

Male reproductive dysfunction in *Solea senegalensis*: new insights into an unsolved question

Marta F. Riesco^A, David G. Valcarce^A, Juan Manuel Martínez-Vázquez^A, Ignacio Martín^A, Andrés Ángel Calderón-García^B, Verónica González-Núñez^B and Vanesa Robles^{ID A,C}

^ASpanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain.

^BInstituto de Neurociencias de Castilla y León (INCyL), Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain.

^CCorresponding author. Email: robles.vanesa@gmail.com

Abstract. Senegalese sole (*Solea senegalensis*) is a species with a high commercial value that exhibits a reproductive dysfunction in males born and raised in captivity (F_1) that hinders their sustainable culture. The present study evaluates the sperm quality and dopaminergic pathway of males born in the wild environment and of F_1 males. Traditional sperm analyses were performed, finding only significant differences in curvilinear velocity (VCL) and no significant differences in viability and total motility. No differences in global sperm methylation were observed either in spermatozoa or brain between the two groups (F_1 and wild-born males). However, our results point to a different sperm molecular signature between wild fish and fish born in captivity, specifically the differential expression in *miR-let7-d* and *miR-200a-5p* between these two groups. *miR-let7-d* has been correlated with spermatogenesis and sex preferences, whereas the *miR-200* family is implied in target innervation of dopaminergic neurons in zebrafish. When we analysed the dopaminergic pathway, no differences were found in terms of different mRNA expression of dopaminergic markers. However, some differences were detected in terms of tyrosine hydroxylase protein expression by western blot analysis, thus suggesting an altered post-transcriptional regulation in F_1 males. The results of this study suggest that an altered sperm miRNA signature in F_1 males could be one possible mode of transmission of reproductive dysfunction to the progeny.

Additional keywords: dopamine signalling, miRNAs, molecular assays, mRNA, Senegalese sole, sperm quality.

Received 23 November 2018, accepted 25 January 2019, published online 4 April 2019

Introduction

The Senegalese sole is a species with a high commercial value whose culture has been hampered due to reproductive problems present in F_1 males (Guzmán *et al.* 2008). It has been pointed out that the absence of courtship is the main cause of reproductive failure, because breeders reared in captivity do not show the reproductive behaviour observed in wild breeders, namely prespawning chasing or paired synchronised spawning (Carazo *et al.* 2013). These studies demonstrated that wild males mated with females bred in captivity produced viable spawn, but non-viable spawn were obtained when wild females were mated with males bred in captivity (Mañanós *et al.* 2007). The absence of courtship may not be the only possible reproductive problem in this species.

It has been demonstrated that males born in captivity have lower fertilisation capacity than wild-born males (Forné *et al.* 2011). Some studies suggest that the low fertilisation rates obtained with captive Senegalese sole sperm samples could

also be explained by low sperm volume (Chauvigné *et al.* 2017) and poor sperm quality (Cabrita *et al.* 2011). This could be the main reason for the low and variable fertilisation and hatching rates obtained after IVF using F_1 stripped eggs and spermatozoa (Rasines *et al.* 2012, 2013). It has also been reported that F_1 males have endocrine differences during the spawning period compared with wild-born animals (Guzmán *et al.* 2009; Chauvigné *et al.* 2016). These studies suggested the existence of a dopamine inhibitory tone in the brain–pituitary–gonadal axis regulating male reproduction in this species (Guzmán *et al.* 2009). Dopamine is a catecholamine implicated in many functions, including gonadotrophin inhibition via dopamine D2 receptors in fish (Vacher *et al.* 2000). Interestingly, in mice, dopamine released in the nucleus accumbens is involved in mediating sexual motivation (Beny-Shefer *et al.* 2017). In that study, the authors established a critical role for the mesolimbic dopaminergic system in governing pheromone-mediated responses and mate choice

in male mice (Beny-Shefer *et al.* 2017). Alterations in the dopaminergic pathway could be a key issue in the behavioural dysfunction of Senegalese sole F₁ males, as previously suggested by others (Guzmán *et al.* 2011; Carazo *et al.* 2013). Dopaminergic neurons of the central nervous system can be characterised by the coincident expression of a set of mRNAs collectively referred to as dopamine markers. These dopamine markers include tyrosine hydroxylase (*th*) as the rate-limiting enzyme in brain catecholamine biosynthesis, dopamine receptor 1 and 2 (*dr1* and *dr2*), transducin repeat-containing protein 2 (*trcp2*), vesicular monoamine transporter 2 (*vmat2*), dopamine transporter (*dat*), monoamine oxidase (*mao*) and catechol-*O*-methyl transferase (*comt*; Yamamoto and Vernier 2011).

The contribution of spermatozoa to the embryo is not limited only to DNA delivery during the fertilisation process; several transcripts and non-coding RNAs are also delivered to the embryo and could be crucial during and after early embryo development. The importance of the sperm RNA population in sperm quality and early embryo development has been explored in different species and recently accepted in mammals (humans) and fish (zebrafish) (Ostermeier *et al.* 2002; Meseguer *et al.* 2004; García-Herrero *et al.* 2011; Guerra *et al.* 2013; Valcarce *et al.* 2013). However, the specific functional activity of some of these sperm RNAs has yet to be elucidated. Although most studies at this level have been performed in mammals, particularly in humans, a set of RNA molecules has been associated with reproductive success in the fish, including brain-derived neurotrophic factor (*bdnf*), double-sex and mab-3 related transcription factor 1 (*dmrt1*) and FSH β polypeptide (*fsh*), among others (Guerra *et al.* 2013).

Sperm non-coding RNAs, and in particular microRNAs (miRNAs), have also been described as crucial factors during early embryogenesis (Liu *et al.* 2012; Jodar *et al.* 2013) and changes in sperm miRNA can contribute to the transmission of certain phenotypes across generations (Dickson *et al.* 2018). The miRNAs are a conserved class of small non-coding RNAs that control gene expression by inducing mRNA degradation or by suppressing mRNA translation (Bartel 2004). Sperm miRNAs delivered in the embryo are considered important regulatory elements for early embryo transcriptional control (Wienholds *et al.* 2003). Some studies in mammals suggest that the presence of some miRNAs could be associated with sperm quality (Kotaja 2014). *miR-200a* and *miR-141* belong to the conserved miR-200 family, which has emerged as an important regulator of neurogenesis and sperm motility in zebrafish and humans (Xiong *et al.* 2018). In zebrafish, ectopic expression of *miR-200a* significantly reduced motility traits, namely curvilinear velocity (VCL), straight line velocity (VSL) and average path velocity (VAP), and the fertilisation capacity of spermatozoa (Xiong *et al.* 2018). Moreover, *miR-let7-d* regulates the self-renewal of spermatogonial stem cells and spermatogenesis in the mouse (Niu *et al.* 2011).

Conversely, sperm DNA methylation status could be also relevant in sperm quality evaluation. In this context, alterations in DNA methylation have also been correlated with male infertility in humans (Gunes *et al.* 2016) and fish (Woods *et al.* 2018). DNA methylation is the most widely studied

epigenetic mark that consists of the covalent binding of a methyl group to a DNA base (Labbé *et al.* 2017). The zebrafish is increasingly being used to study epigenetics in gametes (Wu *et al.* 2011; Jiang *et al.* 2013; Potok *et al.* 2013). The main characteristic of zebrafish spermatozoa is that the DNA is highly methylated (91–95% of cytosine–phosphorous–guanine (CpG) islands analysed; Jiang *et al.* 2013; Potok *et al.* 2013). High levels of DNA methylation in spermatozoa could also be expected in other teleost fish considering the high level of compaction of the sperm nucleus and the absence of transcription in the sperm cells.

In this study we maintained sole males born in captivity and males born in their natural environment for 18 months under the same conditions prior to the experiments. After this period, we analysed traditional sperm parameters, such as motility and viability, and confirmed that traditional sperm quality parameters did not differ significantly between the two groups. We analysed the presence of sperm mRNAs (*bdnf*, *dmrt1* and *fsh*), defined as molecular markers of reproductive success in fish, and three miRs (*miR-141-3p*, *miR-let7-d* and *miR-200a-5p*) present in teleost spermatozoa (Presslauer *et al.* 2017) and previously related to sex preferences or reproductive performance in human, zebrafish or mice (Beny-Shefer *et al.* 2017). We also analysed the global methylation status of spermatozoa from the different groups. Finally, an integrative analysis on the dopaminergic system was performed analysing brain dopamine mRNA markers and Th protein levels in wild- and captivity-born males.

Materials and methods

Ethics statement

All experiments were performed according to the directive of the Spanish and institutional bioethical guidelines of the Spanish Institute of Oceanography (IEO) and European Union Directive 2010/63/EU for the protection of animals used for experimental and other scientific purposes. The authorisation number for experimental procedures in this study is PI-10-16. Moreover, all people involved in the experiments have a Federation for Laboratory Animal Science Associations (FELASA) Class C permit for animal experimentation.

