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Abstract

The evolution of digital twin, leveraged by the progressive physical-digital
convergence, has provided smart manufacturing systems with knowledge-generation
ecosystems based on new models of collaboration between the workforce and in-
dustrial processes. Digital twin is expected to be a decision-making solution
underpinned by real-time communication and data-driven enablers, entailing
close cooperation between workers, systems and processes. But industry will
need to face the challenges of building and supporting new technical and digital
infrastructures, while workers’ skills development eventually manages to include
the increased complexity of industrial processes. This paper is intended to reach
a better understanding of learning opportunities offered by emerging Industry
4.0 digital twin ecosystems in manufacturing. Diverse learning approaches fo-
cused on the potential application of the digital twin concept in theoretical and
real manufacturing ecosystems are reviewed. In addition, we propose an origi-
nal definition of Digital Twin Learning Ecosystem and the conceptual layered
architecture. Existing key enablers of the digital twin physical-digital conver-
gence, such as collaborative frameworks, data-driven approaches and augmented

interfaces, are also described. The role of the Learning Factory concept is high-
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lighted, providing a common understanding between academia and industry.
Academic applications and complex demonstration scenarios are combined in
line with the enablement of connected adaptive systems and the empowerment
of workforce skills and competences. The adoption of digital twin in produc-
tion is still at an initial stage in the manufacturing industry, where specific
human and technological challenges must be addressed. The research priorities
presented in this work are considered as a recognised basis in industry, which
should help digital twin with the objective of its progressive integration as a
future learning ecosystem.

Keywords: Digital Twin, Learning Ecosystem, Manufacturing,

Human-machine collaboration, Learning Factory, Cyber-physical system

1. Introduction

With the empowerment of workers’ digital-based skills in manufacturing
environments, human-machine collaborative ecosystems supported by Digital
Twins (DT) will ultimately be a trend. Today, the digital twin concept is called
to accomplish the integration between physical and digital worlds in manufac-
turing as one of the most promising Industry 4.0 (I4.0) enabling technologies
(Liu et al., 2021), (Kritzinger et al., 2018). By the physical-digital convergence,
digital twin is able to represent an abstraction of manufacturing systems’ reality
that allows for multiple interaction levels between processes, systems, and work-
ers within the virtual space (Semeraro et al., 2021), building complex virtual
models. In this way, a virtual model acts as a point of knowledge (Tao et al.,
2019b) by providing direct access to existing plant-process information in real-
time, as an integral part of a Digital Twin Learning Ecosystem (DTLE). Thus,
the interaction of workers and the integration of digital information with the real
environment, provides the plant ecosystem with the cyber-physical connections
and digital twin data flows. At the same time, all the required counterpart
relationships that collect data as input to agile methods, adaptive learning,

process simulation and service planning, among others, are represented. Dur-
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ing this time, the manufacturing industry has taken advantage on the digital
twin learning opportunities presented by the development of new generation of
information technologies applied to physical-digital convergence (Raptis et al.,
2019). However, an important consideration when discussing lifelong learning
and training in industry is that they are increasingly dependent on highly skilled
workers and digital changes to improve the working methods (Toivonen et al.,
2018). In this context, the potential of digital twin and its real-time cooperation
between machines and human resources offer continuous learning opportunities
to clear away obstacles in technological environments (Berisha-Gawlowski et al.,
2021). Through the combination of such factors as the human-machine learning
(Ansari et al., 2018), as well as the Learning Factory (LF) concept (Tvenge
et al., 2020), physical and virtual environments are set to improve the skill set
of the future workforce, which includes all processes, products, resources and
categories of people in different manufacturing activities, regardless of age, gen-
der and social status. Moreover, in line with the building process of a connected
Digital Twin Learning Ecosystem, many different angles of the manufacturing
context can be explored on all the aforementioned levels interacting at the same
time.

In the cyber-physical connection process, a paradigm shift was imposed
to manufacturing plants where data operations can be gathered in real time
through new smart sensors supported by Industrial Internet of Things (IIoT)
gateways. In that regard, the concept of digital twin is not really new in manu-
facturing. Originally, Grieves conceived digital twin on a conceptual level linked
to Product Lifecycle Management (PLM) in 2003 (Grieves, 2003), (Grieves &
Vickers, 2017). He defined a conceptual model that contains three main parts:
the Real Space (physical products), the Virtual Space (virtual products) and
the bidirectional data flow links between them, including virtual sub-spaces.
Later, (Grieves, 2014) extended his own digital twin concept in manufacturing
through Virtual Factory Replication, where the physical product and the virtual
product can be viewed and compared at the same time in a closed-loop. In this

way, towards the comprehension of new physical-digital learning enablers and
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challenges in the Industry 4.0 era, next-generation manufacturing systems are
supported by adopting digital twin frameworks (Pérez et al., 2020), and theo-
retical and practical Learning Factories knowledge models (Baena et al., 2017),
(Prinz et al., 2016).

During the last decade, the digital twin role has been improved with different
approaches and definitions focused on the manufacturing domain, considering
that digital twin is still mainly in an early concept stage (Kritzinger et al.,
2018). Furthermore, (Negri et al., 2017) remarked the need for future digital
twin research on relevant industrial applications, in order to express their poten-
tial through effective demonstrations for Industry 4.0 manufacturing contexts.
Regarding current studies for realising digital twin in Industry 4.0, (Tao et al.,
2019b) summarises the state-of-the-art of digital twin research and its applica-
tion in different industries as a reference guide. In addition, the paper poses
many pressing issues, such as a unified digital twin modeling method, which
should be addressed to enhance a rapid digital twin evolution in practice. In a
different work, (Lu et al., 2020) reviews the connotations, application scenarios,
and research issues of digital twin-driven smart manufacturing in the context of
Industry 4.0. Some digital twin aspects focused on manufacturing assets, peo-
ple, factories and production networks are presented as playing a crucial role in
the vision of smart manufacturing.

The purpose of our research is to reach a better understanding of the holistic
approach offered by Industry 4.0 Digital Twin Learning Ecosystems in a collab-
orative way. Some of the main outputs concerning the physical-digital learning
explored are aligned with worker training programs oriented towards appropri-
ate digital skills. The rest of the paper is organized as follows (Figure 1). Section
2 describes the research methodology. Section 3 addresses a literature review
to understand the learning opportunities offered by digital twin in manufactur-
ing under the Industry 4.0 paradigm. Section 4 presents different enablers of
knowledge in Industry 4.0 manufacturing systems. Section 5 describes the main
digital twin learning challenges and research priorities that need to be met in

manufacturing. Finally, Section 6 presents the findings and conclusions derived
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Figure 1: Scope of the research

2. Methodology

This research is motivated by the digital twin concept presented by Grieves
and focused on a connected physical-virtual model. Existing technical articles
and scientific research on industrial digital twin ecosystems are considered to
study human-machine interaction methods based on applications, frameworks
and collaboration models used for decision-making and training in manufactur-
ing. Apart from this, in this work we also analyse the current enablers and
challenges found in the physical-digital convergence.

Figure 2 describes the research methodology conducted in this paper. Two
literature databases were considered. First, Scopus is used as the main database,
while, Google Scholar is used to complete and enrich the Scopus results. We
filtered papers by their publication year, starting in 2015 (this review aims to
show the latest advances, so older papers are not considered) and finishing in

2021.
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Since we focus on the digital twin concept in manufacturing environments,
all our searches always included the so called domain keywords in Figure 2,
which are “Digital Twin” and “manufacturing”. Then, we proceeded with
our search in different phases, by adding selected keywords following the main

objectives of the paper:

1. Reviewing Industry 4.0 driven applications of digital twin, which offer
human-machine cooperation opportunities in smart manufacturing ecosys-
tems from both academia and industry.

2. Understanding the emerging Digital Twin Learning Ecosystems, focusing
the research topic on both theoretical virtual factories and connected real
collaborative ecosystems in manufacturing.

