOT Filed, Slot Allocated A Filed flight is in the state Filed, Slot Allocated after slot allocation was applied
_ALLOCATED to it

FILED SLOT ISSUED
PLANNED

PLANNED REROUTED

PLANNED SLOT
_ ALLOCATED

PLANNED SLOT
_ ALLOCATED
_REROUTED

CANCELLED

TACT _ACTIVATED

ATC ACTIVATED

TERMINATED

Filed, Slot Issued
Planned

Planned, Re-routed
Planned, Slot Allocated

Planned, Slot Allocated,
Re-routed

Cancelled

TACT Activated

ATC Activated

Terminated

A Filed flight is in the state Filed, Slot Issued after slot allocation was applied to it
and the corresponding SAM was sent

A flight is in the state Planned after ETFMS received its RPL or if its data comes
from PREDICT Flight Data (PFD)

A Planned flight is in the state Planned, Re-routed after it was re-routed

A Planned flight is in the state Planned, Slot Allocated after slot allocation was
applied to it

A Planned flight is in the state Planned, Slot Allocated, Re-routed after slot allo-
cation was applied to it and it was re-routed

Flight data in the state Cancelled is never shown in counts, flight lists, etc... and
is almost equivalent to removed flight data, with the exception that a new FPL can
correlate with cancelled flight data (rerouteing and departure information)

A flight is TACT Activated when the ATOT is in the future.<br>If there is a T-
DPI-s TTOT: within the CTOT tolerance window (regulated flights); any TTOT
(non-regulated flights). Or if there is a A-DPI TTOT: within the CTOT tolerance
window (regulated flights); any TTOT (non-regulated flights)

The reception of a coordination message (FSA, APL, ACH), an Air-Filed Flight
Plan (AFIL), an APR, a DEP, an FAA Departure Information (FDI) and a CPR
will put a flight in the state ATC Activated

An ATC activated flight (receiving ATC updates such as CPRs) will be Terminated
20 minutes after the latest Actual Time of Arrival (ATA), which is derived from
ATC data. A TACT activated flight (no ATC updates received) will be Terminated
180 minutes after the latest ATA, which is derived from the flight plan

Table A.12: Description of flight state codes in flight plans.
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A.7 Other datasets

Airlines and airports

Property  Description Domain/range Example
name Complete name of the aerodrome A Coruna Airport
iata TATA 3-letter code of the aerodrome [A-Z]{3} LCG
icao ICAO 4-letter code of the aerodrome [A-Z]{4} LECO
lat Latitude of the aerodrome [-90,90] 43.302059
lon Longitude of the aerodrome (-180,180] -8.37725
country  Name of the country the aerodrome is placed Spain
alt Altitude over the sea level of the aerodrome in feet 326
Table A.13: Airports attributes
Property  Description Domain/range Example
Name Complete name of the airline Iberia
Code TATA 2-letter code of the airline [A-Z]{2} IB
ICAO ICAO 3-letter code of the airline [A-Z]{3} IBE

Table A.14: Airlines attributes

Jorge Silvestre Vilches
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Appendix B

Results of the data processing

This appendix presents the detail of the results derived from the experimentation conducted in
Chapter@ The results are presented aggregated by route (that is, a pair of origin and destination
airports) to enable a better interpretation of the results, since the globally aggregated statistics,
while insightful, include trajectories with very different characteristics and can hide some relevant
observations.

Table B.I]reflects the results of the integration between the flights derived from the flight plan
data and the surveillance data to construct individual 4D trajectories, before any trajectory-level
processing is applied. For each route, we indicate the origin and destination airports, the number
of identified flights, the number of vectors that were integrated with these flights, and the average
number of vectors that comprises each constructed trajectory in that route. The dispersion of
the distribution for each route is calculated as the standard deviation.