Animals

Wild and F₁ breeders of Senegalese sole were maintained for a period of 18 months in tanks with an open flow circuit, with a water renovation rate of 1.7 m³ h⁻¹ and constant moderate aeration. An artificial photoperiod of 16 h light and 8 h dark was used throughout the entire year. Temperature varied according to external conditions, maintaining thresholds of 21°C in the spring–summer months (May–September) and 12°C in the winter months (November–February). Wild males and a group of F₁ males born in captivity were fed with a natural diet for 3 days a week consisting of mussels, *Mytilus* spp., small squid, *Loligo* spp. and polychaete worms (*Nereis* spp.; Topsybaits). Both groups were fed a commercial diet (Vitalis Repro pellets; Skretting) for 2 days a week following the manufacture recommendations. The daily amount of food was adjusted taking into account the total biomass of the fish in the tank.

The biomass of the tanks was recorded monthly by individual samplings (size and weight).

Sample collection

Spermatozoa were collected from both wild-born males and F₁ males born in captivity. Samples were collected from December to the end of February, when breeders were maintained at mean (± s.d.) temperatures of 12 ± 1°C. Individuals were anaesthetised with clove oil (40 p.p.m.) for 1.5 min, after which spermatozoa were collected by stripping, taking special care in order to avoid urine contamination. Sperm collection was performed as described previously (Cabrita *et al.* 2011). The urogenital pore was dried and spermatozoa were collected using a syringe by gently pressing the testes on the fish blind side. Samples were stored on ice in a Styrofoam support until further analysis; samples contaminated with urine were discarded.

To obtain brain samples, fish were immediately killed in the first 2 min by decapitation according to Chauvigné *et al.* (2017) and their brains were removed and stored in RNA Later (Thermo Fisher Scientific) at -80°C until determination of gene expression and western blot analysis.

Traditional sperm assays

Viability

Sperm membrane integrity was evaluated using propidium iodide (PI; Sigma) and 4',6'-diamidino-2-phenylindole (DAPI) staining. PI was added at a final concentration of 1 µg mL⁻¹ to assay cell viability based on membrane permeability. The total number of sperm cells was counted using 300 nM DAPI, a nuclear stain.

At least three microscope fields were photographed (Nikon Eclipse Ts2R), recorded and analysed using NIS-Elements image analysis software (Izasa Scientific) for each sample, for a total of 200 cells. The number of total and non-viable cells was counted and the percentage of viable cells calculated in each experimental group ($n = 6$ samples per group).

Motility

Motility analysis was performed by activating a 1-µL sample of spermatozoa with 5 µL seawater (temperature 21°C, salinity 35 p.p.t.). Total motility was determined using computer-assisted sperm analysis (CASA) and ISAS software (Proiser R+D). For all analyses, motility was assessed in a Makler chamber using a phase-contrast microscope (Nikon Eclipse Ts2R) with a $\times 10$ negative contrast objective and a digital camera set at a rate of 50 frames per second (f.p.s.). The settings for the CASA software were adapted for this species. The following CASA parameters were measured: percentage of motile cells, VCL, VSL and VAP. Motility parameters were evaluated 30 s after sperm activation. Analyses were performed in sperm samples using 15 individual males from each of the wild and F₁ groups.

Sperm molecular assays

Global methylation

DNA was isolated from different sperm samples using the GeneJET Genomic DNA Purification Kit (Thermo Fisher Scientific). Sperm methylation status was evaluated in the two

(wild and F₁) groups using the EpiJET DNA Methylation Analysis Kit (*Msp*I/*Hpa*II; Thermo Fisher Scientific). This kit uses the *Msp*I and *Hpa*II restriction enzymes to analyse DNA methylation. Epi *Msp*I and Epi *Hpa*II are isoschizomers with different sensitivities to CpG methylation. When the internal CpG in the 5'-CCGG-3' tetranucleotide sequence is methylated, cleavage with Epi *Hpa*II is blocked, but cleavage with Epi *Msp*I is not affected. A simple digestion with *Msp*I and a simple digestion with *Hpa*II were performed for each experimental group for 1 h at 37°C. Moreover undigested DNA (as a negative control) and different controls with methylated and unmethylated DNA were included in the analysis. After the digestion, the reaction products were analysed by DNA electrophoresis on a 1% agarose gel. Three independent experiments of three different pools of males (each containing three males) were analysed.

Transcript and miR quantification

RNA and miR isolation. RNA and miRs were isolated from sperm samples of the two groups using the mirVana miRNA Isolation Kit (Thermo Fisher Scientific) according to the manufacturer's instructions. RNA quantity and purity were determined using a Nanodrop 1000 spectrometer (Thermo Fisher Scientific). Total RNA isolated was treated with DNase using the DNase I, RNase free kit (Thermo Fisher Scientific) for 30 min at 37°C to remove genomic (g) DNA contamination. The isolated RNA showed high purity (ratio of absorbance at 260 nm : 280 nm (A260/280) >1.8) and was stored at -80°C until further use.

Reverse transcription. For RNA sperm samples, cDNA was obtained from 1 µg RNA using a cDNA synthesis kit (Invitrogen) according to the manufacturer's instructions. The reverse transcription (RT) conditions were 25°C for 5 min, 42°C for 30 min and 85°C for 10 min. For miR transcription, a specific TaqMan Small RNA probe (5×; Thermo Fisher Scientific) for each miR (*miR-200a-5p*, *miR-let-7d*, *miR-141-3p* and *miR-92a-3p*) was used according to the manufacturer's instructions. The RT conditions were 16°C for 30 min, 42°C for 30 min and 85°C for 5 min. The cDNA of RNA and miR samples was stored at -80°C before quantitative (q) polymerase chain reaction (PCR) analysis.

Real-time PCR analysis. For transcript analysis, reactions were performed in a volume of 20 µL containing 10 µL SYBR green PCR master mix (Thermo Fisher), 2 µL primers (0.5 mM) and 2 µL cDNA template and made up to volume with molecular grade water. The amplification protocol used was as follows: initial denaturation at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min, with a final step at 95°C for 5 s. The primers and amplification protocols have been published previously for these transcripts (Guerra *et al.* 2013). Expression levels of each Senegalese sole transcript relative to the housekeeping gene elongation factor 1 alpha (*efl*α; Infante *et al.* 2008) were calculated for all transcripts using the $2^{-\Delta\Delta Ct}$ method to analyse relative changes in gene expression. Because the $2^{-\Delta\Delta Ct}$ method requires the assignment of one housekeeping gene, which is assumed to be uniformly and constantly expressed in all samples, a housekeeping gene stability study was performed first. NormFinder software was used to evaluate candidate normalisation genes. NormFinder has the ability to measure the gene expression stability taking into account intra- and

intersample variations in defined groups. Results are expressed as the mean \pm s.e.m. of the $2^{-\Delta\Delta Ct}$ calculated expression of three independent experiments of three different pools of males (each containing three males). Wild males were used as a reference group. For miR analyses, reactions were performed containing 10 μ L TaqMan Universal PCR master mix II (Thermo Fisher), 2 μ L primers (0.5 mM) and 2 μ L product from the RT reaction, made up to volume with molecular grade water. The amplification protocol used was as follows: initial denaturation for 10 min at 95°C, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min, with a final step at 95°C for 5 s. The specific probes and amplification protocols have been published elsewhere for these transcripts in mammalian spermatozoa (Abu-Halima *et al.* 2013; Kotaja 2014). Expression was normalised against that of *miR-92-3p* because of its high stability in previous miR expression studies in human spermatozoa (Corral-Vazquez *et al.* 2017) and because it is the most highly abundant miRNA in zebrafish spermatozoa (Presslauer *et al.* 2017). Three independent experiments of three different pools of males (each containing three males) were performed.

Target prediction

To analyse the potential targeted mRNAs of the miRs investigated (i.e. *miR-141-3p*, *miR-let7-d* and *miR-200a-5p*), we used TargetScanFish 6.2 (http://www.targetscan.org/fish_62/, accessed 5 October 2018; Peterson *et al.* 2014). TargetScanFish predicts targets by either the predicted efficacy of targeting (context + scores) or the probability of conserved targeting (P_{CT}). For conservation, the conservation of a 3' untranslated region (UTR) is first determined, followed by analysis of a specific k-mer. Because one 3'UTR can contain multiple target sites, an aggregate P_{CT} is provided. For each type of k-mer, the number is provided for that target and whether it is considered a conserved site or a poorly conserved site (Peterson *et al.* 2014).

Brain molecular assays

Transcript quantification

RNA isolation. RNA was isolated from brain samples of the two groups using the TRIzol Isolation reagent (Thermo Fisher Scientific) according to the manufacturer's instructions. RNA quantity and purity were determined using a Nanodrop 1000 spectrometer (Thermo Fisher Scientific). Isolated total RNA was treated with DNase using the DNase I, RNase free kit (Thermo Fisher Scientific) for 30 min at 37°C to remove gDNA contamination. The isolated RNA showed high purity (A260/280 > 1.8) and was stored at -80°C until further use.

Reverse transcription. cDNA was obtained from 1 μg RNA using the cDNA synthesis kit (Invitrogen) according to the manufacturer's instructions. The RT conditions were 25°C for 5 min, 42°C for 30 min and 85°C for 10 min. cDNA samples were stored at -80°C before qPCR analysis.

