Accepted version of the article published in: Computers and Industrial Engineering, 2022, vol. 164
https://doi.org/10.1016/].CIE.2021.107896

A non-intrusive Industry 4.0 retrofitting approach for
collaborative maintenance in traditional manufacturing

Alvaro Garcia, Anibal Bregon, Miguel A. Martinez-Prieto

@ ICT-Industry 4.0 Area, Fundacién Cidaut, Valladolid, Spain
b Departamento de Informatica, Universidad de Valladolid, Valladolid, Spain

Abstract

The recent COVID-19 outbreak impact on the world economy has boosted
the increasing business needs to force manufacturing plants adapting to un-
predictable changes and ensuring the continuity of industrial production. The
demand for asset monitoring solutions and specialised support at the shop floor
has become an increasingly important digital priority in industry that pushes
human-machine technological upgrades leading to digital workforce skills as-
sessment. In the case of traditional manufacturing, Small and Medium-sized
Enterprises (SMEs) face the challenge of managing digital technologies and In-
dustry 4.0 (I4.0) maturity models with a low adoption rate. In this digital
context very few SMEs with traditional means have anticipated the latest ad-
vances in maintenance strategies impeded by technical and economical barriers.
This work presents a human-machine technological integration solution in tra-
ditional manufacturing based on a non-intrusive retrofitting development with
interoperable 14.0 tools. The method provides a common and rapidly deploy-
able hardware and software architecture supporting an HMI-based legacy main-
tenance approach and addresses its evaluation focused on the physical-digital

convergence of older industrial systems. A case study applying a digital pro-
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cess approach integrated with condition-based maintenance (CBM) techniques,
has been carried out on a CNC milling machine and reproduced in an injection
moulding machine during COVID-19 alert state. These already existing scenar-
ios served to deploy digital retrofitting and communication strategies without
interfering in working conditions. Patterns extracted from the machines were
monitored in real-time interacting with the operational knowledge of the ex-
perienced staff. In this way, we provided an original contribution to confront
human-machine challenges with improvements applied in traditional manufac-
turing, where workers and industrial systems were collaboratively updated with
augmented digital strategies and proactive CBM environments.

Keywords: Digital retrofitting, Collaborative maintenance, Industry 4.0,

Human-machine interfaces, Traditional manufacturing, Non-intrusive sensors

1. Introduction

The advent of the Fourth Industrial Revolution [I] has accelerated the way
traditional manufacturing faces digitisation challenges towards Industry 4.0
(14.0) [2,B]. Specifically, current changing business models [4] and recent major
changes to manufacturing industry, such as the COVID-19 outbreak [5], have
ignited the technological upgrades to develop remote maintenance services and
workforce skills [, [7]. Furthermore, the demand for asset monitoring solutions
and specialised support has become an increasingly important digital prior-
ity in manufacturing, where maintenance represents a very significant function
within the overall production environment and manufacturing overhead [8]. A
paradigm shift for asset maintenance management [9] is emerging leveraged by
14.0 key enabling technologies (KETSs) [10]. Some of these, such as industrial In-
ternet of things (IToT), cloud computing, machine learning, data analytics and
augmented reality (AR), are being adopted in manufacturing to integrate new
cyber-physical systems (CPSs) which have their digital twin (DT) counterpart
[1I]. By using CPSs, data operations can be real-time integrated in manufac-

turing plants on a holistic level [I2] [I3] where sensors and communication tech-
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nologies interconnect data sources to a virtual world. Then, augmented data is
available with the implementation of DTs and human-machine interfaces (HMI),
where assets, workers and services are integrated in an interoperable environ-
ment based on specific, tailored information [14]. In this connected scenario, 14.0
arises as a wider concept that encompasses manufacturing in a new model of col-
laboration between workforce and industrial processes. Besides this convergent
approach, 14.0 provides digital strategies to standardise and transform the entire
manufacturing value chain [I5]. As a result, connected human-machine ecosys-
tems grow at the shop floor enhanced by digital-physical convergence models,
taking advantage in real-time of 14.0 KETs and assets integration [2].

In the case of traditional manufacturing Small and Medium-sized Enterprises
(SMEs), 14.0 transformation challenge is facing a low adoption rate of digital
technologies and maturity models. At the Furopean level, important barriers
for 14.0 KETs adoption are the lack of skilled personnel [I6] combined with
its continuously increasing demand [I7]. SMEs are also less ready due a lack
of experience in new technologies [18], which leads to a slow initial stage of
digitisation [I9] and maturity [20]. Thus, the deployment of collaborative main-
tenance strategies is not always directly possible, being common to find SMEs
without information connectivity models inherited from older manufacturing
systems [21], 22].

On the other hand, SMEs’ inherent difficulty to invest in economic or tech-
nical resources [23] may be a barrier to manage the system’s maintenance [24].
However, the concept of retrofitting provides manufacturing with opportunities
to connect traditional machines with I4.0 KETs [25]. Retrofitting process opens
up a legacy way [26] for upgrading machines with the introduction of new digital
features based on infrastructure and communication [27] at the shop floor while
tailoring such assets with protocols [28], electronic data capture systems [29]
and new HMI control applications [30], bringing also opportunities of sustain-
able manufacturing [3I]. In the case of SMEs, it is a fact that retrofitting of
existing assets reduce investment costs, while the reliability can be considerably

improved and their lifetime extended, being a low-cost alternative to introduce
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sustainable strategies [31].

Recent outbreak impact on the world economy has joined the increasing
business needs to force manufacturing plants adapting to unpredictable changes
and ensuring the continuity of industrial production in real-time. In that way,
smart monitoring [2] and new human-machine collaborative maintenance mod-
els are adding value to the improvement of the manufacturing processes [32 [12].
However, today the way forward for SMEs still has several challenges to over-
come for the successful and timely reimplementation of the 14.0 concepts such
as interoperability, virtualization, decentralization, real-time capability, service
orientation and modularity [I4]. Moreover, the workforce requires upgrading
to the skills needed to cope with the upcoming digital technologies [4]. In this
context, the development of a flexible and connected retrofitting approach may
offer a rapid and reduced-cost alternative as a service for the deployment of
a real-time collaborative maintenance in traditional manufacturing [28]. This
“servitization” concept, based on standardised digital retrofitting techniques at
the plant floor, is intended to provide specialized skills and tools to support
SMEs’ new collaborative business models, including service trends as remote
maintenance [33] [34].

