Springer Nature 2021 ITEX template

Accepted version of the article published in: Knowledge and Information Systems, 2024,
vol. 66, n. 1. p. 381-417. https://doi.org/10.1007/S10115-023-01967-7

Compressed and Queryable Self-Indexes for
RDF Archives *

. . * .
Ana Cerdeira-Pena'?, Guillermo de Bernardo™?", Antonio
Farifial?, Javier D. Ferndndez?® and Miguel A.
Martinez-Prieto?

"Department of Computer Science and Information Technology,
Universidade da Corufia, Campus de Elvina, A Coruna, 15071,
Spain.

Z*CITIC Research Center, Campus de Elvifia, A Corufia, 15071,
Spain.
3Data Science Acceleration, Hoffmann-La Roche,
Grenzacherstrasse 124, Basel, 4058, Basel-Stadt, Switzerland.
4Department of Computer Science, University of Valladolid,
Plaza de la Universidad 1, Segovia, 40005, Spain.

*Corresponding author(s). E-mail(s): gdebernardo@udc.es;
Contributing authors: ana.cerdeira@udc.es;
antonio.farina@udc.es; javier_d.fernandez@roche.com;
migumar2@infor.uva.es;

Abstract

RDF compression and querying are consolidated topics in the Web
of Data, with a plethora of solutions to efficiently store and query
static datasets. However, as RDF data changes along time, it
becomes necessary to keep different versions of RDF datasets, in
what is called an RDF archive. For large RDF datasets, naive tech-
niques to store these versions lead to significant scalability problems.
In this paper we present v-RDF-SI, one of the first RDF archiving
solutions that aims at joining both compression and fast querying. In
v-RDF-SI, we extend existing RDF representations based on compact
data structures to provide efficient support of version-based queries
in compressed space. We present two implementations of v-RDF-SI,

*An early partial version of this article appeared in Proc DCC’16 [13].

https://doi.org/10.1007/S10115-023-01967-7

Springer Nature 2021 B TEX template

2 Compressed and Queryable Self-Indexes for RDF Archives

named v-RDFCSA and v-HDT, based respectively on RDFCSA (an RDF
self-index) and HDT (a W3C-supported compressed RDF representation).
We experimentally evaluate v-RDF-SI over a public benchmark named
BEAR, showing that v-RDF-SI drastically reduces space require-
ments, being up to 40 times smaller than the baselines pro-
vided by BEAR, and 4 times smaller than alternatives based on
compact data structures, while yielding significantly faster query
times in most cases. On average, the fastest variants of v-RDF-SI
outperform the alternatives by almost an order of magnitude.

Keywords: RDF, RDF Archiving, RDF compression, self-index

1 Introduction

RDF (Resource Description Framework) [55] is a specification for modeling
data in the Web that has become increasingly popular. It has been used in
many Open Data projects (e.g. Linked Open Data) and community efforts
(e.g. schema.org), becoming the standard to describe and share information
in the Web. In 2022, more than 14 million websites published data in RDF
(with almost a 3x increase since 2018) [7]. Since RDF only defines a conceptual
data model, a number of different solutions have been proposed to physically
implement RDF stores that are able to store and query RDF data efficiently [2,
42].

In the Web of Data, however, the knowledge is continuously evolving [35],
and therefore the facts that describe this knowledge must also change along
time. This means that datasets have to be updated to reflect these changing
facts. In addition, the historical information about all the different versions of
the data must be kept in order to study the evolution of the facts along time,
undo changes, or simply keep consistency between datasets as they evolve.
The archival of the different versions of a dataset, that are in many cases very
similar to their predecessor, is a problem that has been shown to suffer from
significant scalability problems when applied to very large volumes of informa-
tion, as is the case of the Web [27]. Similar challenges have also appeared in the
Semantic Web, as the storage of archived versions of RDF datasets, known as
RDF archives, needs to handle an increasingly large volume of data. Because
of this, the development of solutions that provide efficient storage of archived
versions, and provide support for queries involving changes along time, has
become an interesting research challenge [24].

Strategies proposed to handle RDF archives typically focus on query perfor-
mance and disregard the size of the RDF archive, so simple archival techniques
can require huge amounts of space [22]. For instance, for a state-of-the-art
RDF archive, these strategies may need up to 15 times the space required
by a gzip-compressed version of the same data [25]. Trivially, RDF archival
solutions provide efficient querying, unlike compressed files, but their space

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 3

requirements are still far beyond what could be achieved with more refined
solutions that aim at exploiting repetitiveness in the RDF data. A natural
choice to improve the space utilization is to resort to RDF compression tech-
niques. Many existing solutions take advantage of compact data structures to
store the RDF dataset in small space while providing efficient query resolu-
tion [3, 9, 21, 52]. These solutions, however, consider static snapshots of the
RDF dataset, and have not been designed to be applied to evolving data such
as RDF archives.

In this paper we present v-RDF-SI, a solution that provides efficient query
resolution over a compressed representation of RDF archives. It separates the
handling of the different RDF triples in the archive from the management of
the versioning information associated to them by splitting those data into two
different layers.

The first layer (rdf-layer) is in charge of handling the different RDF triples
in the archive and is implemented using an RDF representation supporting
fast query resolution. In turn, the second layer (ver-layer) uses (succinct) bit-
sequences to encode the versioning information. This provides support for the
efficient resolution of version-based queries.

This work is an extension of a preliminary work [13]. The main additional
contributions included in this paper are:

® We provide a detailed description of v-RDF-SI and show how we can
completely uncouple the handling of version-oblivious triples (rdf-layer)
from the versioning data (ver-layer). In the proof-of-concept v-RDFCSA
devised in [13], we could provide a solution based on RDFCSA and two
bitsequence representations. However, the separation between both lay-
ers heavily depended on the internal arrangement of the triples within
RDFCSA. The current v-RDF-SI solution is more flexible. It is based on
giving each version-oblivious triple a unique tripleID to which we can eas-
ily relate its versioning information in the ver-layer, and providing a way
to relate each triple from the rdf-layer with its corresponding triplelD.
This potentially enables using most existing RDF representations for the
rdf-layer.

® For the rdf-layer, we provide two self-indexed RDF representations that
ensure fast query resolution on the compressed data: RDFCSA [9] and
HDT [21]. We show that they yield different space/time tradeoffs, with HDT
being typically faster than RDFCSA but requiring more space. In addition,
we leave the door open to other RDF representations.

e For the wver-layer, apart from the two bitsequences used in [13] (Plain
and RRR), we included four additional bitsequence representations. This
allowed us to largely reduce the size of the versioning-layer.

® We included a more comprehensive experimental evaluation that signif-
icantly expands the preliminary version. Particularly, we consider the
different variants of v—-RDF-SI that can be built depending on the imple-
mentation chosen for rdf-layer and ver-layer. Moreover, we compare the
best v-RDF-SI variants both with a baseline solution based on Jena, and

Springer Nature 2021 B TEX template

4 Compressed and Queryable Self-Indexes for RDF Archives

with OSTRICH [56], a recent representation for RDF archives. Finally,
while in the preliminary work we only considered queries involving two
common triple patterns, in this article we include queries for all the basic
triple patterns.

We have compared the different solutions for RDF archiving using BEAR
[25], a state-of-the-art benchmark for RDF archives. Our results show that
v-RDF-SI is able to store the full archive of 325GiB in just 4.7—9.2GiB, and
yields query resolution times much faster on average than the reference (Jena
based) baseline deployed with BEAR. Among our proposals, v—RDFCSA obtains
the best compression and v-HDT usually yields the best query times. The best
v-RDF-SI variants typically answer queries in a few milliseconds. We have
also run experiments to compare v-RDF-SI with OSTRICH. We show that
our proposal requires roughly 25% the space of OSTRICH and is significantly
faster at query time.

The rest of the paper is organized as follows. Section 2 presents the back-
ground on RDF archiving and discusses existing bitsequence representations.
Our proposal is presented in Section 3. We first show its two-layered organiza-
tion and how RDF triples in the rdf-layer are synchronized with the versioning
information in the ver-layer. Then, we also show how typical queries for RDF
archives are solved in Section 3.3. The experimental evaluation of v—-RDF-SI is
presented in Section 4. We include the details regarding our implementations
v-RDFCSA and v-HDT, and we also compare them with some existing strategies
for RDF archiving in terms of space needs and performance at query time.
Finally, in Section 5, we include our conclusions and discuss future research
lines.

2 Background

In this section, we briefly introduce some basic concepts relevant to our work.
First, in Section 2.1, we describe RDF, SPARQL and the concept of triple
pattern. Then, in Section 2.2, we also present some existing solutions for the
compression of RDF. Among them, we briefly discuss HDT and RDFCSA, two
queryable RDF representations that will be used in our proposal v-RDF-SI.
In Section 2.3, we also introduce the concept of RDF archives and discuss
the main retrieval functionality they must support. Section 2.4 presents the
main state-of-the-art strategies to tackle RDF archiving. Finally, we provide a
brief introduction to bitsequence representations, another basic component of
v-RDF-SI, in Section 2.5.

2.1 RDF and SPARQL

RDF [55] is the standard for the storage of information in the Web of Data.
It defines a conceptual representation of the data, that can be seen as a set of
triples. Each triple contains a subject, a predicate, and an object, and represents
that the subject entity has a property, defined by the predicate, whose value
is given in the object. Typically, subjects and predicates are defined using

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 5

URIs, whereas objects can be either URIs or literal values.! For instance,
the triple (ex:Xavi, ex:playsFor, ex:Barga) defines that the person identified
by ex:Xavi plays for the team identified by ex:Barga. In practice, an RDF
dataset can also be seen as a labeled graph, where the nodes of the graph
are the subjects and objects, and each edge corresponds to a property, and is
labeled using a predicate. Both conceptual views are equivalent, and provide
a simple conceptual model for the representation of information in any area of
knowledge.

SPARQL [31] is the standard query language for RDF data. The core of
SPARQL queries is based on triple patterns, that are used to define constraints
on the triples that are expected as the result of a query. For instance, (ex:Xavi,
ex:playsFor, 7team) defines a fixed subject and predicate, and contains an
unbound object 7team, identified by the starting 7 symbol; this pattern matches
all triples with the given subject and predicate, for any given object value, so
the result of the SPARQL query containing this triple pattern would include
all such triples. Different triple patterns can be defined depending on which
elements of the pattern are unbounded, denoted with ?: (s?7?) (matches all
triples with subject s), (sp?), (spo), (s?0), (?po), (s?0), (?70). In addi-
tion to basic triple patterns, SPARQL also supports more complex queries,
involving join of multiple triple patterns, unions, filtering and sorting, etc.

2.2 State of the Art of RDF Compression

Since the adoption of RDF as a standard, many solutions to handle RDF data
have been proposed. Among them, we could highlight well-known tools such
as Virtuoso [19], Blazegraph [57], RDF-3X [48], Tentris [6], BitMat [5], Hex-
astore [60], and WaterFowl [17]. Despite being well-known strategies, most of
them require more space than other existing solutions that are based on com-
pact data structures and are also slower in some scenarios [12]. In this section,
we introduce four RDF representations based on compact data structures:
HDT [21] (and a recent variant), k2-TRIPLES [3]|, RDFCSA [9], and permuted
trie indexes [52]. As indicated above, these solutions usually require much less
space than other alternatives, and provide efficient support for at least triple
pattern queries, which are the core of the querying capabilities we provide for
RDF archives.

HDT [21] is one of the first solutions that efficiently tackled RDF com-
pression through the use of compact data structures. It is able to encode the
RDF graph using bitsequences with rank/select support (see Section 2.5) and
other additional compressed data structures. Thanks to the use of compact
data structures, HDT is able to achieve much better compression than previ-
ous solutions and yield very efficient query times in all the basic triple pattern
queries.

k2-TRIPLES [3] takes a step forward in RDF compression, by exploiting
small-scale regularities in the RDF graph topology to largely outperform HDT

!For simplicity, we obviate here bnodes, a particular type that has only a local scope to the
dataset. For our purpose, they can be converted to URIs via skolemization.

Springer Nature 2021 B TEX template

6 Compressed and Queryable Self-Indexes for RDF Archives

in terms of space. It is based on a partition of the RDF dataset by predicate,
generating a separate set of (subject, object) pairs for each different predicate
in the collection. Each of the resulting subsets is compressed as a (sparse)
binary matrix using a data structure called k2-tree [8]. Triple pattern queries
are translated into a collection of simple queries over the collection of k2-trees.
Even though k2-TRIPLES is usually slower than HDT and other alternatives, it
achieves the best compression results in most datasets.

RDFCSA [9] addresses the problem of RDF triple compression by adapting
compressed suffix-arrays (CSA) [54], widely used for self-indexing natural text,
to the representation of RDF triples. RDFCSA stores the collection of triples as
a sequence of cyclic strings of length 3, that are sorted in lexicographical order
and can be efficiently compressed and searched using the underlying compact
self index. Although RDFCSA does not achieve the same compression ratios as
k2-TRIPLES, it is significantly smaller than HDT and offers very stable and
predictable query times to solve all SPARQL triple patterns.

Recently, two new RDF representations were presented. One of them is
based on permuted trie indexes [52]. The authors create three different per-
mutations of the triples and use compressed trie representations to store each
permutation. This allows them to achieve very fast query times for most triple
patterns and good compression. A second recent representation is a variant of
HDT named iHDT++ [34]. It is based on a previous non-searchable RDF compres-
sor named HDT++ [33] which reorganizes the RDF triples upon HDT to reduce
its structural redundancy and improves the space requirements of the origi-
nal HDT. Basically, iHDT++ includes additional structures on top of HDT++ to
efficiently support SPARQL triple patterns. In practice, iHDT++ improves the
space/time tradeoff of the original HDT, yet it becomes a much more complex
representation.

In addition, diverse compressors have been proposed for RDF streams
(see [43] for a review), i.e. where the focus is to dynamically compress a
continuous flow of RDF data with minimum latency (at the cost of lesser
compression). Examples of such solutions are Streaming HDT [32], based on
adapting the aforementioned HDT, RDSZ [26], which uses differential encod-
ing or ERI [23], proposing an interchange format that groups redundancies by
RDF predicate. To the best of our knowledge, none of them is able to efficiently
resolve SPARQL in compressed space, although recent approaches, such as
PatBin [37], mostly based on a dictionary compression, provide limited search
functionality.

2.3 RDF archives

Given an RDF dataset with N versions, we define an RDF archive A = (T,V)
storing that dataset as a collection of version-annotated triples (T}, V;), where
T}, is a regular RDF triple (s, p,0), and V; is a label indicating that the triple
T}, occurs in the i-th version of the RDF dataset [25].

