
Accepted version of the article published in: Computers and Industrial Engineering, 2022, vol. 171 
https://doi.org/10.1016/J.CIE.2022.108463
Towards a Connected Digital Twin Learning Ecosystem
in Manufacturing: Enablers and Challenges

Abstract

The evolution of digital twin, leveraged by the progressive physical-digital

convergence, has provided smart manufacturing systems with knowledge-generation

ecosystems based on new models of collaboration between the workforce and in-

dustrial processes. Digital twin is expected to be a decision-making solution

underpinned by real-time communication and data-driven enablers, entailing

close cooperation between workers, systems and processes. But industry will

need to face the challenges of building and supporting new technical and digital

infrastructures, while workers’ skills development eventually manages to include

the increased complexity of industrial processes. This paper is intended to reach

a better understanding of learning opportunities offered by emerging Industry

4.0 digital twin ecosystems in manufacturing. Diverse learning approaches fo-

cused on the potential application of the digital twin concept in theoretical and

real manufacturing ecosystems are reviewed. In addition, we propose an origi-

nal definition of Digital Twin Learning Ecosystem and the conceptual layered

architecture. Existing key enablers of the digital twin physical-digital conver-

gence, such as collaborative frameworks, data-driven approaches and augmented

interfaces, are also described. The role of the Learning Factory concept is high-
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lighted, providing a common understanding between academia and industry.

Academic applications and complex demonstration scenarios are combined in

line with the enablement of connected adaptive systems and the empowerment

of workforce skills and competences. The adoption of digital twin in produc-

tion is still at an initial stage in the manufacturing industry, where specific

human and technological challenges must be addressed. The research priorities

presented in this work are considered as a recognised basis in industry, which

should help digital twin with the objective of its progressive integration as a

future learning ecosystem.

Keywords: Digital Twin, Learning Ecosystem, Manufacturing,

Human-machine collaboration, Learning Factory, Cyber-physical system

1. Introduction

With the empowerment of workers’ digital-based skills in manufacturing

environments, human-machine collaborative ecosystems supported by Digital

Twins (DT) will ultimately be a trend. Today, the digital twin concept is called

to accomplish the integration between physical and digital worlds in manufac-5

turing as one of the most promising Industry 4.0 (I4.0) enabling technologies

(Liu et al., 2021), (Kritzinger et al., 2018). By the physical-digital convergence,

digital twin is able to represent an abstraction of manufacturing systems’ reality

that allows for multiple interaction levels between processes, systems, and work-

ers within the virtual space (Semeraro et al., 2021), building complex virtual10

models. In this way, a virtual model acts as a point of knowledge (Tao et al.,

2019b) by providing direct access to existing plant-process information in real-

time, as an integral part of a Digital Twin Learning Ecosystem (DTLE). Thus,

the interaction of workers and the integration of digital information with the real

environment, provides the plant ecosystem with the cyber-physical connections15

and digital twin data flows. At the same time, all the required counterpart

relationships that collect data as input to agile methods, adaptive learning,

process simulation and service planning, among others, are represented. Dur-
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ing this time, the manufacturing industry has taken advantage on the digital

twin learning opportunities presented by the development of new generation of20

information technologies applied to physical-digital convergence (Raptis et al.,

2019). However, an important consideration when discussing lifelong learning

and training in industry is that they are increasingly dependent on highly skilled

workers and digital changes to improve the working methods (Toivonen et al.,

2018). In this context, the potential of digital twin and its real-time cooperation25

between machines and human resources offer continuous learning opportunities

to clear away obstacles in technological environments (Berisha-Gawlowski et al.,

2021). Through the combination of such factors as the human-machine learning

(Ansari et al., 2018), as well as the Learning Factory (LF) concept (Tvenge

et al., 2020), physical and virtual environments are set to improve the skill set30

of the future workforce, which includes all processes, products, resources and

categories of people in different manufacturing activities, regardless of age, gen-

der and social status. Moreover, in line with the building process of a connected

Digital Twin Learning Ecosystem, many different angles of the manufacturing

context can be explored on all the aforementioned levels interacting at the same35

time.

In the cyber-physical connection process, a paradigm shift was imposed

to manufacturing plants where data operations can be gathered in real time

through new smart sensors supported by Industrial Internet of Things (IIoT)

gateways. In that regard, the concept of digital twin is not really new in manu-40

facturing. Originally, Grieves conceived digital twin on a conceptual level linked

to Product Lifecycle Management (PLM) in 2003 (Grieves, 2003), (Grieves &

Vickers, 2017). He defined a conceptual model that contains three main parts:

the Real Space (physical products), the Virtual Space (virtual products) and

the bidirectional data flow links between them, including virtual sub-spaces.45

Later, (Grieves, 2014) extended his own digital twin concept in manufacturing

through Virtual Factory Replication, where the physical product and the virtual

product can be viewed and compared at the same time in a closed-loop. In this

way, towards the comprehension of new physical-digital learning enablers and
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challenges in the Industry 4.0 era, next-generation manufacturing systems are50

supported by adopting digital twin frameworks (Pérez et al., 2020), and theo-

retical and practical Learning Factories knowledge models (Baena et al., 2017),

(Prinz et al., 2016).

During the last decade, the digital twin role has been improved with different

approaches and definitions focused on the manufacturing domain, considering55

that digital twin is still mainly in an early concept stage (Kritzinger et al.,

2018). Furthermore, (Negri et al., 2017) remarked the need for future digital

twin research on relevant industrial applications, in order to express their poten-

tial through effective demonstrations for Industry 4.0 manufacturing contexts.

Regarding current studies for realising digital twin in Industry 4.0, (Tao et al.,60

2019b) summarises the state-of-the-art of digital twin research and its applica-

tion in different industries as a reference guide. In addition, the paper poses

many pressing issues, such as a unified digital twin modeling method, which

should be addressed to enhance a rapid digital twin evolution in practice. In a

different work, (Lu et al., 2020) reviews the connotations, application scenarios,65

and research issues of digital twin-driven smart manufacturing in the context of

Industry 4.0. Some digital twin aspects focused on manufacturing assets, peo-

ple, factories and production networks are presented as playing a crucial role in

the vision of smart manufacturing.

The purpose of our research is to reach a better understanding of the holistic70

approach offered by Industry 4.0 Digital Twin Learning Ecosystems in a collab-

orative way. Some of the main outputs concerning the physical-digital learning

explored are aligned with worker training programs oriented towards appropri-

ate digital skills. The rest of the paper is organized as follows (Figure 1). Section

2 describes the research methodology. Section 3 addresses a literature review75

to understand the learning opportunities offered by digital twin in manufactur-

ing under the Industry 4.0 paradigm. Section 4 presents different enablers of

knowledge in Industry 4.0 manufacturing systems. Section 5 describes the main

digital twin learning challenges and research priorities that need to be met in

manufacturing. Finally, Section 6 presents the findings and conclusions derived80
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from this work.

4.DTLE Enablers

5.DTLE Challenges

Towards a connected
Digital Twin Learning 
Ecosystem (DTLE) in 

Manufacturing

2.Methodology

3.Literature Review

6.Conclusions

 Learning Frameworks
 Learning Factories
 Data-driven learning
 Augmented interfaces

 Physical-digital convergence
 Workers’ digital skills development
 Research priorities and future trends

 Digital Twin and 
Industry 4.0

 Digital Twin Learning 
applications in 
Manufacturing

 DTLE definition

Analysis of Digital Twin learning methods based on:
 Cyber-physical Virtual Factory Replication model
 Human-machine collaboration model

Industry

Academia

Learning 
opportunities

 DTLE definition

Figure 1: Scope of the research

2. Methodology

This research is motivated by the digital twin concept presented by Grieves

and focused on a connected physical-virtual model. Existing technical articles

and scientific research on industrial digital twin ecosystems are considered to85

study human-machine interaction methods based on applications, frameworks

and collaboration models used for decision-making and training in manufactur-

ing. Apart from this, in this work we also analyse the current enablers and

challenges found in the physical-digital convergence.

Figure 2 describes the research methodology conducted in this paper. Two90

literature databases were considered. First, Scopus is used as the main database,

while, Google Scholar is used to complete and enrich the Scopus results. We

filtered papers by their publication year, starting in 2015 (this review aims to

show the latest advances, so older papers are not considered) and finishing in

2021.95
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Since we focus on the digital twin concept in manufacturing environments,

all our searches always included the so called domain keywords in Figure 2,

which are “Digital Twin” and “manufacturing”. Then, we proceeded with

our search in different phases, by adding selected keywords following the main

objectives of the paper:100

1. Reviewing Industry 4.0 driven applications of digital twin, which offer

human-machine cooperation opportunities in smart manufacturing ecosys-

tems from both academia and industry.

2. Understanding the emerging Digital Twin Learning Ecosystems, focusing

the research topic on both theoretical virtual factories and connected real105

collaborative ecosystems in manufacturing.

3. Reviewing the current enablers, challenges and research priorities in de-

veloping Industry 4.0 Digital Twin Learning Ecosystems.