This work presents a solution for human-machine technological integration
in traditional manufacturing based on a non-intrusive retrofitting development
with interoperable 14.0 tools. It provides a common and rapidly deployable
hardware and software architecture with the ability to support a HMI-based
legacy maintenance approach and addresses its evaluation. For this purpose, the
methodology described in this paper is focused on minimizing digital retrofitting
barriers in real older non-digitised traditional manufacturing machines. To
deal with practical applications for collaborative maintenance, based on com-
mon architectures, protocols and standards, a case study was carried out on a
CNC milling machine and reproduced in an injection moulding machine dur-
ing COVID-19 alert state. The propposed solution allowed workers and indus-
trial systems to be updated with non-intrusive digital strategies and proactive

condition-based maintenance (CBM) environments laying the foundation for
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collaborative methods. The machines were monitored remotely in real-time
interacting with the operational knowledge of the experienced staff. Finally,
behaviour models were extracted to support learning processes.

The remaining of the paper is organized as follows. Section 2 introduces a
background for advanced maintenance in aged manufacturing machines. Next,
Section 3 presents a methodology based on a non-intrusive retrofitted approach
to support collaborative maintenance, and Section 4 describes the system archi-
tecture. Then, in Section 5, the retrofitting implementation and the evaluation
models in the traditional manufacturing scenarios is detailed. Finally, Section

6 presents the findings and conclusions derived from the applied research.

2. A background for advanced maintenance in aged manufacturing

machines

For decades, the manufacturing industry has populated its plants with su-
pervisory control systems and, in some cases, advanced process control systems
[35]. The development of diverse techniques in the field of maintenance man-
agement [30] such as Total Productive Maintenance (TPM), Reliable Centred
Maintenance and CBM, has greatly improved the level of accuracy to reduce
unplanned downtimes [37], thus optimising resources and productivity. How-
ever, the necessary integration of 14.0 requirements to address data manage-
ment under the physical-digital convergence [38], introduces barriers [23] and
compatibility challenges [2I] ahead in SMEs traditional manufacturing systems
[20]. On the basis of the findings reported by The Publications Office of the Eu-
ropean Union [I6] and publications by the U.S. National Institute of Standards
and Technology (NIST) [22], these existing barriers in SMEs for adopting ad-
vanced manufacturing technologies and advanced maintenance technologies can
be summarised as follows. In general, very few SMEs with traditional manufac-
turing means have kept up with the latest advances in maintenance strategies
[22, B9]. Moreover, most of them use diverse commercial industrial systems that

often own data sources with proprietary access [39] and heterogeneous commu-
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nication interfaces for which the data architecture is unknown [40]. Despite
maintenance trends (jointly with the communication and control architectures)
have collaboratively evolved with 14.0 technologies [41], the most common use of
the maintenance strategies inside the manufacturing industry is mainly reactive
and preventive [42] without taking in consideration shop floor data [43].

In this section, we explore the evolution of convergent maintenance strategies
in traditional manufacturing based on the integration of the physical and the
digital worlds in order to contextualize our proposal. Retrofit is introduced as
an emerging opportunity to address old hardware reconditioning methods [30]
that facilitate traditional environments to benefit from predictive maintenance
technologies based on sustainable and collaborative human-machine models [39]

).

2.1. Non-intrusive convergent retrofitting technology for manufacturing

SMEs are opening up the possibility to adopt maintenance strategies based
on CBM [39]. This approach provides a wider vision to control and monitor
the actual condition of an asset in order to determine the specific maintenance
needs to be done [45]. Under these requirements, the challenge of upgrading
older machines to advanced maintenance in manufacturing, is facing very high
economical costs and the lack of expert staff to address the 14.0 KETs [23]. How-
ever, adaptive retrofitting methodologies based on personalized data models and
a non-intrusive digitisation, are for SMEs a more feasible alternative way to in-
clude updated features in older machines [28]30]. Experiments made in two EU
funded projects, presented the advantages of digital technologies to integrate the
machines’ real-time status and work orders implementing maintenance models.
On the one hand, the BEinCPPS project (Business Experiments in Cyber Phys-
ical Production Systems) [19], implements a 3-layer architecture (of machine,
factory, cloud) capable of supporting open standards to integrate existing legacy
hardware and software systems installed on manufacturing SMEs in Europe. On
the other hand, the MANTIS project (Cyber Physical System based Proactive

Collaborative Maintenance) [32], involves 3 groups of SME users in Europe to
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provide a proactive maintenance service platform architecture based on CPSs
capable of predicting and preventing imminent faults and scheduling proac-
tive maintenance. Other experimental retrofitting use cases and methodologies
based on 14.0 concepts for applying in SMEs’” CNC machines are presented in
[29, BI]. Also, [46] demonstrated in the laboratory that a traditional manufac-
turing system can be retrofitted in a non intrusive way using a standardized
I4.0 implementation framework. The Reference Architectural Model for Indus-
try 4.0 (RAMI 4.0) [47] is used in [27] to present the standardization of an
industrial robotic arm prototype in order to validate a retrofitting process that
transforms old industrial equipment into CPSs. Furthermore, digital technolo-
gies and sensors allow the integration of the data from different manufacturing
sources using non-intrusive retrofitting methods to address monitoring condi-
tions in manufacturing [48]. Some examples are: (i) a surface-mounting-system
using a single current sensor to gather data from a power supply line [49]; (ii) an
in-situ energy measurement for online identification of machine operation states
in injection moulding machines [50]; and (iii) a CNC tool wear detection using
an accelerometer at a remote location [51].

However, to the best of our knowledge, there is not a single data model
and architecture approach that integrates heterogeneous manufacturing sys-
tems with an IT/OT convergence model addressed in a modular n-tier way.
An adaptive development according to individual and specific manufacturing

requirements is needed.

