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Abstract

The recent COVID-19 outbreak impact on the world economy has boosted

the increasing business needs to force manufacturing plants adapting to un-

predictable changes and ensuring the continuity of industrial production. The

demand for asset monitoring solutions and specialised support at the shop floor

has become an increasingly important digital priority in industry that pushes

human-machine technological upgrades leading to digital workforce skills as-

sessment. In the case of traditional manufacturing, Small and Medium-sized

Enterprises (SMEs) face the challenge of managing digital technologies and In-

dustry 4.0 (I4.0) maturity models with a low adoption rate. In this digital

context very few SMEs with traditional means have anticipated the latest ad-

vances in maintenance strategies impeded by technical and economical barriers.

This work presents a human-machine technological integration solution in tra-

ditional manufacturing based on a non-intrusive retrofitting development with

interoperable I4.0 tools. The method provides a common and rapidly deploy-

able hardware and software architecture supporting an HMI-based legacy main-

tenance approach and addresses its evaluation focused on the physical-digital

convergence of older industrial systems. A case study applying a digital pro-
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cess approach integrated with condition-based maintenance (CBM) techniques,

has been carried out on a CNC milling machine and reproduced in an injection

moulding machine during COVID-19 alert state. These already existing scenar-

ios served to deploy digital retrofitting and communication strategies without

interfering in working conditions. Patterns extracted from the machines were

monitored in real-time interacting with the operational knowledge of the ex-

perienced staff. In this way, we provided an original contribution to confront

human-machine challenges with improvements applied in traditional manufac-

turing, where workers and industrial systems were collaboratively updated with

augmented digital strategies and proactive CBM environments.

Keywords: Digital retrofitting, Collaborative maintenance, Industry 4.0,

Human-machine interfaces, Traditional manufacturing, Non-intrusive sensors

1. Introduction

The advent of the Fourth Industrial Revolution [1] has accelerated the way

traditional manufacturing faces digitisation challenges towards Industry 4.0

(I4.0) [2, 3]. Specifically, current changing business models [4] and recent major

changes to manufacturing industry, such as the COVID-19 outbreak [5], have5

ignited the technological upgrades to develop remote maintenance services and

workforce skills [6, 7]. Furthermore, the demand for asset monitoring solutions

and specialised support has become an increasingly important digital prior-

ity in manufacturing, where maintenance represents a very significant function

within the overall production environment and manufacturing overhead [8]. A10

paradigm shift for asset maintenance management [9] is emerging leveraged by

I4.0 key enabling technologies (KETs) [10]. Some of these, such as industrial In-

ternet of things (IIoT), cloud computing, machine learning, data analytics and

augmented reality (AR), are being adopted in manufacturing to integrate new

cyber-physical systems (CPSs) which have their digital twin (DT) counterpart15

[11]. By using CPSs, data operations can be real-time integrated in manufac-

turing plants on a holistic level [12, 13] where sensors and communication tech-
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nologies interconnect data sources to a virtual world. Then, augmented data is

available with the implementation of DTs and human-machine interfaces (HMI),

where assets, workers and services are integrated in an interoperable environ-20

ment based on specific, tailored information [14]. In this connected scenario, I4.0

arises as a wider concept that encompasses manufacturing in a new model of col-

laboration between workforce and industrial processes. Besides this convergent

approach, I4.0 provides digital strategies to standardise and transform the entire

manufacturing value chain [15]. As a result, connected human-machine ecosys-25

tems grow at the shop floor enhanced by digital-physical convergence models,

taking advantage in real-time of I4.0 KETs and assets integration [2].

In the case of traditional manufacturing Small and Medium-sized Enterprises

(SMEs), I4.0 transformation challenge is facing a low adoption rate of digital

technologies and maturity models. At the European level, important barriers30

for I4.0 KETs adoption are the lack of skilled personnel [16] combined with

its continuously increasing demand [17]. SMEs are also less ready due a lack

of experience in new technologies [18], which leads to a slow initial stage of

digitisation [19] and maturity [20]. Thus, the deployment of collaborative main-

tenance strategies is not always directly possible, being common to find SMEs35

without information connectivity models inherited from older manufacturing

systems [21, 22].

On the other hand, SMEs’ inherent difficulty to invest in economic or tech-

nical resources [23] may be a barrier to manage the system’s maintenance [24].

However, the concept of retrofitting provides manufacturing with opportunities40

to connect traditional machines with I4.0 KETs [25]. Retrofitting process opens

up a legacy way [26] for upgrading machines with the introduction of new digital

features based on infrastructure and communication [27] at the shop floor while

tailoring such assets with protocols [28], electronic data capture systems [29]

and new HMI control applications [30], bringing also opportunities of sustain-45

able manufacturing [31]. In the case of SMEs, it is a fact that retrofitting of

existing assets reduce investment costs, while the reliability can be considerably

improved and their lifetime extended, being a low-cost alternative to introduce
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sustainable strategies [31].

Recent outbreak impact on the world economy has joined the increasing50

business needs to force manufacturing plants adapting to unpredictable changes

and ensuring the continuity of industrial production in real-time. In that way,

smart monitoring [2] and new human-machine collaborative maintenance mod-

els are adding value to the improvement of the manufacturing processes [32, 12].

However, today the way forward for SMEs still has several challenges to over-55

come for the successful and timely reimplementation of the I4.0 concepts such

as interoperability, virtualization, decentralization, real-time capability, service

orientation and modularity [14]. Moreover, the workforce requires upgrading

to the skills needed to cope with the upcoming digital technologies [4]. In this

context, the development of a flexible and connected retrofitting approach may60

offer a rapid and reduced-cost alternative as a service for the deployment of

a real-time collaborative maintenance in traditional manufacturing [28]. This

“servitization” concept, based on standardised digital retrofitting techniques at

the plant floor, is intended to provide specialized skills and tools to support

SMEs’ new collaborative business models, including service trends as remote65

maintenance [33, 34].

This work presents a solution for human-machine technological integration

in traditional manufacturing based on a non-intrusive retrofitting development

with interoperable I4.0 tools. It provides a common and rapidly deployable

hardware and software architecture with the ability to support a HMI-based70

legacy maintenance approach and addresses its evaluation. For this purpose, the

methodology described in this paper is focused on minimizing digital retrofitting

barriers in real older non-digitised traditional manufacturing machines. To

deal with practical applications for collaborative maintenance, based on com-

mon architectures, protocols and standards, a case study was carried out on a75

CNC milling machine and reproduced in an injection moulding machine dur-

ing COVID-19 alert state. The propposed solution allowed workers and indus-

trial systems to be updated with non-intrusive digital strategies and proactive

condition-based maintenance (CBM) environments laying the foundation for
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collaborative methods. The machines were monitored remotely in real-time80

interacting with the operational knowledge of the experienced staff. Finally,

behaviour models were extracted to support learning processes.