( “Digital Twin”  AND
“Manufacturing”  )

AND

( “learning”
OR “ecosystem” )

( “review”
OR “State of the art”

OR “survey” )

( “application”
OR “framework” )

(“Learning Factory”
OR “virtual Factory”)

( “enabler”
OR “challenge” )

Search #1

Relevant papers to the research topic based on:
number of citations, contents of abstract, conclusions, and related works

Search #3

FILTER 
CRITERIA

Research topic: 
collaborative learning 

ecosystems. 2015-2021

ADDED
KEYWORDS

DOMAIN
KEYWORDS

KEYWORD
LIST

TITLE-ABS-KEY

Search #2 Search #4 Search #5

Initial search
Objective 1: Digital 

Twin Learning 
Ecosystem review

Objective 2: 
Practical learning ecosystems

Objective 3: 
Enablers and 
Challenges

+

Figure 2: Iterative search methodology conducted

First, we proposed an initial search (search #1) based on the research

topic: Digital Twin Learning Ecosystems in Manufacturing, composed as fol-110

lows: “Digital Twin” AND “manufacturing” AND (“learning” OR “ecosys-

tem”). As a result, 271 papers were found. However, only 9 of those papers

were useful for our review. For the remaining papers, the filter criteria did not

provide practical manufacturing digital twin applications in the context of a
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cyber-physical human-machine collaboration as intended in the review, others115

presented a digital twin limited contribution, and 115 papers were not publicly

available. Because of this, we reoriented our search strategy by using more

general keywords, following the intended objectives of the review, and then se-

lecting the most relevant papers to the research topic based on: (i) number of

citations, (ii) abstract’ content, (iii) conclusion’ content, and (iv) related works.120

For the first objective, survey-type papers were searched (search #2) com-

posed as follows: “Digital Twin” AND “manufacturing” AND (“review” OR

“State of the art” OR “survey”). We found 212 papers, of which some prelim-

inary literature findings were identified, underpinning the research topic in the

context of the Digital Twin Learning Ecosystem. Table 1 shows the 7 selected125

most relevant papers together with Grieves’ paper. On that basis, the detailed

digital twin context, related Industry 4.0 enabling technologies, learning ecosys-

tem approaches and human-machine collaboration enablers, were examined in

order to validate the scope and retrieval strategy.

For the second objective, two different searches were performed looking for130

practical learning ecosystems. The list of keywords was improved to include

applications and connected frameworks, having a third search (search #3) com-

posed as follows: “Digital Twin” AND “manufacturing” AND (“application”

OR “framework”), selecting the most representative papers (20), from 761 re-

sults. Then, we included “Learning Factory” and “virtual factory” strings for135

and additional search (search #4) composed as follows: “Digital Twin” AND

“manufacturing” AND (“learning factory” OR “virtual factory”), selecting the

most representative papers (7), from 30 results, and completing the selection of

works for this second objective.

Finally, for the third objective, we added the keywords for digital twin “en-140

ablers” and “challenges”, having a fifth search (search #5) composed as follows:

“Digital Twin” AND “manufacturing” AND (“enabler” OR “challenge”). The

identified papers (13), from 294 results, had already been selected in previous

searches.

Additionally, Google searches using the list of selected keywords, helped145
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to complete our iterative search, including some new technical and original

articles. We found over 60 documents from Google search, to grasp the digital

twin learning opportunities emerging from the collaboration between industry

and academia.

3. Literature Review150

This section aims to contribute with diverse learning approaches applying the

digital twin concept in theoretical and existing manufacturing ecosystems in line

with Industry 4.0 physical-digital convergence. Through the revision of scientific

literature and original articles, the paper is aligned to derive knowledge from

both the research community and real scenarios in the manufacturing industry.155

In addition, our work proposes an original definition of Digital Twin Learning

Ecosystem in the manufacturing domain.

3.1. Digital Twin and the Industry 4.0

At the beginning of 2015, the general Industry 4.0 definition and its main160

design principles (interoperability, virtualization, decentralization, real-time ca-

pability, service orientation, and modularity) were presented in (Hermann et al.,

2015) as a “how to do” Industry 4.0. The definition already includes the four In-

dustry 4.0 key components: CPS, IoT, IoS and Smart Factory. The integration

of these components is standardised in the “Reference Architecture Model In-165

dustrie 4.0” (RAMI 4.0) as a service-oriented architecture for the development

of Industry 4.0 applications and the development of models for smart manu-

facturing ecosystems (Adolphs et al., 2015). Also, in 2015, the term “Smart

Manufacturing” (SM) was introduced in the United States to deploy the new

technologies in manufacturing, such as IIoT and Artificial Inteligence (AI). The170

National Institute of Standards and Technology (NIST) defined SM as “fully-

integrated, collaborative manufacturing systems that respond in real time to meet

changing demands and conditions in the factory, in the supply network, and in

customer needs” (Tantawi et al., 2019).
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References Digital Twin Context Related Industry

4.0 enabling tech-

nologies

Learning Ecosystem Human-machine collabo-

ration enablers

(Grieves, 2014) Focused on the connec-

tion between the phys-

ical product and the

virtual product. It

changes the way of un-

derstanding manufactur-

ing processes from dig-

ital factory simulation

model (prediction), to

digital factory replica-

tion model (production)

Physical non-

destructive sensing

technologies

Virtual factory replication

model, using conceptual-

ization, comparison and

collaboration capabilities as

human-knowledge tools

Synchronization between

physical product data and

virtual product information

(Kritzinger et al., 2018) Production science

providing a holistic

overview of the enabling

technologies and areas

of Digital Twin applica-

tion, as basis for further

work

Simulation, commu-

nication protocols,

IoT, cloud comput-

ing, big data

Data-driven models applied

in simulation, process con-

trol and condition-based

maintenance

Simulation and optimization

of the production system

(Tao et al., 2019b) Enabling technologies

for the Digital Twin

based on data modeling-

simulation, data-driven

and cyber-physical

fusion

Cyber-physical

manufacturing

system

Cyber-physical manufactur-

ing system with information

about a real-world situation

and operating status analyt-

ical assessment for predictive

diagnosis, and performance

optimization

Interaction and collabora-

tion using physical data, vir-

tual data, connection data,

service data, and data fusion

(Lu et al., 2020) Current status and

advancement of Digi-

tal Twin-driven smart

manufacturing

Industrial com-

munications and

protocols, simula-

tion, CPS, IoT, Big

Data

Convergence of the digital-

physical worlds enabling

smart decisions

Manufacturing systems aug-

mented with cognitive in-

telligence. Understanding

strategies of human state

at workforce to increase the

physical and psychological

health of workers, as well

as achieving best production

performance

(Tao et al., 2019a) Integration between

physical and cy-

ber/digital worlds

using a model-based

systems-engineering ap-

proach that emphasizes

data and models

CPS Creation of high-fidelity vir-

tual models to realistically

reproduce physical proper-

ties, behaviors, and rules of

the physical world, and us-

age of a bidirectional dy-

namic mapping where the

physical entities and virtual

models co-evolve

Real-time interaction and or-

ganization integration

(Fuller et al., 2020) Status of Digital Twins

with IoT/IIoT and data

analytics to optimise the

manufacturing processes

IoT/IIoT Real-time simulation-based

to learn and monitor simul-

taneously applying machine

learning algorithms

Health of the machines and

predictive maintenance

(Cimino et al., 2019) Degree of integration be-

tween Digital Twin and

a physical control sys-

tem through a Manu-

facturing Execution Sys-

tems (MES) based on

the Automation Pyra-

mid

CPS, industrial

communication

protocols

Simulation model at assem-

bly laboratory line that fo-

cuses on monitoring machine

states and the energy con-

sumption. Data can be anal-

ysed to understand the steps

performed

Real-time replication of the

machine states of each sta-

tion in laboratory

(Qi & Tao, 2019) Improvement of dif-

ferent levels of shop

floor intelligence sup-

ported by three-way

real-time applications

with high availability

in a cloud-based smart

manufacturing paradigm

Cloud computing,

fog computing, edge

computing

Digital twin shop-floor

framework. Real-time ser-

vice collaboration layer

using a “Human-Machine-

Material-Environment”

approach to constantly

acquire the status data of

the physical resources

Users are connected with the

manufacturing shop-floor

through cloud services to

complete the task collabora-

tively
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Table 1: Selection of relevant review papers in the context of Digital Twin Learning Ecosystem



Nowadays, the most representative terms of these definitions and technolo-175

gies have been adopted globally by industry and academia. Overall, their key

characteristics and technologies (Mittal et al., 2019) serve as a guide to the

implementation of I4.0-enabled manufacturing systems. In a scenario led by

the cyber-physical convergence of Industry 4.0 ecosystems (Qi et al., 2018b),

the concept of digital twin emerges as one of the most disruptive innovations180

to exploit data enabling industrial technologies (Raptis et al., 2019). Owing

to their growing relevance, Gartner Hype Cycle (Dedehayir & Steinert, 2016)

named digital twin as one of the “Top 10 Strategic Technology Trends” from

2017 to 2019 (Qi et al., 2019). There is a paradigm shift moving from the

traditional product-oriented manufacturing to service-oriented manufacturing185

(Moghaddam et al., 2015). This landscape allows value to be added through

connected services, specialized skills, learning tools to support new collabora-

tive business models, and hybrid digital twin data-driven approaches such as

monitoring, diagnostic and prediction (Lu et al., 2020). Even though the digi-

tal twin concept has been improved in manufacturing with different approaches190

and definitions (Negri et al., 2017), and refined in system theoretical terms for

learning, optimization, and control (Cronrath et al., 2020), it is certainly true

that several works show that research outcomes for digital twin in this domain

are mainly on a conceptual level. In this regard, many articles are of a founda-

tional nature (Holler et al., 2016), some works are recent (Negri et al., 2017),195

and many researchers are starting to derive the first steps of digital twin in

practice (Kritzinger et al., 2018).