3. Reviewing the current enablers, challenges and research priorities in de-

veloping Industry 4.0 Digital Twin Learning Ecosystems.
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Figure 2: Iterative search methodology conducted

First, we proposed an initial search (search #1) based on the research
topic: Digital Twin Learning Ecosystems in Manufacturing, composed as fol-
lows: “Digital Twin” AND “manufacturing” AND (“learning” OR “ecosys-
tem”). As a result, 271 papers were found. However, only 9 of those papers
were useful for our review. For the remaining papers, the filter criteria did not

provide practical manufacturing digital twin applications in the context of a

+
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cyber-physical human-machine collaboration as intended in the review, others
presented a digital twin limited contribution, and 115 papers were not publicly
available. Because of this, we reoriented our search strategy by using more
general keywords, following the intended objectives of the review, and then se-
lecting the most relevant papers to the research topic based on: (i) number of
citations, (ii) abstract’ content, (iii) conclusion’ content, and (iv) related works.

For the first objective, survey-type papers were searched (search #2) com-
posed as follows: “Digital Twin” AND “manufacturing” AND (“review” OR
“State of the art” OR “survey”). We found 212 papers, of which some prelim-
inary literature findings were identified, underpinning the research topic in the
context of the Digital Twin Learning Ecosystem. Table 1 shows the 7 selected
most relevant papers together with Grieves’ paper. On that basis, the detailed
digital twin context, related Industry 4.0 enabling technologies, learning ecosys-
tem approaches and human-machine collaboration enablers, were examined in
order to validate the scope and retrieval strategy.

For the second objective, two different searches were performed looking for
practical learning ecosystems. The list of keywords was improved to include
applications and connected frameworks, having a third search (search #3) com-
posed as follows: “Digital Twin” AND “manufacturing” AND (“application”
OR “framework”), selecting the most representative papers (20), from 761 re-
sults. Then, we included “Learning Factory” and “virtual factory” strings for
and additional search (search #4) composed as follows: “Digital Twin” AND
“manufacturing” AND (“learning factory” OR “virtual factory”), selecting the
most representative papers (7), from 30 results, and completing the selection of
works for this second objective.

Finally, for the third objective, we added the keywords for digital twin “en-
ablers” and “challenges”, having a fifth search (search #5) composed as follows:
“Digital Twin” AND “manufacturing” AND (“enabler” OR “challenge”). The
identified papers (13), from 294 results, had already been selected in previous
searches.

Additionally, Google searches using the list of selected keywords, helped
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to complete our iterative search, including some new technical and original
articles. We found over 60 documents from Google search, to grasp the digital
twin learning opportunities emerging from the collaboration between industry

and academia.

3. Literature Review

This section aims to contribute with diverse learning approaches applying the
digital twin concept in theoretical and existing manufacturing ecosystems in line
with Industry 4.0 physical-digital convergence. Through the revision of scientific
literature and original articles, the paper is aligned to derive knowledge from
both the research community and real scenarios in the manufacturing industry.

In addition, our work proposes an original definition of Digital Twin Learning

Ecosystem in the manufacturing domain.

3.1. Digital Twin and the Industry 4.0

At the beginning of 2015, the general Industry 4.0 definition and its main
design principles (interoperability, virtualization, decentralization, real-time ca-
pability, service orientation, and modularity) were presented in (Hermann et al.,
2015) as a “how to do” Industry 4.0. The definition already includes the four In-
dustry 4.0 key components: CPS, IoT, I0oS and Smart Factory. The integration
of these components is standardised in the “Reference Architecture Model In-
dustrie 4.0” (RAMI 4.0) as a service-oriented architecture for the development
of Industry 4.0 applications and the development of models for smart manu-
facturing ecosystems (Adolphs et al., 2015). Also, in 2015, the term “Smart
Manufacturing” (SM) was introduced in the United States to deploy the new
technologies in manufacturing, such as IToT and Artificial Inteligence (AI). The
National Institute of Standards and Technology (NIST) defined SM as “fully-
integrated, collaborative manufacturing systems that respond in real time to meet
changing demands and conditions in the factory, in the supply network, and in

customer needs” (Tantawi et al., 2019).
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Nowadays, the most representative terms of these definitions and technolo-
gies have been adopted globally by industry and academia. Overall, their key
characteristics and technologies (Mittal et al., 2019) serve as a guide to the
implementation of 14.0-enabled manufacturing systems. In a scenario led by
the cyber-physical convergence of Industry 4.0 ecosystems (Qi et al., 2018b),
the concept of digital twin emerges as one of the most disruptive innovations
to exploit data enabling industrial technologies (Raptis et al., 2019). Owing
to their growing relevance, Gartner Hype Cycle (Dedehayir & Steinert, 2016)
named digital twin as one of the “Top 10 Strategic Technology Trends” from
2017 to 2019 (Qi et al., 2019). There is a paradigm shift moving from the
traditional product-oriented manufacturing to service-oriented manufacturing
(Moghaddam et al., 2015). This landscape allows value to be added through
connected services, specialized skills, learning tools to support new collabora-
tive business models, and hybrid digital twin data-driven approaches such as
monitoring, diagnostic and prediction (Lu et al., 2020). Even though the digi-
tal twin concept has been improved in manufacturing with different approaches
and definitions (Negri et al., 2017), and refined in system theoretical terms for
learning, optimization, and control (Cronrath et al., 2020), it is certainly true
that several works show that research outcomes for digital twin in this domain
are mainly on a conceptual level. In this regard, many articles are of a founda-
tional nature (Holler et al., 2016), some works are recent (Negri et al., 2017),
and many researchers are starting to derive the first steps of digital twin in
practice (Kritzinger et al., 2018).

Academia and industry have different visions about how to understand and
apply digital twin as a tool of knowledge responding to dynamic changes in
manufacturing processes (Parrott & Warshaw, 2017). However, it is a fact that
a standardised framework to develop a digital twin in manufacturing, such as
the ISO 23247 (Shao & Helu, 2020), can help the acceptance of the digital twin
concept (Shao et al., 2021). In the meantime, technological vendors have their
own interpretation of the digital twin concept (Schleich et al., 2017) and con-

tinue with its research and development in accordance with their customers and

10



210

215

220

business models. For example, General Electric (GE, 2016) provides a cloud-
based platform with analytic models. ANSYS2, ALTAIR? and ESI GROUP*
have their origins in Computer Aided Engineering (CAE) supporting physics-
based simulation and virtual prototyping. Moreover, the EST GROUP‘s “Hy-
brid Twin” concept introduces a complementary physics-based virtual model
to describe cause-effect relationships (Chinesta et al., 2020). Another differ-
ent solution implemented by SOFTWARE AG®, PTC® and Siemens” provides
a PLM-based platform supporting AR and IoT management cloud. Enabling
technologies like AR in digital twin ecosystems derives added value for human-
machine interface integration, visualization and learning of the digital twin data
(Zhu et al., 2019). Thus, the advent of connected digital twin models in manu-
facturing has enhanced the development of collaborative skills 4.0 and training
capabilities (Fantini et al., 2020), providing workers with direct access to exist-
ing plant-process knowledge to perform technical tasks, or using their inputs as

part of the learning process (Graessler & Poehler, 2018b).

3.2. Digital Twin learning applications in manufacturing

New digital twin learning applications are emerging in a virtual space to
provide manufacturing ecosystems’ reality with an additional knowledge layer.
It is with this perspective that the connected digital twin enables different ap-
plications and ways to collaborate between humans and automated production
systems. Moreover, distributed learning gives opportunities for modelling the

multiple interactions between processes (Kunath & Winkler, 2018), systems

2https://www.ansys.com /products/systems/digital-twin
3https://www.altair.com /resource/altair-digital-twin-platform
4https:/ /www.esi-group.com /blog/hybrid-twin-vs-digital-twin-well-tell-you-the-difference-

and-which-can-save-the-life-of-your-asset
Shttps://www.softwareag.com/en_corporate/platform/iot /iot-digital-twins.html
Shttps://www.ptc.com/en/product-lifecycle-report /what-is-digital-twin-technology
"https://www.plm.automation.siemens.com /global /en/our-story /glossary /digital-

twin,/24465
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(Reid & Rhodes, 2016), and workers’ skills (Graessler & Poehler, 2018a).

As a result, three categories reporting digital twin applications in manufac-
turing environments are presented discussing learning opportunities in academia
and industry below. These are as follows: human-machine interaction applica-
tions, training applications and data-driven applications. Table 2 summarises
several articles classified in these three dimensions by the digital twin approach
used for learning (in the second column), as well as a summary of the aims,

features and benefits presented.