The remaining of the paper is organized as follows. Section 2 introduces a

background for advanced maintenance in aged manufacturing machines. Next,

Section 3 presents a methodology based on a non-intrusive retrofitted approach85

to support collaborative maintenance, and Section 4 describes the system archi-

tecture. Then, in Section 5, the retrofitting implementation and the evaluation

models in the traditional manufacturing scenarios is detailed. Finally, Section

6 presents the findings and conclusions derived from the applied research.

2. A background for advanced maintenance in aged manufacturing90

machines

For decades, the manufacturing industry has populated its plants with su-

pervisory control systems and, in some cases, advanced process control systems

[35]. The development of diverse techniques in the field of maintenance man-

agement [36] such as Total Productive Maintenance (TPM), Reliable Centred95

Maintenance and CBM, has greatly improved the level of accuracy to reduce

unplanned downtimes [37], thus optimising resources and productivity. How-

ever, the necessary integration of I4.0 requirements to address data manage-

ment under the physical-digital convergence [38], introduces barriers [23] and

compatibility challenges [21] ahead in SMEs traditional manufacturing systems100

[20]. On the basis of the findings reported by The Publications Office of the Eu-

ropean Union [16] and publications by the U.S. National Institute of Standards

and Technology (NIST) [22], these existing barriers in SMEs for adopting ad-

vanced manufacturing technologies and advanced maintenance technologies can

be summarised as follows. In general, very few SMEs with traditional manufac-105

turing means have kept up with the latest advances in maintenance strategies

[22, 39]. Moreover, most of them use diverse commercial industrial systems that

often own data sources with proprietary access [39] and heterogeneous commu-
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nication interfaces for which the data architecture is unknown [40]. Despite

maintenance trends (jointly with the communication and control architectures)110

have collaboratively evolved with I4.0 technologies [41], the most common use of

the maintenance strategies inside the manufacturing industry is mainly reactive

and preventive [42] without taking in consideration shop floor data [43].

In this section, we explore the evolution of convergent maintenance strategies

in traditional manufacturing based on the integration of the physical and the115

digital worlds in order to contextualize our proposal. Retrofit is introduced as

an emerging opportunity to address old hardware reconditioning methods [30]

that facilitate traditional environments to benefit from predictive maintenance

technologies based on sustainable and collaborative human-machine models [39,

44].120

2.1. Non-intrusive convergent retrofitting technology for manufacturing

SMEs are opening up the possibility to adopt maintenance strategies based

on CBM [39]. This approach provides a wider vision to control and monitor

the actual condition of an asset in order to determine the specific maintenance

needs to be done [45]. Under these requirements, the challenge of upgrading125

older machines to advanced maintenance in manufacturing, is facing very high

economical costs and the lack of expert staff to address the I4.0 KETs [23]. How-

ever, adaptive retrofitting methodologies based on personalized data models and

a non-intrusive digitisation, are for SMEs a more feasible alternative way to in-

clude updated features in older machines [28, 30]. Experiments made in two EU130

funded projects, presented the advantages of digital technologies to integrate the

machines’ real-time status and work orders implementing maintenance models.

On the one hand, the BEinCPPS project (Business Experiments in Cyber Phys-

ical Production Systems) [19], implements a 3-layer architecture (of machine,

factory, cloud) capable of supporting open standards to integrate existing legacy135

hardware and software systems installed on manufacturing SMEs in Europe. On

the other hand, the MANTIS project (Cyber Physical System based Proactive

Collaborative Maintenance) [32], involves 3 groups of SME users in Europe to
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provide a proactive maintenance service platform architecture based on CPSs

capable of predicting and preventing imminent faults and scheduling proac-140

tive maintenance. Other experimental retrofitting use cases and methodologies

based on I4.0 concepts for applying in SMEs’ CNC machines are presented in

[29, 31]. Also, [46] demonstrated in the laboratory that a traditional manufac-

turing system can be retrofitted in a non intrusive way using a standardized

I4.0 implementation framework. The Reference Architectural Model for Indus-145

try 4.0 (RAMI 4.0) [47] is used in [27] to present the standardization of an

industrial robotic arm prototype in order to validate a retrofitting process that

transforms old industrial equipment into CPSs. Furthermore, digital technolo-

gies and sensors allow the integration of the data from different manufacturing

sources using non-intrusive retrofitting methods to address monitoring condi-150

tions in manufacturing [48]. Some examples are: (i) a surface-mounting-system

using a single current sensor to gather data from a power supply line [49]; (ii) an

in-situ energy measurement for online identification of machine operation states

in injection moulding machines [50]; and (iii) a CNC tool wear detection using

an accelerometer at a remote location [51].155

However, to the best of our knowledge, there is not a single data model

and architecture approach that integrates heterogeneous manufacturing sys-

tems with an IT/OT convergence model addressed in a modular n-tier way.

An adaptive development according to individual and specific manufacturing

requirements is needed.160

2.2. Human-machine collaborative maintenance models

Current challenges in a changing manufacturing industry, lead to developing

methods to provide adaptive and sustainable strategies for systems maintenance

in a continuous production life cycle [2]. That means allowing workers to move

towards a new generation of human-machine systems to see and respond to165

problems more efficiently [15]. The development of these systems has been en-

hanced with the increasingly widespread use of distributed services with sensors

and monitoring resources based on I4.0 KETs [52]. Also, production cycles
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and maintenance tasks become connected through a large amount of shared

data making it easier to implement collaborative predictive platforms for smart170

maintenance [42]. These systems gather data from heterogeneous sources in

order to implement predictive maintenance solutions. Some examples in [43]

such as the Senseye company and the R2MPHM platform, introduce data anal-

ysis to alert workers when an abnormality is detected or to perform CBM and

prognostics, helping the maintenance managers to predict critical impacts in175

the factories. In [39], a CBM-based method for SMEs focused on determining

the current health level of an asset whilst the use of connected technologies

provides more advanced decision-making in a collaborative way is presented.

Moreover, HMI research has already come up with sophisticated HMI-solutions

for DTs, that seek to adapt to the personal and situational context [53]. A180

few years ago, the digital coaching systems [54] got started as an answer to the

demand of human operators able to manage advanced automated systems that

can monitor and control complex and large industrial processes and systems.