2.2. Human-machine collaborative maintenance models

Current challenges in a changing manufacturing industry, lead to developing
methods to provide adaptive and sustainable strategies for systems maintenance
in a continuous production life cycle [2]. That means allowing workers to move
towards a new generation of human-machine systems to see and respond to
problems more efficiently [15]. The development of these systems has been en-
hanced with the increasingly widespread use of distributed services with sensors

and monitoring resources based on 14.0 KETs [52]. Also, production cycles
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and maintenance tasks become connected through a large amount of shared
data making it easier to implement collaborative predictive platforms for smart
maintenance [42]. These systems gather data from heterogeneous sources in
order to implement predictive maintenance solutions. Some examples in [43]
such as the Senseye company and the R2MPHM platform, introduce data anal-
ysis to alert workers when an abnormality is detected or to perform CBM and
prognostics, helping the maintenance managers to predict critical impacts in
the factories. In [39], a CBM-based method for SMEs focused on determining
the current health level of an asset whilst the use of connected technologies
provides more advanced decision-making in a collaborative way is presented.
Moreover, HMI research has already come up with sophisticated HMI-solutions
for DTs, that seek to adapt to the personal and situational context [53]. A
few years ago, the digital coaching systems [54] got started as an answer to the
demand of human operators able to manage advanced automated systems that
can monitor and control complex and large industrial processes and systems.
Nowadays, manufacturing as an industry has been pervasively impacted by the
rapid adoption of information technologies. With the advent of smartphones,
tablets and smart glasses, mobile HMI [55] has emerged as an example of the
technological advances used at the shop floor. The increasing deployment in
manufacturing of augmented reality (AR) and virtual reality (VR) technologies
[66, 57] is changing the way operators visualize [68] and manage maintenance
process monitoring [59]. The information can be virtually displayed overlapping
the physical asset in real-time such as temperature changes, consumption trend,
etc. [23]. This augmented interaction enables the understanding of real-time
processes in order to improve CBM skills through non-intrusive technologies.
However, the introduction of collaborative maintenance models in traditional
manufacturing requires the development of a legacy human-machine-based data
modelling approach. This perspective is crucial to integrate complex hetero-
geneous scenarios in manufacturing, where systems, processes and workers are
involved in operations at the same time. The aim is to achieve a collaborative

maintenance approach in a traditional environment where workers are allowed
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to perform their tasks while being part of the learning process. In that way, the
deployment of advanced human-machine software tools extends the opportunity
to simulate and understand human-system interaction. Online monitoring can
display manufacturing key performance indicators (KPIs) to generate knowl-
edge about systems and processes lifecycle with a wide perspective [32]. This
interactive approach therefore provides a path to follow for maintenance in col-
laborative environments. Learned knowledge and skills are exploited for the
incorporation of past experiences in root-cause analysis [60, 61]. Thus, human-
machine collaborative models applied to maintenance enhance the development
of skills 4.0, providing direct access to existing manufacturing-process knowl-

edge.

3. Methodology

This section presents the methodology to support collaborative maintenance
capabilities using a non-intrusive retrofitted approach in traditional manufac-
turing systems. In particular, a twofold objective is pursued: (i) To provide tra-
ditional manufacturing processes with decision support tools by linking workers’
expertise with the health status of the machines; and (ii) To test and validate
human-machine learning interfaces for collaborative maintenance.

To accomplish all the foreseen objectives, practical applications are built
on a three-tier concept where workers, systems and processes are connected
to collaborate at the same time. A hardware and software stack is proposed
to provide SMEs with a three-tier solution supported by data streams, data
models and knowledge models (Edge, Cloud and Business tiers, respectively).
These tiers, in turn, are interconnected as shown in Figure

Firstly, the Edge tier addresses standardised hardware and software in-
terfaces following a non-intrusive paradigm. This paradigm allows to connect
workers and systems without changes in the existing manufacturing infrastruc-
ture. A set of portable and flexible acquisition devices, interactive systems, and

health status methods (for example, vibration analysis, energy consumption,
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Figure 1: Three-tiers concept to support non-intrusive collaborative maintenance in traditional

manufacturing.

and temperature control) are connected through secure and standard interfaces
for data management in a non-intrusive way. This concept performs an in-
teracting stage nearest to the sensors, machines and workers with a common
communication layer. Data from the digital convergence of all shop floor actors
is collected, structured and transferred to the next tiers. Under the umbrella
of 14.0 KETs, this interoperability facilitates a common ISA95 5-level archi-
tecture that integrates information from multiple data streams (measuring de-
vices, HMI devices, industrial automation middleware, process control systems
or other software programs) based on standardised protocols (MODBUS TCP,
OPC-UA and HTTP) and data formats (JSON, XML, QR).

Next, the Cloud tier addresses the distributed HTTP microservices located
on the cloud with a focus on the development of manufacturing data models.

This tier manages the cloud storage capabilities to gather and display data

10
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streams from different kinds of entities of the Edge tier (HTTP/REST). Also,
Cloud tier provides workers with maintenance tools such as CBM for data mon-
itoring and flexible processing, building a digital representation of operations
and resources status. Thus, a convergent concept extracts valuable informa-
tion about systems management, KPIs, historical data and anomalies. That
information enables workers to get local or remote support in the maintenance
process through a connected problem-solving approach. Collected data allows
an understanding stage that eases monitoring, configuration and handling of
the digitised systems in accordance with their specific needs. Using a set of
HMI software tools, time series data, and widget-based Web dashboards, the
exploration of the shop floor data models (work in progress, resources, assets,
maintenance plans, etc.) to fulfil the manufacturing objectives towards collab-
orative systems, is boosted.

Finally, the Business tier addresses the whole retrofitted approach to man-
age collaborative systems in different traditional manufacturing scenarios. It
performs the learning stage where workers are called to play an active role as
part of the integrated manufacturing ecosystem [52], [I5]. This tier incorpo-
rates augmented tools and data from interactive human-machine smart inter-
faces based on AR apps running over HTTP. Workers’ experience is exploited
by applying lessons learned to digital contents using AR SDKs, JSON data
and QR codes. The fusion of adaptive procedures with real-time data is in-
tended to improve the skills of workers. All that experience is converted into
precise statements to support maintenance tasks and reinforce the processes
knowledge. Thus, workers and systems are gradually connected to an interac-
tive digital ecosystem. So this concept provides means to respond and maintain
systems quickly and accurately within an alternative technological context of

traditional manufacturing.

11
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Figure 2: System architecture.

4. Architecture of the system

This section introduces a common system architecture to enable the modular
communication between the aforementioned three tiers for collaborative main-
tenance in traditional manufacturing. As previously stated in Section 3 (see
Figure , three conceptual tiers manage the collaborative digital retrofitting
solution in a non-intrusive way: the Edge tier, that interacts with the sensors,
machines and workers using retrofitting strategies; the Cloud tier, that provides
SMEs with means to understand the maintenance needs; and the Business tier,
that generates collaborative maintenance knowledge for workers and processes.
The proposed system architecture (see Figure consists of three separate mod-
ules horizontally integrated to provide interoperability between all tiers: (i) a
portable IToT infrastructure, providing non-intrusive sensors, software in-
terfaces and heterogeneous data streams to the Edge tier; (ii) a cloud-based
service architecture, hosting a common information connectivity layer and

data models to the Cloud tier; and (iii) an end user HMI management, that

12



285

290

295

contains interactive human-machine software tools and assets health condition-
based strategies providing knowledge models to the Business tier.