Figure 1 displays an example of RDF archive, corresponding to three
versions of a small RDF dataset. The RDF archive stores in total seven

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 7

ex:LuisEnrique

9. exhas|Coach ex:has\Coach

&,

oy, S N

o> e
ex:playsFor g

e

:

-5

RDF Graph V, RDF Graph V, RDF Graph Vs
ex:Xavi ex:playsFor ex:Barga [DEL] = playsh > [DEL] - :hasCoach-ex:LuisEnrig
ex:D-Alves ex:playsFor ex:Barga [DEL] :D-Al :playsF : [DEL]| ex:Coutinh -play .
ex:Barca ex:hasCoach ex:LuisEnrique ex:Barca ex:hasCoach ex:LuisEnrique [ADD]| ex:Barca ex:hasCoach ex:Xavi
[ADD]| ex:Coutinho ex:playsFor ex:Barca [ADD]| ex:D-Alves ex:playsFor ex:Barca

Fig. 1 Example of RDF archive.

different facts about players and coaches of a soccer team called “Barca”.
The leftmost graph corresponds to the first version of the dataset, V. It
stores three triples: ex:Xavi and ex:D-Alves play for the team, and its coach
is ex:LuisEnrique. The middle graph, corresponding to version V5, reflects
a few changes: the two players of V; leave the team, so the corresponding
triples disappear from the dataset, and a new player ex:Coutinho is hired.
Finally, in version V3, ex:LuisEnrique is replaced as coach by the former player
ex:Xavi; also in version V3, the player ex:Coutinho leaves the team but the
former player ex:D-Alves joins the team again. In this example, the triple
(ex:D-Alves,ex:playsFor,ex:Barga) holds in V; and V3, so two annotated
triples would exist in the RDF archive.

2.3.1 Retrieval Functionality.

When querying RDF archives, SPARQL queries can be extended in order to
retrieve information corresponding to specific versions. The three primitive
queries that provide the most usual functionalities in an RDF archive are the
following ones [24]:

o Version materialization queries. Given a query (), a version mate-
rialization query Mat(Q,V;) returns all the results corresponding to
query @ in the version V; of the archive. For instance, the query
Mat((ex:Barga,ex:hasCoach,?x), V5) obtains ex:LuisEnrique as the coach
in V2.

® Delta materialization queries. The query Dif f(Q,V;,V;), retrieves all the
results of () that appear in V; but not in Vj or vice versa; i.e., it detects
(deleted) triples that existed in V; but are not present in Vj, as well
as those (added) triples that existed in V; but not in V;. For example,
Dif f((?x,playsFor,ex:Barga), V1, V) returns ex:Xavi and ex:D-Alves,
that were present in V7 but were deleted in V5. It also returns ex:Coutinho
as an added triple that appeared in V5.

e Version queries. The query Ver(Q), obtains the results for query @ in
all the versions of the archive, and returns all the versions in which each
of the results holds. For example, Ver((ex:Barga,hasCoach,?x)) would
return that ex:LuisEnrique is present in V; and V5, and ex:Xavi is present
in Vg.

In the previous examples, the three primitives are applied to basic triple
pattern queries, but more complex queries can be built combining the extended

Springer Nature 2021 B TEX template

8 Compressed and Queryable Self-Indexes for RDF Archives

search functionalities of SPARQL with one or more of these primitives.
For instance, assume that a user wants to find the players of our team
that have also been coaches of the team. In a single-version RDF store,
this would be answered with a join query between (?x,playsFor,ex:Barga)
and (ex:Barga,hasCoach,?x), where the join variable ?x is used to con-
nect both triple patterns. In an RDF archive, we need to apply the ver-
sion primitives to consider triples that exist in different versions of the
dataset. The most straightforward adjustment would be the query Ver((?x,
ex:playsFor,ex:Barga)) X Ver((ex:Barga,ex:hasCoach,?x)), combining two
version queries that search for all the players and coaches of the team in
any version of the archive. If we want to enforce that the player must have
coached the team after he was a player, we could instead use version mate-
rialization queries in all the relevant versions. In this example, for each
i,7 € V such that ¢ < j we could execute Mat((7x,ex:playsFor,ex:Barga
, Vi) > Mat((ex:Barga, ex:hasCoach,?x),V;).

2.4 State of the Art of RDF Archiving

The problem of RDF archiving has been tackled following different strategies,
which are rather similar to archiving solutions in other domains [24]. In this
section we describe the three main strategies that have been used: independent
copies (IC), change-based (CB), and timestamp-based (TB).

The independent copies strategy (IC) is the simplest strategy to manage
versions. It simply handles each version as an independent dataset, with no
relation to the others [36]. The main advantage of this strategy is its simplic-
ity, and the performance it provides for version materialization queries, since
queries for a given version are simply executed on the corresponding dataset.
Delta materialization queries and version queries, on the other hand, are less
efficient since the independent datasets have to be queried and the results
joined or subtracted. Additionally, an obvious drawback of this strategy is
the space it requires: since it does not take into account the repetitiveness
between versions, triples that do never change between versions are stored
multiple times, which makes this strategy very inefficient in datasets with a
large number of versions even if the number of changes between versions is
small. SemVersion [59] and the Quit store [4] are good practical examples of
Ic-based RDF archives.

The change-based strategy (CB) aims specifically at taking advantage of
regularities between consecutive versions. Each version V; stores only the
triples that were added or deleted (deltas) with respect to the previous one.
This leads to potentially huge space savings when compared to IC strategies.
This strategy, followed by R43ples [29], can speed up delta materialization
queries, but it yields poor performance in version queries, due to the need to
propagate the deltas.

The timestamp-based strategy (TB) considers the full RDF archive as a
single dataset of version-annotated triples. Therefore, solutions following this

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 9

strategy require a mechanism to annotate each triple with versioning informa-
tion (i.e. the versions in which the triple is valid). This storage mechanism is
well suited for version queries, but practical solutions following this strategy
need to balance the poor results obtained in version materialization queries
and delta materialization queries by building additional indexes to be able to
filter the version information. XRDF-3X [49] (an extension of the RDF-3X
store) and our proposed solution [13] are positioned in this strategy.

Finally, we can define a fourth hybrid-based (HB) strategy, that essentially
groups a number of other solutions that combine ideas from the previous ones
to improve performance. For instance, practical approaches based on CB have
been improved, like the framework in [18] and TailR [44], by storing fully
materialized versions every k deltas, in order to mitigate the performance
penalty, hence being assimilated to a hybrid Ic/CB strategy. On the other
hand, TB/CB approaches, like R&WBase [58], enhance added or deleted triples
with timestamp data. It reduces space requirements, but deltas must be rebuilt,
as in CB, to perform version materialization. More recently, OSTRICH [56]
combines Ic, CB, and TB into a solution that compresses snapshots using
HDT and stores deltas with respect to their corresponding latest snapshot.
OSTRICH provides competitive space-time tradeoffs, at the price of limited
functionality [51].

All these strategies can be used to efficiently answer some queries on RDF
archives, but existing solutions are still far from yielding efficient compression.
An experimental evaluation on the BEAR benchmark [25] shows that typical
archiving solutions require up to 230GiB of space to handle a dataset whose
gzipped size is approximately 23GiB. The goal of our proposal is precisely to
take advantage of the capabilities of compressed RDF stores and provide a
simple and compact representation of the versioning information, in order to
store large RDF archives requiring much less space than the plain dataset,
while preserving query capabilities.

2.5 Bitsequence representations

Many succinct data structures are built on top of binary sequences (i.e. bitse-
quences). A plain bitsequence B[1,n] can be seen as a sequence of ones and
zeroes where the following operations are typically of interest:

® access(B,i) obtains the value of element BJi].

e ranky(B, 1) gives the number of b bits within B[, 1].

® sclecty(B, 1) returns the position of the i-th b bit in B.

Even though access(B, i) can be directly obtained in a plain bitsequence,
rank and select operations require additional structures to be efficiently
computed. Moreover, depending on the ratio of ones and zeroes, or on their dis-
tribution along B, different state-of-the-art bitsequence representations allow
us to yield compression. In this paper we will use plain bitmaps, where we
are not able to efficiently support rank/select operations, as well as five well-
known alternatives that do support rank/select. The first variant (RG) adds
additional structures but keeps B in plain form, whereas the others (RRR,

Springer Nature 2021 B TEX template

10 Compressed and Queryable Self-Indexes for RDF Archives

SDarray, Delta, and 0Z) are compressed representations of B that provide
support for the three main operations above.
® RG [28] implements a simple one-level superblock-directory, that stores
samples of the cumulative number of ones in B. A factor parameter
determines that a superblock counter is kept for each 32 - factor bits.
Therefore, the space usage of RG is n(1+1/ factor) bits. It performs rank;
by checking the closest superblock and then counts ones sequentially
between superblocks, thus requiring up to factor contiguous accesses. To
solve selecty, it first performs a binary search on the superblocks, and
a final sequential scanning of the byte containing the i-th bit. A typical
configuration uses factor = 20, which yields a 5% space overhead.
® RRR [53] is a common representation for either sparse or dense bitsequences
(i.e. those with a very high or low percentage of zeroes). In practice, it
is useful when the ratio between the number of ones (m) and n is under
0.2 or over 0.8 [47]. RRR compresses B into nHy(B) bits, but requires also
additional o(n) bits for solving rank/select efficiently.
We used the implementation in [15]. Internally, it splits B into blocks of
15 bits each and stores how many ones exist up to the beginning of each
block (additional structures are necessary to support all operations, for
details see [15]). A sampling parameter (t,..) indicates that counters are
explicitly kept for every ¢, blocks. In practice, RRR solves rank; with two
random accesses and 3 + 8-%,..- accesses to contiguous memory, whereas
solving select; requires an additional binary search. The overall space of
this implementation is around log (") +(%+#)n = nHy(B)+o(n) bits.
® SDarray [50] is a good representation for very sparse bitsequences, par-
ticularly it obtains good compression when the ratio between the number
of ones (m) and n is under 0.05. SDarray is not parameterizable and
requires nHy(B) +2m + o(m) = nHy(B) + O(m) bits. It solves select; in
constant time, and rank; in time O(log(n/m)).
® Delta [1] is another representation that is very efficient when the number
of ones is much smaller than that of zeroes. Delta differentially encodes
the m positions of the ones in B using d-codes. Those gaps (gaps;) are
encoded with d-codes, and samples are included every t;, ones. Those
samples include the absolute position of the (t,-7)-th one, and a pointer
to the sequence where all the §-codes for the gaps are kept. selecty (B, 1)
is solved with a table lookup to the samples if i is a sampled one (i
mod ¢, = 0), otherwise decoding ¢ mod ¢, d-codes is required to sum up
those gaps. rank;(B,1) uses binary search over the samples, followed if
required by local decoding from the sample preceding the i-th bit. The
overall space [46] is O(f!)logn +mlog ;- + 2mloglog - + O(m).
® 0Z [46]. Sometimes the number of zeroes and ones in B are rather similar
(we do not have a sparse bitsequence), yet they are clustered forming k
runs of ones and k + 1 runs of zeroes. In [46, pages 89-92], 0Z is discussed
as a transformation from a bitsequence B with few runs into two sparse
bitsequences Z and O that can be handled with any representation for

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 11

sparse bitsequences (i.e. RRR, SDarray, Delta, or even RG). We consider 0Z
could be interesting in the scope of our versioning data as we do not expect
that a triple would appear and disappear many times along versions.

3 Self-Indexing RDF archives (v-RDF-SI)

We have designed v-RDF-SI following a lightweight TB approach, where we
encode all the information of the RDF archive in two separate layers. The first
layer (rdf-layer) represents the set of different triples in the RDF archive; the
second layer (ver-layer) represents the versioning information. By doing so,
v-RDF-SI, as other TB-based solutions, only needs to store the set of differ-
ent triples in the archive. Our rdf-layer will only store these version-oblivious
triples, that are usually a small percentage of the total number of version-
annotated triples in the archive. For instance, the BEAR archive [25] contains
around 2 billion triples, but removing the versioning information we end up
with just around 376 million version-oblivious triples.

The two layers used in our representation divide the archive storage
problem into two parts. The rdf-layer is in charge of efficiently compress-
ing and querying the version-oblivious triples, that are handled as a regular
(compressed) RDF dataset. The wer-layer must provide all the versioning
information to recover all the version-annotated triples.

Original RDF Archive Separation into rdf-layer and ver-layer Dictionary transformation phase V-RDF-SI
ROF triples V,
(1 (2 - i (3
exXavi explaysFor ex:Barca ID-based triples =/ rdf-layer
ex:D-Alves ex:playsFor ex:Barca il (1,1,2) Lt ottt
ex:Barga ex:hasCoach ex:LuisEnrique it (1,1,3) b 55t b
rdf-layer ver-layer - 31?2 . S|1[1]2[3]4
RDF triples V, s | 1| oisl @2 Plafil2]2]2]
) Tt 3,21
1| exXavi——ex:playsForex:Barca 2 |exX S e
H version-oblivious triples versioning data exXavi te| @21 ol2]3]1]1]1]
ex:Barga ex:hasCoach ex:L ex:Barga ex:hasCoach ex:Xavi ty X 5 3 |ex:Coutinho Self-index: RDFCSA/HDT
[+]| ex:Coutinho_ex:playsFor ex:Barca ex:Barga exthasCoach ex:LuisEnriquel t, | x | x 4 |ex:D-Alves Versioning data
RDF triples V. ex:Xavi ex:playsFor ex:Barga ty [x o 8 Y Vi _e_r_/gzgr_ _____
3 ex:Coutinho ex:play ex:Barga t, X O | 3 |extuisknrique| it X toh ottt
H Bares " ex:D-Alves _excplaysFor _ex:Barca | t; | x x 7 |oshirsgegn %{:tz XX v, x [x X
P 3
[+]|ex:Barca ex:hasCoach ex:Xavi Vi V2 Vs P | 2 |excplaysfor glt: X V. X X
[+]| ex:D-Alves _ex:playsFor _ex:Barca St x x Vs [x x
Dictionary vV, V, Vg Bitsequences (tpv/vpt)

Fig. 2 Construction of the v—-RDF-SI representation of our RDF archive.