Table presents a comparison of the same set of routes before and after applying the
trajectory processing pipeline described in Chapter [6] For each route, we provide the number of
flights, and the average number of vectors per trajectory before and after the trajectory cleaning.
We also analyze the variation in the traveled distance by indicating the raw and the processed
distances, as well as the dispersion of these values. Finally, the mean processing time is also
shown to characterize the time required to compute the trajectories from each route.
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Origin  Destination Flights Vectors Mean length (+£StD)
EDDF EGLL 192 153,349  798.6 + 125.10
EDDF EHAM 134 78,661  587.0 + 83.68
EDDF EKCH 80 55,624 695.3 + 86.41
EDDF LEMD 121 169,107 1397.5 + 189.64
EDDF LFPG 146 80,767  553.2 £ 94.14
EDDF LGAV 48 61,439 1279.9 £+ 170.88
EDDF LIRF 81 63,633  785.5 £ 103.82
EGLL EDDF 195 136,187  698.3 + 97.72
EGLL EHAM 203 105,426  519.3 + 80.35
EGLL EKCH 132 113,999 863.6 + 116.06
EGLL LEMD 145 154,230 1063.6 + 197.86
EGLL LFPG 147 70,245  477.8 £ 79.97
EGLL LGAV 94 159,631 1698.2 + 199.71
EGLL LIRF 95 102,067 1074.3 £ 131.61
EHAM EDDF 151 76,373  505.7 4+ 73.80
EHAM EGLL 200 111,368  556.8 £ 108.98
EHAM EKCH 168 107,430  639.4 + 103.69
EHAM LEMD 130 180,097 1385.3 £ 169.90
EHAM LFPG 147 77,097 5244 + 86.10
EHAM LGAV 66 102,998 1560.5 £ 180.60
EHAM LIRF 92 96,197 1045.6 4+ 139.71
EKCH EDDF 81 60,920  752.1 4+ 117.43
EKCH EGLL 121 125,173 1034.4 + 162.08
EKCH EHAM 166 124,017  747.0 £+ 99.04
EKCH LEMD 24 44,254 1843.9 + 213.99
EKCH LFPG 106 107,153 1010.8 + 153.65
EKCH LGAV 34 56,346 1657.2 + 241.71
EKCH LIRF 44 59,094 1343.0 + 168.51
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LEMD EDDF 118 148,991 1262.6 £ 178.19
LEMD EGLL 152 167,159 1099.7 £ 181.54
LEMD EHAM 126 161,949 1285.3 £ 178.53
LEMD EKCH 28 45,021 1607.8 £ 229.72
LEMD LFPG 111 102,880  926.8 £ 155.00
LEMD LGAV 80 101,261 1265.7 £ 172.64
LEMD LIRF 175 138,740  792.8 £ 117.79
LFPG EDDF 164 95,284  581.0 £ 95.49
LFPG EGLL 142 727738  512.2 £ 98.28
LFPG EHAM 147 81,200  552.3 £ 86.00
LFPG EKCH 126 114,725  910.5 £ 125.03
LFPG LEMD 109 111,188 1020.0 £ 174.39
LFPG LGAV 120 177,412 1478.4 £ 220.03
LFPG LIRF 117 99,827  853.2 £ 134.70
LGAV EDDF 64 99,794 1559.2 £ 224.62
LGAV EGLL 100 200,860 2008.6 + 247.79
LGAV EHAM 64 125,682 1963.7 + 245.16
LGAV EKCH 44 79,978 1817.6 £ 197.50
LGAV LEMD 76 105,579 1389.2 &£ 267.20
LGAV LFPG 128 226,420 1768.9 £ 256.55
LGAV LIRF 109 100,598  922.9 £ 190.59
LIRF EDDF 79 73,455  929.8 £ 136.47
LIRF EGLL 95 123,643 1301.5 £ 174.32
LIRF EHAM 82 106,739 1301.7 + 147.87
LIRF EKCH 44 61,398 13954 + 132.89
LIRF LEMD 172 148,389  862.7 £ 146.07
LIRF LFPG 143 138,646  969.5 + 146.75
LIRF LGAV 100 71,877  T718.7 £ 121.65

Table B.1: Summary of integrated trajectory data per origin—destination pair, detailing the

number of flights, state vectors, and trajectory lengths (in number of vectors).