This modular infrastructure is composed of different microservices to store
and process data (based mostly in Web apps and open source tools such as
Elasticsearch, Kafka, etc.). All information from the different tiers is connected
using Web APIs. The system components and the relations between all actors
as shown in Figure [3| are intended to represent a common industrial scenario

where different conceptual levels are presented in order to support the system

architecture.
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Figure 3: Conceptual model.

4.1. Portable IloT infrastructure

The first module of the architecture proposes a portable IIoT infrastruc-
ture including a customisable industrial acquisition hardware device, industrial
communication protocols, industrial common sensors and software interfaces as
described below. It provides the lowest level of digitisation services to the Edge

tier, necessary to implement retrofitting techniques. In traditional environments

13
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it may be desirable to use a condition monitoring framework regardless of the
nature of the machines and their level of digitisation, providing the hardware
interfaces with standard types of sensors. At the same time, a common commu-
nication layer is required to enable the necessary software services integration
for the physical-digital convergence of all actors involved at the shop floor. On
the other hand, the incorporation of HMI devices and linked AR apps to old
systems it is now increasingly used to provide workers with augmented data
of industrial scenarios in a collaborative digital ecosystem. Our work is based

on an IIoT infrastructure that consists of four main components as shown in

Figure [2}

1. A data acquisition module (TWave T8-L model with mobility caseEI)
used for condition-based monitoring and failure mode identification. The
system includes twelve external BNC inputs that accept static and dy-
namic signals from sensors and tachometer signals. Eight of them are
high speed inputs with a sampling rate from 512 to 102400 Hz, and the
other four are auxiliary inputs with a sampling rate up to 200 Hz (one
sample for each capture). These four static signals have been adapted to
measure 4-20 mA current loop signals for analog sensor data transmis-
sion. This kind of current loops is an industry standard commonly used
in many applications and equipments. All captured signals are stored in
an internal database for further processing following the conceptual model
presented in Figure

2. A wireless Wifi/4G router. It provides an external Ethernet connector
attached to a WAN entry to give the system direct access to the Internet.
Additionally, the mobile GSM 3G/4G connection allows gaining remote
access to the IToT infrastructure in places where Ethernet access to the
Internet is not available. Wifi connection is used to generate the wireless

local network for management.

2https://www.twave.io/products.html
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3. Sensors and coaxial cabling intended for applications requiring a non-

intrusive retrofit monitoring solution in a very short time using “plug and

play” BNC connectors:

e A three-phase AC current transducer to convert input voltage from

three open-ended Rogowski coils to a 4-20 mA DC output.

e One Pt100 magnetic resistance temperature detector (RTD) sensor
suitable for high temperature measurements on ferrous surfaces up

to a maximum of 300°C to a 4-20 mA DC output.

e Two PCB Piezotronics 603-Series accelerometers with magnetic mount-

ing base to install in ferrous magnetic surfaces.

4. Embedded web-based and Edge communication agents. TWave

includes a user interface to the acquisition hardware that can be accessed
from any browser. The configuration interface provides a dashboard to set
up the system: assets definitions, sensors, points, measurement parame-
ters, etc. The dashboard application also provides access for monitoring
the data recorded by the acquisition hardware where a static point cor-
responds to analog or digital readings. Also, the system can work in a
standalone mode or communicate these scalar measurements to other sys-
tems using Modbus-TCP, OPC-UA protocols and HTTP (REST API).
The architecture converts all digitised shop floor environments into indi-
vidualised objects characterised by type and properties. All of them are

associated with the selected machine.

4.2. Cloud-based service architecture

The second module of the system proposes a cloud-based service architecture
to store and understand the data from different assets connected to the Edge
tier. This module (see Figureld]) consists of five cloud-services: (i) Apache Kafka
hub, (ii) Elasticsearch data storage, (iii) data flow management (DFM) module,
(iv) data modeling and visualization in a Web monitor, and (v) augmented data

sources management (sensors, machines, and other software solutions such as

15
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AR SDK integration). This module includes information on which alarms have
been triggered in one asset, systems configuration, systems status, real time
data snapshots of all measurement points, data analytics, augmented contents

and dashboards.
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Figure 4: Cloud-based service architecture.

Each measurement input is a source of data that brings information to the
Cloud tier about the machine that is being monitored. Using the edge commu-
nication agent, an authenticated API which allows access to the data recorded
in the retrofitted objects is provided. To gather all this information from the
shop floor, a hub module using REST API with Apache Kafka ingests JSON
data (see Figure [5)) from the portable IIoT system to the Elasticsearch cloud
database. Different types of REST calls can be done by Cloud tier microser-
vices to return a specific JSON. This allows DFM to customise Web monitor
dashboards according to a configurable flow defined by three main components:
inputs, logic and actions.

Data visualization includes alarms triggered from individual objects and
data models related to the health status of the assets. A user-friendly dash-

board interface allows users to define and configure their own data through
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{
"points": [
{
"error": <ERROR_NUMBER>,
"error_msg": "<ERROR_MSG>",
"id": <ID_POINT>,
"proc_modes": [
{
"id": <ID_PROC_MODE>,
"params'": [{"id": <ID_PM>,"tag": <TAG_PM>,
"unit_id": <UNIT_ID_PM>,
"value": <VALUE_PM> }]
"tag": "<SENSOR_NAME>"

b

... (MORE PROG_MODES)
}

b

"t": <TIMESTAMP>,

"tag": "<MACHINE_NAME>"
}

Figure 5: Formatted JSON data used to ingest a measurement input.

drag-and-drop widgets containing several different out-of-the-box graphics and
data tables. The analytic dashboard system integrates a unified framework of
interactive data representation for condition-based maintenance methods and
engineering graphic interfaces, to understand behaviour models and support
predictive data. These features include real-time data analysis, anomaly de-
tection, behaviour fault model and advanced system monitoring to alert the
operator about some incidents like overheating, decrease in the manufacturing
rate, trend changes, etc. Augmented services manage all the data handling logic
for the AR apps, displaying the information processed at the shop floor in the
devices of the workers. REST APIs deliver the data processed by the platform
to the Business tier and enable the interaction between the workers and the
different platform modules. In addition, the Cloud tier enables connection with

third-party systems through API connection.