Academia and industry have different visions about how to understand and

apply digital twin as a tool of knowledge responding to dynamic changes in

manufacturing processes (Parrott & Warshaw, 2017). However, it is a fact that200

a standardised framework to develop a digital twin in manufacturing, such as

the ISO 23247 (Shao & Helu, 2020), can help the acceptance of the digital twin

concept (Shao et al., 2021). In the meantime, technological vendors have their

own interpretation of the digital twin concept (Schleich et al., 2017) and con-

tinue with its research and development in accordance with their customers and205

10



business models. For example, General Electric (GE, 2016) provides a cloud-

based platform with analytic models. ANSYS2, ALTAIR3 and ESI GROUP4

have their origins in Computer Aided Engineering (CAE) supporting physics-

based simulation and virtual prototyping. Moreover, the ESI GROUP‘s “Hy-

brid Twin” concept introduces a complementary physics-based virtual model210

to describe cause-effect relationships (Chinesta et al., 2020). Another differ-

ent solution implemented by SOFTWARE AG5, PTC6 and Siemens7 provides

a PLM-based platform supporting AR and IoT management cloud. Enabling

technologies like AR in digital twin ecosystems derives added value for human-

machine interface integration, visualization and learning of the digital twin data215

(Zhu et al., 2019). Thus, the advent of connected digital twin models in manu-

facturing has enhanced the development of collaborative skills 4.0 and training

capabilities (Fantini et al., 2020), providing workers with direct access to exist-

ing plant-process knowledge to perform technical tasks, or using their inputs as

part of the learning process (Graessler & Poehler, 2018b).220

3.2. Digital Twin learning applications in manufacturing

New digital twin learning applications are emerging in a virtual space to

provide manufacturing ecosystems’ reality with an additional knowledge layer.

It is with this perspective that the connected digital twin enables different ap-225

plications and ways to collaborate between humans and automated production

systems. Moreover, distributed learning gives opportunities for modelling the

multiple interactions between processes (Kunath & Winkler, 2018), systems

2https://www.ansys.com/products/systems/digital-twin
3https://www.altair.com/resource/altair-digital-twin-platform
4https://www.esi-group.com/blog/hybrid-twin-vs-digital-twin-well-tell-you-the-difference-

and-which-can-save-the-life-of-your-asset
5https://www.softwareag.com/en corporate/platform/iot/iot-digital-twins.html
6https://www.ptc.com/en/product-lifecycle-report/what-is-digital-twin-technology
7https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-

twin/24465
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(Reid & Rhodes, 2016), and workers’ skills (Graessler & Poehler, 2018a).

As a result, three categories reporting digital twin applications in manufac-230

turing environments are presented discussing learning opportunities in academia

and industry below. These are as follows: human-machine interaction applica-

tions, training applications and data-driven applications. Table 2 summarises

several articles classified in these three dimensions by the digital twin approach

used for learning (in the second column), as well as a summary of the aims,235

features and benefits presented.

3.2.1. Human-machine interaction applications

Towards the concept of a learning ecosystem (Burke et al., 2017), digital twin240

offers bidirectional interaction in real-time dealing with different data sources

in order to transform information into valuable knowledge (Uhlemann et al.,

2017a). The use of human-machine interfaces is therefore promoting the im-

plementation of digital twin applications oriented to collaborative environments

(see Table 2). A context-aware and adaptive digital twin model (Hribernik et al.,245

2021) offers human-machine complex interactions related to manufacturing pro-

cesses, while they are involved in an intelligent data space. In this collaborative

context, a social-based framework of interconnected manufacturing systems of

workers, assets and services also takes place. Virtual, physical and social worlds

are integrated around a Cyber-Physical-Social System (CPSS) approach, on the250

concept of social manufacturing (Leng et al., 2020).

Collaborative learning models, present strategies for evaluating workers‘

skills in CPS environments, enable local or remote interaction services and pro-

vide intuitive augmented applications to monitor and control processes. For

example, studies such as (Graessler & Poehler, 2018b) show a conceptual ap-255

proach of a digital twin application involving workers and CPS devices in an

experimental assembly station of a production laboratory, in fully automated

decision-making processes. In addition, there are other studies focused on the

12
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Dimension DT approach Aims Features Benefits

Human-

machine

interaction

applications

Experimental pro-

duction setup

Automated com-

putational decision

processes

Learning through the

evaluation of workers‘

skills

Intuitively interaction o

workers with technica

devices in CPS environ

ments

Knowledge fruition

as a service

Enable a Smart Fac-

tory 4.0 with aug-

mented interfaces

Interaction service be-

tween operators working

in-situ or remotely and

CPPS

Industrial performance

in terms of productivit

and process quality stan

dards

Comprehensive

visualisation of aug-

mented information

HMI to improve

workers‘ efficiency

Intuitive AR application

to monitor and control a

machining process

Taking advantage of op

erative data to perform

efficient decision-makin

and higher level machin

control

Training

applications

Learning Factories

Competence devel-

opment

Path towards Industry

4.0 into an academic

context

Convergence of the rea

world and cyber physica

system

Practical learning Workplace-integrated

learning system for

knowledge-based manu-

facturing

Transfers learned knowl

edge directly to the ow

workplace

Training in simi-

lar research fields

of conventional

physical learning

factories

Planning and simulation

activities

Digital and virtual en

vironment for providin

added value for the edu

cation of the productio

of the future

Manufacturing edu-

cation

Cognitive process when

working in, or with,

VR/AR learning envi-

ronments

Interlinkage between th

digital and physical twi

concerning cognitio

and learning

Enhanced interac-

tion framework

Create an aug-

mented and interac-

tive environment

Immersive and multi-

perception interaction

experience brought by

VR/AR/MR

Augment the seamles

integration between th

physical and virtua

worlds

Data-driven

applications

Manufacturing

cyber-physical sys-

tem (MCPS)

Dynamic au-

tonomous system to

co-create personal-

ized products

Bi-level online intelli-

gence in proactive de-

cision making for the

organization and oper-

ation of manufacturing

resources

Enable continous im

provement based on a

intelligent optimisatio

engine

Machining process

evaluation (DT-

MPPE)

Methods for dy-

namic change of the

machining condition

and uncertain avail-

able manufacturing

resources

Maintaining consistency

of processing quality for

the machined parts

Improvement of the ma

chining efficiency by in

tegrating the cyber an

physical space in manu

facturing

Assisted fault diag-

nosis method using

deep transfer learn-

ing (DFDD)

Fault diagnosis both

in the development

and maintenance

phases

Transfer simulation

results learned from

the virtual space to the

physical space without

training the model from

scratch

Enhance fault diagno

sis in virtual space an

physical space to b

more transparent, flexi

ble, and efficient
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Table 2: Classification of Digital Twin learning applications in manufacturing



usefulness of augmented interfaces. (Padovano et al., 2018) presented a DT-

based application designed to enable a knowledge as a service approach in a260

real factory floor producing carton packaging boxes. The digital twin prototype

provides workers with a real time CPPS-based 4.0 knowledge navigation service

linked to an Android application with a QR code. The workers can use this ap-

plication, a screen interaction or a vocal message to request specific knowledge,

keeping their attention directly on the physical system. Another collaborative265

scenario, based on an AR human-machine interface for the visualization of dig-

ital twin data, is presented in (Zhu et al., 2019). An AR application is used to

provide workers with comprehensive information to monitor and control a CNC

milling machine in a real manufacturing environment. The connected frame-

work also allows the worker to interact and manage digital twin data in order270

to improve the process efficiency through an augmented approach.

3.2.2. Training applications

It is known that workers’ knowledge is improved by different backgrounds275

and outcomes in training processes. Likewise, experienced workers are necessary

to guide others with little experience. Nevertheless, training applications of

digital twin in manufacturing require a collaborative learning framework as the

basis for generating knowledge towards decision support systems. In this way,

learning factories offer a path towards Industry 4.0 in an academic context, while280

promoting the integration of learning systems in the workplace by transferring

lessons learned for knowledge-based manufacturing, through the convergence of

the real world. Apart from this, training in virtual environments encourages the

cognitive process when working in immersive and multi-perception environments

with augmented learning.285

Some studies included in (Table 2) show that the Learning Factory concept is

evolving in manufacturing to support Industry 4.0 enabling technologies (Baena

et al., 2017) and practical learning activities (Prinz et al., 2016), as a promising
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training and research environment where digital twin combines both industrial

scenarios and academic applications (Abele et al., 2017). The communication290

and interaction between teams of engineers and researchers establishes a two-

way knowledge to bring real industrial environments to teaching programmes

and research laboratories to factories. Also, in a Learning Factory context,

the digital twin concept offers learning opportunities for the representation and

visualisation through mapping of real processes in digital and virtual models295

(Tvenge et al., 2020). AR/VR technologies also provide workers with enhanced

interaction frameworks and augmented interfaces (Ke et al., 2019).