8.2.1. Human-machine interaction applications

Towards the concept of a learning ecosystem (Burke et al., 2017), digital twin
offers bidirectional interaction in real-time dealing with different data sources
in order to transform information into valuable knowledge (Uhlemann et al.,
2017a). The use of human-machine interfaces is therefore promoting the im-
plementation of digital twin applications oriented to collaborative environments
(see Table 2). A context-aware and adaptive digital twin model (Hribernik et al.,
2021) offers human-machine complex interactions related to manufacturing pro-
cesses, while they are involved in an intelligent data space. In this collaborative
context, a social-based framework of interconnected manufacturing systems of
workers, assets and services also takes place. Virtual, physical and social worlds
are integrated around a Cyber-Physical-Social System (CPSS) approach, on the
concept of social manufacturing (Leng et al., 2020).

Collaborative learning models, present strategies for evaluating workers®
skills in CPS environments, enable local or remote interaction services and pro-
vide intuitive augmented applications to monitor and control processes. For
example, studies such as (Graessler & Poehler, 2018b) show a conceptual ap-
proach of a digital twin application involving workers and CPS devices in an
experimental assembly station of a production laboratory, in fully automated

decision-making processes. In addition, there are other studies focused on the

12



Dimension DT approach Aims Features Benefits References
Human- Experimental pro-  Automated com- Learning through the Intuitively interaction of  (Graessler
machine duction setup putational decision  evaluation of workers* workers with technical &
interaction processes skills devices in CPS environ- Poehler,
applications ments 2018b)
Knowledge fruition  Enable a Smart Fac- Interaction service be- Industrial performances (Padovano
as a service tory 4.0 with aug- tween operators working  in terms of productivity et al.,
mented interfaces in-situ or remotely and  and process quality stan- 2018)
CPPS dards
Comprehensive HMI to improve Intuitive AR application Taking advantage of op- (Zhu
visualisation of aug-  workers* efficiency to monitor and control a  erative data to perform et al.,
mented information machining process efficient decision-making  2019)
and higher level machine
control
Competence devel- Path towards Industry  Convergence of the real (Baena
opment 4.0 into an academic  world and cyber physical et al.,
Training Learning Factories
applications context system 2017)
Practical learning Workplace-integrated Transfers learned knowl- (Prinz
learning  system  for  edge directly to the own et al.,
knowledge-based manu-  workplace 2016)
facturing
Training in simi- Planning and simulation  Digital and virtual en-  (Abele
lar research fields  activities vironment for providing et al.,
of conventional added value for the edu-  2017)
physical learning cation of the production
factories of the future
Manufacturing edu- Cognitive process when Interlinkage between the (Tvenge
cation working in, or with, digital and physical twin et al.,
VR/AR learning envi- concerning cognition  2020)
ronments and learning
Enhanced interac- Create an aug- Immersive and multi- Augment the seamless (Ke et al.,
tion framework mented and interac- perception  interaction  integration between the  2019)
tive environment experience brought by  physical and virtual
VR/AR/MR worlds
Manufacturing Dynamic au- Bi-level online intelli- Enable continous im- (Leng
Data-driven
cyber-physical sys-  tonomous system to  gence in proactive de- provement based on an et al.,
applications
tem (MCPS) co-create personal- cision making for the intelligent optimisation  2019)
ized products organization and oper-  engine
ation of manufacturing
resources
Machining process Methods for dy- Maintaining consistency  Improvement of the ma- (Liu
evaluation (DT-  namic change of the of processing quality for  chining efficiency by in- et al.,
MPPE) machining condition  the machined parts tegrating the cyber and  2019)
and uncertain avail- physical space in manu-
able manufacturing facturing
resources
Assisted fault diag- Fault diagnosis both Transfer simulation Enhance fault diagno- 6 (Xu
nosis method using in th]:gdcvclopmcnt results learned from sis in virtual space and et al.,
deep transfer learn- and maintenance  the virtual space to the physical space to be  2019a)
ing (DFDD) phases physical space without more transparent, flexi-

training the model from

scratch

ble, and efficient

Table 2: Classification of Digital Twin learning applications in manufacturing
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usefulness of augmented interfaces. (Padovano et al., 2018) presented a DT-
based application designed to enable a knowledge as a service approach in a
real factory floor producing carton packaging boxes. The digital twin prototype
provides workers with a real time CPPS-based 4.0 knowledge navigation service
linked to an Android application with a QR code. The workers can use this ap-
plication, a screen interaction or a vocal message to request specific knowledge,
keeping their attention directly on the physical system. Another collaborative
scenario, based on an AR human-machine interface for the visualization of dig-
ital twin data, is presented in (Zhu et al., 2019). An AR application is used to
provide workers with comprehensive information to monitor and control a CNC
milling machine in a real manufacturing environment. The connected frame-
work also allows the worker to interact and manage digital twin data in order

to improve the process efficiency through an augmented approach.

3.2.2. Training applications

It is known that workers’ knowledge is improved by different backgrounds
and outcomes in training processes. Likewise, experienced workers are necessary
to guide others with little experience. Nevertheless, training applications of
digital twin in manufacturing require a collaborative learning framework as the
basis for generating knowledge towards decision support systems. In this way,
learning factories offer a path towards Industry 4.0 in an academic context, while
promoting the integration of learning systems in the workplace by transferring
lessons learned for knowledge-based manufacturing, through the convergence of
the real world. Apart from this, training in virtual environments encourages the
cognitive process when working in immersive and multi-perception environments
with augmented learning.

Some studies included in (Table 2) show that the Learning Factory concept is
evolving in manufacturing to support Industry 4.0 enabling technologies (Baena

et al., 2017) and practical learning activities (Prinz et al., 2016), as a promising
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training and research environment where digital twin combines both industrial
scenarios and academic applications (Abele et al., 2017). The communication
and interaction between teams of engineers and researchers establishes a two-
way knowledge to bring real industrial environments to teaching programmes
and research laboratories to factories. Also, in a Learning Factory context,
the digital twin concept offers learning opportunities for the representation and
visualisation through mapping of real processes in digital and virtual models
(Tvenge et al., 2020). AR/VR technologies also provide workers with enhanced

interaction frameworks and augmented interfaces (Ke et al., 2019).

8.2.8. Data-driven applications

(Kunath & Winkler, 2018) defines digital twin ”as the sum of all available
data, i.e. engineering data and operational data, of all elements of the manu-
facturing system that reflect the historical and actual state of the system in real-
time”. In the context of industrial applications, therefore, digital twin provides
a connected data infrastructure able to help with the generation of data-driven
models in proactive decision making, maintaining process & product quality
and transferring results learned - from simulations in the virtual space to the
physical space - without training the model from scratch.

Some different real-time data-driven learning applications can be found in
the literature based on the digital twin approach (see Table 2). For example,
in (Leng et al., 2019) a systems engineering-based approach of a digital twin to
co-create personalised products is presented. A demonstrative implementation
scenario is characterised by a DT-driven manufacturing CPS for parallel control
of a smart manufacturing workshop. Through the analysis of a dynamic pro-
cess execution, digital twin provides workers with the status of manufacturing
operation and enables continuous improvement with an intelligent optimisation
engine. Another different solution is proposed in (Liu et al., 2019) using a

DT-based process planning evaluation method with real-time data status. The
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implementation is addressed in a manufacturing workshop of key parts of the
marine diesel engines, where planning evaluation is required to ensure consis-
tency of processing quality of manufactured parts. IoT and digital twin tech-
nologies allow the improvement of the machining efficiency by using a dynamic
physical-virtual information about the process status. On the other hand, data
analysis enables behaviour-based applications focused on CPS. For example,
a DT-assisted fault diagnosis method for real-time monitoring and predictive
maintenance is presented in (Xu et al., 2019a). The case study is implemented
in a car body-side production line, where a Programmable Logic Controller
(PLC) allows data interconnection and interaction. Through a two-phase using
deep transfer learning, the application of digital twin in virtual and physical
spaces transforms fault diagnosis patterns in knowledge for both development

and maintenance phases, thus reducing the risk of accidental breakdowns.