4.3. End user HMI management

The third module of the system architecture proposes human-machine visu-
alization services, contents and augmented maintenance models to the Business
tier (see Figure @ These maintenance models are oriented on how users on

traditional environments can be supported when interacting with the manufac-
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turing systems. Thus, workers are assisted with the visualization of the assets
status and KPIs monitored from the sensors deployed in the machine. Also,
the incorporation of AR components to the system architecture provides work-
ers with new capabilities to access real-time advanced visualization of complex

data, expert-guided remote assistance, and supervised training.

Visualization

Manager

Cloud hub
Figure 6: Business tier human-machine management and visualization services.

The End User HMI Management module defines the augmented infrastruc-
ture consisting of four components: (i) Cloud hub is already integrated with
the cloud-based services architecture using REST APIs (see Figure [d). It in-
cludes the management logic for all data stored in the cloud as well as the
integration of Web services to facilitate the communication over a secure socket
layer; (ii) Manager component provides the creation and management of
manuals with 3D models, 3D indications in many languages, images, videos,
etc.; (iii) Visualization component allows industrial operators to see all the
instructions of a process with AR, using AR Glasses or just a smartphone or
tablet; and, (iv) Remote Assistance component provides three-dimensional
render instructions on a machine about how to replace a component, and remote

contact with an expert in the same system to get immediate assistance.
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5. Digital retrofit case studies

In order to be able to illustrate and evaluate the applicability and overall per-

a0 formance of our proposal, a non-digitised production milling machine with more
than 25 years old, is used for the deployment and assessment of collaborative
maintenance approaches. Then, to illustrate the generalisation and applicability

of the solution, we applied the same architecture to an injection moulding ma-
chine. The development, focused on the physical-digital convergence between

a5 workers and older industrial systems regardless of their level of digitisation, was

tested in the Research and Development Centre facilitiesﬂ

Figure 7: Nicolas Correa CF20 CNC milling machine at the R&D facilities.

3Due to the requirements for anonymized manuscript submissions at Computers & Indus-

trial Engineering, the name of the research center is not mentioned in this version of the

paper
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Table 1: List of tools used in the CNC machine.

tool code tool code
edge finder 1 shell mill carring @32 with 8 cutting edges 2
shell mill carring @63 with 8 cutting edges 3 shell mill carring @80 with 8 cutting edges 4
shell mill carring @50 with 4 cutting edges 5 shell mill carring @80 with 4 cutting edges 6
drilling endmills APKT @65 7 endmills @18 8
drilling endmills APKT @20 large 9 drilling endmills APKT @16 10
drilling endmills APKT @18 11 drilling endmills APKT @30 12
endmills @16 13 endmills @30 14
endmills @32 15 endmills @52 16
mandrel 17 head mandrel 18
tool holder ¥0-3 19 tool holder ¥3-14 20
morse taper drill bit 21 90° countersink bit 12 22
90° countersink bit 22 23 turbo face milling 24
dial indicator 25 tool holder Mickey type 26
tool holder 27 endmills @12 28
endmills @18 large 29 indexable insert drill 30
endmills @20 31

5.1. Development of the solution

The case study was carried out on a three axes milling machine Nicolas
Correa CF20 with Touch Numerical Control (TNC) HEIDENHAIN TNC-407
(Figure . This milling machine is a machine tool typically used to shape slots
and drill solid material work pieces with a rotating cutter. The cutting tool is
mounted in a spindle housed in the milling head moving vertically along the Z
axis. The machine is controlled by an old SIEMENS SIMODRIVE 611 PLC
embedded in the electrical panel, however all historical information during its
life cycle is not accessible for monitoring. Maintenance strategies are preventive
or corrective while the milling machine is started and stopped every working day.
On the shop floor all the manufacturing orders with the production plan are on
request under different CAD designs. One experienced operator prints each part
design and manages manually the associated milling operations. Specifically,
this machine tool is developed for shop floor programming by the operator
using conversational programming.

The operator has to generate part programs at the machine with the part

design in hand, but it is required a manual change of cutting tools (see Table
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Figure 8: Milling machine cutting tools.

and Figure for a different milling operation (milling, contour milling, face
milling, bore milling, drilling, etc.) (see Table. The manufacturing strategies
for programming and cutting tool changes depend on the criteria of the operator
or any unplanned events. Thus, all the aforementioned non-digitised strategies
are setting the terms of the whole manufacturing process-time and resources,
where it is not possible to predict future decisions based on the performance

and the health condition of the CNC milling machine.

Table 2: List of milling operations and materials used in the CNC machine.

milling operation code material code
zeroing milling 1 plastic 1
face milling 2 aluminium 2
contour / form milling 3 steel 3
bore milling 4 316 stainless 4
milling 5 other 5
drilling 6
special 7

To address this case study, a first phase is proposed for the deployment of
the Edge and Cloud tiers described in the system architecture. First of all,
the portable IIoT infrastructure is used to develop retrofitting approaches on
the CNC milling machine without interfering in working conditions. Next, the
cloud-based service architecture deploys a common connectivity layer with the

status information of the manufacturing processes based on CBM and human-

21



450

455

460

machine software tools. Then, a second phase is proposed to deploy the Busi-
ness tier for testing and validation of human-machine collaborative maintenance
models such as monitoring services, remote maintenance and training tools, ap-

plied to real traditional manufacturing scenarios.

Figure 9: a) TWave with mobility case b) Accelerometers and RTD sensor c¢) Three-phase
current transducers, d) HMI panel PC.

CNC_CF20 - Default Funcionando
15/1/2020:10:15:36

Valor_Global Fasel

AWM Banda_1X 0053 mmis 0.0088 mmv/s Fase2

Asset Web Monitor Banda_2X-1KHz I Fase3

< ® ® 00 =5 1-20khz 00012 g 0.001 g Temperatura
o 0 1 5 —-—

Pico_Maximo 0.014g 0.0093 g Velocidad

iPeak
cn
CNC_CF20 ©

Figure 10: Milling machine dashboard detail in AWM cloud platform.

The TWave case (Figure E}a) provides CNC with the hardware acquisition
device to enable sensor-based non-intrusive digital retrofitting techniques. Com-
mon industrial sensors detailed in Section 4.1 are used to get CNC’s attributes
from different measurement points: (i) two accelerometers and one RTD sen-
sor with magnetic mounting base placed in the spindle of the CNC’s milling
head (Figure[Jp); and (ii) three-phase current transducers with open-ended Ro-
gowski coils connected in the electrical panel to the three-phase circuit wiring
(Figure [9F).