3.2.3. Data-driven applications

300

(Kunath & Winkler, 2018) defines digital twin ”as the sum of all available

data, i.e. engineering data and operational data, of all elements of the manu-

facturing system that reflect the historical and actual state of the system in real-

time”. In the context of industrial applications, therefore, digital twin provides

a connected data infrastructure able to help with the generation of data-driven305

models in proactive decision making, maintaining process & product quality

and transferring results learned - from simulations in the virtual space to the

physical space - without training the model from scratch.

Some different real-time data-driven learning applications can be found in

the literature based on the digital twin approach (see Table 2). For example,310

in (Leng et al., 2019) a systems engineering-based approach of a digital twin to

co-create personalised products is presented. A demonstrative implementation

scenario is characterised by a DT-driven manufacturing CPS for parallel control

of a smart manufacturing workshop. Through the analysis of a dynamic pro-

cess execution, digital twin provides workers with the status of manufacturing315

operation and enables continuous improvement with an intelligent optimisation

engine. Another different solution is proposed in (Liu et al., 2019) using a

DT-based process planning evaluation method with real-time data status. The
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implementation is addressed in a manufacturing workshop of key parts of the

marine diesel engines, where planning evaluation is required to ensure consis-320

tency of processing quality of manufactured parts. IoT and digital twin tech-

nologies allow the improvement of the machining efficiency by using a dynamic

physical-virtual information about the process status. On the other hand, data

analysis enables behaviour-based applications focused on CPS. For example,

a DT-assisted fault diagnosis method for real-time monitoring and predictive325

maintenance is presented in (Xu et al., 2019a). The case study is implemented

in a car body-side production line, where a Programmable Logic Controller

(PLC) allows data interconnection and interaction. Through a two-phase using

deep transfer learning, the application of digital twin in virtual and physical

spaces transforms fault diagnosis patterns in knowledge for both development330

and maintenance phases, thus reducing the risk of accidental breakdowns.

3.3. Definition of Digital Twin Learning Ecosystem

This paper aims to identify and define a Digital Twin Learning Ecosystem.

In this way, (Gartner, 2017) defines Digital Ecosystem as “an interdependent335

group of actors (enterprises, people, things) sharing standardized digital plat-

forms to achieve a mutually beneficial purpose”. In a manufacturing production

plant, for instance, those interdependent groups of actors can be represented

by processes, systems and workers. Another definition, focused on the Digital

Learning Ecosystem, is proposed by (Ficheman & de Deus Lopes, 2008) as ”the340

set of all relationships between biotic factors (consisting of hardware, software,

network and database technologies as well as pedagogies) and abiotic factors

(human specie and digital specie)”. According to this, it is the abiotic factor

which provides the environment that supports interactions between biotic fac-

tors. In addition, a different definition of Learning Ecosystems is proposed by345

(Garćıa-Holgado & Garćıa-Peñalvo, 2017), as ”a type of technological ecosystems

focused on learning management processes”, where the technological ecosystems

are ”the evolution of the traditional information systems, providing support to
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information and knowledge management in heterogeneous environments.”. As

mentioned above, digital twin applications in manufacturing will provide work-350

ers with learning services in order to augment their working experience and

performance. However, without a bidirectional and adaptive physical-digital

synchronisation at a factory wide-level, this knowledge would not be effective

(Padovano et al., 2018).

Interaction

Understanding Learning

DT
Learning 

Ecosystem

Intelligent
agents

Real-time
HMI

Smart
APPs

Figure 3: Proposed three-layer Digital Twin Learning Ecosystem

To the best of our knowledge, there is no specific definition for a Digital Twin355

Learning Ecosystem in Manufacturing. After successful completion of previous

R&D studies carried out and tested in our lab8, we define three feedback con-

ceptual layers focused on the generation of an adaptive learning framework.

They are oriented to human-machine collaborative ecosystems in the context

of Industry 4.0 as digital twin input (see Figure 3), providing a physical-digital360

8Due to the requirements for anonymized manuscript submissions at Computers & Indus-

trial Engineering, the work is not cited in this version of the paper
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connection, smart human-machine interfaces, and cognitive skills:

• DT Data Streams. Real-time information from systems and workers

via multiple and heterogeneous manufacturing data sources, such as mea-

suring devices, augmented human-machine interface devices, industrial

automation middleware, process control systems or other software pro-365

grammes, using a standardised data format.

• DT Data Models. Management, monitoring and virtualization services

applied to manufacturing data that will be used further as datasets by

high-level AI applications, building digital objects of all ecosystem re-

sources to extract valuable information about the whole production life370

cycle.

• DT Knowledge Models. Variability of smart views providing a com-

plete immersion in a knowledge-based augmented human-machine man-

ufacturing ecosystem, where a virtual representation of all actors of the

manufacturing environment is set through intelligent agents, describing375

their real world counterparts to model decision-making actions, based on

learned data.

Therefore, as a result, we propose the definition of a Digital Twin Learning

Ecosystem in Manufacturing as follows:

Definition 3.1 (Digital Twin Learning Ecosystem). An augmented physical-380

digital way of bidirectional interaction, understanding and learning between

workers, systems and processes in a framework integrated by virtual and real

Intelligent Manufacturing Ecosystems.

4. Enablers

(Grieves, 2014), anticipated the advances in computing capabilities as an385

important enabler of the future knowledge potential for the digital twin concept

in manufacturing. Furthermore, he proposed a cyber-physical Virtual Factory
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Figure 4: Digital Twin Learning Ecosystems enablers and main properties

Replication model, advancing the digital twin concept forward in human knowl-

edge through the fusion of three of its skills: conceptualization, comparison

and collaboration. Thus, this section presents different Digital Twin Learning390

Ecosystem scenarios as enablers of knowledge in Industry 4.0 manufacturing

systems. The main properties of these digital twin enablers are summarised

in Figure 4. Some approaches comprising connected collaborative digital twin

frameworks and their key features are described and, in addition, the role of

the Learning Factory concept is examined. In a similar way, digital twin data-395

driven approaches to enable knowledge models are presented. Finally, digital

twin augmented interfaces driven by human-system interaction to enable learn-

ing capabilities in manufacturing environments are discussed.

4.1. Digital Twin Learning Ecosystems frameworks400

The emergence of connected platforms supporting digital twin frameworks,

provides manufacturing with a learning ecosystem oriented towards exploiting

knowledge from the integration of physical and digital worlds. Figure 5, de-
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scribes an example of a connected digital twin learning framework at Research405

and Development Centre labs9, which has been designed and tested for the

proactive collaborative maintenance (local and remote) of manufacturing as-

sets. The framework is focused on the generation of a non-intrusive and fully

two-way adaptive human-machine collaborative ecosystem, supporting workers’

training and enhanced learning. In addition, the proposed real-time Augmented410

Reality (AR) and Virtual Reality (VR) augmented frameworks for visualising

digital twins enable the development of skills 4.0, while providing direct access

to existing manufacturing-process knowledge bridged through smart sensors.

Figure 5: Example of a Digital Twin framework to enable learning ecosystems at Research

and Development Centre labs

9Due to the requirements for anonymised manuscript submissions at Computers & Indus-

trial Engineering, the name of the research center is not mentioned in this version of the

paper
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In the literature, some Digital Twin Learning Ecosystems based on frame-415

works are identified and discussed below. Table 3 summarises these frame-

works, whose learning features aims to enable effective competences (David

et al., 2018), enhanced skills (Caldarola et al., 2018), more efficient engineering

solutions (Yildiz et al., 2020), improved human-asset interaction (Kong et al.,

2020), synchronous modeling (Zhuang et al., 2021), human-robot collaborative420

systems (Malik & Bilberg, 2018), improved quality and resources (Qamsane

et al., 2019) and support fault diagnosis (Mi et al., 2021). As a result, Digital

Twin Learning Ecosystems enable a distributed approach focused on achieving

a connected learning model of a product (Tao et al., 2018), process or industrial

service (Tao et al., 2019b). It is thus necessary for a real-time replicated rep-425

resentation of the physical world to be built for understanding purposes, while

the technological frameworks offer its own digitised data and fully bidirectional

interaction capabilities (Qi et al., 2019).

Different teaching methodologies proposed in (David et al., 2018) can allow

a learning framework involving digital twin in the context of manufacturing430

pedagogy. Methodologies and tools are investigated to educate university stu-

dents in a pedagogical digital twin framework of production-based engineering

environments, using engineering model outcomes and evaluating student per-

formance. The learning experiences are evaluated in three scenarios: passive

learning in classroom, experimental learning in laboratory and physical site, and435

using a situational awareness approach for a better understanding of workers’

process perception.