3.8. Definition of Digital Twin Learning Ecosystem

This paper aims to identify and define a Digital Twin Learning Ecosystem.
In this way, (Gartner, 2017) defines Digital Ecosystem as “an interdependent
group of actors (enterprises, people, things) sharing standardized digital plat-
forms to achieve a mutually beneficial purpose”. In a manufacturing production
plant, for instance, those interdependent groups of actors can be represented
by processes, systems and workers. Another definition, focused on the Digital
Learning Ecosystem, is proposed by (Ficheman & de Deus Lopes, 2008) as “the
set of all relationships between biotic factors (consisting of hardware, software,
network and database technologies as well as pedagogies) and abiotic factors
(human specie and digital specie)”. According to this, it is the abiotic factor
which provides the environment that supports interactions between biotic fac-
tors. In addition, a different definition of Learning Ecosystems is proposed by
(Garcia-Holgado & Garcia-Penalvo, 2017), as ”a type of technological ecosystems
focused on learning management processes”, where the technological ecosystems

are "the evolution of the traditional information systems, providing support to
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information and knowledge management in heterogeneous environments.”. As
mentioned above, digital twin applications in manufacturing will provide work-
ers with learning services in order to augment their working experience and
performance. However, without a bidirectional and adaptive physical-digital
synchronisation at a factory wide-level, this knowledge would not be effective

(Padovano et al., 2018).

2N

ary

Decision

]

Real-time Intelligent
HMI DT agents

Learning
Ecosystem

Smart
APPs

Figure 3: Proposed three-layer Digital Twin Learning Ecosystem

To the best of our knowledge, there is no specific definition for a Digital Twin
Learning Ecosystem in Manufacturing. After successful completion of previous
R&D studies carried out and tested in our lab®, we define three feedback con-
ceptual layers focused on the generation of an adaptive learning framework.
They are oriented to human-machine collaborative ecosystems in the context

of Industry 4.0 as digital twin input (see Figure 3), providing a physical-digital

8Due to the requirements for anonymized manuscript submissions at Computers & Indus-

trial Engineering, the work is not cited in this version of the paper
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connection, smart human-machine interfaces, and cognitive skills:

e DT Data Streams. Real-time information from systems and workers
via multiple and heterogeneous manufacturing data sources, such as mea-
suring devices, augmented human-machine interface devices, industrial
automation middleware, process control systems or other software pro-

grammes, using a standardised data format.

e DT Data Models. Management, monitoring and virtualization services
applied to manufacturing data that will be used further as datasets by
high-level AT applications, building digital objects of all ecosystem re-
sources to extract valuable information about the whole production life

cycle.

e DT Knowledge Models. Variability of smart views providing a com-
plete immersion in a knowledge-based augmented human-machine man-
ufacturing ecosystem, where a virtual representation of all actors of the
manufacturing environment is set through intelligent agents, describing
their real world counterparts to model decision-making actions, based on

learned data.

Therefore, as a result, we propose the definition of a Digital Twin Learning

Ecosystem in Manufacturing as follows:

Definition 3.1 (Digital Twin Learning Ecosystem). An augmented physical-
digital way of bidirectional interaction, understanding and learning between
workers, systems and processes in a framework integrated by virtual and real

Intelligent Manufacturing Ecosystems.

4. Enablers

(Grieves, 2014), anticipated the advances in computing capabilities as an
important enabler of the future knowledge potential for the digital twin concept

in manufacturing. Furthermore, he proposed a cyber-physical Virtual Factory
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Figure 4: Digital Twin Learning Ecosystems enablers and main properties

Replication model, advancing the digital twin concept forward in human knowl-
edge through the fusion of three of its skills: conceptualization, comparison
and collaboration. Thus, this section presents different Digital Twin Learning
Ecosystem scenarios as enablers of knowledge in Industry 4.0 manufacturing
systems. The main properties of these digital twin enablers are summarised
in Figure 4. Some approaches comprising connected collaborative digital twin
frameworks and their key features are described and, in addition, the role of
the Learning Factory concept is examined. In a similar way, digital twin data-
driven approaches to enable knowledge models are presented. Finally, digital
twin augmented interfaces driven by human-system interaction to enable learn-

ing capabilities in manufacturing environments are discussed.

4.1. Digital Twin Learning Ecosystems frameworks

The emergence of connected platforms supporting digital twin frameworks,
provides manufacturing with a learning ecosystem oriented towards exploiting

knowledge from the integration of physical and digital worlds. Figure 5, de-
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410

scribes an example of a connected digital twin learning framework at Research
and Development Centre labs?, which has been designed and tested for the
proactive collaborative maintenance (local and remote) of manufacturing as-
sets. The framework is focused on the generation of a non-intrusive and fully
two-way adaptive human-machine collaborative ecosystem, supporting workers’
training and enhanced learning. In addition, the proposed real-time Augmented
Reality (AR) and Virtual Reality (VR) augmented frameworks for visualising
digital twins enable the development of skills 4.0, while providing direct access

to existing manufacturing-process knowledge bridged through smart sensors.

v

sthoring platfo

Figure 5: Example of a Digital Twin framework to enable learning ecosystems at Research

and Development Centre labs

9Due to the requirements for anonymised manuscript submissions at Computers & Indus-
trial Engineering, the name of the research center is not mentioned in this version of the

paper
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In the literature, some Digital Twin Learning Ecosystems based on frame-
works are identified and discussed below. Table 3 summarises these frame-
works, whose learning features aims to enable effective competences (David
et al., 2018), enhanced skills (Caldarola et al., 2018), more efficient engineering
solutions (Yildiz et al., 2020), improved human-asset interaction (Kong et al.,
2020), synchronous modeling (Zhuang et al., 2021), human-robot collaborative
systems (Malik & Bilberg, 2018), improved quality and resources (Qamsane
et al., 2019) and support fault diagnosis (Mi et al., 2021). As a result, Digital
Twin Learning Ecosystems enable a distributed approach focused on achieving
a connected learning model of a product (Tao et al., 2018), process or industrial
service (Tao et al., 2019b). It is thus necessary for a real-time replicated rep-
resentation of the physical world to be built for understanding purposes, while
the technological frameworks offer its own digitised data and fully bidirectional
interaction capabilities (Qi et al., 2019).

Different teaching methodologies proposed in (David et al., 2018) can allow
a learning framework involving digital twin in the context of manufacturing
pedagogy. Methodologies and tools are investigated to educate university stu-
dents in a pedagogical digital twin framework of production-based engineering
environments, using engineering model outcomes and evaluating student per-
formance. The learning experiences are evaluated in three scenarios: passive
learning in classroom, experimental learning in laboratory and physical site, and
using a situational awareness approach for a better understanding of workers’
process perception.

(Caldarola et al., 2018) proposed a different solution, based on a conceptal
framework for social manufacturing sustainability 4.0. A knowledge-based ap-
proach supported y CPS, intelligent software and AR/VR systems, allows the
skills and competences of the workforce to be enhanced focusing on the produc-
tion process of wooden furniture. The digital twin concept is underpinned by
representational models ensuring continuous learning about the whole factory: a

digital factory model of the entire production system, a virtual individual model
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DTLE enablers Aims Approach to the acquisi- Process / Product References
tion of knowledge / Service

Pedagogical digital  Effective development of  Practical application of the  Flexible Manu- (David

twin framework to learning experiences and acquired knowledge or skill facturing System et al.,

educate university = competences in different flexible manufac-  (FMS) Training  2018)

students on manu- turing environments Centre

facturing systems

Conceptual frame- Enhance skills and com- Continuous learning about Process of Wooden (Caldarola

work for social  petences of the work-  the whole factory furniture et al.,

manufacturing force 2018)

Framework architec-  Implement more efficient ~ Evaluation of manufacturing ~ Wind turbine manu-  (Yildiz

ture for supporting engineering solutions systems facturing plant (Ves- et al.,

Factory life-cycle tas) 2020)

processes

Interactive data- Improve human-asset in- Understanding of assets® life- Offshore energy as- (Kong

driven digital twin  teraction and decision cycle and operational deci- sets et al.,

framework for asset making sion support 2020)

management

Framework of as- Synchronous modelling  Participatory approach man- Satellite  assembly (Zhuang

sembly data man- of the product, and man- aging each stage of the prod- process et al.,

agement and process  agement uct lifecycle 2021)

traceability for com-

plex products

Framework to sup- Human-robot collabora-  Simulation of the behaviour =~ Human-robot col- (Malik &

port the design, tive system for assembly  of the system by creating vir- laborative (HRC) Bilberg,

building and control  work tual models of physical ob-  system 2018)

of human-machine jects

cooperation

Framework to Improve quality and  Monitor and evaluate large- Manufacturing flow- (Qamsane

improve control optimise production scale SM systems shop et al.,

reconfiguration, resources 2019)

self-organizing and

learning

Cooperative aware-  Support fault diagno-  Decision-making approach Large vertical mill (Mi et al.,

ness and intercon-  sis and prediction with 2021)

nection framework  higher accuracy and re-

for predictive main-

tenance

liability

Table 3: Examples of Digital Twin Learning Ecosystems based on frameworks
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of the workers’ profiles, and a skills virtual model based on workers’ capabilities.
The framework facilitates the implementation of a user-centred approach where
workers interact with systems and processes to develop context-oriented services
useful for a smart workplace.