Jorge Silvestre Vilches
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Origin  Destination Flights Vectors Distance Process time
Initial Final Initial Final
EDDF EGLL 192 799 757 6421 £ 236.49  483.3 £ 65.74 124 £ 25.15
EDDF EHAM 134 587 568  408.9 + 207.18  308.0 + 88.55 8.1 £+ 2.95
EDDF EKCH 80 695 670  530.9 £ 132.84 481.6 + 71.67 6.2 £2.24
EDDF LEMD 121 1398 1361 1122.1 +376.94 976.6 + 115.04 6.1 +£ 3.07
EDDF LFPG 146 553 532  388.4 +£268.06 307.1 £ 71.98 5.7 £2.90
EDDF LGAV 48 1280 1204 1327.0 4+ 281.36 1175.7 £ 37.61 4.2 + 1.42
EDDF LIRF 81 786 741  868.2 + 387.80 645.4 + 79.66 24 +£1.11
EGLL EDDF 195 698 664  663.6 £ 268.01  466.7 £ 75.05 7.4 £ 3.04
EGLL EHAM 203 519 505 3244 + 130.09  269.2 + 17.97 6.9 £+ 2.02
EGLL EKCH 132 864 840  735.2 £ 177.55  654.9 £ 23.89 5.6 £ 2.09
EGLL LEMD 145 1064 1015 1063.9 + 320.32  840.0 + 62.59 5.9 £ 3.54
EGLL LFPG 147 478 468  299.2 £ 69.71 273.5 £ 21.49 6.3 £ 2.07
EGLL LGAV 94 1698 1622 1747.3 4+ 297.26 1567.7 £ 53.44 5.1 £ 3.27
EGLL LIRF 95 1074 1035 1053.6 + 267.02  949.4 4+ 11096 2.2 £ 0.79
EHAM EDDF 151 506 480  379.6 £ 168.44  272.8 £ 18.28 7.0 £2.74
EHAM EGLL 200 557 531  382.7 £ 163.72  283.8 £ 60.48 11.3 £ 8.89
EHAM EKCH 168 639 626  468.5 £ 106.29  437.8 £ 23.85 7.8 £ 24.57
EHAM LEMD 130 1385 1346 1086.8 + 314.84  957.7 & 53.59 6.8 £ 3.46
EHAM LFPG 147 524 506  312.5 £ 84.82 278.0 £ 22.81 6.3 £ 3.08
EHAM LGAV 66 1561 1487 1513.3 £+ 208.99 1405.7 £ 36.54 4.9 £+ 1.50
EHAM LIRF 92 1046 1000 1083.2 £ 562.68  852.6 + 103.37 3.3 + 1.54
EKCH EDDF 81 752 727 563.0 £207.22 4714 £136.90 7.0 £ 4.25
EKCH EGLL 121 1034 1001  802.1 + 24297 669.1 + 60.46 12.9 £ 31.17
EKCH EHAM 166 747 734 485.3 £ 206.78  420.1 £ 91.80 7.6 £ 4.53
EKCH LEMD 24 1844 1813 1421.8 + 193.19 1336.0 &+ 71.69 9.1 £+ 8.35
EKCH LFPG 106 1011 992  750.8 £ 323.95 653.7 £ 80.75 6.0 £ 2.51
EKCH LGAV 34 1657 1609 1536.7 &+ 288.74 1376.4 + 30.72 5.0 £ 2.01
EKCH LIRF 44 1343 1320 1076.9 4+ 217.19  972.6 £ 19.24  11.5 + 47.45
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LEMD EDDF 118 1263 1225 1298.2 + 621.88 1034.3 4 188.41 8.2 £ 4.69
LEMD EGLL 152 1100 1054 1127.8 4+ 338.72  867.7 £ 94.99 8.9 £5.54
LEMD EHAM 126 1285 1252 1130.5 #+ 291.84  968.9 =+ 80.70 8.1 = 4.03
LEMD EKCH 28 1608 1584 1470.7 + 238.38 13419 £ 12.04 7.0 £ 3.19
LEMD LFPG 111 927 906  838.4 £ 291.60  725.0 £ 49.92 6.6 + 3.41
LEMD LGAV 80 1266 1217 1574.4 £ 111.02 1501.7 £ 32.05 4.1 £ 1.50
LEMD LIRF 175 793 761  973.7 £ 185.55  882.7 &£ 52.84 2.6 £1.19
LFPG EDDF 164 581 556 4949 £ 285.55  366.6 £ 133.12 8.1 £ 4.34
LFPG EGLL 142 512 498 3594 £+ 131.84 287.5 £67.18 11.2 £ 7.80
LFPG EHAM 147 552 537  398.7 £195.47  292.4 +£ 29.00 7.9 £ 3.55
LFPG EKCH 126 911 898  708.6 £ 93.69 675.5 £ 38.67 8.6 £ 28.25
LFPG LEMD 109 1020 994  788.2 £ 202.00 701.1 £ 72.12 9.3 £ 30.59
LFPG LGAV 120 1478 1394 1591.8 £ 316.58 1389.1 + 71.62 4.5 £1.81
LFPG LIRF 117 853 811  896.6 £ 321.97 731.4 +£ 32.35 2.7 £1.74
LGAV EDDF 64 1559 1470 1311.8 + 219.89 1194.5 £ 29.08 7.4 £ 3.46
LGAV EGLL 100 2009 1896 1822.1 £ 302.14 1603.6 £ 69.13  14.4 + 32.67
LGAV EHAM 64 1964 1893 1608.8 &+ 303.79 1455.5 4+ 126.91 7.8 £ 3.56
LGAV EKCH 44 1818 1759 1521.3 £ 260.62 1393.8 £ 41.86 8.4 + 14.39
LGAV LEMD 76 1389 1326 1608.6 + 137.99 1525.0 £ 41.15 5.6 £+ 3.49
LGAV LFPG 128 1769 1669 1517.2 £ 513.79 13674 £+ 106.77 6.3 £ 3.39
LGAV LIRF 109 923 863  745.8 £ 89.75 721.2 £ 69.61 5.7 £ 2.65
LIRF EDDF 79 930 890  787.1 £ 284.25  670.5 £ 144.96 6.5 * 2.36
LIRF EGLL 95 1302 1248 1163.0 £ 290.41  980.9 £ 78.22  10.7 £ 8.06
LIRF EHAM 82 1302 1266 1033.6 £ 258.29  895.9 £ 33.30 8.7 £ 5.36
LIRF EKCH 44 1395 1376 1138.3 £ 409.96 1006.3 £ 41.25 6.5 £+ 2.86
LIRF LEMD 172 863 825  974.6 £ 184.25  891.3 £ 26.38 4.2 £ 2.67
LIRF LFPG 143 970 929  804.7 £ 194.74  712.3 £ 33.96 5.0 £ 2.36
LIRF LGAV 100 719 673  730.9 £ 62.88 713.5 £ 19.52 3.3 £ 1.40