In Figure 2, we show the process performed to build a v-RDF-SI for an
RDF archive. The first step ((I)) generates the set of version-oblivious triples
and the versioning information for those triples. These will be stored in our rdf-
layer and ver-layer respectively. In the example, we extract the n = 5 different
triples tq,...,t5, and for each of them, we gather the versions in which they
occur. In the next step ((2)), a dictionary is used to replace all the RDF terms
in the version-oblivious triples with integer IDs. We assign IDs in the range
[1,n4], [1,np)], [1,7,] to subjects, predicates, and objects respectively. In the
example, we have ng = 4, n, = 2, n, = 3, and we can see that IDs 1 and
2 (corresponding to ex:Bar¢a and ex:Xavi terms respectively) are used both
for subjects and objects. Therefore, the remaining object ex:LuisEnrique is
given ID 3, and the subjects ex:Coutinho and ex:D-Alves receive IDs 3 and

Springer Nature 2021 B TEX template

12 Compressed and Queryable Self-Indexes for RDF Archives

4 respectively. The mappings between RDF terms and IDs are independently
indexed using a compressed string dictionary [11, 40].

Finally, both the rdf-layer and the ver-layer are stored using compact data
structures ((3)). v—=RDF-SI provides two different representations, ROFCSA and
HDT, to handle the rdf-layer. This leads us to variants v-RDFCSA and v-HDT
respectively, that are discussed in Section 3.1. The wver-layer is stored using
plain or compressed bitsequences. In Section 3.2, we show how versioning data
is handled.

Regarding query evaluation, recall that both RDFCSA and HDT allow solving
triple pattern queries efficiently over RDF datasets. When dealing with version-
based queries, we rely on the rdf-layer to retrieve the version-oblivious RDF
triples that match a given triple pattern and then perform bit-based operations
in the ver-layer to gather versioning information for those triples. To allow this,
our rdf-layer enriches the solution triples (i.e. the resulting triples provided
by the underlying RDF representation when solving a given triple pattern
Q') with an identifier for each returned triple ¢;. In particular, this identifier
corresponds to the position of the triple ¢ within the sequence of ID-based
triples. This triple-ID ¢ gives us direct access to its versioning information.
For example, if we ask the rdf-layer for the triple pattern Q' +(1?77?) we will
recover {((1,1,2),1),((1,1,3),2)}, where the underlined numbers indicate that
the triples (1,1,2) and (1,1, 3) were respectively at positions 1 and 2 among
the ID-based triples in the rdf-layer. More details regarding how version-based
queries are solved are presented below in Section 3.3.

3.1 rdf-layer: RDF triples encoding

We provide two implementations for the rdf-layer. They are based on RDFCSA
and HDT, yet other RDF representations could also be used. The only condition
required is that the chosen implementation must provide a way to keep the
rdf-layer aligned with the wer-layer, so that when we access an RDF triple
from rdf-layer, we can use its triple-ID to easily gather its versioning data
from ver-layer.

A common factor of RDFCSA and HDT is that they sort the set of ID-based
triples by subject, then by predicate, and finally by object. This is the way
we sorted triples in Figure 2, and the versioning information associated to
those triples is organized accordingly in the ver-layer. Therefore, both RDFCSA
and HDT can be directly used for the rdf-layer. Considering also that both
approaches are relatively stable in query times and provide interesting space-
time tradeoffs, we considered them as the best choices. However, we will also
outline how other potential solutions could be adjusted to be used for the
rdf-layer in Section 3.1.3.

3.1.1 v-RDFCSA: using RDFCSA into the rdf-layer

Figure 3 illustrates the steps followed to turn the ID-based triples shown in
Figure 2 into an RDFCSA self-indexed representation [9]. Assuming the sequence

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 13

of n ID-based triples t1,...,%, is already sorted by subject, predicate, and
object, in the first step (D)) we place them in a single sequence S;4[1, 3n]. The
first triple is stored in S;q[1, 3] (see the shaded boxes in Figure 3), the second
in S;4[4,6], and so on. Then (), the IDs in S;4 are rewritten into S,4[1, 3n]
so that the ID values used for subjects, predicates, and objects do not overlap,
as required by RDFCSA. To do this, subject IDs are not modified, predicate IDs
are increased by n,, and object IDs are increased by ns + n,, where ng and
ny, are the number of different subjects and predicates respectively. After this
step, subject IDs are in the range [1,n,], predicates in [ns + 1,ns + np), and
objects in [ns +ny, + 1, ns +ny, +n,). For instance, in the example of Figure 3,
the first triple (1,1,2) is encoded as (1,5,8) in S;,.

The purpose of reassigning IDs is to ensure that subject IDs are always
smaller than predicate IDs, and that predicate IDs are smaller than object IDs.
This is important for step (3), in which we create a suffix array [39] SA[1, 3n]
over S’;d. Thanks to the previous reassignment of IDs, elements in SA[l,n]
will always be pointing to subjects within S;-d, elements in SA[n + 1, 2n] will
point to predicates, and elements in SA[2n + 1, 3n] will point to objects. The
compressed representation consists of the usual CSA data structures D and
¥ [54] (step). D[1,3n] is a bitsequence that is used to mark (with a 1) the
position i in the suffix array where the first symbol of the suffix? changes (i.e.,
S:,[SA[i]] # S;,[SA[i —1]]). Therefore, we can use S,,[SA[i]] = rank (D, i) to
recover the ID of the source sequence S;d for any given position 7 of SA. The
array 9[1, 3n] is used to traverse the sequence S; 4 ¥ is built in such a way that
SA[Yli]] = SA[i] + 1. Therefore, if SA[i] = j points to the suffix at position
jin S;,;, then SA[[i]] = j + 1 points to the next position in S,,, i.e. to the
suffix starting at position j + 1 (Séd[j + 1,3n]). This means that, using v, we
can move forward to the next position in S; 4 and recover its value using D.

rdf-layer

N
o pakadofaafs]af2fa]sf2]a]af2]e]

Sa[L]s[s[1]s]o[2]6[7[3]6]7al6]7](2}
PFTT1 222 . T 2 3 4 5 6 7 8 9 10 1 12 13 14 15

1[4]7]]10]13

2[5 [8]11]14

9 [12]15]3[s6

1Jof1]1]1

1JoJ1Jo]o

1JoJoJ1]1

6[7]8]9]10

14]15]11]12]13

3Jafs]1]2

1 2 3 4 5

6 7 8 9 10
original w’

11 12 13 14 15

451273

[—

vso4ay

T T T
Subjects Predicates Objects

Fig. 3 Construction of the RDFCSA representation of an RDF archive.

RDFCSA performs a slight modification in #[2n + 1, 3n], the region corre-
sponding to the objects of the triples. Computing ¢ for any object would
return the position of the subject of the next triple in the collection. However,

’ ’
2A suffix starting at position j from S,;, is defined as the subsequence S, ,[j, 3n].

Springer Nature 2021 B TEX template

14 Compressed and Queryable Self-Indexes for RDF Archives

RDFCSA updates 1 such that 1[i] < ¥[i] — 1,Vi € [2n + 1, 3n] (with the par-
ticular case that v[i] < n if ¢[i] = 1). In this way, the object of each triple
now points to the subject of the same triple, which is useful for querying. For
example, note that the object of the second triple (S;,[6]) in Figure 3 is refer-
enced from SA[15] = 6. In the original ¥, we have ¥'[15] = 3, and SA[3] =7
points to S;d[ﬂ that keeps the subject of the third triple. However, the modi-
fied ¥ in RDFCSA contains W[15] = 2, where SA[2] = 4 points to S;,[4], which
contains the subject of the second triple. Consequently, ¥ becomes cyclical
within RDF triples. This allows RDFCSA to search for triple patterns very effi-
ciently [9]. It basically performs an initial binary search using D and % to
find the range SA[l,r] that matches the query pattern, and then, a traversal
Vi € [, r] is performed to recover the matching triples by applying ¥[i] cycli-
cally up to two times. More details about the query algorithms can be found
in [9]. For example, if we want to retrieve all the triples including subject 1, we
will use the triple pattern @ < (177). The initial binary search on SA gives
that SA[1,2] point to s; = S,[1] and sy = S, [4] that are, respectively, the
subjects of the first and second triples. Now, if we want to recover the predicate
p1 and object oy of the first triple, we compute: p; = rank, (D, ¥[1]) =5, and
01 = ranky (D, ¥[P[1]]) = 8. Hence we have retrieved the first triple (1,5, 8)
corresponding to S; 4[1, 3]. Finally, we unmap from S; 4 to the original triple in
Siq by subtracting (0, 4,4 + 2), obtaining the original triple (1, 1,2). Similarly,
we can compute the value of p, and o2 , corresponding to the second triple
that matched (177).

A key property of RDFCSA is that any triple can be easily identified by the
position in SA where its subject is located. Therefore, keeping the synchro-
nization between RDFCSA and wver-layer is straightforward from the fact that
SA[1,n] points to the subjects corresponding to all the triples ¢1,...,%,. Con-
sequently, we simply have to keep versioning information aligned with SA[1,n].
At query time, when we retrieve an RDF-triple, we gather the ID of its sub-
ject (sg), predicate (p.), and object (0.), and additionally, we also keep track
of the position ¢ of its subject ID in SA[1,n] to finally return ((sy, pz,0x),1).
This gives us direct access to its versioning information. In the example above,
the versioning information associated to the triples that matched (177) is syn-
chronized with SA[1,2]. In Figure 2, looking at the versions associated to the
first and second triples, we can see that the first matching triple occurs in
version V3 and the second one in versions V7 and V5.

3.1.2 v-HDT: using HDT into the rdf-layer

Figure 4 displays the structures used in HDT to store the collection of ID-
based triples described in Figure 2. We assume that the triples t¢4,...,t, are
sorted by subject, predicate, and object. HDT creates a so-named Bitmap Triples
index which exploits the repetitive components of the triples by storing the
relevant information in two sequences Sp and Sp. Sp stores the predicate of
each different (subject, predicate) pair appearing in the collection. Note that
|Sp| < m in most cases, because multiple triples can have the same value of

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 15

subject and predicate. Sequence Sp stores, in order, all the objects of the
triples in the collection, hence |Sp| = n. Additionally, two bitsequences Bp
and Bp are added to Sp and Sp respectively: Bp marks with a 1 the positions
in Sp where the subject of the triple changes; Bo marks with a 1 the positions
in So where the subject or predicate of the triple changes (i.e. marks the
first occurrence for each subject-predicate pair). This information suffices to
retrieve the original dataset. Note that the list of subjects which is shaded in
Figure 4 is not actually stored, since the subject values can be obtained from
the information in Bp.

Subjects
rdf-layer
b ot Predicates
S| 2
Pl 2122
O|2(3 1|11
Objects

Fig. 4 Representation of the triples information in HDT.

In order to answer the query (177), we first locate the range in Sp cor-
responding to subject 1. This range can be obtained efficiently using rank;
operations in Bp: [ranki(Bp,1),ranki(Bp,2) — 1] = [1,1]. Note that in this
case, the only predicate related to subject 1 is predicate 1 = Sp[1]. Then, the
process can be repeated in Bp to get the corresponding range [1,2] in Sp,
obtaining the objects Sp[1,2] = {2,3}. Therefore, the result includes triples
(1,1,2) and (1,1,3). Note that, since we have simple intervals in Sp and So,
results can be extracted sequentially from Sp and Sp. Similar query algorithms
can be used for (sp?) and (spo) query patterns.

To efficiently answer queries with unbound subject, two small enhance-
ments are applied in practice to the basic index, leading to the representation
called HDT-FoQ [41]. Firstly, the sequence Sp is stored using a wavelet tree
[30].3 This provides a faster way to answer (?p?) queries, by using select; to
locate all the positions where the query predicate occurs; after identifying the
subjects using B, the same basic process is used to map the objects in Sp and
obtain the query results. To speed up (?po) and (?70) queries, an adjacency
list stores, for each object, the (subject,predicate) pairs related to it (i.e. the
ranges in Sp that have to be searched), in predicate order. Therefore, a (?70)
query is answered by first locating the ranges in Sp that correspond to triples
where the object appears, and then extracting the corresponding subject and
predicate values from Bp and Sp. For details on these optimized algorithms

3A wavelet tree WT over a sequence S built on an alphabet ¥ = [1, o], represents S implicitly
and supports access(S, 1), ranky(S,1), and select, (S, j), being b € X, in logarithmic time.

Springer Nature 2021 B TEX template

16 Compressed and Queryable Self-Indexes for RDF Archives

we refer the reader to the original paper [41]. Note that the latest practical
implementation of HDT* replaces the Wavelet Tree index by an adjacency list.

A key observation in HDT is that triples are sorted in subject, predicate, and
object, so their position in the sorted collection can be used to synchronize the
rdf-layer and the ver-layer, exactly like in RDFCSA. In this case, the position
in Sp of each result corresponds to the position of the triple in the ver-layer.
For most query patterns, the position in S is obtained during the original
search process, since the object values are extracted accessing positions in the
sequence So. However, for query patterns like (?po) and (?70) patterns, the
original query algorithms do not need to access So, since the object values are
already known, so they extract this information of subject/predicate values
from Bp and Sp. For these patterns, we need to add a step to the original
algorithms, that extracts the corresponding position in Sp for each result
obtained. This is performed by searching for the corresponding object in the
range delimited by the (subject,predicate) pair. After this modification, the
algorithms for all the query patterns are able to return the result triple IDs
coupled with the position ¢ of each result in Sp, and hence in the ver-layer.
Following the previous example, when searching for (177), the results returned
would be ((1,1,2),1) and {(1, 1, 3), 2), that could be located in the ver-layer in
Figure 2 to determine that the first triple occurs in version V3 and the second
one in versions V7 and V5.

This layer could also be deployed using iHDT++, the more recent variant of
HDT, but we choose the original because it is widely adopted by the commu-
nity and we believe that its current space-time tradeoffs are not far from those
of iHDT++. Nevertheless, replacing HDT by iHDT++ is straightforward. The only
significant change involves rearranging triples to match the (P, S,0) (predi-
cate, subject, object) order required by iHDT++. As in HDT, triples are identified
by their object position in iHDT++, which provides the corresponding IDs to
access the versioning information in the ver-layer.

3.1.3 Other alternatives for the rdf-layer

As explained before, both RDFCSA and HDT sort triples by subject, then by
predicate, and finally by object, which makes it very easy to access the ver-
sioning information: we keep versioning information in the same order, and
use the triple IDs to access the corresponding versioning entries. Other solu-
tions based on compact data structures, such as k2-TRIPLES or permuted trie
indexes, do not provide such an easy mechanism to map query pattern results
to versioning information. In this section, we outline the difficulties for the
application of these two techniques in the rdf-layer.