Nowadays, manufacturing as an industry has been pervasively impacted by the

rapid adoption of information technologies. With the advent of smartphones,185

tablets and smart glasses, mobile HMI [55] has emerged as an example of the

technological advances used at the shop floor. The increasing deployment in

manufacturing of augmented reality (AR) and virtual reality (VR) technologies

[56, 57] is changing the way operators visualize [58] and manage maintenance

process monitoring [59]. The information can be virtually displayed overlapping190

the physical asset in real-time such as temperature changes, consumption trend,

etc. [23]. This augmented interaction enables the understanding of real-time

processes in order to improve CBM skills through non-intrusive technologies.

However, the introduction of collaborative maintenance models in traditional

manufacturing requires the development of a legacy human-machine-based data195

modelling approach. This perspective is crucial to integrate complex hetero-

geneous scenarios in manufacturing, where systems, processes and workers are

involved in operations at the same time. The aim is to achieve a collaborative

maintenance approach in a traditional environment where workers are allowed
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to perform their tasks while being part of the learning process. In that way, the200

deployment of advanced human-machine software tools extends the opportunity

to simulate and understand human-system interaction. Online monitoring can

display manufacturing key performance indicators (KPIs) to generate knowl-

edge about systems and processes lifecycle with a wide perspective [32]. This

interactive approach therefore provides a path to follow for maintenance in col-205

laborative environments. Learned knowledge and skills are exploited for the

incorporation of past experiences in root-cause analysis [60, 61]. Thus, human-

machine collaborative models applied to maintenance enhance the development

of skills 4.0, providing direct access to existing manufacturing-process knowl-

edge.210

3. Methodology

This section presents the methodology to support collaborative maintenance

capabilities using a non-intrusive retrofitted approach in traditional manufac-

turing systems. In particular, a twofold objective is pursued: (i) To provide tra-

ditional manufacturing processes with decision support tools by linking workers’215

expertise with the health status of the machines; and (ii) To test and validate

human-machine learning interfaces for collaborative maintenance.

To accomplish all the foreseen objectives, practical applications are built

on a three-tier concept where workers, systems and processes are connected

to collaborate at the same time. A hardware and software stack is proposed220

to provide SMEs with a three-tier solution supported by data streams, data

models and knowledge models (Edge, Cloud and Business tiers, respectively).

These tiers, in turn, are interconnected as shown in Figure 1.

Firstly, the Edge tier addresses standardised hardware and software in-

terfaces following a non-intrusive paradigm. This paradigm allows to connect225

workers and systems without changes in the existing manufacturing infrastruc-

ture. A set of portable and flexible acquisition devices, interactive systems, and

health status methods (for example, vibration analysis, energy consumption,
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Figure 1: Three-tiers concept to support non-intrusive collaborative maintenance in traditional

manufacturing.

and temperature control) are connected through secure and standard interfaces

for data management in a non-intrusive way. This concept performs an in-230

teracting stage nearest to the sensors, machines and workers with a common

communication layer. Data from the digital convergence of all shop floor actors

is collected, structured and transferred to the next tiers. Under the umbrella

of I4.0 KETs, this interoperability facilitates a common ISA95 5-level archi-

tecture that integrates information from multiple data streams (measuring de-235

vices, HMI devices, industrial automation middleware, process control systems

or other software programs) based on standardised protocols (MODBUS TCP,

OPC-UA and HTTP) and data formats (JSON, XML, QR).

Next, the Cloud tier addresses the distributed HTTP microservices located

on the cloud with a focus on the development of manufacturing data models.240

This tier manages the cloud storage capabilities to gather and display data
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streams from different kinds of entities of the Edge tier (HTTP/REST). Also,

Cloud tier provides workers with maintenance tools such as CBM for data mon-

itoring and flexible processing, building a digital representation of operations

and resources status. Thus, a convergent concept extracts valuable informa-245

tion about systems management, KPIs, historical data and anomalies. That

information enables workers to get local or remote support in the maintenance

process through a connected problem-solving approach. Collected data allows

an understanding stage that eases monitoring, configuration and handling of

the digitised systems in accordance with their specific needs. Using a set of250

HMI software tools, time series data, and widget-based Web dashboards, the

exploration of the shop floor data models (work in progress, resources, assets,

maintenance plans, etc.) to fulfil the manufacturing objectives towards collab-

orative systems, is boosted.

Finally, the Business tier addresses the whole retrofitted approach to man-255

age collaborative systems in different traditional manufacturing scenarios. It

performs the learning stage where workers are called to play an active role as

part of the integrated manufacturing ecosystem [52], [15]. This tier incorpo-

rates augmented tools and data from interactive human-machine smart inter-

faces based on AR apps running over HTTP. Workers’ experience is exploited260

by applying lessons learned to digital contents using AR SDKs, JSON data

and QR codes. The fusion of adaptive procedures with real-time data is in-

tended to improve the skills of workers. All that experience is converted into

precise statements to support maintenance tasks and reinforce the processes

knowledge. Thus, workers and systems are gradually connected to an interac-265

tive digital ecosystem. So this concept provides means to respond and maintain

systems quickly and accurately within an alternative technological context of

traditional manufacturing.
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Figure 2: System architecture.

4. Architecture of the system

This section introduces a common system architecture to enable the modular270

communication between the aforementioned three tiers for collaborative main-

tenance in traditional manufacturing. As previously stated in Section 3 (see

Figure 1), three conceptual tiers manage the collaborative digital retrofitting

solution in a non-intrusive way: the Edge tier, that interacts with the sensors,

machines and workers using retrofitting strategies; the Cloud tier, that provides275

SMEs with means to understand the maintenance needs; and the Business tier,

that generates collaborative maintenance knowledge for workers and processes.

The proposed system architecture (see Figure 2) consists of three separate mod-

ules horizontally integrated to provide interoperability between all tiers: (i) a

portable IIoT infrastructure, providing non-intrusive sensors, software in-280

terfaces and heterogeneous data streams to the Edge tier; (ii) a cloud-based

service architecture, hosting a common information connectivity layer and

data models to the Cloud tier; and (iii) an end user HMI management, that
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contains interactive human-machine software tools and assets health condition-

based strategies providing knowledge models to the Business tier.285

This modular infrastructure is composed of different microservices to store

and process data (based mostly in Web apps and open source tools such as

Elasticsearch, Kafka, etc.). All information from the different tiers is connected

using Web APIs. The system components and the relations between all actors

as shown in Figure 3, are intended to represent a common industrial scenario290

where different conceptual levels are presented in order to support the system

architecture.

Figure 3: Conceptual model.