(Caldarola et al., 2018) proposed a different solution, based on a conceptal

framework for social manufacturing sustainability 4.0. A knowledge-based ap-

proach supported y CPS, intelligent software and AR/VR systems, allows the440

skills and competences of the workforce to be enhanced focusing on the produc-

tion process of wooden furniture. The digital twin concept is underpinned by

representational models ensuring continuous learning about the whole factory: a

digital factory model of the entire production system, a virtual individual model
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DTLE enablers Aims Approach to the acquisi-

tion of knowledge

Process / Product

/ Service

Referen

Pedagogical digital

twin framework to

educate university

students on manu-

facturing systems

Effective development of

learning experiences and

competences

Practical application of the

acquired knowledge or skill

in different flexible manufac-

turing environments

Flexible Manu-

facturing System

(FMS) Training

Centre

(David

et al.

2018)

Conceptual frame-

work for social

manufacturing

Enhance skills and com-

petences of the work-

force

Continuous learning about

the whole factory

Process of Wooden

furniture

(Caldaro

et al.

2018)

Framework architec-

ture for supporting

Factory life-cycle

processes

Implement more efficient

engineering solutions

Evaluation of manufacturing

systems

Wind turbine manu-

facturing plant (Ves-

tas)

(Yildiz

et al.

2020)

Interactive data-

driven digital twin

framework for asset

management

Improve human-asset in-

teraction and decision

making

Understanding of assets‘ life-

cycle and operational deci-

sion support

Offshore energy as-

sets

(Kong

et al.

2020)

Framework of as-

sembly data man-

agement and process

traceability for com-

plex products

Synchronous modelling

of the product, and man-

agement

Participatory approach man-

aging each stage of the prod-

uct lifecycle

Satellite assembly

process

(Zhuang

et al.

2021)

Framework to sup-

port the design,

building and control

of human-machine

cooperation

Human-robot collabora-

tive system for assembly

work

Simulation of the behaviour

of the system by creating vir-

tual models of physical ob-

jects

Human-robot col-

laborative (HRC)

system

(Malik &

Bilberg,

2018)

Framework to

improve control

reconfiguration,

self-organizing and

learning

Improve quality and

optimise production

resources

Monitor and evaluate large-

scale SM systems

Manufacturing flow-

shop

(Qamsan

et al.

2019)

Cooperative aware-

ness and intercon-

nection framework

for predictive main-

tenance

Support fault diagno-

sis and prediction with

higher accuracy and re-

liability

Decision-making approach Large vertical mill (Mi et al

2021)

Table 3: Examples of Digital Twin Learning Ecosystems based on frameworks
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of the workers’ profiles, and a skills virtual model based on workers’ capabilities.445

The framework facilitates the implementation of a user-centred approach where

workers interact with systems and processes to develop context-oriented services

useful for a smart workplace.

Another collaborative solution is presented in (Yildiz et al., 2020), in which

a concept of a DT-based virtual factory shows the integration between product,450

process and system. The digital twin framework architecture supports factory

life-cycle processes in a wind turbine manufacturing plant (Vestas) employing

collaborative VR learning and training scenarios. Both factory data -from real

systems- and generated data -from simulation systems-, are integrated for the

evaluation of manufacturing systems, bringing potential to implement more ef-455

ficient engineering solutions.

A different problem addressing human-machine interaction is presented in

(Kong et al., 2020). An interactive data-driven digital twin framework is used

to improve human-asset interaction and decision making for offshore energy as-

sets. The complete digital twin framework uses embedded and front-end sensors460

which can capture, synchronise and exchange physical-digital data. Data-driven

digital twin methods allow events between the environment, workers and assets

to be simulated, enabling a better understanding of the life-cycle of the as-

sets. This digital twin framework also provides intuitive interfaces to enhance

workers’ knowledge oriented to operational decision support.465

Another example is also proposed in (Zhuang et al., 2021). This work is char-

acterised by a DT-based framework for assembly data management and process

traceability approach. A participatory approach to produce complex products

such as satellites, means that each stage of the product lifecycle is managed

for all the components and has the electronic feedback of workers. The digital470

twin application provides the assembly process with a synchronous modelling of

the product, hierarchical management and traceability data, reflecting human-

computer interactions.

A different assembly application, characterised by a digital twin intercon-

nected framework to develop a human-robot collaborative system, is presented475
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in (Malik & Bilberg, 2018). In this case, a digital twin of an assembly worksta-

tion allows a virtual commissioning approach to test, validate and optimise the

behaviour of the dynamic system by creating virtual models of physical objects.

In addition, predictive maintenance techniques and monitoring systems are

widely extended in smart manufacturing as valuable human-machine interfaces480

for decision-making frameworks. For example, in (Qamsane et al., 2019), a

digital twin framework to improve control reconfiguration, self-organizing and

learning in a manufacturing flow-shop is presented. The digital twin framework

is based on a novel architecture to monitor and evaluate large-scale SM systems.

It includes historical and real-time data to provide comprehensive digital twin485

capabilities such as prediction, anomalies detection, monitoring and health state.

The construction of a global view of the SM system helps to improve quality

and optimise production resources.

Another framework example, focused on predictive maintenance and fault

diagnosis, is presented in (Mi et al., 2021). A digital twin driven cooperative490

awareness and interconnection framework for predictive maintenance, is applied

to the decision-making approach of a large vertical mill. Digital twin is used

to support fault diagnosis and prediction with higher accuracy and reliability

through a comprehensive analysis method. The framework is designed to share

data models and knowledge models in order to obtain more accurate and detailed495

information of the diagnosis across multiple organizations.

4.1.1. Learning Factories

Digital twin learning approaches in Learning Factories combine academic

applications and demonstration scenarios. In this way, virtual factory replica-500

tion and the Learning Factory concept also allow the implementation of complex

scenarios and frameworks for testing and training in a diversity of collaborative

levels as Digital Twin Learning Ecosystem enablers. Table 4 summarises six ex-

emplary scenarios existing in outstanding research and educational institutions,

as described in some works below. Researchers, experts in the use of next gen-505
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eferences

nsari

t al.,

018)

hlemann

t al.,

017b)

yre &

reeman,

018)

renner

Hum-

el,

017)

rube

t al.,

019)

aza

t al.,

020)
Exemplary

scenarios

DTLE enablers Aims Benefits Research

groups

R

Pilot Factory

Industry 4.0

Platform for research

and demonstration of

mutual human-machine

learning

New human-machine

learning patterns in

highly digitised indus-

trial work scenarios

Development of

multi and interdis-

ciplinary skills for

Industry 4.0

TU Wien

University,

Austria

(A

e

2

Chair Manu-

facturing and

Remanufactur-

ing Technology

SME Cyber Physical

Production System

(CPPS) oriented to

experiential training

and learning experience

Demonstrate the poten-

tials and advantages of

real time data acquisi-

tion and subsequent sim-

ulation based data pro-

cessing

Analysis and modifi-

cation of production

systems experienced

by workers in practi-

cal training sessions

Bayreuth

University,

Germany

(U

e

2

Advanced Man-

ufacturing

Research Centre

(AMRC Factory

2050)

Immersive environment

to suit the application

highlighting the varied

nature of different sec-

tors

Understanding the tech-

nical challenges for a ro-

bust production system

at different levels

Added value of im-

mersive approaches

for business cases

to the manufactur-

ing sector

University

of Sheffield,

UK

(E

F

2

Enterprise Ser-

vice Bus (ESB)

Logistics Learn-

ing Factory

Cloud- and app-based

software that builds on

a dynamic, multidimen-

sional data and informa-

tion model

Collaborative mobile

digital shop-floor man-

agement system

Human centre man-

agement and mo-

bile digital shopfloor

meetings

Reutlingen

University,

Germany

(B

&

m

2

Smart Learning

Factory (SLF)

at SDU Mads

Clausen Insti-

tute

Collaborative Factory

by embedding the use

of discrete event simu-

lation connected with

physical objects

Interaction and cooper-

ation between university

researchers and industry

experts

Smart Learning Fac-

tory to enable man-

ufacturing SMEs to

capture the benefits

of highly complex

tools and enablers

University

of Southern

Denmark

(G

e

2

Festo Cyber-

Physical Fac-

tory (CPF)

Develop the digital

counterpart of this

Industry 4.0 system

to replicate its func-

tionalities, data, com-

munications, feedback,

emergency and safety

aspects

Replicate processes of

the Cyber-Physical Fac-

tory real production line

for product assembly at

different stages of the

product‘s lifecycle

Enable predic-

tive maintenance

and prognostics

services, design

and performance

improvements,

workers‘ life-long

learning

Middlesex

University,

UK

(R

e

2

Table 4: Examples of Digital Twin Learning Ecosystems based on Learning Factories.
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eration information technologies and industry, are already working together to

develop learning platforms for research and demonstration (Ansari et al., 2018),

experiential CPPS environments for training and learning (Uhlemann et al.,

2017b), immersive environments for different applications and sectors (Eyre &

Freeman, 2018), collaborative software (Brenner & Hummel, 2017), collabora-510

tive factory environments (Grube et al., 2019) and new Industry 4.0 learning

approaches in manufacturing (Raza et al., 2020).