When using permuted trie indexes, a different permutation index is used
depending on the query pattern, so even if an internal ordering of the triples
exists in each index, there is no simple mechanism to globally synchronize
results for a given triple pattern with their corresponding versioning infor-
mation. Trivially, additional data structures to perform the synchronization

4 Available at https://github.com/rdfhdt/hdt-cpp

https://github.com/rdfhdt/hdt-cpp

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 17

can be added to this (or any other) representation, but this would have an
important impact on the overall compression and query times would also
worsen.

A solution based on k2-TRIPLES partitions the triples by predicate, and
then stores the triples for each predicate in a separate data structure. In this
case, there is a global ordering of the triples: they are sorted first by predicate,
and inside each k2-tree results correspond to 1s in a bitmap L,? so they are
implicitly sorted. However, there is no direct mechanism to map the results of
a query to their position in the global ordering. A straightforward adaptation
would be to add rank; support to the L bitmaps, but this would increase the
space requirements of k2-TRIPLES, since a specific compact representation is
used for the bitmaps and the additional rank structures would potentially void
all the compression benefits of k2-TRIPLES.

3.2 wer-layer: Version information encoding

Let us assume that we have an archive A4, that contains N different versions
of a dataset, and n version-oblivious triples t;, (1 < k < n). For instance, the
archive in Figure 2 has N = 3 and n = 5. Let us also assume that for each
triple t; we know in which versions it occurs. In this section we propose two
encoding strategies for the versioning information.

The first strategy, called tpv (triples per version) groups the information
by version. It stores, in a separate structure per version, the information about
all the triples that appear in that version. To do this, it builds separate bitse-
quences BY[1,n] (1 <i < N) for each version of the archive. Each bitsequence
is used to mark the triples appearing in the corresponding version, by setting
BY[k] = 1 if and only if triple k in the collection occurs in version . Figure 5
(center) displays an example of the tpv strategy for our example archive. The
shaded results in B} correspond to triples 2 and 4, the only two triples that
exist in the version 2 of the archive.

The second encoding strategy, called vpt (versions per triple) groups the
information first by triple, and stores for each triple the information of the ver-
sions in which the triple is valid. This strategy builds n bitsequences Bt[1, N],
each encoding the list of valid versions for the corresponding triple. Therefore,
Bi[i] will be set to 1 if triple k is present in version ¢, and set to 0 otherwise.
Figure 5 (right) displays the vpt encoding for our example archive. The shaded
cells in B correspond to versions 1 and 2, marking that triple 2 is present in
the versions 1 and 2 of the archive.

Considering a plain representation of the bitsequences, it is easy to see that
they use the same space: tpv stores N bitsequences of n bits, and vpt stores
n bitsequences of N bits. However, the bitsequences can be represented using
the different encoding techniques presented in Section 2.5, which may lead to
significantly different space requirements. Additionally, as we will show in the
next section, query algorithms are significantly different in each strategy.

5Let us consider a bitmap as a sequence of ones and zeroes with no additional structures to
efficiently support rank and select operations.

Springer Nature 2021 B TEX template

18 Compressed and Queryable Self-Indexes for RDF Archives

vV, X | X X B n--n 1 1:< 1|m
v, [[x| |« B“IO\l\O\l\OI-o
Vs | x x Byl1]ofofof1]y

Bt BI Bt Bt Bt

original data tpv vpt

Fig. 5 Examples of the tpv and vpt strategies to encode the original versioning information
from Figure 2.

3.3 Retrieval algorithms

We show below how to deal with the typical retrieval operations for RDF
archives presented in Section 2. In our discussion, we do not consider the
dictionary translation step that is necessary to map the elements of an RDF
triple (triple pattern query) to their corresponding IDs as shown in Figure 2.
We also ignore the un-mapping process needed to convert a resulting set of
ID-based RDF triples into the final set of RDF triples. Therefore, we assume
that queries are composed of the IDs of the subject, predicate, and object that
make up each ID-based triple ¢; in Figure 2, and results also refer to those
triples.

As explained above, all our algorithms start by querying the rdf-layer to
retrieve all the version-oblivious candidate triples that match a given pattern
@. Recall that those triples are augmented with the triple-ID that is used
to find the versioning information within the ver-layer. From there on, can-
didate triples are traversed and filtered using versioning information. For a
Mat(Q,4) query, we have to check if each candidate triple occurs in version 4;
ina Dif f(Q',i,7) query, we check if the triple changes from version i to ver-
sion j; to answer Ver(Q) we simply collect all the different versions in which
each candidate triple occurs.

Apart from the general description of the query operations, we will show
that some optimizations can also be performed during the traversal of the can-
didate triples. These optimizations are based on the fact that, for some triple
patterns, the candidate triples form a contiguous range [t;,t] In particular,
since we sorted the source triples by subject, predicate, and object, in the case
of v—-RDFCSA the subjects of all the candidate triples for operations (s?7),
(sp?), and (spo) make up a contiguous range in the suffix array SA[l,r] [9],
and the triple-IDs of those candidate triples are respectively the values [, ... r.
Therefore, they are aligned with the ver-layer and we can use the version-
ing information for triples #;, ..., ¢, to discard some candidate triples without
actually traversing them. The same optimizations are also suitable for v-HDT,
using the position of the object in Sp to track the triples.

Version materialization queries: A query Mat(Q,i) looks for all the
triples matching the pattern @ that are active in version i. To answer this
query, we start by locating in the rdf-layer all the enhanced candidate triples

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 19

that match our query pattern (). Then, the versioning information is used to
filter the list of candidates. When using the vpt strategy, for each candidate
triple ¢ we check the value of B [i]. If it is set to 1, the triple is a valid result,
otherwise it is discarded. When using the tpv strategy, we proceed in a similar
way: if BY[k] is set to 1, the triple is valid, otherwise it is discarded.

The basic query algorithms explained above are valid for any query pattern.
However, in some patterns it is possible to use optimized algorithms to speed up
queries. Particularly, this optimization is feasible when using the tpv versioning
strategy and when the query pattern is one of (s?7?), (sp?), and (spo). In
this case, the candidate triples obtained in the rdf-layer will always conform
a contiguous range [I,r]. Since BY is set to 1 only for triples that are valid in
version i, by ¢; <— ranky(BY,1) and ¢, < rank,(BY,r) we can determine that
the number of valid results in the range is ¢ = ¢, — ¢; + 1. Furthermore, we
can locate the actual positions of each valid triple using select operations to
locate the positions of the bits set to 1: the valid results will be the the triples
at positions t,, such that p < select1(B},j),Vj € [c1, ¢].

Delta materialization queries: A Dif f(Q,i,7) query looks for all the
triples that match the pattern @ and that have changed their state (either
occurring or not) when considering versions ¢ and j (i.e., they occur in ver-
sion ¢ but not in version j, or vice versa). To answer this query, we start again
by locating the enhanced candidate triples, and then filter them using the
versioning information.

When using the vpt strategy, we need to access two different positions in
B;. We set x + BL[i] and y < Bi[j]. Values x and y just determine if the
triple occurred in versions ¢ and j respectively. When using the tpv strategy,
we perform two similar operations to set x < BY[k] and y < Bj[k].

Apart from the way of computing the values of z and y, the process to check
each candidate is similar in both strategies. If x = y the triple is discarded.
If x # y the triple is a valid result. In this case, if x = 1 the triple existed in
version i but was deleted in version j, whereas if y = 1 the triple did not occur
in version 7 and was added in version j.

In the tpv strategy, we can again use optimized algorithms to answer
queries involving (s77), (sp?), and (spo) patterns, where candidate triples
are consecutive (¢;,t;41,...,t.). For any bitsequence B, let us define the oper-
ation p < getNexti(B,pos), that locates the position p (p > pos) of the first
1 in B, starting the search from position pos onward. Notice that getNext,
can be easily defined in terms of rank and select operations: it returns pos
if Blpos] = 1, or select1(B,1 + rank;(B, pos)) otherwise. Given the range
[Lr], corresponding to the location of all the candidate triples, we initially set
p1 < getNewty (B}, 1) and pa < getNext;(B},1). Then, we iteratively compare
and update positions p; and po, as long as r > p; or r > po. In each step, we
perform the following comparison:

o If p1 < p2, the triple at position p; is added to the result because

it existed in version ¢ but it was removed in version j. We set p; <
getNexti(BY,p1+1) to point to the next triple that occurred in version i.

Springer Nature 2021 B TEX template

20 Compressed and Queryable Self-Indexes for RDF Archives

e If po < pi, the triple at position p, is added to the result because it
did not occur in version ¢, and it was added in version j. We set py <
getNext1 (B, ps + 1) to point to the next triple in version j.

® [f p; = po the triple is discarded because it did not change. We must
update both py < getNext (B, p1 + 1) and pz < getNext,(Bj,ps + 1).

The search process continues until 7 < p; and 7 < ps.

Version queries: The query Ver(Q) looks for all the triples matching the
query pattern in any version of the archive. The results, therefore, include all
the versions in which each of the candidate triples was active. In our proposal,
this is translated into checking, for each candidate triple and version, whether
the candidate triple was active in that specific version. That is, for each can-
didate triple at position k, in the vpt strategy we check if 8L [i] is set to 1, and
in the tpv strategy, we check if bit BY [k] is set to 1. We repeat this process for
all the versions i € [1, N].

As in previous queries, optimized algorithms can also be used on the tpv
strategy for triple patterns (s?7), (sp?), and (spo). Knowing that all the
candidate triples are in a contiguous range [I,], we can avoid traversing all the
candidate triples. Instead, we can iterate over the IV bitsequences B}. In each
of them, we can initially set p = [, and then compute p < getNext,(BY,p+1)
to locate the positions of all the ones in the range. This process continues while
p < r, and returns the location of all the triples that are valid for any version.

Note that, in version queries, we can also optimize vpt when it obtains
the versions in which a given candidate triple k occurs. Instead of sequentially
traversing B [i] to find the position of the 1s, we can use getNext; to directly
obtain those positions. This optimization would apply for all triple patterns,
yet, in practice, we would expect that it could only improve performance in
datasets with a large number of versions.

4 Experiments

In this section we describe the experimental evaluation of v-RDF-SI that we
have conducted. First, in Section 4.1 we outline the datasets and variants used,
as well as the main details of the experimental method used. Then, in Section
4.2, we evaluate the performance of the different components of v—-RDF-SI, in
the rdf-layer and the ver-layer. Finally, in Sections 4.3 and 4.4, we compare
our solution with Jena and OSTRICH, two state-of-the-art alternatives.

4.1 Experimental framework

We have implemented different variants of v—=RDF-SI that use different data
structures for the rdf-layer and the ver-layer. They are experimentally evalu-
ated in this section. First, v—RDF-SI can use either RDFCSA or HDT as the main
data structure for the rdf-layer, therefore yielding two variants v-RDFCSA and
v-HDT. Second, for each variant of the rdf-layer, we can choose the bitsequence
organization strategy in the ver-layer: vpt stores a bitsequence per triple with
its versioning information, whereas tpv stores a bitsequence per version in

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 21

the collection. Third, for each of the previous variants, we test different bit-
sequences to store the versioning information: we test plain bitmaps, as well
as RG, RRR, Delta, and 0Z representations. In order to achieve compression in
the vpt variant, we concatenate all the vpt individual bitsequences and build
compressed representations for the full bitsequence. Note that we easily retain
the ability to access the individual bitsequences because they all have the same
number of bits.

The implementations used for RG, RRR, and SDarray are available at libcds®
library. Delta [1] is available at http://pizzachili.dcc.uchile.cl/cst/. For 0Z, we
created our own implementation following the guidelines in [46]. We designed
0Z in such a way that it chooses the most compact representation for each of
the underlying bitsequences Z and O among: (i) RG with factor = 20, (ii) RRR
using sampling rate t.., = 32, (iii) SDarray, and (iv) Delta with sampling
rate t, = 64. By doing so, we ensure the best possible compression at the cost
of probably not using the fastest alternative.

Finally, we also test optimized versions of the query algorithms that take
advantage of the rank/select features in most bitsequence representations to
speed up some of the queries. As discussed in Section 3.3, these variants
(labeled ©FT), can take advantage in some query patterns ((s?7?), (sp?), and
(spo)) of the fact that the query results correspond to contiguous ranges in
the versioning bitsequences, using rank/select operations to retrieve the ver-
sioning information instead of searching results separately. These optimized
versions for the tpv variant are used in our experiments for v-RDFCSA and
v-HDT. We do not consider the optimization proposed for version queries in
the vpt variant, since it requires a relatively large number of versions to be
useful in practice.

We conduct our experimental evaluation using the BEAR benchmark [25],
that provides an RDF archive, a complete collection of query sets cover-
ing all the query strategies and triple patterns, and a baseline archiving
implementation.

The RDF archive used in BEAR consists of 58 versions of a large
dataset, storing weekly crawls from more than 650 domains. This results in an
heterogeneous corpus with over 2 billion triples. Disregarding version informa-
tion, there are only 376 million version-oblivious triples. Among them, there
is a small core of 3.5 million triples that do not change at any point in the
archive. The dataset grows along time, from 33 million triples in the first ver-
sion to 66 million triples in the last one. The rate of changes in the dataset is
relatively high, with 31% of the triples changing between consecutive versions
on average. Table 1 summarizes these statistics of the dataset. We will use two
sizes as a reference point for compression: the plain size of the dataset (stored
in NTriples” format) is 325GiB, whereas a gzipped version of the NTriples file
requires only 23GiB.

SObtained from https://github.com/fclaude/libcds
"https://www.w3.org/2001/sw/RDFCore/ntriples/

http://pizzachili.dcc.uchile.cl/cst/
https://github.com/fclaude/libcds
https://www.w3.org/2001/sw/RDFCore/ntriples/

Springer Nature 2021 B TEX template

22 Compressed and Queryable Self-Indexes for RDF Archives

|A| # versions |[Vo| |Vs7| 5 Ca O4

2,073M 58 30M 66M 31% 3.5M 376M
Table 1 Corpus statistics; |A|: total triples in the Archive, |Vp|,|Vs7|: # triples at

version Vy and Vs7, 8: mean % of triples that change between versions, C 4: static
core of the archive (unchanged triples), O 4: number of version-Oblivious triples.

BEAR also contains a varied testbed including Mat, Diff, and Ver
queries. It provides queries for all the basic triple patterns: (s?7?), (?7p?),
(?70), (sp?), (s70), (7po), and (spo). For most triple patterns, two query
sets are provided, categorized by the number of results of the queries: @, (low
cardinality: low number of results), and Qg (high cardinality: high number of
results) queries. Fach query set consists of 50 different queries. We refer the
reader to the original article [25] for additional details on the dataset and query
sets, and explanations on a few exceptions. For instance, for (?p?) queries a
smaller number of queries exists, and for (spo) and (s?70) queries only low
cardinality query sets could be defined.