4.1. Portable IIoT infrastructure

The first module of the architecture proposes a portable IIoT infrastruc-

ture including a customisable industrial acquisition hardware device, industrial295

communication protocols, industrial common sensors and software interfaces as

described below. It provides the lowest level of digitisation services to the Edge

tier, necessary to implement retrofitting techniques. In traditional environments
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it may be desirable to use a condition monitoring framework regardless of the

nature of the machines and their level of digitisation, providing the hardware300

interfaces with standard types of sensors. At the same time, a common commu-

nication layer is required to enable the necessary software services integration

for the physical-digital convergence of all actors involved at the shop floor. On

the other hand, the incorporation of HMI devices and linked AR apps to old

systems it is now increasingly used to provide workers with augmented data305

of industrial scenarios in a collaborative digital ecosystem. Our work is based

on an IIoT infrastructure that consists of four main components as shown in

Figure 2:

1. A data acquisition module (TWave T8-L model with mobility case2)

used for condition-based monitoring and failure mode identification. The310

system includes twelve external BNC inputs that accept static and dy-

namic signals from sensors and tachometer signals. Eight of them are

high speed inputs with a sampling rate from 512 to 102400 Hz, and the

other four are auxiliary inputs with a sampling rate up to 200 Hz (one

sample for each capture). These four static signals have been adapted to315

measure 4-20 mA current loop signals for analog sensor data transmis-

sion. This kind of current loops is an industry standard commonly used

in many applications and equipments. All captured signals are stored in

an internal database for further processing following the conceptual model

presented in Figure 3.320

2. A wireless Wifi/4G router. It provides an external Ethernet connector

attached to a WAN entry to give the system direct access to the Internet.

Additionally, the mobile GSM 3G/4G connection allows gaining remote

access to the IIoT infrastructure in places where Ethernet access to the

Internet is not available. Wifi connection is used to generate the wireless325

local network for management.

2https://www.twave.io/products.html
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3. Sensors and coaxial cabling intended for applications requiring a non-

intrusive retrofit monitoring solution in a very short time using “plug and

play” BNC connectors:

� A three-phase AC current transducer to convert input voltage from330

three open-ended Rogowski coils to a 4-20 mA DC output.

� One Pt100 magnetic resistance temperature detector (RTD) sensor

suitable for high temperature measurements on ferrous surfaces up

to a maximum of 300°C to a 4-20 mA DC output.

� Two PCB Piezotronics 603-Series accelerometers with magnetic mount-335

ing base to install in ferrous magnetic surfaces.

4. Embedded web-based and Edge communication agents. TWave

includes a user interface to the acquisition hardware that can be accessed

from any browser. The configuration interface provides a dashboard to set

up the system: assets definitions, sensors, points, measurement parame-340

ters, etc. The dashboard application also provides access for monitoring

the data recorded by the acquisition hardware where a static point cor-

responds to analog or digital readings. Also, the system can work in a

standalone mode or communicate these scalar measurements to other sys-

tems using Modbus-TCP, OPC-UA protocols and HTTP (REST API).345

The architecture converts all digitised shop floor environments into indi-

vidualised objects characterised by type and properties. All of them are

associated with the selected machine.

4.2. Cloud-based service architecture

The second module of the system proposes a cloud-based service architecture350

to store and understand the data from different assets connected to the Edge

tier. This module (see Figure 4) consists of five cloud-services: (i) Apache Kafka

hub, (ii) Elasticsearch data storage, (iii) data flow management (DFM) module,

(iv) data modeling and visualization in a Web monitor, and (v) augmented data

sources management (sensors, machines, and other software solutions such as355
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AR SDK integration). This module includes information on which alarms have

been triggered in one asset, systems configuration, systems status, real time

data snapshots of all measurement points, data analytics, augmented contents

and dashboards.

Figure 4: Cloud-based service architecture.

Each measurement input is a source of data that brings information to the360

Cloud tier about the machine that is being monitored. Using the edge commu-

nication agent, an authenticated API which allows access to the data recorded

in the retrofitted objects is provided. To gather all this information from the

shop floor, a hub module using REST API with Apache Kafka ingests JSON

data (see Figure 5) from the portable IIoT system to the Elasticsearch cloud365

database. Different types of REST calls can be done by Cloud tier microser-

vices to return a specific JSON. This allows DFM to customise Web monitor

dashboards according to a configurable flow defined by three main components:

inputs, logic and actions.

Data visualization includes alarms triggered from individual objects and370

data models related to the health status of the assets. A user-friendly dash-

board interface allows users to define and configure their own data through
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Figure 5: Formatted JSON data used to ingest a measurement input.

drag-and-drop widgets containing several different out-of-the-box graphics and

data tables. The analytic dashboard system integrates a unified framework of

interactive data representation for condition-based maintenance methods and375

engineering graphic interfaces, to understand behaviour models and support

predictive data. These features include real-time data analysis, anomaly de-

tection, behaviour fault model and advanced system monitoring to alert the

operator about some incidents like overheating, decrease in the manufacturing

rate, trend changes, etc. Augmented services manage all the data handling logic380

for the AR apps, displaying the information processed at the shop floor in the

devices of the workers. REST APIs deliver the data processed by the platform

to the Business tier and enable the interaction between the workers and the

different platform modules. In addition, the Cloud tier enables connection with

third-party systems through API connection.385

4.3. End user HMI management

The third module of the system architecture proposes human-machine visu-

alization services, contents and augmented maintenance models to the Business

tier (see Figure 6). These maintenance models are oriented on how users on

traditional environments can be supported when interacting with the manufac-390
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turing systems. Thus, workers are assisted with the visualization of the assets

status and KPIs monitored from the sensors deployed in the machine. Also,

the incorporation of AR components to the system architecture provides work-

ers with new capabilities to access real-time advanced visualization of complex

data, expert-guided remote assistance, and supervised training.395

Figure 6: Business tier human-machine management and visualization services.

The End User HMI Management module defines the augmented infrastruc-

ture consisting of four components: (i) Cloud hub is already integrated with

the cloud-based services architecture using REST APIs (see Figure 4). It in-

cludes the management logic for all data stored in the cloud as well as the

integration of Web services to facilitate the communication over a secure socket400

layer; (ii) Manager component provides the creation and management of

manuals with 3D models, 3D indications in many languages, images, videos,

etc.; (iii) Visualization component allows industrial operators to see all the

instructions of a process with AR, using AR Glasses or just a smartphone or

tablet; and, (iv) Remote Assistance component provides three-dimensional405

render instructions on a machine about how to replace a component, and remote

contact with an expert in the same system to get immediate assistance.
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5. Digital retrofit case studies

In order to be able to illustrate and evaluate the applicability and overall per-

formance of our proposal, a non-digitised production milling machine with more410

than 25 years old, is used for the deployment and assessment of collaborative

maintenance approaches. Then, to illustrate the generalisation and applicability

of the solution, we applied the same architecture to an injection moulding ma-

chine. The development, focused on the physical-digital convergence between

workers and older industrial systems regardless of their level of digitisation, was415

tested in the Research and Development Centre facilities3.