Real-time PCR analysis. For transcript analysis, reactions were performed following the same protocol described for sperm samples. The primers and amplification protocols are given in Table 1. Expression levels of each transcript in Senegalese sole relative to the housekeeping genes *efl*α and actin beta 2 (*actb2*) (Infante *et al.* 2008) were calculated for all

transcripts using the $2^{-\Delta\Delta Ct}$ method to analyse relative changes in gene expression. NormFinder software was used to evaluate the candidate normalisation genes. Results are expressed as the mean \pm s.e.m. of the $2^{-\Delta\Delta Ct}$ calculated expression of three independent experiments of six different males. Wild males were used as a reference group.

Th cloning

The complete open reading frame (ORF) from the *th* gene from *S. senegalensis* was cloned using standard procedures. Briefly, RNA was extracted from brain tissue using the Pure Link RNA Mini kit (Thermo Fisher Scientific) and reverse transcribed with the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Thermo Fisher Scientific) using the protocols provided by the manufacturers. The oligonucleotides 5'-ACTCTGACACGCACAGATCG-3' (forward) and 5'-AGGGGAAGCAAATAACAGCA-3' (reverse) were used to amplify a 1548-bp fragment using the GoTaq DNA Polymerase (Promega) and subcloned in pCR4-TOPO vector (Thermo Fisher Scientific). To confirm the sequence of the cloned inserts, DNA sequencing was performed by the Servicio de Secuenciación (Sequencing Facility), Universidad de Salamanca, Spain. The sequences obtained were analysed using Chromas (Technelysium) and the translated amino acid sequence was automatically aligned against Th from *Homo sapiens* (*Homo*) NP_954987.2, *Mus musculus* (*Mus*) NP_033403.1, *Danio rerio* (*Danio*) NP_571224.1, *Esox lucius* (*Esox*) XP_010896475.1, *Oncorhynchus mykiss* (*Oncorhynchus*) XP_021419922.1, *Takifugu rubripes* (*Takifugu*) XP_003967406.1, *Oryzias latipes* (*Oryzias*) NP_001265797.1, *Nothobranchius furzeri* (*Nothobranchius*) XP_015820360.1 and *Xiphophorus maculatus* (*Xiphophorus*) XP_023199811.1 using Clustal Omega for Multiple Sequence Alignment (MSA) (<https://www.ebi.ac.uk/Tools/msa/clustalo>, accessed 5 October 2018; see Fig. S1, available as Supplementary Material to this paper).

Western blot analysis

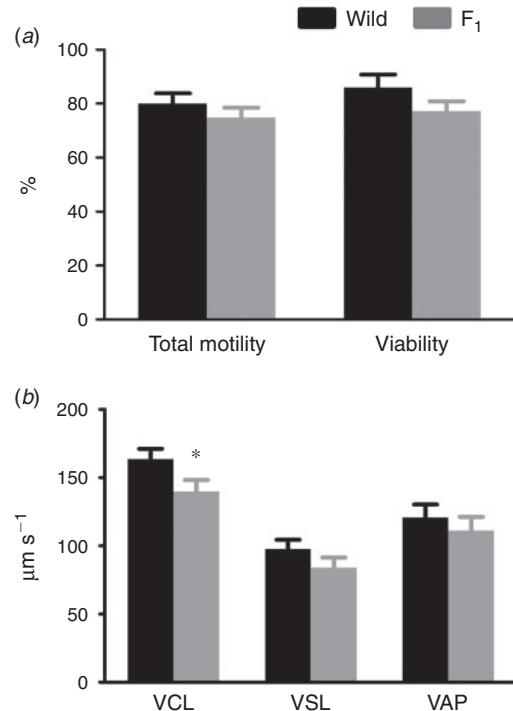
S. senegalensis brains were mechanically homogenised with a PT 1200E Polytron homogeniser (Thermo Fisher Scientific) and insulin syringes and lysed in RIPA buffer (50 mM Tris, pH 8, 150 mM NaCl, 1% Igepal, 0.5% sodium deoxycholate and 0.1% sodium dodecyl sulfate (SDS)) with protease inhibitors (Sigma-Aldrich). Samples were centrifuged at 10 000g for 10 min at 4°C to eliminate debris. The supernatants were transferred to clean Eppendorf tubes and protein content was determined by the Bradford method.

Lysates were resuspended in 2 \times Laemmli buffer (4% SDS, 20% glycerol, 10% β -mercaptoethanol, 0.004% bromophenol blue and 0.125 M Tris-HCl, pH 6.8) and boiled for 7 min. Then, 100 μg total protein was separated using conventional SDS-polyacrylamide gel electrophoresis under reduced conditions and transferred to polyvinylidene difluoride (PVDF) membranes (Amersham). Membranes were blocked with 3% bovine serum albumin (BSA) in TBST (Tris buffer with 0.1% Tween 20; Sigma-Aldrich) for 1 h at room temperature and incubated with anti-Th antibody (1:1000 dilution in blocking buffer; AB152 (Lot NG1830749) Millipore) overnight at 4°C. After three washes with TBST for 10 min each time, membranes were incubated for

Table 1. List of primers used in molecular assays

Ta, annealing temperature; *dre-miR-141-3p*, *Danio rerio miR-141-3p*; *dre-miR-200a-5p*, *Danio rerio miR-200a-5p*; *dre-miR-92a-3p*, *Danio rerio miR-92a-3p*; *hsa-miR-let-7d*, *Homo sapiens miR-let-7d*; *Ss_actb2*, *Solea senegalensis actin b2*; *Ss_bdnf*, *Solea senegalensis brain-derived neurotrophic factor*; *Ss_comt*, *Solea senegalensis catechol-O-methyl transferase*; *Ss_dr1*, *Solea senegalensis dopamine receptor 1*; *Ss_dr2*, *Solea senegalensis dopamine receptor 2*; *Ss_ef1α*, *Solea senegalensis elongation factor 1*; *Ss_mao*, *Solea senegalensis monoamine oxidase*; *Ss_trcp2*, *Solea senegalensis transducin repeat-containing protein 2*; *Ss_vmat2*, *Solea senegalensis vesicular monoamine transporter 2*; *Zf_dat*, *Zebrafish dopamine transporter*; *Zf_dmrt1*, *Zebrafish double-sex and mab-3 related transcription factor 1*; *Zf_fish*, *Zebrafish FSHβ polypeptide*; *Zf_th*, *Zebrafish tyrosine hydroxylase*

mRNA or microRNA	Sample	Reference	Oligonucleotide sequence (5'-3')	Ta (°C)
<i>Zf_dmrt1</i>	Spermatozoa	Guerra <i>et al.</i> (2013)	Forward: ACGGGTCGCTGTCCATCA Reverse: GTGACACGAAGCCGTGGTTT	60
<i>Ss_bdnf</i>	Spermatozoa and brain	Self-designed	Forward: GACCAAGCCTATCTGGACCCGCAAC Reverse: TTGACAGCCAGGTGGCCTCCAGT	60
<i>Zf_fish</i>	Spermatozoa	Guerra <i>et al.</i> (2013)	Forward: TGTGGAGAGCGAAGAATGTG Reverse: AGACCTTCTGGGTGTGCTGT	60
<i>Ss_actb2</i>	Spermatozoa	Infante <i>et al.</i> (2008)	Forward: AATCGTGACCTCTGCTTCCCCCTGT Reverse: TCTGGCACCCCATGTTACCCCATC	60
<i>Ss_ef1α</i>	Spermatozoa	Infante <i>et al.</i> (2008)	Forward: GATTGACCGTCCTCTGGCAAGAAGC Reverse: GGCAAAGCGACCAAGGGGAGCAT	60
<i>dre-miR-141-3p</i>	Spermatozoa	miR database (MIMAT0001837)	TAACACTGCTGGTAACGATGC	60
<i>hsa-miR-let-7d</i>	Spermatozoa	miR database (MI0000065)	TGAGGTAGTTGGTGTATGGTT	60
<i>dre-miR-200a-5p</i>	Spermatozoa	miR database (MIMAT0031984)	CATCTTACCCGGACAGTGCTGGA	60
<i>dre-miR-92a-3p</i>	Spermatozoa	miR database (MIMAT0001808)	TATTGCACTTGTCCC GGCGCTGT	60
<i>Ss_dr1</i>	Brain	Self-designed	Forward: CGGCCAGCTATGTGATTCCA Reverse: TGTACCGTGCCTTCACTTCA	60
<i>Ss_dr2</i>	Brain	Self-designed	Forward: TCCAGGAGAAGGGTCACAGT Reverse: AAGCCGAACAAACAGAGGAC	60
<i>Ss_trcp2</i>	Brain	Self-designed	Forward: TGCTTTGCACCTTTATCGCT Reverse: GGGCTTGGTCTTAATGGGG	60
<i>Ss_vmat2</i>	Brain	Self-designed	Forward: CCCAGTCTAACAAACGGCT Reverse: AAGCATTCCCATTCCAGCCA	60
<i>Zf_dat</i>	Brain	Self-designed	Forward: TTCGCCACCTTCAATCTCC Reverse: CCACCAGGTGATGGTCAGTC	60
<i>Ss_mao</i>	Brain	Self-designed	Forward: TGCAGGAGCTCTCAACAGG Reverse: TCCACACTGCTTCACGTACC	60
<i>Ss_comt</i>	Brain	Self-designed	Forward: TTCTCAGTCCGACCCCTGAT Reverse: TGCTGAGCAGGATGCGTTA	60
<i>Zf_th</i>	Brain	Self-designed	Forward: AGCAGCTCCACATCTCCAC Reverse: AACACGATCTGCTCGCTCA	62