In (Ansari et al., 2018), the challenges of a bidirectional process of human-

machine learning in the TU Wien Pilot Factory Industry 4.0, are addressed.

The term “mutual learning” is defined by considering the smart factory as a515

learning environment and explored in the context of new learning patterns in

highly digitised manufacturing work scenarios.

(Uhlemann et al., 2017b) presented a resource efficiency oriented towards a

learning environment built up by The Chair of Manufacturing and Remanufac-

turing Technologies at Bayreuth University. This work introduces a Learning520

Factory concept supported by the digital twin of a production system. It shows

the benefits of real-time data acquisition technologies that can be experienced

by workers in practical training sessions.

In (Eyre & Freeman, 2018), a different solution is implemented using the

digital twin concept to investigate the benefit of immersive applications at the525

Advanced Manufacturing Research Centre (AMRC Factory 2050, University of

Sheffield, UK). This work presented three prototypes dedicated to conducting

collaborative research with the aim of understanding the technical challenges

for a robust production system at different levels using diverse methodologies:

(i) a monitoring application exploring the ability to provide a contextual view530

information for engineers to better understand the current working parameters,

(ii) a highly realistic training scenario providing an emulated monitoring digital

twin, improving health and safety for workers and also recognising new issues

thanks to their expertise, and (iii) augmented monitoring on a reconfigurable

fixture cell, integrating real-time simulation of processes into Siemens Plant535
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Simulation software10 to enable a closed feedback loop providing workers with

contextual information.

A collaborative solution is described in (Brenner & Hummel, 2017) based on

a digital twin prototype of an Enterprise Service Bus (ESB) Logistics Learning

Factory at Reutlingen University. Diverse prototypes of this digital twin, as a540

digital copy available in real-time, provide a global shop floor meeting concept

for workers with the latest information and methods to all their subsystems. It

enables an innovative and collaborative mobile digital shop-floor management

system based on a cloud app-based software.

Another collaborative approach is described in (Grube et al., 2019). A dig-545

ital twin to simulate a physical factory layout for manufacturing SMEs in a

Smart Learning Factory (SLF) at SDU Mads Clausen Institute (University of

Southern, Denmark), allows interaction and cooperation between university and

industry experts, building data-driven conclusions. The digital twin concept

provides SME’ workers with an Industry 4.0 assisted interface for simulating550

and testing real world operations in the SLF well known by them, such as as-

sembly, laser welding and soldering.

Focused on new Industry 4.0 learning approaches in manufacturing, a digital

twin framework replica of the Festo Cyber Physical Factory (CPF) is presented

in (Raza et al., 2020). The digital twin framework, located at Middlesex Univer-555

sity, collects IoT data and replicates processes of the CPF real production line

for product assembly at different stages of the product’s lifecycle. This system,

coupled with the proposed digital twin framework, interlinks physical-digital

data that is used to enable predictive maintenance and prognostics services, op-

erational information for design and performance improvements, and contributes560

towards workers’ life-long learning.

10https://www.plm.automation.siemens.com/global/es/products/manufacturing-

planning/plant-simulation-throughput-optimization.html
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DT learning approach Focus Reference

Model based and data driven Accelerate engineering phase of modern

manufacturing systems

(Jaensch et al.,

2018)

Model-based system engineering

(MBSE)

Explore failure modes, leading to pro-

gressive design improvements over time

(Madni et al., 2019)

Hybrid twin New paradigm within simulation-based

engineering sciences (SBES) using dy-

namic data-driven application systems

(DDDAS)

(Chinesta et al.,

2020)

Advanced physics-based modeling Predictive maintenance applications (Aivaliotis et al.,

2019)

Industrial transfer learning Fault prediction training algorithm‘s be-

haviour for events involving (rare) faults

(Maschler et al.,

2021)

Assisted fault diagnosis using deep

transfer learning (DFDD)

Fault diagnosis both in the development

and maintenance phases

(Xu et al., 2019b)

Deep generative models Prognostics and Health Management

(PHM)

(Booyse et al., 2020)

Table 5: Digital twin learning approaches focused on enabling intelligent data models in SM

systems.

4.2. A Digital Twin learning ecosystem driven by connected data

Digital twin can enable the transfer of learning to generate knowledge of

manufacturing systems by providing an intelligent data approach able to man-565

age the information previously acquired over their lifecycle (Maschler et al.,

2021). A way towards enabling these connected ecosystems is digitising in-

dustrial processes. As mentioned earlier, digital twin can integrate frameworks

which encompass SM systems in a new way to capitalise on knowledge generated

with the interaction between workers and CPPS data. Table 5 summarises sev-570

eral digital twin learning approaches which can be used to enable data-driven

knowledge models in SM systems. They are focused on the enhancement of

manufacturing processes through modeling, simulation, predictive maintenance

and fault diagnosis, which are described below.

Machine Learning (ML) is becoming increasingly adopted to enhance digital575

twin with predictive modelling and intelligence by using data-driven approaches,

where both real-time captured data and production historical data help to im-
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prove human-machine interactions and decision-making processes. A solution

to integrate ML with model-based and data-driven methods, in order to build a

digital twin, is proposed in (Jaensch et al., 2018) to control complex manufac-580

turing systems. Two digital twin interfaces are provided in a circular approach

throughout the engineering tasks. The first, manages ML-based data process-

ing extracted from the real production system, and the second, manages the

AI environment for reinforcement learning algorithms. As a result, this solu-

tion offers a digital twin with an autonomous problem-solving approach and585

data-based learning methods for enhanced modelling.

Simulation has been taken as a widespread approach to provide digital twin

with enhanced learning. Broad operational data is incorporated to predict the

behaviour of the real world. According to this learning model, in (Madni et al.,

2019) simulation and MBSE are presented as DT-modelling enablers of a variety590

of manufacturing applications, such as predictive maintenance and design.

Creating behaviour models from scratch is expensive or even difficult to

collect. However, a hybrid twin paradigm for a real-time decision-making next

generation digital twin, that combines data analytic, ML, and physics-based

models for predictions, is presented in (Chinesta et al., 2020). Through this595

hybrid approach, two models are used to perform the modelling framework.

The first based on the physics and the second on the AI-based prediction.

In a similar way, the creation of digital models in manufacturing systems re-

quires a computational effort to deal with complex environments. Nevertheless,

(Aivaliotis et al., 2019) presented an advanced physics-based modelling method-600

ology as a guide to create a description of a system or process using simplified

data models to enable the digital twin concept. In this work, some properties

of an industrial robot environment were modelled (dynamic behaviour, virtual

sensors, and parameters), enabling the digital twin concept in predictive main-

tenance applications, so as to calculate the Remaining Useful Life (RUL) of605

machine components. In a complementary way, intelligent transfer learning

approaches in manufacturing can provide the digital twin concept with new

abilities, such as fault prediction (Maschler et al., 2021).
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A two-phase digital-twin-assisted fault diagnosis method, based on deep

transfer learning, is presented in (Xu et al., 2019b). This work aims to make610

fault diagnosis more applicable in the dynamic changing manufacturing pro-

cess. In a first phase called Intelligent Development Phase, potential failures

and how to prevent them are explored; while, in a second one called Proactive

Maintenance Phase, the application of digital twin uses deep transfer learning

to transform fault information from virtual to the physical space through an im-615

mersed experience. This approach extends the fault diagnosis along the entire

product lifecycle through proactive and preventive maintenance.

A different solution based on Prognostics and Health Management was pre-

sented in (Booyse et al., 2020), providing deep learning strategies to generate

asset health models without relying on historical failure data. In this way,620

condition-based approaches are very valuable to represent a real-time health

state of a manufacturing system, as well as to generate learning about its be-

haviour. Thus, the knowledge is enabled by the increasing data collection sys-

tems and ML algorithms. In addition, this work poses the concept of Deep

Digital Twin (DDT) to produce a health indicator in an experimental diagnos-625

tic environment, consisting of intermediate shaft bearing parts. The DDT uses

deep generative models to learn the distribution of healthy data, estimating

the health status of parts under both stationary and non-stationary conditions

monitored by Integrated Circuit Piezoelectric (ICP) accelerometers.