Another collaborative solution is presented in (Yildiz et al., 2020), in which
a concept of a DT-based virtual factory shows the integration between product,
process and system. The digital twin framework architecture supports factory
life-cycle processes in a wind turbine manufacturing plant (Vestas) employing
collaborative VR learning and training scenarios. Both factory data -from real
systems- and generated data -from simulation systems-, are integrated for the
evaluation of manufacturing systems, bringing potential to implement more ef-
ficient engineering solutions.

A different problem addressing human-machine interaction is presented in
(Kong et al., 2020). An interactive data-driven digital twin framework is used
to improve human-asset interaction and decision making for offshore energy as-
sets. The complete digital twin framework uses embedded and front-end sensors
which can capture, synchronise and exchange physical-digital data. Data-driven
digital twin methods allow events between the environment, workers and assets
to be simulated, enabling a better understanding of the life-cycle of the as-
sets. This digital twin framework also provides intuitive interfaces to enhance
workers’ knowledge oriented to operational decision support.

Another example is also proposed in (Zhuang et al., 2021). This work is char-
acterised by a DT-based framework for assembly data management and process
traceability approach. A participatory approach to produce complex products
such as satellites, means that each stage of the product lifecycle is managed
for all the components and has the electronic feedback of workers. The digital
twin application provides the assembly process with a synchronous modelling of
the product, hierarchical management and traceability data, reflecting human-
computer interactions.

A different assembly application, characterised by a digital twin intercon-

nected framework to develop a human-robot collaborative system, is presented
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in (Malik & Bilberg, 2018). In this case, a digital twin of an assembly worksta-
tion allows a virtual commissioning approach to test, validate and optimise the
behaviour of the dynamic system by creating virtual models of physical objects.

In addition, predictive maintenance techniques and monitoring systems are
widely extended in smart manufacturing as valuable human-machine interfaces
for decision-making frameworks. For example, in (Qamsane et al., 2019), a
digital twin framework to improve control reconfiguration, self-organizing and
learning in a manufacturing flow-shop is presented. The digital twin framework
is based on a novel architecture to monitor and evaluate large-scale SM systems.
It includes historical and real-time data to provide comprehensive digital twin
capabilities such as prediction, anomalies detection, monitoring and health state.
The construction of a global view of the SM system helps to improve quality
and optimise production resources.

Another framework example, focused on predictive maintenance and fault
diagnosis, is presented in (Mi et al., 2021). A digital twin driven cooperative
awareness and interconnection framework for predictive maintenance, is applied
to the decision-making approach of a large vertical mill. Digital twin is used
to support fault diagnosis and prediction with higher accuracy and reliability
through a comprehensive analysis method. The framework is designed to share
data models and knowledge models in order to obtain more accurate and detailed

information of the diagnosis across multiple organizations.

4.1.1. Learning Factories

Digital twin learning approaches in Learning Factories combine academic
applications and demonstration scenarios. In this way, virtual factory replica-
tion and the Learning Factory concept also allow the implementation of complex
scenarios and frameworks for testing and training in a diversity of collaborative
levels as Digital Twin Learning Ecosystem enablers. Table 4 summarises six ex-
emplary scenarios existing in outstanding research and educational institutions,

as described in some works below. Researchers, experts in the use of next gen-
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Exemplary DTLE enablers Aims Benefits Research References
scenarios groups
Pilot Factory  Platform for research  New human-machine  Development of TU Wien (Ansari
Industry 4.0 and demonstration of learning patterns in  multi and interdis- University, et al.,

mutual human-machine  highly digitised indus- ciplinary skills for  Austria 2018)

learning trial work scenarios Industry 4.0
Chair Manu- SME Cyber Physical Demonstrate the poten-  Analysis and modifi- Bayreuth (Uhlemann
facturing and  Production System  tials and advantages of  cation of production University, et al.,
Remanufactur- (CPPS) oriented to real time data acquisi- systems experienced  Germany 2017b)
ing Technology experiential training  tion and subsequent sim- by workers in practi-

and learning experience ulation based data pro-  cal training sessions

cessing

Advanced Man- Immersive environment Understanding the tech-  Added value of im- University (Eyre &
ufacturing to suit the application nical challenges for a ro- mersive approaches of Sheffield, Freeman,
Research Centre  highlighting the varied bust production system  for business cases UK 2018)
(AMRC Factory  nature of different sec-  at different levels to the manufactur-
2050) tors ing sector
Enterprise Ser- Cloud- and app-based Collaborative mobile Human centre man- Reutlingen (Brenner
vice Bus (ESB) software that builds on  digital shop-floor man-  agement and mo- University, & Hum-
Logistics Learn-  a dynamic, multidimen-  agement system bile digital shopfloor = Germany mel,
ing Factory sional data and informa- meetings 2017)

tion model
Smart Learning  Collaborative  Factory  Interaction and cooper- Smart Learning Fac- University (Grube
Factory (SLF) by embedding the use  ation between university  tory to enable man-  of Southern et al.,
at SDU Mads of discrete event simu-  researchers and industry  ufacturing SMEs to  Denmark 2019)
Clausen Insti- lation connected with  experts capture the benefits
tute physical objects of highly complex

tools and enablers

Festo Cyber-  Develop the digital Replicate processes of Enable predic- Middlesex (Raza
Physical Fac-  counterpart of  this the Cyber-Physical Fac-  tive maintenance  University, et al.,
tory (CPF) Industry 4.0 system  tory real production line  and prognostics UK 2020)

to replicate its func- for product assembly at services, design

tionalities, data, com-  different stages of the and performance

munications, feedback, product‘s lifecycle improvements,

emergency and safety workers* life-long

aspects learning

Table 4: Examples of Digital Twin Learning Ecosystems based on Learning Factories.
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eration information technologies and industry, are already working together to
develop learning platforms for research and demonstration (Ansari et al., 2018),
experiential CPPS environments for training and learning (Uhlemann et al.,
2017b), immersive environments for different applications and sectors (Eyre &
Freeman, 2018), collaborative software (Brenner & Hummel, 2017), collabora-
tive factory environments (Grube et al., 2019) and new Industry 4.0 learning
approaches in manufacturing (Raza et al., 2020).

In (Ansari et al., 2018), the challenges of a bidirectional process of human-
machine learning in the TU Wien Pilot Factory Industry 4.0, are addressed.
The term “mutual learning” is defined by considering the smart factory as a
learning environment and explored in the context of new learning patterns in
highly digitised manufacturing work scenarios.

(Uhlemann et al., 2017b) presented a resource efficiency oriented towards a
learning environment built up by The Chair of Manufacturing and Remanufac-
turing Technologies at Bayreuth University. This work introduces a Learning
Factory concept supported by the digital twin of a production system. It shows
the benefits of real-time data acquisition technologies that can be experienced
by workers in practical training sessions.

In (Eyre & Freeman, 2018), a different solution is implemented using the
digital twin concept to investigate the benefit of immersive applications at the
Advanced Manufacturing Research Centre (AMRC Factory 2050, University of
Sheffield, UK). This work presented three prototypes dedicated to conducting
collaborative research with the aim of understanding the technical challenges
for a robust production system at different levels using diverse methodologies:
(i) a monitoring application exploring the ability to provide a contextual view
information for engineers to better understand the current working parameters,
(ii) a highly realistic training scenario providing an emulated monitoring digital
twin, improving health and safety for workers and also recognising new issues
thanks to their expertise, and (iii) augmented monitoring on a reconfigurable

fixture cell, integrating real-time simulation of processes into Siemens Plant
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Simulation software!® to enable a closed feedback loop providing workers with
contextual information.