All sensors and coaxial cabling can be easily guided from the spindle and the
electrical panel to the portable hardware control case and plugged to the BNC
inputs. A Web browser is used to connect with TWave’s embedded dashboard
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interface (see Figure . All CNC’s measurement inputs plugged to the data
acquisition system can be configured in the dashboard and assigned to a new
created asset object associated with the milling machine. Then, each input
point in CNC’s machine is associated with one of the different sensor types (for
example, accelerometer, RTD or three-phase current). Also, labels with the
names (for example, “Acell”, “Acel2”, “Temperatura”, “Fasel”, “Fase2” and
“Fase3”), properties (processing mode, input range, units, etc.), and operation
mode (static, dynamic), are set (see Figure. The dashboard application also
provides workers with CNC’s data monitoring on HMI tools. Additionally, one
HMI panel PC with capacitive touch screen (Figure[0) for real-time monitoring
of data and operator’s interaction, is used in our case study. The standalone
HMI device allows workers to interoperate with a software interface right next
to the CNC’s TNC and is capable of accessing both forms of data visualization,
local network client and cloud services, as described below.

Once the data acquisition system is ready, the mobile GSM 4G module gives
the hardware’s edge communication agent access to the Internet. Data streams
resulting from the measurement points are linked with DFM cloud services.

Milling machine asset object registered in the Cloud platform (Figure [10)), en-

{

""points": [

{
"id": 30,
""proc_modes": [{"id": 35,
"params': [{"id":96,

"tag":”val",
"unit_id":25,
"value": 0.23827815}]
}
s
"tag": "Fasel"
b
{

’
"t": 1580989890.22308,
"tag": "CNC_CF20"

}

Figure 11: Specific JSON data format including “Fasel” measurement values.
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ables the interconnection of the physical-digital common layer for remote mon-
itoring and CBM tools. The system uses HTTP protocol and REST calls re-
turning JSON data to customise the inputs, logic and actions of the asset in the
monitoring dashboards. Figure shows a specific JSON data (based on the
structure proposed in Figure [5) with values recorded by the current transducer

of the sensor labeled as “Fasel”.
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Figure 13: a) CNC’s HMI software to interact with the operator. b) Real-time AR app

installed on a Samsung tablet.

A Web service API has the advantage of providing a visual status of the
monitoring system in real time for workers. On the other hand, cloud-based

dashboard systems allow for remotely access to information, including customi-

24



490

495

500

505

sation of individual alarm triggers and information related to the health status
of specific milling machine points (Figure . Moreover, the HMI panel device
(Figure ) can be used to install software applications to provide operators
with workflow information connected to the IIoT communications layer. A
graphical user interface empowers the operator to take an active part in CNC’s
work orders analysis and maintenance processes. By matching some parameters
monitored (for example, vibration, temperature and power consumption) with
the human-data gathered, can be enabled the extraction of additional CNC’s
maintenance indicators in order to validate manufacturing models with the sup-
port of the machine operator skills. In this way, the work provides additional
interactive HMI tools such as AR systems to enhance workers’ skills. Due to the
AR layer incorporation to our proposal, workers are enabled with new capabili-
ties accessing augmented data of the milling machine in real-time and receiving
expert-guided assistance as well as remote training.

A test was carried out aiming to introduce collaborative maintenance strate-
gies based on a CNC’s process learning approach. During the learning stage,
human-machine knowledge models were built to formalize insights (Business

tier) from data streams (Edge tier) and data models (Cloud tier) in order to

& XA
Operaciones:

Toma de i
ceros | Planeado| “zm=*| Fresado

400 Especiales Mandrinado

Herramientas:

Figure 14: CNC’s human-machine integration based on hardware and software interfaces.
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evaluate the impact of new collaborative maintenance technologies in traditional

manufacturing. The opportunities for digitising workflows enable the analysis

of production cycle times and how performance losses and downtimes impact

them in real-time. Besides the aforementioned milling machine retrofitted in-

frastructure to deploy the digitisation layer, the collaboration of the machine’s

operator was required. A software interface was installed in the HMI panel right

next to the CNC’s TNC to facilitate the extraction of manufacturing process

knowledge (see Figure . New digitised contents provided the operator with

a real-time interaction to classify specific milling operations and their duration,

enhancing the learning process with additional featured data.

Table 3: Detail of milling work orders processed by the machine’s operator.

work order

op.

start

end

mat.

cutting tool

fab-0305-19-12002
fab-0305-19-000
fab-0305-19-000
fab-0305-19-000
fab-0305-19-000
fab-0305-19-000
fab-0305-19-000
fab-0305-19-000
fab-0305-19-000
fab-0305-19-000
fab-0305-19-000
fab-0344-19-000
fab-0344-19-000
fab-0305-19-12004
fab-0305-19-12004
fab-0305-19-12004
fab-0305-19-12004
fab-0316-19-000
fab-0316-19-000
fab-0266-19-11392
fab-0266-19-11392
fab-0266-19-11392

2020/13/01 09:41:34
2020/13/01 12:08:06
2020/13/01 15:28:20
2020/14/01 07:20:46
2020/14/01 08:57:56
2020/16/01 08:43:49
2020/16/01 09:19:18
2020/16/01 09:31:35
2020/16/01 09:34:57
2020/16/01 09:54:43
2020/16/01 10:03:02
2020/16/01 12:01:58
2020/17/01 07:42:07
2020/22/01 07:22:58
2020/22/01 07:47:27
2020/22/01 08:06:03
2020/22/01 08:28:35
2020/22/01 09:21:29
2020/22/01 09:42:16
2020/23/01 14:37:24
2020/23/01 15:01:09
2020/23/01 15:28:26

2020/13/01 12:07:38
2020/13/01 15:28:15
2020/13/01 15:43:46
2020/14/01 08:57:51
2020/14/01 12:22:16
2020/16,/01 09:19:13
2020/16,/01 09:31:30
2020/16,/01 09:34:55
2020/16,/01 09:54:51
2020/16/01 10:02:59
2020/16/01 10:37:25
2020/16,/01 15:59:51
2020/17/01 12:53:24
2020/17/01 07:47:25
2020,/22/01 08:06:01
2020/22/01 08:28:27
2020/22/01 09:21:08
2020/22/01 09:42:13
2020/22/01 09:57:54
2020/23,/01 15:00:40
2020/23/01 15:28:21
2020/23/01 16:00:58

W W W W W W W W W NN R R R R R R R A R

6
14
6
23
5
27
5
22
20
5
20
5
5
5
27
20
6
6
20
5
30
22
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In this particular case, manufacturing orders consist of: (i) printed CAD
drawings, (ii) milling operations, (iii) kinds of material parts, and (iv) cutting
tools. These features were labeled and identified by a numerical code to facili-
tate further data processing (see Tablefor an example of milling work orders).
Moreover, using triggers with monitored parameters such as vibration and cur-
rent consumption values it was possible to automatically detect CNC’s process
downtimes. This is especially common whenever the CNC machine finishes a
milling operation or a cutting tool change is needed. Once a change status is de-
tected, the HMI system prompts the operator to enter the next milling operation
or to describe an unplanned event. Thus, the execution time for each individual
milling operation, used material and cutting tool is classified by the operator
and sent to the cloud services. On the other hand, when the operator detects an
anomaly with this machine, the data is reported to enhance maintenance orders.