630

4.3. Augmented interfaces for Digital Twins

Industry 4.0 requires workers to be better prepared to meet the increased

complexity of industrial tasks in dynamic working environments. Visualisation

interfaces of digital twin data, driven by human-system interaction in manufac-635

turing, have become one of the ways of enabling a better support for workers in

learning and training processes. A digital twin powered by AR/VR technolo-

gies can be used to build autonomous and highly-efficient training environments
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DT learning approach Focus Reference

Augmented instructions
AR instruction generation adaptive to

the shop floor operators’ level of expe-

rience

(Mourtzis et al.,

2019)

AR assistance step-by-step to accom-

plishing the work according operators’

skills and the operation to be performed

(Caldarola et al.,

2018)

Content-based environments
VR visualization as testbed to allow op-

erators’ interaction with production pro-

cesses (robots) in totally safe environ-

ments

(Pérez et al., 2020)

AR contents to augment operators’ skills

and abilities for the development of hu-

man skills 4.0 to perceive and act within

the working environment

(Longo et al., 2017)

Virtual-physical collaboration
Confront human–machine challenges

with improvements to collaboratively

update workers and industrial systems

with augmented digital strategies based

on AR and Web services

(Garćıa et al., 2022)

Cyber-Physical System model with an

AR system and Web services to enable

users to easily access product, simulation

and manufacturing data in real-time

(Schroeder et al.,

2016)

Table 6: Digital twin learning approaches focused on enabling augmented interfaces.

for workers (Egger & Masood, 2020). Moreover, augmented interfaces enable

collaborative environments that can allow a physical object to be modelled and640

dynamically adjusted based on instructions learned from a virtual model (Tao

et al., 2019b). Thus, the roles of the workforce are changing due to the use

of user-facing technologies (Ras et al., 2017), leading to agile production and

improved quality of products and processes. Table 6 presents several learning

approaches visualising the digital twin, such as augmented instructions, content-645

based environments and virtual physical collaboration, which are described be-

low.
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Augmented instructions

650

A context-aware digital twin can use the learning capability and the ability

to adapt to changing environments of the workforce to improve the knowledge of

the processes. (Mourtzis et al., 2019) described AR as a promising technology to

generate instructions for operators. The assistance is enabled on the shop floor

according to the operators‘ level of experience and their skills. This augmented655

interaction for knowledge transfer across the factory accelerates the learning

process as the instructions are skill-tailored, playing a significant role in the

system‘s overall efficiency. A different AR approach applied to manufacturing

processes which can help in implementing a smart workplace, is presented in

(Caldarola et al., 2018). The skills of different operators were modelled and660

mapped with the operations to be performed. In this regard, AR enhances the

efficiency of workers assisting the operator step-by-step to accomplish the work.

Content-based environments

VR applications allow workers to interact with production processes through665

non-intrusive technologies in order to improve their skills. This guided approach

makes the training tasks more flexible and attractive by using virtual digital

twin contents. In this direction, a research work integrating VR contents and

intelligent systems to support workers in manufacturing operations, is presented

in (Pérez et al., 2020). A digital twin of the manufacturing process includes a VR670

interface which enables training tasks for operators. It provides a virtual testbed

for enhanced production processes before the physical implementation. Another

learning approach that relies on AR contents is described in (Longo et al.,

2017). The solution, applied on a CNC milling machine, has a real impact on

worker learning curves by making use of AR contents suited to augmenting their675

skills. Through an intelligent personal digital assistant with vocal interaction

capabilities, the proposed approach provides workers with a learning framework

for the smart operator concept.

32



Virtual-physical collaboration

680

The integration of the digital twin information within the real environment

of the worker is therefore crucial to connect and define all real-time relationships

and behaviour between systems, users and processes. An augmented learning

model of a CNC milling machine, using AR and Web Services in real-time, is

presented in (Garćıa et al., 2022). This solution provides a human-machine685

collaborative approach to interact and visualise the health-condition status of

those machine components that are more susceptible to failures. Moreover,

non-intrusive data acquisition and human-machine knowledge models, provide

bidirectional information to the digital twin visualisation layer. In (Schroeder

et al., 2016), another case study based on Web Services, using an AR system690

as a digital twin data interface, is presented. A Web browser provides workers

with easy access and visualisation of oil and gas processing in an offshore oil

platform. The solution can be used on portable devices and showed using an AR

system to get product, simulation, and manufacturing data from digital twin.

5. Challenges695

The previous sections addressed how the impact of digital twin is closing

the loop between physical and digital worlds in current manufacturing environ-

ments. However, how to bring about the future and effective interoperability,

managing different types of human-machine ecosystems and enabling the in-

telligent operation of this physical-digital convergence, is still one of the open700

challenges towards SM (Qi et al., 2018a).

Industry 4.0 presents opportunities for enabling Digital Twin Learning Ecosys-

tems in academic and industrial scenarios. However, at the same time, industry

faces the challenges of building and supporting new technical and digital infras-

tructures, while workers’ skills development eventually manages to handle the705

digital change. In the process, a change in the fundamentals of manufacturing

systems and operations is required (Lu et al., 2020). In the same way, academia
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faces the challenges of providing technological research programmes and experts

in line with complex manufacturing life cycle processes. Both these challenges,

focused on the physical-digital convergence and digital skills development, are710

explored below.

5.1. Physical-digital convergence

One of the Intelligent Manufacturing System (IMS) requirements, in or-

der to enable adaptive systems and learning capacities, is the empowerment of715

connected ecosystems. Furthermore, digital twin is expected to be a decision-

making solution underpinned by real-time communication and cooperation be-

tween workers, systems and processes (Zhong et al., 2017). Thus, manufacturing

companies need to resolve the issue of capturing human and implicit knowl-

edge in digital twin (Jari Kaivo-oja et al., 2020). However, mayor digital twin720

challenges on the manufacturing-related learning that impact on systems and

processes can be classified in the four classes defined below.

Lack of standards where digital solutions are not mature enough to be applied in

production environments

725

Manufacturing ecosystems have to deal with a complex integration to be-

come more connected and autonomous. (Lu et al., 2020) shows how digital twin

application development approaches for SM present implementation limitations

through a lack of understanding of the digital twin concept, reference models,

frameworks and development methods. Furthermore, the construction of a reli-730

able digital twin in manufacturing applications depends on standardised infor-

mation models, industrial communications, and is subject to strict requirements

on timeliness (high-performance data processing), accuracy and reliability. In

this way, (Moyne et al., 2020) shows that digital twin has a lack of behaviour,

consistency and structure to integrate and maintain this technology in manu-735

facturing systems. In addition, the necessary development of standards to align
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digital twin efforts with its capabilities should be considered. On the other hand,

(Semeraro et al., 2021) considers the lack of standards regarding heterogeneous

exchange data sources between different suppliers, manufacturers and customers

as an interoperability barrier for the evolution of digital twin applications.740

Coexistence of different technology levels in the factory

Regarding production environments, (Cimino et al., 2019) considers that

digital twin faces many common scenarios where manufacturing systems are

equipped with traditional machinery. This legacy approach, means that digital745

twin services are limited without the bidirectional connection to interchange

information between the digital twin and its physical counterpart. In a simi-

lar way, (Fuller et al., 2020) considers that currently industrial infrastructure

in place is behind the requirements for new technologies such as digital twin,

particularly in manufacturing environments which have old machines without750

retrofitted or legacy ways to gather digital twin data.

Closed and non-standardised control systems

The great diversity of heterogeneous systems makes the deployment of digi-

tal connections slower. (Cimino et al., 2019) shows how closed proprietary pro-755

duction systems, such as Manufacturing Execution Systems (MES), meet the

challenge to control processes and participate through a fully reactive way in

decision making aspects: scheduling, energy consumption, maintenance, quality,

etc. In a similar way, (Uhlemann et al., 2017a) considers that a slow standard-

isation of data acquisition in production systems impedes the adaptive systems760

implementation for digital twin, while new issues concerning data security arise.

Traditional management approaches to gather operational data

Traditional environments are still too common in manufacturing, particu-

larly in SMEs. Some operations are conducted manually, and operational data765
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is incomplete or missing due to lack of acquisition systems. (Uhlemann et al.,

2017a) shows that a widely used manual data acquisition of motion data, and

hence the lack of data availability in real-time, compromises digital twin for the

evaluation and analysis of production systems. Therefore, the use of fully auto-

mated techniques to support planning processes is not considered as a common770

practice, while the information and timing with regard to manufacturing busi-

ness planning (long run) comes up against manufacturing operations manage-

ment (real-time) (Cimino et al., 2019). In addition, (Hu et al., 2021) considers

that the integration of sensors and data acquisition technologies to achieve two-

way connections has to be solved to ensure real-time data. It is also considered775

that data accuracy and building models in the virtual space with high fidelity

of physical objects are a fundamental issue. In this way, (Semeraro et al., 2021)

considers that the process of modelling the reality in a digital twin is a complex

task, particularly using traditional approaches involving sensors and different

kinds of sources, models and services. In regard to digital twin construction,780

a minimum level of data quality and a consistent data stream for efficient use

is required (Fuller et al., 2020), whilst another challenge can reside in how to

determine the optimal level of detail to create a digital twin model (Parrott &

Warshaw, 2017). In a similar way, a major need for digital twin implementation

is a fully updated 3D digital model (Wärmefjord et al., 2020).785

5.2. Digital skills development

The understanding of human-machine interactions, and their associated learn-

ing processes in intelligent manufacturing (also known as SM), must be re-

searched and managed to enable the creation of digital twins as a process knowl-790

edge generation. (Semeraro et al., 2021) considers human interaction as a key

challenge in the development and implantation of digital twin in manufactur-

ing applications. In this way, the exploration of workers’ learning patterns,

and their associated digital twin model outcomes, can ease their adaptation

to manufacturing changes and develop new ways to convert past experience795
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into precise statements (David et al., 2018). Therefore, in manufacturing, de-

spite progress in the Industry 4.0 paradigm, the existing cultural and workers’

lifelong learning related challenges must be addressed in order to allow digital

twin advancements in learning capabilities, improving the knowledge, skills and

expertise that workers do not yet possess (Berisha-Gawlowski et al., 2021).800

Lack of background research, expert knowledge or trained workers with digital

skills

A previous work of research to develop learning programmes allowing the

generation and consolidation of applied results at the shop floor is required.805

Nevertheless, on the one hand (Cimino et al., 2019) considers that, in practice,

research on digital twin is still ongoing and, on the other (Lu et al., 2020)

shows that there is only superficial knowledge about the research questions

and challenges of digital twin, where current research outcomes are showing

preliminary application examples in general. Regarding engineering students at810

universities, for instance, (Wärmefjord et al., 2020) points to the importance

of the fact that they will need more knowledge and competencies in the future

about model-based definition workflows and geometry assurance, in particular

of the automotive domain. In that regard, these are major digital twin obstacles

related to future skills development, even in front-running companies: the lack815

of Industry 4.0 specialists and digital expertise (Uhlemann et al., 2017a).