A collaborative solution is described in (Brenner & Hummel, 2017) based on
a digital twin prototype of an Enterprise Service Bus (ESB) Logistics Learning
Factory at Reutlingen University. Diverse prototypes of this digital twin, as a
digital copy available in real-time, provide a global shop floor meeting concept
for workers with the latest information and methods to all their subsystems. It
enables an innovative and collaborative mobile digital shop-floor management
system based on a cloud app-based software.

Another collaborative approach is described in (Grube et al., 2019). A dig-
ital twin to simulate a physical factory layout for manufacturing SMEs in a
Smart Learning Factory (SLF) at SDU Mads Clausen Institute (University of
Southern, Denmark), allows interaction and cooperation between university and
industry experts, building data-driven conclusions. The digital twin concept
provides SME’ workers with an Industry 4.0 assisted interface for simulating
and testing real world operations in the SLF well known by them, such as as-
sembly, laser welding and soldering.

Focused on new Industry 4.0 learning approaches in manufacturing, a digital
twin framework replica of the Festo Cyber Physical Factory (CPF) is presented
in (Raza et al., 2020). The digital twin framework, located at Middlesex Univer-
sity, collects IoT data and replicates processes of the CPF real production line
for product assembly at different stages of the product’s lifecycle. This system,
coupled with the proposed digital twin framework, interlinks physical-digital
data that is used to enable predictive maintenance and prognostics services, op-
erational information for design and performance improvements, and contributes

towards workers’ life-long learning.

10https: //www.plm.automation.siemens.com/global /es/products/manufacturing-

planning/plant-simulation-throughput-optimization.html
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DT learning approach

Focus

Reference

Model based and data driven

Accelerate engineering phase of modern

manufacturing systems

(Jaensch et  al.,
2018)

Model-based
(MBSE)

system  engineering

Explore failure modes, leading to pro-

gressive design improvements over time

(Madni et al., 2019)

Hybrid twin

New paradigm within simulation-based
engineering sciences (SBES) using dy-
namic data-driven application systems

(DDDAS)

(Chinesta et al.,
2020)

Advanced physics-based modeling

Predictive maintenance applications

(Aivaliotis et al.,
2019)

Industrial transfer learning

Fault prediction training algorithm‘s be-

haviour for events involving (rare) faults

(Maschler et al.,
2021)

Assisted fault diagnosis using deep

transfer learning (DFDD)

Fault diagnosis both in the development

and maintenance phases

(Xu et al., 2019b)

Deep generative models Prognostics and Health

(PHM)

Management

(Booyse et al., 2020)

Table 5: Digital twin learning approaches focused on enabling intelligent data models in SM

systems.

4.2. A Digital Twin learning ecosystem driven by connected data

Digital twin can enable the transfer of learning to generate knowledge of
manufacturing systems by providing an intelligent data approach able to man-
age the information previously acquired over their lifecycle (Maschler et al.,
2021). A way towards enabling these connected ecosystems is digitising in-
dustrial processes. As mentioned earlier, digital twin can integrate frameworks
which encompass SM systems in a new way to capitalise on knowledge generated
with the interaction between workers and CPPS data. Table 5 summarises sev-
eral digital twin learning approaches which can be used to enable data-driven
knowledge models in SM systems. They are focused on the enhancement of
manufacturing processes through modeling, simulation, predictive maintenance
and fault diagnosis, which are described below.

Machine Learning (ML) is becoming increasingly adopted to enhance digital
twin with predictive modelling and intelligence by using data-driven approaches,

where both real-time captured data and production historical data help to im-
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prove human-machine interactions and decision-making processes. A solution
to integrate ML with model-based and data-driven methods, in order to build a
digital twin, is proposed in (Jaensch et al., 2018) to control complex manufac-
turing systems. Two digital twin interfaces are provided in a circular approach
throughout the engineering tasks. The first, manages ML-based data process-
ing extracted from the real production system, and the second, manages the
AT environment for reinforcement learning algorithms. As a result, this solu-
tion offers a digital twin with an autonomous problem-solving approach and
data-based learning methods for enhanced modelling.

Simulation has been taken as a widespread approach to provide digital twin
with enhanced learning. Broad operational data is incorporated to predict the
behaviour of the real world. According to this learning model, in (Madni et al.,
2019) simulation and MBSE are presented as DT-modelling enablers of a variety
of manufacturing applications, such as predictive maintenance and design.

Creating behaviour models from scratch is expensive or even difficult to
collect. However, a hybrid twin paradigm for a real-time decision-making next
generation digital twin, that combines data analytic, ML, and physics-based
models for predictions, is presented in (Chinesta et al., 2020). Through this
hybrid approach, two models are used to perform the modelling framework.
The first based on the physics and the second on the Al-based prediction.

In a similar way, the creation of digital models in manufacturing systems re-
quires a computational effort to deal with complex environments. Nevertheless,
(Aivaliotis et al., 2019) presented an advanced physics-based modelling method-
ology as a guide to create a description of a system or process using simplified
data models to enable the digital twin concept. In this work, some properties
of an industrial robot environment were modelled (dynamic behaviour, virtual
sensors, and parameters), enabling the digital twin concept in predictive main-
tenance applications, so as to calculate the Remaining Useful Life (RUL) of
machine components. In a complementary way, intelligent transfer learning
approaches in manufacturing can provide the digital twin concept with new

abilities, such as fault prediction (Maschler et al., 2021).
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A two-phase digital-twin-assisted fault diagnosis method, based on deep
transfer learning, is presented in (Xu et al., 2019b). This work aims to make
fault diagnosis more applicable in the dynamic changing manufacturing pro-
cess. In a first phase called Intelligent Development Phase, potential failures
and how to prevent them are explored; while, in a second one called Proactive
Maintenance Phase, the application of digital twin uses deep transfer learning
to transform fault information from virtual to the physical space through an im-
mersed experience. This approach extends the fault diagnosis along the entire
product lifecycle through proactive and preventive maintenance.

A different solution based on Prognostics and Health Management was pre-
sented in (Booyse et al., 2020), providing deep learning strategies to generate
asset health models without relying on historical failure data. In this way,
condition-based approaches are very valuable to represent a real-time health
state of a manufacturing system, as well as to generate learning about its be-
haviour. Thus, the knowledge is enabled by the increasing data collection sys-
tems and ML algorithms. In addition, this work poses the concept of Deep
Digital Twin (DDT) to produce a health indicator in an experimental diagnos-
tic environment, consisting of intermediate shaft bearing parts. The DDT uses
deep generative models to learn the distribution of healthy data, estimating
the health status of parts under both stationary and non-stationary conditions

monitored by Integrated Circuit Piezoelectric (ICP) accelerometers.

4.8. Augmented interfaces for Digital Twins

Industry 4.0 requires workers to be better prepared to meet the increased
complexity of industrial tasks in dynamic working environments. Visualisation
interfaces of digital twin data, driven by human-system interaction in manufac-
turing, have become one of the ways of enabling a better support for workers in
learning and training processes. A digital twin powered by AR/VR technolo-

gies can be used to build autonomous and highly-efficient training environments
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DT learning approach Focus Reference

. . AR instruction generation adaptive to  (Mourtzis et al.,
Augmented instructions .
the shop floor operators’ level of expe- 2019)

rience

AR assistance step-by-step to accom- (Caldarola et al.,
plishing the work according operators’ 2018)

skills and the operation to be performed

VR visualization as testbed to allow op-  (Pérez et al., 2020)
Content-based environments . X . .
erators’ interaction with production pro-
cesses (robots) in totally safe environ-

ments

AR contents to augment operators’ skills  (Longo et al., 2017)
and abilities for the development of hu-
man skills 4.0 to perceive and act within

the working environment

§ X . Confront human-machine challenges (Garcia et al., 2022)
Virtual-physical collaboration
with improvements to collaboratively
update workers and industrial systems
with augmented digital strategies based

on AR and Web services

Cyber-Physical System model with an (Schroeder et al.,
AR system and Web services to enable 2016)
users to easily access product, simulation

and manufacturing data in real-time

Table 6: Digital twin learning approaches focused on enabling augmented interfaces.