1 h at room temperature with a secondary antibody, namely horseradish peroxidase (HRP)-conjugated goat anti-rabbit antibody (1:10 000 dilution; 111-035-003; Jackson Immuno-Research). Membranes were washed again with TBST and the HRP signal was developed using an enhanced chemiluminescence (ECL) detection system (16101705; Advansta; Western-Bright) in MicroChemi 4.2 (DNR Bio-Imaging Systems). The loading control was anti-β-actin antibody (1:1000 dilution in blocking buffer; 10/2016; Cell Signaling). Images were quantified using Adobe Photoshop CS6: total integrated density was obtained for each band, either Th or β-actin, and background integrated density was subtracted. To determine Th expression for each experimental group, the Th/β-actin ratio was calculated for each sample and was normalised against the mean of all WT samples using the following formula:

$$\text{Relative intensity (Th/β-actin)} = \frac{(Th/\beta - \text{actin})_{\text{mean } F_1}}{(Th/\beta - \text{actin})_{\text{mean Wild}}} \times 100$$

Four different males were used per group (wild and F_1 males), and the results were analysed using two-tailed unpaired Student's *t*-tests in Graph Pad Prism version 5.

Statistical analysis

Data were analysed using SPSS v.22 (IBM Corp.) and Microsoft Excel. To determine the significance of differences between the two groups of male Senegalese soles in terms of sperm motility and viability, an independent samples *t*-test was used, with $P < 0.05$ considered significant. Results are expressed as the mean percentage of all 15 individual males, whereas qPCR results for miR and transcript analyses in brains and spermatozoa are given as the mean \pm s.e.m. of $2^{-\Delta\Delta Ct}$ calculated values. The Student's *t*-test ($\mu = 1$) was used according to previous studies (Yuan *et al.* 2006) to identify changes in transcript levels between the control group (wild) and the study group (F_1). Three sperm pools (three males per pool) were analysed. Expression of Th was assessed in each and is expressed as

Fig. 1. Traditional analysis of sperm quality. (a) Total motility of spermatozoa, as analysed by computer-assisted sperm analysis (CASA), and viability of spermatozoa from male Senegalese sole (*Solea senegalensis*) born in a natural environment (wild) and born in captivity (F₁). There were no significant differences between the two groups. (b) Curvilinear velocity (VCL), straight line velocity (VSL) and average path velocity (VAP) in Wild and F₁ groups 30 s after sperm activation. Data are the mean \pm s.e.m. * $P < 0.05$ compared with wild males. Analyses were performed in sperm samples from 15 individual males from each group.

a percentage of signal intensity over control (wild) values. Results were analysed using a one-sample *t*-test with Welch's correction. $P < 0.05$ was considered significant.

Results

Traditional sperm assays

Sperm from different groups showed high and similar initial motility (30 s after activation; Fig. 1a). When considering other parameters of sperm motility (VCL, VSL and VAP), sperm samples from F₁ males had a significantly lower VCL than samples from wild males 30 s after activation ($P < 0.05$; Fig. 1b). There were no significant differences in sperm viability between the two groups (Fig. 1a). Interestingly, there were no significant differences in traditional sperm parameters between the two groups except for the VCL parameter (Fig. 1).

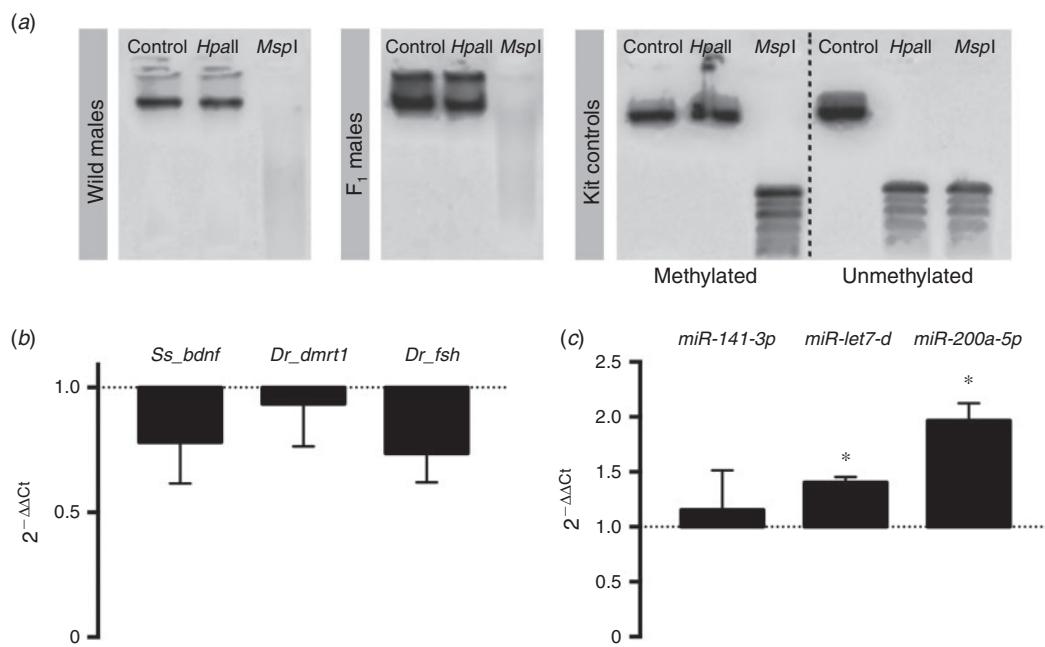
Sperm molecular assays

Similar to what was observed in the analysis of traditional sperm parameters, global methylation analysis using the EpiJET DNA Methylation Analysis Kit (*Msp*I/*Hpa*II) showed no differences between the wild and F₁ groups (Fig. 2a). A complete methylation status was observed in all sperm samples analysed,

according to what could be expected in a normal transcriptionally inactive sperm cell with highly condensed DNA.

With regard to the mRNA molecular markers, there were no significant differences in the presence of the three studied mRNAs (*bdnf*, *dmrt1* and *fsh*) between the wild and F₁ groups (Fig. 2b). However, when the expression of miRs was analysed in sperm samples from the wild and F₁ groups, some differences were found. The expression of *miR-200a-5p* and *miR-let-7d* was significantly ($P < 0.05$) higher in F₁ compared with wild males, with a twofold increase in expression of *miR-200a-5p* (Fig. 2c).

mRNA target analysis using the TargetScanFish 6.2 program revealed that there are several potential mRNA targets of the miR-200 family that are involved in the dopaminergic pathway, namely *dr1*, *th*, *mao*, *comt* and *vmat2*. Specifically, analysis of *miR-200a* defined *mao*, *vmat2* and *comt* mRNAs as potential targets (Fig. S2).


Brain molecular assays

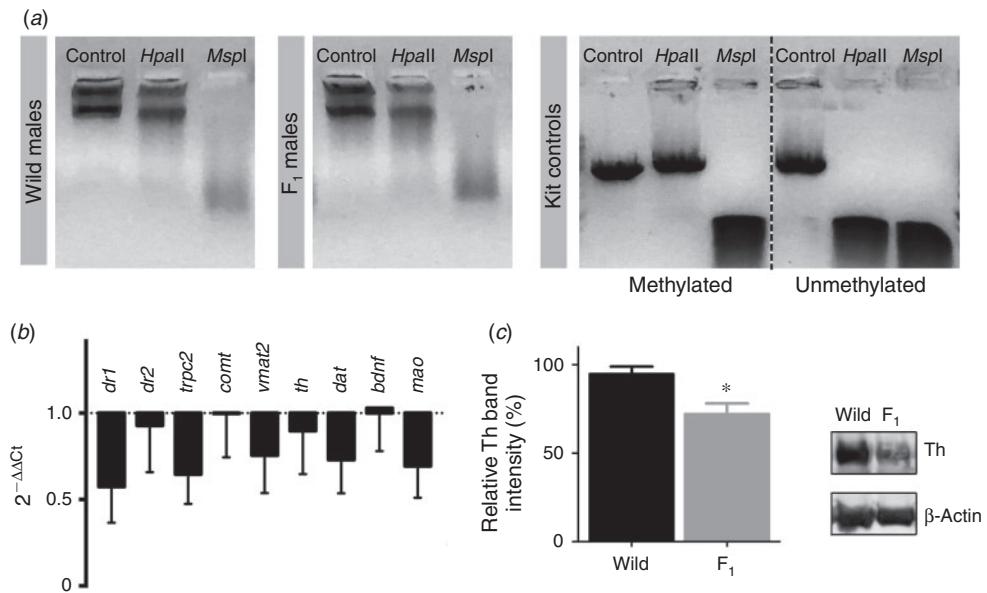
As in sperm cells, no significant differences were found between the F₁ and wild males in the global methylation assay of brain tissue (F₁ v. wild males), with similar methylation patterns in brain samples from the two groups (Fig. 3a).