Digital and cultural change

Traditional environments are facing a substantial increment in the use of

advanced technologies to improve the learning capability of the workforce. In820

that sense, a human-machine integration is necessary in order to lead the learn-

ing process and knowledge management in organisations (Jari Kaivo-oja et al.,

2020). On the other hand, (Moyne et al., 2020) considered the necessary con-

solidation of the digital twin research for advancing technology, avoiding spe-
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cific deficiencies to tackle issues such as the development and implementation825

of longer-term solutions. In addition, a unified and standardised development

platform and tools for digital twin are required in the future (Hu et al., 2021).

Also, human skills at work, as a dynamic factor during workers’ learning, have

to be modelled in digital twin (Ifenthaler et al., 2021). Nevertheless, a major

challenge arises when digital twin comes up against organizations and workers830

and must verify that the generated models work as expected, and in order to

ensure that they know its benefits (Fuller et al., 2020).
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Figure 6: Digital twin research priorities and future trends in collaborative learning ecosystems

835

38



5.3. Research priorities and future trends

The building process of Digital Twin Learning Ecosystems requires a con-

nected infrastructure to address the presented challenges. However, there still

exist open issues described in the literature, such as part of the interconnected840

three-dimension ecosystem composed of workers, systems and processes. Ta-

ble 7 summarises some identified barriers to be tackled, which would enable all

learning approaches associated to the digital twin concept to accomplish IMS

trends. In this way, the advancement in the proposed digital twin field of re-

search cannot be regarded without a common understanding between academia845

and industry.

In this work, we have proposed a comprehensive definition of a Digital Twin

Learning Ecosystem based on a holistic approach. This is followed by the iden-

tification of three key digital twin research priorities in the collaborative learn-

ing ecosystems described in Figure 6. Furthermore, the matching between the850

three aforementioned dimensions and future trends, while outlining these main

research priorities and factors, are discussed below:

(i) Digital twin concept understanding and learning. Focused on the workers’

dimension, research programmes encourage a two-way human-machine interac-

tion (Abele et al., 2017). In this way, the Learning Factory concept offers a855

widely accepted learning approach by academia and industry. Learning Facto-

ries can be used as a training ecosystem that comprises researchers, Industry 4.0

specialists and teaching programs (Tvenge et al., 2020). As such, they represent

crossed knowledge from laboratories and real factories as fully operational digi-

tal twin models towards the empowerment of workforce skills and competences.860

(ii) Bidirectional data synchronisation. Focused on SM systems, data avail-

ability in real time can provide digital twin with cyber-physical connections and

smart monitoring capabilities (Negri et al., 2017). In this way, Human-machine

collaborative ways are brought forward through the use of smart sensors and

data-driven approaches. Nevertheless, to enable an effective data-driven digital865

twin bidirectional interaction, a better understanding of the dynamic behaviour
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20)

7)

)

Dimension IMS trends Challenges for building DTs References

Workers

Empowerment of digital skills

(research, expert knowledge and

training)

Results of research not mature

enough, concept understanding

(Cimino et al., 2019)

(Lu et al., 2020)

(Moyne et al., 2020)

More knowledge required from

engineering education pro-

grammes

(Wärmefjord et al.,

2020)

Lack of I4.0 specialists and digi-

tal expertise

(Uhlemann et al., 2017a)

Human-machine integration is-

sues

(Jari Kaivo-oja et al., 20

(Ifenthaler et al., 2021)

(Semeraro et al., 2021)

Lack of confidence in technology (Fuller et al., 2020)

Systems

Smart sensor deployment, real-time

data, and smart monitoring

Manual practices, evaluation and

timing of information

(Uhlemann et al., 2017a)

(Cimino et al., 2019)

Two-way data acquisition, data

accuracy, high fidelity models

(Hu et al., 2021)

(Parrott & Warshaw, 201

(Wärmefjord et al., 2020

Data modelling, data quality,

consistent data streams

(Fuller et al., 2020)

(Semeraro et al., 2021)

Data availability for control and

sheduling, in participatory-adaptive

ways

Decision making (control and

participation)

(Cimino et al., 2019)

Low standardisation in data ac-

quisition, data security

(Uhlemann et al., 2017a)

Processes

Digital standards, frameworks

development, and cyber gateways

connection

Application development, reli-

able information models, indus-

trial communications, strict re-

quirements of operation

(Lu et al., 2020)

(Semeraro et al., 2021)

Capabilities, consistency, be-

haviour, integration and support

(Moyne et al., 2020)

Convergence of the digital world

and physical world

Limited traditional operation,

interchange of information

(Cimino et al., 2019)

Legacy integration requirements (Fuller et al., 2020)

Table 7: Trends and challenges to enable digital twin learning ecosystems.
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of systems during their life cycle is required (Malik & Bilberg, 2018). Thus, im-

proved diagnostic methods can be promoted, and virtual models’ development

of physical systems can be improved. Moreover, smart manufacturing design

through learning data can enable a digital twin-based semi-physical commis-870

sioning approach. In this context, there is an opportunity to enhance SM design

in advance in the early development phase and ensure correct decision guidance

(Leng et al., 2021).

(iii) Physical-digital convergence and standardisation. Focused on the pro-

cess domains, the generation of industrial knowledge is based on the creation875

of standardised communication paths and service architectures, according to

the convergence conditions of the real and virtual worlds (Tao & Zhang, 2017).

By promoting the digital twin areas of research already under way, such as the

potential in the field of verification and validation (Löcklin et al., 2020), and

the development of augmented interface-based frameworks (Cimini et al., 2020),880

new approaches for transforming existing production and control methods may

emerge towards intelligent physical-digital interfaces and smart decision support

models.

6. Conclusions

The evolution of the digital twin concept, leveraged by the onward physical-885

digital convergence, has provided SM ecosystems with knowledge-generation

opportunities based on new models of collaboration between workforce and in-

dustrial processes. It is a fact that the increased deployments of smart sensors

to capture data powered by IIoT gateways, and current technological trends

such as ML, VR and AR, are enabling workers’ skills to take part in the immer-890

sive digital twin paradigm. Technology industry experts, such as the Gartner

Group, ranked digital twins among the top ten technology trends for several

years (Qi et al., 2019). In a similar way, a Digital Twins in IoT: Market Strate-

gies, Challenges & Future Outlook, 2019-2023 study from Juniper Research

(Sutanto, 2019) found that digital twin operations will help human workers’895
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skills to manage their capabilities in areas that the technology cannot address.

In addition, this research forecasts Manufacturing as the fastest growing sector

in potential future revenues from digital twin’s market in 2023.

The rationale behind this work was to better understand the enablers and

challenges involving the digital twin physical-digital convergence in manufac-900

turing environments, to improve the development of learning strategies through

the cyber-physical virtual factory replication and human-machine collaboration

models. This paper reviews in detail the concept and potential application of

digital twin to accomplish IMS knowledge-generation requirements by explor-

ing the physical-digital learning fusion coupled with connected frameworks. We905

present literature findings which provide details on diverse framework models

of digital twin learning ecosystems. In the case of Learning Factories, the dig-

ital twin concept is well integrated from both the research community and the

manufacturing industry, in line with the enablement of connected adaptive sys-

tems and the empowerment of workforce skills. Nevertheless, we considered910

it necessary to contribute with an original definition of Digital Twin Learning

Ecosystem and its conceptual layered architecture, providing a reference model

to enable real-time augmented interfaces and bidirectional collaboration capabil-

ities between workers, systems and processes. Furthermore, based on these three

interconnected dimensions, we outline the main digital twin research priorities915

in collaborative learning ecosystems and how they can contribute to emerging

trends in manufacturing.

In this way, digital twin is expected to be a decision-making solution to

provide manufacturing workers with a deeper understanding and skills devel-

opment. However, it is not clear in the industry what features a digital twin920

should have or how it should work in different ecosystems. Industry should first

learn how to apply these virtual representations, taking into account a trade-

off between the latest advances in scientific research and the relative maturity

needed for current enabling technologies, whilst some of them are under devel-

opment in manufacturing processes. In this sense, the adoption of digital twin925

in production is still at an initial stage in the manufacturing industry, where
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specific human and technological challenges must be addressed. The research

priorities presented in this work are considered as a recognised basis in industry,

which should help digital twin with the objective of its progressive integration

as a learning ecosystem.930
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