Figure 7: Nicolas Correa CF20 CNC milling machine at the R&D facilities.

3Due to the requirements for anonymized manuscript submissions at Computers & Indus-

trial Engineering, the name of the research center is not mentioned in this version of the

paper
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Table 1: List of tools used in the CNC machine.
tool code tool code

edge finder 1 shell mill carring Ø32 with 8 cutting edges 2

shell mill carring Ø63 with 8 cutting edges 3 shell mill carring Ø80 with 8 cutting edges 4

shell mill carring Ø50 with 4 cutting edges 5 shell mill carring Ø80 with 4 cutting edges 6

drilling endmills APKT Ø65 7 endmills Ø18 8

drilling endmills APKT Ø20 large 9 drilling endmills APKT Ø16 10

drilling endmills APKT Ø18 11 drilling endmills APKT Ø30 12

endmills Ø16 13 endmills Ø30 14

endmills Ø32 15 endmills Ø52 16

mandrel 17 head mandrel 18

tool holder Ø0-3 19 tool holder Ø3-14 20

morse taper drill bit 21 90º countersink bit Ø12 22

90º countersink bit Ø22 23 turbo face milling 24

dial indicator 25 tool holder Mickey type 26

tool holder 27 endmills Ø12 28

endmills Ø18 large 29 indexable insert drill 30

endmills Ø20 31

5.1. Development of the solution

The case study was carried out on a three axes milling machine Nicolas

Correa CF20 with Touch Numerical Control (TNC) HEIDENHAIN TNC-407

(Figure 7). This milling machine is a machine tool typically used to shape slots420

and drill solid material work pieces with a rotating cutter. The cutting tool is

mounted in a spindle housed in the milling head moving vertically along the Z

axis. The machine is controlled by an old SIEMENS SIMODRIVE 611 PLC

embedded in the electrical panel, however all historical information during its

life cycle is not accessible for monitoring. Maintenance strategies are preventive425

or corrective while the milling machine is started and stopped every working day.

On the shop floor all the manufacturing orders with the production plan are on

request under different CAD designs. One experienced operator prints each part

design and manages manually the associated milling operations. Specifically,

this machine tool is developed for shop floor programming by the operator430

using conversational programming.

The operator has to generate part programs at the machine with the part

design in hand, but it is required a manual change of cutting tools (see Table 1
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Figure 8: Milling machine cutting tools.

and Figure 8) for a different milling operation (milling, contour milling, face

milling, bore milling, drilling, etc.) (see Table 2). The manufacturing strategies435

for programming and cutting tool changes depend on the criteria of the operator

or any unplanned events. Thus, all the aforementioned non-digitised strategies

are setting the terms of the whole manufacturing process-time and resources,

where it is not possible to predict future decisions based on the performance

and the health condition of the CNC milling machine.440

Table 2: List of milling operations and materials used in the CNC machine.

milling operation code material code

zeroing milling 1 plastic 1

face milling 2 aluminium 2

contour / form milling 3 steel 3

bore milling 4 316 stainless 4

milling 5 other 5

drilling 6

special 7

To address this case study, a first phase is proposed for the deployment of

the Edge and Cloud tiers described in the system architecture. First of all,

the portable IIoT infrastructure is used to develop retrofitting approaches on

the CNC milling machine without interfering in working conditions. Next, the

cloud-based service architecture deploys a common connectivity layer with the445

status information of the manufacturing processes based on CBM and human-
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machine software tools. Then, a second phase is proposed to deploy the Busi-

ness tier for testing and validation of human-machine collaborative maintenance

models such as monitoring services, remote maintenance and training tools, ap-

plied to real traditional manufacturing scenarios.450

Figure 9: a) TWave with mobility case b) Accelerometers and RTD sensor c) Three-phase

current transducers, d) HMI panel PC.

Figure 10: Milling machine dashboard detail in AWM cloud platform.

The TWave case (Figure 9a) provides CNC with the hardware acquisition

device to enable sensor-based non-intrusive digital retrofitting techniques. Com-

mon industrial sensors detailed in Section 4.1 are used to get CNC’s attributes

from different measurement points: (i) two accelerometers and one RTD sen-

sor with magnetic mounting base placed in the spindle of the CNC’s milling455

head (Figure 9b); and (ii) three-phase current transducers with open-ended Ro-

gowski coils connected in the electrical panel to the three-phase circuit wiring

(Figure 9c).

All sensors and coaxial cabling can be easily guided from the spindle and the

electrical panel to the portable hardware control case and plugged to the BNC460

inputs. A Web browser is used to connect with TWave’s embedded dashboard
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interface (see Figure 10). All CNC’s measurement inputs plugged to the data

acquisition system can be configured in the dashboard and assigned to a new

created asset object associated with the milling machine. Then, each input

point in CNC’s machine is associated with one of the different sensor types (for465

example, accelerometer, RTD or three-phase current). Also, labels with the

names (for example, “Acel1”, “Acel2”, “Temperatura”, “Fase1”, “Fase2” and

“Fase3”), properties (processing mode, input range, units, etc.), and operation

mode (static, dynamic), are set (see Figure 10). The dashboard application also

provides workers with CNC’s data monitoring on HMI tools. Additionally, one470

HMI panel PC with capacitive touch screen (Figure 9d) for real-time monitoring

of data and operator’s interaction, is used in our case study. The standalone

HMI device allows workers to interoperate with a software interface right next

to the CNC’s TNC and is capable of accessing both forms of data visualization,

local network client and cloud services, as described below.475

Once the data acquisition system is ready, the mobile GSM 4G module gives

the hardware’s edge communication agent access to the Internet. Data streams

resulting from the measurement points are linked with DFM cloud services.

Milling machine asset object registered in the Cloud platform (Figure 10), en-

Figure 11: Specific JSON data format including “Fase1” measurement values.
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ables the interconnection of the physical-digital common layer for remote mon-480

itoring and CBM tools. The system uses HTTP protocol and REST calls re-

turning JSON data to customise the inputs, logic and actions of the asset in the

monitoring dashboards. Figure 11 shows a specific JSON data (based on the

structure proposed in Figure 5) with values recorded by the current transducer

of the sensor labeled as “Fase1”.485

Figure 12: Dashboard detail in the Cloud platform.

Figure 13: a) CNC’s HMI software to interact with the operator. b) Real-time AR app

installed on a Samsung tablet.