for workers (Egger & Masood, 2020). Moreover, augmented interfaces enable
collaborative environments that can allow a physical object to be modelled and
dynamically adjusted based on instructions learned from a virtual model (Tao
et al., 2019b). Thus, the roles of the workforce are changing due to the use
of user-facing technologies (Ras et al., 2017), leading to agile production and
improved quality of products and processes. Table 6 presents several learning
approaches visualising the digital twin, such as augmented instructions, content-
based environments and virtual physical collaboration, which are described be-

low.
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Augmented instructions

A context-aware digital twin can use the learning capability and the ability
to adapt to changing environments of the workforce to improve the knowledge of
the processes. (Mourtzis et al., 2019) described AR as a promising technology to
generate instructions for operators. The assistance is enabled on the shop floor
according to the operators‘ level of experience and their skills. This augmented
interaction for knowledge transfer across the factory accelerates the learning
process as the instructions are skill-tailored, playing a significant role in the
system'‘s overall efficiency. A different AR approach applied to manufacturing
processes which can help in implementing a smart workplace, is presented in
(Caldarola et al., 2018). The skills of different operators were modelled and
mapped with the operations to be performed. In this regard, AR enhances the

efficiency of workers assisting the operator step-by-step to accomplish the work.

Content-based environments

VR applications allow workers to interact with production processes through
non-intrusive technologies in order to improve their skills. This guided approach
makes the training tasks more flexible and attractive by using virtual digital
twin contents. In this direction, a research work integrating VR contents and
intelligent systems to support workers in manufacturing operations, is presented
in (Pérez et al., 2020). A digital twin of the manufacturing process includes a VR
interface which enables training tasks for operators. It provides a virtual testbed
for enhanced production processes before the physical implementation. Another
learning approach that relies on AR contents is described in (Longo et al.,
2017). The solution, applied on a CNC milling machine, has a real impact on
worker learning curves by making use of AR contents suited to augmenting their
skills. Through an intelligent personal digital assistant with vocal interaction
capabilities, the proposed approach provides workers with a learning framework

for the smart operator concept.
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Virtual-physical collaboration

The integration of the digital twin information within the real environment
of the worker is therefore crucial to connect and define all real-time relationships
and behaviour between systems, users and processes. An augmented learning
model of a CNC milling machine, using AR and Web Services in real-time, is
presented in (Garcia et al., 2022). This solution provides a human-machine
collaborative approach to interact and visualise the health-condition status of
those machine components that are more susceptible to failures. Moreover,
non-intrusive data acquisition and human-machine knowledge models, provide
bidirectional information to the digital twin visualisation layer. In (Schroeder
et al., 2016), another case study based on Web Services, using an AR system
as a digital twin data interface, is presented. A Web browser provides workers
with easy access and visualisation of oil and gas processing in an offshore oil
platform. The solution can be used on portable devices and showed using an AR

system to get product, simulation, and manufacturing data from digital twin.

5. Challenges

The previous sections addressed how the impact of digital twin is closing
the loop between physical and digital worlds in current manufacturing environ-
ments. However, how to bring about the future and effective interoperability,
managing different types of human-machine ecosystems and enabling the in-
telligent operation of this physical-digital convergence, is still one of the open
challenges towards SM (Qi et al., 2018a).

Industry 4.0 presents opportunities for enabling Digital Twin Learning Ecosys-
tems in academic and industrial scenarios. However, at the same time, industry
faces the challenges of building and supporting new technical and digital infras-
tructures, while workers’ skills development eventually manages to handle the
digital change. In the process, a change in the fundamentals of manufacturing

systems and operations is required (Lu et al., 2020). In the same way, academia
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faces the challenges of providing technological research programmes and experts
in line with complex manufacturing life cycle processes. Both these challenges,
focused on the physical-digital convergence and digital skills development, are

explored below.

5.1. Physical-digital convergence

One of the Intelligent Manufacturing System (IMS) requirements, in or-
der to enable adaptive systems and learning capacities, is the empowerment of
connected ecosystems. Furthermore, digital twin is expected to be a decision-
making solution underpinned by real-time communication and cooperation be-
tween workers, systems and processes (Zhong et al., 2017). Thus, manufacturing
companies need to resolve the issue of capturing human and implicit knowl-
edge in digital twin (Jari Kaivo-oja et al., 2020). However, mayor digital twin
challenges on the manufacturing-related learning that impact on systems and

processes can be classified in the four classes defined below.

Lack of standards where digital solutions are not mature enough to be applied in

production environments

Manufacturing ecosystems have to deal with a complex integration to be-
come more connected and autonomous. (Lu et al., 2020) shows how digital twin
application development approaches for SM present implementation limitations
through a lack of understanding of the digital twin concept, reference models,
frameworks and development methods. Furthermore, the construction of a reli-
able digital twin in manufacturing applications depends on standardised infor-
mation models, industrial communications, and is subject to strict requirements
on timeliness (high-performance data processing), accuracy and reliability. In
this way, (Moyne et al., 2020) shows that digital twin has a lack of behaviour,
consistency and structure to integrate and maintain this technology in manu-

facturing systems. In addition, the necessary development of standards to align
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digital twin efforts with its capabilities should be considered. On the other hand,
(Semeraro et al., 2021) considers the lack of standards regarding heterogeneous
exchange data sources between different suppliers, manufacturers and customers

as an interoperability barrier for the evolution of digital twin applications.

Coezistence of different technology levels in the factory

Regarding production environments, (Cimino et al., 2019) considers that
digital twin faces many common scenarios where manufacturing systems are
equipped with traditional machinery. This legacy approach, means that digital
twin services are limited without the bidirectional connection to interchange
information between the digital twin and its physical counterpart. In a simi-
lar way, (Fuller et al., 2020) considers that currently industrial infrastructure
in place is behind the requirements for new technologies such as digital twin,
particularly in manufacturing environments which have old machines without

retrofitted or legacy ways to gather digital twin data.

Closed and non-standardised control systems

The great diversity of heterogeneous systems makes the deployment of digi-
tal connections slower. (Cimino et al., 2019) shows how closed proprietary pro-
duction systems, such as Manufacturing Execution Systems (MES), meet the
challenge to control processes and participate through a fully reactive way in
decision making aspects: scheduling, energy consumption, maintenance, quality,
etc. In a similar way, (Uhlemann et al., 2017a) considers that a slow standard-
isation of data acquisition in production systems impedes the adaptive systems

implementation for digital twin, while new issues concerning data security arise.

Traditional management approaches to gather operational data

Traditional environments are still too common in manufacturing, particu-

larly in SMEs. Some operations are conducted manually, and operational data
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is incomplete or missing due to lack of acquisition systems. (Uhlemann et al.,
2017a) shows that a widely used manual data acquisition of motion data, and
hence the lack of data availability in real-time, compromises digital twin for the
evaluation and analysis of production systems. Therefore, the use of fully auto-
mated techniques to support planning processes is not considered as a common
practice, while the information and timing with regard to manufacturing busi-
ness planning (long run) comes up against manufacturing operations manage-
ment (real-time) (Cimino et al., 2019). In addition, (Hu et al., 2021) considers
that the integration of sensors and data acquisition technologies to achieve two-
way connections has to be solved to ensure real-time data. It is also considered
that data accuracy and building models in the virtual space with high fidelity
of physical objects are a fundamental issue. In this way, (Semeraro et al., 2021)
considers that the process of modelling the reality in a digital twin is a complex
task, particularly using traditional approaches involving sensors and different
kinds of sources, models and services. In regard to digital twin construction,
a minimum level of data quality and a consistent data stream for efficient use
is required (Fuller et al., 2020), whilst another challenge can reside in how to
determine the optimal level of detail to create a digital twin model (Parrott &
Warshaw, 2017). In a similar way, a major need for digital twin implementation

is a fully updated 3D digital model (Warmefjord et al., 2020).