No significant differences were found in brain samples from F₁ and wild males in terms of *bdnf* and dopaminergic transcripts (dopaminergic transporters *dr1*, *dr2*, *trcp2*, *vmat2* and *dat*; degradation enzymes *mao* and *comt*; and dopamine biosynthetic enzyme *th*; Fig. 3b). Interestingly, when Th protein expression in the brain was analysed by western blot analysis, significant differences were found between the F₁ and wild groups: Th protein expression was reduced in F₁ males (mean \pm s.e.m. $74.11 \pm 5.77\%$ vs $100.00 \pm 2.96\%$ normalised expression in wild males; Fig. 3c).

Discussion

S. senegalensis is a challenging species for aquaculturists because of a reproductive failure in F₁ males born and raised in captivity (Carazo *et al.* 2011). The inability of these animals to naturally procreate hinders the industrial large-scale take-off of the aquaculture of this species (Howell *et al.* 2009) doing necessary to use optimised artificial reproduction techniques for sustainable production (Riesco *et al.* 2017). Reproductive biologists have focused on this male reproductive failure due to the commercial potential of this species. Many publications have compared F₁ males with their wild counterparts at different levels, including comparisons of the transcriptome profile (Fatsini *et al.* 2016), sperm oxidative stress analysis (Valcarce and Robles 2016), behaviour (Carazo *et al.* 2013), hormone studies (Chauvigné *et al.* 2016) and sperm plasma composition (Forné *et al.* 2011). To gain an insight into the molecular status that may play a role in this reproductive problem, we used an integrative experimental design correlating cellular and molecular parameters within the brain–pituitary–gonadal axis. For this reason, we used two different samples: (1) spermatozoa, because they are the immediate products of the testicular environment and could be the carriers of altered patterns to the progeny; and (2) brain tissue. In this study, males from the two groups, namely those born in natural environments and those

Fig. 2. Molecular analysis of sperm quality. (a) Global methylation status of sperm DNA, determined using an EpiJET DNA Methylation Analysis Kit (Thermo Fisher Scientific) from male Senegalese sole (*Solea senegalensis*) born in a natural environment (wild) and born in captivity (F₁). Three independent experiments of three different pools of three males per group were analysed (data not shown). Unmethylated plasmid DNA (kit control) is digested by both enzymes, whereas methylated plasmid DNA (kit control) is susceptible only to Epi *Msp*I digestion. (b) Expression levels for each gene relative to the housekeeping gene elongation factor 1 (*efl*α) were calculated for all samples using the $2^{-\Delta\Delta Ct}$ method. The figure shows expression of each gene in the F₁ group relative to that in wild males, which was set to 1. (c) Expression of each microRNA normalised against that of *miR-92-3p* was calculated for all samples using the $2^{-\Delta\Delta Ct}$ method. The figure shows expression of each microRNA in the F₁ group relative to that in wild males, which was set to 1. Data are expressed as the mean \pm s.e.m. of $2^{-\Delta\Delta Ct}$ values from three independent experiments with three replicates for each. * $P < 0.05$ compared with the wild males.


born in captivity (F₁), that were analysed and compared were kept under an identical feeding regime and conditions (live diet plus fish feeds for breeders for a period of 18 months).

We first evaluated sperm motility in both groups. Nowadays, sperm motility is considered one of the most useful markers of the quality of spermatozoa in fish (Gallego *et al.* 2018), although there are reports indicating that traditional sperm quality parameter evaluation may not be accurate as an estimate of fertilising ability (Patrizio *et al.* 2008). There is a high correlation between this traditional parameter of sperm quality and fertilisation success in a variety of teleost species (Cabrita *et al.* 2014). In this study we used CASA because the duration of sperm motility in *S. senegalensis* is brief (~1 min) and accurate evaluation of the sperm kinetics is only possible with this kind of system (Gallego *et al.* 2018). Interestingly, the results showed no significant differences between the two groups when total motility was analysed, indicating a homogeneous global motility status between the groups (Fig. 1a). This outcome may be unexpected because of the usual assumption that sperm samples from F₁ sole are of poorer quality (Cabrita *et al.* 2006; Valcarce *et al.* 2016). Two important factors that could explain the similar values for sperm quality parameters are the 18-month acclimation period for the breeders prior to the experiments and the enriched diet that was provided. Detailed analysis of sperm

motion kinetics 30 s after sperm activation revealed slight but significant differences in VCL. A similar, albeit not significant, tendency was found for VSL and VAP (Fig. 1b). PI staining showed similar values for wild and F₁ males, around 80% (Fig. 1a).

Our results provide the perfect scenario to investigate whether there are differences at a molecular level in the sperm cells that could explain, in part, the differences in reproductive performance reported in this species (Carazo *et al.* 2011), even when general traditional sperm parameters are not markedly altered in F₁ males.

The first molecular parameter analysed was methylation level as an epigenetic mark (Labbé *et al.* 2017). Similar to what was observed in the analysis of traditional parameters, global methylation analysis using the EpiJET DNA Methylation Analysis Kit (*Msp*I/*Hpa*II), which uses the *Msp*I and *Hpa*II restriction enzymes to analyse DNA methylation status at a specific locus, showed no differences between the two groups (Fig. 2a). A complete methylation status was observed in all sperm samples analysed, according to what could be expected in a normal transcriptionally inactive sperm cell with highly condensed DNA, as has been reported in other teleost fish (Kurtz *et al.* 2009; Wu *et al.* 2011). In order to check whether the epigenetic pattern could be altered in the brain, we performed the same

Fig. 3. Molecular analysis of brain tissue. (a) Global methylation status of brain sample DNA, determined using an EpiJET DNA Methylation Analysis Kit (Thermo Fisher Scientific) from male Senegalese sole (*Solea senegalensis*) born in a natural environment (wild) and born in captivity (F₁). Three independent experiments of three different pools of three males per group were analysed (data not shown). Unmethylated plasmid DNA (kit control) is susceptible only to Epi *Msp*I digestion. (b) Expression levels of dopamine-related genes relative to the housekeeping gene elongation factor 1 (*eIF4α*) were calculated for all samples using the $2^{-\Delta\Delta Ct}$ method. The figure shows expression of each gene in the F₁ group relative to that in wild males, which was set to 1. *dr1*, dopamine receptor 1; *dr2*, dopamine receptor 2; *trpc2*, transducin repeat-containing protein 2; *vmat2*, vesicular monoamine transporter 2; *dat*, dopamine transporter; *mao*, monoamine oxidase; *comt*, catechol-O-methyl transferase; *th*, tyrosine hydroxylase; *bdnf*, brain-derived neurotrophic factor. Data are expressed as the mean \pm s.e.m. of $2^{-\Delta\Delta Ct}$ values from three independent experiments with three replicates for each. No differences in gene expression were detected between the two groups. (c) Mean (\pm s.e.m.) Th protein expression in brain tissue from wild and F₁ male *S. senegalensis* as determined by western blot analysis. β -Actin was used as a loading control. Th expression was assessed for each experimental group and is expressed as percentage of signal intensity over control. * P < 0.05 compared with the wild group. Four different males per group were used in three independent experiments.

assay using samples of brain tissue. There were no significant differences between samples from F₁ and wild males, indicating that there are no changes in global methylation in F₁ males in the cells and tissues studied (Fig. 3a).

However, DNA is not the only sperm molecule that is delivered to the embryo; since their discovery approximately 30 years ago, sperm-borne RNAs (both large and small and coding and non-coding) have been reported in many organisms (Schuster *et al.* 2016). Recent studies have suggested certain sperm mRNAs as good molecular markers of sperm quality (Ostermeier *et al.* 2002; García-Herrero *et al.* 2011). It is known that although spermatozoa are transcriptionally inactive cells (Grunewald *et al.* 2005), these transcripts are remnants from spermatogenesis and could be relevant in fertilisation and early embryo development (Meseguer *et al.* 2004). Surprisingly, some of these transcripts are preserved from teleosts to human (Guerra *et al.* 2013; Valcarce *et al.* 2013; Robles *et al.* 2017). In the present study we analysed the presence of three of these transcripts successfully validated for *D. rerio* and *Sparus aurata* by our group (Guerra *et al.* 2013; Valcarce *et al.* 2015), namely

bdnf, *dmrt1* and *fsh*. There were no significant differences in these mRNAs between F₁ and wild males (Fig. 2b).