Table B.2: Per-route statistics before and after applying the trajectory processing pipeline, including the traveled distance, the

trajectory length (in number of vectors) and the average processing time.
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Appendix C

Data description of ETAs use case

C.1 Data distribution amongst routes

This Appendix presents the distribution of trajectories amongst the airports considered in the
study. The data is divided in months, since the data was sampled to ensure a homogeneous time
distribution, and an equivalent representation of each route.

Month

Airport  Total 01-22 02-22 03-22 04-22 05-22 06-22 07-22 08-22 09-22

EBBR 628 70 70 71 76 72 69 65 65 70
EDDB 971 73 69 72 67 43 47 58 70 72
EDDF 628 69 65 65 67 66 66 74 7 79
EDDH 345 31 35 26 46 43 31 50 41 42
EDDL 563 73 68 59 68 70 42 o1 62 70
EDDM 616 66 68 78 68 66 74 67 60 69
EDDP 499 71 66 56 53 41 o4 66 44 48
EGCC 252 39 39 32 35 31 14 16 25 21
EGKK 615 67 69 71 60 64 70 73 71 70
EGLL 612 59 68 74 60 61 69 66 82 73
EHAM 657 68 72 81 7 81 69 75 69 65
EIDW 649 71 75 72 69 7 73 76 70 66
EKCH 284 45 41 28 32 28 18 24 35 33
EPWA 200 32 22 23 20 9 13 18 28 35
LBSF 186 23 12 18 28 18 15 22 22 28
LEBB o987 69 69 68 63 65 62 65 69 o7
LEBL 647 74 69 74 71 64 75 77 66 7
LECO 595 58 66 70 62 99 67 70 76 67
LEVC 041 58 70 34 o4 66 49 73 71 66
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LEZL 596 71 64 51 74 69 o6 70 72 69
LFLL 601 70 70 58 69 70 61 63 71 69
LFML 606 67 62 68 72 71 64 64 71 67
LFMN 515 49 44 34 71 70 95 65 72 95
LFPG 555 62 o6 99 66 o4 66 63 60 69
LFPO 592 59 64 76 76 66 66 63 67 95
LFRS 466 32 28 22 72 73 68 58 62 o1
LGAV 401 34 20 29 23 21 64 74 66 70
LHBP 338 31 11 28 53 44 37 34 55 45
LIMC 595 70 40 62 75 79 67 81 56 65
LIPE 561 70 16 62 63 65 66 73 69 7