Finally, BEAR deploys an archiving system that can be used as a baseline.
It is based on the Jena TDB store® (referred to as Jena hereinafter). The three
basic archiving strategies are implemented in this baseline: i) Jena-IC uses an
independent store to represent each version of the dataset; ii) Jena-CB stores
indexes for the triples that are added and deleted in each version; and iii)
Jena-TB annotates each triple with its versioning information and stores the
resulting quads in a single store.

v-RDF-SI was implemented in C++, whereas Jena was implemented in
Java. In the performance comparisons with Jena, we measure elapsed time
and execute a warm-up phase in Jena, running each query set twice for each
variant and measuring query times during the second execution. This tries to
mitigate any effect on the performance of Jena due to disk accesses, and is our
best effort to provide the fairest possible comparison between both solutions.
Nevertheless, we note that Jena is designed as a disk-based solution, so it
may incur by design in other overheads that v—-RDF-SI does not have, hence a
completely fair comparison is not possible due to their different nature.

All our experiments were performed in a system with 2x Intel Xeon
E5-2643-v2 @3.50GHz (12 cores, 24 siblings) and 256GiB RAM (DDR3
@1.60GHz). The operating system is Ubuntu 16.04. Our prototype was com-
piled using gcc 4.8 with full optimizations enabled. The Jena-based solution
was compiled and executed using Java version 8.

4.2 Space-time tradeoff of our variants

In order to measure the relative space-time tradeoff of all our implementation
variants, we executed all the query patterns using v—-RDFCSA and v-HDT, and the

8https://jena.apache.org/documentation/tdb/

https://jena.apache.org/documentation/tdb/

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 23

variants vpt and tpv with all the bitsequence representations. When possible,
we also ran the optimized solutions of some queries.

Note that in this section we ignore the space and time required by the
dictionary component of the final solution since the same dictionary can be
added to all the solutions and its cost will be identical in all of them.

4.2.1 Choosing a bitsequence implementation

First, we focus on showing how the six different representations for bitse-
quences lead to different space-time tradeoffs in our v—=RDF-SI proposal. Table 2
displays, for each bitsequence strategy, the actual parameters used to tune it
in our experiments, and its size (in GiB) when we represent the ver-layer of
our RDF archive following the tpv and vpt strategies.

Strategy parameters Space (GiB)

tpv vpt
Plain none 2.54 2.54
RG factor=20 2.67 2.67
SDarray none 1.69 1.54
RRR t=64 1.38 1.58
Delta tp =064 0.65 0.97
(0Y/ none 0.34 0.71

Table 2 Detailed space needs for the ver-layer.

We can see that the compressed bitsequence representations are more effec-
tive for the tpv strategy, probably because those bitsequences have more
redundancies than in the vpt counterpart. Also, we can see that compressed
bitsequence representations obtain important space savings. Particularly,
Delta and 0Z, the most effective strategies, require roughly around 15-40%
the size of the plain bitsequence.

Figures 6 and 7 show the results obtained by v-RDFCSA for the most rel-
evant query sets. We only display results for the tpv variant, and specifically
for subject and object lookup queries with high cardinality (scenarios Qf{ and

g in BEAR). We choose this subset of queries because they are the most rep-
resentative ones, and we opt for the query sets with high cardinality because
they better display the differences in performance. Results for the other query
patterns, and for query sets with low cardinality, are omitted for brevity, but
display roughly the same relative performance among bitsequence implemen-
tations. We also omit for brevity similar results for v—HDT, because they follow
the same trends. The space-time tradeoff displayed for each variant corre-
sponds to the sampling parameter ¢, € {256,64,16}, that affects the query
performance of v-RDFCSA [9]. Following the same ideas in [20], we compress
U by taking differences between consecutive values of ¥ and then encoding
those differences using run-length and Huffman coding. Finally, absolute val-
ues from W are retained at regular intervals of size t,, to ensure pseudo-random

Springer Nature 2021 B TEX template

24 Compressed and Queryable Self-Indexes for RDF Archives
(s??) Mat (s??) Diff
10000 ; ; 10000 : ;
Plain —»— oo N Plain ——
RG RG
_ s RRR —o— _ RRR —e—
i Delta i Delta
g Sbarray g SDarray
& 1000 | &5 4 & 1000} 2%
E RRROPT e £ RRROZT e
- Deltagiz - Deltaggi
a SDarray a SDarray
g 07T e g 0ZOFT e
E E
N 100 “ 100 F * K
>y 3 >
M 3 M
5 3 =
& S & e
10 10
2 2.5 3 3.5 4 4.5 5 5.5 2 2.5 3 3.5 4 4.5 5 5.5
Space (GiB) Space (GiB)
(s??) Ver
1x10° . —
Plain —*—
RG
~ o RRR —o—
H>< Delta
o 100000 SDarray
2 07 —o—
~ OPT
2] RGOPT
El RRROPT e
Delta
w 10000 F SDaere2or
v,
GEJ 07CFT .
5
+ -
> LN
b 1000 .
a e .\\
100 ' '
2 2.5 3 3.5 4 4.5 5 5.5

Space (GiB)

Fig. 6 Query times for subject lookups: Mat, Diff, and Ver queries.

access capabilities. Note that, in these figures, we are considering the space
required by the triple identifiers and the versioning information combined, and
excluding the dictionary.

Our results show that the choice of bitsequence implementation for the
versioning information has a very significant impact on the query performance
and space requirements. Solutions based on plain bitsequence implementations,
and the solutions based on the RG bitsequence (an uncompressed bitsequence
with additional support for rank/select queries) require significant space for the
overall v=RDFCSA representation, whereas the most compact solutions based
on Delta and 0Z require much less space. Recall that the space includes both
the triple identifiers and the versioning information, but if we considered only
the versioning information, plain bitsequence representations would require up
to 7 times the space of the most compressed ones.

Figure 6 displays results for subject lookups (s?7). For this query we dis-
play the results for the basic query algorithms and the optimized ones (labeled
with @PT), that can take advantage of the bitsequence implementations but
can only be applied in some query patterns (namely (s77), (sp?), and (spo)).
Query times are very different between Mat, Dif f, and Ver queries, but rel-
ative comparisons are similar, and we will focus only on relative differences
among bitsequences. Results show that 0Z is the most compact bitsequence,
but it is significantly slower when no optimized algorithms are used. The Delta

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 25

(?20) Mat (??0) Diff
100000 T T T 100000 T T T
Plain —— Plain ——
RG RG
_ RRR —o— _ oo RRR —o—
i Delta i Delta
8 oo SDarray ° SDarray
07 —— S, 07 —e—
& 10000} E & 10000} E
a)
Sl Sl
o 0
@ I}
g £
5 =
Y 1000t Y 1000t
> >
) b
3 L 3 N \\
. !

L L L L L " 100 L L L L
2 2.5 3 3.5 4 4.5 5 5.5 2 2.5 3 3.5 4 4.5 5 5.5

Space (GiB) Space (GiB)

100

(??0) Ver

1x10’ T - T
Plain —*—
RG

RRR ——

B . oo Delta
[0 1x10° | SDharray
2 07 —o—
N

P

3

w 100000 F

(]

£

&

)

>

S 10000 So—s

=)

(o]

S

. . . .
2.5 3 3.5 4 4.5 5 5.5
Space (GiB)

Fig. 7 Query times for object lookups: Mat, Dif f, and Ver queries.

1000

bitsequences are also very compact, but they are still much slower when using
basic query algorithms; using the optimized query algorithms, they are much
more competitive, obtaining query times similar to RRR and SDarray while
requiring significantly less space. The most stable compressed bitsequence is
RRR, that provides good performance in basic and optimized query algorithms.
Finally, both the plain bitsequence representation and the RG bitsequence that
add rank support are much larger than the alternatives. Additionally, the
optimized algorithms seem to have little effect in most cases over uncom-
pressed bitsequences, since the cost of repeated operations is small. Therefore,
plain bitsequences with no additional data structures are smaller and usually
competitive in query times with RG.

Figure 7 displays results for object lookups (?70). Note that in this case
no optimized query algorithms exist, so we only display the query times for
the regular algorithms. The space-time tradeoff of the different bitsequence
implementations is roughly the same as in the previous case. 0Z is orders of
magnitude slower than any other implementation, and Delta is also a very
good choice for compression but is still 3 times slower than the other proposals.
Both RRR and SDarray offer a reasonable space-time tradeoff, being much
faster than Delta and much smaller than uncompressed bitsequences, with
query times relatively close to those of a plain bitsequence implementation or
using RG.

Springer Nature 2021 B TEX template

26 Compressed and Queryable Self-Indexes for RDF Archives

The overall comparison results displayed hold for the remaining query
patterns: first, a wide space-time tradeoff can be obtained depending on the bit-
sequence representation chosen to handle the versioning information; second,
optimized query algorithms can improve query times significantly in the triple
patterns where they can be applied, but they usually provide an advantage
only when using compressed bitsequence representations, that are very slow at
access operations. In the following sections we will select a subset of the bit-
sequence configurations that is a good representative of the overall trends and
space-time tradeoff. Specifically, for the query patterns that support optimized
query algorithms (i.e. (s?7?), (sp?), (spo), in the tpv versioning strategy)
we will display query times only for those optimized algorithms. Additionally,
we will display query times for plain bitsequences, RRR, and Delta, as repre-
sentatives of the space-time tradeoff that can be achieved depending on the
bitsequence representation.

4.2.2 Comparing the versioning strategy

Next, we compared the space-time tradeoff of v-RDF-SI depending on both
the variant used for the storage of triples and the versioning strategy.

Figures 8 and 9 display the results for v-RDFCSA and v-HDT for subject
and object lookups respectively. We display results for the two alternatives
to handle the versioning information, vpt and tpv, and considered the bitse-
quence representations Plain, RRR, and Delta. Again, we only display results
for (s77) and (?770) as representative queries, since the trends are similar in
the other query patterns.

Let us focus on the comparison between versioning variants vpt and tpv.
The two plots in Figure 8 (top) display the performance on subject lookups
for version materialization and delta materialization queries. In both cases,
and independently of the bitsequence and data structure used, the tpv ver-
sioning strategy obtains faster query times, in addition to smaller space usage.
The difference is particularly significant in the most space-efficient solutions:
the tpv implementation using Delta bitsequences requires less than half the
time of the vpt counterpart. Figure 9 (top) displays similar results for object
lookups, and again the tpv strategy is faster and smaller.

When considering version queries (bottom plots in Figures 8 and 9), results
are slightly different: for subject lookups (s77), displayed in Figure 8 (bot-
tom), the tpv variant is still faster, thanks to the performance of the optimized
query algorithms. However, these optimizations are only available for 3 query
patterns, namely (s?77), (sp?) and (spo). In the remaining query patterns,
the vpt strategy becomes faster, as displayed in Figure 9 (bottom) for (?70)
patterns.

Considering the overall results, the choice of vpt or tpv versioning strategy
is affected mainly by the type of query to be executed: vpt is slower in general
in all Mat and Diff queries. However, in Ver queries the decision depends
on the triple pattern: when optimized algorithms are available for tpv, this
strategy is still faster, but when using basic algorithms vpt becomes the fastest

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 27
(s??) Mat (s??) Diff
250 350
_ _ 300
i 200 | i
g 3 250
o o'
S L P
3 10 = 200
3 3
£ 100} o1 E 150¢ 1
2 1l 2 % |
g || \ z 100 f | i
5 || | 1% |l \
& S0y L, 3 .l L~
AL R
2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Space (GiB) Space (GiB)
(s??) Ver
7000 RDFCSA-tpv-Plain —*—
RDFCSA-tpv-RRR —5—
= 6000 RDFCSA-tpv-Delta —©—
o HDT-tpv-Plain *
5 5000
& HDT-tpv-RRR W
2 4000 | HDT-tpv-DELTA @
0 RDFCSA-vpt-Plain
2
g 3000 ¢ RDFCSA-vpt-RRR ——
v RDFCSA-vpt-Delta
22000 ;
o HDT-vpt-Plain
3 <
1000 X\9 5 s HDT-vpt—-RRR v
s—e HDT-vpt-Delta

0 . . . M—1 . . Lo
2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Space (GiB)

Fig. 8 Subject lookups: Mat, Dif f, and Ver queries. Times in us/query, space in GiB.

alternative. Note that optimized query algorithms can always be used when
available, but could also be switched off without changes to the structure, the
choice of versioning strategy must be determined on construction time. We
consider that tpv is the best strategy overall, with vpt being only useful when
Ver queries are expected to be very frequent.

4.3 Comparison with the baseline in BEAR

In this section, we extend our experimental evaluation by comparing our vari-
ants with the Jena baseline deployed in BEAR. Throughout this section, we
consider not only the query times to perform the query on the versioned triples
encoded as IDs, but also the time required to transform the query compo-
nents to IDs and the reverse transformation of results to the corresponding
strings. To do this, we consider a default dictionary, based on Front-Coding,
to perform the transformations [40]. The dictionary adds 2.3GiB on top of the
space requirements of any of our v-RDF-SI variants, and requires 1.5-5 us to
process each query result, adding from a few microseconds to a few millisec-
onds to the query response times of v=RDFCSA and v-HDT, depending on the
query pattern, because the number of results returned can largely differ among
them. In this section, we will display results for the seven basic triple pattern
queries, in order to better characterize the difference in performance between

Springer Nature 2021 B TEX template

28 Compressed and Queryable Self-Indexes for RDF Archives

(??0) Mat (??0) Diff
2000 2500
1800
B 1600 F > 2000 F
M M
g g
8 1400 F ES
3 1200 - 3 1500 —X\e
= 3
w 1000 | o w
¢ :
k 800 & 1000 F
s i g
>y 600 >
M M
0] - o g
g 400 g 3 s00 ¢ L
200 b \N e A
0 L L L L L L L L 0 L L L L ’\\ L L L
2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Space (GiB) Space (GiB)
(2?20) Ver
55000 T RDFCSA-tpv-Plain —*—
50000 L RDFCSA-tpv—-RRR —H&—
= 45000 | RDFCSA-tpv-Delta —&—
e _ _ .
S 20000 | HDT-tpv-Plain *
& - -]
< 35000 HDT-tpv—-RRR
= HDT-tpv-DELTA L]
= 30000 | .
0 RDFCSA-vpt-Plain
@ 25000 [
E RDFCSA-vpt-RRR — v —
D 20000 -
o RDFCSA-vpt-Delta
g o000 S HDT-vpt-Plain
& 10000 ¢ A\ . .] HDT-vpt-RRR v
5000 M A, « HDT-vpt-Delta

0

. . . ! . . .
2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Space (GiB)

Fig. 9 Object lookups: Mat, Dif f, and Ver queries. Times in us/query, space in GiB.

our proposals v-RDFCSA and v-HDT, and the Jena baselines. For v-RDFCSA we
set ty = 64 which provides a balanced space/time tradeoff.