To evaluate possible differences in the dopaminergic pathway between groups, we analysed the expression of key genes in this pathway. Surprisingly, none of the eight transcripts studied (*th*, *dr1*, *dr2*, *trpc2*, *vmat2*, *dat*, *mao* and *comt*) differed significantly between the two groups (Fig. 3b). Moreover, we investigated *bdnf* transcript expression in brain because of its critical role in neuron maintenance, neuron survival, plasticity and neurotransmitter regulation (Lima Giacobbo *et al.* 2018) and its link to behaviour in teleost species (Borrelli *et al.* 2016). Again, there was no significant difference between the two groups (Fig. 3b). Interestingly, analysis of brain tissue revealed downregulation of the expression of Th protein, a key enzyme for dopamine synthesis, in F₁ males (Fig. 3c), thus suggesting a possible modification in the post-transcriptional regulation of protein expression. This is extremely interesting because Th catalyses the conversion of the amino acid L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA) at the beginning of the dopamine biosynthetic

pathway (Daubner *et al.* 2011). Mesolimbic dopaminergic signalling plays a key role in the activation of the reward pathway, either by natural or maladaptive rewards. Therefore, it may be possible that a dysfunction in the reward pathway in the Senegalese sole is responsible for reproductive failure in F₁ males reared in captivity.

A subsequent experiment to evaluate the sperm-specific miRNA population was performed in sperm samples (Fig. 2c). Although the regulatory role of miRNAs has only recently started to be studied in the human reproductive system, miRNAs have been shown to play important roles in the control of reproductive functions in male fertility and in early embryo development (Eisenberg *et al.* 2015). Some authors consider miRNAs as suitable candidates for use as biomarkers of male reproduction and fertility because of their stability, and envision that the development of these markers will be of high financial interest to the animal production industry (Pratt and Calcatera 2017). More interestingly, miRNAs could be one of the vehicles for the transmission of specific characteristics to the progeny (Dickson *et al.* 2018). These small non-coding RNAs are highly conserved among animal species, including human, suggesting that they may act as regulators of gene expression across diverse animal species (Pasquinelli *et al.* 2000; Hertel *et al.* 2012). The set of miRNAs evaluated in the present study were *miR-141-3p*, *miR-let7-d* and *miR-200a-5p*. *miR-141-3p* is a mitochondrial miRNA that is involved in the modulation of ATP production and the induction of oxidative stress (Ji *et al.* 2015). This miRNA has been suggested as a biomarker of infertility in human spermatozoa (Abu-Halima *et al.* 2013). In somatic cells, *miR-200a-5p* is involved in the modulation of necrotic pathways, presumably triggered in response to oxidative stress (Yang *et al.* 2018a), whereas in germ cells *miR-200a-5p* is involved in spermatogenesis and sperm function (Abu-Halima *et al.* 2013; Kotaja 2014). *miRlet7-d* is one of the miRNAs identified in zebrafish spermatozoa (Jia *et al.* 2015). In mammals, *let-7* expression is high during embryogenesis and brain development (Thomson *et al.* 2004, 2006; Schulman *et al.* 2005; Wulczyn *et al.* 2007) and remains high in adult tissues (Sempere *et al.* 2004; Thomson *et al.* 2004). This molecule seems to be an essential regulator of terminal differentiation. During male germ cell development, the expression of the *let7* miRNA family changes (McIver *et al.* 2012), and in mice this molecule is also differentially present throughout epididymal maturation (Nixon *et al.* 2015). Interestingly, there were differences in two of the three miRNAs studied (*miR-let7-d* and *miR-200a-5p*) in sperm samples from the F₁ and wild groups (Fig. 2c). The greatest difference between the F₁ and wild groups was seen in *miR-200a-5p* expression, which was approximately twofold higher in the F₁ group. In a recent previous study in zebrafish, the *miR-200* cluster was revealed to play a role regulating sperm motility (Xiong *et al.* 2018). Sperm motility (VCL, VSL and VAP) was significantly improved in knockout fish with deletion of the *miR-200* cluster on chromosome 23. Interestingly, no differences were reported in total motility in the knockout models (Xiong *et al.* 2018). The findings of that study support those of the present study, in which we found differences between F₁ and wild samples only in VCL. These data suggest a potential molecular deregulation in F₁ sperm

samples. Although this change seems to have no effect on sperm quality parameters in adult animals, it should be considered as a possible way of transmitting deregulation to the F₂ generation. Recently, it was reported that reduced levels of certain miRs in the spermatozoa of mice and men exposed to early life stress could contribute to transmission of stress phenotypes across generations (Dickson *et al.* 2018); in the same way, changes in certain sperm miRNAs in the sole could contribute to the transmission of reproductive dysfunction across generations. With this in mind, we performed an *in silico* study using TargetScanFish software to find *miR-let7-d* and *miR-200a-5p* targets, which, interestingly, revealed *th* and other mRNAs involved in dopaminergic pathway as targets of *miR-200a-5p*. A recent study in zebrafish reported a role for the miR-200 family in axon growth and target innervation of dopaminergic neurons (Yang *et al.* 2018b).

In conclusion, the present study contributes to our knowledge of the reproductive biology of *S. senegalensis* after domestication. Our results point to changes in the Th protein as one important cause of reproductive dysfunction in F₁ males that could be crucial in explaining the absence of courtship behaviour in these individuals, as well as to sperm *miR-let7-d* and *miR-200a-5p* as possible vehicles for the transmission of reproductive dysfunction to the F₂ generation. Further studies should analyse miR-200 and Th protein levels in the brains of wild-born males and males born in captivity to provide more evidence regarding the role of the miR-200a-5p/Th pathway in reproductive capacity.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

The authors acknowledge Stolt Sea Farm and Ana Riaza and Lynda Ward for English language editing. The authors also acknowledge Planta de Cultivos el Bocal (IEO) staff, especially Inmaculada Rasines and Mariano de la Hera. This work was supported by projects AGL2015 68330-C2-1-R and AGL2015 68330-C2-2-R from Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional (MINECO/FEDER), contract PTA2016-11987-I (MINECO/FEDER) and AQUA-CIBUS International Net 318RT0549 funded by Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED).

References

- Abu-Halima, M., Hammadeh, M., Schmitt, J., Leidinger, P., Keller, A., Meese, E., and Backes, C. (2013). Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. *Fertil. Steril.* **99**, 1249–1255.e16. doi:10.1016/J.FERTNSTERT.2012.11.054
- Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell* **116**, 281–297. doi:10.1016/S0092-8674(04)00045-5
- Beny-Shefer, Y., Zilkha, N., Lavi-Avnon, Y., Bezalel, N., Rogachev, I., Brandis, A., Dayan, M., and Kimchi, T. (2017). Nucleus accumbens dopamine signaling regulates sexual preference for females in male mice. *Cell Reports* **21**, 3079–3088. doi:10.1016/J.CELREP.2017.11.062
- Borrelli, L., Aceto, S., Agnisola, C., De Paolo, S., Dipineto, L., Stilling, R. M., Dinan, T. G., Cryan, J. F., Menna, L. F., and Fioretti, A. (2016). Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. *Sci. Rep.* **6**, 30046. doi:10.1038/SREP30046

Cabrita, E., Soares, F., and Dinis, M. T. (2006). Characterization of Senegalese sole, *Solea senegalensis*, male broodstock in terms of sperm production and quality. *Aquaculture* **261**, 967–975. doi:10.1016/J.AQUACULTURE.2006.08.020

Cabrita, E., Soares, F., Beirão, J., García-López, A., Martínez-Rodríguez, G., and Dinis, M. T. (2011). Endocrine and milt response of Senegalese sole, *Solea senegalensis*, males maintained in captivity. *Theriogenology* **75**, 1–9. doi:10.1016/J.THERIOGENOLOGY.2010.07.003

Cabrita, E., Martínez-Páramo, S., Gavaia, P. J., Riesco, M. F., Valcarce, D. G., Sarasquete, C., Herráez, M. P., and Robles, V. (2014). Factors enhancing fish sperm quality and emerging tools for sperm analysis. *Aquaculture* **432**, 389–401. doi:10.1016/J.AQUACULTURE.2014.04.034

Carazo, I., Martín, I., Hubbard, P., Chereguini, O., Maatanas, E., Canario, A., and Duncan, N. (2011). Reproductive behaviour, the absence of reproductive behaviour in cultured (G₁ generation) and chemical communication in the Senegalese sole (*Solea senegalensis*). *Indian J. Sci. Technol.* **4**, 96–97. doi:10.17485/IJST/2011/V4IS8/30814

Carazo, I., Norambuena, F., Oliveira, C., Sánchez-Vázquez, F. J., and Duncan, N. J. (2013). The effect of night illumination, red and infrared light, on locomotor activity, behaviour and melatonin of Senegalese sole (*Solea senegalensis*) broodstock. *Physiol. Behav.* **118**, 201–207. doi:10.1016/J.PHYSBEH.2013.05.032

Chauvigné, F., Fatsini, E., Duncan, N., Ollé, J., Zanuy, S., Gómez, A., and Cerdà, J. (2016). Plasma levels of follicle-stimulating and luteinizing hormones during the reproductive cycle of wild and cultured Senegalese sole (*Solea senegalensis*). *Comp. Biochem. Physiol. A Mol. Integr. Physiol.* **191**, 35–43. doi:10.1016/J.CBPA.2015.09.015

Chauvigné, F., Ollé, J., González, W., Duncan, N., Giménez, I., and Cerdà, J. (2017). Toward developing recombinant gonadotropin-based hormone therapies for increasing fertility in the flatfish Senegalese sole. *PLoS One* **12**, e0174387. doi:10.1371/JOURNAL.PONE.0174387