Data is reinforced with a non-intrusive condition monitoring strategy. The avail-

. 7
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—
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Figure 15: Example of energy consumption registered in two CNC’s face milling operations

on steel.
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ability of tasks execution time from data gathered for the whole manufacturing
process facilitates the implementation of adaptive maintenance plans by match-
ing milling machine operation patterns with CNC’s parameters monitored. The
experienced operator of the milling machine contributed to the identification
of valid patterns characterising single milling operations (Figure . The esti-
mated duration of processed milling operations was calculated based on average
values. A proof of concept to validate this learning approach in production cy-
cles was conducted using an initial threshold-based model with maximum and
minimum measurement values registered in the CNC machine. The details of
milling operations were considered. Also, alert messages triggered by initial

threshold limits were configured.

Figure 16: a), b) Personalized AR software apps. ¢) QR code.

To provide the operator with an interactive overlapped visualization of CNC’s
digitised data in real-time, an AR software app was deployed on an Android
tablet model Samsung Galaxy S3 (Figure [I3p). The system uses REST APIs
to interconnect real-time data of the retrofitted milling machine with the AR
cloud infrastructure, as described in Section 4.3. The software is used to test
the worker interaction guided by augmented contents coupled to the CNC’s
health-condition status. The aim of this system is to achieve a digitised learn-
ing environment for workers who interact with manufacturing processes that
depend on the asset condition. The mobile device eased the operator’s move-
ments on every part of the milling machine at the shop floor. Personalised QR
codes located on the CNC machine (door, TNC and electrical panel) served to
match physical points with digital contents (Figure and Figure ) In this
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scenario, AR allows the operator to simply point the tablet to a QR code placed
on the milling machine (Figure [I6) and directly show customised information
about it. This collaborative approach has a twofold objective: firstly, to min-
imise downtimes with a fully digitised context-aware environment for workers.
Secondly, to guide workers step by step with AR technology applied to practical

skill training.

Operacion (%)

Figure 17: a), b) AR apps to display virtual manufacturing information.

{

"Time_Stamp":{"timestamp":<VALUE>,"zone":<TAG>},
"Temperatura":<VALUE>,"Temperatura_Min":<VALUE>,"Temperatura_Max":<VALUE>,
"Acell_Valor_Global":<VALUE>,"Acell_Valor_Global_Min":<VALUE>,"Acell_Valor_Global_Max":<VALUE>,
"Acel2_Valor_Global":<VALUE>,"Acel2_Valor_Global_Min":<VALUE>,"Acel2_Valor_Global_Max":<VALUE>,
"Fasel":<VALUE>,"Fasel_Min":<VALUE>,"Fasel_Max":<VALUE>,
"Fase2":<VALUE>,"Fase2_Min":<VALUE>,"Fase2_Max":<VALUE>,
"Fase3":<VALUE>,"Fase3_Min":<VALUE>,"Fase3_Max":<VALUE>,
"Operation":"<TAG>","Estimated_duration":<VALUE>,"Progress":<VALUE>,

"Alert":"<TAG>"

}

Figure 18: Specific AR JSON data format.

Figure [I7] shows how the virtual manufacturing process information was
displayed with the AR app overlapping the physical asset. All the manufac-
turing information was previously considered in the IloT infrastructure and
integrated with AR cloud-based services using a JSON data format as shown
in Figure [I§ On one hand, graphic displays with fixed thresholds defined to
alert on detected anomalies during milling operations, such as temperature and
consumption trend, provided the operator with a visual representation of the

parameters monitored at the same time that the milling machine works (Fig-

29



570

575

580

585

ure ) On the other hand, production cycle time from tested work orders
was calculated using the total run time from individual estimated operation
times. These values were compared using each single operation real progress
time (Figure [17p).

Finally the milling machine operator was provided with personalised AR
manuals for training and to guide in maintenance tasks. The application displays
an interactive manual with a step-by-step guide overlapped on the CNC machine
(Figure . This way the maintenance operator, regardless of his experience
and knowledge of the machine, can carry out the intervention in a supervised

and safe way.

=
5
2
=
&
@

Siguiente paso

Figure 19: AR guide step-by-step applied to maintenance tasks in the electrical panel.

The use of augmented procedures and digital contents applied to the milling
manufacturing process turned out useful to save time and gain improved perfor-
mance and advanced diagnosis using real-time information about KPIs moni-
tored. As a result, milling machine behaviour models were monitored interacting
with the operational knowledge of the experienced operators. Workers and in-
dustrial systems were updated, at the same time, with human-machine digital
strategies and proactive management environments laying the foundation for a

collaborative maintenance methodology.

30



5.2. Generalisation of the solution

The COVID-19 pandemic has changed industrial work. New practices to al-
low social distancing and provide remote access capabilities during confinement,
created a digital dependence in industry. At the same time, the production of

so  protective face shields during the worst weeks of the COVID-19 emergency be-
came a national health priority. The Spanish Federation of Technology Centres

(FEDI’IE[) made all its members’ resources available to the fight against the

4https://fedit.com/

Figure 20: Two-component injection moulding machine Krauss Maffei 200-700 C2 and pro-

tective face shields at the R&D facilities.
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COVID-19. In particular, The Research and Development Centreﬂ7 contributed
for the manufacture of protective face shields visors for health staff (Figure 20)).
An injection moulding machine was used starting from the last week of March
2020. At the beginning of April 2020, the global multi-energy company Repsol
donated 1,500 kilograms of polypropylene to the R&D Centre. In this way, it
was possible to increase the daily production from 4,000 up to 5,700 units on a
2-component injection moulding machine Krauss Maffei 200-700 C2 (Figure .
Maximising the overall equipment effectiveness based on that increase of pro-
duction, presented a great challenge to support 24 hours a day a non-digitised
asset. Maintenance was highly important in response to machine unplanned
breakdowns without previous digitised historical data.