A first important consideration is the space required by each solution.
As shown in the previous sections, our variants require roughly 5-9 GiB to
store the complete dataset (including the dictionary), depending on the chosen
variant. On the other hand, Jena-IC, Jena-CB, and Jena-TB need 230GiB,
138GiB, and 81GiB, respectively. These differences in space are expected, due
to the different nature of the solutions. However, note that even the less com-
pact representations based on v-RDFCSA or v-HDT use roughly an order of
magnitude less space than Jena. In the rest of this section, we will focus on
query performance in order to show that our solutions are not only significantly
smaller but also much faster on average than the Jena baseline.

Figures 10 and 11 display the results for all the basic triple patterns on
version materialization queries; i.e. the times required to recover all the triples
matching the triple pattern in each version. We display results for the 3 main
Jena variants, as well as for 4 of our proposals, in order to cover the space-time
tradeoff provided: we show results for v—=HDT and v-RDFCSA with Plain and
Delta bitsequences. All our implementations use the tpv versioning strategy,
that is faster than vpt in all cases for this type of queries. Note that the
bitsequence implementations selected represent two opposite end points that
draw the overall space-time tradeoff provided in both v—=RDFCSA and v-HDT.

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 29

(s27?) (2720)

10000 T T T T T 10000 T T

Jena-IC Jena-IC
Jena-CB Jena-CB

- Jena-TB . Jena-TB

> 1000 ____ _HPT=Plaip —— { > 1000 E —— =Plaifi— A

o N\ DT-Delta B TV DT-Delta

= RDFCSA-Plain =) RDFCSA-Plain

~ RDFCSA-Delta ~ RDFCSA-Delta

2 100 2 100 ¢

0 o

: g

g 10 b 5 10 b

2 -

> >

19 ~ -

g 1P g 1 T~ A
& a RS~ SO SO OV I AR
0.1 0.1

0 10 20 30 40 50 0 10 20 30 40 50
Version Version
(?p?)
10000 T T

Jena-IC
Jena-CB

- Jena-TB

[HDT Plain

@ 1000 F - HPT-Delta —— 5

3, N Rfdenbiain

> RDFCSA-Delta

E

« 100

Q

£

-

+

& W

b 10

a AT T

1
0 10 20 30 40 50

Version
Fig. 10 Version materialization queries for subject (s?7?), object (?770), and predicate
(7p?) lookups. Times in ms/query.

Figure 10 displays the results for the most representative query patterns:
subject, object, and predicate lookups. Our proposals are faster in general than
the Jena baselines. Jena-IC is the most efficient approach from the baseline,
as expected, but it is still slower than our fastest solutions in all cases. For
(s7?) queries, Jena-IC requires around 1 ms/query (millisecond per query),
whereas v-RDFCSA and v-HDT use around 0.2 ms/query. In (?70) and (?7p?)
queries, Jena-1C is competitive with our solutions in query times, requiring
around 1 ms/query in (??0) and 10 ms/query in (?p?). Jena-CB is also
competitive for queries in the first versions of the datasets, but due to its
change-based nature it becomes slower as the version increases, and is on
average 5—10 times slower than Jena-IC. Note also that the difference between
our implementation alternatives, v—RDFCSA and v-HDT, as well as the difference
between bitsequence implementations, plain and Delta, are relatively small:
v-HDT is faster in (s77) and (?p?), whereas v—RDFCSA is faster in (770), but
all the solutions are roughly in the same order of magnitude. The effect of the
dictionary component is very significant in this scenario, since for queries that
return a relatively large number of results, the cost of the dictionary lookups
needed to unmap the resulting ID-based triples into the final string-based
triples is higher than the cost of querying the rdf-layer and the ver-layer. This
is the case for these three representative patterns.

Springer Nature 2021 B TEX template

30 Compressed and Queryable Self-Indexes for RDF Archives

(sp?) (s20)
10000 T T T T 10000 T T T T T
Jena-IC Jena-IC
Jena-CB Jena-CB
L Jena-TRB —— | L Jena-TR ——— |
~ 1000 . Jena-TR ——— | ~ 1000 E o na-TR —— _
5 E o~ ybTopTain > "~ ~"WbT-Plain
o HDT-Delta o HDT-Delta ——
5 _ i 3 -
E 100 b RDFCSA-Plain | o 100 b RDFCSA-Plain |
Py RDFCSA-Delta ; RDFCSA-Delta ——
£ £
” 10 ¢ 4 " 10 + E
I} o
£ £
A -
: ! Kf»\A/\/v\/\/v\/\/\AA/W[A/»\/\/\/\ - tr f
> >
g g W//\/\WW
o I}
=} =4
] 0.1 E e} 0.1k E|
0.01 0.01 U |
0 10 20 30 40 50 0 10 20 30 40 50
Version Version
(?po) (spo)
10000 T T T T T 10000 T T T T T
Jena-IC Jena-IC ——
Jena-CB Jena-CB
- Jena-TB — 1000 E Jena-TB —— |
[HDT-Plain 4 HDT-Plain
© 1000 FE A DT-Deltd ——— 0
B RDFCSA-Plain =
~ RDFCSA-Delta >
P a
E E
o 100 E " 10 + E
[Q
£ =
- -
o N]
a 10 oA EA D A ;4)
: : MM ANA NN
a E VA~ N\ AN —A] o 0.1 F
M — —
1 1 . f " . 0.01
0 10 20 30 40 50 0 10 20 30 40 50
Version Version

Fig. 11 Version materialization queries for (sp?), (s?70), (7po), and (spo) patterns. Times
in ms/query.

Figure 11 displays the results for (sp?), (s70), (7po), and (spo) queries.
As in the previous triple patterns, our solutions are overall faster than the Jena
baseline. Among our variants, v—HDT is faster in most cases, and the differences
between bitsequence implementations are not very significant in most cases.
Only Jena-IC is competitive in query times with our solutions, and is even
able to beat them in (7po) queries. In the remaining patterns, v-HDT and
v-RDFCSA are faster than Jena-IC, and v-HDT is usually an order of magnitude
faster. Jena-CB is again competitive only for queries in the first versions of
the archive, but around 10 times slower on average.

Figures 12 and 13 display the results for all the basic pattern queries
on delta materialization queries. We perform the basic delta materialization
queries between version 0 and versions 5, 10, ..., 55, 57, and display the evo-
lution of the query times as the gap between those two versions increases.
Therefore, the plots display the performance of delta materialization queries
for increasingly large version gaps.

Results show that, in general, our solutions are faster for delta material-
ization queries, yet the Jena baselines are competitive in some query patterns.
Particularly, in (?70) (Figure 12, top-right) and (7po) (Figure 13, bottom-
left) Jena-IC obtains query times similar to our solutions, but our fastest
solutions based on plain bitsequences still yield the best query times. Taking

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 31

(s27?) (2720)

10000 T 10000

Jena-IC Jena-IC
Jena-CB Jena-CB

- - ——— —Jena—TB— . . —Jdenpa-TB——

p 1000 HDT-Plain E z 1000 ¢ HDT-Plain E

) HDT-Delta 0 HDT-Delta

= RDFCSA-Plain =) RDFCSA-Plain

~ RDFCSA-Delta ~ RDFCSA-Delta

a 100 g 100 |

0 0

: :

g 10 b 5 10 b

2 -

> >

19 *»4»4-4-4—4—4»~4~«-<__~/»»»>,4_;4<4<4/ g 47 - B

g 1k E 5 1F

& &

0.1 0.1
10 20 30 40 50 10 20 30 40 50
Version Version

(?p?)

10000 T
Jena-IC
Jena-CB
Jena-TB
— - HPT-Plain— — ——

1000 f HDT-Delta 3
RDFCSA-Plain
RDFCSA-Delta

100 ¢

10 F

Query times (ms/query)

Version
Fig. 12 Delta materialization queries for subject, predicate, and object lookups. Times in
ms/query.

into account that Jena-IC requires roughly 20—40 times more space than our
representations, we consider our solutions still preferable in this scenario, even
if Jena is competitive in query times. For the remaining query patterns, all
our variants are faster than Jena, and our best solution is always v-HDT with
plain bitsequences. It achieves query times that range between 0.01-0.003 ms/-
query for the most selective queries displayed in Figure 13 and 2-4 ms/query
for (?p?) queries, where the cost of the query is dominated by the dictionary
lookups. Overall, our solutions provide very stable and efficient query times
across all patterns, with worst-case query times below 10 ms/query even for
those queries returning many results (up to 1000 triples per query in (?p?)).

Figures 14 and 15 display the results for version queries, that retrieve all
occurrences matching the query pattern among all versions of the dataset.
As in the previous query types, we first display results for the representative
subject, object, and predicate lookups in Figure 14 and then for the more
selective patterns in Figure 15. In this scenario, we display query times for our
approaches using the vpt strategy, that showed to be faster than tpv in most
query patterns.

Both v-RDFCSA and v-HDT are much faster than the Jena baselines in most
query patterns. For (s?7) and (?70) queries, displayed in Figure 14, our
fastest variants are 5 times faster than Jena-1C and Jena-CB, which obtain

Springer Nature 2021 B TEX template

32 Compressed and Queryable Self-Indexes for RDF Archives

(sp?) (s20)
10000 T T T T 10000 T T T T T
Jena-IC Jena-IC
. dJemasCB 1 Jena=CB |
—~ 1000 £ — Jenaf?‘B 4 — 1000 £ Jenaf’;}? —
i HDT-Plain a HDT-Plain
I HDT-Delta [} HDT-Delta ——
S _ i 3 -
E 100 b RDFCSA-Plain | o 100 b RDFCSA-Plain |
Py RDFCSA-Delta : RDFCSA-Delta ——
E g
” 10 b £ " 10 b 4
%) @
£ £
A A
s e~] » |]
> o N ~ 3
19 9
%] o
=3 3
a 0.1 p————— ——— 5 =] 0.1 g £
0.01 0.01 == I N —— ——
10 20 30 40 50 10 20 30 40 50
Version Version
(?po) (spo)
10000 T T T T T 1000 T T T T T
Jena-IC Jena-IC
Jena-CB - —Jena=€B
- ~_Jena-TB - Jena-TB ———
? ————— —HDT-Plain | a 100 g HDT-Plain 3
) 1000 HDT-Delta E| 9] HDT-Delta ——
E) RDFCSA-Plain) RDFCSA-Plain
>~ RDFCSA-Delta ~ RDFCSA-Delta ———
)) 10 b 4
E E
o 100 £ 1 "
g g
A A 1k E
D D
o 10 ¢ 3 0]
=3 S 0.1F E
= S — — o
L ‘ ‘ ‘ ‘ P e —]
10 20 30 40 50 10 20 30 40 50
Version Version

Fig. 13 Delta materialization queries for (sp?), (s?0), (?po), and (spo) patterns. Times
in ms/query.

the best results in the baseline. Similar comparison results appear for most
of the remaining patterns, including the more selective queries displayed in
Figure 15. In most cases, all our variants are faster than the best Jena base-
line, in some cases up to 3 orders of magnitude faster. However, Jena-CB is
faster in (?p?) queries (Figure 14, bottom), where most of the query time in
our representations is spent in dictionary accesses. Jena-CB is also competi-
tive with our variants using Delta compressed bitmaps in (?po) and (770)
queries. Among our solutions, v-HDT is faster than v—RDFCSA in general, and
the solutions using plain bitsequences are faster than those using compressed
Delta bitsequences, as expected.

Considering the overall results for Mat, Diff, and Ver queries, our
variants clearly improve the baseline both in space requirements and query
performance. The Jena-IC baseline is competitive in query times with our
best solutions, but requires 20-40 times more space. Jena-CB is competitive
with our proposals in version queries, but much less efficient in the remaining
queries, and still much larger than our proposals. Jena-TB, the most compact
baseline, is orders of magnitude slower than any of our solutions.

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives

(s2?)
100000
Jena-IC

- Jena-CB
i Jena-TB NS
§ 10000 RDFCSA-Plain M
g‘ HDT-Plain
5 RDFCSA-Delta mmwem
& HDT-Delta M
w 1000
0
E
5
5
[100
o
5
&

100000

Query times (ms/query

10000

(220)
100000
Jena-IC
_ Jena-CB
o Jena-TB M-
$ 10000 RDFCSA-Plain s
t:f HDT-Plain
5 RDFCSA-Delta Mummme
£ HDT-Delta M
o 1000
9
&
5
D
& 100
0
3
&
10
(2p?)

1000

100

RDFCSA-Plain memssm

RDFCSA-Delta W=

Jena-IC mmmm—

Jena-CB

Jena-TB M
HDT-Plain

HDT-Delta M

Fig. 14 Version queries for subject, predicate, and object lookups. Times in ms/query.

(sp?)
100000

Jena-IC mm—
_ Jena-CB
> Jena-TB
4 10000 RDFCSA-Plain s
z HDT-Plain
3 RDFCSA-Delta Wwwe
£ 1000 HDT-Delta s
o
19
£
5
D
>
9
o
5
o

(2po)
100000
Jena-IC IS
- Jena-CB
o Jena-TB mmmmm
g 10000 RDFCSA-Plain s
g‘ HDT-Plain
P RDFCSA-Delta mewswm
E HDT-Delta Wm—m
o 1000
g
£
|
D
& 100
o
3
&
10

(s?0)
100000
Jena-IC NS
- Jena-CB
i 10000 Jena-TB N
o RDFCSA-Plain memmmsm
B HDT-Plain
5 1000 RDFCSA-Delta WSS
E HDT-Delta mmmmm
w 100
1]
£
]
A 10
>
B
3 1
o
.1
(spo)
100000
Jena-IC NS
- Jena-CB
3 10000 Jena-TB M-
o RDFCSA-Plain M
& 1000 HDT-Plain
3 RDFCSA-Delta M
E 100 HDT-Delta mm—
H
e 10
=
D
> 1
I
5
& 0.1

33

Fig. 15 Version queries for (sp?), (s?0), (?po), and (spo) patterns. Times in ms/query.