Corral-Vazquez, C., Blanco, J., Salas-Huetos, A., Vidal, F., and Anton, E. (2017). Normalization matters: tracking the best strategy for sperm miRNA quantification. *Mol. Hum. Reprod.* **23**, 45–53. doi:10.1093/MOLEHR/GAW072

Daubner, S. C., Le, T., and Wang, S. (2011). Tyrosine hydroxylase and regulation of dopamine synthesis. *Arch. Biochem. Biophys.* **508**, 1–12. doi:10.1016/J.ABB.2010.12.017

Dickson, D. A., Paulus, J. K., Mensah, V., Lem, J., Saavedra-Rodriguez, L., Gentry, A., Pagidas, K., and Feig, L. A. (2018). Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress. *Transl. Psychiatry* **8**, 101. doi:10.1038/S41398-018-0146-2

Eisenberg, I., Kotaja, N., Goldman-Wohl, D., and Imbar, T. (2015). microRNA in human reproduction. *Adv. Exp. Med. Biol.* **888**, 353–387. doi:10.1007/978-3-319-22671-2_18

Fatsini, E., Bautista, R., Manchado, M., and Duncan, N. J. (2016). Transcriptomic profiles of the upper olfactory rosette in cultured and wild Senegalese sole (*Solea senegalensis*) males. *Comp. Biochem. Physiol. Part D Genomics Proteomics* **20**, 125–135. doi:10.1016/J.CBPD.2016.09.001

Forné, I., Castellana, B., Marín-Juez, R., Cerdà, J., Abián, J., and Planas, J. V. (2011). Transcriptional and proteomic profiling of flatfish (*Solea senegalensis*) spermatogenesis. *Proteomics* **11**, 2195–2211. doi:10.1002/PMIC.201000296

Gallego, V., Herranz-Jusdado, J. G., Rozenfeld, C., Pérez, L., and Asturiano, J. F. (2018). Subjective and objective assessment of fish sperm motility: when the technique and technicians matter. *Fish Physiol. Biochem.* **44**, 1457–1467. doi:10.1007/S10695-018-0505-1

García-Herrero, S., Garrido, N., Martínez-Conejero, J. A., Remohí, J., Pellicer, A., and Meseguer, M. (2011). Differential transcriptomic profile in spermatozoa achieving pregnancy or not via ICSI. *Reprod. Biomed. Online* **22**, 25–36. doi:10.1016/J.RBMO.2010.09.013

Grunewald, S., Paasch, U., Glander, H.-J., and Anderegg, U. (2005). Mature human spermatozoa do not transcribe novel RNA. *Andrologia* **37**, 69–71. doi:10.1111/J.1439-0272.2005.00656.X

Guerra, S. M., Valcarce, D. G., Cabrita, E., and Robles, V. (2013). Analysis of transcripts in gilthead seabream sperm and zebrafish testicular cells: mRNA profile as a predictor of gamete quality. *Aquaculture* **406–407**, 28–33. doi:10.1016/J.AQUACULTURE.2013.04.032

Gunes, S., Arslan, M. A., Hekim, G. N. T., and Asci, R. (2016). The role of epigenetics in idiopathic male infertility. *J. Assist. Reprod. Genet.* **33**, 553–569. doi:10.1007/S10815-016-0682-8

Guzmán, J. M., Norberg, B., Ramos, J., Mylonas, C. C., and Mañanós, E. L. (2008). Vitellogenin, steroid plasma levels and spawning performance of cultured female Senegalese sole (*Solea senegalensis*). *Gen. Comp. Endocrinol.* **156**, 285–297. doi:10.1016/J.YGCEN.2008.02.002

Guzmán, J. M., Rubio, M., Ortiz-Delgado, J. B., Klenke, U., Kight, K., Cross, I., Sánchez-Ramos, I., Riaza, A., Rebordinos, L., Sarasquete, C., Zohar, Y., and Mañanós, E. L. (2009). Comparative gene expression of gonadotropins (FSH and LH) and peptide levels of gonadotropin-releasing hormones (GnRHs) in the pituitary of wild and cultured Senegalese sole (*Solea senegalensis*) broodstocks. *Comp. Biochem. Physiol. A Mol. Integr. Physiol.* **153**, 266–277. doi:10.1016/J.CBPA.2009.02.032

Guzmán, J. M., Cal, R., García-López, Á., Chereguini, O., Kight, K., Olmedo, M., Sarasquete, C., Mylonas, C. C., Peleteiro, J. B., Zohar, Y., and Mañanós, E. L. (2011). Effects of *in vivo* treatment with the dopamine antagonist pimozide and gonadotropin-releasing hormone agonist (GnRHa) on the reproductive axis of Senegalese sole (*Solea senegalensis*). *Comp. Biochem. Physiol. A Mol. Integr. Physiol.* **158**, 235–245. doi:10.1016/J.CBPA.2010.11.016

Hertel, J., Bartschat, S., Wintsche, A., Otto, C., and Students of the Bioinformatics Computer LabStadler, P. F. (2012). Evolution of the let-7 microRNA family. *RNA Biol.* **9**, 231–241. doi:10.4161/RNA.18974

Howell, B., Conceição, L., Prickett, R., Cañavate, J. P., and Mañanós, E. L. (2009). Sole farming: nearly there but not quite? *Aquaculture Europe* **34**, 24–27.

Infante, C., Matsuoka, M. P., Asensio, E., Canavate, J. P., Reith, M., and Manchado, M. (2008). Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR. *BMC Mol. Biol.* **9**, 28. doi:10.1186/1471-2199-9-28

Ji, J., Qin, Y., Ren, J., Lu, C., Wang, R., Dai, X., Zhou, R., Huang, Z., Xu, M., Chen, M., Wu, W., Song, L., Shen, H., Hu, Z., Miao, D., Xia, Y., and Wang, X. (2015). Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN. *Sci. Rep.* **5**, 16262. doi:10.1038/SREP16262

Jia, K.-T., Zhang, J., Jia, P., Zeng, L., Jin, Y., Yuan, Y., Chen, J., Hong, Y., and Yi, M. (2015). Identification of MicroRNAs in zebrafish spermatozoa. *Zebrafish* **12**, 387–397. doi:10.1089/ZEB.2015.1115

Jiang, L., Zhang, J., Wang, J.-J., Wang, L., Zhang, L., Li, G., Yang, X., Ma, X., Sun, X., Cai, J., Zhang, J., Huang, X., Yu, M., Wang, X., Liu, F., Wu, C.-I., He, C., Zhang, B., Ci, W., and Liu, J. (2013). Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. *Cell* **153**, 773–784. doi:10.1016/J.CELL.2013.04.041

Jodar, M., Selvaraju, S., Sendler, E., Diamond, M. P., and Krawetz, S. A. Reproductive Medicine Network (2013). The presence, role and clinical use of spermatozoal RNAs. *Hum. Reprod. Update* **19**, 604–624. doi:10.1093/HUMUPD/DMT031

Kotaja, N. (2014). MicroRNAs and spermatogenesis. *Fertil. Steril.* **101**, 1552–1562. doi:10.1016/J.FERTNSTERT.2014.04.025

Kurtz, K., Sáperas, N., Ausiò, J., and Chiva, M. (2009). Spermiogenic nuclear protein transitions and chromatin condensation. Proposal for an ancestral model of nuclear spermiogenesis. *J. Exp. Zool. B Mol. Dev. Evol.* **312B**, 149–163. doi:10.1002/JEZ.B.21271

Labbé, C., Robles, V., and Herraez, M. P. (2017). Epigenetics in fish gametes and early embryo. *Aquaculture* **472**, 93–106. doi:10.1016/J.AQUACULTURE.2016.07.026

Lima Giacobbo, B., Doorduin, J., Klein, H. C., Dierckx, R. A. J. O., Bromberg, E., and de Vries, E. F. J. (2018). Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. *Mol. Neurobiol.* doi:10.1007/S12035-018-1283-6

Liu, W.-M., Pang, R. T. K., Chiu, P. C. N., Wong, B. P. C., Lao, K., Lee, K.-F., and Yeung, W. S. B. (2012). Sperm-borne microRNA-34c is required for the first cleavage division in mouse. *Proc. Natl Acad. Sci. USA* **109**, 490–494. doi:10.1073/PNAS.1110368109

Mañanós, E., Ferreiro, I., Bolón, D., Guzmán, J., Mylonas, C., and Riaza, A. (2007). Different responses of Senegalese sole *Solea senegalensis* broodstock to a hormonal spawning induction therapy, depending on their wild or captive-reared origin. In 'Proceedings of Aquaculture Europe 07', Istanbul, Turkey. pp. 330–331. (European Aquaculture Society.)