Injection moulding is a high-precision manufacturing process used for plastic
parts production. Krauss Maffei 200-700 C2 injection machine consists of four
main modules: a clamping unit, an injection unit, an electrical panel and a con-
trol panel. A custom mould design is required to the injection of the particular
plastic part or product whilst an hydraulic system controls the moving parts of
the clamp unit where the mould works (Figure [21h). The cooling system is one
of the most important points for both, hydraulic system and mould, affecting the
total cycle time and the quality of final products. The temperature measured
at the mould area during the injection moulding process is a key parameter, but
it requires an expensive equipment, technical experts and additional interfaces
configuration on the machine’s control panel. Moreover, the moulding injection
cycles can work in an intensive unattended mode for several hours in the night
shift. Therefore, monitored relevant changes in the machine’s health condition
status such as overheating, performance or unexpected breakdowns, need to be
supported through remote management. Thus, to test the generalisation ca-

pacity of our proposed architecture, the portable solution used in the milling

5Due to the requirements for anonymized manuscript submissions at Computers & Indus-
trial Engineering, the name of the research center is not mentioned in this version of the

paper
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Figure 21: Injection machine detailed diagnosis and maintenance process using retrofitting

and AWM monitoring dashboard.

machine (Figure ) was deployed on that moulding machine on March 30th,
replicating the non-intrusive digital retrofitting concept: (i) mobility case with
the hardware acquisition device; (ii) measurement points consisting of two ac-
celerometers and one temperature sensor deployed in the injection mould area,
and three-phase current transducers with open-ended Rogowski coils connected
in the control cabinet; (iii) coaxial cabling to connect sensors to the BNC in-
puts in the portable hardware control case; and (iv) embedded communication
agents to enable remote monitoring with cloud-based CBM tools.
Temperature and vibration changes at the surface of the mould, and the reg-
istration of abnormal current consumption patterns, were monitored in AWM
dashboard and supervised by production and maintenance staff. Registered
data under continuous production conditions showed unplanned breakdowns in

the injection moulding machine. In order to respond to this particular un-
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expected operating condition, experienced operators recommended to register
temperature measurements at a different location.

Remote assistance was provided to maintenance staff, moving the temper-
ature sensor from the mould cooling circuit - with cooling rate stable values
around 16°C as shown in Figure -, to the oil heat exchange system (Fig-
ure [21[d). This move was intended to determine a better temperature variation
during the injection moulding process. As shown in AWM monitoring dash-
board (Figure ), a few hours later on March 31th, a night-time unplanned
breakdown was registered in the dashboard and notified by email to the produc-
tion and maintenance staff to alert them at the start of the morning shift. The
abnormal pattern was confirmed as an overheat problem, and fixed that morning
after a maintenance planned shutdown. A dirty filter in the oil heat exchange
unit was the detected cause. After cleaning the filter the injection process of
face shields manufacturing was restored quickly to a stable behaviour.

In this particular case, it was a digitisation challenge to give full mainteinance
services due to confinement, providing workers with real-time trend data and

remote assistance in a few hours. The proactive CBM solution implemented, in

AR RENMOTE
A TANC &

Q unity WebG AR Remote Assistance E

Figure 22: AR app used to provide maintenance staff with interactive support during COVID-

19 confinement.
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a non-intrusive way, provided knowledge about the machine behaviour to oper-
ate it under changing conditions with limited staff in place. Moreover, it was
possible to alert maintenance staff during unattended labour in the night shift
and to deploy and validate an interactive (see Figure and remote collabora-
tive maintenance strategy based on 14.0 KETSs, to avoid the injection machine

overheating and its subsequent breakdown during COVID-19 confinement.

6. Conclusions and future work

The costs of maintenance have a great competitiveness impact in the man-
ufacturing industry. In this context, traditional manufacturing faces the chal-
lenge of adapting older machines to advanced maintenance strategies with a low
adoption rate of the new 14.0 KETs. Digital barriers and expensive hardware
compatibility issues are known in the way to accomplish the physical-digital
convergence in SMEs. Recent unpredictable world challenges, such as COVID-
19, have impacted on the maintenance services of legacy assets as well. Remote
maintenance certainly offer the possibility to provide substantial added value to
the enhancement of operating resources. However, the adoption of collabora-
tive maintenance ecosystems implicitly requires a digital integration connecting
knowledge management tools. Collaborative models also mean that human-
machine interaction is needed in order to analyse and characterise a proactive
management of assets and workers through a limited number of maintenance
windows. This will continue even more as the 14.0 interaction with traditional
manufacturing environments requires workers’ skill development and different
asset maintenance strategies from those now prevailing.

This work presented a methodology and architecture to bring older physical
assets with digitised scenarios in a non-intrusive way. The integration between
systems and workers was described to support CBM technologies linked to su-
pervised collaborative maintenance processes. Practical applications were built
on a three-tier methodology based on common architectures, protocols and stan-

dards for collaborative maintenance in traditional manufacturing. Then, they
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were applied in milling operations and replicated in manufacturing cycles of
face shields during COVID-19 emergency. Both the non-intrusive retrofitted
approach and human-machine support systems were studied together with the
knowledge of experienced operators. As a result, an original contribution to
confront collaborative maintenance challenges in SMEs, including emergency
situations such as social distancing, was provided.

Our solution proposed a connected infrastructure to store data and extract
patterns about the failure probability of the critical components. Moreover,
means to communicate a large amount of data from different industrial systems
and assist the workers via augmented HMI tools, were tested. Already existing
manufacturing traditional scenarios served to validate these digital retrofitting
and communication strategies without interfering in working conditions. To
sum up, the results of our work presented means to reduce SMEs’ industrial in-
vestment by simplifying the commissioning of condition monitoring systems. At
the same time, a collaborative maintenance approach for condition monitoring
proved to be valid in traditional manufacturing environments in a very short
time. In that way, the status of legacy systems was improved using a portable
system characterised by standard sensors and industrial protocols, connected
to cloud-based tools such as dashboards for global data analysis and trends.
Finally, augmented tools were tested during maintenance processes to empower
and support workers through learning models complemented with remote assis-
tance.

As seen in the case study, there is room for improvement to test practical
applications in traditional manufacturing. In the future, we plan to study a
suitable human-machine interaction to improve results while the operator is
involved during decision-making situations. So one of the further research lines
will be to integrate a DT methodology based on these human-machine models
in traditional manufacturing, generating an adaptive learning framework from
the three levels that act at the same time in a manufacturing plant: processes,

systems and workers.
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