A Web service API has the advantage of providing a visual status of the

monitoring system in real time for workers. On the other hand, cloud-based

dashboard systems allow for remotely access to information, including customi-
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sation of individual alarm triggers and information related to the health status

of specific milling machine points (Figure 12). Moreover, the HMI panel device490

(Figure 13a) can be used to install software applications to provide operators

with workflow information connected to the IIoT communications layer. A

graphical user interface empowers the operator to take an active part in CNC’s

work orders analysis and maintenance processes. By matching some parameters

monitored (for example, vibration, temperature and power consumption) with495

the human-data gathered, can be enabled the extraction of additional CNC’s

maintenance indicators in order to validate manufacturing models with the sup-

port of the machine operator skills. In this way, the work provides additional

interactive HMI tools such as AR systems to enhance workers’ skills. Due to the

AR layer incorporation to our proposal, workers are enabled with new capabili-500

ties accessing augmented data of the milling machine in real-time and receiving

expert-guided assistance as well as remote training.

A test was carried out aiming to introduce collaborative maintenance strate-

gies based on a CNC’s process learning approach. During the learning stage,

human-machine knowledge models were built to formalize insights (Business505

tier) from data streams (Edge tier) and data models (Cloud tier) in order to

Figure 14: CNC’s human-machine integration based on hardware and software interfaces.
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evaluate the impact of new collaborative maintenance technologies in traditional

manufacturing. The opportunities for digitising workflows enable the analysis

of production cycle times and how performance losses and downtimes impact

them in real-time. Besides the aforementioned milling machine retrofitted in-510

frastructure to deploy the digitisation layer, the collaboration of the machine’s

operator was required. A software interface was installed in the HMI panel right

next to the CNC’s TNC to facilitate the extraction of manufacturing process

knowledge (see Figure 14). New digitised contents provided the operator with

a real-time interaction to classify specific milling operations and their duration,515

enhancing the learning process with additional featured data.

Table 3: Detail of milling work orders processed by the machine’s operator.

work order op. start end mat. cutting tool

fab-0305-19-12002 2 2020/13/01 09:41:34 2020/13/01 12:07:38 4 6

fab-0305-19-000 3 2020/13/01 12:08:06 2020/13/01 15:28:15 4 14

fab-0305-19-000 2 2020/13/01 15:28:20 2020/13/01 15:43:46 4 6

fab-0305-19-000 7 2020/14/01 07:20:46 2020/14/01 08:57:51 4 23

fab-0305-19-000 3 2020/14/01 08:57:56 2020/14/01 12:22:16 4 5

fab-0305-19-000 5 2020/16/01 08:43:49 2020/16/01 09:19:13 4 27

fab-0305-19-000 3 2020/16/01 09:19:18 2020/16/01 09:31:30 4 5

fab-0305-19-000 7 2020/16/01 09:31:35 2020/16/01 09:34:55 4 22

fab-0305-19-000 6 2020/16/01 09:34:57 2020/16/01 09:54:51 4 20

fab-0305-19-000 3 2020/16/01 09:54:43 2020/16/01 10:02:59 4 5

fab-0305-19-000 6 2020/16/01 10:03:02 2020/16/01 10:37:25 4 20

fab-0344-19-000 2 2020/16/01 12:01:58 2020/16/01 15:59:51 2 5

fab-0344-19-000 3 2020/17/01 07:42:07 2020/17/01 12:53:24 2 5

fab-0305-19-12004 3 2020/22/01 07:22:58 2020/17/01 07:47:25 3 5

fab-0305-19-12004 5 2020/22/01 07:47:27 2020/22/01 08:06:01 3 27

fab-0305-19-12004 6 2020/22/01 08:06:03 2020/22/01 08:28:27 3 20

fab-0305-19-12004 2 2020/22/01 08:28:35 2020/22/01 09:21:08 3 6

fab-0316-19-000 2 2020/22/01 09:21:29 2020/22/01 09:42:13 3 6

fab-0316-19-000 6 2020/22/01 09:42:16 2020/22/01 09:57:54 3 20

fab-0266-19-11392 3 2020/23/01 14:37:24 2020/23/01 15:00:40 3 5

fab-0266-19-11392 6 2020/23/01 15:01:09 2020/23/01 15:28:21 3 30

fab-0266-19-11392 7 2020/23/01 15:28:26 2020/23/01 16:00:58 3 22
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In this particular case, manufacturing orders consist of: (i) printed CAD

drawings, (ii) milling operations, (iii) kinds of material parts, and (iv) cutting

tools. These features were labeled and identified by a numerical code to facili-

tate further data processing (see Table 3 for an example of milling work orders).520

Moreover, using triggers with monitored parameters such as vibration and cur-

rent consumption values it was possible to automatically detect CNC’s process

downtimes. This is especially common whenever the CNC machine finishes a

milling operation or a cutting tool change is needed. Once a change status is de-

tected, the HMI system prompts the operator to enter the next milling operation525

or to describe an unplanned event. Thus, the execution time for each individual

milling operation, used material and cutting tool is classified by the operator

and sent to the cloud services. On the other hand, when the operator detects an

anomaly with this machine, the data is reported to enhance maintenance orders.

Data is reinforced with a non-intrusive condition monitoring strategy. The avail-530

Figure 15: Example of energy consumption registered in two CNC’s face milling operations

on steel.
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ability of tasks execution time from data gathered for the whole manufacturing

process facilitates the implementation of adaptive maintenance plans by match-

ing milling machine operation patterns with CNC’s parameters monitored. The

experienced operator of the milling machine contributed to the identification

of valid patterns characterising single milling operations (Figure 15). The esti-535

mated duration of processed milling operations was calculated based on average

values. A proof of concept to validate this learning approach in production cy-

cles was conducted using an initial threshold-based model with maximum and

minimum measurement values registered in the CNC machine. The details of

milling operations were considered. Also, alert messages triggered by initial540

threshold limits were configured.

Figure 16: a), b) Personalized AR software apps. c) QR code.

To provide the operator with an interactive overlapped visualization of CNC’s

digitised data in real-time, an AR software app was deployed on an Android

tablet model Samsung Galaxy S3 (Figure 13b). The system uses REST APIs

to interconnect real-time data of the retrofitted milling machine with the AR545

cloud infrastructure, as described in Section 4.3. The software is used to test

the worker interaction guided by augmented contents coupled to the CNC’s

health-condition status. The aim of this system is to achieve a digitised learn-

ing environment for workers who interact with manufacturing processes that

depend on the asset condition. The mobile device eased the operator’s move-550

ments on every part of the milling machine at the shop floor. Personalised QR

codes located on the CNC machine (door, TNC and electrical panel) served to

match physical points with digital contents (Figure 16a and Figure 16b). In this
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scenario, AR allows the operator to simply point the tablet to a QR code placed

on the milling machine (Figure 16c) and directly show customised information555

about it. This collaborative approach has a twofold objective: firstly, to min-

imise downtimes with a fully digitised context-aware environment for workers.