McIver, S. C., Roman, S. D., Nixon, B., and McLaughlin, E. A. (2012). miRNA and mammalian male germ cells. *Hum. Reprod. Update* **18**, 44–59. doi:10.1093/HUMUPD/DMR041

Meseguer, M., Garrido, N., Simón, C., Pellicer, A., and Remohí, J. (2004). Concentration of glutathione and expression of glutathione peroxidases 1 and 4 in fresh sperm provide a forecast of the outcome of cryopreservation of human spermatozoa. *J. Androl.* **25**, 773–780. doi:10.1002/J.1939-4640.2004.TB02855.X

Niu, Z., Goodyear, S. M., Rao, S., Wu, X., Tobias, J. W., Avarbock, M. R., and Brinster, R. L. (2011). MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. *Proc. Natl Acad. Sci. USA* **108**, 12740–12745. doi:10.1073/PNAS.1109987108

Nixon, B., Stanger, S. J., Mihalas, B. P., Reilly, J. N., Anderson, A. L., Tyagi, S., Holt, J. E., and McLaughlin, E. A. (2015). The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation. *Biol. Reprod.* **93**, 91. doi:10.1095/BIOLREPROD.115.132209

Ostermeier, G. C., Dix, D. J., Miller, D., Khatri, P., and Krawetz, S. A. B. (2002). Spermatozoal RNA profiles of normal fertile men. *Lancet* **360**, 772–777. doi:10.1016/S0140-6736(02)09899-9

Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., Hayward, D. C., Ball, E. E., Degnan, B., Müller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E., and Ruvkun, G. (2000). Conservation of the sequence and temporal expression of *let-7* heterochronic regulatory RNA. *Nature* **408**, 86–89. doi:10.1038/35040556

Patrizio, P., Sanguineti, F., and Sakkas, D. (2008). Modern andrology: from semen analysis to postgenomic studies of the male gametes. *Ann. N. Y. Acad. Sci.* **1127**, 59–63. doi:10.1196/ANNALS.1434.021

Peterson, S. M., Thompson, J. A., Ufkin, M. L., Sathyaranayana, P., Liaw, L., and Congdon, C. B. (2014). Common features of microRNA target prediction tools. *Front. Genet.* **5**, 23. doi:10.3389/FGENE.2014.00023

Potok, M. E., Nix, D. A., Parnell, T. J., and Cairns, B. R. (2013). Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. *Cell* **153**, 759–772. doi:10.1016/J.CELL.2013.04.030

Pratt, S. L., and Calcaterra, S. M. (2017). Expression of microRNA in male reproductive tissues and their role in male fertility. *Reprod. Fertil. Dev.* **29**, 24. doi:10.1071/RD16293

Presslauer, C., Tilahun Biziayehu, T., Kopp, M., Fernandes, J. M. O., and Babiak, I. (2017). Dynamics of miRNA transcriptome during gonadal development of zebrafish. *Sci. Rep.* **7**, 43850. doi:10.1038/SREP43850

Rasines, I., Gómez, M., Martín, I., Rodríguez, C., Mañanós, E., and Chereguini, O. (2012). Artificial fertilization of Senegalese sole (*Solea senegalensis*): hormone therapy administration methods, timing of ovulation and viability of eggs retained in the ovarian cavity. *Aquaculture* **326–329**, 129–135. doi:10.1016/J.AQUACULTURE.2011.11.021

Rasines, I., Gómez, M., Martín, I., Rodríguez, C., Mañanós, E., and Chereguini, O. (2013). Artificial fertilisation of cultured Senegalese sole (*Solea senegalensis*): effects of the time of day of hormonal treatment on inducing ovulation. *Aquaculture* **392–395**, 94–97. doi:10.1016/J.AQUACULTURE.2013.02.011

Riesco, M. F., Oliveira, C., Soares, F., Gavaia, P. J., Dinis, M. T., and Cabrita, E. (2017). *Solea senegalensis* sperm cryopreservation: new insights on sperm quality. *PLoS One* **12**, e0186542. doi:10.1371/JOURNAL.PONE.0186542

Robles, V., Herráez, P., Labbé, C., Cabrita, E., Pšenička, M., Valcarce, D. G., and Riesco, M. F. (2017). Molecular basis of spermatogenesis and sperm quality. *Gen. Comp. Endocrinol.* **245**, 5–9. doi:10.1016/J.YGCEN.2016.04.026

Schulman, B. R. M., Esquela-Kerscher, A., and Slack, F. J. (2005). Reciprocal expression of *lin-41* and the microRNAs *let-7* and *mir-125* during mouse embryogenesis. *Dev. Dyn.* **234**, 1046–1054. doi:10.1002/DVDY.20599

Schuster, A., Tang, C., Xie, Y., Ortogero, N., Yuan, S., and Yan, W. (2016). SpermBase: a database for sperm-borne RNA contents. *Biol. Reprod.* **95**, 99. doi:10.1095/BIOLREPROD.116.142190

Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., and Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. *Genome Biol.* **5**, R13. doi:10.1186/GB-2004-5-3-R13

Thomson, J. M., Parker, J., Perou, C. M., and Hammond, S. M. (2004). A custom microarray platform for analysis of microRNA gene expression. *Nat. Methods* **1**, 47–53. doi:10.1038/NMETH704

Thomson, J. M., Newman, M., Parker, J. S., Morin-Kensicki, E. M., Wright, T., and Hammond, S. M. (2006). Extensive post-transcriptional regulation of microRNAs and its implications for cancer. *Genes Dev.* **20**, 2202–2207. doi:10.1101/GAD.1444406

Vacher, C., Mañanós, E. L., Breton, B., Marmignon, M. H., and Saligaut, C. (2000). Modulation of pituitary dopamine D1 or D2 receptors and secretion of follicle stimulating hormone and luteinizing hormone during the annual reproductive cycle of female rainbow trout. *J. Neuroendocrinol.* **12**, 1219–1226. doi:10.1046/J.1365-2826.2000.00585.X

Valcarce, D. G., and Robles, V. (2016). Effect of captivity and cryopreservation on ROS production in *Solea senegalensis* spermatozoa. *Reproduction* **152**, 439–446. doi:10.1530/REP-16-0270

Valcarce, D. G., Cartón-García, F., Herráez, M. P., and Robles, V. (2013). Effect of cryopreservation on human sperm messenger RNAs crucial for fertilization and early embryo development. *Cryobiology* **67**, 84–90. doi:10.1016/J.CRYOBOL.2013.05.007

Valcarce, D. G., Pardo, M. Á., Riesco, M. F., Cruz, Z., and Robles, V. (2015). Effect of diet supplementation with a commercial probiotic containing *Pediococcus acidilactici* (Lindner, 1887) on the expression of five quality markers in zebrafish (*Danio rerio* (Hamilton, 1822)) testis. *J. Appl. Ichthyology* **31**, 18–21. doi:10.1111/JAI.12731

Valcarce, D. G., Herráez, M. P., Chereguini, O., Rodríguez, C., and Robles, V. (2016). Selection of nonapoptotic sperm by magnetic-activated cell sorting in Senegalese sole (*Solea senegalensis*). *Theriogenology* **86**, 1195–1202. doi:10.1016/J.THERIOGENOLOGY.2016.04.010

Wienholds, E., Koudijs, M. J., van Eeden, F. J. M., Cuppen, E., and Plasterk, R. H. A. (2003). The microRNA-producing enzyme Dicer1 is essential for zebrafish development. *Nat. Genet.* **35**, 217–218. doi:10.1038/NG1251

Woods, L. C., Li, Y., Ding, Y., Liu, J., Reading, B. J., Fuller, S. A., and Song, J. (2018). DNA methylation profiles correlated to striped bass sperm fertility. *BMC Genomics* **19**, 244. doi:10.1186/S12864-018-4548-6

Wu, S.-F., Zhang, H., and Cairns, B. R. (2011). Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. *Genome Res.* **21**, 578–589. doi:10.1101/GR.113167.110

Wulczyn, F. G., Smirnova, L., Rybak, A., Brandt, C., Kwidzinski, E., Ninnemann, O., Strehle, M., Seiler, A., Schumacher, S., and Nitsch, R. (2007). Post-transcriptional regulation of the *let-7* microRNA during neural cell specification. *FASEB J.* **21**, 415–426. doi:10.1096/FJ.06-6130COM

Xiong, S., Ma, W., Jing, J., Zhang, J., Dan, C., Gui, J.-F., and Mei, J. (2018). An miR-200 cluster on chromosome 23 regulates sperm motility in zebrafish. *Endocrinology* **159**, 1982–1991. doi:10.1210/EN.2018-00015

Yamamoto, K., and Vernier, P. (2011). The evolution of dopamine systems in chordates. *Front. Neuroanat.* **5**, 21. doi:10.3389/FNANA.2011.00021

Yang, T., Cao, C., Yang, J., Liu, T., Lei, X. G., Zhang, Z., and Xu, S. (2018a). miR-200a-5p regulates myocardial necroptosis induced by Se deficiency via targeting RNF11. *Redox Biol.* **15**, 159–169. doi:10.1016/J.REDOX.2017.11.025

Yang, S., Toledo, E. M., Rosmaninho, P., Peng, C., Uhlén, P., Castro, D. S., and Arenas, E. (2018b). A Zeb2–miR-200c loop controls midbrain dopaminergic neuron neurogenesis and migration. *Commun. Biol.* **1**, 75. doi:10.1038/S42003-018-0080-0

Yuan, J. S., Reed, A., Chen, F., and Stewart, C. N. (2006). Statistical analysis of real-time PCR data. *BMC Bioinformatics* **7**, 85. doi:10.1186/1471-2105-7-85