LIPZ o974 66 27 60 64 76 70 72 66 73
LIRF 585 71 70 64 56 o7 70 62 69 66
LIRN 356 41 10 35 - 27 56 59 68 60

LKPR 197 18 20 16 28 16 18 20 34 27
LOWW 570 71 18 62 76 67 73 67 71 65
LPPR 611 70 65 62 74 63 69 68 65 75
LPPT 560 58 bY) 72 54 63 67 68 61 62
LROP 440 56 30 38 62 50 48 48 58 20
LSGG 615 75 68 62 61 68 70 72 66 73
LTFM 551 50 33 50 72 67 69 70 69 71

Total 20560 2307 1984 2142 2337 2260 2257 2400 2451 2422

Table C.1: Number of total trajectories for each airport and month.
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C.2 Results of the individual models

This Appendix presents the results of the evaluation of each individual model, and the corre-
sponding results of the global model, on their respective test datasets, in order to show the
improvements explained in the Section 7.5. Where the test dataset had too few examples (less
than 10), the results of the evaluation were not included in the table. This happens for some
at-time metrics when the route is too short to produce long enough windows, or some windows
were discarded due to gaps in the trajectories (windows with gaps longer than 180 seconds with
no data are discarded).

MAE 15 MAE 30 MAE 60 MAE 90 MAE all

EBBR  Individual 130.32 182.54 263.29 410.46 224.42

Global 107.58 161.66 211.04 376.60 185.19
EDDB  Individual 200.19 206.30 221.80 283.89 254.63
Global 158.10 177.43 193.63 249.94 215.65
EDDF  Individual 160.81 190.38 235.26 243.22 217.95
Global 80.98 136.54 166.99 206.64 142.90
EDDH  Individual 156.38 211.76 196.31 219.33 201.22
Global 73.39 155.37 136.17 157.75 134.54
EDDL  Individual 177.09 249.97 276.45 353.59 274.62
Global 108.79 214.02 211.17 238.49 196.62
EDDM  Individual 150.57 186.80 235.65 299.33 232.37
Global 74.07 120.54 143.25 187.94 129.68
EDDP  Individual 111.68 134.04 151.12 224.01 181.29
Global 83.39 124.43 147.30 200.04 164.77
EGCC  Individual 259.82 267.79 275.49 236.30 254.59
Global 93.88 176.37 200.84 189.73 170.68
EGKK  Individual 157.17 222.29 200.15 508.26 197.85
Global 109.61 206.12 189.18 520.55 176.48
EGLL Individual 163.23 274.88 206.18 467.70 212.00
Global 99.46 249.22 176.81 303.23 172.41
EHAM Individual 135.99 148.01 225.03 279.65 205.32
Global 98.95 141.74 190.47 249.56 163.76
EIDW  Individual 236.97 181.19 216.53 222.39 216.39
Global 104.65 176.44 174.77 184.62 160.77
EKCH  Individual 147.00 147.99 152.89 203.44 199.87
Global 81.64 114.08 106.48 151.01 142.20
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EPWA  Individual 151.12 177.98 243.64 269.82 293.41