Secondly, to guide workers step by step with AR technology applied to practical

skill training.

Figure 17: a), b) AR apps to display virtual manufacturing information.

Figure 18: Specific AR JSON data format.

Figure 17 shows how the virtual manufacturing process information was560

displayed with the AR app overlapping the physical asset. All the manufac-

turing information was previously considered in the IIoT infrastructure and

integrated with AR cloud-based services using a JSON data format as shown

in Figure 18. On one hand, graphic displays with fixed thresholds defined to

alert on detected anomalies during milling operations, such as temperature and565

consumption trend, provided the operator with a visual representation of the

parameters monitored at the same time that the milling machine works (Fig-
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ure 17a). On the other hand, production cycle time from tested work orders

was calculated using the total run time from individual estimated operation

times. These values were compared using each single operation real progress570

time (Figure 17b).

Finally the milling machine operator was provided with personalised AR

manuals for training and to guide in maintenance tasks. The application displays

an interactive manual with a step-by-step guide overlapped on the CNC machine

(Figure 19). This way the maintenance operator, regardless of his experience575

and knowledge of the machine, can carry out the intervention in a supervised

and safe way.

Figure 19: AR guide step-by-step applied to maintenance tasks in the electrical panel.

The use of augmented procedures and digital contents applied to the milling

manufacturing process turned out useful to save time and gain improved perfor-

mance and advanced diagnosis using real-time information about KPIs moni-580

tored. As a result, milling machine behaviour models were monitored interacting

with the operational knowledge of the experienced operators. Workers and in-

dustrial systems were updated, at the same time, with human-machine digital

strategies and proactive management environments laying the foundation for a

collaborative maintenance methodology.585
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5.2. Generalisation of the solution

The COVID-19 pandemic has changed industrial work. New practices to al-

low social distancing and provide remote access capabilities during confinement,

created a digital dependence in industry. At the same time, the production of

protective face shields during the worst weeks of the COVID-19 emergency be-590

came a national health priority. The Spanish Federation of Technology Centres

(FEDIT4) made all its members’ resources available to the fight against the

4https://fedit.com/

Figure 20: Two-component injection moulding machine Krauss Maffei 200-700 C2 and pro-

tective face shields at the R&D facilities.

31



COVID-19. In particular, The Research and Development Centre5, contributed

for the manufacture of protective face shields visors for health staff (Figure 20).

An injection moulding machine was used starting from the last week of March595

2020. At the beginning of April 2020, the global multi-energy company Repsol

donated 1,500 kilograms of polypropylene to the R&D Centre. In this way, it

was possible to increase the daily production from 4,000 up to 5,700 units on a

2-component injection moulding machine Krauss Maffei 200-700 C2 (Figure 20).

Maximising the overall equipment effectiveness based on that increase of pro-600

duction, presented a great challenge to support 24 hours a day a non-digitised

asset. Maintenance was highly important in response to machine unplanned

breakdowns without previous digitised historical data.

Injection moulding is a high-precision manufacturing process used for plastic

parts production. Krauss Maffei 200-700 C2 injection machine consists of four605

main modules: a clamping unit, an injection unit, an electrical panel and a con-

trol panel. A custom mould design is required to the injection of the particular

plastic part or product whilst an hydraulic system controls the moving parts of

the clamp unit where the mould works (Figure 21a). The cooling system is one

of the most important points for both, hydraulic system and mould, affecting the610

total cycle time and the quality of final products. The temperature measured

at the mould area during the injection moulding process is a key parameter, but

it requires an expensive equipment, technical experts and additional interfaces

configuration on the machine’s control panel. Moreover, the moulding injection

cycles can work in an intensive unattended mode for several hours in the night615

shift. Therefore, monitored relevant changes in the machine’s health condition

status such as overheating, performance or unexpected breakdowns, need to be

supported through remote management. Thus, to test the generalisation ca-

pacity of our proposed architecture, the portable solution used in the milling

5Due to the requirements for anonymized manuscript submissions at Computers & Indus-

trial Engineering, the name of the research center is not mentioned in this version of the

paper
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Figure 21: Injection machine detailed diagnosis and maintenance process using retrofitting

and AWM monitoring dashboard.

machine (Figure 21b) was deployed on that moulding machine on March 30th,620

replicating the non-intrusive digital retrofitting concept: (i) mobility case with

the hardware acquisition device; (ii) measurement points consisting of two ac-

celerometers and one temperature sensor deployed in the injection mould area,

and three-phase current transducers with open-ended Rogowski coils connected

in the control cabinet; (iii) coaxial cabling to connect sensors to the BNC in-625

puts in the portable hardware control case; and (iv) embedded communication

agents to enable remote monitoring with cloud-based CBM tools.

Temperature and vibration changes at the surface of the mould, and the reg-

istration of abnormal current consumption patterns, were monitored in AWM

dashboard and supervised by production and maintenance staff. Registered630

data under continuous production conditions showed unplanned breakdowns in

the injection moulding machine. In order to respond to this particular un-

33



expected operating condition, experienced operators recommended to register

temperature measurements at a different location.

Remote assistance was provided to maintenance staff, moving the temper-635

ature sensor from the mould cooling circuit - with cooling rate stable values

around 16ºC as shown in Figure 21c -, to the oil heat exchange system (Fig-

ure 21d). This move was intended to determine a better temperature variation

during the injection moulding process. As shown in AWM monitoring dash-

board (Figure 21e), a few hours later on March 31th, a night-time unplanned640

breakdown was registered in the dashboard and notified by email to the produc-

tion and maintenance staff to alert them at the start of the morning shift. The

abnormal pattern was confirmed as an overheat problem, and fixed that morning

after a maintenance planned shutdown. A dirty filter in the oil heat exchange

unit was the detected cause. After cleaning the filter the injection process of645

face shields manufacturing was restored quickly to a stable behaviour.

In this particular case, it was a digitisation challenge to give full mainteinance

services due to confinement, providing workers with real-time trend data and

remote assistance in a few hours. The proactive CBM solution implemented, in

Figure 22: AR app used to provide maintenance staff with interactive support during COVID-

19 confinement.
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a non-intrusive way, provided knowledge about the machine behaviour to oper-650

ate it under changing conditions with limited staff in place. Moreover, it was

possible to alert maintenance staff during unattended labour in the night shift

and to deploy and validate an interactive (see Figure 22) and remote collabora-

tive maintenance strategy based on I4.0 KETs, to avoid the injection machine

overheating and its subsequent breakdown during COVID-19 confinement.655

6. Conclusions and future work

The costs of maintenance have a great competitiveness impact in the man-

ufacturing industry. In this context, traditional manufacturing faces the chal-

lenge of adapting older machines to advanced maintenance strategies with a low

adoption rate of the new I4.0 KETs. Digital barriers and expensive hardware660

compatibility issues are known in the way to accomplish the physical-digital

convergence in SMEs. Recent unpredictable world challenges, such as COVID-

19, have impacted on the maintenance services of legacy assets as well. Remote

maintenance certainly offer the possibility to provide substantial added value to

the enhancement of operating resources. However, the adoption of collabora-665

tive maintenance ecosystems implicitly requires a digital integration connecting

knowledge management tools. Collaborative models also mean that human-

machine interaction is needed in order to analyse and characterise a proactive

management of assets and workers through a limited number of maintenance

windows. This will continue even more as the I4.0 interaction with traditional670

manufacturing environments requires workers’ skill development and different

asset maintenance strategies from those now prevailing.