5.2. Digital skills development

The understanding of human-machine interactions, and their associated learn-
ing processes in intelligent manufacturing (also known as SM), must be re-
searched and managed to enable the creation of digital twins as a process knowl-
edge generation. (Semeraro et al., 2021) considers human interaction as a key
challenge in the development and implantation of digital twin in manufactur-
ing applications. In this way, the exploration of workers’ learning patterns,
and their associated digital twin model outcomes, can ease their adaptation

to manufacturing changes and develop new ways to convert past experience
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into precise statements (David et al., 2018). Therefore, in manufacturing, de-
spite progress in the Industry 4.0 paradigm, the existing cultural and workers’
lifelong learning related challenges must be addressed in order to allow digital
twin advancements in learning capabilities, improving the knowledge, skills and

expertise that workers do not yet possess (Berisha-Gawlowski et al., 2021).

Lack of background research, expert knowledge or trained workers with digital

skills

A previous work of research to develop learning programmes allowing the
generation and consolidation of applied results at the shop floor is required.
Nevertheless, on the one hand (Cimino et al., 2019) considers that, in practice,
research on digital twin is still ongoing and, on the other (Lu et al., 2020)
shows that there is only superficial knowledge about the research questions
and challenges of digital twin, where current research outcomes are showing
preliminary application examples in general. Regarding engineering students at
universities, for instance, (Warmefjord et al., 2020) points to the importance
of the fact that they will need more knowledge and competencies in the future
about model-based definition workflows and geometry assurance, in particular
of the automotive domain. In that regard, these are major digital twin obstacles
related to future skills development, even in front-running companies: the lack

of Industry 4.0 specialists and digital expertise (Uhlemann et al., 2017a).

Digital and cultural change

Traditional environments are facing a substantial increment in the use of
advanced technologies to improve the learning capability of the workforce. In
that sense, a human-machine integration is necessary in order to lead the learn-
ing process and knowledge management in organisations (Jari Kaivo-oja et al.,
2020). On the other hand, (Moyne et al., 2020) considered the necessary con-

solidation of the digital twin research for advancing technology, avoiding spe-
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a5 cific deficiencies to tackle issues such as the development and implementation
of longer-term solutions. In addition, a unified and standardised development
platform and tools for digital twin are required in the future (Hu et al., 2021).
Also, human skills at work, as a dynamic factor during workers’ learning, have
to be modelled in digital twin (Ifenthaler et al., 2021). Nevertheless, a major
s challenge arises when digital twin comes up against organizations and workers
and must verify that the generated models work as expected, and in order to

ensure that they know its benefits (Fuller et al., 2020).
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Figure 6: Digital twin research priorities and future trends in collaborative learning ecosystems
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5.3. Research priorities and future trends

The building process of Digital Twin Learning Ecosystems requires a con-
nected infrastructure to address the presented challenges. However, there still
exist open issues described in the literature, such as part of the interconnected
three-dimension ecosystem composed of workers, systems and processes. Ta-
ble 7 summarises some identified barriers to be tackled, which would enable all
learning approaches associated to the digital twin concept to accomplish IMS
trends. In this way, the advancement in the proposed digital twin field of re-
search cannot be regarded without a common understanding between academia
and industry.

In this work, we have proposed a comprehensive definition of a Digital Twin
Learning Ecosystem based on a holistic approach. This is followed by the iden-
tification of three key digital twin research priorities in the collaborative learn-
ing ecosystems described in Figure 6. Furthermore, the matching between the
three aforementioned dimensions and future trends, while outlining these main
research priorities and factors, are discussed below:

(1) Digital twin concept understanding and learning. Focused on the workers’
dimension, research programmes encourage a two-way human-machine interac-
tion (Abele et al., 2017). In this way, the Learning Factory concept offers a
widely accepted learning approach by academia and industry. Learning Facto-
ries can be used as a training ecosystem that comprises researchers, Industry 4.0
specialists and teaching programs (Tvenge et al., 2020). As such, they represent
crossed knowledge from laboratories and real factories as fully operational digi-
tal twin models towards the empowerment of workforce skills and competences.

(ii) Bidirectional data synchronisation. Focused on SM systems, data avail-
ability in real time can provide digital twin with cyber-physical connections and
smart monitoring capabilities (Negri et al., 2017). In this way, Human-machine
collaborative ways are brought forward through the use of smart sensors and
data-driven approaches. Nevertheless, to enable an effective data-driven digital

twin bidirectional interaction, a better understanding of the dynamic behaviour
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Results of research not mature

enough, concept understanding

Cimino et al., 2019)
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(

(Moyne et al., 2020)
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engineering education pro- 2020)
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. grammes
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Human-machine integration is-  (Ifenthaler et al., 2021)
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Lack of confidence in technology  (Fuller et al., 2020)
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timing of information
Smart sensor deployment, real-time (Hu et al., 2021)
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Table 7: Trends and challenges to enable digital twin learning ecosystems.
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of systems during their life cycle is required (Malik & Bilberg, 2018). Thus, im-
proved diagnostic methods can be promoted, and virtual models’ development
of physical systems can be improved. Moreover, smart manufacturing design
through learning data can enable a digital twin-based semi-physical commis-
sioning approach. In this context, there is an opportunity to enhance SM design
in advance in the early development phase and ensure correct decision guidance
(Leng et al., 2021).

(iii) Physical-digital convergence and standardisation. Focused on the pro-
cess domains, the generation of industrial knowledge is based on the creation
of standardised communication paths and service architectures, according to
the convergence conditions of the real and virtual worlds (Tao & Zhang, 2017).
By promoting the digital twin areas of research already under way, such as the
potential in the field of verification and validation (Locklin et al., 2020), and
the development of augmented interface-based frameworks (Cimini et al., 2020),
new approaches for transforming existing production and control methods may
emerge towards intelligent physical-digital interfaces and smart decision support

models.

6. Conclusions

The evolution of the digital twin concept, leveraged by the onward physical-
digital convergence, has provided SM ecosystems with knowledge-generation
opportunities based on new models of collaboration between workforce and in-
dustrial processes. It is a fact that the increased deployments of smart sensors
to capture data powered by IIoT gateways, and current technological trends
such as ML, VR and AR, are enabling workers’ skills to take part in the immer-
sive digital twin paradigm. Technology industry experts, such as the Gartner
Group, ranked digital twins among the top ten technology trends for several
years (Qi et al., 2019). In a similar way, a Digital Twins in IoT: Market Strate-
gies, Challenges € Future Outlook, 2019-2023 study from Juniper Research

(Sutanto, 2019) found that digital twin operations will help human workers’
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skills to manage their capabilities in areas that the technology cannot address.
In addition, this research forecasts Manufacturing as the fastest growing sector
in potential future revenues from digital twin’s market in 2023.

The rationale behind this work was to better understand the enablers and
challenges involving the digital twin physical-digital convergence in manufac-
turing environments, to improve the development of learning strategies through
the cyber-physical virtual factory replication and human-machine collaboration
models. This paper reviews in detail the concept and potential application of
digital twin to accomplish IMS knowledge-generation requirements by explor-
ing the physical-digital learning fusion coupled with connected frameworks. We
present literature findings which provide details on diverse framework models
of digital twin learning ecosystems. In the case of Learning Factories, the dig-
ital twin concept is well integrated from both the research community and the
manufacturing industry, in line with the enablement of connected adaptive sys-
tems and the empowerment of workforce skills. Nevertheless, we considered
it necessary to contribute with an original definition of Digital Twin Learning
Ecosystem and its conceptual layered architecture, providing a reference model
to enable real-time augmented interfaces and bidirectional collaboration capabil-
ities between workers, systems and processes. Furthermore, based on these three
interconnected dimensions, we outline the main digital twin research priorities
in collaborative learning ecosystems and how they can contribute to emerging
trends in manufacturing.

In this way, digital twin is expected to be a decision-making solution to
provide manufacturing workers with a deeper understanding and skills devel-
opment. However, it is not clear in the industry what features a digital twin
should have or how it should work in different ecosystems. Industry should first
learn how to apply these virtual representations, taking into account a trade-
off between the latest advances in scientific research and the relative maturity
needed for current enabling technologies, whilst some of them are under devel-
opment in manufacturing processes. In this sense, the adoption of digital twin

in production is still at an initial stage in the manufacturing industry, where
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specific human and technological challenges must be addressed. The research
priorities presented in this work are considered as a recognised basis in industry,
which should help digital twin with the objective of its progressive integration

as a learning ecosystem.
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