4.4 Comparison with OSTRICH

We have compared our proposal with OSTRICH [56], a state-of-the-art com-
pact solution offering good space/time tradeoffs [51]. Since we were unable to
build the representation of the full BEAR dataset with OSTRICH in reason-
able time, and in order to provide an estimation of the relative performance of
this tool, we have performed tests using just the first 10 versions of the dataset.
OSTRICH requires around 5GiB to store these versions, whereas v-RDFCSA,
is able to represent them in 1.15 GiB using Plain bitmaps (Delta bitmaps
barely improve space due to the small number of versions). Note that most of

Springer Nature 2021 B TEX template

34 Compressed and Queryable Self-Indexes for RDF Archives

the space is taken by the string dictionary; the representation of the integer
triples requires less than 0.5 GiB in v-RDFCSA.

Version materialization Delta materialization
100 T T T T T 10 T T
RDFCSA-PLAIN RDFCSA-PLAIN
RDFCSA-DELTA RDFCSA-DELTA
—~ OSTRICH _ N ~ OSTRICH ——
> 10 ¢ E| >y
& I
B 3 1
g g
& S — 1 o
z z
P) L P)
E ! E
) «w 0.1
g &
= 0.1 ¢ E _
i 3
: : S~
b @ 0.0l
1) 1) \
3 3
& 0.01 & \\

0.001 L L L L L L L L 0.001
0 1 2 3 4 5 6 7 8 9 5 9

Version Version

Version

RDFCSA-PLAIN
RDFCSA-DELTA mmmm
OSTRICH s

Query times (ms/query)
°
-

0.01

Fig. 16 Times for version materialization queries (top left), delta materialization queries
(top right) and version queries (bottom) in OSTRICH and v-RDFCSA. Times in ms/query.

Next, we compare the query performance of v-RDFCSA with OSTRICH.
Figure 16 displays a summary of query times obtained running the original
BEAR query set on just the first 10 versions. We include results only for the
(s?7) pattern, but similar trends appear in other patterns, with our proposal
being significantly faster than OSTRICH. In version materialization queries
(top-left plot), OSTRICH is more competitive when accessing a snapshot (ver-
sion 0), but is still slower than v-RDFCSA in all cases. In delta materialization
and version queries, our proposal is again clearly faster than OSTRICH.

4.5 Summary of experiments

In previous sections, we have covered a variety of variants and query scenarios.
In this section, we summarize the overall results and discuss the main trends
identified in our experimentation.

The variants of v-RDF-SI tested provide a wide space-time tradeoff: our
solution requires roughly 4.5-9GiB to store the full BEAR archive, that
requires 325GiB when stored in plain format. The overall size of our represen-
tation depends on the choice for the rdf-layer and the ver-layer. The rdf-layer,
that stores the version-oblivious triples, requires 1.9-2.3GiB to store the triples

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 35

when compressed using v-RDFCSA, and 4.3GiB when using v-HDT. Addition-
ally, a Front-coding dictionary is necessary to translate string to ids, requiring
an additional 2.3GiB. The wver-layer requires 0.3-2.7GiB, depending on the
choice of bitsequence and versioning strategy. The bitsequence implementation
used is the most important factor: Plain bitsequences require 2.5GiB, whereas
compact implementations such as Delta or 0Z require less than 1GiB.

The choice of triple representation, the bitsequence implementation and
the versioning strategy have a significant effect in query times. In the rdf-
layer, v—RDFCSA is slower than v—HDT for most query patterns. In the ver-layer,
variants with Plain bitsequences are one order of magnitude faster than
using Delta, ignoring the dictionary query times. The tpv versioning strat-
egy is faster in general than vpt in Mat and Diff queries, especially in
queries such as (s?7) and (sp?), for which optimized algorithms exist only
in the tpv strategy. In Ver queries, the vpt strategy is slightly faster in most
queries. Recall, however, that the experiments in Section 4.2 do not consider
the dictionary query times. Therefore, differences between variants are less
extreme in Section 4.3, once the dictionary query times are incorporated to
the measurements.

When compared with the Jena baseline, v-RDF-SI has much lower space
requirements and is also clearly faster in almost all queries. Our largest solu-
tion is v-HDT with Plain bitsequences, and uses around 9GiB; a much more
compact solution based on v-RDFCSA and Delta bitsequences requires around
5GiB. Jena-based solutions, on the other hand, use 80-230GiB, and are slower
than our slowest solution in most of the queries. Overall, our fastest variants
based on plain bitmaps yield the best query times in almost all cases, even
if Jena-IC and Jena-CB are competitive in some queries. Query times of our
proposals depend heavily on the query. Our solutions range from less than 0.1
ms/query in (spo) version materialization queries to 300 ms/query for (?p?)
version queries. In most queries v-HDT is 2-5 times faster than the equivalent
v-RDFCSA, and Delta bitsequences can yield query times up to 5 times slower
than Plain bitsequences.

Overall, we consider that v—~RDFCSA and the tpv versioning strategy offer
the best tradeoff, and that compressed bitsequences are probably the best
choice in most scenarios. Note that differences in query times are usually less
significant in the most complex queries (see, for instance, (?p?) queries in
Figure 14), so the alternatives that achieve better compression are very com-
petitive for most applications. The vpt versioning strategy is still useful for Ver
queries, and Plain bitsequences of v—=HDT can be used to prioritize performance
over memory consumption.

Finally, our experimental comparison with OSTRICH shows that v—-RDFCSA
clearly overcomes OSTRICH in both space and time. It uses around 30% of
its space and yields 1-2 orders of magnitude faster query times.

Springer Nature 2021 BETEX template

36 Compressed and Queryable Self-Indexes for RDF Archives

5 Conclusions and Future Work

In this paper we introduce v-RDF-SI, a solution able to efficiently handle large
RDF archives in compressed space. Our proposal separates the archive repre-
sentation into two layers, and provides alternative implementations for each
of them: the rdf-layer stores the version-oblivious triples in the dataset, and
is implemented using RDFCSA or HDT; the ver-layer stores the versioning infor-
mation, and is implemented following two strategies (tpv and vpt) that can
be coupled with any bitsequence representation. By exploiting the compres-
sion capabilities and performance of compact data structures in both layers,
v-RDF-SI is able to achieve very good compression while providing efficient
query support.

Our experimental evaluation using the BEAR benchmark shows that
v-RDF-SI clearly outperforms the reference Jena baseline, by reducing space
requirements up to 40 times while yielding query times much faster on average,
and competitive in all queries. In addition, our results show that a space-time
tradeoff can be achieved in v-RDF-SI: solutions based on v-RDFCSA and com-
pressed bitsequences require approximately half the space of solutions based
on v-HDT and plain bitsequences, but are also 2-5 times slower in most cases.
Furthermore, the two versioning strategies that we present yield different
performance depending on the queries, being tpv the best choice overall.

In addition, we have included a comparison with OSTRICH, a state-of-the-
art solution for RDF archiving, where we show that our proposal uses roughly
one quarter of the space required by OSTRICH while being significantly faster
at query time. This permits us to conclude that our proposals make up a
relevant contribution for RDF archiving.

As future work, we plan to integrate our solution in a full SPARQL engine,
so it can provide versioning functionalities on all types of SPARQL queries.
In addition, we plan to explore other possibilities for the rdf-layer. A major
pending challenge is the support for changeset ingestion. Dynamic dictionaries
or small collections of static dictionaries could be used to handle new versions,
but combining these with the rigid ID assignment requirements in the rdf-layer
is the major challenge. The rdf-layer could be implemented using dynamic
compact data structures like the dynamic k2-tree [10], but this would require
to apply some of the changes described in Section 3.1.3 to keep track of
triple ordering. Another alternative is the creation of a dynamic RDFCSA, using
dynamic variants of the CSA [14, 38, 45]. Insertions in the ver-layer could be
easily implemented in the tpv variant with static bitsequences for each new
version, but more complex solutions involving dynamic bitsequences [16] would
be required for vpt.

Statements and declarations

Acknowledgments. The first three co-authors are members of the CITIC,
which, as Research Center accredited by the Galician University System, is
funded by Conselleria de Cultura, Educacion e Universidades from Xunta

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 37

de Galicia, supported in an 80% through ERDF Funds, ERDF Opera-
tional Programme Galicia 2014-2020, and the remaining 20% by Secretaria
Xeral de Universidades [grant ED431G 2019/01]. The Spanish group is also
funded by Xunta de Galicia/FEDER-UE [ED431C 2021/53]; by MICINN
[Magist: PID2019-105221RB-C41; FLATCity-POC: PDC2021-121239-C31;
SIGTRANS: PDC2021-120917-C21; EXTRA-Compact: PID2020-114635RB-
100; PID2019-105221RB-C41]; by MCIU-AEI/FEDER-UE [BIZDEVOPS:
RTI2018-098309-B-C32]; and by Xunta de Galicia / Igape/ 1G240.2020.1.185.

Data availability. The BEAR dataset used in our experiments is available
at https://aic.ai.wu.ac.at/qadlod/bear.html (named BEAR-A).

References

[1] Abeliuk A, Cédnovas R, Navarro G (2013) Practical compressed suffix
trees. Algorithms 6(2):319-351. https://doi.org/10.3390/a6020319

[2] Ali W, Saleem M, Yao B, et al (2022) A survey of RDF stores & SPARQL
engines for querying knowledge graphs. The VLDB Journal 31(3):1-26.
https://doi.org/10.1007/s00778-021-00711-3

[3] Alvarez-Garcia S, Brisaboa N, Fernéndez J, et al (2015) Compressed
Vertical Partitioning for Efficient RDF Management. Knowledge and
Information Systems 44(2):439-474. https://doi.org/10.1007/s10115-014-
0770-y

[4] Arndt N, Naumann P, Radtke N, et al (2019) Decentralized collaborative
knowledge management using git. Journal of Web Semantics 54:29-47.
https://doi.org/10.1016/j.websem.2018.08.002

[5] Atre M, Chaoji V, Zaki MJ, et al (2010) Matrix “bit” loaded: A scalable
lightweight join query processor for RDF data. In: Proceedings of the
19th International Conference on World Wide Web (WWW), pp 41-50,
https://doi.org/10.1145/1772690.1772696

[6] Bigerl A, Conrads F, Behning C, et al (2020) Tentris — A Tensor-Based
Triple Store. In: Proceedings of the 19th International Semantic Web
Conference (ISWC), pp 5673, https://doi.org/10.1007/978-3-030-62419-
4.4

[7] Bizer C, Meusel R, Primpel A, et al (2022) Web data com-
mons—microdata, RDFa, JSON-LD, and microformat data sets. URL
https://webdatacommons.org/structureddata/

[8] Brisaboa N, Ladra S, Navarro G (2014) Compact Representation of Web
Graphs with Extended Functionality. Information Systems 39(1):152-174.
https://doi.org/10.1016/j.is.2013.08.003

https://aic.ai.wu.ac.at/qadlod/bear.html
https://doi.org/10.3390/a6020319
https://doi.org/10.1007/s00778-021-00711-3
https://doi.org/10.1007/s10115-014-0770-y
https://doi.org/10.1007/s10115-014-0770-y
https://doi.org/10.1016/j.websem.2018.08.002
https://doi.org/10.1145/1772690.1772696
https://doi.org/10.1007/978-3-030-62419-4_4
https://doi.org/10.1007/978-3-030-62419-4_4
https://webdatacommons.org/structureddata/
https://doi.org/10.1016/j.is.2013.08.003

38

[9]

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives

Brisaboa N, Cerdeira A, Fariia A, et al (2015) A compact RDF store
using suffix arrays. In: Proceedings of the 22nd International Symposium
on String Processing and Information Retrieval (SPIRE). Springer, Cham,
LNCS 9309, pp 103-115, https://doi.org/10.1007/978-3-319-23826-5_11

Brisaboa NR, Cerdeira-Pena A, de Bernardo G, et al (2017) Compressed
representation of dynamic binary relations with applications. Information
Systems 69:106-123. https://doi.org/10.1016/j.is.2017.05.003

Brisaboa NR, Cerdeira-Pena A, de Bernardo G, et al (2019) Improved
compressed string dictionaries. In: Proceedings of the 28th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM).
ACM, pp 29-38, https://doi.org/10.1145/3357384.3357972

Brisaboa NR, Cerdeira-Pena A, de Bernardo G, et al (2022) Space/time-
efficient rdf stores based on circular suffix sorting. Journal of Super-
computing 79(5):5643-5683. https://doi.org/10.1007/s11227-022-04890-
w

Cerdeira-Pena A, Farina A, Ferndndez JD, et al (2016) Self-indexing RDF
archives. In: Proceedings of the Data Compression Conference (DCC).
IEEE, pp 526-535, https://doi.org/10.1109/DCC.2016.40

Chan HL, Hon WK, Lam TW, et al (2007) Compressed indexes for
dynamic text collections. ACM Transactions on Algorithms 3(2):21-es.
https://doi.org/10.1145/1240233.1240244

Claude F, Navarro G (2009) Practical rank/select queries over arbitrary
sequences. In: Proceedings of the 15th International Symposium on String
Processing and Information Retrieval (SPIRE). Springer, Berlin, Heidel-
berg, LNCS 5280, pp 176-187, https://doi.org/10.1007/978-3-540-89097-
318

Cordova J, Navarro G (2016) Practical dynamic entropy-compressed
bitvectors with applications. In: Proceedings of the 15th International
Symposium on Experimental Algorithms (SEA), LNCS 9685, pp 105
—117, https://doi.org/10.1007/978-3-319-38851-9_8

Curé O, Blin, Guillaume, et al (2014) Waterfowl: A compact, self-indexed
and inference-enabled immutable RDF store. In: Proceedings of the 11th
Extended Semantic Web Conference (ESWC), LNCS 8465, pp 302-316,
https://doi.org/10.1007/978-3-319-07443-6_21

Dong-Hyuk I, Sang-Won L, Hyoung-Joo K (2012) A Version Manage-
ment Framework for RDF Triple Stores. International Journal of Software
Engineering and Knowledge Engineering 22(1):85-106. https://doi.org/
10.1142/50218194012500040

https://doi.org/10.1007/978-3-319-23826-5_11
https://doi.org/10.1016/j.is.2017.05.003
https://doi.org/10.1145/3357384.3357972
https://doi.org/10.1007/s11227-022-04890-w
https://doi.org/10.1007/s11227-022-04890-w
https://doi.org/10.1109/DCC.2016.40
https://doi.org/10.1145/1240233.1240244
https://doi.org/10.1007/978-3-540-89097-3_18
https://doi.org/10.1007/978-3-540-89097-3_18
https://doi.org/10.1007/978-3-319-38851-9_8
https://doi.org/10.1007/978-3-319-07443-6_21
https://doi.org/10.1142/S0218194012500040
https://doi.org/10.1142/S0218194012500040

[19]

[22]

23]

[24]

[25]

[26]

[27]