This work presented a methodology and architecture to bring older physical

assets with digitised scenarios in a non-intrusive way. The integration between

systems and workers was described to support CBM technologies linked to su-675

pervised collaborative maintenance processes. Practical applications were built

on a three-tier methodology based on common architectures, protocols and stan-

dards for collaborative maintenance in traditional manufacturing. Then, they
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were applied in milling operations and replicated in manufacturing cycles of

face shields during COVID-19 emergency. Both the non-intrusive retrofitted680

approach and human-machine support systems were studied together with the

knowledge of experienced operators. As a result, an original contribution to

confront collaborative maintenance challenges in SMEs, including emergency

situations such as social distancing, was provided.

Our solution proposed a connected infrastructure to store data and extract685

patterns about the failure probability of the critical components. Moreover,

means to communicate a large amount of data from different industrial systems

and assist the workers via augmented HMI tools, were tested. Already existing

manufacturing traditional scenarios served to validate these digital retrofitting

and communication strategies without interfering in working conditions. To690

sum up, the results of our work presented means to reduce SMEs’ industrial in-

vestment by simplifying the commissioning of condition monitoring systems. At

the same time, a collaborative maintenance approach for condition monitoring

proved to be valid in traditional manufacturing environments in a very short

time. In that way, the status of legacy systems was improved using a portable695

system characterised by standard sensors and industrial protocols, connected

to cloud-based tools such as dashboards for global data analysis and trends.

Finally, augmented tools were tested during maintenance processes to empower

and support workers through learning models complemented with remote assis-

tance.700

As seen in the case study, there is room for improvement to test practical

applications in traditional manufacturing. In the future, we plan to study a

suitable human-machine interaction to improve results while the operator is

involved during decision-making situations. So one of the further research lines

will be to integrate a DT methodology based on these human-machine models705

in traditional manufacturing, generating an adaptive learning framework from

the three levels that act at the same time in a manufacturing plant: processes,

systems and workers.

36



References

[1] K. Schwab, The Fourth Industrial Revolution, Crown Publishing Group,710

USA, 2017.

[2] R. Y. Zhong, X. Xu, E. Klotz, S. T. Newman, Intelligent Manufacturing in

the Context of Industry 4.0: A Review, Engineering 3 (5) (2017) 616–630.

doi:10.1016/J.ENG.2017.05.015.

[3] M. Xu, J. M. David, S. H. Kim, The fourth industrial revolution: Oppor-715

tunities and challenges, International Journal of Financial Research 9 (2)

(2018) 90–95. doi:10.5430/ijfr.v9n2p90.

[4] Deloitte, Preparing tomorrow’s workforce for the Fourth Industrial Revo-

lution. For business: A framework for action, Global Business Coalition for

Education (2018) 1–58.720

[5] G. Czifra, Z. Molnár, Covid-19 and Industry 4.0, Research Papers Fac-

ulty of Materials Science and Technology Slovak University of Technology

28 (46) (2020) 36–45. doi:10.2478/rput-2020-0005.

[6] E. G. Caldarola, G. E. Modoni, M. Sacco, A Knowledge-based Approach

to Enhance the Workforce Skills and Competences within the Industry 4.0,725

in: eKNOW 2018: The Tenth International Conference on Information,

Process, and Knowledge Management, 2018, pp. 56–61.

[7] D. Mourtzis, F. Xanthi, V. Zogopoulos, An adaptive framework for aug-

mented reality instructions considering workforce skill, Procedia CIRP 81

(2019) 363–368. doi:10.1016/j.procir.2019.03.063.730
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[23] D. Horváth, R. Z. Szabó, Driving forces and barriers of Industry 4.0: Do785

multinational and small and medium-sized companies have equal opportu-

nities?, Technological Forecasting and Social Change 146 (March) (2019)

119–132. doi:10.1016/j.techfore.2019.05.021.

[24] D. S. Thomas, The Costs and Benefits of Advanced Maintenance in

Manufacturing, Tech. Rep. 100-18, National Institute of Standards and790

39

http://dx.doi.org/https://doi.org/10.1016/j.procir.2018.03.187
http://dx.doi.org/https://doi.org/10.1016/j.procir.2018.03.187
http://dx.doi.org/https://doi.org/10.1016/j.procir.2018.03.187
http://dx.doi.org/10.24251/hicss.2019.619
http://dx.doi.org/10.24251/hicss.2019.619
http://dx.doi.org/10.24251/hicss.2019.619
http://dx.doi.org/https://doi.org/10.1016/j.promfg.2020.01.068
http://dx.doi.org/https://doi.org/10.1016/j.promfg.2020.01.068
http://dx.doi.org/https://doi.org/10.1016/j.promfg.2020.01.068
http://dx.doi.org/10.1016/j.jmsy.2018.10.005
http://dx.doi.org/10.13140/RG.2.2.18116.32644
http://dx.doi.org/10.1016/j.techfore.2019.05.021


Technology, Advanced Manufacturing Series (NIST AMS) (2018). doi:

10.6028/NIST.AMS.100-18.

[25] J. Wan, H. Cai, K. Zhou, Industrie 4.0: Enabling technologies, in: Proceed-

ings of 2015 International Conference on Intelligent Computing and Inter-

net of Things, 2015, pp. 135–140. doi:10.1109/ICAIOT.2015.7111555.795

[26] F. Orellana, R. Torres, From legacy-based factories to smart factories level 2

according to the industry 4.0, International Journal of Computer Integrated

Manufacturing 32 (4-5) (2019) 441–451. doi:10.1080/0951192X.2019.

1609702.

[27] T. Lins, R. A. R. Oliveira, Cyber-physical production systems retrofitting800

in context of industry 4.0, Computers & Industrial Engineering 139 (2020)

106193. doi:10.1016/j.cie.2019.106193.

[28] J. D. Contreras, R. E. Cano, J. I. Garćıa, Methodology for the Retrofitting
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