Global 88.88 112.20 166.09 210.62 204.38
LBSF Individual 276.49 331.08 370.60 355.86 399.45
Global 103.98 158.41 158.77 190.08 217.38
LEBB Individual - - - - 80.49
Global - - - - 54.08
LEBL Individual 115.01 - - - 101.52
Global 78.41 - - - 60.03
LECO Individual 77.05 - - - 79.25
Global 106.91 - - - 83.33
LEVC Individual - - - - 339.24
Global - - - - 33.11
LEZL Individual 119.62 - - - 66.00
Global 87.74 - - - 64.50
LFLL Individual 83.09 119.58 396.09 - 110.74
Global 68.43 106.84 276.51 - 89.39
LFML  Individual 118.67 145.67 - - 143.32
Global 101.13 143.22 - - 123.06
LEMN  Individual 122.94 185.06 298.67 - 175.55
Global 99.78 162.31 235.79 - 147.18
LFPG Individual 84.57 140.32 203.30 - 152.01
Global 73.03 133.18 172.34 - 126.55
LFPO Individual 136.66 181.16 216.72 - 185.63
Global 97.48 137.69 208.40 - 146.33
LFRS Individual 103.34 120.50 - - 118.34
Global 84.64 109.34 - - 89.53
LGAV  Individual 173.54 194.06 283.32 291.90 283.07
Global 121.66 167.63 252.61 152.02 186.60
LHBP Individual 207.05 176.42 216.33 255.85 243.84
Global 63.92 112.86 120.76 184.79 154.41
LIMC Individual 148.90 147.00 201.68 - 185.53
Global 91.72 115.08 144.50 - 125.07
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LIPE Individual 133.63 176.53 221.08 493.67 209.38

Global 82.96 158.42 186.99 362.37 165.45
LIPZ Individual 129.06 195.23 222.24 223.89 203.36
Global 98.33 128.35 179.14 184.72 147.73
LIRF Individual 131.07 181.82 320.35 343.06 178.70
Global 114.27 163.34 234.84 216.52 145.39
LIRN Individual 170.17 180.10 267.35 180.26 201.18
Global 81.68 115.53 193.88 131.63 121.94
LKPR  Individual 282.28 232.62 282.53 325.89 303.93
Global 101.44 145.04 188.74 171.69 154.58
LOWW Individual 136.06 188.05 246.55 326.52 287.22
Global 92.00 169.82 184.31 211.42 202.01
LPPR  Individual 100.28 - - - 79.89
Global 88.14 - - - 70.82
LPPT Individual 125.42 - - - 118.41
Global 81.08 - - - 95.34
LROP  Individual 271.66 201.49 217.56 272.13 292.23
Global 97.87 101.55 126.45 173.66 176.08
LSGG Individual 66.51 101.89 141.21 - 103.82
Global 67.87 106.49 125.93 - 92.78
LTFM  Individual 224.68 148.71 166.42 213.30 277.56
Global 141.92 137.14 140.70 160.26 214.47

Table C.2: Results of the evaluation of individual and global models. Units in seconds.
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ATS Air Traffic Services. [I7], 20 22]

ATZ Aerodrome Traffic Zone.

CTA Controlled Traffic Area.

CTR Controlled Traffic Region.

EOBT Estimated Off Block Time. [35] [7]]
ETA Estimated Time of Arrival.

ETFMS Enhanced Tactical Flow Management System. [4]

FIC Flight Information Centre. [I§]
FIR Flight Information Region.

FIS Flight Information Service.
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Acronyms

FIXM Flight Information Exchange Model.

GNSS Global Navigation Satellite System.
GPS Global Positioning System. [60]

ICAO International Civil Aviation Organization.
IFPS Initial Flight Plan Processing System. 35} [70]
IFR Instrumental Flight Rules.

IWXXM ICAO Meteorological Information Exchange Model.
METAR Meteorological Aerodrome Report. [72]

NMOC Network Manager Operations Centre. [70]

RTA Remaining Time to Arrival.

SID Standard Instrument Departure.

SIGMET Significant Meteorological Information.
STAR Standard Terminal Arrival Routes. 23]

SWIM System Wide Information Management. [35]

TAF Terminal Aerodrome Forecast.
TMA Terminal Manoeuvring Area. [18]
TWR Tower of the aerodrome.

UAR Upper Air Routes. 22]
UIR Upper Information Region. [22]

VFR Visual Flight Rules.

WXXM Weather Information Exchange Model.
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