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 39

Erling O, Mikhailov I (2009) RDF support in the Virtuoso DBMS. In:
Networked Knowledge - Networked Media. Studies in Computational
Intelligence, vol 221, Springer, Berlin, Heidelberg, p 7-24, https://doi.
org/10.1007/978-3-642-02184-8 2

Farifia A, Brisaboa NR, Navarro G, et al (2012) Word-based Self-Indexes
for Natural Language Text. ACM Transactions on Information Systems
30(1):article 1:. https://doi.org/10.1145/2094072.2094073

Fernandez J, Martinez-Prieto M, Gutiérrez C, et al (2013) Binary RDF
representation for publication and exchange (HDT). Journal of Web
Semantics 19:22-41. https://doi.org/10.1016/j.websem.2013.01.002

Ferndndez JD, Martinez-Prieto MA (2018) RDF Serialization and
Archival, Springer, Cham, pp 1-11. https://doi.org/10.1007/978-3-319-
63962-8_286-1

Ferndndez JD, Llaves A, Corcho O (2014) Efficient RDF interchange
(ERI) format for RDF data streams. In: Proceedings of the 13th Inter-
national Semantic Web conference (ISWC). Springer, Berlin, Heidelberg,
LNCS 8797, pp 244-259, https://doi.org/10.1007/978-3-319-11915-1_16

Ferndndez JD, Polleres A, Umbrich J (2015) Towards Efficient Archiving
of Dynamic Linked Open Data. In: Proceedings of the First DIACHRON
Workshop on Managing the Evolution and Preservation of the Data Web.
Co-located with 12th Extended Semantic Web Conference (ESWC), pp
34-49, URL http://ceur-ws.org/Vol-1377/

Ferndndez JD, Umbrich J, Polleres A, et al (2019) Evaluating query and
storage strategies for RDF archives. Semantic Web Journal 10(2):247-291.
https://doi.org/10.3233/SW-180309

Ferndandez N, Arias J, Sanchez L, et al (2014) RDSZ: an approach for
lossless RDF stream compression. In: Proceedings of the 11th Extended
Semantic Web Conference (ESWC), Springer, Cham, LNCS 8465, pp 52—
67, https://doi.org/10.1007/978-3-319-07443-6_5

Gomes D, Costa M, Cruz D, et al (2013) Creating a Billion-scale Search-
able Web Archive. In: Proceedings of the 22nd International Conference
on World Wide Web (WWW Companion). Association for Computing
Machinery, New York, NY, USA, pp 1059-1066, https://doi.org/10.1145/
2487788.2488118

Gonzélez R, Grabowski S, Mékinen V, et al (2005) Practical implementa-
tion of rank and select queries. In: Poster Proceedings of the 4th Workshop
on Efficient and Experimental Algorithms (WEA). CTI Press and Ellinika
Grammata, pp 27-38

https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1145/2094072.2094073
https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1007/978-3-319-63962-8_286-1
https://doi.org/10.1007/978-3-319-63962-8_286-1
https://doi.org/10.1007/978-3-319-11915-1_16
http://ceur-ws.org/Vol-1377/
https://doi.org/10.3233/SW-180309
https://doi.org/10.1007/978-3-319-07443-6_5
https://doi.org/10.1145/2487788.2488118
https://doi.org/10.1145/2487788.2488118

40

[29]

[30]

33]

[34]

[36]

[37]

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives

Graube M, Hensel S, Urbas L (2014) R43ples: Revisions for triples. In:
Proceedings of the 1st Workshop on Linked Data Quality (LQD)

Grossi R, Gupta A, Vitter JS (2003) High-order entropy-compressed
text indexes. In: Proceedings of the 14th annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA). Society for Industrial and Applied
Mathematics, USA, pp 841-850, https://doi.org/10.5555/644108.644250

Harris S, Seaborne A (2013) SPARQL 1.1 Query Language. W3C
Recommendation, http://www.w3.org/ TR /sparqll1l-query/

Hasemann H, Kroller A, Pagel M (2012) Rdf provisioning for the internet
of things. In: Proceedings of the 3rd IEEE International Conference on
the Internet of Things (IOT), pp 143-150, https://doi.org/10.1109/I0T.
2012.6402316

Herndndez-Illera A, Martinez-Prieto M, Ferndndez J (2015) Serializing
RDF in Compressed Space. In: Proceedings of the Data Compression
Conference (DCC). IEEE Computer Society, USA, pp 363-372, https://
doi.org/10.1109/DCC.2015.16

Herndndez-Illera A, Martinez-Prieto M, Fernindez J, et al (2020)
iHDT++: improving HDT for SPARQL triple pattern resolution. Jour-
nal of Intelligent & Fuzzy Systems 39(2):2249-2261. https://doi.org/10.
3233/JIFS-179888

Kiéfer T, Abdelrahman A, Umbrich J, et al (2013) Observing Linked Data
Dynamics. In: Proceedings of the 10th Extended Semantic Web Con-
ference (ESWC). Springer, Berlin, Heidelberg, LNCS 7882, pp 213-227,
https://doi.org/10.1007/978-3-642-38288-8_15

Klein M, Fensel D, Kiryakov A, et al (2002) Ontology Versioning and
Change Detection on the Web. In: Proceedings of the 13th International
Conference on Knowledge Engineering and Knowledge Management
(EKAW). Springer, Berlin, Heidelberg, LNCS 2473, pp 197-212, https://
doi.org/10.1007/3-540-45810-7_20

Lhez J, Ren X, Belabbess B, et al (2017) A compressed, inference-enabled
encoding scheme for RDF stream processing. In: Proceedings of the 14th
Extended Semantic Web Conference (ESWC). Springer, Berlin, Heidel-
berg, LNCS 10250, pp 79-93, https://doi.org/10.1007/978-3-319-58451-
5.6

Maékinen V, Navarro G (2008) Dynamic entropy-compressed sequences
and full-text indexes. ACM Transactions on Algorithms 4(3):article 32.
https://doi.org/10.1145/1367064.1367072

https://doi.org/10.5555/644108.644250
http://www.w3.org/TR/sparql11-query/
https://doi.org/10.1109/IOT.2012.6402316
https://doi.org/10.1109/IOT.2012.6402316
https://doi.org/10.1109/DCC.2015.16
https://doi.org/10.1109/DCC.2015.16
https://doi.org/10.3233/JIFS-179888
https://doi.org/10.3233/JIFS-179888
https://doi.org/10.1007/978-3-642-38288-8_15
https://doi.org/10.1007/3-540-45810-7_20
https://doi.org/10.1007/3-540-45810-7_20
https://doi.org/10.1007/978-3-319-58451-5_6
https://doi.org/10.1007/978-3-319-58451-5_6
https://doi.org/10.1145/1367064.1367072

39]

[40]

[42]

[43]

[45]

[48]

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 41

Manber U, Myers G (1993) Suffix arrays: a new method for on-line string
searches. STAM Journal on Computing 22(5):935-948. https://doi.org/10.
1137,/0222058

Martinez-Prieto M, Brisaboa N, Cdnovas R, et al (2016) Practical Com-
pressed String Dictionaries. Information Systems 56:73-108. https://doi.
org/10.1016/j.is.2015.08.008

Martinez-Prieto MA, Arias Gallego M, Ferndndez JD (2012) Exchange
and consumption of huge RDF data. In: Proceedings of the 9th Extented
Semantic Web Conference (ESWC). Springer, Berlin, Heidelberg, LNCS
7295, pp 437-452, https://doi.org/10.1007/978-3-642-30284-8_36

Martinez-Prieto MA, Ferndndez JD, Herndndez-Illera A, et al (2018) RDF
Compression, Springer, Cham, pp 1-11. https://doi.org/10.1007/978-3-
319-63962-8_62-1

Martinez-Prieto MA, Ferndndez JD, Herndndez-Illera A, et al (2020)
Knowledge Graph Compression for Big Semantic Data, Springer, Cham,
pp 1-13. https://doi.org/10.1007/978-3-319-63962-8_62-2

Meinhardt P, Knuth M, Sack H (2015) Tailr: a platform for preserving
history on the web of data. In: Proceedings of the 11th International
Conference on Semantic Systems (SEMANTICS). Association for Com-
puting Machinery, New York, NY, USA, pp 5764, https://doi.org/10.
1145/2814864.2814875

Munro JI, Nekrich Y, Vitter JS (2015) Dynamic data structures for docu-
ment collections and graphs. In: Proceedings of the 34th ACM Symposium
on Principles of Database Systems (PODS). Association for Computing
Machinery, New York, NY, USA, pp 277-289, https://doi.org/10.1145/
2745754.2745778

Navarro G (2016) Compact Data Structures — A practical approach.
Cambridge University Press, NY, USA, https://doi.org/10.1017/
CBO09781316588284

Navarro G, Providel E (2012) Fast, small, simple rank/select on bitmaps.
In: Proceedings of the 11th International Conference on Experimental
Algorithms (SEA). Springer, Berlin, Heidelberg, LNCS 7276, pp 295-306,
https://doi.org/10.1007/978-3-642-30850-5_26

Neumann T, Weikum G (2010) The RDF-3X engine for scalable manage-
ment of RDF data. The VLDB Journal 19(1):91-113. https://doi.org/10.
1007/s00778-009-0165-y

https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1016/j.is.2015.08.008
https://doi.org/10.1016/j.is.2015.08.008
https://doi.org/10.1007/978-3-642-30284-8_36
https://doi.org/10.1007/978-3-319-63962-8_62-1
https://doi.org/10.1007/978-3-319-63962-8_62-1
https://doi.org/10.1007/978-3-319-63962-8_62-2
https://doi.org/10.1145/2814864.2814875
https://doi.org/10.1145/2814864.2814875
https://doi.org/10.1145/2745754.2745778
https://doi.org/10.1145/2745754.2745778
https://doi.org/10.1017/CBO9781316588284
https://doi.org/10.1017/CBO9781316588284
https://doi.org/10.1007/978-3-642-30850-5_26
https://doi.org/10.1007/s00778-009-0165-y
https://doi.org/10.1007/s00778-009-0165-y

42

[49]

[50]

[54]

[55]

[56]

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives

Neumann T, Weikum G (2010) x-RDF-3X: Fast querying, high update
rates, and consistency for RDF databases. Proceedings of the VLDB
Endowment 3(1-2):256-263. https://doi.org/10.14778/1920841.1920877

Okanohara D, Sadakane K (2007) Practical entropy-compressed rank/se-
lect dictionary. In: Proceedings of the Meeting on Algorithm Engineering
& Expermiments (ALENEX). Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, pp 60-70, https://doi.org/10.5555/
2791188.2791194

Pelgrin O, Galarraga L, Hose K (2021) Towards Fully-fledged Archiving
for RDF Datasets. Semantic Web Journal Pre-press:1-24. https://doi.
org/10.3233 /sw-210434

Pibiri GE, Perego R, Venturini R (2020) Compressed indexes for fast
search of semantic data. IEEE Transactions on Knowledge and Data
Engineering https://doi.org/10.1109/TKDE.2020.2966609

Raman R, Raman V, Rao S (2002) Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In: Proceedings of the
13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
Society for Industrial and Applied Mathematics, USA, pp 233-242,
https://doi.org/10.5555/545381.545411

Sadakane K (2003) New Text Indexing Functionalities of the Compressed
Suffix Arrays. Journal of Algorithms 48(2):294-313. https://doi.org/10.
1016/S0196-6774(03)00087-7

Schreiber G, Raimond Y (2014) RDF Primer. W3C Recommendation,
https://www.w3.org/TR/rdf11-primer/

Taelman R, Vander Sande M, Van Herwegen J, et al (2019) Triple storage
for random-access versioned querying of RDF archives. Journal of Web
Semantics 54:4-28. https://doi.org/10.1016/j.websem.2018.08.001

Thompson BB, Personick M, Cutcher M (2014) The Bigdata® RDF
graph database. In: Linked Data Management. Chapman and Hall/CRC,
chap 8, p 1-46, https://doi.org/10.1201/H16859

Vander Sander M, Colpaert P, Verborgh R, et al (2013) R&Whbase: Git for
Triples. In: Proceedings of the WWW2013 Workshop on Linked Data on
the Web (LDOW), vol CEUR-WS 996, LDOW paper 1. CEUR-WS.org,
p 5, URL http://ceur-ws.org/Vol-996

Volkel M, Groza T (2006) Semversion: An RDF-based ontology ver-
sioning system. In: Proceedings of the IADIS international conference
WWW /Internet (ICWI), pp 195-202, URL http://www.iadisportal.org/

https://doi.org/10.14778/1920841.1920877
https://doi.org/10.5555/2791188.2791194
https://doi.org/10.5555/2791188.2791194
https://doi.org/10.3233/sw-210434
https://doi.org/10.3233/sw-210434
https://doi.org/10.1109/TKDE.2020.2966609
https://doi.org/10.5555/545381.545411
https://doi.org/10.1016/S0196-6774(03)00087-7
https://doi.org/10.1016/S0196-6774(03)00087-7
https://www.w3.org/TR/rdf11-primer/
https://doi.org/10.1016/j.websem.2018.08.001
https://doi.org/10.1201/b16859
http://ceur-ws.org/Vol-996
http://www.iadisportal.org/digital-library/semversion-an-rdf-based-ontology-versioning-system

Springer Nature 2021 B TEX template

Compressed and Queryable Self-Indexes for RDF Archives 43
digital-library /semversion-an-rdf-based-ontology- versioning-system

[60] Weiss C, Karras P, Bernstein A (2008) Hexastore: Sextuple indexing for
semantic web data management. Proc VLDB Endowment 1(1):1008-1019.
https://doi.org/10.14778 /1453856.1453965

http://www.iadisportal.org/digital-library/semversion-an-rdf-based-ontology-versioning-system
https://doi.org/10.14778/1453856.1453965

	Introduction
	Background
	RDF and SPARQL
	State of the Art of RDF Compression
	RDF archives
	Retrieval Functionality.

	State of the Art of RDF Archiving
	Bitsequence representations

	Self-Indexing RDF archives (v-RDF-SI)
	rdf-layer: RDF triples encoding
	v-RDFCSA: using RDFCSA into the rdf-layer
	v-HDT: using HDT into the rdf-layer
	Other alternatives for the rdf-layer

	ver-layer: Version information encoding
	Retrieval algorithms

	Experiments
	Experimental framework
	Space-time tradeoff of our variants
	Choosing a bitsequence implementation
	Comparing the versioning strategy

	Comparison with the baseline in BEAR
	Comparison with OSTRICH
	Summary of experiments

	Conclusions and Future Work
	Acknowledgments
	Data availability

